

SÍLABO Controles Eléctricos y Automatización

Código	ASUC01632		Carácter	Electivo	
Prerrequisito	140 créditos aprobados				
Créditos	3	3			
Horas	Teóricas	2	Prácticas	2	
Año académico	2025				

I. Introducción

Controles Eléctricos y Automatización es una asignatura electiva de la Escuela Académico Profesional de Ingeniería Eléctrica. Tiene como prerrequisito haber aprobado 140 créditos. Desarrolla, en un nivel intermedio, la competencia transversal Medioambiente y Sostenibilidad, y, en un nivel logrado, las competencias transversales Ingeniería y Sociedad, y Gestión de Proyectos. En virtud de lo anterior, su relevancia reside en brindar al estudiante un panorama general de la automatización

Los contenidos generales que la asignatura desarrolla son los siguientes: Control y arranque de motores eléctricos en aplicaciones industriales con PLC; y teoría de control automático en subestaciones de potencia. Se desarrollará temas como RTU, relé de protección de generadores, relé de protección de alimentadores, relé de protección de motores, relé de protección de transformadores.

II. Resultado de aprendizaje de la asignatura

Al finalizar la asignatura, el estudiante será capaz de explicar y aplicar principios generales de la automatización a temas específicos de la automatización en subestaciones de potencia y el control de motores eléctricos en aplicaciones industriales con PLC.

III. Organización de los aprendizajes

Unidad 1 La automatización. Control de motores eléctricos			16		
Resultado de Al finalizar la Unidad, el estudiante será capaz de interpret					
aprendizaje de la	alcances de la automatización, sus campos de acción y la aplicación				
unidad	a una automatización de un motor eléctrico.				
	1. Definición de automatización				
Ejes temáticos	2. Alcance de automatización				
ejes iemalicos	3. Control de motores eléctricos en aplicaciones industriales con PLC				
	En esta unidad se hará uso del software TIA PORTAL				

Relés de pr	Duración en horas	16	
Resultado de aprendizaje de la unidad	Al finalizar la Unidad, el estudiante será capaz o de protección aplicado a motores eléctricos, o configuraciones relacionadas con el motor eléc	analizando	
Ejes temáticos	 Motor eléctrico y curvas de protección Sistemas de protección para un motor eléctri Ejemplo de configuración de un relé de peléctrico 		de motor

Relés de protecció	Duración en horas	16		
Resultado de aprendizaje de la unidad	Al finalizar la Unidad, el estudiante será capaz de configurar un relé de protección aplicado a generadores y alimentadores de media tensión, analizando todas las configuraciones relacionadas con el elemento a proteger.			
Ejes temáticos	 Generación eléctrica Ejemplo de configuración de un relé de peléctrico, generadores y alimentadores de m Alimentadores de media tensión Ejemplo de configuración de un relé de peléctrico 	nedia tensiór	า	

Unidad de Termii automatiz	Duración en horas	16		
Resultado de aprendizaje de la unidad	Al finalizar la Unidad, el estudiante será capaz de aplicar principios generales de la automatización en subestaciones de potencia y el control de motores eléctricos en aplicaciones industriales con PLC, reconociendo una RTU y su aplicación en las subestaciones eléctricas de potencia, explicando las comunicaciones desarrolladas en la automatización de las subestaciones de potencia.			
Ejes temáticos	 RTU, definición y aplicación Comunicación a través del protocolo IEC 608 Comunicación a través del protocolo DNP3 Comunicación a través del protocolo IEC 618 			

IV. Metodología

Modalidad Presencial

La asignatura utilizará la metodología experiencial y colaborativa promoviendo la constante participación de los estudiantes en el desarrollo de análisis de casos y aprendizaje orientado a proyectos.

Las estrategias y técnicas didácticas que se utilizarán son las siguientes:

- Aprendizaje colaborativo
- Aprendizaje experiencial
- Estudio de casos
- Aprendizaje orientado en proyectos
- Gamificación
- Clase magistral activa

Modalidad Semipresencial

La asignatura utilizará la metodología experiencial y colaborativa promoviendo la constante participación de los estudiantes en el desarrollo de análisis de casos.

Las estrategias y técnicas didácticas que se utilizarán son las siguientes:

- Aprendizaje experiencial
- Estudio de casos
- Aprendizaje orientado en proyectos
- Gamificación
- Clase magistral activa

V. Evaluación Modalidad Presencial

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso parcial	Peso total
Evaluación de entrada	Prerrequisito	Primera sesión	- Evaluación individual teórica/ Prueba objetiva	0%	
Consolidado 1 C1	1	Semana 1 - 4	- Trabajo práctico grupal - Simulación de PLC/ Rúbrica de evaluación	50 %	00 %
	2	Semana 5 - 7	- Trabajo práctico individual - configuración de relé/ Rúbrica de evaluación	50 %	20 %
Evaluación parcial EP	1 y 2	Semana 8	- Trabajo práctico individual/ Rúbrica de evaluación	25 %	
Consolidado 2 C2	3	Semana 9 - 12	- Trabajo práctico grupal - configuración de relé/ Rúbrica de evaluación	50 %	
	4	Semana 13 - 15	- Exposición grupal comunicaciones en SEP/ Lista de cotejo	50 %	20 %

Evaluación final EF	Todas las unidades	Semana 16	- Trabajo práctico individual/ Rúbrica de evaluación	35 %
Evaluación sustitutoria *	Todas las unidades	Fecha posterior a la evaluación final	- Aplica	

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad Semipresencial

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso parcial	Peso total
Evaluación de entrada	Prerrequisito	Primera sesión	- Evaluación individual teórica/ Prueba objetiva	0 %	ı
			- Actividades virtuales	15 %	
Consolidado 1 C1	1	Semana 1 - 3	- Trabajo práctico individual - configuración de relé/ Rúbrica de evaluación	85 %	20 %
Evaluación parcial EP	1 y 2	Semana 4	- Trabajo práctico grupal/ Rúbrica de evaluación	25 %	6
			- Actividades virtuales	15 %	
Consolidado 2 C2	3	Semana 5 - 7	- Exposición grupal comunicaciones en SEP/ Lista de Cotejo	85 %	20 %
Evaluación final EF	Todas las unidades	Semana 8	- Trabajo práctico individual/ Rúbrica de evaluación	35 %	6
Evaluación sustitutoria *	Todas las unidades	Fecha posterior a la evaluación final	- Aplica		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Fórmula para obtener el promedio:

VI. Bibliografía

Básica

Golnaraghi, M. F. y Kuo, B. C. (2010). Automatic control systems. (9.º ed.). John Wiley & Sons. https://at2c.short.gy/wk8yCP

Complementaria

Kuo, B. (2009). Automatic control systems. John Wiley & Sons.

Martín, J. (2012). Automatismos industriales: [Electricidad y electrónica. Editex.]

Padilla, E. (2016). Substation automation systems: Design and implementation. John Wiley & Sons, Ltd.

Sánchez, G. (2011). Telecontrol de redes eléctricas usando protocolos de gestión de redes: Implementación de las funciones de telecontrol de la norma IEC 60870-5-104 sobre el protocolo de gestión de redes SNMPv3. Editorial Académica Española.

Yuan, Y. y Yang, Y. (2019). IEC 61850-based smart substations: Principles, testing, operation and maintenance. Academic Press.

VII. Recursos digitales

Axon Group. (2020, 5 de agosto). Introducción al protocolo IEC 60870-5-104. [video]. YouTube. https://www.youtube.com/watch?v=qSccOUm9Vw4

Cade SIMU, (2021, 04 de octubre). Cade Simu https://cade-simu.com/

CIROS. (software para simulación y programación de PLC)

Electrotecnia. (2017, 29 de marzo). PLC S7-1200 SIEMENS EN CADE SIMU simulación, programación y funcionamiento. [video]. YouTube. https://www.youtube.com/watch?v=IASCpYWZAT8