

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Eléctrica

Tesis

Análisis de calidad en motores de inducción mediante pruebas eléctricas en régimen dinámico

Paulo Claudio Limaymanta Sierra

Para optar el Título Profesional de Ingeniero Electricista

Huancayo, 2022

Repositorio Institucional Continental Tesis digital

Esta obra está bajo una Licencia "Creative Commons Atribución 4.0 Internacional".

AGRADECIMIENTOS

A mis padres, por el apoyo incondicional en mi vida profesional, por los consejos y enseñanzas para el logro de mis metas.

A Dios, por brindarme salud, conocimiento y saber diferenciar lo bueno de lo malo.

DEDICATORIA

A mis padres, por su lucha, amor y apoyo incondicional.

A mi abuela, Teresa Chávez Meza, mi más grande orgullo.

RESUMEN

Los motores de inducción son máquinas rotativas que significan una parte muy grande en el sector minero. Estas máquinas rotativas son parte fundamental de los sistemas eléctricos de la minería, principalmente en planta (área molienda, chancado, flotación, etc.), debido a su rendimiento y versatilidad. Por ello, una falla puede llegar a detener la producción y dañar el equipo. Teniendo en cuenta que estas máquinas son muy importantes para la producción de la unidad.

Por lo tanto, esta investigación buscó analizar la calidad de los motores eléctricos mediante una evaluación del motor en operación. Dicho análisis se ha basado en pruebas dinámicas de motores "Motor en operación" que tiene como finalidad el análisis de la calidad de los motores de inducción con el soporte de un equipo analizador dinámico de motores, de esta forma identificar las posibles fallas en el sistema, incluidos los relacionados con el sistema de potencia de alimentación, el estado del motor y la carga - rendimiento.

Esta investigación fue desarrollada en la unidad minera Óxidos de Pasco de la región del centro del Perú. El trabajo previo fue la recopilación de información del sistema eléctrico de alimentación del motor (fuerza y control) para su óptimo ingreso de datos en el equipo analizador dinámico de motores.

Mediante este equipo se ha realizado el seguimiento - monitoreo para identificar tendencias que indiquen problemas potenciales. Se han analizado parámetros eléctricos "tensión-corriente" para así lograr la evaluación de una serie de parámetros, niveles de potencias, armónicos, la condición de las barras del rotor, el porcentaje de carga, el porcentaje de eficiencia, el valor del torque promedio, el rizado del torque. Lo que ha permitido un análisis de la causa raíz de las fallas, comenzando con la separación de problemas mecánicos de los eléctricos que se pueden presentar en un sistema motor - máquina. De esta forma, se busca prolongar la vida útil de los motores de inducción y prevenir daños funcionales. Los resultados obtenidos en la investigación dan a conocer que el mayor efecto perjudicial para que se dañe un motor eléctrico de inducción, son los problemas mecánicos por el inadecuado mantenimiento del mismo, las distorsiones armónicas, problemas relacionados con desbalances de tensión-corriente que se encuentran en el sistema de alimentación del motor, por lo tanto, todas estas anomalías afectan el rendimiento del motor.

Palabras claves: análisis de calidad, analizador dinámico, condición del motor, motor de inducción, parámetros eléctricos

ABSTRACT

Induction motors are rotating machines that play a very large part in the mining sector. These rotating machines are a fundamental part of the mining electrical systems, mainly in the plant (grinding, crushing, flotation, etc.), due to their performance and versatility. Therefore, a failure can stop production and damage equipment. Considering that these machines are very important to produce the unit.

Therefore, this research sought to analyze the quality of electric motors by evaluating the motor in operation. Said analysis has been based on dynamic tests of motors "Motor in operation" whose purpose is to analyze the quality of induction motors with the support of a Dynamic Motor Analyzer team, in this way to identify possible failures in the system., including those related to power supply system, engine health, and load-performance.

This research was developed at the Pasco Oxides mining unit in the central region of Peru. The previous work was the compilation of information on the electric power system of the motor (force and control) for its optimal data entry in the dynamic motor analyzer unit.

Through this team, follow-up-monitoring has been carried out to identify trends that indicate potential problems. "Voltage-current" electrical parameters have been analyzed to achieve the evaluation of a series of parameters, power levels, harmonics, the condition of the rotor bars, the load percentage, the efficiency percentage, the average torque value, the ripple of the torque. This has allowed us to analyze the root cause of failures, starting with the separation of mechanical problems from electrical problems that can occur in a motor-machine system. In this way, it seeks to extend the useful life of induction motors and prevent functional damage.

The results obtained in the investigation reveal that the greatest detrimental effect for an induction electric motor to be damaged are mechanical problems due

to its inadequate maintenance of the motor, harmonic distortions, problems related to voltage-current imbalances found in the power system. therefore, all these abnormalities affect the performance of the engine.

Keywords: electrical parameters, dynamic analyzer, induction motor, motor condition, quality analysis

ÍNDICE DE CONTENIDOS

Agradecimientos	ii
Dedicatoria	iii
Resumen	iv
Abstract	vi
Índice de contenidos	viii
índice de tablas	xi
Índice de figuras	xv
Introducción	xviii
CAPÍTULO I	21
PLANTEAMIENTO DEL ESTUDIO	21
1.1. Planteamiento y formulación del problema	21
1.1.1. Problema general	23
1.1.2. Problemas específicos	23
1.2. Objetivos	24
1.2.1. Objetivo general	24
1.2.2. Objetivos específicos	24
1.3. Justificación	25
1.3.1. Técnica	25
1.3.2. Económica	26
1.3.3. Teórica	26
1.3.4. Ambiental	26
1.4. Importancia	26
1.5. Alcances	26
1.6. Hipótesis	27
1.6.1. Hipótesis general	27
1.6.2. Hipótesis específicas	27
1.7. Descripción de variables y operacionalización de variables	
CAPÍTULO II	31
MARCO TEÓRICO	31
2.1. Antecedentes del problema	

2.1.1. Artículos científicos	31
2.1.2. Tesis	41
2.2. Bases teóricas	49
2.2.1. Calidad en motores de inducción	49
2.2.2. Calidad de alimentación	50
2.2.3. Calidad de energía eléctrica	50
2.2.4. Distorsión armónica	51
2.2.5. Desbalance de voltaje	51
2.2.6. Rotura de barras del rotor	52
2.2.7. Pruebas eléctricas en régimen dinámico	52
2.2.8. Circuito de potencia	53
2.2.9. Condición de operación del motor	54
2.2.10. Eficiencia de los motores de inducción	54
2.2.11. Análisis espectral de la corriente en el dominio de la frecuencia	55
2.2.12. Motor de inducción	55
2.2.13. Fallas en motores de asíncronos trifásicos	56
2.3. Definición de términos básicos	56
CAPÍTULO III	59
METODOLOGÍA	59
3.1. Método de investigación	59
3.2. Tipo de investigación	59
3.3. Alcance de la investigación (nivel)	59
3.4. Diseño de la investigación	60
3.5. Población y muestra	60
3.6. Técnicas e instrumentos de recolección de datos	61
3.7. Técnicas de procesamiento de datos	62
CAPÍTULO IV	64
RESULTADOS Y DISCUSIÓN	64
4.1. Resultados del tratamiento y análisis de la información	64
4.1.1. Selección de la muestra	64
4.1.2. Toma de datos	65
4.2. Resultados de pruebas dinámicas en motores de inducción	65

Anexos	. 142
Lista de referencias	139
Recomendaciones	137
Conclusiones	133
4.8. Aplicaciones prácticas	132
4.7. Consecuencias teóricas	131
4.6. Comparación de resultados (antecedentes)	123
4.5. Resumen de resultados	118
4.4.2. Discusión de resultados	111
4.4.1. Interpretación de resultados	70
4.4. Discusión e interpretación de resultados	70
4.3. Prueba de hipótesis	67
4.2.3. Resultados de pruebas en el motor 200ML001	67
4.2.2. Resultados de pruebas en el motor 200ML002	66
4.2.1. Resultados de pruebas en el motor 200ML003	65

ÍNDICE DE TABLAS

Tabla 1. Operacionalización de variables
Tabla 2. Componente variable de la resistencia de rotor en función del
deslizamiento para secuencia positiva
Tabla 3. Grado de rotura en dependencia de la diferencia de amplitud entre el
armónico lateral inferior y el fundamental
Tabla 4. Criterio de detección de barras rotas
Tabla 5. Causas de fallas en los motores de inducción en Estados Unidos según
estudio de la EPRI y la GE 41
Tabla 6. Resultados de medición de prueba Óhmica
Tabla 7. Resultados de medición de prueba de aislamiento 42
Tabla 8. Resultados de pruebas de HiPot y pulsos al bobinado del estator con
equipo Baker
Tabla 9. Descripción de los motores de inducción para medición y análisis 61
Tabla 10. Datos de placa de motores bajo prueba61
Tabla 11. Descripción de equipo de prueba para recolección de datos 62
Tabla 12. Formato de procesamiento de parámetros de prueba on-line de máquina
monitoreada62
Tabla 13. Motores de inducción bajo prueba65
Tabla 14. Resultados obtenidos del motor 200ML003 66
Tabla 15. Estado de resultados del motor 200ML00266
Tabla 16. Estado de resultados del motor 200ML001. 67
Tabla 17. Resultados a obtener en pruebas de motor 200ML00368
Tabla 18. Resultados a obtener en pruebas de motor 200ML00268
Tabla 19. Resultados a obtener en pruebas de motor 200ML00169
Tabla 20. Análisis de la tensión RMS en el motor 200ML003
Tabla 21. Análisis de desbalance de tensión en el motor 200ML003 71
Tabla 22. Análisis de la tensión RMS en el motor 200ML002
Tabla 23. Análisis de desbalance de tensión en el motor 200ML00273
Tabla 24. Análisis de la tensión RMS en el motor 200ML00174
Tabla 25. Análisis de desbalance de tensión en el motor 200ML001

Tabla 26. Niveles de corriente eléctrica obtenidos en el motor 200ML003 75
Tabla 27. Niveles de desbalance de corriente obtenidas en el motor 200ML003 75
Tabla 28. Niveles de corriente eléctrica obtenidos en el motor 200ML002 76
Tabla 29. Niveles de desbalance de tensión obtenidas en el motor 200ML002 77
Tabla 30. Niveles de corriente eléctrica obtenidos en el motor 200ML001 77
Tabla 31. Niveles de desbalance de tensión obtenidas en el motor 200ML001 78
Tabla 32. Límites operativos de tolerancia de Vh y THDv 81
Tabla 33. Análisis de distorsión armónica de tensión (THDv) de motor 200ML003
Tabla 34. Límites operativos de tolerancia de Vh y THDv 81
Tabla 35. Tensión armónica individual Vh de motor 200ML003
Tabla 36. Límite de distorsión armónica de corriente para sistemas de distribución
en general de 120 V hasta 69000 V 84
Tabla 37. Límites de distorsión armónica de corriente del motor 200ML003 85
Tabla 38. Límite de distorsión de corriente para tensiones de 120 V hasta 69 kV86
Tabla 39. Corriente armónica individual Ih de motor 200ML003 87
Tabla 40. Análisis de distorsión armónica de tensión (THDv) de motor 200ML002
Tabla 41. Tensión armónica individual Vh de motor 200ML002
Tabla 42. Límites de distorsión armónica de corriente del motor 200ML002 90
Tabla 43. Corriente armónica individual Ih de motor 200ML002 92
Tabla 44. Análisis de distorsión armónica de tensión (THDv) de motor 200ML001
Tabla 45. Tensión armónica individual Vh de motor 200ML001
Tabla 46. Límites de distorsión armónica de corriente del motor 200ML001 95
Tabla 47. Corriente armónica individual Ih de motor 200ML001
Tabla 48. Análisis comparativo de valores de tensión de motor 200ML003 vs.
artículo científico de Paz Parra112
Tabla 49. Análisis comparativo de valores de tensión de motor 200ML003 vs. tesis
de Peralta Núñez 112
Tabla 50. Análisis comparativo de valores de corriente de motor 200ML003 vs. tesis
de Peralta Núñez 113

Tabla 51. Análisis comparativo de valores de potencias de motor 200ML003 vs.
tesis de Peralta Núñez 114
Tabla 52. Análisis comparativo de valores de armónicos de motor 200ML003 vs.
tesis de Peralta Núñez 115
Tabla 53. Análisis comparativo de la condición y barras de motor 200ML003 vs.
tesis de Peralta Núñez 117
Tabla 54. Estado de resultados del motor 200ML003 118
Tabla 55. Estado de resultados del motor 200ML002.120
Tabla 56. Estado de resultados del motor 200ML001 121
Tabla 57. Análisis comparativo de resultados de motor 200ML003 vs. artículo
científico 1 123
Tabla 58. Análisis comparativo de resultados de motor 200ML002 vs. artículo
científico 1 124
Tabla 59. Análisis comparativo de resultados de motor 200ML001 vs. artículo
científico 1 125
Tabla 60. Análisis comparativo de resultados de motor 200ML003 vs. artículo
científico 3 126
Tabla 61. Análisis comparativo de resultados de motor 200ML002 vs. artículo
científico 3 126
Tabla 62. Análisis comparativo de resultados de motor 200ML001 vs. artículo
científico 3 127
Tabla 63. Análisis comparativo del grado de rotura en dependencia de la diferencia
de amplitud entre el armónico lateral inferior y el fundamental 127
Tabla 64. Análisis comparativo de resultados de motor 200ML003 vs. artículo
científico 4 128
Tabla 65. Análisis comparativo de resultados de motor 200ML002 vs artículo
científico 4 128
Tabla 66. Análisis comparativo de resultados de motor 200ML001 vs artículo
científico 4 128
Tabla 67. Comparación del criterio de detección de barras rotas 128
Tabla 68. Análisis comparativo de resultados de motor 200ML003 vs artículo
científico 6 129

Tabla 69. Análisis comparativo de resultados de motor 200ML002	vs. artículo
científico 6	129
Tabla 70. Análisis comparativo de resultados de motor 200ML001	vs. artículo
científico 6	129
Tabla 71. Análisis comparativo de resultados vs. tesis 1	129
Tabla 72. Análisis comparativo de resultados vs. tesis 3	130
Tabla 73. Análisis comparativo de resultados vs. tesis 4	130
Tabla 74. Análisis comparativo de resultados vs. tesis 5	131

ÍNDICE DE FIGURAS

Figura 1. Estudio de fallas en los motores eléctricos
Figura 2. Tasas de ocurrencia en zonas de falla de los motores
Figura 3. Armónicos laterales inferior y lateral superior de las corrientes
Figura 4. Comparación de los espectros de corriente
Figura 5. Circuito equivalente de secuencia: a) positiva y b) negativa 34
Figura 6. Espectro de vibración en la dirección vertical del cojinete lado
acoplamiento del motor 4A3M-2500/6000 CT4 38
Figura 7. Componentes espectrales de un motor ideal
Figura 8. Componentes espectrales de un motor ideal con espiras 40
Figura 9. Comparación entre la metodología propuesta y la FFT 44
Figura 10. Representación del fenómeno de Aliasing 45
Figura 11. Motor sano – 1740 rpm 46
Figura 12. Motor con 1 barra rota – 1740 rpm 46
Figura 13. Motor con 3 barras rota – 1740 rpm 46
Figura 14. Motor con 6 barras rota – 1740 rpm 47
Figura 15. Característica mecánica de un motor de inducción 49
Figura 16. Esquema de conexión directa para pruebas dinámicas con equipo SKF
Explorer 4000 53
Figura 17. Porcentaje de fallas en motores asíncronos trifásicos
Figura 18. Diagrama de diseño de investigación descriptiva comparativa 60
Figura 19. Analizador dinámico de motores Baker Explorer 4000 65
Figura 20. Niveles de tensión obtenidas en prueba de motor 200ML003
Figura 21. Niveles de tensión obtenidas en prueba de motor 200ML002
Figura 22. Niveles de tensión obtenidas en prueba de motor 200ML001
Figura 23. Niveles de potencias y factor de potencia de motor 200ML003
Figura 24. Niveles de potencias y factor de potencia de motor 200ML002
Figura 25. Niveles de potencias y factor de potencia de motor 200ML001
Figura 26. Nivel de distorsión armónica total de tensión y corriente obtenida en
prueba de motor 200ML003 80

Figura 27. Análisis del diagrama de barras de armónicos de tensión de motor
200ML003
Figura 28. Análisis del diagrama de curvas de armónicos de tensión de motor
200ML003
Figura 29. Resultados del cortocircuito en la barra 4.16 kV – motor 200ML003 85
Figura 30. Diagrama de barras de armónicos de corriente de motor de 200ML003.
Figura 31. Análisis del diagrama de barras de armónicos de tensión de motor
200ML002
Figura 32. Diagrama de barras de armónicos de corriente de motor de 200ML002.
Figura 33. Análisis del diagrama de barras de armónicos de tensión de motor
200ML001
Figura 34. Resultados del cortocircuito en la barra 4.16 kV – motor 200ML001 95
Figura 35. Diagrama de barras de armónicos de corriente de motor de 200ML001.
Figura 36. Análisis de carga del motor 200ML003 98
Figura 36. Análisis de carga del motor 200ML003
Figura 36. Análisis de carga del motor 200ML003.98Figura 37. Análisis de carga del motor 200ML002.98Figura 38. Análisis de carga del motor 200ML001.99
Figura 36. Análisis de carga del motor 200ML003.98Figura 37. Análisis de carga del motor 200ML002.98Figura 38. Análisis de carga del motor 200ML001.99Figura 39. Análisis del rendimiento del motor 200ML003.99
Figura 36. Análisis de carga del motor 200ML003.98Figura 37. Análisis de carga del motor 200ML002.98Figura 38. Análisis de carga del motor 200ML001.99Figura 39. Análisis del rendimiento del motor 200ML003.99Figura 40. Análisis del Rendimiento del motor 200ML002.100
Figura 36. Análisis de carga del motor 200ML003.98Figura 37. Análisis de carga del motor 200ML002.98Figura 38. Análisis de carga del motor 200ML001.99Figura 39. Análisis del rendimiento del motor 200ML003.99Figura 40. Análisis del Rendimiento del motor 200ML002.100Figura 41. Análisis del rendimiento del motor 200ML001.100
Figura 36. Análisis de carga del motor 200ML003.98Figura 37. Análisis de carga del motor 200ML002.98Figura 38. Análisis de carga del motor 200ML001.99Figura 39. Análisis del rendimiento del motor 200ML003.99Figura 40. Análisis del Rendimiento del motor 200ML002.100Figura 41. Análisis del rendimiento del motor 200ML001.100Figura 42. Análisis del factor de servicio efectivo del motor 200ML003.101
Figura 36. Análisis de carga del motor 200ML003.98Figura 37. Análisis de carga del motor 200ML002.98Figura 38. Análisis de carga del motor 200ML001.99Figura 39. Análisis del rendimiento del motor 200ML003.99Figura 40. Análisis del Rendimiento del motor 200ML002.100Figura 41. Análisis del rendimiento del motor 200ML001.100Figura 42. Análisis del rendimiento del motor 200ML001.101Figura 43. Factor de reducción para motores en redes con armónicos.101
Figura 36. Análisis de carga del motor 200ML003.98Figura 37. Análisis de carga del motor 200ML002.98Figura 38. Análisis de carga del motor 200ML001.99Figura 39. Análisis del rendimiento del motor 200ML003.99Figura 40. Análisis del Rendimiento del motor 200ML002.100Figura 41. Análisis del rendimiento del motor 200ML001.100Figura 42. Análisis del factor de servicio efectivo del motor 200ML003.101Figura 43. Factor de reducción para motores en redes con armónicos.101Figura 44. Análisis del factor de servicio efectivo del motor 200ML002.102
Figura 36. Análisis de carga del motor 200ML003.98Figura 37. Análisis de carga del motor 200ML002.98Figura 38. Análisis de carga del motor 200ML001.99Figura 39. Análisis del rendimiento del motor 200ML003.99Figura 40. Análisis del Rendimiento del motor 200ML002.100Figura 41. Análisis del rendimiento del motor 200ML001.100Figura 42. Análisis del rendimiento del motor 200ML001.101Figura 43. Factor de reducción para motores en redes con armónicos.101Figura 44. Análisis del factor de servicio efectivo del motor 200ML002.102Figura 45. Análisis del factor de servicio efectivo del motor 200ML001.102
Figura 36. Análisis de carga del motor 200ML003.98Figura 37. Análisis de carga del motor 200ML002.98Figura 38. Análisis de carga del motor 200ML001.99Figura 39. Análisis del rendimiento del motor 200ML003.99Figura 40. Análisis del Rendimiento del motor 200ML002.100Figura 41. Análisis del rendimiento del motor 200ML001.100Figura 42. Análisis del rendimiento del motor 200ML001.100Figura 43. Factor de reducción para motores en redes con armónicos.101Figura 44. Análisis del factor de servicio efectivo del motor 200ML002.102Figura 45. Análisis del factor de servicio efectivo del motor 200ML001.102Figura 46. Espectro del dominio de frecuencia de barras del rotor del motor102
Figura 36. Análisis de carga del motor 200ML003.98Figura 37. Análisis de carga del motor 200ML002.98Figura 38. Análisis de carga del motor 200ML001.99Figura 39. Análisis del rendimiento del motor 200ML003.99Figura 40. Análisis del Rendimiento del motor 200ML002.100Figura 41. Análisis del rendimiento del motor 200ML001.100Figura 42. Análisis del rendimiento del motor 200ML001.100Figura 43. Factor de reducción para motores en redes con armónicos.101Figura 44. Análisis del factor de servicio efectivo del motor 200ML002.102Figura 45. Análisis del factor de servicio efectivo del motor 200ML001.102Figura 46. Espectro del dominio de frecuencia de barras del rotor del motor 200ML003.103
Figura 36. Análisis de carga del motor 200ML003. 98 Figura 37. Análisis de carga del motor 200ML002. 98 Figura 38. Análisis de carga del motor 200ML001. 99 Figura 39. Análisis del rendimiento del motor 200ML003. 99 Figura 40. Análisis del Rendimiento del motor 200ML002. 100 Figura 41. Análisis del rendimiento del motor 200ML001. 100 Figura 42. Análisis del rendimiento del motor 200ML001. 100 Figura 43. Factor de reducción para motores en redes con armónicos. 101 Figura 44. Análisis del factor de servicio efectivo del motor 200ML002. 102 Figura 45. Análisis del factor de servicio efectivo del motor 200ML002. 102 Figura 46. Espectro del dominio de frecuencia de barras del rotor del motor 200ML003. 103 Figura 47. Espectro del dominio de frecuencia de barras del rotor del motor 200ML003. 103
Figura 36. Análisis de carga del motor 200ML003. 98 Figura 37. Análisis de carga del motor 200ML002. 98 Figura 38. Análisis de carga del motor 200ML001. 99 Figura 39. Análisis del rendimiento del motor 200ML003. 99 Figura 40. Análisis del Rendimiento del motor 200ML002. 100 Figura 41. Análisis del rendimiento del motor 200ML001. 100 Figura 42. Análisis del rendimiento del motor 200ML001. 100 Figura 43. Factor de reducción para motores en redes con armónicos. 101 Figura 44. Análisis del factor de servicio efectivo del motor 200ML002. 102 Figura 45. Análisis del factor de servicio efectivo del motor 200ML002. 102 Figura 44. Análisis del factor de servicio efectivo del motor 200ML002. 102 Figura 45. Análisis del factor de servicio efectivo del motor 200ML001. 102 Figura 46. Espectro del dominio de frecuencia de barras del rotor del motor 200ML003. 103 Figura 47. Espectro del dominio de frecuencia de barras del rotor del motor 200ML003. 104
Figura 36. Análisis de carga del motor 200ML003. 98 Figura 37. Análisis de carga del motor 200ML002. 98 Figura 38. Análisis de carga del motor 200ML001. 99 Figura 39. Análisis del rendimiento del motor 200ML003. 99 Figura 40. Análisis del Rendimiento del motor 200ML002. 100 Figura 41. Análisis del rendimiento del motor 200ML002. 100 Figura 42. Análisis del rendimiento del motor 200ML001. 100 Figura 43. Factor de reducción para motores en redes con armónicos. 101 Figura 44. Análisis del factor de servicio efectivo del motor 200ML002. 102 Figura 45. Análisis del factor de servicio efectivo del motor 200ML002. 102 Figura 46. Espectro del dominio de frecuencia de barras del rotor del motor 200ML003. 103 Figura 47. Espectro del dominio de frecuencia de barras del rotor del motor 200ML002. 104 Figura 48. Espectro del dominio de frecuencia de barras del rotor del motor 200ML002. 104

Figura 49. Análisis del espectro de rizado del torque de motor 200ML003...... 106 Figura 50. Análisis del espectro de rizado del torque de motor 200ML002...... 107 Figura 51. Análisis del espectro de rizado del torque de motor 200ML001...... 108 Figura 52. Análisis del espectro del torque con carga "Motor-Molino con carga". Figura 53. Análisis del espectro de torque electromecánico de motor con carga "Motor-Molino con carga". 110 Figura 54. Análisis del espectro del torque sin carga "Motor en vacío"...... 111 Figura 55. Comparación de resultados de un motor sano y uno con barras rotas, con carga nominal 123 Figura 56. Comparación de resultados de niveles de espectro del dominio de frecuencia de barras del rotor del motor 200ML003...... 124 Figura 57. Comparación de resultados de niveles de espectro del dominio de frecuencia de barras del rotor del motor 200ML002...... 125 Figura 58. Comparación de resultados de niveles de espectro del dominio de frecuencia de barras del rotor del motor 200ML001...... 126 Figura 59. Conexionado de cables de prueba de corriente y tensión en puntos de Figura 60. Conexionado de pinzas amperimétricas en CCM 200-ML-003 146 Figura 61. Configuración de maleta Explore 4000 con parámetros de motor 147 Figura 62. Conexionado de cables a maleta de prueba 147 Figura 63. Prueba en régimen dinámico 148 Figura 64. Estado de conexión fasorial en régimen dinámico 148 Figura 65. Puesta en marcha de prueba en régimen dinámico 149 Figura 67. Sistema de potencia barra 4.16 kV – motores de inducción en media Figura 68. Diagrama fasorial en prueba de motor 200ML003 150 Figura 69. Diagrama fasorial en prueba de motor 200ML002 151 Figura 70. Diagrama fasorial en prueba de motor 200ML001 151

INTRODUCCIÓN

Los motores de inducción son máquinas rotativas de mayor uso en el sector minero, todo el proceso de separación y extracción del mineral es ejecutado por motores eléctricos, de los cuales, el motor con rotor de jaula de ardilla es el más utilizado por las ventajas que ofrece (rendimiento y versatilidad).

Dado que los motores de inducción son máquinas de mayor uso en los procesos mineros, la investigación hace hincapié en el análisis de parámetros para identificar la calidad del motor, posibles fallas eléctricas y mecánicas. Los motores de inducción están expuestos a daños que requieren la máxima atención. Innumerables plantas mineras trabajan con motores críticos y con equipos impulsados por motores (molinos, sopladores, compresores, chancadoras, correas transportadoras, entre otros) sin conocer nada de la condición del motor o de los sistemas impulsados por motores.

Los motores de inducción de mayor tamaño y potencia son muy utilizados para la extracción de la materia prima, la separación sólido líquido, concentración y transporte. Muchos de ellos son estratégicos para el proceso productivo y, por ello, la obligación de buscar soluciones que minimicen fallas que puedan dañar al motor y, por ello, bajar la productividad de la unidad minera. Las técnicas predictivas (análisis de vibraciones, análisis acústico, oscilaciones de velocidad, descargas parciales, análisis de circuitos, etc.) que se aplican a motores eléctricos para reducir los tiempos de parada no programados.

La investigación aplicó el uso del analizador dinámico para pruebas de motores eléctricos. El analizador dinámico es un equipo especializado (alimentación – motor – carga) para el análisis de los parámetros medidos para motores, fue diseñado para el monitoreo del motor en operación (condición, carga y desempeño en general).

En esta investigación se realizaron pruebas eléctricas del tipo predictivo como una herramienta para el análisis de la calidad del motor. Se analizó el voltaje y la corriente, incluidos la calidad de energía, el porcentaje de eficiencia, el porcentaje de carga, la condición de las barras del rotor, el rizado del torque. Se supervisaron y evaluaron las condiciones del sistema completo y el impacto que estas condiciones tienen en el estado y rendimiento del motor mediante los resultados obtenidos en prueba, para su comparación con normativas nacionales e internacionales para identificar tendencias que indiquen problemas potenciales.

El mantenimiento predictivo en motores eléctricos detecta y evalúa posibles daños en el motor mediante un análisis detallado de inspección y seguimiento, por ello se han implementado pruebas eléctricas en motores, las cuales son pruebas estáticas (*off line*) y dinámicas (*on line*). La prueba estática de motores es una prueba de diagnóstico donde se evalúa al motor mediante pruebas no destructivas. Por otra parte, la prueba dinámica realiza un monitoreo en línea y evalúa al motor en operación.

Por lo cual, el trabajo de investigación se subdivide en lo siguiente:

El capítulo I corresponde al planeamiento del estudio, donde se aborda de forma detallada el problema general y lo que el estudio quiere lograr.

El capítulo II corresponde al marco teórico, que abarca estudios anteriores similares al presente, teoría fundamental para la comprensión del tema y conceptos fundamentales enfocados al objeto de investigación.

El capítulo III corresponde a la metodología usada en el estudio, tipo y alcance de investigación, población, técnicas e instrumentos de recolección y procesamiento de datos, pruebas y similares, que corresponden al análisis de calidad en motores de inducción. El capítulo IV, son los resultados, interpretando los resultados obtenidos a base de la NTCSE y normas internacionales de análisis de motores (NEMA MG-1, IEC y EPRI) y calidad de energía eléctrica (IEEE 519, NTCSE y la EN-50160).

Finalmente, se establecen las conclusiones y recomendaciones.

CAPÍTULO I PLANTEAMIENTO DEL ESTUDIO

1.1. Planteamiento y formulación del problema

Los motores eléctricos de inducción en la actualidad son equipos de mayor aplicación en los procesos mineros, los cuales están sometidos a esfuerzos tanto eléctricos y mecánicos que degradan la vida útil del mismo, por ello, para asegurar la operación continua con el mantenimiento oportuno mediante una detección temprana de cualquier situación que provoque fallas como barras rotas del rotor, excentricidad, sobrecalentamiento, cavitación, incluyendo problemas mecánicos.

Estudios realizados por organizaciones especializadas, "donde la probabilidad de que ocurra un fallo en un área específica de la máquina varía según las condiciones particulares de su operación" (1). La figura 1 muestra un estudio realizado entre *Electric Power Research Institute* EPRI y el *Institute of Electrical and Electronics Engineers* IEEE, el principal objetivo de este estudio fue mostrar las fuentes de falla en motores eléctricos, por lo que se llegó a la conclusión que la falla de rodamientos presenta el mayor porcentaje de 41 – 44 % (por fallas en la rodadura), las fallas en el estator del 26 – 36 % (por fallas en el devanado del estator), las fallas en el rotor del 8 – 9 % (ruptura en las barras del rotor y fallas en los anillos) y otras fallas de 14 – 22 % (por fallas en el entrehierro y calidad de energía de alimentación).

Figura 1. Estudio de fallas en los motores eléctricos (2)

En la figura 2 se muestran los índices de ocurrencia de fallas según estudios realizados, los rodamientos y el devanado presentan las causas más comunes de fallas en los motores eléctricos. Los problemas eléctricos, mecánicos, de aislamiento y sobrecalentamiento tienen los mayores porcentajes de incidencia para que un motor eléctrico falle. La causa de que el rodamiento del motor falle se da por problemas eléctricos en un 5 %, por problemas mecánicos en un 75 %, por problemas de aislamiento en un 2 % y por problemas de sobrecalentamiento en 18 %, por otra parte, la causa que el devanado del motor falle se da por problemas eléctricos en un 10 %, por problemas mecánicos en un 14 %, por problemas de aislamiento en un 35 %.

Figura 2. Tasas de ocurrencia en zonas de falla de los motores (3)

La probabilidad de que se desencadene una falla en una máquina de inducción está determinada por aspectos como el régimen de operación, un dimensionado inadecuado de la máquina, condiciones medioambientales como la humedad, el calor o la contaminación, mala calidad de los materiales constructivos, envejecimiento, estrés electromagnético o electromecánico, errores de montaje, entre otras (4) (5).

Se demuestra que en la mayoría de los casos la causa de una falla mecánica es un desperfecto a nivel eléctrico y que la mayoría de fallas eléctricas aumentan la temperatura interna del motor y de ahí la importancia de realizar el análisis de pruebas eléctricas en régimen dinámico para el monitoreo continuo de la máquina rotativa (6).

La investigación analizó la calidad de motores, proponiendo soluciones, alternativas y evaluar el estado y condición de la máquina rotativa; el análisis en régimen dinámico tiene con función principal monitorear al motor en funcionamiento. Se realiza mediciones al circuito de potencia, registrando tensión y la corriente de alimentación, para luego identificar tendencias como desbalance de voltaje y corriente, generación de armónicas, rendimiento y la carga del motor.

1.1.1. Problema general

¿Cuál es el resultado del análisis de la calidad en motores de inducción mediante pruebas en régimen dinámico?

1.1.2. Problemas específicos

- ¿Cuáles serán los valores de tensión de las pruebas en régimen dinámico para el análisis de la calidad en motores de inducción?
- ¿Cuáles serán los valores de corriente de las pruebas en régimen dinámico para el análisis de la calidad en motores de inducción?

- ¿Cuáles serán los valores de potencia de las pruebas en régimen dinámico para el análisis de la calidad en motores de inducción?
- ¿Cuáles serán los valores de los armónicos de las pruebas en régimen dinámico para el análisis de la calidad en motores de inducción?
- ¿Cuáles serán los valores de la carga de las pruebas en régimen dinámico para el análisis de la calidad en motores de inducción?
- ¿Cuáles serán los valores del rendimiento de las pruebas en régimen dinámico para el análisis de la calidad en motores de inducción?
- ¿Cuáles serán los valores de factor de servicio de las pruebas en régimen dinámico para el análisis de la calidad en motores de inducción?
- ¿Cuáles serán los valores de rotor bar de las pruebas en régimen dinámico para el análisis de la calidad en motores de inducción?
- ¿Cuáles serán los valores del torque de las pruebas en régimen dinámico para el análisis de la calidad en motores de inducción?

1.2. Objetivos

1.2.1. Objetivo general

Analizar los resultados de la calidad en motores de inducción mediante pruebas eléctricas en régimen dinámico.

1.2.2. Objetivos específicos

- Analizar los valores de tensión en motores de inducción mediante pruebas eléctricas en régimen dinámico.
- Analizar los valores de corriente en motores de inducción mediante pruebas eléctricas en régimen dinámico.

- Analizar los valores de potencia activa, potencia aparente, potencia reactiva y factor de potencia en motores de inducción mediante pruebas eléctricas en régimen dinámico.
- Analizar los valores de armónicos de tensión y corriente en motores de inducción mediante pruebas eléctricas en régimen dinámico.
- Analizar la carga en motores de inducción mediante pruebas eléctricas en régimen dinámico.
- Analizar el rendimiento en motores de inducción mediante pruebas eléctricas en régimen dinámico.
- Analizar el factor de servicio en motores de inducción mediante pruebas eléctricas en régimen dinámico.
- Analizar el estado de las barras del rotor en motores de inducción mediante pruebas eléctricas en régimen dinámico.
- Analizar el torque en motores de inducción mediante pruebas eléctricas en régimen dinámico.

1.3. Justificación

1.3.1. Técnica

El proyecto de investigación busca el desarrollo de la técnica de mantenimiento preventivo, ya que mediante las pruebas eléctricas en régimen dinámico permitirá lograr un mayor porcentaje de análisis de diversas fallas como daño en el devanado, daño en el rotor, entrehierro o en su circuito de potencia y así partir con una nueva filosofía de evaluación, análisis de condición e identificar problemas potenciales antes de que se vuelvan fallas funcionales.

1.3.2. Económica

El desarrollo de esta investigación es muy beneficioso, ya que con el análisis de pruebas dinámicas se pueden evitar pérdidas económicas y de producción, debido a paradas imprevistas para dar mantenimiento a causa de alguna falla que pudiera haber sido detectada con anterioridad.

1.3.3. Teórica

El presente proyecto de investigación busca, mediante el análisis de pruebas eléctricas y dinámicas, evaluar parámetros eléctricos para el análisis de la calidad en motores de inducción y así prolongar la vida útil del equipo, lo cual, evitará daños potenciales en el equipo, paradas y mantenimientos no programados.

1.3.4. Ambiental

El presente proyecto de investigación se basa en el uso de equipos de pruebas para el análisis de parámetros en busca de fallas. Por ello, no es perjudicial para el medio ambiente.

1.4. Importancia

Anteriormente, el motor eléctrico se concebía como una máquina netamente mecánica y prueba de ello es que la técnica de mantenimiento preventivo que se le aplicaba al motor, únicamente se centraba en el análisis de vibraciones mecánicas y una medición de aislamiento. En la actualidad, el motor de inducción es el más usado en el sector minero y en la industria. Para mejorar el rendimiento y la vida útil del motor eléctrico se ha desarrollado un monitoreo preventivo por medio de pruebas eléctricas dinámicas y así evitar detener la operación del equipo. En este hecho radica la importancia de la detección y diagnóstico de fallas de forma temprana y fiable.

1.5. Alcances

La investigación "Análisis de calidad en motores de inducción mediante pruebas eléctricas en régimen dinámico" aplica el uso de equipo analizador dinámico para el análisis de parámetros eléctricos (corriente, voltaje, potencias, rendimiento, torque, barras del rotor y carga).

La investigación se encuentra en el nivel de investigación aplicativa, ya que "tiene como propósito aplicar los resultados de las pruebas en régimen dinámico como análisis de información" (7), puesto que se busca dar soluciones y así dar una mejor calidad al motor de inducción, con previa evaluación preventiva con equipo analizador dinámico.

1.6. Hipótesis

1.6.1. Hipótesis general

Los resultados de las pruebas en régimen dinámico permiten evaluar la calidad en motores de inducción.

1.6.2. Hipótesis específicas

- Los valores de tensión de las pruebas en régimen dinámico permiten evaluar la calidad en motores de inducción.
- Los valores de corriente de las pruebas en régimen dinámico permiten evaluar la calidad en los motores de inducción.
- Los valores de potencia de las pruebas en régimen dinámico permiten evaluar la calidad en motores de inducción.
- Los valores de armónicos de tensión y corriente de las pruebas en régimen dinámico permiten evaluar la calidad en los motores de inducción.
- Los valores de carga de las pruebas en régimen dinámico permiten evaluar la calidad en motores de inducción.
- Los valores de rendimiento de las pruebas en régimen dinámico permiten evaluar la calidad en motores de inducción.

- Los valores de factor de servicio de las pruebas en régimen dinámico permiten evaluar la calidad en motores de inducción.
- Los valores de las barras del rotor de las pruebas en régimen dinámico permiten evaluar la calidad en motores de inducción.
- Los valores de torque de las pruebas en régimen dinámico permiten evaluar la calidad en motores de inducción.

1.7. Descripción de variables y operacionalización de variables

Tabla 1.	Operacionalización	de	variables
	operationanzation	ac	van annos

Operacionalización de variables				
Autor:	Limaymanta Sierra, Paulo Claudio			
Título:	Análisis de calidad en motores de inducción mediante pruebas eléctricas en régimen dinámico			
Problema	¿Cuál es el resultado del análisis de la calidad en motores de inducción mediante pruebas eléctricas en régimen dinámico?			
	Independiente			
Variables	Calidad en motores de inducción			
Definición conceptual	Se refiere al funcionamiento, estado y la condición de la máquina rotativa en operación, la máquina debe ser operada de acuerdo a los datos nominales de diseño, siguiendo normas aplicables y cumpliendo criterios que establecen límites de operación.			
Definición operacional	Variable que indica el análisis de parámetros eléctricos para identificar el estado y la condición del motor. Además, proporciona datos para una evaluación detallada de fallas y cómo se pueden minimizar.			
Hipótesis (si es el caso)	Los resultados de las pruebas en régimen dinámico permiten evaluar la calidad en motores de inducción.			
Variable Independiente	Calidad en motores de inducción			
Dimensiones o subvariables	Indicador	Unidad	Tipo de variable	Instrumento
Tensión eléctrica	Voltaje	V	Numérica discreta	Analizador dinámico Explorer 4000/analizador de redes

Corriente eléctrica	Corriente	A	Numérica Discreta	Analizador dinámico Explorer 4000/analizador de redes
Potencia eléctrica	Potencias	kW, kVAR, kVA	Numérica Discreta	Analizador dinámico Explorer 4000/analizador de redes
Armónicos	Hercio-Hertz	Hz/%	Numérica Discreta	Analizador dinámico Explorer 4000/analizador de redes
Carga	Kilovatios & porcentaje	kW/%	Numérica Discreta	Analizador dinámico Explorer 4000
Rendimiento	Potencia útil/potencia consumida	η (%)	Numérica Discreta	Analizador dinámico Explorer 4000
Factor de servicio	% carga/% NEMA derating	F. S.	Numérica Discreta	Analizador dinámico Explorer 4000
Barras del rotor	Decibeles	dB	Numérica Discreta	Analizador dinámico Explorer 4000
Torsión	Torque	N-m	Numérica Discreta	Analizador dinámico Explorer 4000

Indicadores: estándar de calidad en motores de inducción

Parámetro	Unidad	Indicador estándar	Norma
Caída de tensión	V	+/- 5 % (tensión nominal)	NTCSE
Desbalance de tensión	Un (%)	+/-2 %	EN-50160
Desbalance de corriente	In (%)	+/-10 %	NTCSES
Distorsión armónica de tensión	THDv (%)	V = <1 kV = 8 %/ < 69 kV = 5 %	NTCSE/IEEE 519- 2014
Distorsión armónica de corriente	THDi (%)	<69 kV = 5 – 20 %	IEEE 519-2014
Armónicos individuales de tensión	Vh (%)	3° <= 5 % 5° <= 6 % 7° <= 5 % 9° <= 1.5 % 11° <= 3.5 % 13° <= 3.0 %	NTCSE
Armónicos individuales de corriente	lh (%)	5° <= 4 % 5° <= 4 % 7° <= 4 % 9° <= 4 % 11° <= 2.0 % 13° <= 2.0 %	IEEE 519-2014
Barras rotas	dB	54-60óptimo 48-54aceptable	NEMA MG-1

42-48	media sección de.
b	arra rota
36-42	una barra rota
30-36	varias barras rotas
<30 dB.	daño severo

CAPÍTULO II MARCO TEÓRICO

2.1. Antecedentes del problema

2.1.1. Artículos científicos

A continuación, se muestran los artículos científicos:

El artículo de Flores et al. (8) "Diagnóstico de fallas en máquinas eléctricas rotatorias utilizando la técnica de espectros de frecuencia en bandas laterales", aplica una metodología para el diagnóstico de fallas en máquinas eléctricas rotatorias utilizando la técnica de espectros de frecuencia de bandas laterales de las corrientes de fase. Se establecen sistemas de prueba de laboratorio para verificar las magnitudes de las bandas originadas por fallas tanto mecánicas como eléctricas.

En la figura 3 se pueden observar los espectros de frecuencia de bandas laterales respecto de la componente fundamental de la frecuencia y los armónicos de corriente.

Figura 3. Armónicos laterales inferior y lateral superior de las corrientes (8)

"Para la aplicación de la metodología se emplearon máquinas eléctricas rotatorias de laboratorio, se desalineó el motor de DC-generador síncrono con el propósito de obtener mediciones para luego compararlas, después de haber alineado el sistema" (8).

En la figura 4, "en el caso del generador síncrono se presentan resultados debidos al desalineamiento del grupo motor DC para diferentes porcentajes de su carga nominal y sin carga" (8).

Figura 4. Comparación de los espectros de corriente con generador sin carga, desalineado y alineado, para diferentes barridos de frecuencia. (a) 0-120 Hz, (b) 0-1600 Hz (8)

Finalmente, se concluye que "el espectro de las barras laterales de frecuencias cercanas a la frecuencia de 60 Hz se presenta para el caso del desalineamiento en mayor magnitud, con carga en vacío" (8), así también a

pesar de que cada falla presenta frecuencias laterales que las distingue, se pueden presentar frecuencias armónicas que no necesariamente sean indicio de falla, estas son originadas también por los armónicos espaciales debido a la distribución de los devanados de la máquina.

En el artículo de Toro et al. (9) "*Pruebas a motores de inducción trifásicos*", propone la ejecución de pruebas para la construcción de un circuito equivalente de la máquina de inducción para comprobar la existencia del campo magnético giratorio en devanados polifásicos y obtener la característica par velocidad / deslizamiento de la máquina de inducción en ensayo usando los parámetros del circuito obtenido.

Según el artículo para la obtención de los parámetros del circuito equivalente de la máquina de inducción mediante los ensayos sin carga y de rotor bloqueado, el ensayo en vacío tiene como finalidad la obtención del valor de las pérdidas en el rotor, pérdidas magnéticas, corriente, resistencia y reactancia de magnetización de la máquina de inducción, esta prueba consiste en hacer funcionar la máquina sin ningún tipo de carga mecánica en el eje, es decir a rotor libre (9).

Por otro lado, el ensayo de rotor bloqueado permite la obtención de los parámetros de la rama serie de la máquina de inducción. Esta prueba es la última en llevarse a cabo, puesto que se necesita el valor de la resistencia del estator para obtener Rr, Xr y Xs, para su debida realización es necesario bloquear el rotor de la máquina de inducción para impedir su movimiento, bajo esta condición, el deslizamiento es uno y la resistencia de carga será cero, lo cual indica que la máquina se comporta como un transformador cortocircuitando el secundario (9).

Finalmente, se concluye que la corriente necesaria para arrancar el motor de inducción siempre será elevada debido a que el deslizamiento S = 1 genera un torque de arranque que demanda gran cantidad de

corriente, casi el triple de la corriente de estabilización y que la velocidad de giro no depende de la corriente ni del voltaje que se aplique al motor, debido a que la velocidad de giro está dada por la frecuencia y por el par de polos de la máquina (9).

El artículo de Paz et al. (2) "Diagnóstico de fallas estatóricas en motores de inducción de jaula de ardilla por medio de la corriente de secuencia negativa", aplica un modelo matemático para obtener un indicador de falla en el estator basado en la corriente de secuencia negativa, el cual puede utilizarse en sistemas de diagnóstico en línea al separar los efectos del desbalance de voltaje y las asimetrías constructivas de la máquina (2).

Figura 5. Circuito equivalente de secuencia: a) positiva y b) negativa (2)

En el artículo, se presentan resultados sobre la aplicación experimental de la técnica propuesta mediante una alternativa computacionalmente económica. Los resultados de la aplicación del modelo se validan mediante ensayos de laboratorio en un motor modificado especialmente y se obtienen resultados aplicados a dos motores de mayor potencia, los cuales fueron exitosamente diagnosticados por fallas en el estator (2).

En la figura 5 "se muestra el circuito equivalente del motor para secuencia positiva y negativa. Las componentes de resistencia y reactancia del rotor se refieren al estator usando el deslizamiento y se desprecian las pérdidas en el núcleo al reemplazar la rama de magnetización por una reactancia" (2).

		J 4 4	_ /
S (%)	R_p/R_r	R_n/R_r	R_p/R_n
1	99	0.5	200
2	49	0.49	100
3	32	0.49	65
4	24	0.49	49
5	19	0.49	39
6	16	0.49	33
7	13	0.48	27
8	12	0.48	25
9	10	0.48	21
10	9	0.47	20

Tabla 2. Componente variable de la resistencia de rotor en función del deslizamiento para secuencia positiva $[(R] _p)$ y negativa $[(R] _n)$

Nota: tomada de Diagnóstico de fallas estatóricas en motores de inducción de jaula de ardilla por medio de la corriente de secuencia negativa (2)

Se puede apreciar en la figura 6 que la relación entre la resistencia de secuencia positiva y negativa es alta, lo cual indica que, a pesar de que se tenga un voltaje de secuencia negativa baja, se genera una corriente de secuencia negativa alta en la zona de bajo deslizamiento. Esta dependencia, sin embargo, no es tan directa, ya que en el circuito de secuencia negativa se aprecia una reactancia propia del devanado del rotor, proporcional al doble de la frecuencia de alimentación (2).

Finalmente, se concluye que la corriente de secuencia negativa es un indicador fiable de las fallas en el devanado del estator por cortocircuito entre
espiras, pero debe descartarse la circulación de dicha corriente, ocasionada por otros problemas como el desbalance de tensiones en la alimentación del motor y el desbalance de tensiones, aun en pequeña escala, impulsa corrientes de secuencia negativa de magnitud considerable, comparable a la corriente de falla ocasionada por un cortocircuito entre espiras (2).

En el artículo de Soto et al. (10) "*Diagnóstico de problemas de asimetrías rotóricas en un motor de gran potencia*", aplica un diagnóstico en motores de inducción de 6000 voltios del tipo de jaula de ardilla.

"Las técnicas de diagnóstico utilizadas en la determinación de estas fallas han sido las mediciones de vibraciones con el análisis de los espectros y las mediciones de las corrientes estatóricas con el análisis de sus espectros de igual forma" (10).

Según el artículo, el motor diagnosticado había sido reparado 3 años atrás y detectado roturas de barras. Al realizar la inspección en un mantenimiento se observó la fractura de 3 de sus barras. Se reparó la falla y volvió a entrar en explotación. Al entrar en servicio, una vez reparado, fue monitoreado con análisis de vibraciones y con análisis de las corrientes estatóricas con periodicidad mensual (10).

El análisis de corriente utiliza información espectral de la corriente de red consumida por el motor de inducción de corriente alterna. Esta técnica es similar al análisis de vibración, ya que ambas usan un espectro, o una gráfica de amplitud vs. frecuencia para el análisis (10).

Grado	Diferencia de amplitudes en dB
Motor sano	54-60
Aceptable	48-54
Media sección de barra rota	42-48
Una barra rota	36-42
Varias barras rotas	30-36
Problemas severos	Menor de 30

 Tabla 3. Grado de rotura en dependencia de la diferencia de amplitud entre el armónico lateral inferior y el fundamental

Nota: tomada de Diagnóstico de fallas estatóricas en motores de inducción de jaula de ardilla por medio de la corriente de secuencia negativa (2)

En la tabla 2 se pueden apreciar "los grados de roturas en dependencia de la diferencia de amplitud entre el armónico lateral inferior y el fundamental" (10).

Finalmente, mediante el análisis vibracional se corrobora que, al producirse la rotura de una barra en la jaula, la distribución de corrientes que esta transporta se altera, incrementándose la amplitud de ciertos armónicos del campo, que al interaccionar con las corrientes producen fuerzas pulsantes. Estas fuerzas dan lugar a vibraciones de frecuencias características que suelen aparecer en torno al armónico fundamental del espectro de vibración en forma de bandas laterales de anchura (10), según la fórmula 1, a continuación:

$$d = 2p \frac{N_s - N}{60} \tag{1}$$

Donde

- p : número de pares de polos del motor
- Ns : velocidad de sincronismo en rpm
- N : velocidad real en rpm

Figura 6. Espectro de vibración en la dirección vertical del cojinete lado acoplamiento del motor 4A3M-2500/6000 CT4 (10)

En el artículo de Villada et al. (11) *"Estudio del comportamiento de motores de inducción ante fallas estatóricas*", estudia el comportamiento de motores de inducción ante fallos progresivos en su aislamiento estatórico. Los motores objeto de este estudio son sometidos a fallos controlados, con incrementos graduales en el nivel de cortocircuito entre espiras del estator y mediante la medición de la señal de vibración mecánica, la señal de corriente eléctrica por fase del estator y la señal del flujo axial de dispersión se procede a tabular e identificar las componentes armónicas que presentaron las mayores variaciones en su amplitud (11).

Actualmente, se están realizando algunos intentos por definir las frecuencias características de vibración asociadas a algunos defectos de origen eléctrico. La teoría predice que los cambios en la corriente debido al deterioro eléctrico de los devanados en las máquinas rotativas alterarán las fuerzas magnéticas internas, las cuales causarán una modificación en las características vibratorias de la máquina (11).

Finalmente, se concluye que el análisis espectral de corriente constituye un complemento para el diagnóstico mediante vibraciones, ya que esta última tiene limitaciones al detectar problemas eléctricos en estado incipiente tales como excentricidades en el entrehierro, cortocircuitos entre espiras en el devanado del estator y barras rotas en los rotores de los motores de inducción causadas por esfuerzos mecánicos, magnéticos o térmicos. Para la detección y monitoreo de cortocircuitos entre espiras en el devanado estatórico de los motores de inducción, empleando el análisis espectral de corrientes, se parte de una aproximación de la onda rotativa, la cual explica los armónicos de fuerza magneto motriz producidos por las ranuras del rotor, del estator y por la saturación de los materiales que componen dicha máquina (11).

En el artículo de Barreto et al. "Diseño e implementación de un sistema de detección de barras rotas y espiras cortocircuitadas en motores de inducción utilizando algoritmos de análisis espectral de corrientes (MCSA)", aplica "una alternativa para detectar barras rotas y espiras cortocircuitadas en motores de inducción a través de algoritmos" (12).

Figura 7. Componentes espectrales de un motor ideal (12)

En la figura 8 se pueden observar los espectros de frecuencia de bandas laterales respecto de la componente fundamental de la frecuencia de un motor ideal sin problemas de rotura en barras del rotor.

El presente artículo aplica una alternativa al problema de la detección de fallas por ruptura de barras de la jaula de ardilla de un motor de inducción, así como por espiras cortocircuitadas en el estator, implementando un sistema que permite diagnosticar la naturaleza de la falla y su severidad (12).

Figura 8. Componentes espectrales de un motor ideal con espiras cortocircuitadas (12)

En la figura 9 se pueden observar los espectros de frecuencia de bandas laterales respecto de la componente fundamental de la frecuencia de un motor ideal con las espiras cortocircuitas en el estator, sin problemas de rotura en barras del rotor.

Según el artículo se aplica un análisis y presenta una alternativa al problema de la detección de fallas por ruptura de barras de la jaula de ardilla de un motor de inducción, así como por espiras cortocircuitadas en el estator, implementando un sistema que permite diagnosticar la naturaleza de la falla y su severidad (12).

$\Delta V (dB)$	$\Delta \mathbf{C} (\mathbf{dB})$	Salida
-1	Cualquier valor	"eléctrico"
Cualquier valor	-1	"eléctrico"
	> 54 dB	"excelente"
	Entre 48 y 54 dB	"bueno"
N 42 JD	Entre 42 y 48 dB	"moderado"
> 42 UB	Entre 36 y 42 dB	"roto"
	Entre 30 y 36 dB	"múltiples"
	\leq 30 dB	"severo"
< 42 dB	Todos los valores	"eléctrico"

Tabla 4. Criterio de detección de barras rotas

Nota: tomada de Diseño de implementación de un sistema de detección de barras rotas y espiras cortocircuitadas en motores de inducción utilizando algoritmos de análisis espectral de corrientes (MCSA) (12)

Finalmente, según los resultados la falla más común en el rotor de un motor de inducción es la ruptura de las barras en la jaula de ardilla, debido a esfuerzos térmicos o mecánicos a los que el motor pueda someterse y tener barras rotas en el motor, origina dos bandas laterales en el espectro de frecuencia de la corriente de alimentación, ubicadas a frecuencias del doble de la frecuencia de deslizamiento alrededor de la frecuencia fundamental (12).

2.1.2. Tesis

A continuación, se muestran las tesis:

En la tesis de Peralta (6) "*Diagnóstico de fallas en motores de inducción*", desarrolló un estudio teórico-práctico sobre las principales fallas eléctricas en motores de inducción trifásicos, concentrándose principalmente en fallas originadas en el sistema de aislamiento. Por medio de una metodología de análisis (modo de falla, patrón de falla, apariencia e historia de mantenimiento) las principales fallas eléctricas en motores de inducción trifásicos en baja tensión (6).

Tabla 5. Causas de fallas en los motores de inducción en Estados Unidos según estudio de la EPRI y la GE

Cojinetes	41 %	Estator	37 %	Rotor	10 %
Cojinetes de rodamiento	16 %	Aislamiento a tierra	23 %	Jaula	5 %
Cojinetes de fricción	8 %	Aislamiento entre espiras	4 %	Eje	2 %
Empaquetaduras	6 %	Tirantes	3 %	Núcleo magnético	1 %
Cojinetes de empuje	5 %	Cuñas	1 %	U U	
Lubricación	3 %	Carcasa	1 %		
		núcleo magnético	1 %		
Otros	3 %	Otros	4 %	Otras	2 %
	1 ((0)		

Nota: tomada de Diagnóstico de fallas en motores de inducción (6)

En la investigación de tesis, "se detallan las pruebas efectuadas a motores eléctricos de industrias, en pruebas en motores fuera de línea y en funcionamiento, para poder determinar las condiciones de cada uno de sus componentes y determinar la operatividad del equipo" (6).

Resistencia Óhmica			
Resistencia	Medida (mΩ)	Corregi	da (mΩ)
entre fases	25 °C	30 °C	75 °C
R 1-2	194	198	231
R 2-3	194	198	231
R 1-3	191	195	228
Variación	porcentual	1.5	5 %

Tabla 6. Resultados de medición de prueba Óhmica

Nota: tomada de Diagnóstico de fallas en motores de inducción (6)

Tabla 7. Resultados de medición de prueba de aislamiento
Desistancia de sistemiente (MO)

Resistencia de alsiannento (19122)	
Medida	Corregida
25 °C	40 °C
2674	1671
	<i>((</i>) (<i>(</i>) (

Nota: tomada de Diagnóstico de fallas en motores de inducción (6)

Según los resultados de la tabla 7, la prueba de "resistencia óhmica entre fases en el bobinado estatórico tienen valores que no difieren mucho uno respecto de los otros. La poca variación entre los valores indica que no hay problemas de cortocircuitos, ni uniones mal soldadas" (6).

Finalmente, de acuerdo a los resultados obtenidos, la mayoría de las fallas eléctricas aumentan la temperatura interna del motor, lo que conlleva a un aumento tanto de las pérdidas por calentamiento como de las pérdidas mecánicas afectando su rendimiento.

En la tesis de Montealegre et al. (13) "Análisis de fallas en los motores eléctricos de inducción", se aplica el estudio del análisis de las fallas, como también se plantean una serie de pruebas prácticas que se realizan para la detección de las fallas en el bobinado y se recomiendan ciertas pautas para el análisis de fallas en el bobinado (13).

Según la investigación, para una mejor comprensión del estudio del análisis de las fallas, estas se clasifican de acuerdo al factor donde se originan y de acuerdo a la investigación existen cuatro factores predominantes en donde se originan las fallas en los motores eléctricos de inducción a saber: sistema de aislamiento, externos, electromagnéticos y mecánicos (13).

Finalmente, se concluye que la principal causa de las fallas en el motor es originada en los cojinetes, debido al contacto deslizable o rotatorio de sus componentes, traduciéndose en vibración – ruido y ruptura de sus partes y que el deterioro o envejecimiento térmico es la causa preponderante, siendo los daños mecánicos y la contaminación química las causas.

En la tesis de Delgado (14) "*Diagnóstico de motores eléctricos para la localización de fallas incipientes*", esta metodología propuesta es aplicable cuando se pretende diagnosticar fallas mecánicas o para complementar un análisis de señales de corriente. Además, la metodología tiene aplicaciones en motores que se alimentan con inversores, en tales casos no se recomienda el análisis de señales de corriente debido a la mala calidad de la señal (14).

Según la investigación para obtener el diagnóstico del motor es necesario analizar la señal capturada e identificar las frecuencias presentes en su espectro que están asociadas con fallos, el análisis puede llevarse a cabo durante la operación en estado estacionario o durante el transitorio de arranque del motor. Para señales capturadas en estado estable, el contenido frecuencial de las señales se obtiene generalmente con la transformada de Fourier, y para las señales capturadas en el transitorio de arranque, el contenido espectral y su evolución en el tiempo se obtienen por una descomposición tiempo-frecuencia de la señal (14).

Para determinar la condición del motor y para evaluar la factibilidad del método propuesto. En primer lugar, en el diagrama de bloques, se presenta la implementación de un banco de pruebas con varios motores de

43

inducción con diferentes casos de estudio: motor sano, motor con dos barras del rotor rotas, defecto en la pista externa del rodamiento y desbalance en la polea. El siguiente paso es la adquisición de señales de vibración y sonido. Las señales de vibración son adquiridas con un acelerómetro triaxial y el sonido con un micrófono. Las señales son capturadas durante la operación del motor en estado estacionario (14).

Figura 9. Comparación entre la metodología propuesta y la FFT a) Señal sintética b) Espectro ideal c) FFT de la señal d) Marginal en frecuencia de la TFDG de la IMF seleccionadas (14)

Finalmente, de los resultados obtenidos con el análisis de las señales de sonido se corroboraron con el análisis de señales de vibración. Esta corroboración de resultados se justifica debido a la gran aceptación que tiene el análisis de vibraciones y que constituye una de las metodologías más ampliamente utilizada en campo para el diagnóstico de fallas en motores y en este trabajo se demostró que analizar señales de sonido es una técnica para el diagnóstico de motores tan efectiva como lo es el análisis de señales de vibración (14).

El trabajo de tesis de Díaz (15) "Diagnóstico de fallas en motores de inducción tipo jaula de ardilla mediante la aplicación de métodos híbridos", esta metodología propuesta es aplicable cuando se pretende diagnosticar fallas más comunes en un motor de inducción mediante método de elementos finitos y técnicas de diagnóstico híbridas.

La investigación aplica el procedimiento de análisis sobre el modelo del motor de inducción jaula de ardilla simulado en el software Flux2D el cual fue la base para el trabajo de grado denominado "*Diagnóstico de rotura de barras en un motor de inducción de jaula de ardilla mediante la aplicación del método de elementos finitos*" (15).

Según la investigación las frecuencias importantes para diagnosticar la rotura de barras se encuentran alrededor de los 60 Hz, por eso se puede pensar que es suficiente para este caso de estudio una frecuencia máxima a detectar ($f_{máx}$) de 120 Hz, aunque para la elaboración de esta investigación se tuvo en cuenta la siguiente frecuencia máxima a detectar: $f_{máx} = 250 Hz$ (15).

Figura 10. Representación del fenómeno de Aliasing (15)

Según la investigación se ha realizado la implementación del espectro de corriente por Fourier, con "el criterio de diagnóstico de esta metodología que indica que para una máquina sana el armónico de falla debe ser menor que -60 dB" (15). Resultado que puede ser corroborado en la figura 11.

Figura 11. Motor sano – 1740 rpm (15)

El "criterio de diagnóstico indica que para una máquina con 1 barra rota el armónico de falla debe estar dentro del rango de -35 a -39 dB, resultado que puede ser corroborado" en la figura 12 (15).

Figura 13. Motor con 3 barras rota – 1740 rpm (15)

El criterio también indica que para una máquina con más de 1 barra rota el armónico de falla debe estar dentro del rango de 0 a -35 dB, resultado que puede ser corroborado en las figuras 13 y 14 (15).

Figura 14. Motor con 6 barras rota – 1740 rpm (15)

Finalmente, de los resultados obtenidos, el análisis espectral es la herramienta base de esta investigación, ya que a través de la aplicación de la transformada rápida de Fourier es posible pasar del domino del tiempo al dominio de la frecuencia y observar la amplitud en decibeles de las frecuencias características.

El análisis espectral se puede aplicar a las corrientes de fase que alimentan el estator de la máquina, así como al cuadrado de estas para determinar el espectro de potencias (15).

El trabajo de tesis de Pérez (16) "Mantenimiento predictivo, pruebas eléctricas en motores eléctricos de inducción", trata del mantenimiento predictivo basado en al análisis eléctrico del motor de inducción. Este tipo de mantenimiento predictivo ayuda a diagnosticar el estado eléctrico del motor, mediante un sistema ordenado de pruebas eléctricas se puede saber el estado y estimar el tiempo de trabajo útil del motor hasta un próximo mantenimiento (16).

Según la investigación, las causas principales de fallas eléctricas son la calidad de alimentación, circuito de potencia, condición del estator, condición del rotor y el entrehierro, por lo que se han realizado ensayos para su "análisis y posterior diagnóstico, el motor será evaluado con las pruebas redactadas en esta investigación, además se mostrarán los datos del motor y datos del ensayo aplicando los diferentes instrumentos que sean necesarios" (16).

Dakei				
Re	sultado de p	rueba		
Prueba de HiPot – Estator a masa	9.0 kVDC	Durante 1 min	:	Bien
Prueba de pulsos al bobinado del estator	9.0 kVDC	En las 3 fases	:	Bien
*N	orma IEEE 95	-2002		

 Tabla 8. Resultados de pruebas de HiPot y pulsos al bobinado del estator con equipo

 Baker

Nota: tomada de Mantenimiento predictivo, pruebas eléctricas en motores eléctricos de inducción (16)

Por lo tanto, la metodología usada en esta investigación con la realización de pruebas estáticas, pruebas dinámicas y análisis de vibraciones garantizan el funcionamiento del motor de inducción y ayudan a predecir una futura falla en el motor de inducción (16).

El trabajo de tesis de Victoria et al. (17) "Diagnóstico de fallas en el rotor de motores de inducción de jaula de ardilla mediante el método de análisis espectral de corrientes: fundamento teórico y ejemplo práctico", la investigación estudia los fundamentos teóricos que sustentan el análisis espectral de corrientes en el diagnóstico de fallas en motores de inducción en funcionamiento. También dará a conocer las ventajas que contiene el método espectral y los aportes en el desarrollo de la investigación en mantenimiento de motores para procesos industriales (17).

Según la investigación, la "finalidad del mantenimiento predictivo es la detección de la avería cuando se encuentra en estado incipiente, será necesario emplear técnicas de análisis y detección que permitan identificarla cuando todavía no haya producido efectos notables en el comportamiento del equipo" (17).

Figura 15. Característica mecánica de un motor de inducción (17)

Finalmente, se puede establecer que las fallas en los rotores de tipo jaula de ardilla suelen estar relacionadas con las altas temperaturas alcanzadas durante la operación y con las elevadas fuerzas centrifugas que soportan tanto barras como anillos de corto circuito, especialmente durante regímenes de funcionamiento transitorio. Es por lo que se analizó matemáticamente, debido a la presencia de barras rotas en la jaula del motor, se pueden determinar qué frecuencias inducen en las corrientes del estator los armónicos de campo, que aparecen debido a la avería, estos armónicos se ven reflejados como componentes espectrales en las corrientes del estator (17).

2.2. Bases teóricas

2.2.1. Calidad en motores de inducción

Es el funcionamiento y la condición de la máquina rotativa en operación, la máquina debe ser operada de acuerdo con los datos nominales de diseño, siguiendo normas aplicables y cumpliendo criterios que establece límites de operación, es la evaluación de la "operación del motor, identificando las operaciones estresantes y sus causas. Observando el factor de servicio efectivo, la condición operativa, la eficiencia. Los problemas que se encuentran por lo general incluyen: sobrecarga térmica del motor y reconocimiento del deterioro del equipo, entre otros ítems directamente relacionados con la condición del motor y la energía que se pierde por ineficiencias" (18).

"[...] respecto a la carga, una combinación de condiciones ambientales y un estado de urgencia de la máquina pueden autorizar el ajuste del nivel de umbral en una determinada medición a un valor más alto o más bajo" (18).

"[...] si se trata de la condición de operación, hay que tener en cuenta que cada motor de inducción tiene una curva característica de operación de torque-velocidad y corriente-velocidad" (18).

2.2.2. Calidad de alimentación

La calidad de la potencia se refiere a la condición de la señal de voltaje y corriente, dentro de los mecanismos que pueden desmejorar la calidad son las cargas monofásicas y trifásicas no lineales, variadores de frecuencia, equipos de arranque o de frenado, los picos de voltaje. Cualquiera de estos puede causar armónicos sobre el sistema de distribución el cual puede resultar en el sobrecalentamiento del sistema de aislamiento (16).

2.2.3. Calidad de energía eléctrica

Es un indicador del nivel de fuente eléctrica (red eléctrica), en términos generales es un conjunto de propiedades inherentes tanto al servicio como a la señal de tensión o corriente eléctrica que permiten apreciarla como igual, mejor o peor que otras. Por lo tanto, debe considerar tanto la continuidad del servicio como la calidad de las señales de tensión y corriente eléctrica, en un tiempo dado y en un espacio determinado de un sistema de potencia eléctrico (19).

La influencia de la calidad de energía en motores, "los problemas de calidad de energía causan estrés adicional al motor, estos comprenden los problemas frecuentes que se generan relacionados con el nivel de voltaje, equilibrio de voltaje, distorsión armónica, distorsión total, potencia y armónicos" (18).

Una baja calidad de energía causa incremento de temperatura y a la vez por cada 10 °C de incremento de temperatura, la vida del aislamiento se reduce a la mitad. Una condición de desbalance de voltaje causa corrientes de secuencias negativas dentro del inductor, lo cual genera un exceso de calor (18).

2.2.4. Distorsión armónica

Representación cuantitativa de la distorsión a partir de una forma de onda sinusoidal pura. La distorsión armónica es debida a cargas no lineales, o a cargas en las que la forma de onda de la corriente no conforma a la forma de onda del voltaje de alimentación (20).

2.2.5. Desbalance de voltaje

Máxima desviación entre las tres fases del voltaje trifásico promedio dividido por el voltaje trifásico promedio. Por ejemplo, si los voltajes entre fases son 230 V, 232 V y 225 V, el voltaje promedio es de 229 V, la máxima desviación del voltaje promedio es de 4 V, de manera que el desbalance es de 100 • (4/229) = 1.7 % (20).

De acuerdo a la norma NEMA ningún motor debe ser operado con desbalances de tensión mayores a un 5 % (18).

"[...] Un desequilibrio de voltaje puede causar un desequilibrio de corriente del 6-7 %, según la Asociación de Servicio de Aparatos Eléctricos (EASA)" (16).

"[...] Un desequilibrio de voltaje del 3.5 % puede aumentar la temperatura de los devanados en un 2.5 %, según el instituto de investigación de potencia eléctrica (EPRI)" (16).

Mientas mayor sea el desequilibrio de voltaje, mayor la temperatura en los devanados y, por lo tanto, el motor fallará pronto. Los estándares NEMA recomiendan un desequilibrio del 1 % (MG 1- 12.45) (16).

2.2.6. Rotura de barras del rotor

Las barras del rotor están sometidas a importantes esfuerzos electrodinámicos debido a las elevadas corrientes que pueden circular por ellas. Este fenómeno se acrecienta durante ciertos transitorios, como el arranque. Durante el transitorio de arranque, las barras sufren gradientes térmicos importantes, y se acrecientan los esfuerzos y la fatiga, principalmente en las uniones entre las barras y los anillos de cortocircuito. Eso puede conllevar la aparición de microgrietas por las que puede progresar la rotura completa de barra. El fenómeno se agrava en el caso de arranques frecuentes y pesados (con elevada inercia), ya que se puede probar que el calor disipado en la jaula es función de la inercia a mover, contribuyendo así a que los fenómenos antes citados se hagan más severos (21).

2.2.7. Pruebas eléctricas en régimen dinámico

Las pruebas dinámicas a motores proveen información acerca de las condiciones de la calidad de energía, estado del motor, la carga, y el impacto que estas condiciones tienen en el estado y rendimiento del motor eléctrico, a continuación, se describe cada prueba que se realiza (22):

- Calidad de alimentación: nivel de tensión, desequilibrio de tensión, distorsión de armónicos, distorsión total, potencia, armónicos.
- Eficiencia de la máquina: factor de servicio efectivo, carga, condición de operación, eficacia, período de utilidad.
- Corriente: sobrecorriente, desequilibrios de corriente.
- Espectro: barra del rotor, espectro de V/I, armónicos.

El análisis dinámico realizado al motor consiste en un monitoreo totalmente remoto desde el motor control center (MCC) identificando posibles problemas de alimentación que degradan la salud del motor, examinando condiciones del motor en general y monitoreo de carga (23).

Las conexiones se realizan directamente en el tablero de control después de los transformadores de potencial PT y de corriente CT (ver figura 16).

Figura 16. Esquema de conexión directa para pruebas dinámicas con equipo SKF Explorer 4000 (22)

2.2.8. Circuito de potencia

El circuito de potencia se refiere a todos los conductores y conexiones que existen desde las barras que suministran la potencia hasta los terminales del motor. Estos pueden incluir interruptores, fusibles, contactores, protección contra sobrecarga, seccionadores y borneras (16).

"[...] comprende la zona desde el CCM hasta la caja de bornes de conexión del motor (involucrando todos los interruptores, conectores de los bornes, cuchillas, contactores, fusibles y protecciones térmicas)" (18).

Según las estadísticas, el 46 % de las fallas en los motores se han producido por falsos contactos, por lo que muchas veces el motor se

encuentra en buen estado, pero ha sido montado en un circuito de potencia defectuoso que al final lo termina dañando (24).

2.2.9. Condición de operación del motor

Cada motor de inducción tiene una curva de operación de torsión velocidad y corriente - velocidad característica. Estas curvas variarán su firma si la operación de un motor de inducción cambia de una condición positiva a una condición con fallas. Por ejemplo, un aumento en la temperatura de operación, condiciones ambientales cambiantes, condiciones variadas de suministro de energía o jaulas del rotor rotas pueden alterar la condición de operación de un motor (22).

Diferencias en la condición de operación puede indicar dos cosas:

- Un cambio en el proceso de operación, o
- Una condición que puede influenciar la operación del motor

Un resultado de advertencia no necesariamente implica un defecto en la máquina, la carga o el suministro de energía. Sin embargo, es importante controlar la condición de operación de la máquina. Cualquier cambio identificable puede afectar la operación futura del motor (22).

2.2.10. Eficiencia de los motores de inducción

"[...] los motores eléctricos transforman la potencia eléctrica en potencia mecánica, esta transformación no es cien por ciento útil debido a que existen pérdidas de diferentes tipos" (21).

"[...] la eficiencia de los motores es la relación de la potencia útil que proporciona el motor en el eje (potencia mecánica, Pm) y la potencia eléctrica demandada (Pe) que es la que suministra la red eléctrica, como se representa" (21).

En la fórmula 2, a continuación:

$$n = \frac{P_m}{P_e} x 100\% \tag{2}$$

2.2.11. Análisis espectral de la corriente en el dominio de la frecuencia

El análisis espectral de la corriente en el dominio de la frecuencia (CSA) tiene como objetivo la detección de barras rotas del rotor y el cortocircuito o agrietado en rotores del motor de inducción jaula de ardilla. El CSA se hace en línea o a plena carga. La corriente en una fase del motor es analizada para ver su contenido en cuanto a componentes de frecuencia. Las frecuencias específicas en espectro de corriente indican la presencia de bobinas defectuosas del rotor durante la operación normal del motor. El CSA encuentra los siguientes problemas, como mínimo (25):

- Bobinas del rotor con grandes vacíos internos.
- Barras agrietadas del rotor.

2.2.12. Motor de inducción

Es una máquina eléctrica en la cual el voltaje del rotor (que a su vez produce la corriente y el campo magnético del rotor) es inducido en el devanado del rotor sin que existan conexiones físicas por medio de conductores. Un motor de inducción se distingue porque no necesita de corriente de excitación para funcionar (13).

Los motores eléctricos o inducción son máquinas rotatorias que transforman la energía eléctrica en energía mecánica. Debido a sus múltiples ventajas, entre las que cabe citar su economía, limpieza, comodidad y seguridad de funcionamiento, el motor eléctrico ha reemplazado en gran parte a otros sistemas, tanto en la industria como en el transporte, las minas, el comercio o el hogar (26).

2.2.13. Fallas en motores de asíncronos trifásicos

Un motor de inducción es un sistema electromecánico, por lo que pueden presentarse fallas de naturaleza eléctrica y mecánica. De acuerdo con estadísticas de fallas en máquinas, se ha reportado el porcentaje de fallas de acuerdo con el elemento constitutivo del motor en el que ocurre la falla (27), tal como se observa en la figura 17.

Figura 17. Porcentaje de fallas en motores asíncronos trifásicos (27)

2.3. Definición de términos básicos

Máquina eléctrica: "[...] es un dispositivo que puede convertir energía mecánica en energía eléctrica o energía eléctrica en energía mecánica" (28).

Rigidez dieléctrica (Er): "[...] es la intensidad del campo magnético con la que tiene lugar la perforación o ruptura del dieléctrico" (29).

Envejecimiento térmico: "[...] es un proceso de deterioro lento y progresivo que se ve influenciado por la acción combinada de la temperatura y la contaminación ambiental" (29).

Potencia: "[...] es la tasa a la cual se realiza trabajo o el incremento de trabajo por unidad de tiempo" (28).

Índice de carga o factor de utilización: "[...] es el cociente entre la potencia aparente útil S y la asignada S_N " (30).

Asimetría retórica: "[...] es la rotura o agrietamiento de las barras o anillos de la jaula rotórica y las modificaciones en el tamaño del entrehierro conocidas como excentricidades estática y dinámica" (17).

La transformada rápida de Fourier: "[...] conocida con las siglas FFT, es un algoritmo para el cálculo aproximado de la transformada discreta de Fourier" (17).

Pruebas eléctricas no destructivas: "[...] estas pruebas se llaman así por no afectar el estado del bobinado del motor durante su aplicación. Estas se aplican antes de realizar las pruebas eléctricas destructivas por ser primordiales para saber el estado eléctrico básico del motor" (16).

Pruebas eléctricas destructivas: "[...] como su nombre lo indica, estas pruebas pueden afectar el estado del bobinado y hasta puede ocasionar daños irreversibles si se aplica sin tener las consideraciones necesarias para este tipo de pruebas" (16).

Pruebas de resistencia óhmica: "[...] esta prueba se basa en medir primeramente si existe o no continuidad entre bobinas, para luego medir la resistencia óhmica, la cual no debe de variar más del 5 %, ya que habría un desequilibrio eléctrico" (16).

Índice de absorción dieléctrica (DAI): es la resistencia medida en un 1 minuto entre la resistencia medida a los 30 segundos, esta medida sirve para determinar de una manera rápida si la resistencia de aislamiento es buena o no, es decir da a conocer la tendencia de la curva si se compara resistencia vs. tiempo (16).

Índice de polarización (DAI): "[...] se define como la relación entre la resistencia de aislamiento medida a 10 minutos y a 1 minuto después de aplicada una tensión continúa de prueba. Durante esos 10 minutos el nivel de tensión deberá ser estable" (16).

CAPÍTULO III METODOLOGÍA

3.1. Método de investigación

La presente investigación "Análisis de calidad en motores de inducción mediante pruebas eléctricas en régimen dinámico", en esta investigación se utilizará el método científico, ya que se dispone a evaluar resultados y con ello lograr posibles propuestas de solución" (31).

Además, ya que la investigación "es un procedimiento para descubrir las condiciones en que se presentan sucesos específicos de razonamiento riguroso y observación empírica" (7).

3.2. Tipo de investigación

La investigación por desarrollar es del tipo científico básico, puesto que se evaluaron y se describieron eventos que se suscitan en la presente investigación, ya que esta busca aumentar el conocimiento científico por medio de la observación de cómo suceden los fenómenos en la realidad (31).

3.3. Alcance de la investigación (nivel)

En la investigación "Análisis de calidad en motores de inducción mediante pruebas eléctricas en régimen dinámico" se encuentra el nivel de investigación aplicativo, ya que "tiene como propósito aplicar los resultados de las pruebas en régimen dinámico como análisis de información" (7), puesto a que se busca dar soluciones y así dar una mejor calidad a motor de inducción, con previa evaluación preventiva con equipo analizador dinámico.

3.4. Diseño de la investigación

En la presente investigación se desarrolló el diseño descriptivo comparativo puesto que "recoge información actualizada de varias muestras sobre un mismo objeto de investigación y lo caracteriza sobre la base de una comparación" (31).

$$M_{1} \neq O_{1}$$

$$M_{2} \neq O_{2} \qquad \approx \approx \approx$$

$$M_{3} \neq O_{3} \qquad O_{1} = O_{2} = O_{3} = O_{n}$$

$$\neq \neq \neq \neq$$

$$M_{n} \neq O_{n}$$

Figura 18. Diagrama de diseño de investigación descriptiva comparativa (31)

Donde

M1, M2, M3, Mn: son los motores de inducción que se midieron en sus tableros de control y fuerza.

O1, O2, O3, On: son los datos por obtener de cada muestra para ser comparada y analizada y con ello determinar una conclusión.

Se describieron y analizaron los parámetros obtenidos de las mediciones de las pruebas dinámicas (on-line) de los diferentes motores de inducción de rotor jaula de ardilla.

3.5. Población y muestra

Población: en la presente investigación se tendrá como población a todos los motores de inducción de la planta minera Óxidos de Pasco.

Muestra: en la presente investigación se tendrá como muestra a los motores del Área de Molienda: tres motores de inducción trifásicos de C. A. de alta potencia. A los cuáles se realizará las mediciones respectivas y con ello analizar y evaluar la calidad de los motores de inducción.

Máquina de Inducción	Descripción	Unidad Minera
Motor trifásico de 1250 HP	Motor trifásico de inducción de marca Siemens de potencia 1250 HP del molino de bolas terciario 200-ML-003 del área de Molienda.	Volcán Compañía Minera S. A. A. Planta Óxidos – Cerro de Pasco
Motor trifásico de 1250 HP	Motor trifásico de inducción de marca Siemens de potencia 1250 HP del molino de bolas secundario 200-ML-002 del área de Molienda.	Volcán Compañía Minera S. A. A Planta Óxidos – Cerro de Pasco
Motor trifásico de 900 HP	Motor trifásico de inducción de marca Siemens de potencia 900 HP del molino de barras 200-ML- 001 del área de Molienda.	Volcán Compañía Minera S. A. A Planta Óxidos – Cerro de Pasco

 Tabla 9. Descripción de los motores de inducción para medición y análisis

Tabla 10. Datos de	placa de motores	bajo prueba
--------------------	------------------	-------------

	Marca	Siemens
	Serie	3003819218-20
Matar da halas securdaria	Potencia	1250 HP
	Tensión	2300/4000 V
125082-002	Corriente	278/161 A
	Velocidad	1193 rpm
	Frecuencia	60 Hz
	Marca Serie	Siemens 3003819218-30
•• · · · · · · ·	Potencia	1250 HP
Motor de bolas terciario	Tensión	2300/4000 V
1250HP-003	Corriente	278/161 A
	Velocidad	1193 rpm
	Frecuencia	60 Hz
	Marca	Siemens
	Serie	3003819218-10
	Potencia	900 HP
Molino de barras 900HP	Tensión	2300/4000 V
	Corriente	201/116 A
	Velocidad	1192 rpm
	Frecuencia	60 Hz

3.6. Técnicas e instrumentos de recolección de datos

La técnica que se utilizó para la recolección de datos fue empírica - observacional, ya que "permite la observación en contacto directo con el objeto en

estudio, además permite acumular y sistematizar información sobre el objeto de investigación que tiene relación con el problema de investigación" (31).

Instrumento de recolección de datos: se utilizó como instrumento al equipo analizador dinámico para motores Explorer 4000 SKF, el cual permite monitorear y analizar los diferentes parámetros con el motor en operación.

Equipo de prueba	Descripción	Función
Analizador de motor dinámico SKF: Baker Explorer 4000	Es una herramienta potente diseñada para el uso en el campo o terreno para analizar el motor en marcha con su carga normal. Realiza el seguimiento de varios tipos de datos para identificar tendencias que indican problemas potenciales. Se miden el voltaje y la corriente y luego se calcula una serie de parámetros, incluidos la calidad de energía, la condición de las barras del rotor, el porcentaje de carga, el porcentaje de eficiencia, el valor torque promedio, el rizado de torque mostrando las variaciones dentro del proceso, el monitoreo de los arranques del motor (voltaje, corriente y torque) y mucho más.	Permite un análisis de la raíz-causa comenzando con la separación de los problemas mecánicos y eléctricos que se puedan presentar en un sistema motor-máquina. Mediante el monitoreo de muchos parámetros diferentes y con el uso de algoritmos avanzados de software, el EXP4000 está diseñado para identificar los retos en el sistema, incluidos los relacionados con la alimentación, el variador de frecuencia, el motor y la carga.

Tabla 11. Descripción de equipo de prueba para recolección de datos

Nota: tomada del Manual de Analizador de motor dinámico SKF

3.7. Técnicas de procesamiento de datos

La técnica de procesamiento de datos es la estadística descriptiva, ya que propone "la descripción de los datos obtenidos, acerca de las variables se describe mediante cuadros estadísticos de frecuencia, dispersión y tendencia central" (31).

Machine	Tabla de procesamiento de parámetros	
Database	Tested by	
Location	Tested for	
Building	Explorer SN#	
Test Date	Test Time	
	Name Plate Measured	
Output Power [kW]		
Speed [RPM]		
RMS [V]		
RMS [A]		
pf [p.u.]		
Nema Derating [p.u.]		

Tabla 12. Formato de procesamiento de parámetros de prueba on-line de máquina monitoreada

Torque [[Nm]]					
Efficiency					
Percent Load					
Test	Value	Status	Caut. Level	Warn. Level	
Voltage Level (Over) [%]					
Voltage Level (Under) [%]					
Voltage Unbalance [%]					
THD [% of fund.]					
Total, Distortion [% of fund.]					
Current Level [%]					
Current Unbalance [%]					
Load [%]					
Ef. Service Factor [p.u.]					
Rotor Bar [db]					
Op. Point [%]					
Loss Difference [%]					
Payback [Months]					

Nota: tomada de Maleta de Pruebas SKF Explorer 4000

CAPÍTULO IV RESULTADOS Y DISCUSIÓN

4.1. Resultados del tratamiento y análisis de la información

Datos tomados de la unidad minera planta Óxidos – Área de Molienda.

Aplicación de pruebas eléctricas en régimen dinámico como método útil para analizar la calidad en motores de inducción.

La hipótesis fundamental de este análisis demuestra que, al aplicar las pruebas eléctricas en régimen dinámico, se pueden obtener parámetros que permiten evaluar la calidad en motores de inducción. El procedimiento consiste en tres pasos básicos:

- Selección de muestra para ser sometida a análisis.
- Toma de datos en unidad minera planta Óxidos Volcán Compañía.
- Análisis de evaluación de datos.

4.1.1. Selección de la muestra

Se seleccionaron 3 motores de alta potencia, según datos de placa de 900 HP hasta 1250 HP. La selección se muestra en la tabla 13.

Máquina de inducción	Descripción
Motor trifásico de	Motor trifásico de inducción de marca Siemens de potencia 1250
1250 HP	HP del molino de bolas terciario 200-ML-003 del área de Molienda.
Motor trifásico de 1250 HP	Motor trifásico de inducción de marca Siemens de potencia 1250 HP del molino de bolas secundario 200-ML-002 del área de Molienda.
Motor trifásico de	Motor trifásico de inducción de marca Siemens de potencia 900
900 HP	HP del molino de barras 200-ML-001 del área de Molienda.

Tabla 13. Motores de inducción bajo prueba

4.1.2. Toma de datos

Instrumentos para la toma de datos: equipo analizador dinámico para motores Explorer 4000 SKF, el cual permitirá monitorear y analizar los diferentes parámetros con el motor en operación.

Figura 19. Analizador dinámico de motores Baker Explorer 4000. Tomada de SKF

4.2. Resultados de pruebas dinámicas en motores de inducción

4.2.1. Resultados de pruebas en el motor 200ML003

Resultados obtenidos en las pruebas en régimen dinámico para el motor de inducción de 1250 HP con denominación 200ML003.

Motor	1250HP - 200ML003	Resultados obtenidos
	Tensión	4218.9 V
	Desbalance de tensión	0.04
	Desbalance de corriente	0.88
	Distorsión armónica de tensión	0.7
	Armónicos de tensión Vh	
	3 orden	0.19
	5 orden	0.34
	7 orden	0.68
Calidad de	9 orden	0.05
energia	11 orden	0.09
	13 orden	0.075
	Armónicos de corriente lh	
	3 orden	0.25
	5 orden	0.41
	7 orden	0.83
	9 orden	0.51
	11 orden	0.07
	13 orden	0.06
	Factor de potencia	0.88
Condición dol	Factor de servicio	0.74
motor	Carga	74.5%
motor	Rendimiento	95.2%
Barras del	Rotor bar	- 49 dB
rotor y torque	Torque	5000-6000 N-m

Tabla 14. Resultados obtenidos del motor 200ML003

4.2.2. Resultados de pruebas en el motor 200ML002

Resultados obtenidos en las pruebas en régimen dinámico para el motor de inducción de 1250 HP con denominación 200ML002.

	Motor 1250HP - 200ML002	Resultados obtenidos
	Tensión	4159.3 V
	Desbalance de tensión	0.04
	Desbalance de corriente	1.99
	Distorsión armónica de tensión	1.00
	Armónicos de tensión Vh	
	3 orden	0.17
Calidad	5 orden	0.73
Calidad	7 orden	0.71
ue	9 orden	0.14
energia	11 orden	0.32
	13 orden	0.085
	Armónicos de corriente lh	
	3 orden	0.27
	5 orden	1.1
	7 orden	0.91
	9 orden	0.15
	11 orden	0.26

	13 orden	0.07
	Factor de potencia	0.88
Condición	Factor de servicio	0.7
condicion	Carga	69.7 %
del motor	Rendimiento	95.3 %
Barras del	Rotor bar	- 56 db
rotor y		
torque	Torque	4800-6000 N-m

4.2.3. Resultados de pruebas en el motor 200ML001

Resultados obtenidos en las pruebas en régimen dinámico para el motor de inducción de 900 HP con denominación 200ML001.

- -

	Motor 900HP - 200ML001	obtenidos
	Tensión	4171.3 V
	Desbalance de tensión	1.94
	Desbalance de corriente	2.05
	Distorsión armónica de tensión	0.80
	Armónicos de tensión Vh	
	3 orden	0.29
	5 orden	0.77
Colidad	7 orden	0.46
Calldad	9 orden	0.13
ae	11 orden	0.04
energia	13 orden	0.12
	Armónicos de corriente Ih	
	3 orden	0.45
	5 orden	1.41
	7 orden	0.53
	9 orden	0.15
	11 orden	0.05
	13 orden	0.1
	Factor de potencia	0.88
Condición	Factor de servicio	0.77
del meter	Carga	73.2 %
	Rendimiento	95.6 %
Barras del	Rotor bar	- 32 db
rotor y	Torque	1550-6500 N-m
	101900	

 Tabla 16. Estado de resultados del motor 200ML001.

4.3. Prueba de hipótesis

De los resultados obtenidos de las pruebas en régimen dinámico de los motores de inducción, se tienen que obtener resultados que se encuentren dentro de los límites de tolerancia por norma.

Мо	tor 1250HP - 200ML003	Resultados obtenidos	Resultados a obtener
	Tensión	4218.9 V	Sin caída de tensión < +-5 %
	Desbalance de tensión	0.04	Óptimo <2 %
	Distorsión armónica de tensión	0.07	Óptimo <5 %
	Armóni	cos de tensió	on Vh
	3 orden	0.19	Óptimo <5 %
	5 orden	0.34	Óptimo <6 %
	7 orden	0.68	Óptimo <5 %
Calidad	9 orden	0.05	Óptimo <1.5 %
de	11 orden	0.09	Óptimo <3.5 %
oporaía	13 orden	0.075	Óptimo <3.0 %
energia	Armónio	cos de corrie	nte lh
	3 orden	0.25	Óptimo <4 %
	5 orden	0.41	Óptimo <4 %
	7 orden	0.83	Óptimo <4 %
	9 orden	0.51	Óptimo <4 %
	11 orden	0.07	Óptimo <2 %
	13 orden	0.06	Óptimo <2 %
	Factor de Potencia	0.88	Óptimo >= 0.9
Condición	Factor de servicio	0.74	1
dol motor	Carga	74.5%	óptimo > 70 %
del motor	Rendimiento	95.2%	óptimo = 100 %
Barras	Rotor bar	- 49 db	Óptimo >-43 db límite de ruptura
del rotor y		5000-6000	•
torque	Torque	N-m	Óptimo <7500 N-m

Tabla 17. Resultados a obtener en pruek	bas de motor 200ML003
---	-----------------------

Tabla 18. Resultados a obtener en pruebas de motor 200M	L 002

Мо	tor 1250HP - 200ML002	Resultados obtenidos	Resultados a obtener
	Tensión	4159.3 V	Sin caída de tensión < +-5 %
	Desbalance de tensión	0.04	Óptimo <2 %
	Distorsión armónica de tensión	1.00	Óptimo <5 %
	Armó	nicos de tens	sión Vh
	3 orden	0.17	Óptimo <5 %
	5 orden	0.73	Óptimo <6 %
	7 orden	0.71	Óptimo <5 %
Calidad	9 orden	0.14	Óptimo <1.5 %
de	11 orden	0.32	Óptimo <3.5 %
energía	13 orden	0.085	Óptimo <3.0 %
	Armór	nicos de corri	iente Ih
	3 orden	0.27	Óptimo <4 %
	5 orden	1.1	Óptimo <4 %
	7 orden	0.91	Óptimo <4 %
	9 orden	0.15	Óptimo <4 %
	11 orden	0.26	Óptimo <2 %
	13 orden	0.07	Óptimo <2 %
	Factor de potencia	0.88	Optimo >= 0.90
Condición	Factor de servicio	0.7	1.00
del motor	Carga	69.7%	óptimo > 70 %
	Rendimiento	95.3%	óptimo = 100 %
	Rotor bar	- 56 db	Óptimo >-43 db límite de ruptura

Barras del			
rotor y		4800-6000	
torque	Torque	N-m	Óptimo <7500 N-m

	Motor 900HP - 200ML001	Resultados obtenidos	Resultados a obtener				
	Tensión	4171.3 V	Sin caída de tensión < +-5 %				
	Desbalance de tensión	1.94	Óptimo <2 %				
	Distorsión armónica de tensión	0.80	Óptimo <5 %				
	Armónicos de tensión Vh						
	3 orden	0.29	Óptimo <5 %				
	5 orden	0.77	Óptimo <6 %				
	7 orden	0.46	Óptimo <5 %				
Calidad	9 orden	0.13	Óptimo <1.5 %				
de	11 orden	0.04	Óptimo <3.5 %				
energía	13 orden	0.12	Óptimo <3.0 %				
	Armónicos	e lh					
	3 orden	0.45	Óptimo <4 %				
	5 orden	1.41	Óptimo <4 %				
	7 orden	0.53	Óptimo <4 %				
	9 orden	0.15	Óptimo <4 %				
	11 orden	0.05	Óptimo <2 %				
	13 orden	0.1	Óptimo <2 %				
	Factor de Potencia	0.88	Óptimo >= 0.90				
Condición	Factor de servicio	0.77	1				
dol motor	Carga	73.2%	Óptimo > 70 %				
	Rendimiento	95.6%	Óptimo = 100 %				
Barras	Rotor bar	- 32 db	No óptimo >-30 db límite de ruptura				
del rotor v		1550-6500	•				
torque	Torque	N-m	No óptimo <7500 N-m				

Tabla 19. Resultados a obtener en pruebas de motor 200ML001

4.4. Discusión e interpretación de resultados

4.4.1. Interpretación de resultados

4.4.1.1. Análisis de tensión

A. Análisis del motor 200ML003

Figura 20. Niveles de tensión obtenidas en prueba de motor 200ML003. Tomada de Maleta de Pruebas SKF Explorer 4000

Se ha obtenido los siguientes resultados de las mediciones realizadas de los parámetros eléctricos en el motor 200ML003 de 1250 HP, se ha obtenido los siguientes valores de perfiles de tensión en media tensión:

Tabla 20. Analisis de la tension Rivis en el motor 200mL003.								
Ítem	Punto eléctrico	Fases	Tensión de operación (kV _{f-t})	Tensión RMS (V) Promedio	Tolerancia NTCSE (V)			
1	Motor	L12	4.16	4220.8	[4368 – 3952]			
2	eléctrico	L23	4.16	4217.5	[4368 – 3952]			
3	1250 HP-003	L31	4.16	4218.4	[4368 – 3952]			

Tabla 00. Anéliaia da la tanaién DNC an al matan 000MI 000

Nota: tomada de Maleta de Pruebas SKF Explorer 4000

En la tabla 20 se muestran los perfiles de tensión, se encuentran dentro de las tolerancias por norma NTCSE (+-5 %) de la tensión nominal de alimentación del motor.

- Análisis de desbalance de tensión:

Se ha obtenido los siguientes resultados de las mediciones realizadas de los parámetros eléctricos en el motor 200ML003 de 1250 HP, se ha obtenido el valor de desbalance de tensión con motor en funcionamiento:

Tensión Tensión de operación Porcentaje de promedio Tolerancia Motor (kV) desbalance (%) (kV) Fase Fase Fase Resultado V Calculado Normativa Avg. RS RS RS en prueba desbal 200ML003 4220.8 4217.5 4218.4 4218.9 0.0332% 0.04% 2% EN-50160

Tabla 21. Análisis de desbalance de tensión en el motor 200ML003

Nota: tomada de Maleta de Pruebas SKF Explorer 4000

En la tabla 21 se tiene el valor de desbalance de tensión en el motor 200MCL003, para obtener dicho resultado se ha calculado la máxima desviación de tensión del promedio (1.4V) sobre la tensión promedio total (4218.9V), obtenido como resultado 0.03 % de desbalance. De los resultados obtenidos en la prueba dinámica (on-line) el desbalance es del 0.04 %. Según el estándar EN-50160, los valores son aceptables hasta +/-2 %.

Nota: De acuerdo a la norma NEMA ningún motor debe ser operado con desbalance de tensión mayor a un 5 %.
B. Análisis del motor 200ML002

Figura 21. Niveles de tensión obtenidas en prueba de motor 200ML002. Tomada de Maleta de Pruebas SKF Explorer 4000

Análisis de tensión

Se ha obtenido los siguientes resultados de las mediciones realizadas de los parámetros eléctricos en el motor 200ML002 de 1250 HP, se ha obtenido los siguientes valores de perfiles de tensión en media tensión:

Ítem	Punto eléctrico	Fases	Tensión de operación (kV _{f-t})	Tensión RMS (V) Promedio	Tolerancia NTCSE (V)
1	Motor	L12	4.16	4158.9	[4368-3952]
2	eléctrico	L23	4.16	4158.1	[4368-3952]
3	1250 HP-002	L31	4.16	4160.9	[4368-3952]
		· <u> </u>			

Tabla 22. Análisis de la tensión RMS en el motor 200ML002

Nota: tomada de Maleta de Pruebas SKF Explorer 4000

En la tabla 22 se muestran los perfiles de tensión se encuentran dentro de las tolerancias por norma NTCSE (+-5 %) de la tensión nominal de alimentación del motor.

- Análisis de desbalance de tensión

Se ha obtenido los siguientes resultados de las mediciones realizadas de los parámetros eléctricos en el motor 200ML002 de 1250 HP, se ha obtenido el valor de desbalance de tensión con motor en funcionamiento:

otor	Tensión de operación (kV)		e «V)	Tensión promedio (kV)	Porcen desbala	taje de ance (%)	Tolerancia		
Σ	Fase RS	Fase RS	Fase RS	Avg.	Calculado	Resultado en prueba	V desbal.	Normativa	
200ML002	4158.9	4158.1	4160.9	4159.3	0.0289%	0.04%	2%	EN-50160	

Tabla 23. Análisis de desbalance de tensión en el motor 200ML002

Nota: tomada de Maleta de Pruebas SKF Explorer 4000

En la tabla 23 se tiene el valor de desbalance de tensión en el motor 200MCL002, para obtener dicho resultado se ha calculado la máxima desviación de tensión del promedio (1.2V) sobre la tensión promedio total (4159.3V), obtenido como resultado 0.0289 % de desbalance. De los resultados obtenidos en la prueba dinámica (on-line) el desbalance es del 0.04 %. Según el estándar EN-50160, los valores son aceptables hasta +/-2 %.

C. Análisis del motor 200ML001

Figura 22. Niveles de tensión obtenidas en prueba de motor 200ML001. Tomada de Maleta de Pruebas SKF Explorer 4000

- Análisis de tensión

Se ha obtenido los siguientes resultados de las mediciones realizadas de los parámetros eléctricos en el motor 200ML001 de 900 HP, se ha obtenido los siguientes valores de perfiles de tensión en media tensión:

	24. Analisis C		Tensión de	Tensión RMS	01
Ítem	Punto eléctrico	Fases	operación (kV _{f-t})	(V) promedio	Tolerancia NTCSE (V)
1		L12	4.16	4189 4	[4368 –
	Motor			4100.4	3952]
2	NICIOI	L23	4.16	4004-4	[4368 –
				4234.1	3952]
3	900 HP-001	L31	4.16	4000 F	[4368 –
				4090.5	39521

Tabla 24. Análisis de la tensión RMS en el motor 200ML001

Nota: tomada de Maleta de Pruebas SKF Explorer 4000

En la tabla 24 se muestran los perfiles de tensión, se encuentran dentro de las tolerancias por norma NTCSE (+-5 %) de la tensión nominal de alimentación del motor.

- Análisis de desbalance de tensión

Se ha obtenido los siguientes resultados de las mediciones realizadas de los parámetros eléctricos en el motor 200ML001 de 900 HP, se ha obtenido el valor de desbalance de tensión con motor en funcionamiento:

 Tabla 25. Análisis de desbalance de tensión en el motor 200ML001

Motor	Tensió	n de ope (kV)	eración	Tensión promedio (kV)	Porcent desbala	taje de Ince (%)	Tolerancia			
	Fase RS	Fase RS	Fase RS	Avg.	Calculado	Resultado en prueba	✔ Desbal.	Normativa		
001-900 HP	4189.4	4234.1	4090.5	4171.3	1.9378 %	1.94 %	2 %	EN-50160		
Nota: tomada	Vota: tomada de Maleta de Pruebas SKF Explorer 4000									

En la tabla 25 se tiene el valor de desbalance de tensión en el motor 200MCL001, para obtener dicho resultado se ha calculado la máxima desviación de tensión del promedio (80.8 V) sobre la tensión promedio total (4171.3V), obtenido como resultado 1.937 % de desbalance. De los resultados obtenidos en la prueba dinámica (online) el desbalance es del 1.94 %. Según el estándar EN-50160, los valores son aceptables hasta +/-2 %.

4.4.1.2. Análisis de corriente eléctrica

A. Análisis del motor 200ML003

Se ha obtenido los siguientes resultados de las mediciones realizadas de los parámetros eléctricos en el motor 200ML003 de 1250 HP, se ha obtenido los siguientes valores de corriente:

Tabla 26. Niveles de corriente eléctrica obtenidos en el motor 200ML003											
ĺtem	Punto eléctrico	Fases	Corriente de operación (A _{f-t})	Corriente (A) RMS	Corriente (A) promedio						
1	Motor	L12	161.0	113.0							
2	eléctrico	L23	161.0	114.5	113.5						
3	1250 HP	L31	161.0	113.0							

Nota: tomada de Maleta de Pruebas SKF Explorer 4000

En la tabla 26 se muestran los perfiles de corriente se encuentran dentro de las tolerancias por carga operativa del motor.

El nivel de corriente es de 113.5A que equivale al 70.49 % con una corriente nominal de 161.0 A, la carga operativa del motor se encuentra al 74.5 % lo que indica que el motor puede elevar el nivel de carga a un 25 %, para su óptima eficiencia y operatividad del motor.

Análisis de desbalance de corriente

Se ha obtenido los siguientes resultados de las mediciones realizadas de los parámetros eléctricos en el motor 200ML003 de 1250 HP, se ha obtenido el valor de desbalance de corriente con motor en funcionamiento:

Tabla 27. Niveles de desbalance de corriente obtenidas en el motor 200ML003

Motor	Corriente RMS (A)		Corriente promedio (A)	de desbalance (%)	Tolerancia		
	Fase RS	Fase RS	Fase RS	Avg.	Resultado en prueba	l Desbal.	Normativa
1250 HP	113.0	114.5	113.0	113.5	0.88 %	10 %	NTCSES

Nota: tomada de Maleta de Pruebas SKF Explorer 4000

De acuerdo a la tabla 27, el desbalance de la corriente, como se puede apreciar es menor a 0.88 %, según las "Normas técnicas de calidad del servicio de transporte y sanciones" - NTCSTS Título V, artículo 32, indica textualmente lo siguiente: "se establece una tolerancia de diez por ciento (10 %), para el desbalance de la corriente".

B. Análisis del motor 200ML002

Se ha obtenido los siguientes resultados de las mediciones realizadas de los parámetros eléctricos en el motor 200ML002 de 1250 HP, se ha obtenido los siguientes valores de corriente:

 Tabla 28. Niveles de corriente eléctrica obtenidos en el motor 200ML002

ĺtem	Punto eléctrico	Fases	Corriente de operación (A _{f-t})	Corriente (A) RMS	Corriente (A) promedio
1	Motor	L12	161.0	106.9	
2	eléctrico	L23	161.0	109.2	107.1
3	1250 HP	L31	161.0	105.2	
				1000	

Nota: tomada de Maleta de Pruebas SKF Explorer 4000

En la tabla 28 se muestran los perfiles de corriente, se encuentran dentro de las tolerancias por carga operativa del motor.

El nivel de corriente es de 107.1A que equivale al 66.5 % con una corriente nominal de 161.0 A, la carga operativa del motor se encuentra al 69.7 % lo que indica que el motor puede elevar el nivel de carga a un 30 %, para su óptimo rendimiento y vida útil del motor.

Análisis de desbalance de corriente

Se ha obtenido los siguientes resultados de las mediciones realizadas de los parámetros eléctricos en el motor 200ML002 de 1250 HP, se ha obtenido el valor de desbalance de corriente con motor en funcionamiento:

Motor	Corriente RMS (A)		Corriente promedio (A)	Porcentaje de desbalance (%)	Tole	rancia	
	Fase RS	Fase RS	Fase RS	Avg.	Resultado en prueba	l Desbal.	Normativa
1250 HP	106.9	109.2	105.2	107.1	1.99 %	10 %	NTCSES
			·		1 1000		

 Tabla 29. Niveles de desbalance de tensión obtenidas en el motor 200ML002

Nota: tomada de Maleta de Pruebas SKF Explorer 4000

De acuerdo a la tabla 28, el desbalance de la corriente, como se puede apreciar es menor a 1.99 %, Según las "Normas técnicas de Calidad del Servicio de transporte y Sanciones" - NTCSTS Título V, articulo 32, indica textualmente lo siguiente: "Se establece una tolerancia de diez por ciento (10%), para el desbalance de la corriente".

C. Análisis del motor 200ML001

Motor eléctrico 900

HP

1

2

3

Se ha obtenido los siguientes resultados de las mediciones realizadas de los parámetros eléctricos en el motor 200ML001 de 900 HP, se ha obtenido los siguientes valores de corriente:

Tabla 30. Niveles de corriente eléctrica obtenidos en el motor 200ML001ÍtemPunto eléctricoFasesCorrienteCorrienteCorrientede(A)(A)operación
(Af-t)RMSPromedio

116.0

116.0

116.0

80.8

82.2

79.0

80.7

L12

L23

L31

Nota: tomada de Maleta de Pruebas SKF Explorer 4000

En la tabla 30 se muestran los perfiles de corriente, se encuentran dentro de las tolerancias por carga operativa del motor.

El nivel de corriente es de 107.1A que equivale al 69.6 % con una corriente nominal de 116.0A, la carga operativa del motor se encuentra al 73.2 % lo que indica que el motor puede elevar el nivel de carga a un 25 %, para su óptima eficiencia y operatividad del motor.

Análisis de desbalance de corriente

Se ha obtenido los siguientes resultados de las mediciones realizadas de los parámetros eléctricos en el motor 200ML001 de 900 HP, se ha obtenido el valor de desbalance de corriente con motor en funcionamiento:

Tabla 31.	Niveles	de de	esbalan	ce	de	ten	sión	ob	tenida	is e	n el	moto	or 20	DOML	001
				-			_		-	-					

Motor	Corriente RMS (A)		Corriente promedio (A)	Porcentaje de desbalance (%)	Tolerancia		
	Fase RS	Fase RS	Fase RS	Avg.	Resultado en Prueba	l Desbal.	Normativa
900 HP	80.8	82.2	79.0	80.7	2.05 %	10 %	NTCSES

Nota: tomada de Maleta de Pruebas SKF Explorer 4000

De acuerdo a la tabla 31, el desbalance de la corriente, como se puede apreciar es menor a 2.05 %, según las "Normas técnicas de calidad del servicio de transporte y sanciones" - NTCSTS Título V, articulo 32, indica textualmente lo siguiente: "se establece una tolerancia de diez por ciento (10 %), para el desbalance de la corriente".

4.4.1.3. Análisis de potencias

A. Análisis del motor 200ML003

	Α	В	C A	vg/Sum
kW	241.5	245.8	242.5	729.7
kVAr	132.2	132.0	130.1	394.3
kVA	275.3	279.0	275.2	829.5
PF	0.88	0.88	0.88	0.88

Figura 23. Niveles de potencias y factor de potencia de motor 200ML003. Tomada de la Maleta de Pruebas SKF Explorer 4000

Se puede observar en la figura 23 que se tiene una potencia de trabajo 729.7 kW y potencia aparente 829.5 kVA, la relación de estas dos da un factor de potencia de 0.88, para un óptimo factor de potencia se recomienda \geq 0.96 para calidad de energía, para

máquinas rotativas se recomienda \geq 0.85 lo que permitirá una eficiente utilización de la energía en máquinas rotativas, el factor de potencia depende si aumenta la carga.

	Α	В	С	Avg/Sum
kW	225.5	231.8	224.8	682.2
kVAr	122.5	122.4	115.3	360.2
kVA	256.7	262.2	252.6	771.5
PF	0.88	0.88	0.89	0.88

B. Análisis del motor 200ML002

Figura 24. Niveles de potencias y factor de potencia de motor 200ML002. Tomada de Maleta de Pruebas SKF Explorer 4000.

Se puede observar en la figura 24, que se tiene una potencia de trabajo 682.2 kW y potencia aparente 771.5 kVA, la relación de estas dos da un factor de potencia de 0.88, para un óptimo factor de potencia se recomienda \geq 0.96 para calidad de energía, para máquinas rotativas se recomienda \geq 0.85 lo que permitirá una eficiente utilización de la energía en máquinas rotativas.

C. Análisis del motor 200ML001

	Α	В	СА	vg/Sum
kW	168.8	177.0	168.5	514.3
kVAr	90.8	97.0	86.7	274.5
kVA	191.6	201.8	189.5	583.0
PF	0.88	0.88	0.89	0.88

Figura 25. Niveles de potencias y factor de potencia de motor 200ML001. Tomada de Maleta de Pruebas SKF Explorer 4000

Se puede observar en la figura 25, que se tiene una potencia de trabajo 514.3 kW y potencia aparente 583.0 kVA, la relación de estas dos da un factor de potencia de 0.88, para un óptimo factor de potencia se recomienda \geq 0.96 para calidad de energía, para máquinas rotativas se recomienda \geq 0.85 lo que permitirá una eficiente utilización de la energía en máquinas rotativas.

4.4.1.4. Análisis de armónicos A. Análisis del motor 200ML003

Figura 26. Nivel de distorsión armónica total de tensión y corriente obtenida en prueba de motor 200ML003. Tomada de Maleta de Pruebas SKF Explorer 4000

Análisis de distorsión armónica de tensión

En el presente análisis se analiza el comportamiento de los armónicos de tensión durante el periodo de medición. En cuanto a armónicos de tensión RMS la NTCSE establece lo siguiente: "los valores eficaces (RMS) de las tensiones armónicas individuales (Vh) y los THD, expresado como porcentaje de la tensión nominal del punto de medición respectivo, no deben superar los valores límite (Vh y THD`) indicados en la tabla 33.

La norma IEEE 519-2014 da los límites operativos para tolerancia de distorsión armónica total de tensión para niveles de baja tensión, media tensión y alta tensión.

Bus voltage V at PCC	Individual harmonic (%)	Total harmonic distortion THD (%)
$V \le 1.0 \text{ kV}$	5.0	8.0
$1 \text{ kV} \le V \le 69 \text{ kV}$	3.0	5.0
$69 \text{ kV} \le V \le 161 \text{ kV}$	1.5	2.5
161 kV < V	1.0	1.5 ^a

Tabla 32. Límites operativos de tolerancia de Vh y THDv

Nota: tomada de IEEE 519-2014

En la tabla 32 se muestra los resultados del análisis de distorsión armónica de tensión (THDv) para media tensión, se tiene el valor de distorsión del motor 200ML003.

Tabla 33. Análisis de distorsión armónica de tensión (THDv) de motor200ML003

	Disto	orsión to	tal de ter	nsión (%)	Tolerancia		
Motor	Fase RS	Fase ST	Fase TR	Average	THDv	Normativa	
1250HP- 003	0.80	0.70	0.70	0.70	5%	IEEE 519	

Nota: tomada de Maleta de Pruebas SKF Explorer 4000

En la tabla 33, se muestra los resultados del análisis de distorsión armónica de tensión THDv (%), cumplen con las tolerancias establecidos por la IEEE 519-2014; al ser menor del 5.0 %.

- Análisis de armónicos individuales de tensión

Tabla 34. Límites operativos de tolerancia de Vh y THDv									
Orden de la armónica (h)	Tolerancia Vh y THDv (% con respecto a la tensión de operación del punto de medición) Alta y Muy Alta Media y Baja								
(A === 6 = 1 = 0 = 0	tension	tension							
(Annonicas									
impares no									
múltiplos de 3)									
5	2.00	6.00							
7	2.00	5.00							
11	1.50	3.50							
13	1.50	3.00							
17	1.00	2.00							
19	1.00	1.50							
23	0.70	1.50							
25	0.70	1.50							
Mayores de 25	0.1+2.5/h	0.2+12.5/h							

THDv	3.00 8.00				
Orden de la	Tolerancia Vh y THDv (% con respecto a la tensión de operación del punto de medición)				
armonica (n)	Alta y Muy Alta tensión	Media y Baja tensión			
(Armónicas					
impares no					
múltiplos de 3)					
3	1.50	5.00			
9	1.00	1.50			
15	0.30	0.30			
21	0.20	0.20			
Mayores de 21	0.20	0.20			
(pares)					
2	1.50	2.00			
4	1.00	1.00			
6	0.50	0.50			
8	0.20	0.50			
10	0.20	0.50			
12	0.20	0.20			
Mayores de 12	0.20	0.50			
THDv	3.00	8.00			

Nota: tomada de NTCSE

Figura 27. Análisis del diagrama de barras de armónicos de tensión de motor 200ML003. Tomada de Maleta de Pruebas SKF Explorer 4000

Figura 28. Análisis del diagrama de curvas de armónicos de tensión de motor 200ML003. Tomada de Maleta de Pruebas SKF Explorer 4000

De acuerdo a la tabla 33, se toman las tolerancias de los valores de armónicos individuales Vh del orden 3, 5, 7, 9, 11 y 13 para el análisis armónico de tensión del motor 200ML003.

Motor	Armónico	Tensión armónica individual (%)				Tolerancia		
WOLDI	N.°	Fase Va	Fase Vb	Fase Vc	V. avg.	Límite (%)	Estado	Normativa
	3	0.15	0.03	0.19	0.13	5 %	pasa	NTCSE
	5	0.34	0.21	0.28	0.28	6 %	pasa	NTCSE
1250-	7	0.61	0.68	0.59	0.62	5 %	pasa	NTCSE
003	9	0.05	0.05	0.038	0.04	1.5 %	pasa	NTCSE
	11	0.08	0.09	0.07	0.08	3.5 %	pasa	NTCSE
	13	0.075	0.075	0.075	0.075	3.0 %	pasa	NTCSE

Tabla 35. Tensión armónica individual Vh de motor 200ML003

Nota: tomada de NTCSE/IEEE 519-2014

De la tabla 35:

La 3ra armónica de tensión está en 0.19 % y está dentro de los límites permitidos según la NTCSE (5.0 %).

La 5ta armónica de tensión está en 0.34 % y está dentro de los límites permitidos según la NTCSE (6.0 %).

La 7ma armónica de tensión está en 0.68 %, y está dentro de los límites permitidos según la NTCSE (5.0 %).

La 9na armónica de tensión está en 0.05 %, y está dentro de los límites permitidos según la NTCSE (1.5 %).

La 11ra armónica de tensión está en 0.09 %, y está dentro de los límites permitidos según la NTCSE (3.5 %).

La 13ra armónica de tensión está en 0.075 %, y está dentro de los límites permitidos según la NTCSE (3.0 %).

Análisis de distorsión armónica de corriente

La Norma IEEE Std. 519-2014 "Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems"; indica los límites de distorsión armónica de corriente individual y la distorsión de demanda total para sistemas de distribución en general desde 120 V hasta 69000 V como se muestra en la tabla 36.

Tabla 36. Límite de distorsión armónica de corriente para sistemas de distribución en general de 120 V hasta 69000 V

Current Di	Current Distortion Limits for General Distribution Systems (120 V Through 69 000 V)													
Maximum Harmonic Current Distortion in Percent of I_L														
	Individual Harmonic Order (Odd Harmonics)													
I_{SC}/I_L	<11	11≤ h ≤17	17≤ h ≤23	23≤ h ≤35	35 ≤ h	TDD								
< 20*	4.0	2.0	1.5	0.6	2.0	5.0								
20<50 50<100	7.0 10.0	3.5 4.5	2.5 4.0	1.0	3.5 4 5	8.0 12.0								
100<1000	12.0	5.5	5.0	2.0	5.5	15.0								
>1000	15.0	7.0	6.0	2.5	7.0	20.0								

Even Harmonic are limited to 25% of the odd harmonic limits above.

Current distortion that result in a de offset, e.g., half wave converters, are not allowed.

*All power generation equipment is limited to these values of current distortion, regardless of actual I_{SC}/I_L .

Donde:

I_{SC}: maximum short-circuit current al PCC. I_L : maximum demand load current (fundamental frequency component) at PCC.

Nota: tomada de IEEE 519-2014

Del estudio de cortocircuito de planta Óxidos y el análisis de falla en la barra 4.16 kV, que alimenta al motor de 1250 HP – 200ML003 se tiene como falla de cortocircuito de corriente máxima en 1.059 kA.

En la figura 29, en el nivel de tensión 4.16 kV la corriente de falla más elevada es la trifásica, que se tiene es de:

I_{cc} = 1.059 kA

Figura 29. Resultados del cortocircuito en la barra 4.16 kV – motor 200ML003. Tomada del Estudio de Cortocircuito, planta Óxidos - software ETAP 19.0.1

De acuerdo a los datos de corriente máxima de falla de cortocircuito se procedió a determinar el valor de "Isc/IL", para determinar las tolerancias de las armónicas individuales de corriente.

Tabla 37. Límites de distorsión armónica de corriente del motor 200ML003.

Motor	Límite de di c	istorsión arı orriente (%)	TDD		
	lsc (kA)	IL (A)	lsc/IL	Límite	(%)
1250HP- 003	1.059	113.50	9.3304	lsc / IL ≤20	5%

Para efectos de cálculo de distorsión de demanda máxima "TDD", en la barra de 4.16 kV el motor 200ML003, se obtiene lo siguiente: Relación Isc / IL, donde:

: corriente de falla de cortocircuito máxima (1.059 kA) lsc

IL : corriente de carga máxima (113.5 A)

Entonces; Isc/IL = 1059.0/113.5 = 9.33 A ($Isc / IL \le 20$); TDD = 5 %.

Las mediciones de TDD deberían ser inferiores al 5 % como se muestra en la tabla 38:

Maximum Harmonic Current Distortion in Percent of I_L										
	I	ndividual Har	monic Order	(Odd Harmor	nics)					
I_{SC}/I_L	<11	11≤ h ≤17	17≤ h ≤23	23≤ h ≤35	35 ≤ h	TDD				
< 20*	4.0	2.0	1.5	0.6	2.0	5.0				
20<50	7.0	3.5	2.5	1.0	3.5	8.0				
50<100	10.0	4.5	4.0	1.5	4.5	12.0				
100<1000	12.0	5.5	5.0	2.0	5.5	15.0				
>1000	15.0	7.0	6.0	2.5	7.0	20.0				

Tabla 38. Límite de distorsión de corriente para tensiones de 120 V hasta 69 kV

Nota: tomada de IEEE 519-2014

Según los resultados del análisis de la distorsión de demanda máxima "TDD" mostradas en la tabla 38, para el motor 200ML003, las tolerancias armónicas individuales se encuentran dentro de los intervalos de lsc / IL ≤20; con TDD = 5 %, por lo tanto, los límites de tolerancia de armónicos individuales de corriente se muestran en la tabla 38, según norma IEEE 519-2014.

Análisis de armónicos individuales de corriente

Figura 30. Diagrama de barras de armónicos de corriente de motor de 200ML003. Tomada de Maleta de Pruebas SKF Explorer 4000

De acuerdo a la tabla 38, se toma las tolerancias de los valores de armónicos individuales lh del orden 3, 5, 7, 9, 11 y 13 para el análisis armónico de corriente del motor 200ML003.

Motor	Armónico	Tensić	on armó (?)	nica ind %)	ividual	Tolerancia		
WOLDI	N.°	Fase Va	Fase Vb	Fase Vc	V. avg.	Límite (%)	Estado	Normativa
	3	0.10	0.10	0.25	0.14	4.0 %	Pasa	IEEE 519
	5	0.41	0.21	0.39	0.34	4.0 %	Pasa	IEEE 519
1250-	7	0.79	0.83	0.76	0.80	4.0 %	Pasa	IEEE 519
003	9	0.51	0.50	0.51	0.51	4.0 %	Pasa	IEEE 519
	11	0.06	0.07	0.03	0.05	2.0 %	Pasa	IEEE 519
	13	0.06	0.05	0.05	0.05	2.0 %	Pasa	IEEE 519

Tabla 39. Corriente armónica individual Ih de motor 200ML003

Nota: tomada de IEEE 519-2014

De la tabla 39

La 3ra armónica de corriente está en 0.25 %, y está dentro de los límites permitidos por norma IEEE 519-2014 (4.0 %).

La 5ta armónica de corriente está en 0.41 %, y está dentro de los límites permitidos por norma IEEE 519-2014 (4.0 %).

La 7ma armónica de corriente está en 0.83 % y está dentro de los límites permitidos por norma IEEE 519-2014 (4.0 %).

La 9na armónica de corriente está en 0.51 % y está dentro de los límites permitidos por norma IEEE 519-2014 (4.0 %).

La 11ra armónica de corriente está en 0.07 % y está dentro de los límites permitidos por norma IEEE 519-2014 (2.0 %).

La 13ra armónica de corriente está en 0.05 % y está dentro de los límites permitidos por norma IEEE 519-2014 (2.0 %).

B. Análisis del motor 200ML002

Análisis de distorsión armónica de tensión

De la tabla 33, se ha obtenido el porcentaje de tolerancia de la distorsión armónica total de tensión THDv (%) como se muestra en la tabla 40:

 Tabla 40. Análisis de distorsión armónica de tensión (THDv) de motor

 200ML002

	Disto	orsión to	tal de ter	nsión (%)	Tolerancia		
Motor	Fase RS	Fase ST	Fase TR	Average	THDv	Normativa	
1250HP- 002	1.10	1.00	1.10	1.00	5 %	IEEE 519	

Nota: tomada de Maleta de Pruebas SKF Explorer 4000

De acuerdo a lo mostrado en la tabla 39, los valores de distorsión armónica de tensión THDv (%), cumplen con las tolerancias establecidos por la IEEE 519-2014; al ser menor del 5.0 %.

- Análisis de armónicos individuales de tensión

Figura 31. Análisis del diagrama de barras de armónicos de tensión de motor 200ML002. Tomada de Maleta de Pruebas SKF Explorer 4000

De acuerdo a la tabla 41, se toma las tolerancias de los valores de armónicos individuales "Vh" del orden 3, 5, 7, 9, 11 y 13 para el análisis armónico de tensión del motor 200ML002.

Motor	Armónico	Tensión armónica individual (%)				Tolerancia		
MOLOI	N.°	Fase Va	Fase Vb	Fase Vc	V. avg.	Límite (%)	Estado	Normativa
	3	0.14	0.01	0.17	0.10	5 %	pasa	NTCSE
	5	0.73	0.59	0.73	0.66	6 %	pasa	NTCSE
1250-	7	0.71	0.73	0.68	0.70	5 %	pasa	NTCSE
002	9	0.10	0.06	0.14	0.11	1.5 %	pasa	NTCSE
	11	0.28	0.32	0.30	0.29	3.5 %	pasa	NTCSE
	13	0.085	0.03	0.065	0.060	3.0 %	pasa	NTCSE

Tabla 41. Tensión armónica individual Vh de motor 200ML002

Nota: tomada de IEEE 519-2014

De la tabla 40

La 3ra armónica de tensión está en 0.17 % y está dentro de los límites permitidos por norma NTCSE (5.0 %).

La 5ta armónica de tensión está en 0.73 % y está dentro de los límites permitidos por norma NTCSE (6.0 %).

La 7ma armónica de tensión está en 0.71 %, y está dentro de los límites permitidos por norma NTCSE (5.0 %).

La 9na armónica de tensión está en 0.14 %, y está dentro de los límites permitidos por norma NTCSE (1.5 %).

La 11ra armónica de tensión está en 0.32 %, y está dentro de los límites permitidos por norma NTCSE (3.5 %).

La 13ra armónica de tensión está en 0.085 %, y está dentro de los límites permitidos por norma NTCSE (3.0 %).

Análisis de distorsión armónica de corriente

De la figura 30, el estudio de cortocircuito de planta Óxidos y el análisis de falla en la barra 4.16 kV, que alimenta al motor de 1250 HP – 200ML002 se tiene como falla de cortocircuito de corriente máxima en 1.059 kA.

Con los datos de máxima corriente de carga y corriente de cortocircuito se procedió a determinar el valor de "Isc/IL", para determinar las tolerancias de las armónicas individuales de corriente.

Motor	Límite de di c	storsión arı orriente (%)	nónica de	TDD	
	lsc (kA)	IL (A)	lsc/IL	Límite	(%)
1250-002	1.059	107.09	9.8888	lsc / IL ≤20	5 %

Tabla 42. Límites de distorsión armónica de corriente del motor 200ML002

Para efectos de cálculo de distorsión de demanda máxima "TDD", en la barra de 4.16 kV el motor 200ML002, se obtiene lo siguiente:

Relación Isc / IL, donde:

Isc: corriente de cortocircuito de falla máxima (1.059 kA)IL: corriente de carga de demanda (107.09 A).Entonces; Isc/IL = 1059.0/107.09 = 9.88 A (Isc / IL ≤ 20); TDD = 5 %.

Para realizar el cálculo de los intervalos de límite de distorsión de corriente para tensiones de 120 V hasta 69 kV, se tiene de referencia de la tabla 42.

Según los resultados del análisis de la distorsión de demanda "TDD" mostradas en la tabla 42, para el motor 200ML002, las tolerancias armónicas individuales se encuentran dentro de los intervalos de lsc / IL \leq 20; con TDD = 5 %, por lo tanto, los límites de tolerancia de armónicos individuales de corriente se muestran en la tabla 43, según norma IEEE 519-2014.

Análisis de armónicos individuales de corriente

Figura 32. Diagrama de barras de armónicos de corriente de motor de 200ML002. Tomada de Maleta de Pruebas SKF Explorer 4000

De acuerdo a la tabla 32, se toma las tolerancias de los valores de armónicos individuales lh del orden 3, 5, 7, 9, 11 y 13 para el análisis armónico de corriente del motor 200ML002.

Motor	Armónico	ensión / Individ	Tolerancia					
MOTOR	No.	Fase Va	Fase Vb	Fase Vc	V. avg.	Límite (%)	Estado	Normativa
	3	0.21	0.10	0.27	0.20	4.0%	Pasa	IEEE 519
	5	1.10	0.83	1.08	1.00	4.0%	Pasa	IEEE 519
1250-	7	0.87	0.91	0.83	0.86	4.0%	Pasa	IEEE 519
002	9	0.12	0.08	0.15	0.12	4.0%	Pasa	IEEE 519
	11	0.22	0.26	0.23	0.24	2.0%	Pasa	IEEE 519
	13	0.07	0.03	0.04	0.05	2.0%	Pasa	IEEE 519

Tabla 43. Corriente armónica individual Ih de motor 200ML002.

Nota: tomada de IEEE 519-2014

De la tabla 43

La 3ra armónica de corriente está en 0.27 %, y está dentro de los límites permitidos por norma IEEE 519-2014 (4.0 %).

La 5ta armónica de corriente está en 1.10 %, y está dentro de los límites permitidos por norma IEEE 519-2014 (4.0 %).

La 7ma armónica de corriente está en 0.91 % y está dentro de los límites permitidos por norma IEEE 519-2014 (4.0 %).

La 9na armónica de corriente está en 0.15 % y está dentro de los límites permitidos por norma IEEE 519-2014 (4.0 %).

La 11ra armónica de corriente está en 0.26 % y está dentro de los límites permitidos por norma IEEE 519-2014 (2.0 %).

La 13ra armónica de corriente está en 0.07 % y está dentro de los límites permitidos por norma IEEE 519-2014 (2.0 %).

C. Análisis del motor 200ML001

Análisis de distorsión armónica de tensión

De la tabla 33, se ha obtenido el porcentaje de tolerancia de la distorsión armónica total de tensión THDv (%) como se muestra en la tabla 44:

Motor	Distor	sión tota	al de Ten	sión (%)	Tolerancia			
	Fase RS	Fase ST	Fase TR	Average	THDv	Normativa		
900HP- 001	0.90	0.80	0.70	0.80	5 %	IEEE 519		

 Tabla 44. Análisis de distorsión armónica de tensión (THDv) de motor

 200ML001

Nota: tomada de Maleta de Pruebas SKF Explorer 4000

De acuerdo a lo mostrado en la tabla 44, los valores obtenidos de distorsión armónica de tensión THDv (%), cumplen con las tolerancias establecidos por la IEEE 519-2014; al ser menor del 5.0 %.

Análisis de armónicos individuales de tensión

Figura 33. Análisis del diagrama de barras de armónicos de tensión de motor 200ML001. Tomada de Maleta de Pruebas SKF Explorer 4000

De acuerdo a la tabla 28, se toma las tolerancias de los valores de armónicos individuales de tensión Vh del orden 3, 5, 7, 9, 11 y 13 para el motor 200ML001 como se muestra en la tabla 45:

Motor	Armónico N.°	Tension armónica individual (%)					Tolerancia		
		Fase Va	Fase Vb	Fase Vc	V. avg.	Límite (%)	Estado	Normativa	
	3	0.29	0.23	0.05	0.20	5%	pasa	NTCSE	
900- 001	5	0.77	0.60	0.49	0.62	6%	pasa	NTCSE	
	7	0.32	0.46	0.40	0.40	5%	pasa	NTCSE	
	9	0.13	0.08	0.13	0.12	1.5%	pasa	NTCSE	
	11	0.04	0.03	0.03	0.04	3.5%	pasa	NTCSE	
	13	0.09	0.12	0.10	0.10	3.0%	pasa	NTCSE	

Tabla 45. Tensión armónica individual Vh de motor 200ML001

Nota: tomada de IEEE 519-2014

De la tabla 45

La 3ra armónica de tensión está en 0.29 % y está dentro de los límites permitidos por norma NTCSE (5.0 %).

La 5ta armónica de tensión está en 0.77 % y está dentro de los límites permitidos por norma NTCSE (6.0 %).

La 7ma armónica de tensión está en 0.46 %, y está dentro de los límites permitidos por norma NTCSE (5.0 %).

La 9na armónica de tensión está en 0.13 %, y está dentro de los límites permitidos por norma NTCSE (1.5 %).

La 11ra armónica de tensión está en 0.04 %, y está dentro de los límites permitidos por norma NTCSE (3.5 %).

La 13ra armónica de tensión está en 0.12 %, y está dentro de los límites permitidos por norma NTCSE (3.0 %).

Análisis de distorsión armónica de corriente

Figura 34. Resultados del cortocircuito en la barra 4.16 kV – motor 200ML001. Tomada del Estudio de Cortocircuito, planta Óxidos - Software ETAP 19.0.1

De acuerdo a la figura 35, del estudio de cortocircuito de planta Óxidos y el análisis de falla en la barra 4.16 kV, que alimenta al motor de 900 HP – 200ML001 se tiene como falla de cortocircuito de corriente máxima en 0.766 kA.

l_{cc} = 0.766 kA

Con los datos de máxima corriente de carga y corriente de cortocircuito se procedió a determinar el valor de "Isc/IL", para determinar las tolerancias de las armónicas individuales de corriente.

Tabla 46. Límites de distorsión armónica de corriente del motor 200ML001

Motor	Límite de di Co	storsión ar orriente (%)	mónica de	ónica de TDD				
	lsc (kA)	IL (A)	lsc/IL	Límite	(%)			
900-001	0.766	80.70	9.49195	lsc / IL ≤20	5 %			

Para efectos de cálculo de distorsión de demanda "TDD", en la barra de 4.16 kV el motor 200ML001, se obtiene lo siguiente:

Relación Isc / IL, donde:

- lsc : corriente de cortocircuito de falla máxima (0.766 kA)
- IL : corriente de carga de demanda (80.7 A).

Entonces; Isc/IL = 0.766/80.7 = 9.49 A (Isc / IL ≤20); TDD = 5 %.

Según los resultados del análisis de la distorsión de demanda "TDD" mostradas en la tabla 46, para el motor 200ML001, las tolerancias armónicas individuales se encuentran dentro de los intervalos de lsc / IL \leq 20; con TDD = 5 %, por lo tanto, los límites de tolerancia de armónicos individuales de corriente se muestran en la tabla 47, según norma IEEE 519-2014.

- Análisis de armónicos individuales de corriente

De acuerdo a la tabla 37, se toma las tolerancias de los valores de armónicos individuales Ih del orden 3, 5, 7, 9, 11 y 13 para el análisis armónico de corriente del motor 200ML001.

Motor	Armónico	Tensión armónica individual (%)					Tolerancia		
	No.	Fase Va	Fase Vb	Fase Vc	V. avg.	Límite (%)	Estado	Normativa	
	3	0.45	0.21	0.45	0.38	4.0 %	Pasa	IEEE 519	
900- 001	5	1.41	1.23	0.80	1.18	4.0 %	Pasa	IEEE 519	
	7	0.44	0.53	0.45	0.46	4.0 %	Pasa	IEEE 519	
	9	0.14	0.13	0.15	0.14	4.0 %	Pasa	IEEE 519	
	11	0.05	0.03	0.04	0.04	2.0 %	Pasa	IEEE 519	
	13	0.08	0.10	0.09	0.09	2.0 %	Pasa	IEEE 519	

Tabla 47. Corriente armónica individual Ih de motor 200ML001

Nota: tomada de IEEE 519-2014

De la tabla 47

La 3ra armónica de corriente está en 0.45 %, y está dentro de los límites permitidos por norma IEEE 519-2014 (4.0 %).

La 5ta armónica de corriente está en 1.41 %, y está dentro de los límites permitidos por norma IEEE 519-2014 (4.0 %).

La 7ma armónica de corriente está en 0.53 % y está dentro de los límites permitidos por norma IEEE 519-2014 (4.0 %).

La 9na armónica de corriente está en 0.15 % y está dentro de los límites permitidos por norma IEEE 519-2014 (4.0 %).

La 11ra armónica de corriente está en 0.05 % y está dentro de los límites permitidos por norma IEEE 519-2014 (2.0 %).

La 13ra armónica de corriente está en 0.10 % y está dentro de los límites permitidos por norma IEEE 519-2014 (2.0 %).

4.4.1.5. Análisis de carga

A. Análisis del motor 200ML003

Figura 36. Análisis de carga del motor 200ML003. Tomada de Maleta de Pruebas SKF Explorer 4000

De la figura 36, se observa que la carga de trabajo del motor es 74.5 %, con un nivel de corriente de 70.5 % lo que indica que el motor trabaja a carga operativa óptima. Por lo que la carga de trabajo del motor 1250 HP-003 se puede elevar a un 20 %.

B. Análisis del motor 200ML002

Figura 37. Análisis de carga del motor 200ML002. Tomada de Maleta de Pruebas SKF Explorer 4000

De la figura 37, se observa que la carga de trabajo del motor es 69.7 %, con un nivel de corriente de 66.5 % lo que indica que el motor trabaja a carga operativa óptima. Por lo que la carga de trabajo del motor 1250 HP se puede elevar a un 25 % más aproximadamente.

C. Análisis del motor 200ML001

En la figura 38, se observa que la carga de trabajo del motor es 73.2 %, con un nivel de corriente de 69.5 % lo que indica que el motor trabaja a carga operativa óptima. Por lo que la carga de trabajo del motor 900 HP se puede elevar a un 25 % más aproximadamente.

Figura 38. Análisis de carga del motor 200ML001. Tomada de Maleta de Pruebas SKF Explorer 4000

4.4.1.6. Análisis del rendimiento

A. Análisis del motor 200ML003

Figura 39. Análisis del rendimiento del motor 200ML003. Tomada de Maleta de Pruebas SKF Explorer 4000

En la figura 39 se muestra el rendimiento del motor al 95.2 %, por ende, el motor desempeña una óptima carga operativa.

B. Análisis del motor 200ML002

Figura 40. Análisis del Rendimiento del motor 200ML002. Tomada de: Maleta de Pruebas SKF Explorer 4000.

En la figura 40 se muestra el rendimiento del motor al 95.3 %, por ende, el motor desempeña una óptima carga operativa.

C. Análisis del motor 200ML001

Figura 41. Análisis del rendimiento del motor 200ML001. Tomada de Maleta de Pruebas SKF Explorer 4000

En la figura 41, muestra el rendimiento del motor al 95.6 %, por ende, el motor desempeña una óptima carga operativa.

4.4.1.7. Análisis del factor de servicio

A. Análisis del motor 200ML003

De la figura 42, se analiza el factor de servicio del motor 200ML003, de acuerdo a la norma NEMA MG-1 se analizaron las curvas de desbalance de voltaje y la curva de distorsión de armónica de voltaje por ende el % de Derrateo NEMA es 1.00 por lo que el motor no está operando con sobre temperatura, el factor de servicio del motor es 0.74 %.

Figura 42. Análisis del factor de servicio efectivo del motor 200ML003. Tomada de Maleta de Pruebas SKF Explorer 4000

Figura 43. Factor de reducción para motores en redes con armónicos. Tomada de NEMA MG-1

La presencia de la distorsión armónica causa deformaciones con respecto a la forma de onda lo que disminuirá la eficiencia del motor. Las pérdidas incrementarán la temperatura del motor, causando aún más perdidas, el motor no presenta sobretemperatura.

B. Análisis del motor 200ML002

Figura 44. Análisis del factor de servicio efectivo del motor 200ML002. Tomada de Maleta de Pruebas SKF Explorer 4000

De la figura 44, de acuerdo a la Norma MG-1 se analizaron las curvas de desbalance de voltaje y la curva de distorsión de armónica de voltaje por ende el % de Derrateo NEMA es 1.0 por lo que el motor no está operando con sobretemperatura, el factor de servicio del motor es 0.7 %.

C. Análisis del motor 200ML001

Figura 45. Análisis del factor de servicio efectivo del motor 200ML001. Tomada de Maleta de Pruebas SKF Explorer 4000

De la figura 45, de acuerdo a la Norma MG-1 se analizaron las curvas de desbalance de voltaje y la curva de distorsión de armónica de voltaje por ende el % de Derrateo NEMA es 1.0 por lo que el motor no está operando con sobretemperatura, el factor de servicio del motor es 0.77 %.

La presencia de la distorsión armónica causa deformaciones con respecto a la forma de onda lo que disminuirá la eficiencia del motor. Las pérdidas incrementarán la temperatura del motor, causando aún más perdidas, el motor no presenta sobretemperatura

4.4.1.8. Análisis del rotor bar A. Análisis en el motor 200ML003

Figura 46. Espectro del dominio de frecuencia de barras del rotor del motor 200ML003. Tomada de Maleta de Pruebas SKF Explorer 4000.

De la figura 46, la velocidad de giro del motor (espectro de tendencia bandas laterales) el pico no sobrepasa las alarmas preprogramadas para posibles barras rotas de motor. Se debe aumentar el monitoreo del motor y analizar su tendencia.

Las barras del rotor no presentan peligro de rotura, pero se debe realizar una inspección y monitoreo continuo para el descarte de barras rotas.

B. Análisis en el motor 200ML002

Figura 47. Espectro del dominio de frecuencia de barras del rotor del motor 200ML002. Tomada de Maleta de Pruebas SKF Explorer 4000

De la figura 47, la velocidad de giro del motor (espectro de tendencia bandas laterales) el pico no sobrepasa las alarmas preprogramadas para posibles barras rotas de motor. Se debe aumentar el monitoreo del motor y analizar su tendencia.

Las barras del rotor no presentan peligro de rotura, pero se debe realizar una inspección y monitoreo continuo para el descarte de barras rotas.

C. Análisis en el motor 200ML001

Figura 48. Espectro del dominio de frecuencia de barras del rotor del motor 200ML001. Tomada de Maleta de Pruebas SKF Explorer 4000

De la figura 48, la velocidad de giro del motor (espectro de tendencia bandas laterales) el pico no sobrepasa las alarmas preprogramadas para posibles barras rotas de motor. Se debe aumentar el monitoreo del motor y analizar su tendencia.

Se debe aumentar el monitoreo del motor y analizar su tendencia, ya que las bandas laterales están sobre la zona regular de color amarilla y sobrepasan la zona roja de rotura, tiene unos picos que sobrepasan la zona roja de rotura, pero por medidas preventivas, ya que las bandas laterales sobrepasan la alarma roja de rotura.

Las barras del rotor no presentan peligro de rotura, pero se debe realizar una inspección y monitoreo continuo para el descarte de barras rotas.

4.4.1.9. Análisis del torque

A. Análisis en el motor 200ML003

Figura 49. Análisis del espectro de rizado del torque de motor 200ML003. Tomada de Maleta de Pruebas SKF Explorer 4000

De la figura 49, se ha analizado el torque del motor en un tiempo de 30 segundos, se tiene una carga operativa del motor en 74.5 %, por ello la ondulación del torque está en un porcentaje del 17.96 %, se observa un rizado del torque donde no muestra variaciones que puedan afectar al torque del motor. Se tiene un límite de par nominal como medida preventiva en el caso que existan fluctuaciones o perturbaciones severas respecto del par nominal y el tiempo.

El torque del motor tiende a oscilar a medida aumente la carga operativa, es muy importante analizar el rizado del torque en el arranque del motor y a plena carga.

B. Análisis en el motor 200ML002

Figura 50. Análisis del espectro de rizado del torque de motor 200ML002. Tomada de Maleta de Pruebas SKF Explorer 4000

De la figura 50, se ha analizado el torque del motor en un tiempo de 30 segundos, se tiene una carga operativa del motor en 69.7 %, se observa que la carga de este motor es menor al del motor 200ML003, la ondulación del rizado del torque ha aumentado en un porcentaje del 25.96 %, se observa un rizado del torque donde no muestra variaciones que puedan afectar al torque del motor. Se tiene un límite de par nominal como medida preventiva en el caso que existan fluctuaciones o perturbaciones severas respecto del par nominal y el tiempo.

El torque del motor tiende a oscilar a medida que aumente la carga operativa, es muy importante analizar el rizado del torque en el arranque del motor y a plena carga.
C. Análisis en el motor 200ML001

Figura 51. Análisis del espectro de rizado del torque de motor 200ML001. Tomada de Maleta de Pruebas SKF Explorer 4000

De la figura 51, se ha realizado una comparación de resultados de pruebas con carga y sin carga para el motor 200ML001.

Análisis de motor con carga (motor-molino con carga)

Se tiene el espectro del rizado del torque con carga y acoplado al molino con carga, se puede apreciar en la figura 52:

Se ha analizado el torque del motor en un tiempo de 30 segundos, se tiene una carga operativa del motor en 73.2 %, se observa que la carga de este motor es mayor al del motor 200ML002, la ondulación del rizado del torque ha aumentado en un porcentaje del 121.92 %, se observa un rizado del torque donde muestra variaciones que puedan afectar al torque del motor. El rizado del torque está sobrepasando el límite de par nominal.

Figura 52. Análisis del espectro del torque con carga "Motor-Molino con carga". Tomada de Maleta de Pruebas SKF Explorer 4000

El torque del motor tiende a oscilar a medida que aumente la carga operativa, es muy importante analizar el rizado del torque en el arranque del motor y a plena carga.

Esta prueba de rizado del torque identifica la onda de carga de en el motor, dando como resultado el estado del torque del motor a media carga. Se puede observar perturbaciones leves en el diagrama espectral de torque a nivel de entrehierro y rotor, mal acoplamiento motor-reductor-molino o motor-molino.

Figura 53. Análisis del espectro de torque electromecánico de motor con carga "Motor-Molino con carga". Tomada de Maleta de Pruebas SKF Explorer 4000

De los resultados, en la figura 53, se ha analizado el espectro de torque entre 0 a 107 Hz obtenido del motor 200ML001, cuya potencia es 900HP (trabajando a 70 % de su potencia nominal) donde se corrobora que el espectro de torque nominal de un motor de inducción de rotor tipo jaula de ardilla sin falla tiene como frecuencias predominantes las frecuencias antes mencionadas.

El valor del torque registrado en diferentes momentos de la operación del motor resulta oscilante, no constante. Se esperaba este resultado, ya que se trata de un motor de molino.

Análisis de motor sin carga (solo motor en vacío)

Figura 54. Análisis del espectro del torque sin carga "Motor en vacío". Tomada de Maleta de Pruebas SKF Explorer 4000

De los resultados, en la figura 54, se ha analizado el torque del motor en un tiempo de 30 segundos, se tiene una carga operativa del motor en 4.7 %, se observa que el rizado del torque no presente variaciones ni fluctuaciones. El rizado del torque no está sobrepasando el límite de par nominal.

4.4.2. Discusión de resultados

El propósito de la presente investigación es evaluar los parámetros eléctricos de las pruebas en régimen dinámico en motores de inducción, por el cual se ha desarrollado el análisis de todos los datos recopilados con el equipo analizador dinámico Explorer 4000.

Motor 1: Motor 200ML003

Discusión de niveles de tensión

El nivel de voltaje obtenido en prueba es de 4,218 kV, la tensión nominal de trabajo del motor es de 4.16 kV, por lo tanto, no hay subtensión ni sobretensión en el sistema de alimentación del motor de inducción 200ML003, por normativa NTCSE los niveles de voltaje se encuentran dentro de los límites permitidos (+/- 5 % de Vn), pero también se tiene que analizar

el desbalance de tensión, ya que si los valores son críticos se tendría problemas de rendimiento y vida útil, los valores de desbalance son de 0.04 % lo que indica que se encuentra dentro de los valores permitidos por la norma EN-50160 (+/- 2 %).

Objetivo: analizar los valores de tensión en motores de inducción mediante pruebas eléctricas en régimen dinámico.

Análisis comparativo: artículo de Paz et al. (2).

 Tabla 48. Análisis comparativo de valores de tensión de motor 200ML003 vs. artículo científico de Paz Parra

Motor 1250HP - 200ML003		Resultados obtenidos	Artículo científico de Paz et al.
Calidad de energía	Desbalance de tensión	0.04	< 1 % IEEE 112-2004

Análisis comparativo: tesis de Peralta (6)

La tesis de Peralta (6) "Diagnóstico de fallas en motores de inducción".

Tabla 49. Análisis comparativo de valores de tensión de motor 200ML003 vs.	tesis de
Peralta Núñez	

Motor de Inducción		Resultados obtenidos	Tesis de Peralta
Calidad	Tensión	4218.9 V	443.6 V
de energía	desbalance de tensión	0.04	0.36

De acuerdo al análisis comparativo se tiene, el nivel de tensión es de 443.6 V, la tensión nominal del motor de inducción es de 440 V, por lo tanto, no hay subtensión ni sobretensión en el sistema de alimentación del motor de 150 HP.

El desbalance de tensión es de 0.36%, el valor se encuentra dentro de los rangos permitidos por la norma EN-50160 (+/- 2 %).

Por lo tanto, los niveles de tensión son óptimos en el sistema de alimentación de potencia tanto del motor 200ML003 y del motor de 125 HP comparado.

Discusión de niveles de corriente

El nivel de corriente es de 113.5 A, la capacidad nominal de trabajo del motor es de 161.0 A, por lo que el motor trabaja a un porcentaje de 70.49 %, el motor no presenta sobrecarga, ya que cuando haya sobrecarga es cuando el motor se encuentra bajo una carga alta. Los niveles de corriente se encuentran equilibrados, ya que los valores de desbalance de corriente son del 0.88 %, se encuentra dentro de los rangos permitidos por la NTCSES (+/- 10 %).

Objetivo: analizar los valores de corriente en motores de inducción mediante pruebas eléctricas en régimen dinámico.

Análisis comparativo: tesis de Peralta (6)

La tesis de Peralta (6) "Diagnóstico de fallas en motores de inducción".

 Tabla 50. Análisis comparativo de valores de corriente de motor 200ML003 vs. tesis

 de Peralta Núñez

Motor de	e Inducción	Resultados obtenidos	Tesis de Peralta
Calidad	Corriente	113.5 A	105.1 A
do	desbalance		
eneraía	de	0.88	1.21
chicigia	corriente		

De acuerdo al análisis comparativo se tiene, el nivel de capacidad de corriente es de 105.1 A, la capacidad nominal de diseño del motor es de 157 A, por lo tanto, el motor de 125 HP trabaja sin sobrecarga y dentro de los parámetros de diseño.

El desbalance de corriente es de 1.21 % lo que indica que se encuentra dentro de los valores permitidos por norma NTCSES (+/- 10 %).

Por lo tanto, los niveles de corriente son óptimos en el sistema de alimentación de potencia tanto del motor 200ML003 y del motor de 125 HP comparado.

Discusión de niveles de potencias

El nivel de potencia activa es de 729.7 kW, el motor 200ML003 tiene una potencia de diseño de 1250 HP que equivale a 932.12 kW. Se ha registrado la potencia reactiva en 394.3 kVAr con un nivel de factor de potencia de 0.88, lo que indica que el sistema necesita mejorar el factor de potencia por el exceso de reactivos según los análisis y evaluaciones realizadas al motor.

Objetivo: analizar los valores de potencia activa, aparente, reactiva y factor de potencia en motores de inducción mediante pruebas eléctricas en régimen dinámico.

Análisis comparativo: tesis de Peralta (6).

La tesis de Peralta (6) "Diagnóstico de fallas en motores de inducción".

Tabla 51. Análisis comparativo	de valores	de potencias	de motor	200ML003	vs. tesi	s
de Peralta Núñez						

Motor de inducción		Tesis de Peralta
Potencia activa	729.7 kW	61.4 kW
Potencia aparente	829.5 kVA	80.7 kVA
Potencia reactiva	394.3 kVAr	52.4 kVAr
Factor de potencia	0.88	0.76
	le inducción Potencia activa Potencia aparente Potencia reactiva Factor de potencia	le inducciónResultados obtenidosPotencia activa729.7 kWPotencia aparente829.5 kVAPotencia reactiva394.3 kVArFactor de potencia0.88

De acuerdo al análisis comparativo se puede apreciar, que el nivel de potencia activa es de 61.4 kW, la capacidad de potencia de diseño es de 125 HP. Se tiene un factor de potencia en 0.76, ya que el nivel de potencia reactiva es de 52.4 kVAr lo que indica la presencia de reactivos en la red eléctrica.

Por lo tanto, los niveles de factor de potencia son bajos por la presencia de reactivos.

En el sistema de alimentación tanto del motor 200ML003 y del motor de 125 HP comparado.

Discusión de niveles de armónicos

Toda máquina rotativa produce armónicos de rango elevado, con los resultados ya obtenidos en prueba se ha determinado que la distorsión armónica de tensión total THDv% es 0.7 % y se encuentra dentro de las tolerancias estipuladas en la IEEE, ya que son menores al límite permitido que es 5.0 % en media tensión.

Los niveles de armónicos individuales de tensión y corriente se encuentran dentro de los límites permitidos según la norma.

Objetivo: analizar los valores de armónicos de tensión y corriente en motores de inducción mediante pruebas eléctricas en régimen dinámico. En el caso de que haya presencia de corrientes parásitas, los motores de inducción verán aumentadas sus pérdidas.

Análisis comparativo: tesis de Peralta (6)

La tesis de Peralta (6) "Diagnóstico de fallas en motores de inducción".

Motor de	e inducción	Resultados obtenidos	Tesis de Peralta	
	Distorsión			
	armónica	0.7	1.6	
	de tensión			
	Arr	nónicos de te	nsión Vh	
	3 orden	0.19	0.2	
Calidad	5 orden	0.34	1.6	
Calluau	7 orden	0.68	0.22	
ue	9 orden	0.05	0.03	
energia	11 orden	0.09	0.038	
	13 orden	0.075	0.17	
	Armónicos de corriente lh			
	3 orden	0.25	0.4	
	5 orden	0.41	3.7	
	7 orden	0.83	0.35	

Tabla 52. Análisis comparativo de valores de armónicos de motor 200ML003 vs. tesis de Peralta Núñez

9 orden	0.51	0.1
11 orden	0.07	0.18
13 orden	0.06	0.12

De acuerdo al análisis comparativo se tiene, que en el circuito de alimentación de potencia de estas máquinas no presentan sistemas de reguladores de velocidad, UPS, circuitos rectificadores; es por ello, la presencia mínima de armónicos.

En el caso del motor de 125 HP, es un motor de baja tensión con un nivel de falla de cortocircuito elevado, en la tabla 52 se puede apreciar que la 5ta armónica de corriente es de 3.7 %, en la tesis comparada no se ha realizado el estudio de cortocircuito y distorsiones armónicas, por lo cual no se tienen los porcentajes para límite de armónicos.

Por lo tanto, los niveles de armónicos en la red eléctrica de alimentación tanto del motor 200ML003 son bajos y del motor de 125 HP no se puede determinar.

Discusión de la condición y barras del rotor

El nivel de voltaje obtenido en prueba es de 4,218 kV, el nivel de la tensión nominal del motor es de 4.16 kV, por lo tanto no hay subtensión ni sobretensión en el sistema de alimentación del motor de inducción 200ML003, por normativa NTCSE los niveles de voltaje se encuentran dentro de los límites permitidos (+/- 5 % de Vn), pero también se tiene que analizar el desbalance de tensión, ya que si los valores son críticos se tendrían problemas de rendimiento y vida útil, los valores de desbalance son de 0.04 % lo que indica que se encuentra dentro de los rangos permitidos por la norma EN-50160 (+/- 2 %).

Objetivo: analizar la carga en motores de inducción mediante pruebas eléctricas en régimen dinámico.

Analizar el rendimiento en motores de inducción mediante pruebas eléctricas en régimen dinámico.

Analizar el factor de servicio en motores de inducción mediante pruebas eléctricas en régimen dinámico.

Analizar el estado de roto bar en motores de inducción mediante pruebas eléctricas en régimen dinámico.

Analizar el torque en motores de inducción mediante pruebas eléctricas en régimen dinámico.

Análisis comparativo: tesis de Peralta (6).

La tesis de Peralta (6) "Diagnóstico de fallas en motores de inducción".

Motor 1250	HP - 200ML003	Resultados obtenidos	Tesis de Peralta
Condición	Factor de servicio	0.74	No analiza
del motor	Carga Rendimiento	74.5 % 95.2 %	59.6 % 90.6 %
Barras	Rotor bar	- 49 dB	-53 dB
torque	Torque	5000-6000 N-m	185-245 N-m

Tabla 53. Análisis comparativo de la condición y barras de motor 200ML003 vs. tesis de Peralta Núñez

De acuerdo a resultados de factor de servicio efectivo donde se analizaron las curvas de desbalance de voltaje y la curva de distorsión de armónica de voltaje, por lo que el motor no está operando con sobretemperatura.

El motor tiene una carga del 74.5 %, lo cual indica que el motor trabaja a niveles de carga operativa óptima y sin sobreesfuerzo. El motor tiene una eficiencia de 95.2 % lo cual indica que el motor se desempeña buena carga operativa de rendimiento.

De acuerdo al análisis de rotor bar la velocidad de giro del motor (espectro de tendencia bandas laterales) no presenta picos que sobrepasa las alarmas preprogramadas para posibles barras rotas. Las barras del rotor no presentan peligro de rotura, ya que se encuentran a -50 dB, pero se debe realizar una inspección y monitoreo continuo para el descarte de barras rotas.

Se muestra el rizado de torque a 5000-6000 N-m, se encuentra dentro de la tolerancia del par nominal de 7500 N-m.

4.5. Resumen de resultados

Evaluar la calidad de potencia eléctrica del lugar de instalación del motor es un elemento importante para una operación eficiente de los motores eléctricos. Algunos parámetros por tomar en cuenta son la tensión que no debe tener variaciones al +/- 10 %, la frecuencia no debe tener variaciones de +/- 5 % (norma IEC 60034-1 y NEMA MG-1) (32) (33).

Motor 12	50HP - 200ML003	Resultados obtenidos	Estado
	Tensión	4218.9 V	Óptimo
	Desbalance de tensión	0.04	Óptimo
	Desbalance de corriente	0.88	Óptimo
	Distorsión armónica de tensión	0.7	Óptimo
Calidad		Armónicos de tensi	ón Vh
de	3 orden	0.19	Dentro de tolerancias
energía	5 orden	0.34	Dentro de tolerancias
-	7 orden	0.68	Dentro de tolerancias
	9 orden	0.05	Dentro de tolerancias
	11 orden	0.09	Dentro de tolerancias
	13 orden	0.075	Dentro de tolerancias
		Armónicos de corrie	ente Ih
	3 orden	0.25	Dentro de tolerancias
	5 orden	0.41	Dentro de tolerancias
	7 orden	0.83	Dentro de tolerancias

Tabla 54. Estado de resultados del motor 200ML003

	9 orden	0.51	Dentro de tolerancias
	11 orden	0.07	Dentro de tolerancias
	13 orden	0.06	Dentro de tolerancias
	Factor de potencia	0.88	Óptimo >= 0.90
Condición	Factor de servicio	0.74	Dentro de tolerancias
condicion	Carga	74.5 %	Óptimo > 70 %
del motor	Rendimiento	95.2 %	Bien
Barras	Rotor bar	- 49 dB	Dentro de tolerancias
del rotor y torque	Torque	5000-6000 N-m	Dentro de tolerancias

De lo resultados obtenidos

- El nivel de voltaje es de 4,22 kV, el sistema de potencia de alimentación del motor 200ML003 no presenta subtensión, ya que se encuentra dentro de los límites permitidos (+/- 5 % de Vn) por la NTCSE (Bien).
- Las fases de ondas sinusoidales de tensión se encuentran balanceados, ya que los valores de desbalance de tensión, se encuentra dentro de los rangos permitidos por la norma EN-50160 (+/- 2 %). El desbalance de tensión obtenido es de 0.04 % (Bien).
- Los niveles de corriente están equilibrados, ya que los valores de desbalance de corriente, se encuentra dentro de los rangos permitidos por la NTCSE (+/- 10 %).
 El desbalance de corriente obtenido es de 0.88 % (Bien).
- De los resultados no se presenta variaciones sostenidas de frecuencia, los valores se encuentran dentro del límite permitido por la norma NTCSE (+/-0.6 %).
- El valor de factor de potencia en prueba es de 0.88.
- La eficiencia calculada del motor en prueba es de 0.95.
- Durante el monitoreo en línea, se observó torque constante.
- Del análisis del espectro de las barras del rotor, no se muestran tendencias anómalas.

Motor 125	50HP - 200ML002	Resultados obtenidos	Estado
	Tensión	4159.3 V	Bien
	Desbalance de tensión	0.04	Bien
	Desbalance de corriente	1.99	Bien
	armónica de tensión	1.00	Bien
		Armónicos de tensie	ón Vh
	3 orden	0.17	Dentro de tolerancias
Calidad	5 orden	0.73	Dentro de tolerancias
de	7 orden	0.71	Dentro de tolerancias
eneraía	9 orden	0.14	Dentro de tolerancias
energia	11 orden	0.32	Dentro de tolerancias
	13 orden	0.085	Dentro de tolerancias
		Armónicos de corrie	nte Ih
	3 orden	0.27	Dentro de tolerancias
	5 orden	1.1	Dentro de tolerancias
	7 orden	0.91	Dentro de tolerancias
	9 orden	0.15	Dentro de tolerancias
	11 orden	0.26	Dentro de tolerancias
	13 orden	0.07	Dentro de tolerancias
	Factor de Potencia	0.88	Óptimo >= 0.9
Condición	Factor de Servicio	0.7	Dentro de tolerancias
dol motor	Carga	69.7 %	Óptimo > 70 %
	Rendimiento	95.3 %	Óptimo
Barras del rotor y	Rotor Bar	- 56 db	Óptimo >-43 db límite de ruptura
torque	Torque	4800-6000 N-m	Óptimo <7500 N-m

Tabla 55. Estado de resultados del motor 200ML002.

De lo resultados obtenidos

- El nivel de tensión es de 4,16 kV, el sistema de potencia de alimentación del motor 200ML002 no presenta subtensión, ya que los niveles de tensión están dentro de los límites permitidos (+/- 5 % de Vn) por la NTCSE (Bien).
- Las fases de ondas sinusoidales de tensión se encuentran balanceados, ya que los valores de desbalance de tensión, se encuentra dentro de los rangos permitidos por la norma EN-50160 (+/- 2 %). El desbalance de tensión obtenido es de 0.04 % (Bien).
- Los niveles de corriente se encuentran equilibrados, ya que los valores de desbalance de corriente, se encuentra dentro de los rangos permitidos por la NTCSE (+/- 10 %). El desbalance de corriente obtenido es de 1.99 % (Bien).

- De los resultados no se presenta variaciones sostenidas de frecuencia, los valores se encuentran dentro del límite permitido por la norma NTCSE (+/-0.6 %).
- El valor de factor de potencia en prueba es de 0.88.
- La eficiencia calculada del motor en prueba es de 0.95.
- Durante el monitoreo en línea, se observó torque constante.
- Del análisis del espectro de las barras del rotor, no se muestran tendencias anómalas.

Motor 90	00HP - 200ML001	Resultados obtenidos	Estado
	Tensión	4171.3 V	Bien
	Desbalance de tensión	1.94	Bien
	Desbalance de corriente	2.05	Bien
	Distorsión armónica de tensión	0.80	Bien
	CHOICH	Armónicos de tensió	n Vh
	3 orden	0.29	Dentro de tolerancias
Calidad	5 orden	0.77	Dentro de tolerancias
de	7 orden	0.46	Dentro de tolerancias
energía	9 orden	0.13	Dentro de tolerancias
	11 orden	0.04	Dentro de tolerancias
	13 orden	0.12	Dentro de tolerancias
		Armónicos de corrie	nte Ih
	3 orden	0.45	Dentro de tolerancias
	5 orden	1.41	Dentro de tolerancias
	7 orden	0.53	Dentro de tolerancias
	9 orden	0.15	Dentro de tolerancias
	11 orden	0.05	Dentro de tolerancias
	13 orden	0.1	Dentro de tolerancias
	Factor de potencia	0.88	Optimo >= 0.9
Condición	Factor de servicio	0.77	Dentro de tolerancias
del motor	Carga	73.2%	Optimo > 70%
	Rendimiento	95.6%	Optimo
Barras del rotor y	Rotor bar	- 32 db	No óptimo >-43 db Límite de ruptura
torque	Torque	1550-6500 N-m	No óptimo <7500 N-m

Tabla 56. Estado de resultados del motor 200ML001

De lo resultados obtenidos

- El nivel de tensión es de 4,17 kV, el sistema de potencia de alimentación del motor 200ML001 no presenta subtensión, ya que se encuentra dentro de los límites permitidos (+/- 5 % de V) por la NTCSE (Bien).
- Las fases de ondas sinusoidales de tensión se encuentran balanceados, ya que los valores de desbalance de tensión, se encuentra dentro de los rangos permitidos por la norma EN-50160 (+/- 2 %). El desbalance de tensión obtenido es de 1.94 % (Bien).
- Los niveles de corriente están equilibrados, ya que los valores de desbalance de corriente, se encuentra dentro de los rangos permitidos por la NTCSE (+/- 10 %).
 El desbalance de corriente obtenido es de 2.05 % (Bien).
- De los resultados no se presenta variaciones sostenidas de frecuencia, los valores se encuentran dentro del límite permitido por la norma NTCSE (+/-0.6 %).
- El valor de factor de potencia en prueba es de 0.88.
- La eficiencia calculada del motor en prueba es de 0.956.
- Durante el monitoreo en línea, se observó torque no constante (oscilante), esto se debe a que el motor evaluado pertenece a un molino. (La carga no es constante).
- Del análisis del espectro de la gráfica de excentricidad, se muestran tendencias anómalas, las cuales hacen presumir problemas de rodamiento, deflexión o excentricidad.

4.6. Comparación de resultados (antecedentes)

A. Análisis comparativo de resultados con artículos científicos Análisis comparativo: artículo de Flores (8).

Tabla 57. Análisis comparativo de resultados de motor 200ML003 vs. artículo científico 1

Motor 12	50HP - 200ML003	Resultados obtenidos	Artículo científico de Flores et al.
Barras	Rotor bar	- 49 db	Análisis comparativo
del rotor v torque	Torque	5000-6000 N-m	No aplica

Análisis comparativo

En el artículo de Flores et al. (8) "Diagnóstico de fallas en máquinas eléctricas rotatorias utilizando la técnica de espectros de frecuencia en bandas laterales" (8).

En la figura 56, "se observa que aumentan los valores en dB correspondientes a las frecuencias de falla de barras teniendo una diferencia con la fundamental de 33.24 dB y 36.5 dB para el caso a y b respectivamente, a diferencia del caso sano que se tiene 64.15 dB y 67.91 dB, esto indica que existen varias barras rotas. Las diferencias anteriores para un motor sano se encuentran entre los rangos de 54 dB a 60 dB y para un caso de operación aceptable de 48 dB a 54 Db (34).

Figura 55. Comparación de resultados de un motor sano y uno con barras rotas, con carga nominal (a) bobina convencional, (b) bobina de Rogowski (8)

Figura 56. Comparación de resultados de niveles de espectro del dominio de frecuencia de barras del rotor del motor 200ML003. Tomada de Maleta de Pruebas SKF Explorer 4000

De la figura 56, para este caso de barras del rotor sanas se tiene rangos de 48 a 50 dB y en comparación con los resultados del artículo de Flores et al. (8), para un motor sano entre 54 dB a 60 dB y para un motor en operación aceptable entre 48 dB a 54 dB.

Resultados Artículo científico de Motor 1250HP - 200ML002 Flores et al. obtenidos Barras - 56 db Rotor bar Análisis comparativo del rotor Torque No aplica

4800-6000 N-m

y torque

Tabla 58. Análisis comparativo de resultados de motor 200ML002 vs. artículo científico 1

Figura 57. Comparación de resultados de niveles de espectro del dominio de frecuencia de barras del rotor del motor 200ML002. Tomada de Maleta de Pruebas SKF Explorer 4000

De la figura 57, para este caso de barras del rotor sanas se tiene rangos de 55 a 56 dB y en comparación con los resultados del artículo de Flores et al. (8), para un motor sano entre 54 dB a 60 dB y para un motor en operación aceptable entre 48 dB a 54 dB.

Tabla 59. Análisis comparativo de resultados de motor 200ML001 vs. artículo científico 1

Motor 12	50HP - 200ML003	Resultados obtenidos	Artículo científico de Flores et al.
Barras	Rotor bar	- 32 db	Análisis comparativo
v torque	Torque	1550-6500 N-m	No aplica

Figura 58. Comparación de resultados de niveles de espectro del dominio de frecuencia de barras del rotor del motor 200ML001. Tomada de Maleta de Pruebas SKF Explorer 4000

De la figura 58, para este caso de barras del rotor sanas se tiene rangos de 31 a 33 dB y en comparación con los resultados del artículo de Flores et al. (8), para un motor sano entre 54 dB a 60 dB y para un motor en operación aceptable entre 48 dB a 54 dB.

Análisis comparativo: artículo de Paz et al. (2)

Tabla 60. Análisis comparativo de resultados de motor 200ML003 vs. artículo científic			
Motor 12	50HP - 200ML003	Resultados obtenidos	Artículo científico de Paz et al.
Calidad	Desbalance de tensión	0.04	< 1 % IEEE 112-2004
de energía	Desbalance de corriente	0.88	Solo corriente de secuencia negativa

о З

Tabla 61. Análisis comparativo de resultados de motor 200ML002 vs. artículo científico 🤇
--

Motor 1250HP - 200ML002		Resultados obtenidos	Artículo científico de Paz et al	
Calidad	Desbalance de tensión	0.04	< 1 % IEEE 112-2004	
de energía	Desbalance de corriente	1.99	Solo corriente de secuencia negativa	

Motor 1250HP - 200ML001		Resultados obtenidos	Artículo científico de Paz et al.	
Calidad	Desbalance de tensión	1.94	< 1 % IEEE 112-2004	
de energía	Desbalance de corriente	2.05	Solo corriente de secuencia negativa	

Tabla 62. Análisis comparativo de resultados de motor 200ML001 vs. artículo científico 3

Análisis comparativo

El artículo de Paz et al. (2) "Diagnóstico de fallas estatóricas en motores de inducción de jaula de ardilla por medio de la corriente de secuencia negativa" (2).

1er experimento: "en todos los casos se verificó que el factor de desequilibrio de tensiones fuera inferior al 1 %. Se aprecia que en ausencia de falla (n = 0) la corriente de secuencia negativa en todos los casos tiende a ser del 1 % en p. u." (2).

2do experimento: "para obtener un desbalance de voltajes, se agrega una resistencia del orden de 0,1-0,5 Ω en serie con una de las fases del estator para desequilibrar las tensiones aplicadas en el rango de 0-5 %" (2).

Análisis comparativo: artículo de Soto et al. (10)

En el artículo de Soto et al. (10) "Diagnóstico de problemas de asimetrías rotóricas en un motor de gran potencia" (10).

amplitud entre el armonico late	eral interior y el lundamental
Grado	Diferencia de amplitudes en dB
Motor sano	54-60
Aceptable	48-54
Media sección de barra rota	42-48
Una barra rota	36-42
Varias barras rotas	30-36
Problemas severos	Menor de 30

 Tabla 63. Análisis comparativo del grado de rotura en dependencia de la diferencia de amplitud entre el armónico lateral inferior y el fundamental

Nota: tomada de Análisis comparativo del grado de rotura en dependencia de la diferencia de amplitud entre el armónico lateral inferior y el fundamental (10)

En la tabla 63 se puede apreciar "los grados de roturas en dependencia de la diferencia de amplitud entre el armónico lateral inferior y el fundamental" (10).

La diferencia de amplitud entre el armónico lateral inferior y el fundamental es el parámetro de diagnóstico de control y a partir de esta diferencia se evaluó el surgimiento de la falla. La diferencia de amplitud entre el armónico lateral inferior y el fundamental es de 27 dB, lo cual representa una degradación severa de la jaula de ardilla del rotor (10).

Tabla 64. Análisis comparativo de resultados de motor 200ML003 vs. artículo científico 4				
Motor 1250HP - 200ML003		Resultados obtenidos	Artículo científico de Soto et al.	
Barras	Rotor bar	- 49 db	Aceptable	
del rotor y torque	Torque	5000-6000 N-m	No aplica	

Tabla 65. Análisis comparativo de resultados de motor 200ML002 vs artículo científico 4

Motor 1250HP - 200ML002		Resultados obtenidos	Artículo científico de Soto et al.
Barras	Rotor bar	- 56 db	Motor sano
y torque	Torque	4800-6000 N-m	No aplica

Tabla 66. Análisis comparativo de resultados de motor 200ML001 vs artículo científico 4

Motor 12	50HP - 200ML003	Resultados obtenidos	Artículo científico de Soto et al.
Barras	Rotor bar	- 32 db	Varias barras rotas
y torque	Torque	1550-6500 N-m	No aplica

Análisis comparativo: artículo de Barreto et al. (12)

En el artículo de Barreto et al. (12) "Implementación de un sistema de detección de barras rotas y espiras cortocircuitadas en motores de inducción utilizando algoritmos de análisis espectral de corrientes (MCSA)" (12).

Tabla 67. Comparación del criterio de detección de barras rotas

$\Delta \mathbf{V} (\mathbf{dB})$	$\Delta C (dB)$	Salida
-1	Cualquier valor	"eléctrico"
Cualquier valor	-1	"eléctrico"
	> 54 dB.	"excelente"
	Entre 48 y 54 dB	"bueno"
> 42 dB.	Entre 42 y 48 dB	"moderado"
	Entre 36 y 42 dB	"roto"
	Entre 30 y 36 dB	"múltiples"

	\leq 30 dB.	"severo"
< 42 dB.	Todos los valores	"eléctrico"

Nota: tomada de Implementación de un sistema de detección de barras rotas y espiras cortocircuitadas en motores de inducción utilizando algoritmos de análisis espectral de corrientes (MCSA)" (12)

Análisis comparativo

Tabla 68. Análisis comparativo de resultados de motor 200ML003 vs artículo científico 6

Motor 1250	HP - 200ML003	Resultados obtenidos	Artículo científico de Soto et al.
Barras del	Rotor bar	- 49 dB	Bueno
rotor y torque	Torque	5000-6000 N-m	No aplica

Tabla 69. Análisis comparativo de resultados de motor 200ML002 vs. artículo científico 6

Motor 1250H	IP - 200ML002	Resultados obtenidos	Artículo científico de Soto et al.
Barras del	Rotor bar	- 56 dB	Excelente
torque	Torque	4800-6000 N-m	No aplica

 Tabla 70. Análisis comparativo de resultados de motor 200ML001 vs. artículo científico 6

 Resultados
 Artículo científico de

			Motor con barras rotas v
Barras del Rot rotor y torque	or bar	- 32 dB	fuente de alta resistencia
То	orque	1550-6500 N-m	No aplica

B. Análisis comparativo de resultados con tesis

Análisis comparativo: tesis de Peralta (6)

La tesis de Peralta (6) "Diagnóstico de fallas en motores de inducción" (6).

Motor de	e inducción	Resultados obtenidos	Tesis de Peralta	
	Tensión	4218.9 V	No lo compara bajo normativas	
	Desbalance de tensión	0.04	No lo compara bajo normativas	
Calidad	Desbalance de corriente	0.88	No lo compara bajo normativas	
de energía	Distorsión armónica de tensión	0.07	No lo compara bajo normativas	
		Arm	ónicos de tensión Vh	
	3 orden	0.19	No hay tolerancias	
	5 orden	0.34	No hay tolerancias	
	7 orden	0.68	No hay tolerancias	

Tabla 71. Análisis comparativo de resultados vs. tesis 1

	9 orden	0.05	No hay tolerancias
	11 orden	0.09	No hay tolerancias
	13 orden	0.075	No hay tolerancias
		Arm	ónicos de corriente lh
	3 orden	0.25	No hay tolerancias
	5 orden	0.41	Sí está analizado
	7 orden	0.83	No hay tolerancias
	9 orden	0.51	No hay tolerancias
	11 orden	0.07	No hay tolerancias
	13 orden	0.06	No hay tolerancias
	Factor de	0.88	No está analizado
	potencia	0.00	
	Factor de		
Condición	servicio	0.74	No está analizado
del Motor	Carga	74.5 %	Sí está analizado
	Rendimiento	95.2 %	Sí está analizado
Barras	Rotor bar	- 50 dB	No está analizado
del Rotor y Torque	Torque	5000-6000 N-m	Sí está analizado

Fuente: Elaboración propia.

Análisis comparativo: tesis de Delgado (14)

En la tesis de tesis de Delgado (14) "*Diagnóstico de motores eléctricos para la localización de fallas incipientes*" (14).

Motor de inducción		Resultados obtenidos	Tesis de Delgado
Barras del rotor	Rotor bar	- 50 dB	Se realiza un análisis espectral mediante.
y torque	Torque	5000-6000 N-m	No aplica

Tabla 72. Análisis comparativo de resultados vs. tesis 3

Análisis comparativo: tesis de Díaz (15)

En la tesis de Díaz (15) "*Diagnóstico de fallas en motores de inducción tipo jaula de ardilla mediante la aplicación de métodos híbridos*" (15).

Tabla 73. Análisis comparativo de resultados vs. tesis	4
--	---

Motor de i	inducción	Resultados obtenidos	Tesis de Delgado
Barras del rotor y	Rotor bar	- 50 dB	Se realiza un análisis de espectros de potencia, espectros de corriente.
torque	Torque	5000-6000 N-m	No aplica

Análisis comparativo: tesis de Pérez (16)

La tesis de Pérez (16) "Mantenimiento predictivo, pruebas eléctricas en motores eléctricos de inducción" (16).

	Motor de inducción	Resultados obtenidos	Tesis de Peralta
	Tensión	4218.9 V	Solo realiza análisis de vibración
	Desbalance de tensión	0.04	Solo realiza análisis de vibración
	Desbalance de corriente	0.88	Solo realiza análisis de vibración
	Distorsión armónica de tensión	0.07	Solo realiza análisis de vibración
	Arm	nónicos de ten	sión Vh
	3 orden	0.19	No hay tolerancias
	5 orden	0.34	No hay tolerancias
Calidad	7 orden	0.68	No hay tolerancias
do	9 orden	0.05	No hay tolerancias
u c onorgía	11 orden	0.09	No hay tolerancias
energia	13 orden	0.075	No hay tolerancias
	Arm	ónicos de cori	riente lh
	3 orden	0.25	No hay tolerancias
	5 orden	0.41	No hay tolerancias
	7 orden	0.83	No hay tolerancias
	9 orden	0.51	No hay tolerancias
	11 orden	0.07	No hay tolerancias
	13 orden	0.06	No hay tolerancias
	Factor de Potencia	0.88	Solo realiza análisis de vibración
Condición	Factor de servicio	0.74	Solo realiza análisis de vibración
del motor	Carga	74.5 %	Solo realiza análisis de vibración
	Rendimiento	95.2 %	Solo realiza análisis de vibración
Barras	Rotor bar	- 50 dB	Solo realiza análisis de vibración
del rotor y	Torque	5000-6000	Solo realiza análisis de vibración
torque	•	N-m	

Tabla 74. Análisis comparativo de resultados vs. tesis 5

4.7. Consecuencias teóricas

La calidad en motores de inducción, de acuerdo a la analizado en la investigación, la calidad en motores es el funcionamiento de la condición de la máquina rotativa en operación. Es la evaluación y monitoreo del motor en operación, identificando las posibles fallas y sus causas.

Pruebas eléctricas en régimen dinámico, de acuerdo a la investigación son pruebas especializadas a máquinas rotativas (motores y generadores) estas pruebas son preventivas, ya que se buscan las posibles causas de fallas y con ello realizar un análisis exhaustivo para dar solucionar - prolongar y mejorar la eficiencia y la vida útil de una máquina rotativa.

Calidad de alimentación: como se ha analizado en la investigación es la forma de energía que se utiliza para el funcionamiento de todo el circuito de potencia, es por ello si la alimentación es distorsionada o de mala calidad tiene consecuencias que pueden alterar todo el circuito de potencia funcional de estas máquinas rotativas.

4.8. Aplicaciones prácticas

De acuerdo a lo analizado para la realización de la investigación, la recopilación en campo de toda la información, (datos de placa, datos de circuitos de potencia, actualización de diagramas unifilares, actualización de estudios), del conexionado de equipo-máquina (conexionado directo en tableros de control), se deben implementar las pruebas remotas donde el operador de la maleta de pruebas tenga el acceso total las 24 horas del monitoreo continuo del motor analizado, solamente se necesitaría el apoyo de un personal técnico para el conexionado vía ethernet o wifi del centro de control a servidor principal de la maleta de pruebas y así lograr un monitoreo continuo de estos motores.

Es muy importante esta aplicación, ya que para diagnosticar fallas en tiempo real es muy necesario monitorear estas máquinas las 24 horas del día.

CONCLUSIONES

Motor 1250 HP - 200ML003

Los niveles de tensión cumplen con las tolerancias de ± 5 % de la subtensión de operación. El nivel de desbalance de tensión está dentro de los porcentajes límites por norma EN-50160 (+/- 2 %).

El valor obtenido de corriente nominal es 161.0 A (100 %) y tiene una capacidad de consumo promedio de 113.5 A (70.5 %), lo cual indica que el motor trabaja a buena capacidad operativa.

El valor de potencia activa es 729.7 kW, el motor tiene una potencia de diseño de 1250 HP que equivale a 932.12 kW. Se ha registrado la potencia reactiva en 394.3 kVAr con un nivel de factor de potencia de 0.88, lo que indica que el sistema necesita mejorar el factor de potencia por el exceso de reactivos.

El valor de distorsión armónica de tensión total THDv (%) es 0.7 %, cumple con las tolerancias estipuladas por norma IEEE, ya que son menores al límite permitido que es 5.0 % en media tensión. Los armónicos de tensión, y capacidad de corriente se encuentran dentro de los límites permitidos por norma NTCSE/IEEE 519-2014.

Los valores de factor de servicio efectivo donde se analizaron las curvas de desbalance de voltaje y la curva de distorsión de armónica de voltaje, por lo que el motor no está operando con sobretemperatura.

El motor tiene una carga de trabajo al 74.5 %, lo cual indica que la maquina opera sin sobreesfuerzo y dentro de la capacidad de diseño.

El motor tiene una eficiencia al 95.2 %, lo cual indica que la máquina se desempeña a una buena carga y capacidad de operación.

El rotor bar del motor (espectro de tendencia bandas laterales) no presenta picos que sobrepasan las alarmas preprogramadas para posibles barras rotas. Las barras del rotor no presentan peligro de rotura, ya que se encuentran a -50 dB, pero se debe realizar una inspección y monitoreo continuo para el descarte de barras rotas.

Se muestra el rizado de torque a 5000-6000 N-m, se encuentra dentro de la tolerancia del par nominal de 7500 N-m.

Motor 1250 HP – 200ML002

Los niveles de tensión cumplen con las tolerancias de ± 5 % de la subtensión de operación. El nivel de desbalance se encuentra dentro de los porcentajes límites por norma EN-50160 (+/- 2 %).

El valor obtenido de corriente nominal es 161.0 A (100 %) y tiene una capacidad de consumo de 109.2 A (66.5 %), lo cual indica que el motor trabaja a buena capacidad operativa.

El valor de potencia activa es 682.2 kW, el motor tiene una potencia de diseño de 1250 HP que equivale a 932.12 kW. Se ha registrado la potencia reactiva en 360.2 kVAr con un nivel de factor de potencia de 0.88, lo que indica que el sistema necesita corregir el factor de potencia por el exceso de reactivos.

El valor de distorsión armónica de tensión total THDv (%) es 1.0 %, cumple con las tolerancias estipuladas por norma IEEE, ya que son menores al límite permitido que es 5.0 % en media tensión. Los armónicos de tensión, y capacidad de corriente se encuentran dentro de los límites permitidos por norma NTCSE/IEEE 519-2014.

Los valores de factor de servicio efectivo donde se analizaron las curvas de desbalance de voltaje y la curva de distorsión de armónica de voltaje, por lo que el motor no está operando con sobretemperatura.

El motor tiene una carga de trabajo al 66.5 %, lo cual indica que la maquina opera sin sobreesfuerzo y dentro de la capacidad de diseño.

El motor tiene una eficiencia al 95.3 %, lo cual indica que la máquina se desempeña a una buena carga y capacidad de operación.

El de rotor bar del motor (espectro de tendencia bandas laterales) no presenta picos que sobrepasa las alarmas preprogramadas para posibles barras rotas. Las barras del rotor no presentan peligro de rotura, ya que se encuentran a - 56 dB, pero se debe realizar una inspección y monitoreo continuo para el descarte de barras rotas.

Se muestra el rizado de torque a 4800-6000 N-m, se encuentra dentro de la tolerancia del par nominal de 7500 N-m.

Motor 900 HP - 200ML001

Los niveles de tensión cumplen con las tolerancias de ± 5 % de la caída de tensión de operación. El nivel de desbalance se encuentra dentro de los porcentajes límites por norma EN-50160 (+/- 2 %).

El valor obtenido de corriente nominal es 116.0 A (100 %) y tiene una capacidad de consumo de 82.2 A (69.5 %), lo cual indica que el motor trabaja a buena capacidad operativa.

El valor de potencia activa es 514.3 kW, el motor tiene una potencia de diseño de 950 HP que equivale a 708.42 kW. Se ha registrado la potencia reactiva

en 274.5 kVAr con un nivel de factor de potencia de 0.88, lo que indica que el sistema necesita mejorar el factor de potencia por el exceso de reactivos.

El valor de distorsión armónica de tensión total THDv (%) es 0.8 %, cumple con las tolerancias estipuladas por norma IEEE, ya que son menores al límite permitido que es 5.0 % en media tensión. Los armónicos de tensión y corriente se encuentran dentro de los límites permitidos por norma NTCSE/IEEE 519-2014.

Los valores de factor de servicio efectivo donde se analizaron las curvas de desbalance de voltaje y la curva de distorsión de armónica de tensión por lo que el motor no está operando con sobretemperatura.

El motor tiene una carga de trabajo al 73.2 %, lo cual indica que la maquina opera sin sobreesfuerzo y dentro de la capacidad de diseño.

El motor tiene una eficiencia al 95.6%, lo cual indica que la máquina se desempeña a una buena carga y capacidad de operación.

El rotor bar del motor (espectro de tendencia bandas laterales) no presenta picos que sobrepasan las alarmas preprogramadas para posibles barras rotas. Las barras del rotor sí presentan peligro de rotura, ya que se encuentran a -47 dB, ya que el límite de ruptura de barras es menor a -43 bB.

Se muestra el rizado con demasiado desbalance de torque, se tiene valores de 1550-6500 N-m, se encuentra fuera de la tolerancia del par nominal de 5500 N - m.

RECOMENDACIONES

La unidad minera debe implementar mediciones en *on line*, para hacer seguimiento de la calidad de energía en el sistema eléctrico del motor.

Evaluar continuamente los niveles de potencia - carga, ya que este proceso ayudará a censar el desempeño y capacidad del motor.

Realizar ensayos de análisis vibracional y lubricación, a fin de descartar posibles problemas de vibración, alineamiento, deflexión de eje, excentricidad, desbalance de rotor o envejecimiento prematuro de los rodajes.

Toda máquina rotativa sometida a los ensayos *on line*, deben estar operando a un 60 % de su plena carga como mínimo. De lo contrario, el diagnóstico de los parámetros eléctricos no será validados para la evaluación del motor.

Realizar pruebas predictivas en los motores con el fin de establecer un registro histórico de mantenimientos, fallas y paradas imprevistas que permita evaluar la tendencia del rendimiento del motor.

El monitoreo y evaluación de los parámetros eléctricos del motor en funcionamiento a plena carga es muy importante, ya que a plena carga se puede analizar las condiciones de estado del motor a las cuales está sometido.

Realizar una inspección y monitoreo continuo para el descarte de barras rotas (Realizar un análisis del espectro de las barras) al motor de 900HP – 200ML001.

Realizar un estudio de vibraciones para el descarte de problemas en el torque al motor de 900HP – 200ML001.

Manejar un registro de la condición del motor en evaluación, lo cual ayuda a tener la máquina en estado permanente y así llegar a evitar paradas forzadas que resultan muy costosas para unidad minera.

LISTA DE REFERENCIAS

1. **PAZ PARRA, Alejandro y otros.** *Metodología para el diagnóstico de fallas en motores de inducción trifásicos tipo jaula de ardilla a través de sistemas expertos basados en redes bayesianas.* 2012, págs. 1-4.

2. PAZ PARRA, Alejandro; OSLINGER, José Luis; ARCESIO PALACIOS, Jairo. *Diagnóstico de fallas estatóricas en motores de inducción de jaula de ardilla por medio de la corriente de secuencia negativa.* 1, Bogotá : s.n., enero-junio de 2014, Stator Failure Diagnosis for Squirrel Cage Induction Motors through the Negative Sequence Current, Vol. 18, págs. 141-158.

3. **STAVROU, A., SEDDING, HG. y PENMAN, J.** *Current monitoring for detecting inter-turn short circuits in induction motors.* 1, s.l. : IEEE, Marzo de 2001, Vol. 16, págs. 32-37.

4. **TAVNER, P.** *Review of condition monitoring of rotating electrical machines.* 4, s.l. : The Institution of Engineering and Technology IET Electric Power Applications, Julio de 2008, Vol. 2, págs. 215-247.

5. DORRBERCKER, Santiago A. y otros. *Matriz de Falla de los Motores de Inducción.* 1, Enero de 2007, Vol. 28, págs. 1-8.

6. **PERALTA NUÑEZ, Gustavo Saul.** *Diagnóstico de fallas en motores de inducción.* Universidad Nacional del Centro del Perú. Huancayo : s.n., 2009. pág. 141.

7. **TAMAYO y TAMAYO, Mario.** *El proceso de la Investigación Científica.* 4. México : LIMUSA S.A., 2003. pág. 175. Vol. 1.

8. FLORES, Roberto y ASIÁN, Tomás I.Diagnóstico de Fallas en Máquinas Eléctricas Rotatorias Utilizando la Técnica de Espectros de Frecuencia de Bandas Laterales. 4, México : s.n., 28 de Enero de 2011, Vol. 24, págs. 73-84.

9. **TORO GARCÍA, Nicolas y otros.** *Pruebas a Motores de Inducción.* Colombia : Universidad Nacional de Colombia, 2015, págs. 1-6.

10. **SOTO SALVÁ, N y DE LA TORRE SILVA, F.***Diagnóstico de problemas de asimetrías rotóricas en un motor de inducción de gran potencia.* Santa Cruz del Norte : s.n., julio de 2007, págs. 47-50.

11. VILLADA DUQUE, Fernando, PARRA, Diego y OCAMPO, Guillermo. Estudio del comportamiento de motores de inducción ante fallas estatóricas. 1, Antioquía, Colombia : s.n., 2007, Vol. 40, págs. 76-94.

12. BARRETO J., Rafael y MORALES M., Náthali. Diseño de Implementación de un sistema de detección de barras rotas y espiras cortocircuitadas en motores de inducción utilizando algoritmos de análisis espectral de corrientes (MCSA). Noviembre de 2007, Motores de Inducción Análisis Espectral Algoritmos, págs. 1-13. 13. **MONTEALEGRE FERNANDEZ, Diego Alexander y CAICEDO COLONIA, Jaime.** *Análisis de fallas en los motores eléctricos de inducción.* Corporación Universitaria Autonoma de Occidente. Santiago de Cali : s.n., 1995. pág. 158.

14. **DELGADO ARREDONDO, Paulo Antonio.** *Diagnóstico de motores eléctricos para la localización de fallas incipientes.* Universidad de Guanajuato - Universidad de Valladolid. Guanajuato : s.n., 2017. pág. 172, Tesis de Investigación.

15. **DÍAZ SÁNCHEZ, Darío.** *Diagnóstico de fallas en motores de inducción tipo jaula de ardilla mediante la aplicación de métodos híbridos.* Universidad del Valle. Santiago de Cali : s.n., 2011. pág. 169, Tesis PosGrado.

16. PÉREZ COAGUILA, Giancarlo Jorge. Mantenimiento predictivo, pruebas eléctricas en motores eléctricos de inducción. Universidad Católica de Santa María. Arequipa : s.n., 2013. pág. 120.

17. VICTORIA MUÑOZ, Andrés Felipe y HERRERA BASTIDAS, Carlos Román. Diagnóstico de fallas en el rotor de motores de inducción de jaula de ardilla mediante el método de análisis espectral de corrientes: fundamento teórico y ejemplo práctico. Universidad Autónoma de Occidente. Santiago de Cali : s.n., 2006. pág. 121.

18. **MONARDES PONCE, Rubén Roberto.** *Confiabilidad en motores asíncronos en una planta de procesamiento de minerales.* Pontificia Universidad Catolica de Valparaiso. Valparaíso : s.n., 2017. pág. 100.

19. LOPÉZ BELTRÁN, José Rene y VENTURA GAMEZ, Elvia Nairobi. Estudio de Desbalance de Tensiones y sus Efectos en la Calidad del Producto Técnico para Sistemas de Distribución a Nivel Industrial. Universidad de El Salvador. San Salvador : s.n., 2019. pág. 84, Tesis de Investigación.

20. SÁNCHEZ CORTÉS, Miguel Angel. Calidad de la Energía Eléctrica. Primera. Puebla : Instituot Tecnológico de Puebla, 2009. pág. 492. Vol. I.

21. **HERRERA GUACHAMIN, Jonathan Giovanny.** *Análisis de la Eficiencia de los motores de inducción que operan bajo diferentes condiciones de fallos.* Universidad Politécnica de Valencia. Valencia : Escuela Técnica Superior de Ingneiría de Diseño, 2018. pág. 65, Trabaja de Tesis para Magister.

22. Baker Instrument Company - SKF. Manual de Analizador de motor dinámico *SKF*. Baker Instrument Company. USA : Grupo SKF, 2012. pág. 182, Manual del Usuario. V6.

23. —. *Pruebas Dinámicas con Equipo SKF Baker Explorer 4000.* Baker Instrument Company. Valencia, Venezuela : Grupo SKF, 2013. pág. 72, Informe Técnico de Servicio Análisis Dinámico Eléctrico a Motores AC.

24. **HIDALGO, Juan C.** *Análisis de las zonas de falla de Motores Eléctricos.* San José, Costa Rica : Termogram, 2016, págs. 1-12.

25. **STONE, Greg C., y otros.** *Electrical Insulation for Rotating Machines: Design, Evaluation, Aging, Testing, and Repair.* 2nd. U.S.A. : Wiley-IEEE Press, 2004. pág. 672. ISBN: 0471445061.

26. LLACTA LLACTA, Cristhian. Condiciones de Operación para detectar señales de Corriente Distorsionada en el Estator del Motor de Inducción de 2 HP. Posgrado de la Facultad de Ingeniería Mecánica, Universidad del Centro del Perú. Huancayo : UNCP, 2016. pág. 94, Tesis.

27. MARSE, Rodrigo Emanuel y SCHROEDER, Jonathan Daniel. *Monitoreo, detección y diagnóstico de fallos en motores asíncronos trifásicos.* Universidad Tecnológica Nacional. Paraná : Facultad Regional Paraná, 2020. pág. 102, Tesis .

28. **CHAPMAN, Stephen J.** Máquinas Eléctricas. [aut. libro] Stephen J. Chapman. [ed.] Miguel Ángel Toledo Castellanos. [trad.] Sergio Sarmiento Ortega. *Electric Machinery Fundamentals.* Ney York : McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V., 2012, 6, págs. 231-299.

29. **ANAGUANO L., Patricio.** *Causas, Análisis, Reparación y Prevención de fallas en los motores trifásicos de inducción jaula de ardilla.* Escuela Politecnica Nacional. Quito : s.n., 1997. pág. 317, Tesis.

30. **FRAILE MORA, Jesús.** *Máquina Eléctricas.* [ed.] Concepción Fernández Madrid. Madrid : Mc GrawHill, 2003. Vol. 5.

31. **ESPINOZA MONTES, Ciro.** *Medología de investigación tecnológica.* 1. Huancayo : Imagen Grafica SAC, 2010. pág. 190. Vol. 1. 978-612-00-0222-3.

32. **60034-1**, **IEC.** *Máquinas eléctricas rotativas.Parte 1: Clasificación y rendimiento.* Trece. s.l. : Commission Electrotechnique Internationale, 2017.

33. **MG-1, NEMA.** *Motors and Generations.* s.l.: The National Electrical Manufacturers Association, 2009. pág. 671.

34. FLORES, Roberto y ASIAÍN, Tomás I. Diagnóstico de Fallas en Máquinas Eléctricas Rotatorias Utilizando la Técnica de Espectros de Frecuencia de Bandas Laterales. 4, México : s.n., 28 de Enero de 2011, Vol. 22, págs. 73-84.

35. ALBOT, Christian E., SAAVEDRA, Pedro N. y VALENZUELA, M. Anibal. *Diagnóstico de la Condición de las Barras de Motores de Inducción.* T4, Concepción, Chile : s.n., 24 de Abril de 2013, Vol. 24, págs. 85-94.

36. HOLGUIN, Marcos y GOMEZ COELLO, David. Análisis de Calidad de Energía *Eléctrica en el "Nuevo Campus" de la Universidad Politécnica Salesiana.* Universidad Politécnica Salesiana. Guayaquil : s.n., 2010. pág. 275, Tesis de Investigación. ANEXOS

Anexo 1

Matriz de consistencia

Planteamiento del problema	Marco teórico	Metodología
Formulación del problema general ¿Cuál es el resultado del análisis de la calidad en motores de inducción mediante pruebas eléctricas en régimen dinámico?	Antecedentes	Variables: Variable independiente:
Formulación de los problemas específicos ¿Cuáles serán los valores de tensión de las pruebas en régimen dinámico para el análisis de la calidad en motores de inducción? ¿Cuáles serán los valores de corriente de las pruebas en régimen dinámico para el análisis de la calidad en motores de inducción? ¿Cuáles serán los valores de potencia de las pruebas en régimen dinámico para el análisis de la calidad en motores de inducción? ¿Cuáles serán los valores de los armónicos de las pruebas en régimen dinámico para el análisis de la calidad en motores de inducción? ¿Cuáles serán los valores de los armónicos de las pruebas en régimen dinámico para el análisis de la carga de las pruebas en régimen dinámico para el análisis de la calidad en motores de inducción?	 Flores R. and Asian T. (2011). "Diagnóstico de fallas en máquinas eléctricas rotatorias utilizando la técnica de espectros de frecuencia de bandas laterales" (8; 3) Toro N., et al, (2015), "Pruebas a Motores de Inducción Trifásicos". (9) Paz A., et al, (2014), "Diagnóstico de fallas estatóricas en motores de inducción de jaula de ardilla por medio de la corriente de secuencia negativa". (2; 30; 35) Soto N., et al (2007), "Diagnóstico de problemas de asimetrías retóricas en un motor de inducción de gran potencia". (10) Villada F., Parra D., y Ocampo G, (2007), "Estudio del comportamiento de motores de inducción ante fallas estatóricas". (11) Dorrbercker S., et al (2007), "Matriz de falla de los motores de inducción". (5) Talbot C., et al (2013), "Diagnóstico de la Condición de las Barras de Motores de Inducción". (35) Hidalgo J, (2016), "Análisis de las zonas de falla de motores eléctricos". (24) Chapman J, (2012), "Máquinas Eléctricas". (28) J. IEC 61000-4-30, (2003), "International Electrotechnical Commission, Tech. Rep., Electromagnetic Compatibility (EMC) - Part 4-30: Testing and Measurement Techniques - Power Quality Measurement Methods". I. Norma "NEMA MG1-2009: Motors and Generation", Published by National Electrical Manufacturer's Association, 2009, Section 14.36. 	Calidad en Motores de Inducción

las pruebas en régimen dinámico para el
análisis de la calidad en motores de inducción?

¿Cuáles serán los valores del rendimiento de las pruebas en régimen dinámico para el análisis de la calidad en motores de inducción?

¿Cuáles serán los valores de factor de servicio de las pruebas en régimen dinámico para el análisis de la calidad en motores de inducción?

¿Cuáles serán los valores de rotor-bar de las pruebas en régimen dinámico para el análisis de la calidad en motores de inducción?

Objetivo general

Analizar los resultados de la calidad en motores de inducción mediante pruebas eléctricas en régimen dinámico.

Objetivos específicos

Analizar los valores de tensión en motores de inducción mediante pruebas eléctricas en régimen dinámico. Analizar los valores de corriente en motores de inducción mediante pruebas eléctricas en régimen dinámico. Analizar los valores de potencia activa, potencia aparente, potencia reactiva y factor de potencia en motores de inducción mediante pruebas eléctricas en régimen dinámico. Analizar los valores de armónicos de

Analizar los valores de armonicos de tensión y corriente en motores de inducción mediante pruebas eléctricas en régimen dinámico.

Teoría básica

Calidad en Motores de Inducción, es el funcionamiento y la condición de la máquina rotativa en operación, la máquina debe ser operado de acuerdo con los datos nominales de diseño, siguiendo normas aplicables y cumpliendo criterios que establece límites de operación, "Es la evaluación de la operación del motor, identificando las operaciones estresantes y sus causas. Observando el Factor de Servicio Efectivo, la Condición Operativa, la Eficiencia. Los problemas que se encuentran por lo general incluyen: sobrecarga térmica del motor y reconocimiento del deterioro del equipo, entre otros ítems directamente relacionados con la condición del motor y la energía que se pierde por ineficiencias". (18)

Calidad de la Energía Eléctrica, es un indicador del nivel de fuente eléctrica i (red eléctrica), en términos generales es un conjunto de propiedades inherentes tanto al servicio como a la señal de tensión o corriente eléctrica que permiten apreciarla como igual, mejor o peor que otras. Por lo tanto, debe considerar tanto la continuidad del servicio como la calidad de las señales de tensión y corriente eléctrica, en un tiempo dado y en un espacio determinado de un sistema de potencia eléctrico. (19)

La distorsión armónica, es la deformación de la onda de su característica sinusoidal pura original. Un análisis matemático (Fourier) de ondas distorsionadas por cargas no lineales muestra que ellas están compuestas de la onda seno fundamental, además de una o más ondas con una frecuencia que

Tipo de Investigación

La investigación a desarrollar es del tipo científica básica. Nivel de Investigación Nivel de investigación aplicativo. Diseño de Investigación Diseño de la investigación descriptivo comparativo.

Analizar la carga en motores de inducción mediante pruebas eléctricas en régimen dinámico.

Analizar el torque en motores de inducción mediante pruebas eléctricas en régimen dinámico.

Analizar el rendimiento en motores de inducción mediante pruebas eléctricas en régimen dinámico.

Analizar el factor de servicio en motores de inducción mediante pruebas eléctricas en régimen dinámico.

Analizar el estado de las Barras del Rotor en motores de inducción mediante pruebas eléctricas en régimen dinámico.

Hipótesis

H1: Los resultados de las pruebas en régimen dinámico permiten evaluar la calidad en motores de inducción.
H0: Los resultados de las pruebas en régimen dinámico no permiten evaluar la calidad en motores de inducción.

es un múltiplo entero de la frecuencia fundamental. (36) La función de distorsión armónica examina la distorsión armónica total de las tres fases para tensiones neutras. Compara el nivel de distorsión armónica total con los valores del umbral que usted define. (22)

Pruebas Eléctricas en Régimen Dinámico, son pruebas eléctricas especializadas a motores en operación con su carga normal, permite una análisis de la causa raíz de las fallas, proveen información acerca de las condiciones de la energía, el motor, la carga, y el impacto que estas condiciones tienen en el estado y rendimiento del motor eléctrico, a continuación se describe cada prueba que se realiza: (22)

Población

Los motores de inducción de planta Óxidos de Pasco Muestra Tres motores de Inducción del área de molienda. Técnicas e instrumentos de recolección de datos Empírica-Observación/Equipo analizador dinámico Explorer 4000. Técnicas procesamiento de datos La estadística

descriptiva.

Anexo 2 Reporte fotográfico

Figura 59. Conexionado de cables de prueba de corriente y tensión en puntos de conexión CCM 200-ML-003

Figura 60. Conexionado de pinzas amperimétricas en CCM 200-ML-003

Figura 61. Configuración de maleta Explore 4000 con parámetros de motor

Figura 62. Conexionado de cables a maleta de prueba

Figura 63. Prueba en régimen dinámico

Figura 64. Estado de conexión fasorial en régimen dinámico

Figura 65. Puesta en marcha de prueba en régimen dinámico

Figura 66. Parámetros obtenidos en prueba dinámica

Figura 67. Sistema de potencia barra 4.16 kV – motores de inducción en media tensión

Figura 68. Diagrama fasorial en prueba de motor 200ML003

Figura 69. Diagrama fasorial en prueba de motor 200ML002

Figura 70. Diagrama fasorial en prueba de motor 200ML001