

SÍLABO Estabilidad

Código	ASUC01272	2	Carácter	Obligatorio
Prerrequisito	Alta Tensió	n		
Créditos	4			
Horas	Teóricas	2	Prácticas	4
Año académico	2025			

I. Introducción

Estabilidad es una asignatura obligatoria que se ubica en el décimo periodo de la Escuela Académico Profesional de Ingeniería Eléctrica. No es requisito de ninguna asignatura. Con esta asignatura, se desarrolla, en un nivel logrado, la competencia transversal Conocimientos de Ingeniería y las competencias específicas Uso de Herramientas Modernas, Análisis de Problemas, y Diseño y Desarrollo de Soluciones. En virtud de lo anterior, su relevancia reside en brindar al estudiante los conceptos generales de la estabilidad de los sistemas de potencia.

Los contenidos generales que la asignatura desarrolla son los siguientes: regulación de voltaje, regulación de tensión, análisis de sensibilidad de los sistemas de potencia.

II. Resultado de aprendizaje de la asignatura

Al finalizar la asignatura, el estudiante será capaz de conceptualizar los problemas en el sistema de transmisión, asociados al control de tensiones y otros, y estudiar los equipos de compensación reactiva requeridos en cada caso, con particular énfasis en los equipos instalados y la problemática del Sistema Eléctrico Interconectado Nacional, así como tratar con profundidad los tópicos relacionados con la utilización de los equipos en la operación de sistemas eléctricos de potencia.

III. Organización de los aprendizajes

Definición de estab	Duración en horas	24	
Resultado de aprendizaje de la unidad	Al finalizar la Unidad, el estudiante será capaz de obásicos de los tipos de estabilidad y las característic máquina síncrona dentro de la operación de los potencia.	as de opera	ción de la
Ejes temáticos	 Principios generales de estabilidad Operación síncrona, condición de operación de e Tipos de perturbaciones Estabilidad de ángulo de rotor, tensión y frecuenc Operación de la máquina síncrona 		onario

Modelamiento de la r	Unidad 2 náquina síncrona y el estudio de estabilidad de señal pequeña	Duración en horas	24	
Resultado de aprendizaje de la unidad	Al finalizar la Unidad, el estudiante será capaz de analizar la estabilidad en pequeña señal de un sistema eléctrico de potencia, a través del modelamiento de sus componentes y su comportamiento ante fenómenos de oscilaciones de baja frecuencia.			
Ejes temáticos	 Representación de la máquina síncrona en estudion. Representación de transformadores de potencia cargas, motores y equipos automáticos de compos. Estabilidad de estado estable. 	, líneas de tr	ansmisión,	

Espacio	Duración en horas	24	
Resultado de aprendizaje de la unidad	Al finalizar la Unidad, el estudiante será capaz de an gran señal de un sistema eléctrico de potencia, a trav criterio de igualdad de áreas.		
Ejes temáticos	 Métodos de análisis de estabilidad Análisis de estabilidad transitoria Formulación de criterio de igualdad de áreas En esta unidad se hará uso del software Power Factor 	У	

Estabilida	Duración en horas	24	
Resultado de aprendizaje de la unidad	Al finalizar la Unidad, el estudiante será capaz problemas en el sistema de transmisión, planteando s de control de la frecuencia, regulación primaria-sea sistema eléctrico de potencia se encuentra expuesto	soluciones a p cundaria, a le	oroblemas
Ejes temáticos	 Control de tensión en los sistemas eléctricos de por Control de frecuencia en los sistemas eléctricos de Métodos para mejorar la estabilidad de estado es 	e potencia	transitorio

IV. Metodología

Modalidad Presencial - Virtual

De acuerdo con los contenidos propuestos en las cuatro unidades, la asignatura se desarrollará siguiendo una secuencia teórico-práctica, a través de la exposición de clases magistrales activas, con interacción didáctica del docente y los estudiantes.

Resolución de problemas tipo y la asignación de trabajos con simuladores acompañarán el desarrollo de la asignatura, incentivando de este modo la participación de los estudiantes a través de la exposición de sus resultados para el caso estudiado.

El aula virtual se utilizará para la publicación de los temas tratados en clase, a través de artículos científicos y diapositivas explicativas. Así mismo, esta plataforma será usada para comunicar la programación de actividades coherentes con el desarrollo del curso.

Las metodologías por utilizar serán las siguientes:

- Clase magistral activa
- Aprendizaje basado en problemas
- Aprendizaje experiencial
- Aprendizaje colaborativo
- Clase magistral activa

Modalidad Semipresencial - Blended

De acuerdo con los contenidos propuestos en las cuatro unidades, la asignatura se desarrollará siguiendo una secuencia teórico-práctica, a través de la exposición de clases magistrales activas, con interacción didáctica del docente y los estudiantes.

Resolución de problemas tipo y la asignación de trabajos con simuladores acompañarán el desarrollo de la asignatura, incentivando de este modo la participación de los estudiantes a través de la exposición de sus resultados para el caso estudiado.

El aula virtual se utilizará para la publicación de los temas tratados en clase, a través de artículos científicos y diapositivas explicativas. Así mismo, esta plataforma será usada para comunicar la programación de actividades coherentes con el desarrollo del curso.

Las metodologías por utilizar serán las siguientes:

- Clase magistral activa
- Aprendizaje basado en problemas
- Aprendizaje experiencial
- Aprendizaje colaborativo

V. Evaluación

Modalidad Presencial - Virtual

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso parcial	Peso total
Evaluación de entrada	Prerrequisito	Primera sesión	- Evaluación individual teórica / Prueba objetiva	0%	
	1	Semana 1 - 4	- Evaluación individual teórico-práctica / Prueba de desarrollo	30 %	20 %
Consolidado 1 C1	2	Semana 5 - 7	- Simulación y análisis de casos grupales / Rúbrica de evaluación	30 %	20 /
	1 y 2	Semana 1 - 7	- Actividades de trabajo autónomo en línea	40 %	
Evaluación parcial EP	1 y 2	Semana 8	- Evaluación individual teórico-práctica / Prueba de desarrollo	20 9	%
	3	Semana 9 - 12	- Simulación y análisis de casos grupales / Rúbrica de evaluación	30 %	20 %
Consolidado 2 C2	2 4	Semana 13 - 15	- Evaluación individual teórico-práctica / Prueba de desarrollo	30 %	20 %
		Semana 9 - 15	- Actividades de trabajo autónomo en línea	40 %	
Evaluación final EF	Todas las unidades	Semana 16	- Evaluación individual teórico-práctica / Prueba de desarrollo	40 %	
Evaluación sustitutoria*	Todas las unidades	Fecha posterior a la evaluación final	- Aplica		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad Semipresencial - Blended

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso parcial	Pes o total
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación individual teórico- práctica / Prueba objetiva Ejercicios individuales de análisis de casos / Rúbrica de evaluación	0 %	
Consolidado 1	1	Semana 1 - 3	 Actividades virtuales Evaluación individual teórico- práctica / Prueba de desarrollo 	15 % 85 %	20 %
Evaluación parcial EP	1 y 2	Semana 4	- Evaluación individual teórico- práctica / Prueba de desarrollo	20 %	6
Consolidado 2 C2	3	Semana 5-7	Actividades virtuales Simulación y análisis de casos (individual) / Rúbrica de evaluación	15 % 85 %	20 %
Evaluación final EF	Todas las unidades	Semana 8	- Informe final de asignatura / Rúbrica de evaluación	40 %	6
Evaluación sustitutoria*	Todas las unidades	Fecha posterior a la evaluación final	- Aplica		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Fórmula para obtener el promedio:

PF = C1 (20 %) + EP (20 %) + C2 (20 %) + EF (40 %)

VI. Bibliografía

Básica

Anderson, P. M., Vittal, V., McCalley, J. D. y Fouad, A. A. (2016). *Power system control and stability*. (3.ª ed.). Wiley Inter-Science. https://cutt.ly/kwtrhPSV

Complementaria

Duncan, G. (2011). Power system analysis and design (5th ed.).

Mondal, D. (2020). Power system small signal stability analysis and control.

Sallam, A. (2015). Power system stability modelling, analysis and control.

VII. Recursos digitales

DIGSILENT. (s.f.). POWERFACTORY APPLICATIONS [Software de computadora].

https://www.digsilent.de/en/powerfactory.html

Fredy Paucar Condori. (13 de abril de 2020). Perturbaciones en los sistemas eléctricos.

YouTube. https://youtu.be/w4sa1gbkxt0

MathWorks. (s.f.). MATLAB [Software de computadora].

https://la.mathworks.com/products/matlab.html

Power On IEEE PES UTP. (18 de marzo de 2021). Webinar | Control de voltaje y estabilidad de SEP. YouTube. https://youtu.be/aEnSBobnfY8