

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Civil

Tesis

Evaluación de la reducción del efecto de las cargas sísmicas en edificios altos a través de su configuración geométrica en planta

Ronald Alexander Aguilar Leonardo

Para optar el Título Profesional de Ingeniero Civil

Huancayo, 2022

Repositorio Institucional Continental Tesis digital

Esta obra está bajo una Licencia "Creative Commons Atribución 4.0 Internacional".

AGRADECIMIENTOS

De manera introspectiva, agradezco a la vida en sí misma por mostrarse de formas inesperadamente curiosas en el verdadero valor de las cosas, por permitirme ser parte de cada instante que trascendió el tiempo a través de recuerdos y por esa caótica conexión de sueños de aquello que aún no hicimos y llamamos destino.

DEDICATORIA

A mis padres, Eva y Ronald, por su entrega y sacrificio, su amor incondicional e infinito, sus enseñanzas de vida y su guía constante en cada etapa de mi vida.

A mi hermano, Diego, con quien tengo la dicha de haber compartido los mejores momentos de mi niñez, por ayudarme a comprender las cosas desde otro punto de vista y ser mi soporte de apertura a nuevas situaciones de aprendizaje.

A mis abuelos, Evarista, Eugenio, Enrique y Socorro, por su trato siempre generoso, su exquisita comida, sus historias de antaño y sus palabras de aliento.

A mis mascotas, Pepe Lucho, Lucas, Sr. Wonejo, Tobby y Terry, por su fiel compañía y sus gestos únicos y agradables a la vista en épocas reflexivas y trascendentales.

A todos aquellos familiares que me ayudaron sobrellevar los malos momentos y a crecer en mi paso por el mundo.

Y, por último, a mis amigos, especialmente a Leonardo y Erick, personas entrañables con quienes compartí aulas, viajes, juegos, sueños, risas, llantos, días, noches y un sinfín de aventuras locas y momentos nostálgicos que me marcaron para siempre.

ÍNDICE DE CONTENIDOS

AGRADECIMIENTOS	ii
DEDICATORIA	iii
ÍNDICE DE CONTENIDOS	iv
ÍNDICE DE TABLAS	vii
ÍNDICE DE FIGURAS	ix
RESUMEN	xii
ABSTRACT	xiii
INTRODUCCIÓN	xiv
CAPÍTULO I: PLANTEAMIENTO DEL ESTUDIO	
1.1 Planteamiento del problema	
1.2 Formulación del problema	17
1.2.1 Problema general	17
1.2.2 Problemas específicos	17
1.3 Objetivos	
1.3.1 Objetivo general	
1.3.2 Objetivos específicos	
1.4 Justificación e importancia	
1.4.1 Práctica	
1.4.2 Teórica	
1.4.3 Metodológica	
1.4.4 Por viabilidad	
1.5 Limitaciones de la investigación	
1.6 Hipótesis y variables	
1.6.1 Hipótesis	
1.6.1.1 Hipótesis general	19
1.6.1.2 Hipótesis específicas	20
1.6.2 Identificación de variables y operacionalización	
1.6.2.1 Variable independiente	20
1.6.2.2 Variable dependiente	20
CAPÍTULO II: MARCO TEÓRICO	
2.1 Antecedentes de la investigación	22

2.2 Bases teóricas			
2.2.1 Análisis sísmico	. 24		
2.2.1.1 Análisis estático o de fuerzas estáticas equivalentes	. 25		
2.2.1.2 Análisis dinámico modal espectral	. 26		
2.2.2 Sistemas resistentes a fuerzas laterales	. 26		
2.2.3 Irregularidades estructurales	. 30		
2.2.3.1 En altura o verticales	. 30		
2.2.3.2 En planta u horizontales	. 32		
2.3 Definición de términos básicos	. 33		
CAPÍTULO III: METODOLOGÍA	. 36		
3.1 Método y alcances de la investigación	. 36		
3.2 Diseño de la investigación	. 37		
3.3 Población y muestra	. 37		
3.3.1 Población	. 37		
3.3.2 Muestra	. 37		
3.4 Técnicas e instrumentos de recolección de datos	. 38		
3.4.1 Técnicas de recolección de datos	. 38		
3.4.2 Instrumentos de recolección de datos			
CAPÍTULO IV: RESULTADOS Y DISCUSIÓN 40			
4.1 Resultados y análisis de la información	. 40		
4.1.1 Definición geométrica de los edificios	. 40		
4.1.1.1 Área global	. 40		
4.1.1.2 Área interna	. 40		
4.1.2 Predimensionamiento de elementos estructurales	. 41		
4.1.2.1 Muros de corte	. 45		
4.1.2.2 Columnas	. 48		
4.1.2.3 Vigas	. 51		
4.1.2.4 Losas	. 51		
4.1.2.5 Escaleras	. 55		
4.1.3 Modelamiento estructural en ETABS [®]	. 56		
4.1.3.1 Materiales	. 56		
4.1.3.2 Secciones	. 56		
4.1.3.3 Cargas	. 58		
4.1.3.4 Masa sísmica	. 59		

4.1.3.5 Espectros de pseudo-aceleración	59
4.1.3.6 Metrado de cargas de asignación	60
4.1.3.7 Liberación de momentos	62
4.1.3.8 Factor de zona rígida	62
4.1.4 Análisis estructural	63
4.1.4.1 Peso sísmico	70
4.1.4.2 Modos de vibración	71
4.1.4.3 Períodos de vibración	74
4.1.4.4 Condiciones de regularidad estructural	75
4.1.4.5 Factores de escala	76
4.1.4.6 Fuerzas sísmicas y cortantes de entrepiso	77
4.1.4.7 Verificación del sistema estructural adoptado	80
4.1.4.8 Derivas inelásticas alcanzadas	84
4.1.4.9 Rigidez lateral	89
4.1.4.10 Estabilidad estructural	89
4.2 Discusión de resultados	91
CAPÍTULO V: CONCLUSIONES	93
REFERENCIAS BIBLIOGRÁFICAS	96
ANEXOS	102

ÍNDICE DE TABLAS

Tabla 1. Sistemas estructurales resistentes a fuerzas laterales	7
Tabla 2. Diseño de la investigación 3	7
Tabla 3. Área global definida por edificación 40	0
Tabla 4. Área interna definida por edificación4	1
Tabla 5. Estimación de la fuerza cortante basal general 44	5
Tabla 6. Detalle de las características de las cajas de ascensores y	
escaleras4	7
Tabla 7. Parámetros de predimensionamiento de placas de	
concreto armado48	8
Tabla 8. Cálculo del diámetro mínimo de columnas50	0
Tabla 9. Trazado de elementos de los marcos rígidos 5	1
Tabla 10. Predimensionamiento de vigas	1
Tabla 11. Predimensionamiento de losas	2
Tabla 12. Momentos de inercia de las secciones de viga y las	
franjas de losa adyacentes5	3
Tabla 13. Relación entre las rigideces a flexión de una sección de	
viga y de una franja de losa limitada lateralmente por los ejes	
centrales de los paneles adyacentes a cada lado de la viga	
en la configuración geométrica cuadrada54	4
Tabla 14. Verificación del espesor de la losa maciza bidireccional 54	4
Tabla 15. Predimensionamiento de escaleras	5
Tabla 16. Propiedades físicas y mecánicas de los componentes	
del material predominante elegido (concreto armado)50	6
Tabla 17. Detalle de las secciones de los elementos estructurales	7
Tabla 18. Descripción de los patrones de carga creados 58	8
Tabla 19. Descripción de los casos de carga creados	8
Tabla 20. Descripción de las combinaciones de carga creadas	8
Tabla 21. Porcentaje de participación de las cargas para fines	
de análisis sísmico59	9
Tabla 22. Resumen de las cargas repartidas asignadas a	
los elementos estructurales6	1

Tabla 23. Resumen de las longitudes de anclaje o desarrollo	
requeridas por barra considerada de acuerdo al punto de	
apoyo asignado	62
Tabla 24. Ubicación por configuración geométrica de la fase	
de verificación	66
Tabla 25. Configuración matricial de los modos principales	71
Tabla 26. Resumen de los factores de irregularidad en altura y planta	76
Tabla 27. Factores de escala de los espectros de pseudo-aceleración	
para el sismo dinámico y los desplazamientos y derivas en	
condición inelástica de todas las configuraciones geométricas	76
Tabla 28. Factores de escala para obtener la carga sísmica de diseño	
por cada configuración geométrica	77
Tabla 29. Fuerzas sísmicas y cortantes para la configuración	
geométrica cuadrada	78
Tabla 30. Fuerzas sísmicas y cortantes para la configuración	
geométrica circular	79
Tabla 31. Fuerzas sísmicas y cortantes para la configuración	
geométrica triangular	79
Tabla 32. Fuerzas sísmicas y cortantes para la configuración	
geométrica hexagonal	79

ÍNDICE DE FIGURAS

Figura 1. Irregularidad de rigidez o piso blando	30
Figura 2. Irregularidad de resistencia o piso débil	30
Figura 3. Irregularidad de masa o peso	31
Figura 4. Irregularidad geométrica vertical	31
Figura 5. Discontinuidad de los sistemas resistentes	32
Figura 6. Irregularidad torsional	32
Figura 7. Esquinas entrantes	32
Figura 8. Discontinuidad del diafragma	33
Figura 9. Sistemas no paralelos	33
Figura 10. Definición geométrica (en m) cuadra y circular	41
Figura 11. Definición geométrica (en m) triangular equilátera	
y hexagonal regular	41
Figura 12. Detalle de acotaciones (en m) para la configuración	
geométrica cuadrada	42
Figura 13. Detalle de acotaciones (en m) para la configuración	
geométrica circular	43
Figura 14. Detalle de acotaciones (en m) para la configuración	
geométrica triangular equilátera	44
Figura 15. Detalle de acotaciones (en m) para la configuración	
geométrica hexagonal cuadrada	45
Figura 16. Caja de ascensores (en m)	47
Figura 17. Caja de escaleras (en m)	47
Figura 18. Áreas tributarias en columnas y placas	49
Figura 19. Metros cuadrados (m ²) en áreas tributarias para las	
configuraciones geométricas cuadrada y circular	49
Figura 20. Metros cuadrados (m ²) en áreas tributarias para las	
configuraciones geométricas triangular equilátera y hexagonal regular	50
Figura 21. Áreas tributarias en vigas	51
Figura 22. Paños de verificación seleccionados (en m)	53
Figura 23. Detalle de las secciones de viga (en m)	53

Figura 24.	Espectro de pseudo-aceleración para el sismo	
horizontal	(X y Y)	60
Figura 25.	Espectro de pseudo-aceleración para el sismo vertical (Z)	60
Figura 26.	Zonificación de ambientes	61
Figura 27.	Flujograma del proceso de análisis estructural	63
Figura 28.	Representación gráfica esencial de la fase A	65
Figura 29.	Representación gráfica esencial de la fase B	66
Figura 30.	Representación gráfica esencial de la fase C	66
Figura 31.	Configuración geométrica cuadrada en su fase de	
	verificación correspondiente (A)	67
Figura 32.	Configuración geométrica circular en su fase de	
	verificación correspondiente (B)	68
Figura 33.	Configuración geométrica triangular equilátera en su fase de	
	verificación correspondiente (C)	69
Figura 34.	Configuración geométrica hexagonal regular en su fase de	
	verificación correspondiente (B)	70
Figura 35.	Peso sísmico final alcanzado	71
Figura 36.	Masas participativas alcanzadas en los modos principales	72
Figura 37.	Modos de vibración con masa participativa mínima al 90%	73
Figura 38.	Períodos fundamentales de vibración	74
Figura 39.	Períodos de vibración direccionales X y Y	75
Figura 40.	Distribución en altura de las fuerzas sísmicas y cortantes de	
	entrepiso	78
Figura 41.	Porcentajes de absorción de la carga sísmica en la	
	dirección X de la configuración geométrica cuadrada	81
Figura 42.	Porcentajes de absorción de la carga sísmica en la	
	dirección Y de la configuración geométrica cuadrada	81
Figura 43.	Porcentajes de absorción de la carga sísmica en la	
	dirección X de la configuración geométrica circular	82
Figura 44.	Porcentajes de absorción de la carga sísmica en la	
	dirección Y de la configuración geométrica circular	82
Figura 45.	Porcentajes de absorción de la carga sísmica en la	
	dirección X de la configuración geométrica triangular	83

Figura 46. Porcentajes de absorción de la carga sísmica en la	
dirección Y de la configuración geométrica triangular	83
Figura 47. Porcentajes de absorción de la carga sísmica en la	
dirección X de la configuración geométrica hexagonal	84
Figura 48. Porcentajes de absorción de la carga sísmica en la	
dirección Y de la configuración geométrica hexagonal	84
Figura 49. Derivas inelásticas en X y Y para la configuración	
geométrica cuadrada	85
Figura 50. Derivas inelásticas en X y Y para la configuración	
geométrica circular	86
Figura 51. Derivas inelásticas en X y Y para la configuración	
geométrica triangular equilátera	87
Figura 52. Derivas inelásticas en X y Y para la configuración	
geométrica hexagonal regular	88
Figura 53. Índice de distorsión en condición inelástica	89
Figura 54. Factor de seguridad al volcamiento del edificio	90

RESUMEN

La presente tesis se llevó a cabo con el objetivo de evaluar la reducción del efecto de las cargas sísmicas en edificios altos a través de su configuración geométrica en planta, mediante formas geométricas regulares y simples: cuadrado, círculo, triángulo (equilátero) y hexágono (regular), y en torno a las direcciones ortogonales principales X y Y en 3 etapas de evaluación de la condición de regularidad estructural y del sistema estructural adoptado y 3 fases de verificación, contenidas en la última de estas, respecto al cumplimiento normativo del límite de distorsión de entrepiso según la Norma E.030 Diseño Sismorresistente. Todos los elementos estructurales fueron modelados en ETABS v16.2.1 con concreto armado de $f_c = 280 \text{ kg/cm}^2$, en un área mínima cubierta por edificio de 400 m² para un total de 10 niveles de 3.20 m de altura de entrepiso más azotea y con una caja compartida de 2 ascensores y escaleras integradas cuyo punto central se ubica en el centroide de cada figura. El análisis sísmico aplicado fue el dinámico modal espectral con parámetros sísmicos Z = 3, S = 1.15, U = 1, C según el espectro de pseudoaceleraciones, R = 6 y $I_a = I_p = 1$. En conclusión, los resultados indican, entre las configuraciones geométricas estudiadas, que: la cuadrada es la que permite la mayor reducción del efecto de las cargas sísmicas, la triangular equilátera origina la irregularidad estructural más crítica, la circular provee la mayor rigidez lateral y la hexagonal regular presenta la mayor estabilidad estructural.

Palabras clave: Carga sísmica, edificios altos, configuración geométrica, irregularidad estructural, rigidez lateral, índice de distorsión, estabilidad estructural.

ABSTRACT

This research work has the main objective to evaluate the reduction of the effect of seismic loads in tall buildings through their geometric configuration in plan, using regular and simple geometric shapes: square, circle, triangle (equilateral) and hexagon (regular), around the main orthogonal directions X and Y in 3 stages of evaluation of the condition of structural regularity and the structural system adopted, and 3 phases of verification, contained in the last stage, regarding the regulatory compliance of storey drift limit according to "Norma E.030 Diseño Sismorresistente". All the structural elements were modeled in ETABS v16.2.1 with $f_c = 280 \text{ kg/cm}^2$ reinforced concrete, with 400 m² minimum area per building for 10 levels and rooftop with 3.20 m of storey height, an elevator box for 2 lifts and integrated stairs whose central point is located in the centroid of each figure. The seismic analysis method applied was the spectral modal dynamic with seismic parameters Z = 3, S = 1.15, U = 1, C according to the pseudo-acceleration spectrum, R = 6 and $I_a = I_p = 1$. In conclusion, among the geometric configurations studied, the results show that: the square allows the greatest reduction of the effect of seismic loads, the triangular causes the most critical structural irregularity, the circular provides the highest lateral stiffness and the hexagonal has the highest structural stability.

Keywords: Seismic load, tall buildings, geometric configuration, structural irregularity, lateral stiffness, drift index, structural stability.

INTRODUCCIÓN

La búsqueda de la mejora de la calidad de vida atraída por el desarrollo tecnológico, el crecimiento económico, la demanda laboral y las políticas gubernamentales eventualmente acertadas han desencadenado la tendencia creciente del proceso de urbanización, por lo que, la transformación de la cobertura edificable de horizontal a vertical ha dado paso a las edificaciones altas, que independientemente de su altura o de su número de niveles, son los procesos que involucran su planificación motivada por su uso futuro desde su concepción arquitectónica hasta su diseño estructural y su construcción los que las distinguen de las edificaciones comúnmente planteadas.

Sobre esta base, la importancia del presente trabajo de investigación radica en el estudio parcial del desempeño de estas edificaciones a través del tiempo para garantizar su rentabilidad a largo plazo y con el propósito de suministrar una herramienta de carácter preliminar para la teoría de composición arquitectónica alineada con la filosofía y los principios del diseño sismorresistente, presentando la evaluación de la reducción del efecto que producen las fuerzas sísmicas en los edificios altos bajo las formas geométricas cuadrada, circular, triangular equilátera y hexagonal regular, en cinco capítulos.

El primer capítulo corresponde al planteamiento del estudio a partir de la necesidad referida líneas arriba, por lo que los objetivos e hipótesis se centran en determinar aquella configuración geométrica en planta que permite una mayor reducción sus cargas sísmicas en edificios altos mediante la rigidez lateral, la estabilidad estructural y el control de las irregularidades estructurales.

El segundo capítulo desarrolla el marco teórico con la información necesaria para el entendimiento de la investigación.

El tercer capítulo contiene el método de tratamiento de la muestra delimitada en función al diseño de la investigación y con las técnicas e instrumentos de recolección de datos pertinentes. El cuarto capítulo presenta los resultados de manera progresiva, desde la definición geométrica interna y global de los edificios, el predimensionamiento de los muros de corte, las columnas, las vigas, las losas y las escaleras y su modelamiento estructural en ETABS[®], hasta su análisis estructural en cuanto a pesos sísmicos, modos y períodos de vibración, irregularidades estructurales, factores de escala de los espectros de pseudo-aceleración para el análisis sísmico dinámico, los desplazamientos y derivas en condición inelástica y la fuerza cortante sísmica de diseño, verificación del sistema estructural adoptado, rigidez lateral y estabilidad estructural.

Finalmente, el quinto capítulo precisa las conclusiones por cada objetivo planteado en base a un análisis crítico y riguroso de acuerdo con los resultados obtenidos.

CAPÍTULO I: PLANTEAMIENTO DEL ESTUDIO

1.1 Planteamiento del problema

El alto costo de la tierra, el continuo desarrollo urbano y la necesidad de conservar áreas agrícolas resultaron en el planteamiento de edificios residenciales hacia arriba (1). Así, a pesar de la crisis económica mundial provocada por la pandemia del Covid-19, muchos países registran un nuevo boom inmobiliario. De acuerdo con la firma Global Property Guide[®], a través de su fundador Matthew Montagu – Pollock, el precio de las casas subió en el 77.55% de países con mercados inmobiliarios que hicieron públicas sus estadísticas internas al segundo trimestre del 2020, pero con un menor número de adquisiciones realizadas (2). Para el Perú, el desarrollo inmobiliario tiene una rentabilidad asegurada a lo largo del tiempo, debido a que existe una necesidad insatisfecha en la demanda de viviendas formales desde mucho antes de la coyuntura actual considerándose al 2021 como un año de recuperación para este sector (3), hecho que se ha visto reflejado en su crecimiento entre el 7% y el 30.6%, según el Informe Económico de la Construcción y el Banco Central de Reserva del Perú, respectivamente, con un incremento acumulado de enero a julio del mismo año en 87.3%, superando ampliamente la producción sectorial que precede a la pandemia (4). Por ello, el Estado ha elaborado protocolos para la reactivación económica del sector, hecho que implica cambios sustanciales en temas de salud pública, espacios multifunción, áreas comunes, mejor conectividad y consumo racional de agua y energía eléctrica a fin de disfrutar de estar en casa, mismos que deben ser suplidos por las empresas constructoras e inmobiliarias con especial consideración a la configuración global de la estructura que albergará dichas características a razón del comportamiento dinámico que experimenta.

Por lo tanto, en la presente investigación se realiza la evaluación de un grupo reducido de configuraciones geométricas en planta para edificios altos, triángulo (equilátero) – cuadrado – círculo – hexágono (regular), con el fin de determinar cuál permite una mayor reducción del efecto producido por la acción de cargas sísmicas en las direcciones X y Y de análisis, que se traduce en proveer una mayor rigidez lateral, obteniendo deformaciones lo suficientemente pequeñas como para no rebasar el límite máximo de distorsión de entrepiso para concreto armado como material predominante, así como una mayor estabilidad estructural al ser regulares o, en su defecto, mínimamente irregulares en función a las consideraciones definidas en la tabla de irregularidades estructurales en planta de la norma técnica E.030 Diseño sismorresistente.

1.2 Formulación del problema

Considerando la información expuesta en al apartado previo, es necesario aclarar que la definición y el entendimiento de "edificio alto" para el desarrollo de esta investigación se basa en aquella que es descrita en el Capítulo II del presente documento.

1.2.1 Problema general

 ¿Qué configuración geométrica en planta permite una mayor reducción del efecto de las cargas sísmicas en edificios altos?

1.2.2 Problemas específicos

- ¿Qué configuración geométrica en planta origina la irregularidad estructural más crítica en edificios altos?
- ¿Qué configuración geométrica en planta provee mayor rigidez lateral a los edificios altos?

 ¿Cuál es el sistema estructural óptimo para la configuración geométrica en planta de mayor estabilidad estructural?

1.3 Objetivos

1.3.1 Objetivo general

- Determinar la configuración geométrica en planta que permite una mayor reducción del efecto de las cargas sísmicas en edificios altos.

1.3.2 Objetivos específicos

- Evaluar la configuración geométrica en planta que origina la irregularidad estructural más crítica en edificios altos.
- Establecer la configuración geométrica en planta que provee mayor rigidez lateral a los edificios altos.
- Proponer el sistema estructural óptimo para la configuración geométrica en planta de mayor estabilidad estructural.

1.4 Justificación e importancia

1.4.1 Práctica

El desarrollo de la investigación cobra importancia debido a la continua implementación tecnológica en el desarrollo de proyectos inmobiliarios, siendo de relevancia promover su rentabilidad a largo plazo, la cual se ve reflejada en su desempeño a través del tiempo ante la especial acción de las cargas sísmicas a causa de la inestabilidad tectónica y geológica propia del Anillo de Fuego Circum – Pacífico (5) del cual el Perú forma parte.

1.4.2 Teórica

Esta investigación se lleva a cabo con el propósito de suministrar una herramienta de carácter preliminar para la teoría de composición arquitectónica de edificios altos, a fin de que su planteamiento estructural asegure la aplicación de los lineamientos establecidos por la filosofía y los principios del diseño sismorresistente (6).

1.4.3 Metodológica

Los modelos aplicados para el análisis estructural de un grupo reducido de configuraciones geométricas en planta para edificios altos, fundamentados en la no excedencia de los límites de respuesta por procesos de excitación sísmica (7), facilitan el entendimiento de los efectos producidos por otro tipo de cargas temporales relevantes bajo sus propios criterios de desempeño.

1.4.4 Por viabilidad

El proceso de modelamiento y análisis estructural será íntegramente desarrollado en Etabs[®], Extended Three dimensional Analysis of Building System (8), software comercial y de larga trayectoria en el rubro de la ingeniería estructural que cuenta con una versión de evaluación, misma que será utilizada para el desarrollo de la investigación.

1.5 Limitaciones de la investigación

Debido a la amplitud interpretativa del problema de investigación es imperante puntualizar dos aspectos con relación a su tratamiento y desarrollo:

- El primer punto corresponde a la evaluación de la reducción del efecto de las cargas sísmicas en edificios altos únicamente a nivel de su análisis estructural, sin incursionar en el diseño estructural.
- El segundo punto está relacionado con la distribución arquitectónica detallada de los ambientes, la cual resulta irrelevante dado que origina una distribución de carga específica para un caso específico. Así, las luces consideradas entre elementos de apoyo pueden considerarse lo suficientemente adecuadas para desarrollar la arquitectura futura.

1.6 Hipótesis y variables

1.6.1 Hipótesis

1.6.1.1 Hipótesis general

 La configuración geométrica cuadrada permite la mayor reducción del efecto de las cargas sísmicas en edificios altos.

1.6.1.2 Hipótesis específicas

- La configuración geométrica triangular origina la irregularidad estructural más crítica, debido a la disposición de sus ejes.
- La configuración geométrica circular provee mayor rigidez lateral, debido a que su forma distribuye las cargas y sus consecuentes deformaciones de manera más uniforme en su área transversal.
- El sistema de muros estructurales optimiza el desempeño de la configuración geométrica de mayor estabilidad estructural, debido a su capacidad de absorción de una fracción importante de cargas laterales.

1.6.2 Identificación de variables y operacionalización

1.6.2.1 Variable independiente

Configuración geométrica en planta, que comprende:

- Forma geométrica en planta
- o Número de lados
- Regularidad geométrica
- Planteamiento arquitectónico
- o Área de construcción
- Categoría y uso de la edificación
- o Altura total del edificio
- o Distribución de ambientes

1.6.2.2 Variable dependiente

Cargas sísmicas en edificios altos, que involucra:

- Configuración estructural
- o Zona sísmica
- Perfil de suelo
- o Sistema estructural
- Dimensiones de elementos estructurales
- o Distribución de elementos no estructurales
- o Modelamiento e idealización estructural
- Irregularidad estructural en planta

- o Torsión
- o Esquinas entrantes
- o Discontinuidad del diafragma
- Sistemas no paralelos

CAPÍTULO II: MARCO TEÓRICO

2.1 Antecedentes de la investigación

Awida, en su artículo titulado "Impact of Building Plan Geometry on the Wind Response of Concrete Tall Buildings", presentado en la conferencia "Modern Methods and Advances in Structural Engineering and Construction", enfocó su estudio en la búsqueda de la geometría en planta más efectiva en la respuesta estructural al efecto del viento en edificios altos de concreto. Para ello, modeló un edificio de 224 m de altura total distribuido en 2 sótanos, la planta baja, 50 plantas típicas y 1 planta mecánica a media altura, y aplicó las cargas de acuerdo con la normativa ASCE 7-05, según las condiciones de diseño para la ciudad de Kuwait, para plantas regulares: rectangular, cuadrada, circular, pentagonal, hexagonal y octagonal, e irregulares: U, +, T, L, Z y H, basadas en la práctica común en arquitectura e ingeniería y con similitudes en cuanto al área del piso -1330 m²-, el área del núcleo -156 m²-, el espesor de las paredes del núcleo -80 cm, 60 cm y 40 cm para los niveles 0 a 20, 20 a 40, de 40 a más, respectivamente-, la resistencia del concreto -45 MPa en vigas y losas y 60 MPa en muros y columnas- y el sistema estructural de entrepiso losa de concreto vaciado in-situ de 20 cm de espesor en el interior del núcleo y losa plana con ábacos, de concreto post-tensado de 25 cm de espesor en las área restantes-. Aplicó el método de elementos finitos en 3D considerando el efecto P– Δ utilizando el software Etabs[®] para estados límite de servicio y de resistencia última y estudió la relación entre la forma geométrica adoptada y la deriva ocasionada por el viento, los períodos fundamentales de los 3 primeros modos de vibración y la aceleración máxima en el nivel más alto. Concluyó, esencialmente, que la geometría regular octogonal y la geometría irregular + pueden considerarse las mejores en cuanto a la respuesta estructural al viento por tener menor deriva, un comportamiento similar en las direcciones X y Y y los períodos fundamentales más bajos en su categoría, además, ordenó de mejor a peor, bajo ese mismo criterio, a las estructuras regulares: octágono, cuadrado, círculo, hexágono, pentágono y rectángulo, e irregulares: +, U, H, T, L y Z (9).

Ede y Udoh, en su artículo titulado "Modelling, Analysis and Design of a Bottle-Shaped Building", publicado en la revista "Civil and Environmental Research", con el objetivo de convertir a Nigeria en un atractivo turístico e impulsar su economía, presentaron el diseño de una estructura con forma de botella de 112 m de altura con 28 niveles para uso de oficinas, inspirada inicialmente en la botella de Coca-Cola[®] y en el modelo que planteó Adegbayi. Para la generación de modelos tridimensionales en AutoCAD solo se idealizaron los elementos significativos bajo las consideraciones de importancia relativa del comportamiento de los miembros individuales y de toda la estructura en función al núcleo de muros de corte como caja de ascensores y al incremento del diámetro del piso aproximadamente circular con el incremento de la altura. Con esto, aplicaron el método de análisis no lineal de elementos finitos en el software ORION R14 para estados límite de servicio y de resistencia última, diseñando los elementos de concreto reforzado para combinaciones de cargas muertas, vivas y de viento de acuerdo con los códigos británicos BS 8110 y BS 6399. A la vez que mencionaron las dificultades debido a los escasos ejemplos para usar de guía, la variación de los pisos y las formas irregulares tratadas, concluyeron que las condiciones de carga y las secciones de sus elementos eran válidos por mostrar valores aceptables en las derivas laterales de cada entrepiso (10).

Al-Azri, Kuckian y Gaur, en su artículo titulado "Reducing the Impact of Wind Load with Shape of High Rise Buildings", publicado en la revista "Journal of Student Research", con el objetivo de estudiar el desempeño de edificios ante cargas de viento, utilizaron formas geométricas simples: triángulo, pentágono y círculo, en condiciones similares en cuanto al área de la planta -1200 m^2 -, niveles –planta baja + 19 pisos–, alturas de entrepiso –3.20 m en el primer nivel y 2.90 m en los superiores–, espesores de losas –0.25 m– y placas –0.20 m–, secciones de vigas –0.30 m x 0.70 m– y columnas –1 m x 1m–, propiedades de los materiales del concreto armado –concreto M35 y acero Fe500–, cargas actuantes –2 kN/m² de carga muerta, 3 kN/m² de carga viva en pisos y 1.5 kN/m² para carga viva en techos– y velocidad básica de viento –31 m/s–. Modelaron los prototipos de edificios altos en AutoCAD 2016 para conformar vigas y columnas y luego los exportaron a Etabs 2016 para colocar las losas y asignar todas las cargas, con la finalidad de determinar la forma más estable a través de las derivas de entrepiso y los desplazamientos laterales.

Concluyeron que la forma geométrica de la edificación y su orientación respecto a la dirección del viento son los parámetros más importante a controlar para reducir las derivas, además, con el avance en la altura la carga de viento se incrementa provocando que la estabilidad se vea reducida por el decrecimiento de la rigidez, con lo que la forma circular resulta más efectiva debido a que su superficie genera menos fricción, mientras que la forma triangular presenta los valores de derivas más elevados ya que la presión del viento es considerablemente mayor. Finalmente, recomiendan la aplicación de un sistema estructural lo suficientemente adecuado para incrementar la rigidez, apoyándose de arriostramientos laterales y el incremento de las secciones de vigas y columnas, de ser necesarios (11).

2.2 Bases teóricas

2.2.1 Análisis sísmico

Es el procedimiento mediante el cual, bajo una distribución espacial representativa de masas y rigideces, se establecen las fuerzas laterales actuantes en cada nivel de la edificación que se corresponden con las cortantes máximas probables originadas por el sismo, para que, de ese modo y en función a los requerimientos, se cubran los conceptos fundamentales de estructuras sismorresistentes.

2.2.1.1 Análisis estático o de fuerzas estáticas equivalentes

Método que, prescindiendo de una evaluación detallada de las propiedades dinámicas de la estructura, designa valores de cortantes de entrepiso en cada dirección de análisis a partir de la distribución lineal en altura de la fuerza cortante basal de acuerdo con las aceleraciones del primer modo de vibración y con el período fundamental de vibración estimado para la edificación (12). De acuerdo con las disposiciones de diseño sismorresistente del artículo 28 de la norma técnica E.030 (6):

- Se aplica en:

- Estructuras regulares e irregulares ubicadas en la zona sísmica 1.
- O Estructuras regulares de altura ≤ 15 m ubicadas en las zonas sísmicas 2, 3 y 4.
- Estructuras regulares e irregulares constituidas por muros de concreto armado y/o albañilería armada y/o confinada de altura ≤ 15 m en las zonas sísmicas 2, 3 y 4.
- La fuerza cortante basal para cada dirección de análisis se calcula a través de la expresión: V = ^{Z ⋅ U ⋅ C ⋅ S}/_R. P, considerando ^C/_R ≥ 0.11.
- El período fundamental de vibración para cada dirección de análisis se estima con las expresiones: T = $\frac{h_n}{C_T}$ o T = 2 . π . $\sqrt{\frac{\sum_{i=1}^n P_i \cdot d_i^2}{g \cdot \sum_{i=1}^n f_i \cdot d_i}}$, en concordancia

con las variables descritas detalladamente en la norma referida, y que se reduce al 85% de su valor cuando se desprecia la rigidez de los elementos no estructurales de la edificación.

 A fin de incluir los efectos de torsión se considera una excentricidad accidental de 5% la dimensión perpendicular a la dirección de análisis que multiplica a la fuerza lateral estática para inducir un momento torsor en el centro de masa de cada nivel.

2.2.1.2 Análisis dinámico modal espectral

Método que recopila las respuestas ocasionadas por acciones dinámicas, dentro del rango elástico, a través de la superposición modal y su combinación mediante la raíz cuadrada de la suma de los cuadrados de cada valor modal o por la combinación cuadrática perfecta (13) o aquella que estipule la norma correspondiente.

De acuerdo con las disposiciones de diseño sismorresistente del artículo 29 de la norma técnica E.030 (6):

- Se aplica en:
- o Estructuras que no cumplan las limitaciones aplicables al análisis estático.
- Elementos horizontales y volados de grandes luces
- Se utilizan todos aquellos modos de vibración, para cada dirección de análisis, cuya sumatoria de masas participativas resulte en al menos el 90% de la masa total.
- Dichos modos se obtienen a partir del espectro de pseudo-aceleraciones generado mediante la expresión: $S_a = \frac{Z \cdot U \cdot C \cdot S}{R}$. g.
- Existe incertidumbre en la distribución de las masas debido a la ubicación variada de los centros de masa de cada nivel, por lo que es necesario considerar una excentricidad accidental de 5% la dimensión perpendicular a la dirección de análisis para incluir los efectos de torsión.
- La fuerza cortante dinámica mínima debe ser congruente con el 80% de la fuerza cortante estática si la estructura es regular, mientras que si es irregular se debe tomar el 90% de esta.

2.2.2 Sistemas resistentes a fuerzas laterales

Según CTBUH (14), Stafford y Coull (1), Taranath (15) y Ali y Moon (16) existe una amplia gama de sistemas capaces de resistir las cargas laterales, mima que se detalla en la Tabla 1.

SISTEMA	CARACTERÍSTICAS	TIPOS O VARIANTES
Marco arriostrado (Braced frame – Shear truss – Vertical truss)	 Son armaduras en voladizo en disposición vertical. Presentan mejor ductilidad y mayor libertad de diseño arquitectónico. Resisten cargas laterales mediante la rigidez axial de sus elementos, por lo que, en su mayoría, las diagonales son de acero estructural debido a los esfuerzos de tensión que absorben. 	Se agrupan en marcos arriostrados concéntricos y excéntricos, CBF y EBF por sus siglas en inglés, respectivamente: - CBF: • Mayor rigidez • Menor ductilidad • Para zonas de baja actividad sísmica • Pueden tomar forma de X, Pratt, diagonal, K, V o <i>knee</i> - EBF: • Menor rigidez • Mayor ductilidad • Se genera a partir del desfase de ejes, de modo que induce flexión y corte en el marco.
Marco resistente a momento o Marco rígido (Moment resisting frame – Moment frame – Rigid frame)	 Son miembros horizontales y verticales unidos mediante nudos rígidos. Resisten cargas laterales mediante la rigidez a flexión axial de sus elementos. La dimensión de los elementos está controlada por la rigidez, debido a que se deben controlar las derivas, más que por la resistencia. Tienen mayor flexibilidad en cuanto al planteamiento arguitectónico. 	
Sistema interactivo de riostras y marcos (Frame-truss interacting system)	 Resulta de la combinación de marcos arriostrados y marcos rígidos. Usualmente se localizan en el perímetro de la edificación debido al el espaciamiento entre columnas que se puede plantear. 	
Muro de corte (Shear wall)	 Están diseñados para recibir cargas laterales desde los diafragmas y transmitirlos al suelo ya que comúnmente son continuos hasta la base figurando como un voladizo vertical. Si bien las fibras internas intentan deslizarse unas sobre otras, los muros se deforman principalmente por flexión. 	Se puede considerar a la couple wall como una variante en la que dos o más muros en el mismo plano están conectados a la altura de los entrepisos por vigas de acoplamiento (<i>spandrel</i> o <i>stiff</i> <i>slab</i>), hecho que conduce a que la rigidez horizontal resulte mucho mayor que cuando los muros trabajan por separado.
Marco con relleno (Infilled-frame)	 Consiste en un entramado de vigas y columnas rellenado con ladrillos, bloques o concreto vaciado <i>in-situ</i>. El relleno sirve de apuntalamiento al marco en su diagonal comprimida. 	

Sistema de marcos y muros de corte (Wall-frame) Losa plana bidireccional (Flat plate y Flate-slab)	 Se utiliza como pared externa o como división interna de ambientes. Es difícil predecir la rigidez y la resistencia de un marco relleno y es posible que el relleno sea removido en algún punto del tiempo. Resulta de la combinación de muros de corte con marcos rígidos. Su interacción genera una estructura más rígida y resistente, especialmente en la zona superior. El sistema consta de una losa de espesor uniforme rígidamente conectada a las columnas. Su comportamiento se asemeja a un marco rígido cuando se presentan cargas laterales, por lo que su resistencia depende de la rigidez a la flexión de sus elementos y comportante. 	El <i>flate plate</i> se define como una losa plana de espesor constante que, al agregarle ábacos (<i>drop-panels</i>), se denomina <i>flate-slab</i> .
Sistema de riostras internas y perimetrales o de estabilizadores (Outrigger- braced structures – Outrigger trusses)	 Se compone de un núcleo central de marcos arriostrados o de muros de corte que se conectan con las columnas externas mediante vigas o <i>outriggers</i> horizontales en voladizo. La rotación del núcleo en el plano vertical está restringida por los <i>outriggers</i> que actúan en tensión y compresión en barlovento y sotavento, respectivamente. El momento resistente efectivo se incrementa cuando se ubican <i>outriggers</i> en varios niveles; sin embargo, también disminuye con cada nivel adicional, por lo que 4 o 5 son estructuralmente económicos. 	
Núcleo o sistema de plantas voladas (Core system)	 El núcleo se encarga de soportar cargas laterales y de gravedad, por lo que los entrepisos se conectan directamente a él en forma de volados; sin embargo, resultan ineficientes para resistirlos. 	
Sistema tubular (Framed-tube structures – Tubular system)	 Originalmente se desarrollaron para edificaciones rectangulares con una probable mayor eficiencia para esa forma, pero también se utiliza para configuraciones circulares y triangulares. La resistencia lateral está provista por marcos resistentes a momentos muy rígidos, con columnas bastante cercanas unidas por vigas de acoplamiento, que se configuran como un tubo en el perímetro de la edificación. Las cargas laterales son íntegramente resistidas por el tubo, 	 Se agrupan en: Tubo en tubo (<i>tube-in-tube – hull-core</i>): Tubo perimetral o casco + elevador interno + núcleo de servicio Tubos múltiples (<i>blunded-tube – modular-tube</i>): Conjunto de tubos individuales formando pequeñas celdas usualmente ortogonales

Cinterna	mientras que las cargas de gravedad son resistidas por el tubo y las columnas o los muros internos. - Los marcos paralelos a la dirección de la carga se denominan <i>webs</i> o almas, mientras que aquellos perpendiculares son <i>flanges</i> o alas o bridas.	 Proveen mayor rigidez lateral. La formación de la red interna reduce el shear lag, corte diferido o arrastre de cortante en las bridas. Tubo arriostrado (braced-tube – trussed-tube): Riostras diagonales en las caras del tubo, que teóricamente eliminan los efectos de shear lag tanto en almas como bridas. Su comportamiento como marco arriostrado reduce la flexión en sus elementos por lo que se disminuye el espesor de las vigas de acoplamiento y se incrementa el espaciamiento entre columnas.
híbrido o compuesto (Hybrid structures)	 Resulta de la combinación de dos o más sistemas estructurales en la misma edificación. 	
Sistema de marcos o celosías espaciales (Space structures)	 Básicamente el sistema se conforma de marcos triangulados en 3D, mismos que resisten cargas de gravedad y laterales. Son relativamente ligeros y, aunque aparentan simplicidad, tienen una geometría compleja y multidireccional, por lo que resultan costosos de conectar. 	
Sistema diagrid (Diagonal grid system)	 Son elementos perimetrales múltiples en disposición diagonal que forman cuadrículas uniformemente distribuidas. Su configuración provee rigidez a la flexión y al corte minimizando las deformaciones mediante la acción axial de sus miembros. Soportan cargas de gravedad y laterales por lo que las columnas verticales se suprimen casi en su totalidad. 	
Megacolumnas (Superframe)	 Se conforma por marcos arriostrados de columnas de dimensiones considerablemente grandes, ubicadas en las esquinas de la edificación, que se usen a 	

	través de armaduras en múltiples niveles.	
Exoesqueleto (Exoskeleton structures)	 Es un sistema que se colocan por fuera del edificio y lejos de su fachada, por lo que su exposición al clima exterior genera procesos térmicos continuos de expansión/contracción y puentes. 	

2.2.3 Irregularidades estructurales

El estudio de la condición de regularidad estructural para el análisis sísmico se sigue bajo las consideraciones señaladas en los artículos 19, 20 y 21 y descritas en las tablas 8 y 9 de la norma técnica E.030 (6). Con la información precisada, se ha realizado su interpretación por medio de imágenes presentadas desde la

Figura 1 hasta la Figura 9.

2.2.3.1 En altura o verticales

Figura 1. Irregularidad de rigidez o piso blando

Figura 2. Irregularidad de resistencia o piso débil

Figura 4. Irregularidad geométrica vertical

Figura 5. Discontinuidad de los sistemas resistentes

2.2.3.2 En planta u horizontales

Grado de irregularidad

Simple
$$\longrightarrow \frac{\Delta_{\text{relativo máx.}}}{\Delta_{\text{relativo prom.}}} > 1.3$$

Extrema
$$\longrightarrow \frac{\Delta_{\text{relativo}} \text{máx.}}{\Delta_{\text{relativo}} \text{prom.}} > 1.5$$

* Siendo:

$$\Delta_{relativo_prom.} = \frac{\Delta_{relativo_máx.} + \Delta_{relativo_mín.}}{2}$$

** El análisis sólo se aplica cuando el máximo desplazamiento relativo supera el 50% del desplazamiento correspondiente a la máxima distorsión permisible.

*** Todos los desplazamientos relativos se calculan en condición inelástica.

Figura 7. Esquinas entrantes

Figura 8. Discontinuidad del diafragma

Figura 9. Sistemas no paralelos

2.3 Definición de términos básicos

- Carga sísmica: es aquella carga que resulta de la excitación dinámica de la estructura por las vibraciones que transmite el movimiento del suelo inducido por el sismo y que, con la interacción con su masa, se representa como una fuerza inercial restauradora (17) (18).
- Configuración estructural: comprende la concepción estructural global del edificio en cuanto a la naturaleza, el tamaño y la ubicación de los elementos estructurales y no estructurales que lo componen. Considerarla desde el inicio del proyecto cobra vital importancia, debido a que edificaciones con configuraciones irregulares verticales o en altura u horizontales o en planta, incluso con buenos procesos de análisis, diseño y construcción, sufren mayor daño cuando se producen movimientos sísmicos importantes y demandas inelásticas extremas, puesto que los métodos clásicos de análisis en condición elástica no se adaptan correctamente a la distribución de las cargas sísmicas lo que ocasiona un diseño deficiente en las zonas asociadas a la irregularidad (19).

- Deriva o distorsión de entrepiso: es un parámetro de control de la estabilidad de la estructura, el daño potencial de los elementos no estructurales y el confort de las personas que ocupan un edificio; su valor puede ser calculado a través de la diferencia entre las deflexiones de los centros de masa de dos pisos adyacentes cualesquiera (20) o, comúnmente, como la relación de los desplazamientos laterales relativos de un nivel respecto a la altura de entrepiso de ese nivel.
- Edificio alto: es aquel que, debido a su altura, se ve afectado por acciones de viento y/o sismo, por lo que juegan un papel importante durante el desarrollo del diseño estructural (1), o que, independientemente de su elevación total o la cantidad de niveles que posee, la altura influye directamente en los procesos de planificación, diseño, construcción y uso debido a las condiciones que la diferencian de otras edificaciones comunes (14).
- Espectro de respuesta elástica: corresponde a un término introducido por Maurice Biot en 1932 y generalizado por George Housner, que caracteriza, en forma práctica, el movimiento del suelo y sus efectos sobre las estructuras, que, técnicamente, se corresponde con un proceso matemático mediante el cual se recolecta el historial de respuestas $u(t, \zeta)$ de un conjunto de osciladores de un solo grado de libertad sometidos a una misma acción sísmica a través de un registro de aceleraciones $\ddot{u}_g(t)$ y con una misma razón de amortiguamiento ζ (usualmente de 5 % para estructuras de concreto armado), pero que difieren en su período de vibración *Tn*. Es oportuno señalar también que los componentes de los espectros de respuesta elástica de desplazamientos relativos, S_d , y de pseudo-aceleración absoluta, S_a , se relacionan a través de la ecuación $S_a = \omega^2 * S_d$ (21).
- Estabilidad estructural en edificaciones: el equilibrio en una edificación se verifica mediante el factor de seguridad al volteo o volcamiento, mismo que se define como la razón entre el momento resistente generado por la sumatoria del peso de la estructura en su centro de masa correspondiente por nivel y el momento actuante producido por la sumatoria del producto de

las fuerzas laterales externas horizontales y su respectiva distancia medida desde un punto común de giro hacia el centro de gravedad del extremo superior de cada nivel, haciendo referencia al diafragma rígido (22) (23), y cuyo valor exige ser mayor o igual a 1.2 de acuerdo con la norma técnica E.030.

- Índice de distorsión: se define como la razón entre el máximo desplazamiento en la cima de la edificación y su altura total y funge de parámetro para estimar su rigidez lateral global (1).
- Modelamiento estructural: es el proceso de idealización estructural de la edificación a través de un modelo matemático que aproxima la respuesta dinámica y las condiciones de rigidez de los elementos constitutivos más significativos, sus conexiones internas y la condición de sus apoyos externos, en conformidad con la geometría global de la estructura, las propiedades físicas de los materiales, la magnitud y ubicación de las cargas, la interacción con el entorno y los factores de reducción adoptados para la óptima disipación de energía de la estructura a ser construida (24).
- Rigidez lateral: en la dinámica estructural se la puede definir como la capacidad del elemento o la estructura, según sea el caso, para resistir y disipar las deformaciones producidas por cargas laterales externas, de modo que se eviten daños estructurales excesivos, se permita el correcto funcionamiento de los componentes no estructurales, se asegure la comodidad de los ocupantes y se evite afectar trabajos o equipos susceptibles a los movimientos (1) (25).
CAPÍTULO III: METODOLOGÍA

3.1 Método y alcances de la investigación

Corresponde al procedimiento específicamente diseñado para alcanzar los objetivos, por lo que depende del tipo de investigación (26). Así, el método aplicado fue analítico con el objetivo de evaluar el comportamiento de los edificios altos en condiciones sísmicas y en función a una variedad de configuraciones geométricas en planta, a través de las irregularidades intrínsecas de cada forma, sus rigideces laterales y los sistemas estructurales provistos.

Por otro lado, en función a la evolución gráfica en el nivel de investigación presentada por Chenet y Oseda que va de exploratorio a explicativo, pasando por el descriptivo y correlacional, en ese orden (27), el proyecto de investigación involucró inicialmente los alcances: exploratorio y descriptivo, debido a que en nuestro contexto se suelen adoptar únicamente configuraciones geométricas cuadradas o rectangulares en planta para el desarrollo arquitectónico y estructural de edificios altos y porque se buscó detallar el comportamiento estructural de una variedad de geometrías en planta ante un proceso de excitación sísmica, respectivamente. Además, proponer un sistema estructural óptimo entre toda la gama proporcionada en la norma correspondiente al diseño sismorresistente para la configuración geométrica de mayor estabilidad estructural implicó un alcance correlacional entre el material predominante seleccionado y el desempeño estructural esperado.

3.2 Diseño de la investigación

Bajo la concepción de que es el plan aplicado para recopilar la información deseada según la precisión requerida (28), el diseño fue cuasiexperimental de series cronológicas múltiples de un solo grupo, como se simboliza en la

GRUPO	ASIGNACIÓN	PRE-PRUEBA	TRATAMIENTO		POS	T-PRI	JEBAS	S
C			v	O 1	O ₂		O 3	
G	-	-	^	-	-	O _{3A}	O _{3B}	O _{3C}

Tabla 2, a razón de que el tratamiento fue aplicado a todos los elementos del grupo muestral en tres etapas en función a la configuración geométrica en planta de edificios altos. La primera, para visualizar el comportamiento inicial general de cada una en condiciones geométricas y estructurales similares; la segunda, para verificar el sistema estructural inicialmente adoptado y establecer aquella que origina la irregularidad estructural más crítica; por último, la tercera, para dar cumplimiento normativo y, a partir de ahí, determinar la de mayor rigidez lateral y estabilidad estructural.

Tabla 2. Diseño de la investigación

GRUPO	ASIGNACIÓN	PRE-PRUEBA	TRATAMIENTO		POS	T-PRI	JEBAS	S
6			v	O ₁	O ₂		O ₃	
G	-	-	^	-	-	O _{3A}	O _{3B}	O _{3C}

3.3 Población y muestra

Definiendo a la población como el conjunto de unidades o fuentes de datos que para ser exploratoriamente manejables requieren una reducción proporcionalmente razonable, y a la muestra como conceptos abstractos que necesitan de algún contenido concreto para que puedan efectuárseles cuantificaciones según sean requeridas (29), se delimitaron como sigue:

3.3.1 Población

La población de estudio comprendió todas las posibles configuraciones geométricas en planta adoptadas en el planteamiento arquitectónico y la concepción estructural de edificios altos, notándose una gama muy grande valores.

3.3.2 Muestra

El proceso de muestreo se consideró no probabilístico por criterio, presentándose directamente como muestra representativa dentro del marco de las configuraciones geométricas en planta regulares y simples, con gran probabilidad de ser propuestas para edificios altos en el Perú.

De ese modo, para el desarrollo de la investigación se aplicó una serie de lineamientos específicos que se detallan a continuación:

- Formas geométricas: cuadrado, círculo, triángulo (equilátero) y hexágono (regular)
- Área mínima por cubrir: 400 m²
- Áreas comunes: corredores y caja de ascensor y escaleras
- Cantidad de niveles: 10 + azotea
- Altura de entrepiso: 3.20 m
- Material predominante elegido: concreto armado

Y, con la finalidad de delimitar el grupo de estudio para ejemplificar el análisis que se sigue en la presente investigación, se utilizaron los siguientes parámetros:

- Zona sísmica: 3
- Perfil de suelo para cimentar: intermedio (S2)
- Categoría y uso de la edificación: edificación común (C) vivienda
- Método de análisis sísmico: estático (no efectuable, solo de uso comparativo) y dinámico modal espectral
- Rango de análisis: condición elástica con comprobación inelástica de distorsiones

3.4 Técnicas e instrumentos de recolección de datos

3.4.1 Técnicas de recolección de datos

Para efectos del desarrollo de esta investigación se utilizó la técnica de observación bibliográfica, revisándose toda literatura potencialmente relacionada al tema de investigación, a fin de recopilar información esencial sobre objetivos, hipótesis manejadas, metodologías aplicadas, resultados y conclusiones obtenidas.

3.4.2 Instrumentos de recolección de datos

La recopilación documental provino principalmente de fuentes secundarias impresas y digitales que se anotaron en fichas simples de registro; no obstante, también se recurrió a fuentes terciarias audiovisuales de carácter técnico y alineado con las prácticas comunes en la ingeniería.

Posteriormente, se utilizaron softwares comerciales para el planteamiento arquitectónico y estructural sobre la base de su definición geométrica, el modelamiento estructural de los elementos constituyentes de cada edificio y las cargas por las que se ven afectados, el tratamiento analítico de los requisitos normativos y la visualización en tiempo real de los edificios: AutoCAD 2021, Etabs v.16.2.1, Microsoft Excel 2019, PTC Mathcad Prime 6.0.0.0 y Revit 2021.

CAPÍTULO IV: RESULTADOS Y DISCUSIÓN

4.1 Resultados y análisis de la información

4.1.1 Definición geométrica de los edificios

4.1.1.1 Área global

Bajo la consideración de tener 4 departamentos de 70 m² por nivel más el 30% de área libre exigido de acuerdo con el común de los parámetros urbanísticos y edificatorios, se requiere cubrir un mínimo de 400 m² de área edificable; por ello, para cada una de las cuatro formas geométricas indicadas y con una variación máxima de 1% sobre esta, se estableció el área total para cada edificación según se detalla en la Tabla 3.

		FIGURA GEOMÉTRICA					
	PARÁMETRO	Cuadrada	Círculo	Triángulo	Hexágono		
				(equilátero)	(regular)		
	Lado / Radio (m)	20	11.30	30.50	12.45		
	Área global (m²)	400	401.15	402.81	402.71		
	Variación (%)	0	0.2875	0.7025	0.6771		

Tabla 3. Área global definida por edificación

4.1.1.2 Área interna

Interiormente se delimitó una zona, que se encuentra detallada en la Tabla 4, que, manteniendo la forma geométrica de cada edificio, permite el desarrollo de las áreas comunes con un mínimo estimado del 25% del área total correspondiente a cada una de ellas y cuyo borde funge de eje para la colocación preliminar de columnas y vigas interiores.

Tubla 4. Arcu interna definida por cumodolori						
	FIGURA GEOMÉTRICA					
PARÁMETRO	Cuedrada	Círculo	Triángulo	Hexágono		
	Cuadrado Circulo		(equilátero)	(regular)		
Lado / Radio (m)	10	5.65	15.25	6.225		
Área interna (m²)	100	100.29	100.70	100.68		
Porcentaje respecto del área global (%)	25	25	25	25		

Tabla 4. Área interna definida por edificación

Figura 10. Definición geométrica (en m) cuadrada y circular

Figura 11. Definición geométrica (en m) triangular equilátera y hexagonal regular

4.1.2 Predimensionamiento de elementos estructurales

El proceso de asignación preliminar y verificación de dimensiones mínimas recomendadas para análisis y diseño estructural de elementos de concreto armado siguió las pautas planteadas por la norma técnica E.060 (30), la normativa ACI 318-19 (31), Blanco (32), San Bartolomé (25), Villarreal (33),

Morales (34) y Fernández (35), para las acotaciones que se indican desde la Figura 12 hasta la Figura 15.

Figura 12. Detalle de acotaciones (en m) para la configuración geométrica cuadrada

Figura 13. Detalle de acotaciones (en m) para la configuración geométrica circular

Figura 14. Detalle de acotaciones (en m) para la configuración geométrica triangular equilátera

Figura 15. Detalle de acotaciones (en m) para la configuración geométrica hexagonal cuadrada

4.1.2.1 Muros de corte

Para determinar las longitudes requeridas de placa por cada eje de análisis, X y Y, se requirió estimar una fuerza cortante en la base de la edificación, tal como se detalla en la Tabla 5.

PARÁMETRO	SÍMBOLO	CARACTERÍSTICA	VALOR
Sistema estructural X – Y	-	Pórticos	-
Altura total de la edificación (m)	h _n	-	32
Coeficiente de acuerdo con los elementos resistentes a fuerzas laterales considerados	C _T	Pórticos de concreto armado con muros en las cajas de ascensores y escaleras	45
Período fundamental de vibración estimado (s)	Т	$T = \frac{h_n}{C_T}$	0.711
Cantidad de niveles	N	-	10
Área total (m²)	A _t	-	400
Factor de zona	Z	Zona 3 (Z ₃), fracción de la aceleración de la gravedad	0.35

Tabla 5. Estimación de la fuerza cortante basal general

Factor de amplificación del suelo	S	Perfil del suelo: Suelo intermedio (S ₂)	1.15
Período que define la plataforma del factor C (s)	Τ _Ρ	-	0.6
Período que define el inicio de la zona del factor C con desplazamiento constante (s)	TL	-	2.0
Factor de amplificación sísmica	С	$T_{P} < T < T_{L}$ $C = 2.5 \cdot \frac{T_{P}}{T}$	2.11
Factor de uso o importancia	U	Categoría de la edificación: común (vivienda multifamiliar)	1.00
Factor de irregularidad en altura y en planta	l _a I _p	Inicialmente los edificios pueden considerarse regulares	1.0 1.0
Coeficiente de reducción de fuerzas sísmicas X – Y	R	$R = R_0 \cdot I_a \cdot I_p$	8
Peso estimado por nivel (tonf/m²)	P _n	Peso promedio de acuerdo con la categoría de la edificación	1
Peso estimado de la edificación (tonf)	P _{edif.}	P _{edif.} = N . A _t . P _n	4000
Fuerza cortante basal X – Y (tonf)	V _{basal}	$V_{\text{basal}} = \frac{Z \cdot U \cdot C \cdot S}{R} \cdot P_{\text{edif.}}$	424.512

Sin embargo, Stafford y Coull y CTBUH mencionan que el sistema de marcos rígidos generalmente resulta eficiente y económico para edificios, en promedio, de hasta 25 niveles cuando actúa como único sistema resistente a fuerzas laterales (1) (14), por lo que los muros de corte o placas se limitaron inicialmente solo a bordear la caja de ascensores y escaleras, como se muestra en la Figura 16 y la Figura 17, para los requerimientos señalados en la Tabla 6.

Figura 16. Caja de ascensores (en m)

Figura 17. Caja de escaleras (en m)

1 abia 6. D	Tabla 6. Detalle de las características de las cajas de ascensores y escaleras				
TIPO DE CAJA	PARÁMETRO	CARACTERÍSTICA			
	Cantidad de ascensores	2 (adyacentes)			
	Catálogo referencial	Mitsubishi Electric: NEXIEZ – GPX			
De ascensores	Catalogo referencial	(Anexo 05)			
	Número de código	P10 (10 personas)			
	Tipo de puertas	CO (de apertura central)			
	Anche de entrede (m)	1.40 (planteado)			
	Ancho de entrada (III)	0.80 / 0.90 (mínimo)			
	Posición de contrapeso	Posterior			
	Dimensiones interiores del	1.975 x 1.875 (planteadas)			
	hueco (m x m)	1.75 x 1.81 (mínimas)			

Tabla 6. Detalle de las	s características de las c	ajas de ascensores y escaleras
-------------------------	----------------------------	--------------------------------

	Dimensiones interiores de la	4.00 x 3.10 (planteadas por conjunto)
	sala de máquinas (m x m)	1.85 x 3.10 (mínimas individualmente)
	Forma de línea de huella	U (2 tramos + 1 descanso)
	Altura por salvar (m)	3.20 (altura de N.P.T a N.P.T.)
	Ancho (m)	1.20 (circulación de 2 personas en
	Alicilo (III)	simultáneo como mínimo)
De escalera	Ojo de escalera (m)	0.10
	Paso o huella (m)	0.25
	Contranaso o contrahuella (m)	0.17 (primer y último escalón) y 0.18
	Contrapaso o contranuella (III)	(escalones intermedios)
	Número de escalones	18

Entonces, con 0.25 m de espesor y con vigas de entrepiso con las mismas dimensiones de las vigas peraltadas interiores, se pudo estimar los porcentajes de fuerza cortante basal que reciben las placas por cada dirección de análisis, notándose que el sistema estructural tiende más a ser de tipo dual o incluso de muros estructurales, condición que fue corroborada y corregida durante el desarrollo del análisis estructural.

PARÁMETRO	SÍMBOLO	VALOR
V _{basal} X – Y (tonf)	V _{basal}	424.512
Factor de reducción de resistencia al corte	φ _c	0.85
Resistencia a la compresión del concreto (kg/cm²)	f' _c	280
Fuerza cortante resistente del concreto por área de análisis al 80% (kgf/cm ²)	$V_{c_{area}} = \phi_c \cdot 0.53 \cdot \sqrt{f_c} \cdot 0.8$	6.031
Espesor de placa X – Y (m)	e _{placa}	0.25
Longitud instalada de placa en X (m)	L _X	10.175
V _{basal} /instalada/ X (tonf)	$V_{\text{inst. X}} = V_{\text{c} \text{ área}} \cdot e_{\text{placa}} \cdot L_{\text{X}}$	153.405
% cubierto de V _{basal} en X (%)	$\%_{X} = \frac{V_{inst.X}}{V_{basal}}$. 100	36.137
Longitud instalada de placa en Y (m)	L _Y	10.7
V _{basal} /instalada/ Y (tonf)	$V_{inst.Y} = V_{c_{area}} \cdot e_{placa} \cdot L_{Y}$	161.320
% cubierto de V _{basal} en Y (%)	$%_{Y} = \frac{V_{inst_Y}}{V_{basal}}$. 100	38.001

Tabla 7. Parámetros de predimensionamiento de placas de concreto armado

4.1.2.2 Columnas

Habiéndose elegido una sección circular para las columnas a fin de evitar orientar el peralte hacia una dirección en específico, su diámetro se estableció de manera estándar, de acuerdo con la cantidad de niveles, el peso estimado por nivel y la resistencia a la compresión del concreto, definidos en el apartado previo, para el área tributaria trazada en congruencia con la teoría de líneas de fluencia o de articulación plástica, como se muestra en la Figura 18, para el punto de columna más cargada, en 0.50 m.

Figura 18. Áreas tributarias en columnas y placas

Figura 19. Metros cuadrados (m²) en áreas tributarias para las configuraciones geométricas cuadrada y circular

Figura 20. Metros cuadrados (m²) en áreas tributarias para las configuraciones geométricas triangular equilátera y hexagonal regular

		FIGURA GEOMÉTRICA					
PARÁMETRO	SÍMBOLO	Cuadrado	Círculo	Triángulo (equilátero)	Hexágono (regular)		
Área tributaria de columna (m²)	A _{TC}	23.7656	15.8536	16.7951	15.8129		
Peso estimado total para el área tributaria (tonf)	$P_{A_{TC}} = N \cdot A_{TC} \cdot P_{n}$	237.656	158.536	167.951	158.129		
Área requerida de la sección transversal (cm²)	$A_{req.} = \frac{P_{A_{TC}}}{0.45 \cdot f_c}$	1886.16	1258.22	1332.94	1254.99		
Diámetro requerido (cm)	D _{requerido}	49.01	40.03	41.20	39.97		

Tabla 8. Cálculo del diá	netro mínimo de columnas
--------------------------	--------------------------

Las columnas interiores se ubicaron en la intersección del eje que delimita la zona interna establecida y las líneas trazadas de acuerdo con un ángulo de desfase a partir de un punto de rotación fijo precisado en la Tabla 9, mientras que las columnas externas se ubicaron en las proyecciones de las últimas sobre el borde del área edificable.

Por otro lado, el sistema de marcos rígidos se conectó ortogonalmente con los muros de corte únicamente a través de los ejes X y Y, excepto en la configuración triangular, debido a que no se mantiene la regularidad arquitectónica y estructural en planta.

_	FIGURA GEOMÉTRICA				
PARÁMETRO	Cuadrado	Círculo	Triángulo (equilátero)	Hexágono (regular)	
Punto de rotación	Centroide	Centroide	Vértices	Centroide	
Ángulo de desfase	45°	30°	15°	30°	
Conexión al núcleo central	Sí	Sí	No	Sí	

Tabla 9. Trazado de elementos de los marcos rígidos

4.1.2.3 Vigas

Todas las vigas fueron preliminarmente planteadas con el ancho de base mínimo requerido, 0.25 m, y se colgaron 0.50 m a partir del nivel de entrepiso.

	FIGURA GEOMÉTRICA				
PARÁMETRO	Cuadrado	Círculo	Triángulo (equilátero)	Hexágono (regular)	
Luz de eje a eje (m)	5.00	5.786	5.371	6.081	
h₁ (m) = L/18.5 – Un extremo continuo	0.270	0.313	0.336	0.329	
Luz libre (m)	4.50	5.296	4.871	5.581	
h _{máx.} (m) = Ln/10 – Máximo recomendado	0.45	0.529	0.487	0.558	
h _{mín.} (m) = Ln/12 – Mínimo recomendado	0.375	0.440	0.406	0.465	

Tabla 10. Predimensionamiento de vigas

Figura 21. Áreas tributarias en vigas

4.1.2.4 Losas

El tipo genérico de losa para el entrepiso se seleccionó en función a las fases de encofrado y armado de acero de la hipotética etapa constructiva de las edificaciones y al método de transferencia de cargas hacia los elementos resistentes.

		FIGURA GEOMÉTRICA					
TIPO DE LOSA	PARÁMETRO	Cuadrado	Círculo	Triángulo	Hexágono		
TIPO DE LOSA Aligerada 1D Maciza 1D		Cuaurauo	Circuio	(equilátero)	(regular)		
	Luz crítica (m)	5.00	5.65	5.228	5.391		
	e _{a_1D} (m) = L/18.5 –						
Aligorada 1D	Un extremo	0.270	0.305	0.283	0.291		
Aligerada ID	continuo						
	e _{a_1D} (m) = L/25 –	0.200	0.226	0.209	0.216		
	Experiencia	0.200	0.220	0.203	0.210		
	Luz crítica (m)	5.00	5.65	5.228	5.391		
	e _{m_1D} (m) = L/24 – Un	0.208	0 235	0.218	0.225		
Maciza 1D	extremo continuo	0.200	0.200	0.210	0.220		
	e _{m_1D} (m) = L/30 –	0 167	0 188	0 17/	0.180		
	Experiencia	0.107	0.100	0.174	0.100		
	Luz libre (m)	4.75	5.15	5.059	5.739		
	e _{m_2D} (m) = L/40 –	0 1 1 9	0 1 2 0	0.126	0 1/13		
Maciza 2D	Experiencia	0.113	0.123	0.120	0.143		
	Perímetro crítico (m)	18.84	19.29	26.63	19.89		
	$e_{m_{2D}}(m) = 2p/180 - $	0 105	0 107	0.148	0.110		
	Experiencia	0.105	0.107	0.140	0.110		

Tabla 11. Predimensionamiento de losas

Finalmente, se optó por el tratamiento de la naturaleza estructural de la losa maciza que, debido a las luces que emplea, resultó bidireccional con un espesor de 0.15 m, que fue verificado representativamente para la configuración geométrica cuadrada en función a lo mostrado en la Figura 22 y la Figura 23, como mayor al mínimo calculado y al mínimo establecido en concordancia con su comportamiento cuyo procedimiento se detalla de la Tabla 12 hasta la Tabla 14.

Figura 22. Paños de verificación seleccionados (en m)

Figura 23. Detalle de las secciones de viga (en m)

Tabla 12. Momentos de inercia de las secciones de viga y las franjas de losaadyacentes

MOMENTO DE INERCIA	PARÁMETRO	SÍMBOLO	VALOR
De viga (cm⁴)	Sección A – A	I _{b_AA}	412758.924
	Sección B – B	I _{b_BB}	454866.395

	Sección C – C			I _{b_CC}	383486.649
	Eje X		I _{s_1X}	133593.750	
	Fallo UI		Eje Y	I _{s_1Y}	133593.750
	Doño 02	Eje X		I _{s_2X}	133593.750
	Eje Y		Eje Y	I _{s_2Y}	140625
	Paño 03	Eje	Larga	I _{s_3X_I}	140625
De losa (cili)			Corta +	I _{s_3X_c+}	78046.875
		^	Corta -	I _{s_3X_c-}	62578.125
		F :-	Larga	I _{s_3Y_1}	140625
		Eje	Corta +	I _{s_3Y_c+}	80859.375
		Corta -	I _{s_3Y_c-}	59765.625	

Tabla 13. Relación entre las rigideces a flexión de una sección de viga y de una franja de losa limitada lateralmente por los ejes centrales de los paneles adyacentes a cada lado de la viga en la configuración geométrica cuadrada

PANO	SIVIBULU	VALOR	α _f
	$\alpha_{f_1a} = \frac{I_{b_AA}}{I_{s_1X}}$	3.0897	
01	$\alpha_{f_1b} = \frac{I_{b_BB}}{I_{s_1X}}$	3.4048	2 2472
	$\alpha_{f_1c} = \frac{I_{b_AA}}{I_{s_1Y}}$	3.0897	5.2475
	$\alpha_{f_1d} = \frac{I_{b_BB}}{I_{s_1Y}}$	3.4048	
	$\alpha_{f_2a} = \frac{I_{b_BB}}{I_{s_2X}}$	3.4048	
02	$\alpha_{f_{2b}} = \frac{I_{b_{BB}}}{I_{s_{2X}}}$	3.4048	2 2440
	$\alpha_{f_2c} = \frac{I_{b_AA}}{I_{s_2Y}}$	2.9352	5.2449
	$\alpha_{f_{2d}} = \frac{I_{b_{BB}}}{I_{s_{2Y}}}$	3.2346	
	$\alpha_{f_3a} = \frac{I_{b_BB}}{I_{s_3X_I}}$	3.2346	
	$\alpha_{f_3b} = \frac{I_{b_BB}}{I_{s_3X_c^+}}$	5.8281	
03	$\alpha_{f_{3c}} = \frac{I_{b_{CC}}}{I_{s_{3X_{c}}}}$	6.1281	5 0770
	$\alpha_{f_3d} = \frac{I_{b_BB}}{I_{s_3Y_1}}$	3.2346	5.0779
	$\alpha_{f_3e} = \frac{I_{b_BB}}{I_{s_3Y_c^+}}$	5.6254	
	$\alpha_{f_{3f}} = \frac{I_{b_{CC}}}{I_{s_{3Y} c_{-}}}$	6.4165	

Tabla 14.	Verificación del es	pesor de la losa r	naciza bidireccional
			~

DADÁMETDO	SÍMPOLO	PANO		
PARAIVIETRO	SIMBOLO	01	02	03
Luz libre mayor (m)	Ln _{máx.}	4.50	4.50	4.75
Luz libre menor (m)	Ln _{mín.}	4.50	4.75	4.75

Relación de luces	$\beta = \frac{Ln_{máx.}}{Ln_{mín.}}$	1	1.06	1
Esfuerzo de fluencia del acero de refuerzo (kgf/cm ²)	f _y		4200	
Relación promedio de rigideces a flexión viga – losa	α _{fm} Caso: α _{fm} > 2.0	3.2473	3.2449	5.0779
Espesor mínimo calculado (cm)	h _{calc.} = $\frac{Ln_{máx.} \cdot (0.8 + \frac{f_y}{14000})}{(36 + 9 \cdot β)}$	11	11.484	11.611
Espesor mínimo establecido (cm)	h _{mín.}		9	

4.1.2.5 Escaleras

Los elementos de enlace vertical entre niveles se dimensionaron utilizando las características señaladas en el apartado de placas, con la finalidad de metrar cargas en la línea de huella a través de su sección transversal. Para ello se uniformizó el espesor en 0.15 m para las gargantas y los descansos de todos los tramos de la escalera.

TRAMO	PARÁMETRO	SÍMBOLO	VAL	OR
	Ancho de cimiento corrido (m)	b _{cc}	0.40	
Arranque	Longitud total de huella (m)	b _{th}	2.	00
	Ancho de descanso (m)	b _d	1.:	20
	Espesor de placa de apoyo (m)	b _p	0.25	
	Luz libre (m)	$Ln_a = b_{th} - b_{cc} + b_d$	2.80	
	Luz de eje a eje (m)	$L_a = \frac{b_{cc}}{2} + Ln_a + \frac{b_p}{2}$	3.125	
	Espesor de	$t_a \in \left[\frac{Ln_a}{25}, \frac{Ln_a}{20}\right]$	0.112	0.14
	yaryanta	$t_a \in [0.03L_t, 0.04L_t]$	0.094	0.125
	Ancho de apoyos (m)	b _{a1} - b _{a2}	0.25 -	- 0.25
	Ancho de descansos (m)	b _{d1} - b _{d2}	1.00 – 1.20	
Tínico	Longitud total de huella (m)	b _{th}	2.00	
прісо	Luz libre (m)	$Ln_t = b_{d1} + b_{th} + b_{d2}$	4.	20
ľ	Luz de eje a eje (m)	$L_{t} = \frac{b_{a1}}{2} + Ln_{t} + \frac{b_{a2}}{2}$	4.45	
	Espesor de	$t_t \in \left[\frac{Ln_t}{25}, \frac{Ln_t}{20}\right]$	0.168	0.21
	garganta	$t_t \in [0.03L_t, 0.04L_t]$	0.134	0.178

Tabla 15. Predimensionamiento de escaleras

4.1.3 Modelamiento estructural en ETABS®

El proceso general y detallado del modelamiento estructural de las edificaciones se desarrolló en concordancia con el manual de la casa diseñadora del software de análisis utilizado y con las prácticas y recomendaciones comunes en la ingeniería.

4.1.3.1 Materiales

Las propiedades físicas y mecánicas del concreto y el acero de refuerzo se plantearon de acuerdo con artículo 8.5 de la norma técnica E.060.

MATERIAL	PARÁMETRO	SÍMBOLO	CARACTERÍSTICA	VALOR
Comonto	Resistencia característica a la compresión (kɑ/cm²)	f' _c	-	280
	Tipo de simetría direccional	-	Isotrópico	-
	Peso específico (kg/m ³)	Υ _c	Concreto de peso unitario normal	2400
Concreto	Módulo de	_	$E_{c} = \gamma_{c}^{1.5} \cdot 0.136 \cdot \sqrt{f_{c}}$	267568.378
	elasticidad o de Young (kg/m²)	E _c	$E_{c} = 15000 . \sqrt{f'_{c}}$	250998.008
	Módulo de Poisson	ν_{c}	-	0.15
	Módulo de corte		E _a E _a	116334.078
	o de rigidez (kg/m²)	G _c	$G_c = \frac{-c}{2(1 - v_c)} = \frac{-c}{2.3}$	109129.569
Acero de	Esfuerzo mínimo de fluencia (kg/cm²)	f _y	Fierro corrugado ASTM A615 – Grado 60 / NTP 341.031 – Grado 420	4200
	Resistencia a la tracción o esfuerzo máximo o último (kg/cm²)	f _u	-	6300
refuerzo	Tipo de simetría direccional	-	Uniaxial	-
	Peso específico (kg/m ³)	Υ _s	-	7850
	Módulo de elasticidad o de Young (kg/m²)	Es	-	2000000

 Tabla 16. Propiedades físicas y mecánicas de los componentes del material

 predominante elegido (concreto armado)

4.1.3.2 Secciones

Todos los elementos estructurales aplicables al modelamiento se definieron en función a las características propias de cada tipo, como se detalla en la Tabla 17. En particular, los elementos shell se delimitaron bajo las hipótesis de Kirchhoff y Mindlin – Reissner desarrolladas en la teoría de placas y láminas.

ELEMENTO	PARÁMETRO	SÍMBOLO	CARACTERÍSTICA	VALOR
	Base (m)	b _ω	-	0.25
View	Peralte (m)	h	-	0.50
viga	Recubrimiento			
(ITame –	al centroide	-	Aproximado respecto de la fibra	C
rectangular)	de la barra	l c_v	más traccionada de la sección	0
	(cm)			
	Diámetro (m)	D	-	0.50
	Recubrimiento	r	Dara concrete febricado en citic	4
	libre (cm)	Ic	Para concreto labricado en sitio	4
	Tipo de			
Columna	refuerzo		Estribo circular, mínimo de ø	
(frame –	transversal de	-	3/8"	-
circular)	confinamiento			
	Número			
	mínimo de	Nh mín	$\rho_{\text{LLLL}} \in [1\%, 6\%]$	4
	barras	min.	long. L	-
	Iongitudinales	dinales		
	Espesor de	elosa	Comportamiento bidireccional	0.15
	losa (m)		Dortonocionto o lo formo	
	Luz libre máxima (m)	Ln _{máx.}	decemétrica bevaganal	5.793
	maxima (m)		Shall thin (formulación do	
Losa			Kirchhoff) porque se	
maciza (shell – thin)	Tino do		desempeña principalmente a	
	modolado	-	flevión	-
	modelado	nouelauo	$1 n_{méx}$ 5 793 (m)	
			$\frac{1}{2000} = \frac{1}{0.15} = \frac{1}{0.15} = 38.62 > 20$	
	Tipo de		elosa 0.13 (m)	
	sección	-	Slab	-
	Espesor de	-	Solo bordea las caias de	0.05
	placa (m)	e _{placa}	ascensores y escaleras	0.25
. .	Altura de	h	La deformación por flexión se	2 20
Muro de	entrepiso (m)	l'm_e	produce entre niveles	3.20
			Shell – thick (formulación de	
			Mindlin – Reissner), porque	
(Shell –	Tipo de		recibe fuerzas de corte	
	modelado	-	importantes	-
			$\frac{h_{m_e}}{1} = \frac{3.20 \text{ (m)}}{12.8 \le 20}$	
			e _{placa} 0.25 (m) 12.0 20	
			El espesor es despreciable a fin	
	Espesor de	A .	de que el peso propio sea	0.000001
	escalera (m)	Gescalera	asignado de acuerdo con el	0.000001
			metrado de cargas	
Escaleras			Membrane, porque solo se	
(membrane)	Tipo de	-	encarga de transmitir las cargas	-
	modelado		que recibe hacia sus elementos	
			de apoyo	
	l ipo de	-	Slab	-
	seccion			

4.1.3.3 Cargas

Las cargas generadas y asignadas, detalladas desde la Tabla 18 hasta la Tabla 20, se circunscriben en un orden de trabajo que facilitó su revisión individual acorde a lo requerido durante el análisis estructural.

PATRÓN	SÍMBOLO	DESCRIPCIÓN
Dead	PP	Carga del peso propio de los elementos estructurales de acuerdo con el material que los compone
Super dead	SCM	Carga de acabados, tabiquerías pesadas, instalaciones u otros elementos de carácter de permanencia constante en la edificación
Live	CV _a	Carga viva mínima repartida de los ambientes interiores, escaleras, corredores y azoteas (consideradas conservadoramente como áreas comunes en la edificación)
Roof live	CVt	Carga viva del techo (considerado netamente como cubierta)

Tabla 18. Descripción de los patrones de carga creados

Tabla 19. Descripción de los casos de carga creados

CASO	SÍMBOLO	DESCRIPCIÓN
Carga muerta	Muerta	Agrupa a los patrones PP y SCM a través del análisis lineal con un factor de escala del 100%
Carga viva	Viva	Agrupa a los patrones CV _a y CV _t a través del análisis lineal con un factor de escala del 100%
Modos de vibración	Modal	Del subtipo eigen, permite evaluar y verificar el comportamiento de la estructura a través de sus modos y frecuencias de vibración calculados bajo la vibración libre no amortiguada del sistema, considerando un modelo de masas concentradas por diafragma rígido (entrepiso) con 3 grados de libertad (dos componentes traslacionales horizontales y ortogonales entre sí y uno rotacional)
	SDin_XX	Se desarrolla a partir de un espectro de respuesta
Carga sísmica	SDin_YY	construido sobre la formula normativa de pseudo-
dinámica X – Y	SDin_ZZ	traslacionales (U1, U2 y U3) con un factor de escala dependiente del sistema estructural predominante en cada dirección de análisis
	Drift_XX	A diferencia del caso de carga sísmica dinámica,
Deriva inelástica X – Y	Drift_YY	esta emplea un factor de escala dependiente de la condición de regularidad estructural por cada dirección de análisis

Tabla 20. Descripción de las combinaciones de carga creadas

COMBINACIÓN	SÍMBOLO	DESCRIPCIÓN		
	CS_Diseño XX	Responde a la necesidad de cumplir con la		
Carga sísmica de diseño	CS_Diseño YY	fuerza cortante mínima estipulada empleando ur		
		factor de escala dependiente de la relación entre		
	CS_DISEITO ZZ	las fuerzas que se calculan en condiciones		

estática y dinámica y de la condición de	
regularidad de la edificación.	

4.1.3.4 Masa sísmica

Teniendo en cuenta eventos habituales de ocupación de la edificación, se añade un porcentaje del total de la carga viva a la carga permanente de esta en función a lo estipulado en el artículo 26 de la norma técnica E.030.

ΡΑΡ ΆΜΕΤΡΟ	PATRÓN	% DĘ	
FARAMETRO	LIGADO	ACCIÓN	
Elementos estructurales	PP	100	
Elementos no	SCM	100	
estructurales permanentes	301		
Ambientes, corredores,	<u> </u>	25	
escaleras y azotea	CVa		
Techos (cubiertas)	CVt	25	

Tabla 21. Porcentaje de participación de las cargas para fines de análisis sísmico

4.1.3.5 Espectros de pseudo-aceleración

Para cada dirección de análisis se construyó manualmente un espectro de pseudo-aceleraciones con un factor de amortiguamiento crítico ζ = 5% a partir de los intervalos de la función por partes del factor de amplificación sísmica (C) definidos en los artículos 14 y 29.2.2 de la norma técnica E.030 (6) (36).

De forma complementaria, los factores de escala para cada uno de ellos se calcularon con el factor constante $\left(\frac{Z \cdot U \cdot S}{R} \cdot g\right)$ de la ecuación generatriz de la pseudo-aceleración definida en el artículo 29.2.1 de la norma indicada en el párrafo anterior y fueron aplicados al caso de carga sísmica dinámica por dirección definida.

Adicionalmente, para el cálculo de los desplazamientos y derivas en estado inelástico, los factores de escala se calcularon con el factor constante de la ecuación previa afectado por el factor inelástico de acuerdo con la condición de regularidad direccional del edificio (Factor_{inelástico}. Z. U. S. g).

Figura 24. Espectro de pseudo-aceleración para el sismo horizontal (X y Y)

Figura 25. Espectro de pseudo-aceleración para el sismo vertical (Z)

4.1.3.6 Metrado de cargas de asignación

Las cargas repartidas asignadas, detalladas en el anexo 2 y resumidas en la Tabla 22, fueron cuantificadas exclusivamente para losas, escaleras y vigas siguiendo lineamientos básicos de San Bartolomé (25), pesos específicos según material y cargas mínimas repartidas de la norma técnica E.020 (37) y criterios y prácticas habituales de la ingeniería para la distribución de ambientes indicados en la Figura 26.

Figura 26. Zonificación de ambientes

Primero, en las losas se consideró la conservadora presencia de tabiquería abundante de unidades tubulares a través de una carga equivalente para muros de altura libre completa y otra para altura media. Además, se incluyeron las cargas muertas provenientes de acabados y de la colocación de cielo raso, instalaciones u otro de carácter permanente y las cargas vivas repartidas de acuerdo con el uso del ambiente.

Segundo, en las escaleras se calculó el peso propio por tramo y se determinó su carga equivalente a través de su sección transversal en la línea de huella sin considerar puntos de apoyo y de acuerdo con su longitud de acción. Adicionalmente, participan la carga muerta de acabados y la carga viva repartida correspondiente.

Por último, en las vigas solo se aplicaron la carga muerta de acabados y la carga viva repartida según el ambiente al que pertenecen.

ELEMENTO	AMBIENTE	CARGA MUERTA (tonf/m)		CARGA VIVA (tonf/m)	
		PP	SCM	CV_{a}	CVt
Losas	Interiores		0.33		
	Volados		0.15	0.20	
	Azotea	-	0.07		-
	Corredores		0.27	0.25	
	Techo		0.12	-	0.10

Tabla 22. Resumen de las cargas repartidas asignadas a los elementos estructurales

Ecolorac	Rampa	0.66 0.10		0.25	
Escaleras	Descanso	0.36		0.25	-
	Interiores		0.025	0.050	
Vigas	Volados				-
	Azotea	-			
	Corredores			0.0625	
	Techo			-	0.025

4.1.3.7 Liberación de momentos

La liberación de momentos en las vigas se aplicó en función a la longitud de anclaje de las barras que se detalla en el anexo 3, ya que esta resulta necesaria para permitir la variación de esfuerzos desde cero hasta el punto de fluencia garantizando el comportamiento conjunto entre acero y concreto para la correcta transmisión de esfuerzos y deformaciones y el mejor control de fallas antes de su punto esperado de agotamiento y colapso inminente (38).

El cálculo de este parámetro se realizó en concordancia con los artículos 12.1, 12.2, 12.3 y 12.5 de la norma técnica E.060 para el grupo de barras habitualmente utilizado en nuestro medio, cuyos datos se obtuvieron del anexo 6, en condición traccionada y con terminación recta y en gancho estándar según los puntos de apoyo de cada viga.

considerada de acuerdo con el punto de apoyo asignado						
PUNTO DE	LONGITUD DE	DIÁMETRO DE BARRA				
APOYO	ANCLAJE (m) 1/2" 5/8" 3/4"				1"	
Paralelo a la	Ld _{superior}	0.505	0.632	0.758	1.256	
placa Ld _{inferior}		0.389	0.486	0.583	0.966	
Perpendicular a la placa y en columnas	Ldg	0.239	0.299	0.359	0.478	

 Tabla 23. Resumen de las longitudes de anclaje o desarrollo requeridas por barra considerada de acuerdo con el punto de apoyo asignado

4.1.3.8 Factor de zona rígida

Los brazos rígidos fueron asignados de forma automática y con un factor de zona rígida de 0.5 de manera que el concreto del nudo no se comporte como una zona completamente rígida ni, por el contrario, se sobreestimen las deformaciones por corte y flexión en los elementos con la luz comprendida entre centros de apoyo (39).

4.1.4 Análisis estructural

El análisis estructural de cada edificio fue evaluado en tres etapas claramente delimitadas y verificado normativamente en la última de ellas en tres fases progresivas e iterativas, tal como se detalla en el flujograma de la Figura 27.

Figura 27. Flujograma del proceso de análisis estructural

Las etapas de evaluación comprendieron:

- ETAPA 1:
- Modelamiento estructural inicial con las secciones definidas por predimensionamiento y las cargas de acuerdo con el metrado realizado para cada elemento
- Aplicación de las condiciones iniciales asumidas para el sistema estructural, las irregularidades estructurales y los factores de escala direccionales

- Liberación de momentos en vigas, conformación de los diafragmas rígidos y asignación del factor de zona rígida pertinente
- Visualización de resultados preliminares para modos, períodos de vibración y masas participativas
- ETAPA 2:
- o Análisis de edificios en condiciones geométricas y estructurales similares
- o Verificación del sistema estructural adoptado
- o Análisis de las irregularidades estructurales
- o Determinación de las fuerzas cortantes basales mínimas exigidas
- o Recálculo de los factores de escala direccionales
- o Revisión de rigidez lateral y estabilidad estructural
- o Verificación de derivas de entrepiso
- ETAPA 3:
- Análisis de edificios en condiciones geométricas y estructurales tales que cumplan individualmente las exigencias normativas
- Evaluación progresiva de edificios por fases de verificación (A, B y C)
- Delimitación definitiva de la condición de regularidad estructural, modos y períodos de vibración, sistema estructural adoptado, factores de escala direccionales para sismo dinámico, desplazamientos y derivas en condición inelástica y fuerza cortante basal de diseño
- Verificación de derivas de entrepiso respecto del límite máximo permisible normativo
- o Control de la rigidez lateral a través del índice de distorsión
- Determinación del factor de seguridad de estabilidad estructural de los edificios frente al volcamiento

Las fases de verificación se aplicaron durante la tercera etapa de evaluación y se desarrollaron bajo las siguientes consideraciones:

- FASE A:
- Colocación de vigas de acople en placas o muros de corte de las cajas de ascensor

- o Incremento del diámetro de las columnas a 0.60 m
- Adaptación de la ubicación de vigas, columnas y losas sobre los ejes externos de cada edificio
- Se pasa a la fase B solo si las distorsiones de entrepiso no cumplen con el límite máximo permisible normativo.

Figura 28. Representación gráfica esencial de la fase A

- FASE B:
- Colocación de placas en los ejes exteriores unidos perpendicularmente a la caja de ascensores y escaleras (cuadrado – círculo – hexágono regular) y en los ejes exteriores que resultan perpendiculares a las líneas que fungen de alturas trazadas a partir del baricentro de la figura (triángulo equilátero)
- Se inicia el procedimiento en la dirección con deriva más crítica; es decir, la de valor más alto
- Estas "crecen" a razón de 50 cm a cada lado, excepto si la deriva de entrepiso obtenida con ese incremento se acerca considerablemente al límite máximo permisible, en cuyo caso dicha razón se reduce a 25 cm.
- Se pasa a la fase C solo si el control de derivas de entrepiso a través de placas a cada lado de los ejes con longitud de hasta 2 m aún no cumple el requerimiento normativo.

- FASE C:
- Colocación de placas en las esquinas (cuadrado triángulo equilátero hexágono regular) o intermedios cuadrantales (círculo) priorizando su extensión en la dirección que resulte más crítica
- Se mantienen las placas ubicadas en los puntos especificados en la fase B y con su longitud máxima de 2 m.

Figura 30. Representación gráfica esencial de la fase C

Finalmente, los resultados presentados en adelante son los obtenidos tras el cumplimiento de todos los requerimientos normativos estipulados en la norma técnica E.030 durante su fase de verificación correspondiente, como se precisa en la Tabla 24 y desde la Figura 31 hasta la Figura 34.

FIGURA GEOMÉTRICA	FASE DE VERIFICACIÓN DE CUMPLIMIENTO NORMATIVO			
	Α	В	С	
Cuadrado	✓			
Círculo		✓		
Triángulo (equilátero)			✓	
Hexágono (regular)		✓		

Tabla 24. Ubicación por configuración geométrica de la fase de verificación

Figura 31. Configuración geométrica cuadrada en su fase de verificación correspondiente (A)

Figura 32. Configuración geométrica circular en su fase de verificación correspondiente (B)

Figura 33. Configuración geométrica triangular equilátera en su fase de verificación correspondiente (C)

Figura 34. Configuración geométrica hexagonal regular en su fase de verificación correspondiente (B)

4.1.4.1 Peso sísmico

El peso sísmico calculado a partir de lo indicado líneas arriba se presenta superior al peso estimado para efectos de predimensionamiento, de acuerdo con lo que se esperaba con el paso de A a C en las fases de verificación.

Figura 35. Peso sísmico final alcanzado

Los valores de los pesos sísmicos mostrados en la Figura 35 resultaron acorde al cumplimiento normativo durante cada fase de verificación: la configuración geométrica de mayor valor corresponde a la triangular equilátera (fase C), la circular y la hexagonal regular presentan valores bastante cercanos entre sí (fase B), mientras que la cuadrada contiene el menor valor de todos (fase A).

4.1.4.2 Modos de vibración

Los modos de vibración principales se muestran a través de una configuración matricial que representa las masas participativas direccionales que se alcanzaron por grado de libertad. Asimismo, en la Tabla 25 se indican los modos de vibración en los que se acumuló y superó por primera vez el 90% de masa participativa acumulada mínima requerida.

FIGURA GEOMÉTRICA	MODO	U _X	U _Y	Rz		
	1	0.0953	0.0310	0.6680		
Cuadrado	2	0.0087	0.6753	0.0217		
	3	0.6102	0.0008	0.1044		
Círculo	1	0.1775	0.1511	0.4177		
	2	0.0920	0.5474	0.0693		
	3	0.4388	0.0084	0.2686		
Triángulo (equilátero)	1	0.0805	0.1934	0.4591		

Tabla 25. Configuración matricial de los modos principales
	2	0.0143	0.5145	0.1850
	3	0.6198	0.0026	0.0949
	1	0.1876	0.0503	0.5153
Hexágono (regular)	2	0.0847	0.6146	0.0053
	3	0.4429	0.0389	0.2345

Todas las configuraciones geométricas presentaron un comportamiento rotacional en el primer modo de vibración, razón por la cual el análisis de la irregularidad torsional y su control fue bastante riguroso.

Por otro lado, las disposiciones matriciales no resultaron totalmente desacopladas con la aplicación del método de combinación direccional de la raíz cuadrada de la suma de los cuadrados –SRSS–; sin embargo, fue la configuración geométrica cuadrada la que presentó la matriz más desacoplada de todas por la clara distinción porcentual entre masas participativas por dirección.

Figura 36. Masas participativas alcanzadas en los modos principales

Las masas participativas alcanzadas, mostradas en la Figura 36, en las direcciones ortogonales principales X y Y más altas fueron las de las configuraciones geométricas triangular equilátera (61.98%) y cuadrada (67.53%), respectivamente, y las más bajas fueron las de las configuraciones

geométricas circular (43.88%) y triangular equilátera (51.45%), respectivamente.

Figura 37. Modos de vibración con masa participativa mínima al 90%

La masa participativa mínima normativamente exigida del 90% en X y Y se acumuló aproximadamente alrededor del modo 9 de vibración en ambos casos, tal como se puede observar en la Figura 37. Este valor se ubicó cerca del tercio central del grupo de modos considerados en el análisis sísmico.

4.1.4.3 Períodos de vibración

Figura 38. Períodos fundamentales de vibración

De acuerdo con la Figura 38, todos los períodos de vibración fundamentales presentaron valores menores al criterio de $T_{fundamental} = 0.1 \text{ x N}$, siendo N la cantidad de niveles de la edificación, cuando se pasó de A a C durante las fases de verificación, con orden decreciente en las configuraciones geométricas: cuadrada, hexagonal regular, circular y triangular equilátera.

Figura 39. Períodos de vibración direccionales X y Y

Los períodos de vibración principales por dirección para el análisis sísmico mostrados en la Figura 39 se corresponden con las máximas masas participativas alcanzadas análogamente en los modos de vibración principales, apreciándose una reducción en sus valores conforme se pasó de A a C en las fases de verificación y cuyos valores más bajos se registraron en la configuración geométrica triangular equilátera y los más altos, en la configuración geométrica cuadrada.

Con el incremento de la masa estructural se esperaban períodos de vibración más elevados; empero, la colocación de elementos rigidizadores (muros de corte o placas) para el control de desplazamientos resultó, finalmente, en valores más bajos.

4.1.4.4 Condiciones de regularidad estructural

De acuerdo con la categoría de la edificación y la zona sísmica en la que se ubican no se permiten irregularidades extremas. Así, todas las edificaciones se plantearon de modo tal que se eviten irregularidades estructurales en altura, aunque igualmente fueron estudiadas, exceptuando a la irregularidad de resistencia o piso débil por requerir del diseño estructural íntegro para descartar su implicancia en el análisis estructural, por lo que se analizaron primordialmente las irregularidades estructurales en planta a fin de determinar el factor I_p más crítico y recalcular los factores de escala para los espectros de respuesta de la carga sísmica dinámica, los desplazamientos y derivas en condición inelástica y la fuerza cortante mínima requerida en la base para diseño estructural.

		FIGURA GEOMÉTRICA							
ETAPA DE EVALUACIÓN	EJE	Cuadrado		Círculo		Triángulo (equilátero)		Hexágono (regular)	
		Ia	I _p	Ia	Ip	Ia	I _p	Ia	I _p
01	Х	1	1	1	1	1	1	1	1
UI	Y	1	1	1	1	1	1	1	1
02	Х	1	0.75	1	0.75	1	0.75	1	0.75
UZ	Y	1	0.75	1	0.75	1	0.60	1	0.75
00	X	1	1	1	1*	1	1*	1	1*
03	Y	1	1	1	1*	1	1*	1	1*

Tabla 26. Resumen de los factores de irregularidad en altura y planta

* Se consideró que la irregularidad en planta por sistemas no paralelos de acuerdo con lo redactado en la Norma técnica E.030 resulta ambiguo y de interpretación subjetiva al carecer de especificidad en cuanto a los parámetros que deben tenerse en cuenta para su análisis en comparación con otro tipo de irregularidades, por lo que el criterio adoptado se centró principalmente en el control de la irregularidad torsional.

4.1.4.5 Factores de escala

Se calcularon para los espectros de pseudo-aceleraciones construidos para la carga sísmica dinámica (FE_{sismo}) y los desplazamientos y derivas en condición inelástica (FE_{desplazamiento}) para todas las configuraciones geométricas.

COI	nfiguraciones	geométricas	
ραράμετρο	DIREC	CIÓN DE AN	ÁLISIS
PARAMETRO	Х	Y	Z
Nombre del espectro	EHx_Z ₃ -S ₂	EHy_Z ₃ -S ₂	EVz_Z ₃ -S ₂
FEsismo	0.6579	0.6579	0.4386

2.9604

Tabla 27. Factores de escala de los espectros de pseudo-aceleración para el sismo dinámico y los desplazamientos y derivas en condición inelástica de todas las configuraciones geométricas

Adicionalmente, se determinaron, a partir de la carga sísmica dinámica, los factores de escala necesarios para originar la fuerza cortante basal de diseño mínima requerida.

2.9604

FE_{desplazamiento}

V						
FIGURA GEOMÉTRICA Cuadrado Círculo	DIRECCIÓN DE ANÁLISIS					
	Х	Y	Z			
Cuadrado	1.2166	1.1180	1.2166			
Círculo	1.3877	1.2085	1.3877			
Triángulo (equilátero)	1.1656	1.1794	1.1794			
Hexágono (regular)	1.3499	1.1547	1.3499			

Tabla 28. Factores de escala para obtener la carga sísmica de diseño por cada configuración geométrica

4.1.4.6 Fuerzas sísmicas y cortantes de entrepiso

Las fuerzas sísmicas se extrajeron a partir de los resultados de cortantes de entrepiso y siguieron aproximadamente la distribución en altura mostrada en la Figura 40, notándose que la línea que conecta las colas de los vectores que simbolizan las fuerzas sísmicas en condición dinámica es pronunciadamente curva a diferencia de la forma recta que se origina en condición estática. Es importante resaltar que todas las configuraciones geométricas presentan fuerzas a partir del mínimo requerido para diseño estructural y en función a su condición de regularidad estructural.

Figura 40. Distribución en altura de las fuerzas sísmicas y cortantes de entrepiso

	CUADRADO					
NIVEL DE ANÁLISIS		X		Y		
	Fsísmicas	Fcortantes	Fsísmicas	Fcortantes		
NCu_Techo	9.1074	9.1074	8.6768	8.6768		
NAz_Entrepiso 10	88.8439	97.9513	86.6745	95.3513		
N10_Entrepiso 09	77.1521	175.1035	74.0252	169.3765		
N09_Entrepiso 08	61.8864	236.9899	58.5728	227.9493		
N08_Entrepiso 07	51.0032	287.9931	48.1252	276.0746		
N07_Entrepiso 06	42.8544	330.8475	40.5175	316.5920		
N06_Entrepiso 05	36.1167	366.9642	34.4723	351.0644		
N05_Entrepiso 04	29.7409	396.7051	28.8460	379.9104		
N04_Entrepiso 03	23.1279	419.8330	22.7466	402.6569		
N03_Entrepiso 02	15.8954	435.7283	15.7159	418.3728		
N02_Entrepiso 01	7.7322	443.4605	7.6103	425.9831		

Tabla 29. Fuerzas sísmicas y cortantes para la configuración geométrica cuadrada

	CÍRCULO					
NIVEL DE ANÁLISIS		X		Υ		
	Fsísmicas	Fcortantes	Fsísmicas	Fcortantes		
NCu_Techo	9.8893	9.8893	8.5938	8.5938		
NAz_Entrepiso 10	95.6317	105.5210	87.9174	96.5111		
N10_Entrepiso 09	82.6354	188.1565	75.6349	172.1460		
N09_Entrepiso 08	65.6581	253.8146	59.3294	231.4754		
N08_Entrepiso 07	53.8688	307.6834	48.7035	280.1788		
N07_Entrepiso 06	45.3226	353.0060	41.1638	321.3427		
N06_Entrepiso 05	38.5187	391.5247	35.1723	356.5150		
N05_Entrepiso 04	32.1757	423.7004	29.5615	386.0765		
N04_Entrepiso 03	25.2655	448.9659	23.4308	409.5073		
N03_Entrepiso 02	17.2248	466.1907	16.2778	425.7851		
N02_Entrepiso 01	8.1291	474.3198	7.9415	433.7266		

Tabla 30. Fuerzas sísmicas y cortantes para la configuración geométrica circular

Tabla 31. Fuerzas sísmicas y cortantes para la configuración geométrica triangular

	TRIÁNGULO (equilátero)					
NIVEL DE ANÁLISIS	<u> </u>	K	Ň	Y		
	Fsísmicas	Fcortantes	Fsísmicas	Fcortantes		
NCu_Techo	10.0975	10.0975	9.3359	9.3878		
NAz_Entrepiso 10	106.3709	116.4684	103.0953	112.4831		
N10_Entrepiso 09	97.9451	214.4135	93.7892	206.2723		
N09_Entrepiso 08	80.5188	294.9323	76.2115	282.4838		
N08_Entrepiso 07	67.2789	362.2111	63.4924	345.9763		
N07_Entrepiso 06	56.5029	418.7140	53.3895	399.3657		
N06_Entrepiso 05	47.0614	465.7754	44.6004	443.9661		
N05_Entrepiso 04	38.0346	503.8099	36.1804	480.1465		
N04_Entrepiso 03	28.6432	532.4531	27.4260	507.5725		
N03_Entrepiso 02	18.6570	551.1101	18.0324	525.6049		
N02_Entrepiso 01	8.2004	559.3105	8.1051	533.7100		

Tabla 32. Fuerzas sísmicas y cortantes para la configuración geométrica hexagonal

	HEXAGONO (regular)					
NIVEL DE ANÁLISIS		Х	Y			
	Fsísmicas	Fcortantes	F _{sísmicas}	Fcortantes		
NCu_Techo	9.2172	9.2172	8.9265	8.9265		
NAz_Entrepiso 10	92.7117	101.9288	90.4923	99.4188		
N10_Entrepiso 09	80.8128	182.7416	78.2147	177.6335		
N09_Entrepiso 08	64.2505	246.9921	62.1063	239.7398		
N08_Entrepiso 07	52.7891	299.7813	51.0973	290.8371		
N07_Entrepiso 06	44.4534	344.2347	43.0278	333.8649		
N06_Entrepiso 05	37.8177	382.0523	36.4267	370.2916		
N05_Entrepiso 04	31.6568	413.7092	30.1980	400.4896		

N04_Entrepiso 03	24.9940	438.7031	23.4945	423.9842
N03_Entrepiso 02	17.2927	455.9958	15.8965	439.8807
N02_Entrepiso 01	8.3354	464.3313	7.4361	447.3168

Se puede reconocer que un mayor peso sísmico originó fuerzas sísmicas y cortantes basales más elevadas según se registra desde la Tabla 29 hasta la Tabla 32.

4.1.4.7 Verificación del sistema estructural adoptado

Inicialmente, para la primera etapa de evaluación, el sistema estructural se asumió como pórticos de concreto armado con placas en las cajas de ascensores y escaleras (R = 8); sin embargo, se comprobó que las fuerzas cortantes producidas por el sismo dinámico de diseño en cada dirección, a fin de cuentas, fueron absorbidas principalmente por las placas mencionadas y/o aquellas agregadas de acuerdo con lo requerido por cada edificación durante las fases de verificación, teniéndose que las columnas de los pórticos del primer nivel representaban no más del 24% de absorción del cortante de ese mismo nivel para la configuración geométrica más crítica para este apartado, razón por la que se redefinió el sistema a muros estructurales de concreto armado (R = 6).

El mayor porcentaje de absorción de cortante de entrepiso en las columnas ocurrió en la configuración geométrica cuadrada en la dirección X (23.98% – Figura 41) y el menor fue ocupado por la configuración geométrica triangular equilátera también en la dirección X (12.41% – Figura 45).

De manera global, en X y Y, los muros de corte de la configuración geométrica triangular equilátera captaron mayor fuerza cortante de entrepiso (87.59% – Figura 45 y 86.95% – Figura 46, respectivamente) mientras que los pertenecientes a la configuración geométrica cuadrada captaron la menor magnitud de todas (76.02% – Figura 41 y 80.32% – Figura 42, respectivamente).

Figura 41. Porcentajes de absorción de la carga sísmica en la dirección X de la configuración geométrica cuadrada

Figura 42. Porcentajes de absorción de la carga sísmica en la dirección Y de la configuración geométrica cuadrada

Figura 43. Porcentajes de absorción de la carga sísmica en la dirección X de la configuración geométrica circular

Figura 44. Porcentajes de absorción de la carga sísmica en la dirección Y de la configuración geométrica circular

Figura 45. Porcentajes de absorción de la carga sísmica en la dirección X de la configuración geométrica triangular

Figura 46. Porcentajes de absorción de la carga sísmica en la dirección Y de la configuración geométrica triangular

Figura 47. Porcentajes de absorción de la carga sísmica en la dirección X de la configuración geométrica hexagonal

Figura 48. Porcentajes de absorción de la carga sísmica en la dirección Y de la configuración geométrica hexagonal

4.1.4.8 Derivas inelásticas alcanzadas

Las distorsiones de entrepiso en condición inelástica fueron comparadas con la máxima permisible como parte del control normativo, obteniéndose que aquellas que se acercaron más a esta sucedieron en las configuraciones geométricas triangular equilátera (X – 0.006773, Figura 51) y hexagonal regular (Y – 0.006933, Figura 52) y las más alejadas se manifiestaron en la configuración geométrica circular (X – 0.006319 / Y – 0.006248, Figura 50).

Figura 49. Derivas inelásticas en X y Y para la configuración geométrica cuadrada

Figura 50. Derivas inelásticas en X y Y para la configuración geométrica circular

Figura 51. Derivas inelásticas en X y Y para la configuración geométrica triangular equilátera

Figura 52. Derivas inelásticas en X y Y para la configuración geométrica hexagonal regular

Las máximas distorsiones de entrepiso en la dirección X se ubicaron en el quinto entrepiso, "N06_Entrepiso 05", y se colocaron en forma decreciente para las configuraciones geométricas: triangular equilátera (0.006773), cuadrada (0.006646), hexagonal regular (0.006580) y circular (0.006319).

Luego, las máximas distorsiones de entrepiso en la dirección Y se ubicaron en el sexto entrepiso, "N07_Entrepiso 06", y se colocaron en forma decreciente para las configuraciones geométricas: hexagonal regular (0.006933), cuadrada (0.006654), triangular equilátera (0.006378) y circular (0.006248).

Adicionalmente, el ordenamiento decreciente de las derivas en el extremo superior del edificio ubicado en el entrepiso "NAz_Entrepiso 10", manteniendo la forma base, para las configuraciones geométricas fue: triangular equilátera, cuadrada, hexagonal regular y circular para la dirección X y hexagonal regular, cuadrada, triangular equilátera y circular para la dirección Y.

4.1.4.9 Rigidez lateral

La estimación de la rigidez lateral global se efectuó a través del índice de distorsión. Según Stafford y Coull, su rango de valores varía entre países y se suele ir de 0.001 a 0.005, con un rango aceptable de 0.0015 a 0.0030 para estructuras convencionales (1), aunque aclaran que no existen guías normativas o valores usualmente adoptados, ejemplificando dichos parámetros en edificios de 100 m o 33 niveles.

Figura 53. Índice de distorsión en condición inelástica

Con lo reportado en la Figura 53, el orden decreciente para la dirección X de ese índice en las configuraciones geométricas fue: cuadrada, triangular equilátera, hexagonal regular y circular, mientras que para la dirección Y fue: hexagonal regular, cuadrada, triangular equilátera y circular.

4.1.4.10 Estabilidad estructural

La estabilidad estructural de cada edificación se estudió para todas las fuerzas que se desarrollaron directamente en ellas, es decir, cargas gravitacionales provenientes del peso sísmico y cargas laterales provenientes del sismo de diseño en condición dinámica, datos con los que se calcularon los

factores de seguridad direccionales provistos. La norma técnica E.030, en su artículo 46, indica que el factor de seguridad al volcamiento mínimo debe ser mayor o igual a 1.2.

Figura 54. Factor de seguridad al volcamiento del edificio

Con lo reportado en la Figura 54, el orden decreciente del factor de seguridad en la dirección X para las configuraciones geométricas fue: triangular equilátera, hexagonal regular, circular y cuadrada, mientras que para la dirección Y fue: circular, hexagonal regular, cuadrada y triangular equilátera.

Un punto importante que acotar es que existió una marcada variación en los factores de seguridad al volcamiento en X y Y en la configuración geométrica triangular equilátera debido a la ubicación de su centro de masas en cada dirección de análisis a partir de su vértice inferior izquierdo. Aproximadamente, hacia la derecha, en X, se posiciona en $\frac{b}{2}$ (50% de "b"), mientras que, hacia arriba, en Y, se posiciona en $\frac{h}{3}$ o su equivalente $\frac{\sqrt{3} \cdot b}{6}$ (28.87% de "b"), siendo b la base y h la altura trazada desde el vértice superior hacia la base.

4.2 Discusión de resultados

El conjunto de datos obtenidos tras la experimentación pudo verse influido por la disposición del sistema de muros estructurales bajo el modelo del sistema tubular mediante pórticos rígidos que se conectan o no con los muros de corte centrales y exteriores colocados en el paso de A a C durante las fases de verificación del cumplimiento normativo de la distorsión máxima permisible de entrepiso. Asimismo, los criterios adoptados para el modelamiento estructural en la definición de los materiales y las cargas, la liberación de momentos y la asignación de brazos rígidos, juegan un papel de vital importancia en la obtención de resultados lo suficientemente conservadores y alineados con las prácticas comunes en la ingeniería.

Por otro lado, tal y como se menciona en el apartado de justificaciones, el estudio bajo cargas por excitación sísmica puede facilitar el entendimiento de los efectos producidos por otro tipo de cargas temporales que también suelen afectar a los edificios altos, por ejemplo, el viento. En ambos tipos de carga la forma de la sección transversal en planta del edificio tiene la mayor relevancia en cuanto a las derivas de entrepiso producidas, los períodos fundamentales y direccionales de vibración alcanzados y el uso de muros de corte para el incremento de la rigidez lateral; además, aspectos de simetría y regularidad geométrica influyen directamente en el comportamiento estructural individual y globalmente, debido a la distribución de las fuerzas actuantes y los esfuerzos desarrollados en cada componente. No obstante, la diferencia fundamental entre ellas radica en su modalidad de acción sobre las estructuras; mientras que la carga de viento se presenta superficialmente, la carga sísmica se sitúa representativamente sobre la masa condensada en el centro de cada diafragma rígido. Por ello, las consideraciones de composición estructural se corresponden con los efectos propios de cada una de ellas.

Con todo lo mencionado, la configuración geométrica triangular resulta en la más afectada por cargas sísmicas y de viento con relación a sus valores de desplazamientos y derivas registrados, mientras que la configuración geométrica circular es la más efectiva en ese mismo criterio de análisis, siendo oportuno mencionar que también lo es en cuanto a la rigidez lateral, a través

del índice de distorsión, y la estabilidad estructural, expresada por el factor de seguridad al volcamiento.

CAPÍTULO V: CONCLUSIONES

- 1. Teniendo en cuenta los resultados del análisis estructural, la configuración geométrica cuadrada permite una mayor reducción del efecto de las cargas sísmicas en edificios altos, debido a que presenta el menor peso sísmico, ya que solo fue necesario incrementar las secciones de las columnas para alcanzar el cumplimiento normativo de la máxima distorsión permisible de entrepiso que se ubica dentro de un rango usual de análisis de edificios; las columnas participan más activamente en la absorción de la fuerza cortante basal que en otros casos, ya que presenta su menor valor en esta configuración y, por tanto, ocasiona menores fuerzas sísmicas; aunque su período fundamental de vibración esté gobernado por un grado de libertad rotacional, su condición estructural es, finalmente, regular en ambas direcciones de análisis con la matriz modal principal más desacoplada de todas; y sus índices de distorsión para la estimación de la rigidez lateral global y sus factores de seguridad al volcamiento para la verificación de la estabilidad estructural son bastante cercanos en magnitud en X y Y, lo que significa que su comportamiento estructural es similar en ambos ejes, conforme con su regularidad direccional.
- Desde la primera etapa de evaluación hasta la última fase de verificación se pudo constatar que la irregularidad estructural más crítica en edificios altos es originada por la configuración geométrica triangular equilátera en virtud

de que el análisis de su condición de regularidad estructural en planta pasó de ser torsionalmente extrema a regular con la inclusión de placas de longitud importante como elementos rigidizadores de control de dicho estado y del exceso de desplazamientos en condición inelástica. Es importante aclarar que, para este estudio, se consideró que la irregularidad en planta por sistemas no paralelos de acuerdo con lo redactado en la norma técnica E.030 resulta ambiguo y de interpretación subjetiva al carecer de especificidad en cuanto a los parámetros de simetría, forma geométrica, conformación de ángulos y absorción efectiva de cortantes de entrepiso.

- 3. El índice de distorsión calculado para el análisis de la rigidez lateral global demuestra que la configuración geométrica circular provee mayor rigidez lateral, debido a que su forma distribuye las cargas y sus consecuentes deformaciones de manera más uniforme en su área transversal, hecho que se ve reflejado al producir las derivas de entrepiso más bajas, en X y Y simultáneamente, en su máximo valor y en el que corresponde al extremo superior del edificio.
- 4. Bajo la consideración de que la estabilidad estructural resulta más efectiva cuando el factor de seguridad al volcamiento del edificio se encuentra más alejado del mínimo exigido a la vez que manifiesta uniformidad direccional a través de la cercanía o similitud de sus valores en cada dirección de análisis, es la configuración geométrica hexagonal regular la de mayor estabilidad estructural, la cual, para su cumplimiento normativo frente al límite máximo de distorsión de entrepiso, ha requerido la inclusión de placas de concreto armado de modo que estas absorban una fracción importante de las cargas sísmicas, verificándose analíticamente que el sistema de muros estructurales se haga naturalmente presente para optimizar su desempeño.
- 5. El incremento del peso sísmico debido a la masa estructural que se añade por cada fase, ocasionando la variación positiva en las dimensiones de los elementos estructurales, no genera períodos de vibración más altos en el entendimiento de que dicho mecanismo lo que busca es acrecentar

naturalmente la rigidez de la estructura, sino que son las cargas externas, vivas o muertas, las que sí lo provocan. Por esa razón, se produce la baja en los valores de los períodos fundamentales y direccionales cuando se pasa de A a C en las fases de verificación.

6. La acumulación del 90% de la masa en los primeros modos sugiere que la estructura es muy flexible, ya que requiere mayor participación de masas para disipar las cargas sísmicas; mientras que si se posiciona en los últimos modos la estructura resulta demasiado rígida por la razón contraria a la anterior expuesta.

REFERENCIAS BIBLIOGRÁFICAS

- STAFFORD SMITH, Bryan y COULL, Alex. *Tall building structures: analysis and design*. 1^a ed. New York: John Wiley & Sons, Inc., 1991. 537 pp. ISBN:0-471-51237-0.
- BBC NEWS MUNDO. Cómo se explica el insólito "boom" inmobiliario en medio de la peor crisis económica de las últimas décadas [en línea]. BBC News Mundo. 8 de septiembre de 2020. [consulta: 21 de febrero de 2021]. Disponible en: https://www.bbc.com/mundo/noticias-54035630.
- Diego Abarca: "El 2021 será de recuperación para el mercado inmobiliario" [en línea]. *La Cámara*. 23 de noviembre de 2020. [consulta: 21 de febrero de 2021]. Disponible en: https://lacamara.pe/diego-abarca-el-2021-sera-derecuperacion-para-el-mercado-inmobiliario/.
- CÁMARA PERUANA DE LA CONSTRUCCIÓN. 45: Informe Económico de la Construcción [en línea]. Lima: CAPECO, septiembre de 2021. Disponible en: http://www.construccioneindustria.com/iec/descarga/IEC45_0921.pdf.
- SAUTER FABIAN, Franz. Regiones sísmicas de la Tierra. En: Introducción a la sismología. 1ª ed. Vol. 1. Cartago: Editorial Tecnológica de Costa Rica, 1989. pp. 15-17. ISBN:9977-66-038-7.
- 6. MINISTERIO DE VIVIENDA, CONSTRUCCIÓN Y VIVIENDA. Norma E.030 Diseño Sismorresistente. Lima: MVCS, 2018.
- SÁNCHEZ BADILLO, Alberto y TERÁN GILMORE, Amador. Diseño por desempeño de estructuras dúctiles de concreto reforzado ubicadas en la zona del lago del Distrito Federal: Ejemplo de aplicación. *Ingeniería Sísmica* [en línea]. Junio, 2008. no. 78. pp. 47-71 [consulta: 19 de febrero de 2021]. ISSN: 0185-092X. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-092X2008000100003&nrm=iso.

- JOSE, Ragy, MATHEW, Restina, DEVAN, Sandra, VENU, Sankeerthana y Y S, Mohith.Analysis and design of commercial building using ETABS. *International Research Journal of Engineering and Technology* [en línea]. Junio, 2017. Vol. 4 no. 6. pp. 625-630 [consulta: 20 de febrero de 2021]. ISSN: 2395-0056. Disponible en: https://www.irjet.net/archives/V4/i6/IRJET-V4I6114.pdf.
- AWIDA, Tarek. Impact of building plan geometry on the wind response of concrete tall buildings. En: *Modern methods and advances in structural engineering and construction*. Zúrich, Enero 2018. pp. 781-786. ISBN: 978-981-08-7920-4. DOI: 10.3850/978-981-08-7920-4_S2-S59-cd.
- EDE, Anthony Nkem y UDOH, Edidiong Godwin. Modelling, analysis and design of a bottle-shaped building. *Civil and Environmental Research* [en línea]. Enero, 2015. Vol. 7 no. 5. pp. 114-121 [consulta: 20 de febrero de 2021]. ISSN: 2225-0514. Disponible en: https://www.iiste.org/Journals/index.php/CER/article/view/20478/20897.
- AL-AZRI, Nasra, KUCKIAN, Sachin y GAUR, Himanshu. Reducing the impact of wind load with shape of high rise buildings. *Journal of Student Research* [en línea]. Noviembre, 2020. pp. 1-12 [consulta: 15 de febrero de 2021]. ISSN: 2167-1907. DOI: 10.47611/jsr.vi.933.
- GUTIÉRREZ, Arnaldo. Nº 12: métodos de análisis sísmico (I): el método estático equivalente. *Construcción en Acero* [en línea]. 10 de marzo de 2015. [consulta: 7 de marzo de 2021]. Disponible en: http://www.construccionenacero.com/blog/ndeg-12-metodos-de-analisissismico-i-el-metodo-estatico-equivalente.
- GUTIÉRREZ, Arnaldo. Nº 13: métodos de análisis sísmico (II): el método de análisis dinámico modal. *Construcción en Acero* [en línea]. 1 de mayo de 2015. [consulta: 7 de marzo de 2021]. Disponible en: http://www.construccionenacero.com/blog/ndeg-13-metodos-de-analisissismico-ii-el-metodo-de-analisis-dinamico-modal.

- COUNCIL ON TALL BUILDINGS AND URBAN HABITAT Committee 3. Structural systems for tall buildings. 1^a ed. Singapur: McGraw-Hill Education, 1995. 422 pp. ISBN: 0-07-012541-4.
- TARANATH, Bungale S. Vertical lateral-load-resisting systems. En: *Tall building design: steel, concrete, and composite systems*. 1^a ed. Boca Raton, Florida: Taylor & Francis Group, 2017. pp. 92-95. ISBN: 978-1-4665-5620-1.
- ALI, Mir y MOON, Kyoung. Structural developments in tall buildings: current trends and future prospects. *Architectural Science Review*. Septiembre, 2007. Vol. 50 no.3. pp. 205-223. [consulta: 13 de marzo de 2021]. ISBN: 0003-8628. DOI:10.3763/asre.2007.5027.
- HENOCH INOSTROZA, Ricardo Arturo. Calificación sísmica de edificios altos [en línea]. Tesis (Título de Ingeniero Civil). Santiago: Universidad de Chile - Facultad de Ciencias Físicas y Matemáticas, 2007. 139 pp. [consulta: marzo de 2021]. Disponible en: https://repositorio.uchile.cl/handle/2250/104800.
- CHOPRA, Anil K. Sistemas de un grado de libertad y Relación fuerzadesplazamiento. En: *Dinámica de estructuras*. 4ª ed. México: Pearson Educación, 2014. pp. 7-8. ISBN: 978-607-32-2239-6.
- AMERICAN SOCIETY OF CIVIL ENGINEERS. Minimum design loads and associated criteria for buildings and other structures. 1^a ed. Reston, Virginia: ASCE, 2017. 834 pp. ISBN: 978-0-7844-1424-8.
- HASSOUN, M. Nadim y AL-MANASEER, Akthem. Lateral deformation of the structure. En: *Structural concrete: theory and design*. 4^a ed. Hoboken, New Jersey: John Wiley & Sons, Inc., 2008. pp. 781-783. ISBN: 978-0-470-17094-6.

- FRAU, Carlos, TORNERLLO, Miguel y PANELLA, Sebastián. Consideración de los pulsos de velocidad en el diseño de estructuras con aislamientos sísmico de base. *Alternativas*. 2016. Vol. 17 no. 3. pp. 94-100. [consulta: 13 de marzo de 2021]. ISSN: 1390-1915. DOI: 10.23878/alternativas.v17i3.218.
- WAKABAYASHI, Minoru y MARTÍNEZ ROMERO, Enrique. Momento de volteo. En: *Diseño de estructuras sismorresistentes*. 1^a ed. México: McGraw-Hill, 1988. pp. 225-226.
- BAZÁN, Enrique y MELI, Roberto. Momentos de volteo. En: *Diseño sísmico de edificios*. 1ª ed. México: Editorial Limusa, ca. 1998. pp. 232-233.
- 24. GÓMEZ MARTÍNEZ, Miguel Ángel. Diseño estructural de edificios altos tipo torre empleando concreto de alta resistencia [en línea]. Tesis (Título de Ingeniero Civil). México D.F.: Universidad Nacional Autónoma de México Facultad de Ingeniería, 2012. 187 pp. [consulta: marzo de 2021]. Disponible en: http://132.248.52.100:8080/xmlui/handle/132.248.52.100/474.
- SAN BARTOLOMÉ, Ángel. Análisis de edificios. 1ª ed. Lima: Fondo Editorial PUCP, 1998. 319 pp. ISBN: 9972-42-112-0.
- 26. ESCORCIA OYOLA, Olavo. Metodología. En: Manual para la investigación. Guía para la formulación, desarrollo y divulgación de proyectos. 1ª ed. Bogotá, D.C.: Universidad Nacional de Colombia - Facultad de Artes, 2010. p. 35.
- CHENET ZUTA, Manuel Enrique y OSEDA GAGO, Dulio. Métodos y técnicas de investigación científica. 1ª ed. Huancayo: Editorial Pirámide, 2012. 134 pp.
- 28. HERNÁNDEZ, Roberto, FERNÁNDEZ, Carlos y BAPTISTA, Pilar. Concepción o elección del diseño de investigación. En: *Metodología de la*

investigación. 5^a ed. México D.F.: McGraw-Hill, 2010. p. 120. ISBN: 978-607-15-0291-9.

- 29. SABINO, Carlos. En: *El proceso de investigación*. [ed.] Caracas: Editorial Panapo, 1992. p. 97.
- 30. MINISTERIO DE VIVIENDA, CONSTRUCCIÓN Y VIVIENDA. Norma E.060 Concreto Armado. Lima: MVCS, 2009.
- AMERICAN CONCRETE INSTITUTE Committee 318. Building code requirements for structural concrete. 1^a ed. Farmington Hills, Michigan: ACI, 2019. 623 pp. ISBN: 978-1-64195-056-5.
- BLANCO BLASCO, Antonio. Estructuración y diseño de edificaciones de concreto armado. 1ª ed. Lima: CIP - Capítulo de Ingeniería Civil - Consejo Departamental de Lima, 1994. 308 pp.
- 33. VÍDEO 7: PREDIMENSIONAMIENTO DE ELEMENTOS ESTRUCTURALES [YouTube]. Trujillo: Villarreal Castro, Genner (20 de abril de 2015) [consulta: 20 de junio de 2021]. Disponible en: https://www.youtube.com/watch?v=NRf13aCxhGY.
- MORALES MORALES, Roberto. *Diseño en concreto armado*. 3ª ed. Lima: Fondo Editorial ICG, 2006. 331 pp.
- FERNANDEZ CHEA, Carlos Antonio. Escaleras apoyadas longitudinalmente. En: Análisis y diseño de escaleras. 1ª ed. Lima: Editorial Ciencias, 2000. p. 12.
- NEWMARK, Natham y HALL, William. Damping and ductility. En: Earthquake spectra and design. 1^a ed. Vol. 3. Berkeley, California: Earthquake Engineering Research Institute, 1982. pp. 53-57. ISBN: 0-943198-22-4.

- 37. MINISTERIO DE VIVIENDA, CONSTRUCCIÓN Y VIVIENDA. Norma *E.020 Cargas.* Lima: MVCS, 2006.
- OTTAZZI PASINO, Gianfranco. Adherencia y anclaje del refuerzo. En: Apuntes del curso concreto armado I. 1^a ed. Lima: PUCP - Facultad de Ciencias e Ingeniería, 2016. pp. 487-496.
- COMPUTERS & STRUCTURES, INC. CSI Analysis reference manual for SAP 2000[®], ETABS[®], SAFE[®] and CSiBridge[®]. 15^a rev. Berkeley, California: CSi, 2016. 534 pp.

ANEXOS

Anexo 1: Matriz de consistencia

FORMULACIÓN DEL PROBLEMA	FORMULACIÓN DEL OBJETIVO	FORMULACIÓN DE LA HIPÓTESIS	VARIABLES	DIMENSIONES	INDICADORES	METODOLOGÍA
				Forma	Número de lados	ENFOQUE Cuantitativo
PROBLEMA GENERAL ¿Qué configuración	OBJETIVO GENERAL Determinar la configuración	HIPÓTESIS GENERAL La configuración	HIPÓTESIS GENERAL a configuración métrica cuadrada ermite la mayor VARIABLE INDEPENDIENTE Configuración	geométrica en planta	Regularidad geométrica	Aplicada ALCANCES Exploratorio, descriptivo v correlacional
geométrica en planta permite una	geométrica en planta que permite	geométrica cuadrada permite la mayor			Área de construcción	MÉTODO Analítico
mayor reducción del efecto de las	ayor reducción una mayor reducción del efecto geométrica e el efecto de las reducción del efecto de las cargas planta	geométrica en planta	Diantaamianta	Categoría y uso de la edificación	DISEÑO Diseño cuasiexperimental de series cronológicas	
edificios altos?	de las cargas sísmicas en edificios altos.	sísmicas en edificios altos.	arquitectónico	Altura total del edificio		
					Distribución de ambientes	grupo POBLACIÓN
PROBLEMAS ESPECÍFICOS	PROBLEMAS ESPECÍFICOS ,Qué configuración geométrica en planta origina la irregularidad estructural más crítica en edificios altos?OBJETIVOS ESPECÍFICOS La configuración geométrica en planta que origina la irregularidad estructural másHIPÓTESIS ESPECÍFICAS La configuración geométrica triangular origina la irregularidad estructural más			Zona sísmica	posibles configuraciones geométricas en planta	
¿Qué configuración geométrica en planta origina la irregularidad estructural más crítica en edificios altos?		La configuracion geométrica triangular origina la irregularidad	VARIABLE DEPENDIENTE	Configuración	Perfil de suelo	adoptadas en el planteamiento
		Cargas sísmicas en edificios altos	estructural	Sistema estructural	concepción estructural de edificios altos. MUESTRA	

¿Qué configuración geométrica en planta provee mayor rigidez lateral a los edificios altos?	crítica en edificios altos.La configuración geométrica en planta provee nayor rigidez lateral a los dificios altos?Establecer la configuración geométrica en planta que provee mayor rigidez lateral a los edificios altos.La configuración geométrica circular provee mayor rigidez lateral debido a que su forma distribuye 		Dimensiones de elementos estructurales Distribución de elementos no estructurales	Representativa dentro del marco de las configuraciones geométricas en planta regulares y simples: cuadrado, círculo, triángulo (equilátero) y hexágono (regular), bajo una serie de lineamientos referidos a	
		deformaciones de manera más uniforme en su área transversal.		idealización estructural	características arquitectónicas y estructurales comunes a todas ellas.
	Deserves al sistema			Iorsion	
¿Cuál es el sistema estructural óptimo para la configuración geométrica en planta de mayor estabilidad estructural?	estructural óptimo para la configuración geométrica en planta de mayor estabilidad estructural.	estructurales optimiza el desempeño de la configuración geométrica de mayor estabilidad estructural debido a su capacidad de absorción de una fracción importante de cargas laterales.	Irregularidad estructural en planta	Esquinas entrantes	
				Discontinuidad del diafragma	
				Sistemas no paralelos	

PATRÓN DE			ELEMEN	NTO ESTRUCTURAL			
CARGA	LOSAS	6 MACIZAS		ESCALERA	S	VIGAS	
	etabique (n	ו)	0.15	γ _{concreto} (kgf/m ³)	2400		
PATRÓN DE CARGA ELEMENTO ESTRUCTURAL PATRÓN DE CARGA LOSAS MACIZAS ESCALERAS VIGAS Jensbique (m) 0.15 Yeoncreto (kgf/m ³) 2400 Yindritio (kgf/m ³) 1350 Loontrapaso (m) 0.18 DATOS hentrepiso (m) 3.20 Lpaso (m) 0.15 Becsa (m) 0.15 tgargartis (m) 0.15 DATOS Carga repartida (m) 1.525 hdescanso_02 (m) 0.15 Carga repartida de tabiques (kgf/m ²) (CR máx., con altura de tabique medio) 617.625 Tramo inclinado (kgf/m ²) 659.6041 Carga equivalente de tabiques (kgf/m ²) (CE mín.) 150 Tramo inclinado (kgf/m ²) 659.6041 Interiores (kgf/m ²) (100% CE prom.) 210 Tramo descanso (kgf/m ²) 360 Volados (kgf/m ²) (100% CE mín.) 150 Tramo descanso (kgf/m ²) 360 SCM Acabados (kgf/m ²) 100 Acabados (kgf/m ²) 100 Para todas las vi (kgf/m)							
DATOS	PATRÓN DE CARGA ELEMENTO ESTRUCTURAL Image: colspan="2">LOSAS MACIZAS ESCALERAS VIGAS Image: colspan="2">Image: colspan="2">VIGAS Image: colspan="2">VIGAS Image: colspan="2">Image: colspan="2">VIGAS Image: colspan="2" I	b. (m)	0.25				
PATRÓN DE CARGA ELEMENTO ESTRUCTURAL LOSAS MACIZAS ESCALERAS etablique (m) 0.15 Yconcreto (kgf/m ³) 2400 Ytadrillo (kgf/m ³) 1350 Lcontrapaso (m) 0.18 DATOS hentrepiso (m) 3.20 Lpaso (m) 0.25 Blosa (m) 0.15 tgarganta (m) 0.15 DATOS elosa (m) 0.15 tgarganta (m) 0.15 Natos hentrepiso (m) 1.525 hdescanso_01 (m) 0.15 Carga repartida de tabiques (kgf/m) (CR máx., con altura de tabique total) 617.625 tabique total) 659.6041 Carga equivalente de tabiques (kgf/m2) (CE máx.) 270 Tramo inclinado (kgf/m ²) 659.6041 Interiores (kgf/m2) (100% CE máx.) 210 Tramo descanso (kgf/m ²) 360 Volados (kgf/m ²) (100% CE máx.) 30 Tramo descanso (kgf/m ²) 360 SCM Acabados (kgf/m ²) 100 Acabados (kgf/m ²) 100 Par	e _{losa} (m))	0.15	t _{garganta} (m)	0.15	Dviga (111)	0.25
	htabique_medio	(m)	1.525	h _{descanso_02} (m)	0.15	VIGAS bviga (m) Para todas las vigas (kgf/m)	
	Carga repartida de	(CR máx., con altura de tabique total)	617.625				
	tabiques (kgf/m)	(CR mín., con altura de tabique medio)	308.8125	Tramo inclinado (kgf/m²)	659.6041		
	$PP \qquad \begin{array}{c c c c c c c c c c c c c c c c c c c $						
PP	tabiques (kgf/m ²)	(CE mín.)	150	Electric Lorito Contract ESCALERAS VIGAS 0.15 Yconcreto (kgf/m ³) 2400 1350 Lcontrapaso (m) 0.18 3.20 Lpaso (m) 0.25 0.15 tgarganta (m) 0.15 3.05 hdescanso_01 (m) 0.15 1.525 hdescanso_02 (m) 0.15 617.625 Tramo inclinado (kgf/m ²) 659.6041 270 Tramo descanso 360 210 Tramo descanso 360 210 Tramo descanso 360 150 Acabados (kgf/m ²) 100 20 Acabados (kgf/m ²) 100			
		(CE prom.)	210				
	Interiores (kgf/m ²)	(100% CE prom.)	210	Tramo descanso			
	Volados (kgf/m ²)	(~ 10% CE máx.)	30	(kgf/m²)	360		
	Corredores (kgf/m ²)	(100% CE mín.)	150				
	Acabados (k	gf/m²)	100				
SCM	$ \begin{tabular}{ c $	Para todas las vigas (kgf/m)	25				

Anexo 2: Metrado de cargas de asignación

CVa	Interiores, volados y azotea (kgf/m²)	200	Escaleras (kgf/m²)	250	Vigas en interiores, volados y azotea (kgf/m)	50
	Corredores (kgf/m ²)	250			Vigas en corredores (kgf/m)	62.5
CVt	Techo y/o cubierta (kgf/m²)	100			Vigas en techo y/o cubierta (kgf/m)	25

Anexo 3: Longitud de anclaje o desarrollo de barras corrugadas según la norma técnica E.060

I. Datos generales

i. Materiales

- Peso específico del concreto de peso normal:

$$\gamma_{concreto_normal} = 2400 \ \frac{kgf}{m^3}$$

- Resistencia a la compresión especificada del concreto a los 28 días:

$$f'_c = 280 \frac{kgf}{cm^2}$$

 La raíz cuadrada de la resistencia a la compresión especificada del concreto tiene un límite máximo:

$$if \sqrt{f_c \cdot \frac{cm^2}{kgf}} \cdot \frac{kgf}{cm^2} \le 26.5 \frac{kgf}{cm^2} = "Si"$$

$$\| "Si" else \\ \| "No"$$

- Esfuerzo de fluencia del acero corrugado de refuerzo:

$$f_y = 4200 \ \frac{\text{kgf}}{\text{cm}^2}$$

ii. Factores de modificación de Ld

- Observación: El producto Ψ_t . Ψ_e debe ser 1.7 como máximo.
- a) Por ubicación (Ψ_t)

 $\Psi_{t_{-}i} = 1.3$ Barras superiores (tienen ≥ 30 cm de concreto fresco debajo de ellas)

$$\Psi_{t_ii}$$
 = 1.0 Otras barras

b) Por tratamiento superficial (Ψ_e)

$$\begin{split} \Psi_{e_i} = 1.5 & \qquad \text{Barras con tratamiento superficial} \\ \Psi_{e_i} = 1.5 & \qquad \text{epóxico o zinc (o ambos a la vez) y cuyo} \\ \text{recubrimiento sea menor que 3db o cuyo} \\ \text{espaciamiento libre sea menor que 6db} \\ \text{Barras con tratamiento superficial} \\ \Psi_{e_ii} = 1.2 & \qquad \text{epóxico o zinc (o ambos a la vez) en} \\ \text{todas las demás condiciones} \end{split}$$

 $\Psi_{e_iii} = 1.0$ Barras sin tratamiento superficial o con solo zinc

c) Por diámetro de la barra (Ψ_s)

 $\Psi_{s_{2}i} = 0.8$ Barras de diámetro $\leq 3/4$ "

 $\Psi_{t_{-}ii} = 1.0$ Barras de diámetro ≥ 1 "

d) Por peso específico del concreto (λ)

$$\lambda_i = 1.3$$
 Concreto de peso liviano

 $\lambda_{ii} = 1.0$ Concreto de peso normal

iii. Condicionales de asignación

...

- Sobre la ubicación de la barra de refuerzo:

$$\begin{split} \boldsymbol{\Psi}_{t} &\coloneqq \left| \begin{array}{c} \text{if } Ubicación = \text{``Superior''} \\ \left\| \boldsymbol{\Psi}_{t} \leftarrow \boldsymbol{\Psi}_{t_i} \\ \text{if } Ubicación = \text{``Inferior''} \\ \left\| \boldsymbol{\Psi}_{t} \leftarrow \boldsymbol{\Psi}_{t_ii} \end{array} \right| \end{split} \end{split}$$

- Sobre el caso de tratamiento de la barra de refuerzo:

- Sobre el tipo de concreto:

$$\lambda := \left\| \begin{array}{c} \text{if } Tipo_{concreto} = \text{``Liviano''} \\ \left\| \begin{array}{c} \lambda \leftarrow \lambda_i \\ \text{if } Tipo_{concreto} = \text{``Normal''} \\ \left\| \begin{array}{c} \lambda \leftarrow \lambda_{ii} \end{array} \right\| \\ \end{array} \right\|$$

II. Longitud de anclaje de barras corrugadas a tracción

- Condición I: espaciamiento libre entre barras que están siendo desarrolladas o empalmadas por traslapo ≥ db, con recubrimiento libre ≥ db y estribos mínimos a lo largo de la longitud de desarrollo.
- Condición II: espaciamiento libre entre barras que están siendo desarrolladas o empalmadas por traslapo ≥ 2 db y con recubrimiento
libre ≥ db, además, puede ir sin estribos o con mínimos a lo largo de la longitud de estribos que no necesariamente cumplen con el mínimo.

- Observación:
- Constructivamente se contemplan recubrimientos mínimos que garantizan la condición I o II.
- Siempre se consideran las posiciones de barras: superior e inferior.
- El acero de refuerzo usual tiene **4200** $\frac{\text{kgf}}{\text{cm}^2}$ como esfuerzo de fluencia.
- En la mayoría de los casos no se utiliza tratamiento superficial en las barras.
- El concreto típico utilizado es el concreto de peso normal.

$$\begin{split} & \textit{Caso}_{\textit{tratamiento}} = \texttt{"Caso iii"} \\ & \textit{Tipo}_{\textit{concreto}} = \texttt{"Normal"} \\ & \textit{Ubicación} = \texttt{"Superior"} \\ & \text{Si: db} = \begin{bmatrix} 1/2 \\ 5/8 \\ 3/4 \end{bmatrix} \text{in; entonces: } L_d = \frac{f_y \cdot \Psi_t \cdot \Psi_e \cdot \lambda}{8.2 \cdot \sqrt{f_c} \cdot \frac{\text{cm}^2}{\text{kgf}} \cdot \frac{\text{kgf}}{\text{cm}^2}} \cdot \text{db} = \begin{bmatrix} 0.505 \\ 0.632 \\ 0.758 \end{bmatrix} \text{m.} \\ & \text{Si: db} = [1] \text{ in; entonces: } L_d = \frac{f_y \cdot \Psi_t \cdot \Psi_e \cdot \lambda}{6.6 \cdot \sqrt{f_c} \cdot \frac{\text{cm}^2}{\text{kgf}} \cdot \frac{\text{kgf}}{\text{cm}^2}} \cdot \text{db} = [1.256] \text{ m.} \end{split}$$

Además: $L_{d_{mín.}}$ = 0.30 m.

 $\begin{aligned} & \textit{Ubicación} = \textit{"Inferior"} \\ & \text{Si: db} = \begin{bmatrix} 1/2 \\ 5/8 \\ 3/4 \end{bmatrix} \textit{in; entonces: } L_d = \frac{f_y \cdot \Psi_t \cdot \Psi_e \cdot \lambda}{8.2 \cdot \sqrt{f_c} \cdot \frac{cm^2}{kgf} \cdot \frac{kgf}{cm^2}} \cdot db = \begin{bmatrix} 0.389 \\ 0.486 \\ 0.583 \end{bmatrix} \textit{m.} \\ & \text{Si: db} = [1] \textit{in; entonces: } L_d = \frac{f_y \cdot \Psi_t \cdot \Psi_e \cdot \lambda}{6.6 \cdot \sqrt{f_c} \cdot \frac{cm^2}{kgf} \cdot \frac{kgf}{cm^2}} \cdot db = [0.966] \textit{m.} \end{aligned}$

Además: $L_{d_{mín}}$ = 0.30 m.

III. Longitud de anclaje de barras corrugadas a compresión

 El valor de Ldc para barras a compresión se toma como el mayor valor entre:

Si:
$$db = \begin{bmatrix} 1/2 \\ 5/8 \\ 3/4 \\ 1 \end{bmatrix}$$
 in; entonces: $L_{dc_i} = 0.075 \cdot \frac{f_y}{\sqrt{f_c \cdot \frac{cm^2}{kgf} \cdot \frac{kgf}{cm^2}}}$. $db = \begin{bmatrix} 0.239 \\ 0.299 \\ 0.359 \\ 0.478 \end{bmatrix}$ m
 $y L_{dc_i} = 0.0044 \cdot f_y \cdot \frac{kgf}{cm^2}$. $db = \begin{bmatrix} 0.235 \\ 0.293 \\ 0.352 \\ 0.469 \end{bmatrix}$ m.

Además: $L_{dc_min.}$ = 0.20 m.

IV. Longitud de anclaje de ganchos estándar a tracción únicamente

- Debido a: Tipo_{concreto} = "Normal", entonces: Ψ_e = 1 y λ = 1. Además, el valor de Ldg para ganchos estándar se toma como el mayor valor entre:

Si: db =
$$\begin{bmatrix} 1/2 \\ 5/8 \\ 3/4 \\ 1 \end{bmatrix}$$
 in; entonces: $L_{d_min_ii} = 08 \cdot db = \begin{bmatrix} 0.102 \\ 0.127 \\ 0.152 \\ 0.203 \end{bmatrix}$ m,

además, $L_{dg_{min.i}} = 0.15 \text{ m}.$

En general:
$$L_{dg} = 0.075 \cdot \Psi_{e} \cdot \lambda \cdot \frac{f_{y}}{\sqrt{f_{c} \cdot \frac{cm^{2}}{kgf} \cdot \frac{kgf}{cm^{2}}}} \cdot db = \begin{bmatrix} 0.239\\ 0.299\\ 0.359\\ 0.478 \end{bmatrix} m.$$

CONFIGURACIÓN GEOMÉTRICA		CUADRADO										
NOMBRE DE ARCHIVO			CuS2		Cu	S2F						
ETAPA DE EVALUACIÓN		1	:	2		3						
FASE DE VERIFICACIÓN						4	В	(С			
DIRECCIÓN DE ANÁLISIS	x	Y	X Y		х	Y						
CONDICIÓN DE REGULARIDAD	Regu- lar	Regu- lar	Irregular	Regular	Regular	Regular						
GRADO DE IRREGULARIDAD			Simple									
MÁXIMA DISTORSIÓN DE ENTREPISO			0.00807	0.00727	0.00665	0.00665						
ENTREPISO DE UBICACIÓN			N07_Entrepiso 06	N07_Entrepiso 06	N06_Entrepiso 05	N07_Entrepiso 06						
DISTORSIÓN LÍMITE			No cumple	No cumple	Cumple	Cumple						
PESO SÍSMICO (tonf)			4149	.6008	4296	.8270						
PERÍODO FUNDAMENTAL DE VIBRACIÓN			1.2	226	1.0)77						
PERÍODO DE VIBRACIÓN DIRECCIONAL			0.820	0.854	0.780	0.812						
MODO DE UBICACIÓN			3	2	3	2						
MASA PARTICIPATIVA ALCANZADA			0.6243 0.6703		0.6102	0.6753						

Anexo 4: Hojas de resumen por configuración geométrica

MODO CON MASA PARTICIPATIVA AL 90% MÍNIMO NORMATIVO			10	11	9	10		
Ro	8	8	6	6	6	6		
la	1	1	1	1	1	1		
l _p	1	1	0.75	1	1	1		
$\mathbf{R} = \mathbf{R}_{\mathbf{O}} \mathbf{x} \mathbf{I}_{\mathbf{a}} \mathbf{x} \mathbf{I}_{\mathbf{p}}$	8	8	4.5	6	6	6		
F.E. PARA SISMO DINÁMICO	0.4934	0.4934	0.8772	0.6579	0.6579	0.6579		
F.E. PARA DESPLAZAMIENTOS Y DERIVAS EN CONDICIÓN INELÁSTICA	2.9604	2.9604	3.3551	2.9604	2.9604	2.9604		
F.E. PARA CORTANTE DE DISEÑO			1.3429	1.1133	1.2166	1.1180		
ÍNDICE DE DISTORSIÓN			0.00682	0.00601	0.00554	0.00548		
F.S. DE ESTABILIDAD ESTRUCTURAL			3.078	4.822	4.372	4.564		

CONFIGURA-CIÓN GEOMÉTRICA		CÍRCULO										
NOMBRE DE ARCHIVO			CiS2		Cis	S2F	CiS	2FF				
ETAPA DE EVALUACIÓN	1		2	2			3					
FASE DE VERIFICACIÓN						Ą	В		С			
DIRECCIÓN DE ANÁLISIS	X Y		Х	Y	Х	Y	Х	Y				
CONDICIÓN DE REGULARIDAD	Regu- lar	Regu- lar	Irregular	Regular	Irregular	Regular	Regular	Regular				
GRADO DE IRREGULARIDAD			Simple		Simple							
MÁXIMA DISTORSIÓN DE ENTREPISO			0.00904	0.00798	0.00854	0.00745	0.00632	0.00625				
ENTREPISO DE UBICACIÓN			N06_Entrepi-so 05	N07_Entrepi-so 06	N06_Entrepi-so 05	N06_Entrepi-so 05	N06_Entrepi-so 05	N07_Entrepi-so 06				
DISTORSIÓN LÍMITE			No cumple	No cumple	No cumple	No cumple	Cumple	Cumple				
PESO SÍSMICO (tonf)			4153	.5948	4300.5579		4342.6172					
PERÍODO FUNDAMENTAL DE VIBRACIÓN			1.2	251	1.131		0.896					
PERÍODO DE VIBRACIÓN DIRECCIONAL			0.822	0.856	0.789	0.819	0.737	0.806				
MODO DE UBICACIÓN			3	2	3	2	3	2				
MASA PARTICIPATIVA ALCANZADA			0.6171	0.6664	0.6068	0.6664	0.4388	0.5474				

MODO CON MASA PARTICIPATIVA AL 90% MÍNIMO NORMATIVO			10	11	9	10	9	8	
Ro	8	8	6	6	6	6	6	6	
la	1	1	1	1	1	1	1	1	
l _p	1	1	0.75	1	0.75	1	1	1	
$\mathbf{R} = \mathbf{R}_{\mathbf{O}} \mathbf{x} \mathbf{I}_{\mathbf{a}} \mathbf{x} \mathbf{I}_{\mathbf{p}}$	8	8	4.5	6	4.5	6	6	6	
F.E. PARA SISMO DINÁMICO	0.49- 34	0.49- 34	0.8772	0.6579	0.8772	0.6579	0.6579	0.6579	
F.E. PARA DESPLAZAMIEN- TOS Y DERIVAS EN CONDICIÓN INELÁSTICA	2.96- 04	2.96- 04	3.3551	2.9604	3.3551	2.9604	2.9604	2.9604	
F.E. PARA CORTANTE DE DISEÑO			1.3454	1.1177	1.3611	1.1239	1.3877	1.2085	
ÍNDICE DE DISTORSIÓN			0.00761	0.00661	0.00711	0.00613	0.00512	0.00508	
F.S. DE ESTABILIDAD ESTRUCTURAL			3.489	5.462	3.334	5.205	4.681	5.134	

CONFIGURA- CIÓN GEOMÉTRICA		TRIÁNGULO EQUILÁTERO												
NOMBRE DE ARCHIVO			TrS2		TrS	S2F	TrS	2FF	TrS2	PFF				
ETAPA DE EVALUACIÓN		1	:	2			:	3	-					
FASE DE VERIFICA-CIÓN					A		I	3	С					
DIRECCIÓN DE ANÁLISIS	х	Y	Х	X Y		Y	Х	Y	Х	Y				
CONDICIÓN DE REGULARI-DAD	Re- gular	Re- gular	Irregular	Irregular	Irregular	Irregular	Irregular	Regular	Regular	Regular				
GRADO DE IRREGULA- RIDAD			Extrema	Simple	Simple	Simple	Simple							
MÁXIMA DISTORSIÓN DE ENTREPISO			0.01135	0.01065	0.01065	0.00989	0.00888	0.00704	0.00677	0.00638				
ENTREPISO DE UBICACIÓN			N06_Entre- piso 05	N06_Entre- piso 06										
DISTORSIÓN LÍMITE			No cumple	Cumple	Cumple									
PESO SÍSMICO (tonf)			4424	.8892	4600	.7319	4774	.1821	4786	.9475				
PERÍODO FUNDAMEN- TAL DE VIBRACIÓN			1.290		1.1	77	0.8	333	0.7	72				
PERÍODO DE VIBRACIÓN DIRECCIO-NAL			0.811 0.846		0.772	0.802	0.703	0.733	0.689	0.722				
MODO DE UBICACIÓN			3	2	3	2	3	2	3	2				

MASA PARTICIPA- TIVA ALCANZADA			0.6555	0.6739	0.6633	0.6793	0.5780	0.6489	0.6287	0.5298
MODO CON MASA PARTI- CIPATIVA AL 90% MÍNIMO NORMATIVO			10	11	9	10	8	9	9	8
Ro	8	8	6	6	6	6	6	6	6	6
la	1	1	1	1	1	1	1	1	1	1
l _p	1	1	0.60	0.75	0.75	0.75	0.75	1	1	1
$\mathbf{R} = \mathbf{R}_{\mathbf{O}} \times \mathbf{I}_{\mathbf{a}} \times \mathbf{I}_{\mathbf{p}}$	8	8	3.6	4.5	4.5	4.5	4.5	6	0	0
F.E. PARA SISMO DINÁMICO	0.49- 34	0.49- 34	1.0964	0.8772	0.8772	0.8772	0.8772	0.6579	0.6579	0.6579
F.E. PARA DESPLAZA- MIENTOS Y DERIVAS EN CONDICIÓN INELÁSTICA	2.96- 04	2.96- 04	3.3551	3.3551	3.3551	3.3551	3.3551	2.9604	2.9604	2.9604
F.E. PARA CORTANTE DE DISEÑO			1.2930	1.2377	1.2881	1.2420	1.3974	1.1474	1.1656	1.1794
ÍNDICE DE DISTORSIÓN			0.00948	0.00877	0.00948	0.00877	0.00716	0.00572	0.00552	0.00518
F.S. DE ESTABILIDAD ESTRUCTU- RAL			3.720	2.804	4.407	2.649	3.993	3.597	5.857	3.504

CONFIGURA-CIÓN GEOMÉTRICA		HEXÁGONO REGULAR										
NOMBRE DE ARCHIVO			HeS2		He	S2F	HeS	2FF				
ETAPA DE EVALUACIÓN		1		2			3					
FASE DE VERIFICACIÓN						A		3	С			
DIRECCIÓN DE ANÁLISIS	X Y		Х	Y	Х	Y	Х	Y				
CONDICIÓN DE REGULARIDAD	Regu- lar	Regu- lar	Irregular	Irregular	Irregular	Regular	Regular	Regular				
GRADO DE IRREGULARIDAD			Simple	Simple	Simple							
MÁXIMA DISTORSIÓN DE ENTREPISO			0.00881	0.00967	0.00836	0.00797	0.00658	0.00693				
ENTREPISO DE UBICACIÓN			N06_Entrepiso 05	N06_Entrepiso 05	N06_Entrepiso 05	N06_Entrepiso 05	N06_Entrepiso 05	N07_Entrepiso 06				
DISTORSIÓN LÍMITE			No cumple	No cumple	No cumple	No cumple	Cumple	Cumple				
PESO SÍSMICO (tonf)			4190	.1355	4329.6099		4389	.6306				
PERÍODO FUNDAMENTAL DE VIBRACIÓN			1.2	291	1.173		0.942					
PERÍODO DE VIBRACIÓN		0.824		0.849	0.791	0.809	0.761	0.790				
MODO DE UBICACIÓN			3	2	3	2	3	2				
MASA PARTICIPATIVA ALCANZADA			0.6230	0.6714	0.6216	0.6750	0.4429	0.6146				

MODO CON MASA PARTICIPATIVA AL 90% MÍNIMO NORMATIVO			10	11	9	11	8	9	
Ro	8	8	6	6	6	6	6	6	
la	1	1	1	1	1	1	1	1	
l _p	1	1	0.75	0.75	0.75	1	1	1	
$\mathbf{R} = \mathbf{R}_{0} \times \mathbf{I}_{\mathbf{a}} \times \mathbf{I}_{\mathbf{p}}$	8	8	4.5	4.5	4.5	6	6	6	
F.E. PARA SISMO DINÁMICO	0.49- 34	0.49- 34	0.8772	0.8772	0.8772	0.6579	0.6579	0.6579	
F.E. PARA DESPLAZA- MIENTOS Y DERIVAS EN CONDICIÓN INELÁSTICA	2.96- 04	2.96- 04	3.3551	3.3551	3.3551	2.9604	2.9604	2.9604	
F.E. PARA CORTANTE DE DISEÑO			1.33	1.2493	1.3368	1.1145	1.3499	1.1547	
ÍNDICE DE DISTORSIÓN			0.00742	0.00799	0.00694	0.0065	0.00534	0.00564	
F.S. DE ESTABILIDAD ESTRUCTURAL			3.855	3.441	3.682	4.900	5.318	4.749	

Anexo 5: Ficha técnica de Mitsubishi Electric: NEXIEZ – GPX

El archivo completo es de acceso abierto y puede encontrarse en línea en la siguiente dirección URL: <u>https://co.mitsubishielectric.com/es/products-solutions/building/pdf/catalog_17.pdf</u>. Para efectos de recopilación de información y definición geométrica y estructural de la caja de ascensores solo se utilizaron las páginas 15 y 16.

Especificaciones básicas para tipo MR

Dimensiones horizontales

Ninsere da cióligo	Númere de personer	Cepecidad neminal (Kg)	Velocided nominal (m/s)	Tipo de puertas	Ancho de antrada (JJ) (mm)	Dimensiones Internes de cabine [AAzdéi (rum)	Pesición de contrepero	Dimensiones minimes del hueco/peze [A/tzdi/i] (mm)	Dimensiones mininaas de la sale de miquínas (Autolitie) (mm)	Nocoratio
				<u></u>	800	1400-4950	Bertadar	1750x1400	1850x2700	0
DK.	6	450	10	~	900	140000000		1950×1400	2100×2700	•
PO		450		25	80.0	1100-1100	Perietion"	1600×1750	1800x2980	•
				43	800	HOOKHOO		1800×1530	1850x2050	•
				00	80.0		Pestarior	1750x1590	1850x2900	•
		550		25	800	1400-1000		2100×1460	2100x2050	•
00				00	900	1400x1030	Pesterier	1950x1590	2100x2900	•
Fe	•	330			300			2100×1460	2100x2050	
				2S			Protection*1	1600x2050	1800x3280	
			1.0		800	1100x1400	· · · · · · · · ·	1800×1830	1850x2200	
			1,75		80.0		Protector	1750x1810	1850x3100	•
				~	800		Lagend	2100×1600	2100x2050	
PID	P10 10	700		ω	000	1400x1250	Protector	1950x1810	2100x3100	
					500		F - 1	2200×1600	2200x2050	
~		250		~	800	1000 1000		2010-1000	2010 2220	
PH		750		- 25	900	1350x1400	I	20500(1830	2050x2200	•

l'Términes de la vabia 1

Esta tel·le aplica con especificaciones estiluder, sin puertas antificago ni segure de contraposa

Consulte e investres agentes locales para atres especificaciones.

Les dimensiones del Huscorpeza minimes (MVIII) mestados en la table valora después de Impermedalitar el pora y na incluye talenancia de despiano.

*12n sigunas tenas, ana portada da conceptare na aplica y las dimensiones minimus dal para y/o rele da maguinas puede verias;

Dimensiones verticales

Velecidad nominel (nvit)	Capacidad. nominai (Rg)	Recordado máximo (TR) (m)	Solorerecentide minime [OH] (mm)	Prefundidad minime de faxe [PD] (mm)	Albare total libre minime de la sele de miquimes j-titi (mm)	Número mistimo de panalas	Aitura minima entra piana (mm)
1.0	450, 550, 700, 750	80	4400	1250	7700		10000000000
1,75	550, 700, 750	元	4620	1410		200 20	

(Thronings do in table)

Escenteniais de esta tabla sub se quite a especificadares estámio sin segura de contrapera.

n den sinde en name de la leger de state de la parte de seus Normal

num. 2 La altara mánima entre atara es de 2420 mas demonstienda de los especificadanes.

For flower conculum o munimore agences location of in obtain once place as manner da 2000 re-

Si la altara untre pises es de 2900 mm puede ser aceptada con condicientes y restalcion

Cargas de reacción

Número do personas	Capacidad reminal	Dimensiones Internas de Caloina	Velocidad reminal	Pesición de contrapose			Cargas da	reección									
	64 <u>6</u> 0	(inm)	(1 1 2)		.1	1		144	. C.								
		1400x450		Protodae	21	16	21	9									
6	450	1100-4100	1.0	The second second	22	16	22	9	- 53	- 46							
		Howellow		Lateral	20	14	22	11]								
			10	Pagentar	24	19	24	10	6	61							
			140	Latana	22	15	25	12	64								
		1460001080	1 📼	Postarior	25	77	24	10		m							
			1449	Latera	23	5	25	13	61	34							
•	, ~~ I		10	Pasterior	25	18	25	8		61							
		1100-1000	140	Latana	22	15	24	12	64								
		TICODELADO.	1 7	Protector	25	T	5	9									
			122	Latera	72	16	25	13] ='	—							
									24	19	26	10					
-							1,02	Latana	26	19	25	11	96	24			
	7.00	700 1400x1250	1 155	Postarior	Ð	20	27	11		60							
				Latera	20	21	29	12									
		1530x1400 1.25	1.0	I maral	29	22	29	13	77	64							
11	750		1530ki 400	1530x1400	1530k/400	1530x1400	1550x1400	1530x1400	1530k/400	1530x1400	1.25		29	23	30	13	

Anexo 6: Ficha técnica de Aceros Arequipa: FIERRO CORRUGADO ASTM A615 - GRADO 60 / NTP 341.031 - GRADO 420

El archivo completo es de acceso abierto y puede encontrarse en línea en la dirección URL: siguiente

https://www.acerosareguipa.com/sites/default/files/fichas/2020-

07/HOJA%20TECNICA FIERRO%20CORRUGADO-

A615.pdf?fv=BvRhZ2gm. Para efectos de recopilación de información y definición de aceros en ETABS[®] solo se utilizó la página 2.

Fierro Corrugado ASTM A615 - GRADO 60 / NTP 341.031 - GRADO 420

DENOMINACIÓN:

ierro Corrugado A STM A615-Grado 60 / NTP 341.031 - Grado 60.

DESCRIPCIÓN

Barras de acero rectas de sección circular, con resaltes Hi-bond de alta adherencia con el concreto.

USOS:

Se utiliza en la construcción de edificaciones de concreto armado de todo tipo en viviendas, edificios, puentes, obras industriales, etc.

NORMAS TÉCNICAS:

Composición Química, Propiedades Mecánicas y Tolerancias Dimensionales Norma internacional ASTM A615 Grado 60.

Norma Técnica Peruana NTP 341.031:2018 Grado 420. NTE E.060:2009 CONCRETO ARMADO.

PRESENTACIÓN:

Se produce en barras de 9 m y 12 m de longitud en los siguientes diámetros: 6mm, 8mm, 3/8°, 12mm, 1/2°, 5/8°, 3/4°, 1°, 1 3/8°. Previo acuerdo, se puede producir en otros diámetros y longitudes requeridos por los clientes.

Se suministra en paquetes de 2 toneladas y en varillas.

DIMENSIONES Y PESOS NOMINALES:

DIÁMETRO	DE BARRA	SECCIÓN	PERIMETRO	PESO NOMINAL		
Pulg.	mm	(mm²)	(mm)	(kg/m)		
-	6	28	18.8	0.222		
-	8	50	25.1	0.395		
3/8	-	71	29.9	0.560		
-	12	113	37.7	0.888		
1/2	-	129	39.9	0.994		
5/8	-	199	49.9	1.552		
3/4	-	284	59.8	2.235		
7/8	-	387	69.8	3.042		
1	-	510	79.8	3.973		
13/8	-	1,006	112.5	7.907		

425, piso 17, M

ur, Km. 241, Ica. Tel. (51-056) 58 0830 Uchumayo Km 5.5, Cerro Colorado, Am

ial Latinoamericano

na la Maica - Co

PROPIEDADES MECÁNICAS: Límite de Fluencia (fy) Resistencia a la Tracción (R) Relación R/fy Alargamiento en 200 mm:

Diámetros: 6mm, 8mm 3/8", 12 mm, 1/2", 5/8" y 3/4"

1 3/8"

= 12% minimo.

= 420 MPa (4, 280 kg/cm2) minim = 620 MPa (6, 320 kg/cm2) minimo

≥ 1.25 (sismo resistencia).

= 11% minimo(*)

= 14% minimo(*).

= 12% mínimo

Doblado a 180° = Bueno en todos los diámetros (*) El alambrón corrugado y las barras enderezadas obtenidas por el alambró pueden tener valores de alargamiento menores, pero siempre cumplen con el 9 mínimo requerido por la norma ASTM A615 Grado 60.

Los diámetros de doblado especificados por las Normas Técnicas para la pueba de doblado son:

DIÁ METRO BA RRA (d)	6 m m	8 mm	3/8"	12mm	1/2*	5/8*	3/4*	r	13/8
DIÁ METRO DOBLADO	3d	3d	3d	3d	3d	3d	56	5d	7d
mm	18	24	28.6	36	38.1	47.6	95.3	127	244.5

"d" .- se considera el diámetro de la barra estableecido por la norma **ASTM A615**

IDENTIFICACIÓN:

Los fierros son identificados por marcas de laminación en alto relieve que indican el fabricante, el diámetro, la norma, el grado del acero y el país de fabricación.

sen: 📫 111111 🗹 🗤

sarequipa.com

5ASTA: Ruta A-26 KM 2.4, El Salar. Tel.: (56) 939249279.

ACEROS AREQUIPA

120

Anexo 7: Planos integradores: PI – 01, PI – 02, PI – 03 y PI – 04

