

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería de Minas

Tesis

Caracterización mineralógica del yacimiento Goyllar 2008 (ex Negra Huanusha) aplicando microscopía óptica de luz transmitida y luz reflejada

Kelvin Mario Perez Orihuela Jhording Edison Pumacarhua De La Cruz

> Para optar el Título Profesional de Ingeniero de Minas

> > Huancayo, 2021

AGRADECIMIENTOS	ii
DEDICATORIA	iii
ÍNDICE	iv
RESUMEN	xiii
INTRODUCCIÓN	xv
CAPÍTULO I:	16
PLANTEAMIENTO DEL ESTUDIO	16
1.1. Planteamiento y formulación del problema	16
1.1.1. Problema General	17
1.1.2. Problemas Específicos	17
1.2. Objetivos	17
1.2.1. Objetivo general	17
1.2.2. Objetivos específicos	17
1.3. Justificación e importancia	18
1.4. Hipótesis	18
1.4.1. Hipótesis General	18
1.4.2. Hipótesis Especificas	18
1.5. Operacionalización de variables	18
CAPÍTULO II:	20
MARCO TEÓRICO	20
2.1. Antecedentes de la investigación	20
2.1.1. Antecedentes Nacionales	20
2.1.2. Antecedentes Regionales y Locales	22
2.2. Bases teóricas	22
2.2.1. Microscopia Óptica	22
2.2.2. Microscopio de Polarización	22
2.2.2.1. Microscopio de polarización de luz reflejada	24
2.2.2.2. Microscopio de polarización de luz transmitida	25
2.2.3. Elaboración de muestras	26
2.2.4. Luz linealmente polarizada reflejada en minerales opacos	27
2.2.5. Luz linealmente polarizada transmitida en minerales transparentes	27
2.2.6. Análisis con Luz Ortoscópica transmitida	28
2.2.6.1. Estudio con Nicoles Paralelos	28
2.2.6.2. Estudio con Nicoles Cruzados	32

ÍNDICE

2.2.7. Propiedades Ópticas Analizadas por Luz Reflejada	
2.2.8. Propiedades Físicas y Morfológicas que se estudian con Luz	z Reflejada . 34
2.3. Generalidades	
2.3.1. Ubicación y acceso	
2.3.2. Reseña histórica	
2.3.3. Clima y vegetación	
2.3.4. Accesibilidad	
2.3.5. Geología	
2.3.6. Geología regional	
2.3.7. Geología del yacimiento	
2.3.8. Estructuras mineralizadas	
2.3.9. Génesis del yacimiento	
2.3.10. Definición de términos básicos	
CAPÍTULO III:	
METODOLOGÍA	
3.1. Método y alcance de la investigación	
3.1.1. Tipo de investigación	
3.1.2. Nivel de investigación	
3.2. Diseño de la investigación	
3.3. Población y muestra	
3.4. Técnicas e instrumentos de recolección de datos	
3.4.2. Identificación de características físicas	
3.4.3. Preparación de muestras	
3.4.4. Materiales	
CAPÍTULO IV:	
ANÁLISIS DE RESULTADOS	
4.1. Análisis a través de microscopia óptica en luz transmitida y refle	ejada 43
4.1.1. Muestra CX1-1	
4.1.1.1. Mineralogía	
4.1.1.2. Descripción Microscópica	
4.1.1.3. Distribución volumétrica porcentual	
4.1.1.4. Textura	
4.1.1.5. Paragénesis	
4.1.1.6. Observaciones	
4.1.1.7. Fotomicrografías	

4.1.2.	Muestra CX1-2	. 46
4.1.2.1.	Mineralogía	. 46
4.1.2.2.	Descripción Microscópica	. 46
4.1.2.3.	Distribución volumétrica porcentual	. 48
4.1.2.4.	Textura	. 48
4.1.2.5.	Paragénesis	. 48
4.1.2.6.	Observaciones	. 48
4.1.2.7.	Fotomicrografías	. 48
4.1.3.	Muestra CX1-3	. 53
4.1.3.1.	Mineralogía	. 53
4.1.3.2.	Descripción Microscópica	. 53
4.1.3.3.	Distribución volumétrica porcentual	. 54
4.1.3.4.	Textura	. 54
4.1.3.5.	Paragénesis	. 54
4.1.3.6.	Observaciones	. 55
4.1.3.7.	Fotomicrografías	. 55
4.1.4.	Muestra CX2-1	. 57
4.1.4.1.	Mineralogía	. 57
4.1.4.2.	Descripción Microscópica	. 57
4.1.4.3.	Distribución volumétrica porcentual	. 59
4.1.4.4.	Textura	. 59
4.1.4.5.	Paragénesis	. 59
4.1.4.6.	Observaciones	. 59
4.1.4.7.	Fotomicrografías	. 60
4.1.5.	Muestra CX2-2	. 63
4.1.5.1.	Mineralogía	. 63
4.1.5.2.	Descripción Microscópica	. 63
4.1.5.3.	Distribución volumétrica porcentual	. 64
4.1.5.4.	Textura	. 64
4.1.5.5.	Paragénesis	. 64
4.1.5.6.	Observaciones	. 64
4.1.5.7.	Fotomicrografías	. 64
4.1.6.	Muestra CX2-3	. 68
4.1.6.1.	Mineralogía	. 68
4.1.6.2.	Descripción Microscópica	. 68

4.1.6.3.	Distribución volumétrica porcentual	69
4.1.6.4.	Textura	69
4.1.6.5.	Paragénesis	69
4.1.6.6.	Observaciones	69
4.1.6.7.	Fotomicrografía	
4.1.7.	Muestra CX2-4	72
4.1.7.1.	Mineralogía	72
4.1.7.2.	Descripción Microscópica	
4.1.7.3.	Distribución volumétrica porcentual	73
4.1.7.4.	Textura	73
4.1.7.5.	Paragénesis	73
4.1.7.6.	Observaciones	73
4.1.7.7.	Fotomicrografías	73
CONCLU	SIONES	77
REFERE	NCIAS BIBLIOGRÁFICAS	81
ANEXOS		83

ÍNDICE DE TABLAS

Tabla 1.	Operacionalización de Variables	. 19
Tabla 2.	Ubicación	. 36
Tabla 3.	Distribucion volumétrica porcentual	. 44
Tabla 4.	Distribucion volumétrica porcentual	. 48
Tabla 5.	Distribución volumétrica porcentual	. 54
Tabla 6.	Distribución volumétrica porcentual	. 59
Tabla 7.	Distribución volumétrica porcentual	. 64
Tabla 8.	Distribución volumétrica porcentual	. 69
Tabla 9.	Distribución volumétrica porcentual	. 73

ÍNDICE DE GRÁFICOS

Figura 1.	Esquema de microscopio de polarización
Figura 2.	Microscopio de polarización de luz reflejada
Figura 3.	Microscopio de Polarización de luz transmitida
Figura 4.	Preparación de secciones delgadas y secciones pulidas
Figura 5.	Diferencia entre luz Ortoscópica y luz Conoscópica
Figura 6.	Métodos para la estimación del índice de refracción relieve (arriba), línea de
	Becke (centro) y método de la sombra (abajo) 29
Figura 7.	Formación de la línea de Becke. Al aumentar la distancia entre el objetivo y el
	objeto, se observa que se desenfoca el borde 30
Figura 8.	Medición del tamaño del grano
Figura 9.	Formas bidimensionales propias de los sistemas cristalinos
Figura 10	.Diferentes grados de alteración de una roca granítica
Figura 11	Birreflectancia y pleocroísmo de algunos minerales observados en aire y con
	aceite de inmersión 34
Figura 12	.Cristal de hematita (hm) dentro de la roca con microfracturas, gangas (GGs).
	500X
Figura 13	La misma vista de la anterior, observada en nicoles cruzados, donde se puede.
	apreciar los reflejos internos de tonalidad rojiza de la hematita (hm). 500X.45
Figura 14	.Cristal anhedral de hematita (hm) como relleno de la microfractura de la ganga
	(GGs), es decir de la roca hospedante. 500X 45
Figura 15	Cristales de hematita (hm) como pseudomorfos de las piritas preexistentes
	(posiblemente framboides), están diseminados; adyacente se observa a la
	goethita (gt) como relleno de los intersticios; dentro de los pseudomorfos hay
	un cristal de hematita alterada a goethita (hm+gt). 200X 46
Figura 16	.Cristal euhedral de pirita (py) donde se aprecia las dos etapas de cristalización,
	la pirita de la parte central corresponde a la de la primera generación, mientras
	que la que está rodeando es la de la segunda generación, cada una presenta una
	forma propia, y con crecimiento zonado. 500X 49
Figura 17	Cristales euhedrales y subhedrales de pirita (py), están diseminados en las
	gangas (GGs). 200X
Figura 18	.Cristales anhedrales de tennantita (tn) rodeados y parcialmente reemplazados
	por la calcopirita (cp), de ese modo están diseminados; hacia el lado casi

- Figura 25.Sombras de las piritas framboidales (py-fr) englobados y reemplazados por la tennantita (tn), de ese modo están diseminados en las gangas (GGs). 500X. 56

Figura 42.Calcopirita (cp) alterada a bornita (bn) y a calcocita (cc), se encuentran
ubicadas en los intersticios de las gangas (GGs). 500X
Figura 43.Diminutos cristales de calcopirita (cp) están en los intersticios de las gangas
(GGs); en la parte inferior se aprecia a la calcopirita alterada a calcocita
(cp+cc). 500X
Figura 44.Cristales anhedrales de covelita (cv), algunos de ellos con pleocroismo de
reflexión, están dentro de las microfracturas e intersticios de las gangas (GGs).
200X
Figura 45. Agregados granulares de calcocita (cc) conforman microvenillas y también
están diseminados en las gangas (GGs). 100X74
Figura 46. Microvenilla de calcocita (cc) como relleno de la microfractura (estilolito?) en
la ganga (GGs). 100X75
Figura 47.Cristales anhedrales de calcocita (cc) se encuentran diseminados en las gangas
(GGs), donde se han ubicado en sus intersticios. 100X
Figura 48. Cristales anhedrales de calcocita (cc) están diseminados en los intersticios de
las gangas (GGs). 100X76

RESUMEN

La presente investigación, tiene por objetivo identificar las características petromineralógicas de la concesión minera Goyllar 2008, mediante el uso de la microscopia óptica para determina la mineralogía de la concesión, así mismo dicha herramienta permitirá identificar sus posibles alteraciones y paragénesis a través de muestras recolectadas del interior de las cortadas existentes en la concesión que presenta formaciones de calizas del Grupo Excelsior, capas rojas pérmicas del Grupo Mitu y calizas del Grupo Pucará; donde se destacan minerales de bornita, calcopirita y covelina.

De acuerdo a la secuencia de la presente investigación, en primera instancia se estudiaron las antiguas investigaciones de la concesión que permitieron comprender mejor la concesión; posteriormente se recolectaron 7 muestras de mano de manera aleatoria que se codificaron y protegieron a través de bolsas herméticas, dichas muestras se obtuvieron en dos cortadas existentes con una longitud aproximada de 100 m. lineales. Posteriormente las muestras se derivaron al laboratorio geológico Geo Exploración Ingenieros Perú S. A. C.; donde se realizó el análisis microscópico y macroscópico, el cual permitió obtener resultados y conclusiones de cada muestra a través de fotomicrografías tomadas del microscopio de luz transmitida y reflejada.

Palabras claves: Paragénesis, microscopia óptica, fotomicrografías.

ABSTRACT

The objective of this research is to identify the petromineralogical characteristics of the Goyllar 2008 mining concession, through the use of optical microscopy to determine the mineralogy of the concession, likewise this tool will allow identifying its possible alterations and paragenesis through samples collected from the interior of the existing cuts in the concession that presents limestone formations from the Excelsior Group, Permian red layers from the Mitu Group and limestone from the Pucará Group; where bornite, chalcopyrite and covelin minerals stand out.

According to the sequence of the present investigation, in the first instance the old investigations of the concession were studied, which allowed a better understanding of the concession; Subsequently, 7 hand samples were collected at random that were coded and protected through hermetic bags, these samples were obtained in two existing cuts with an approximate length of 100 m. linear. Subsequently, the samples were sent to the geological laboratory Geo Exploración Ingenieros Perú S. A. C.; where the microscopic and macroscopic analysis was carried out, which allowed obtaining results and conclusions of each sample through photomicrographs taken from the transmitted and reflected light microscope.

Keywords: Paragenesis, optical microscopy, photomicrographs.