

TRANSFORMACIONES DEL PLANO

Aplicaciones de las Traslaciones

www.continental.edu.pe

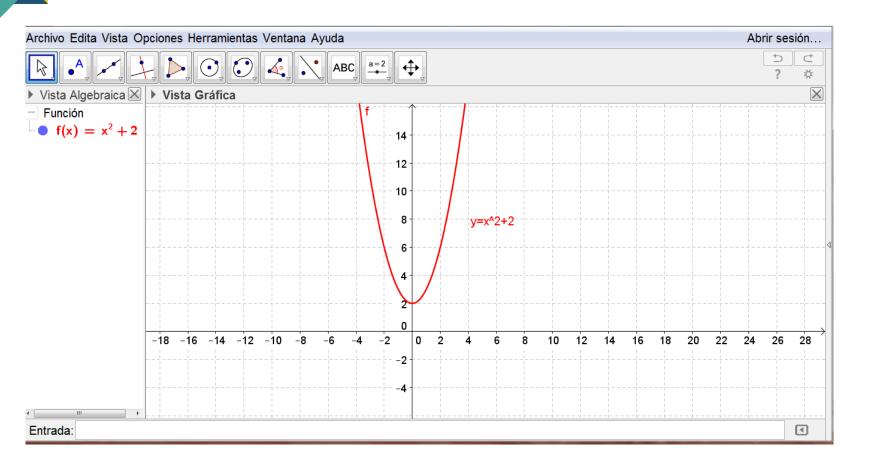
Soy el Profesor Fabio Contreras Oré, integrante la Oficina de Calidad Educativa de la Universidad Continental

Emplean los procesos para efectuar traslaciones verticales y horizontales en \mathbb{R}^2 , para trasladar una figura a un punto determinado y hallar el vértice de una parábola.

Recordando, si se tiene la gráfica de una parábola, dada por una función cuadrática, tal como:

$$f: \mathbb{R} \to \mathbb{R} : x \mapsto (x^2+2)$$
. Es decir:
 $y = f(x) = x^2+2$

Con la ayuda del GeoGebra podemos obtener su gráfica



Sabemos que en el cuerpo de los números reales:

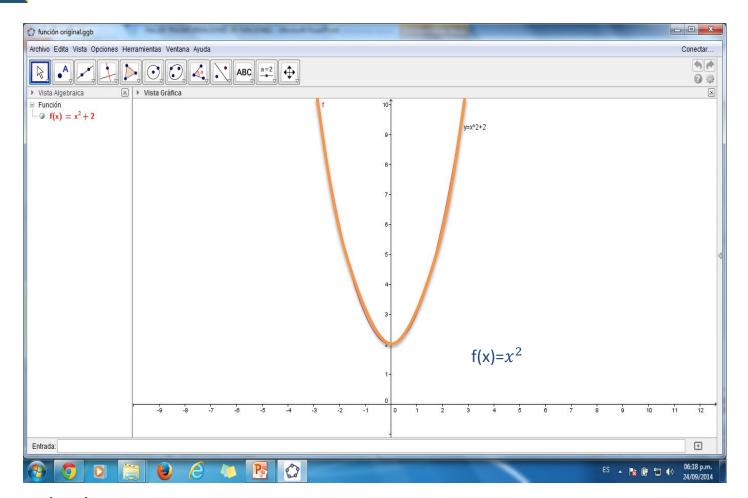
La función: $f: \mathbb{R} \to \mathbb{R}$: $x \mapsto f(x) - 2$ es decir:

 $y_1 = (x^2+2)-2$, la misma que simplificando se

escribe: $y_1 = f(x) = x^2$

es otra parábola, idéntica a la primera pero que se ha trasladado dos unidades hacia abajo en el eje de las ordenadas, o sea, en el eje Y

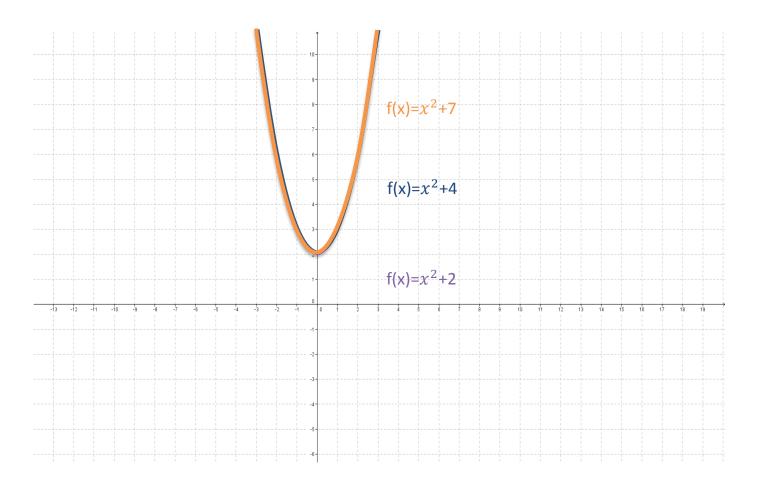
Nuevamente, utilizando el GeoGebra podemos visualizarla:



Ahora, si en lugar de restar una cantidad determinada a una función, le sumamos una cantidad determinada, por ejemplo 2 y 5, respectivamente, entonces la traslación se hará hacia arriba siempre en la dirección del eje de las ordenadas o eje de las Y. Por ejemplo:

$$f: \mathbb{R} \to \mathbb{R} : x \mapsto (x^2+2)+2$$
. Es decir:
 $y_3 = f(x) = x^2+4$
 $f: \mathbb{R} \to \mathbb{R} : x \mapsto (x^2+2)+5$. Es decir:

 $y_4 = f(x) = x^2 + 7$

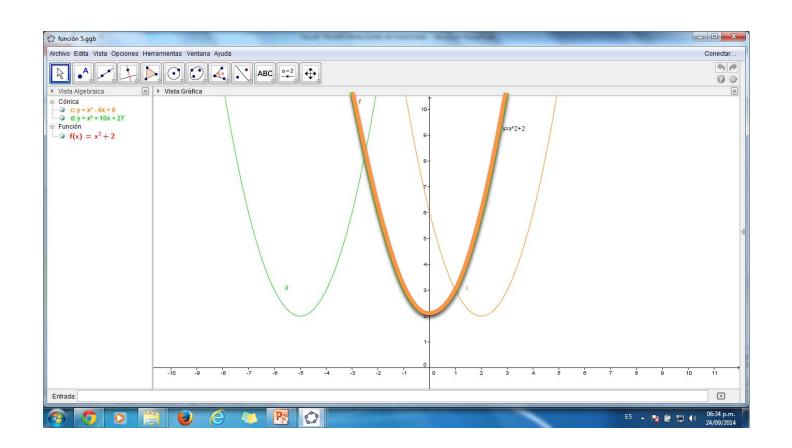


También se ha aprendido que si sumamos o restamos una cantidad antes de elevar al cuadrado la variable x; en este caso, se produce traslaciones en el eje de las abscisas o eje de las X

Siempre trabajando en el cuerpo de los reales: utilizando el GeoGebra, graficamos las siguientes funciones:

$$f: \mathbb{R} \to \mathbb{R} : x-2 \mapsto (x-2)^2 + 2.$$
 Es decir:
 $y_3 = f(x-2) = (x^2-4x+4) + 2 = x^2 - 4x + 6$

$$f: \mathbb{R} \to \mathbb{R} : x + 5 \mapsto (x + 5)^2 + 2$$
. Es decir:
 $y_4 = f(x + 5) = (x^2 + 10x + 25) + 2 = x^2 + 10x + 27$



Ahora combinemos los dos movimientos ya conocidos

Sea la parábola $y = x^2$, evidentemente esta parábola tiene por vértice al origen de coordenadas, es decir (0,0).

Se trata de trasladar la parábola $y = x^2$, al punto donde su vértice se encuentre en el punto A(3,4).

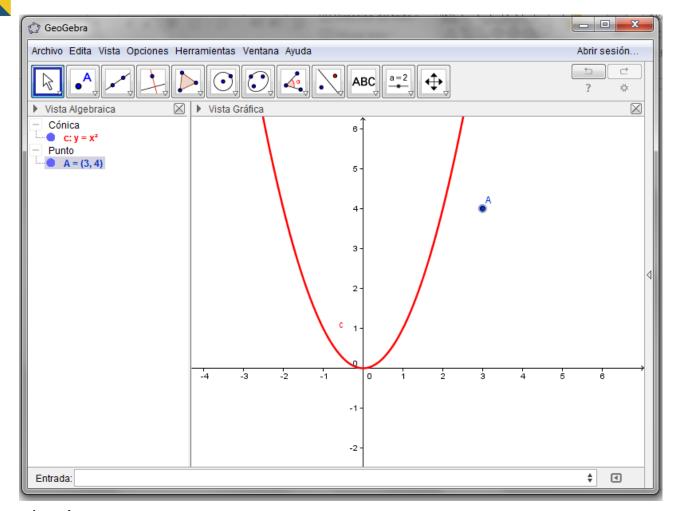
Se trata, entonces, de trasladar la parábola inicial $y = x^2$, 3 unidades positivas en el eje de las X y 4 unidades positivas en el eje de las Y.

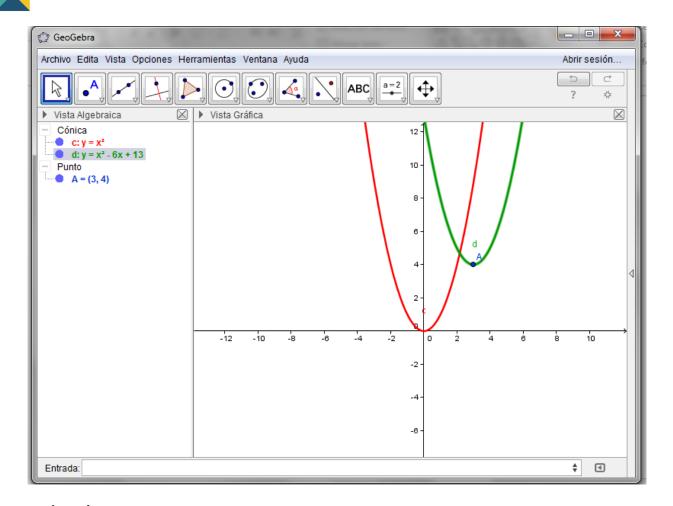
Se trata de combinar los resultados anteriores.

A la parábola y = x^2 , para trasladarlo 3 unidades positivas en el eje X, debemos restarle 3 unidades a la variable antes de elevarlo al cuadrado, es decir: $y_1 = (x-3)^2$

A la parábola $y_1 = (x-3)^2$, para trasladarlo 4 unidades positivas en el eje Y, debemos sumarle 4 unidades a la nueva variable, es decir: $y_2 = (x-3)^2 + 4$

Efectuando las operaciones algebraicas, se tiene: $y_2 = (x-3)^2 + 4 = (x^2 - 6x + 9) + 4 = x^2 - 6x + 13$. Cuya gráfica se encuentra fácilmente con el GeoGebra





Veamos el problema inverso.

Sea la parábola $y = x^2 + 10x + 22$, hallar las coordenadas del vértice B(x,y), y verificarlo utilizando el GeoGebra.

Para resolver este problema, será suficiente factorizar el polinomio y ponerla bajo la forma $y = (x + j)^2 + k$ en cuyo caso el vértice es B(-j,k)

Se tiene:

$$y = x^2 + 10x + 22$$

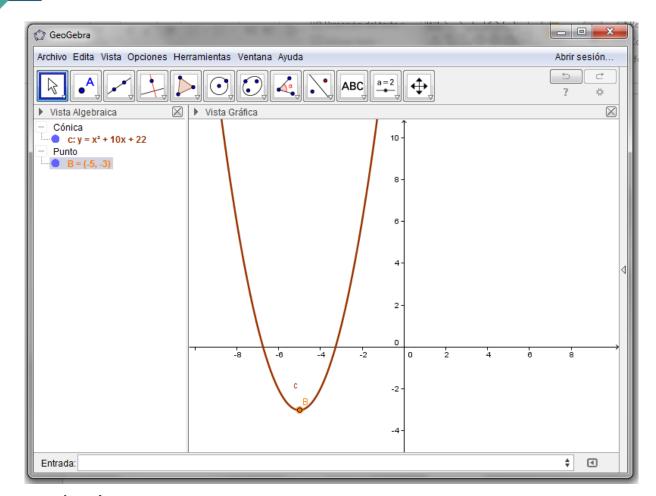
Separando para completar cuadrados:

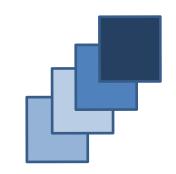
$$y = (x^2 + 10x) + 22$$

Completando cuadrados, tenemos:

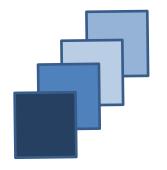
$$y = (x^2 + 10x + 25) + 22 - 25$$
$$y = (x + 5)^2 - 3$$

Por tanto el vértice B, será el punto (-5,-3), que pasamos a verificarlo utilizando el GeoGebra:





A nombre de Calidad Educativa- Área de Formación Docente



Gracias!!!!

www.continental.edu.pe