

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería de Minas

Tesis

Análisis técnico y económico de perforación y voladura para el control del grado de fragmentación postvoladura en una mina a tajo abierto - 2021

Elvis Casani Chavez Andrés Alfonso Huamani Huillca

Para optar el Título Profesional de Ingeniero de Minas

Arequipa, 2021

Repositorio Institucional Continental Tesis digital

Esta obra está bajo una Licencia "Creative Commons Atribución 4.0 Internacional".

ASESOR

Ing. Javier Córdova Blancas

AGRADECIMIENTO

A Dios, por ser nuestro soporte emocional y espiritual; a nuestras familias por su apoyo incondicional durante la culminación de nuestros estudios universitarios; de igual forma, al Ing. Javier Córdova Blancas por su asesoramiento en la presente tesis y su apoyo constante.

DEDICATORIA

En primer lugar, dedicamos presente trabajo de investigación nuestros а padres, por su constante incondicional apoyo sabiduría en nuestro diario vivir, por formarnos como personas de bien, así mismo nuestros hermanos y familiares quienes, estuvieron presentes durante el desarrollo de nuestra vida académica.

ÍNDICE DEL CONTENIDO

PORTADA	
ASESOR	II
AGRADECIMIENTO	III
DEDICATORIA	IV
ÍNDICE DEL CONTENIDO	V
ÍNDICE DE TABLAS	VIII
ÍNDICE DE FIGURAS	XI
RESUMEN	XIV
ABSTRACT	XVI
INTRODUCCIÓN	XVII
CAPÍTULO I PLANTEAMIENTO DEL ESTUDIO	19
1.1. Planteamiento y formulación del problema	19
1.1.1. Planteamiento del problema	19
1.1.2. Formulación del problema	20
1.2. Objetivos	20
1.2.1. Objetivo general	20
1.2.2. Objetivos específicos	20
1.3. Justificación e importancia	21
1.3.1. Justificación social - práctica	21
1.3.2. Justificación académica	21
1.3.3. Justificación económica	21
1.4. Hipótesis de la investigación	22
1.4.1. Hipótesis general	22
1.4.2. Hipótesis específicas	22
1.5. Identificación de las variables	22
1.5.1. Variable independiente	22
1.5.2. Variables dependientes	22
1.5.3. Matriz de operacionalización de variables	22
CAPÍTULO II MARCO TEÓRICO	24
2.1. Antecedentes del problema	24

2.1.1.	Antecedentes internacionales	24
2.1.2.	Antecedentes nacionales	25
2.2.G	eneralidades de la unidad minera	26
2.2.1.	Ubicación accesibilidad y generalidades	26
2.3.G	eología general	27
2.3.1.	Geología local	28
2.3.2.	Geología económica	29
2.4.Ba	ases teóricas del estudio	30
2.4.1.	Consideraciones de producción	30
2.4.2.	Consideraciones de granulometría	32
2.4.3.	Consideraciones de perforación	33
2.4.4.	Consideraciones de voladura	35
2.4.5.	Consideraciones económicas de perforación y voladura	40
CAPÍ	ΓULO III METODOLOGÍA DE LA INVESTIGACIÓN	46
3.1.M	étodo y alcances de la investigación	46
3.1.1.	Método de la investigación	46
3.1.2.	Alcances de la investigación	47
3.2. Di	iseño de la investigación	47
3.2.1.	Tipo de diseño de investigación	48
3.3. Po	oblación y muestra	48
3.3.1.	Población	48
3.3.2.	Muestra	48
3.4.Te	écnicas e instrumentos de recolección de datos	48
3.4.1.	Técnicas utilizadas en la recolección de datos	48
3.4.2.	Instrumentos utilizados en la recolección de datos	48
CAPÍ	ΓULO IV RESULTADOS Y DISCUSIÓN	49
4.1.R	esultados del tratamiento y análisis de la información	49
4.1.1.	Consideraciones generales de estudio	49
4.1.2.	Análisis de la granulometría	51
4.1.3.	Análisis comparativo de granulometría	63
4.1.4.	Análisis de parámetros de perforación y voladura	68
4.1.5.	Análisis comparativo de parámetros de perforación y voladura	71

4.1.6. Resu	umen de análisis comparativo de parámetros de perforación y	
volac	dura	81
4.1.7. Análi	isis económico de parámetros de perforación y voladura	83
4.1.8. Resu	umen de análisis económico comparativo de parámetros de	
perfo	oración y voladura	91
CONCLUSI	IONES	.93
RECOMEN	IDACIONES	-96
REFERENC	CIAS BIBLIOGRÁFICAS	97
ANEXOS		.99

ÍNDICE DE TABLAS

Tabla 1. Matriz de operacionalización de variables	23
Tabla 2. Ruta geográfica	27
Tabla 3. Producción de desmonte	31
Tabla 4. Parámetros de estudio, en diferentes litologías, periodo enero	
a junio	32
Tabla 5. Parámetros de perforación zona Hornfels	34
Tabla 6. Parámetros de perforación zona de intrusivo	34
Tabla 7. Parámetros de perforación zona volcánico	35
Tabla 8. Parámetros de costos de perforación y voladura, zona Hornfels,	
carga corrida	40
Tabla 9. Parámetros de costos de perforación y voladura, zona Hornfels,	
carga con cámara	41
Tabla 10. Parámetros de costos de perforación y voladura, zona de	
Intrusivo, carga corrida	42
Tabla 11. Parámetros de costos de perforación y voladura, zona de	
Intrusivo, carga con cámara de aire	43
Tabla 12. Parámetros de costos de perforación y voladura, zona	
Volcánica, carga corrida	44
Tabla 13. Parámetros de costos de perforación y voladura, zona	
Volcánica, carga con cámara de aire	45
Tabla 14. Producción de desmonte, periodo de enero a junio	50
Tabla 15. Análisis granulométrico post voladura, diseño de carga corrida,	
periodo enero	52
Tabla 16. Análisis granulométrico post voladura, diseño de carga corrida,	
periodo febrero	53
Tabla 17. Análisis granulométrico post voladura, diseño de carga corrida,	
periodo marzo	55
Tabla 18. Análisis granulométrico post voladura, diseño de carga con	
cámara de aire, periodo abril	57

Tabla 19. Análisis granulométrico post voladura, diseño de carga con	
cámara de aire, periodo mayo	59
Tabla 20. Análisis granulométrico post voladura, diseño de carga con	
cámara de aire, periodo junio	61
Tabla 21. Análisis granulométrico post voladura, diseño de carga corrida,	
periodo enero a marzo	63
Tabla 22. Análisis granulométrico post voladura, diseño de carga con	
cámara de aire, periodo abril a junio	65
Tabla 23. Análisis granulométrico post voladura, diseño de carga con	
cámara de aire, periodo abril a junio	67
Tabla 24. Parámetros de perforación y voladura, periodo enero a junio	70
Tabla 25. Análisis de parámetros de voladura, roca hornfels con carga	
corrida, periodo enero a marzo	71
Tabla 26. Análisis de parámetros de voladura, roca Intrusivo con carga	
corrida, periodo enero a marzo	73
Tabla 27. Análisis de parámetros de voladura, roca volcánica con carga	
corrida, periodo enero a marzo	74
Tabla 28. Análisis de parámetros de voladura, roca hornfels con	
cámara de aire, periodo abril a mayo	76
Tabla 29. Análisis de parámetros de voladura, roca intrusiva con	
cámara de aire, periodo abril a mayo	78
Tabla 30. Análisis de parámetros de voladura, roca volcánica con	
cámara de aire, periodo abril a mayo	80
Tabla 31. Resumen comparativo de parámetros de perforación y	
voladura, periodo enero a junio	82
Tabla 32. Costo unitario de perforación y voladura zona hornfels,	
periodo enero a marzo	84
Tabla 33. Costo unitario de perforación y voladura zona intrusivo,	
periodo enero a marzo	85
Tabla 34. Costo unitario de perforación y voladura zona volcánica,	
periodo enero a marzo	86

Tabla 35. Costo unitario de perforación y voladura zona volcánica,	
periodo abril a junio	88
Tabla 36. Costo unitario de perforación y voladura zona intrusivo,	
periodo abril a junio	89
Tabla 37. Costo unitario de perforación y voladura zona volcánica,	
periodo abril a junio	90
Tabla 38.Resumen de costos unitarios de perforación y voladura,	
periodo enero a junio	92
Tabla 39. Matriz de operacionalización de variables	100

ÍNDICE DE FIGURAS

Figura 1. Ubicación de la mina	27
Figura 2. Estratigrafía del área de estudio	28
Figura 3. Relación desmonte sobre mineral (REM), periodo enero a junio	31
Figura 4. Relación de dureza, factor de potencia y granulometría en	
diferentes litologías	33
Figura 5. Relación de dureza, factor de potencia y granulometría en	
diferentes litologías	33
Figura 6. Diseño de malla de perforación, carga corrida en zona Hornfels	36
Figura 7. Diseño de malla de perforación, carga con cámara de aire en	
zona Hornfels	36
Figura 8. Diseño de malla de perforación, carga corrida en zona de intrusivo	37
Figura 9. Diseño de malla de perforación, carga con cámara de aire en	
zona de intrusivo	38
Figura 10. Diseño de malla de perforación, carga corrida en zona	
de roca volcánica	39
Figura 11. Diseño de malla de perforación, carga con cámara de aire	
en zona de roca volcánica	39
Figura 12. Diseño de malla de perforación, carga con cámara de aire	
en zona de roca volcánica	50
Figura 13. Relación dureza, factor de potencia y granulometría,	
periodo enero	52
Figura 14. Relación dureza, factor de potencia y dig rate,	
periodo enero	52
Figura 15. Relación dureza, factor de potencia y granulometría,	
periodo febrero	54
Figura 16. Relación dureza, factor de potencia y dig rate,	
periodo febrero	54
Figura 17. Relación dureza, factor de potencia y granulometría,	
periodo marzo	56

Figura 18.	Relación dureza, factor de potencia y dig rate,	
	periodo marzo	56
Figura 19.	Relación dureza, factor de potencia y granulometría,	
	periodo abril	58
Figura 20.	Relación dureza, factor de potencia y dig rate, periodo abril	58
Figura 21.	Relación dureza, factor de potencia y granulometría,	
	periodo mayo	60
Figura 22.	Relación dureza, factor de potencia y dig rate, periodo mayo	60
Figura 23.	Relación dureza, factor de potencia y granulometría,	
	periodo junio	62
Figura 24.	Relación dureza, factor de potencia y dig rate, periodo junio	62
Figura 25.	Relación dureza, factor de potencia y granulometría,	
	periodo enero a marzo	64
Figura 26.	Relación dureza, factor de potencia y dig rate,	
	periodo enero a marzo	64
Figura 27.	Relación dureza, factor de potencia y granulometría,	
	periodo abril a junio	66
Figura 28.	Relación dureza, factor de potencia y dig rate,	
	periodo abril a junio	66
Figura 29.	Comparativa dureza, factor de potencia y granulometría,	
	periodo enero a junio	68
Figura 30.	Comparativa dureza, factor de potencia y dig rate,	
	periodo enero a junio	68
Figura 31.	Diseño de malla de perforación, carga corrida en zona Hornfels,	
	periodo enero a marzo.	72
Figura 32.	Diseño de malla de perforación, carga corrida en zona Intrusivo,	
	periodo enero a marzo	73
Figura 33.	Diseño de malla de perforación, carga corrida en zona Volcánica,	
	periodo enero a marzo	75
Figura 34.	Diseño de malla de perforación, con cámara de aire,	
	zona Hornfels, periodo abril a junio	77

Figura 35. Diseño de malla de perforación, con cámara de aire,	
zona Intrusiva, periodo abril a junio	79
Figura 36. Diseño de malla de perforación, con cámara de aire,	
zona Intrusiva, periodo abril a junio	81
Figura N° 37 Resumen de parámetros de perforación y voladura,	
periodo enero a junio.:	82
Figura 38. Resumen de relación de costo unitario y factor de potencia,	
periodo enero a junio	92
Figura 39. Diseño de perforación zona Hornfels e Intrusivo	101
Figura 40. Diseño de perforación zona Volcánico	102
Figura 41. Material post voladura	103
Figura 42. Grado de fragmentación post voladura	103

RESUMEN

La presente tesis realiza el análisis técnico y económico de los parámetros de perforación y voladura para realizar el control del grado de fragmentación en una mina a tajo abierto, periodo 2021. El trabajo de investigación realiza el análisis de las variables operacionales asociada a rocas ígneas, volcánicas y metamórficas, con su alteración hidrotermal y metasomática asociada.

La realización de la presente tesis usó el método analítico mediante el análisis de consideraciones descriptivas y explicativas, es pre experimental, en el mismo se observó y analizó la dureza, granulometría, factor de potencia y *dig rate*, considerando diferentes tipos de litologías presentes en la operación.

El presente trabajo se realizó durante el periodo de enero a junio, en el cual se analizaron las rocas metamórficas (hornfels), ígneas (diorita) y volcánicas (andesitas) y sus respectivas alteraciones hidrotermales como metasomática (hornfels) e hidrotermal (potásico y propilítico) respectivamente. Asimismo, se consideró las variables de perforación y voladura asociada a estas litologías, considerando su malla de perforación, factor de potencia, tipo de explosivo, accesorios de voladura, etc.

Los resultados de granulometría obtenidos durante los 2 periodos analizados fueron de enero a marzo con 3.26 pulgadas y de abril a junio con 3.48 pulgadas. Esta mejora en el incremento de granulometría permitió optimizar el factor de potencia de 0.59 kg/t durante el periodo enero a marzo, disminuyendo el factor de potencia en 0.55 kg/t para el periodo abril a mayo, producto del uso de retenedores de energía como bolsas de aire (tipo taponex) durante el segundo periodo de estudio.

El resultado del análisis económico de perforación y voladura para el control del grado de fragmentación durante el periodo enero a junio, aplicado a las diferentes litologías como zona Hornfels, Intrusivo y Volcánica, generó una disminución del

factor de potencia promedio de todas las litologías de 0.56 kg/t a 0.35 kg/t y una disminución del costo unitario de 0.27 \$/t a 0.18 \$/t.

Palabras clave: dig rate, factor de potencia, costos de perforación y voladura, grado de fragmentación, etc.

ABSTRACT

This thesis carries out the technical and economic analysis of the drilling and blasting parameters to control the degree of fragmentation in an open pit mine, period 2021. The research work carries out the analysis of the operational variables associated with igneous rocks, volcanic and metamorphic, with their associated hydrothermal and metasomatic alteration.

The realization of the present thesis, used the analytical method, being the analysis of descriptive and explanatory considerations, it is pre-experimental, where the hardness, granulometry, power factor and dig rate were observed and analyzed, considering different types of lithologies present in the operation.

The present work was carried out during the period from January to June, considering the metamorphic (hornfels), igneous (diorite) and volcanic (andesite) rocks and their respective hydrothermal alterations such as metasomatic (hornfels) and hydrothermal (potassium and propylitic) respectively. Likewise, the drilling and blasting variables associated with these lithologies were considered, considering their drilling mesh, power factor, type of explosive, blasting accessories, etc.

The granulometry results obtained during the 2 periods analyzed were from January to March with 3.26 inches and from April to June with 3.48 inches. This improvement in the granulometry increase allowed to optimize the power factor of 0.59 Kg/ton during the January to March period, reducing the power factor by 0.55 Kg/ton for the April to May period, as a result of the use of energy retainers. as air bags (taponex type) during the second study period.

The result of the economic analysis of drilling and blasting to control the degree of fragmentation during the period January to June, applied to the different lithologies such as hornfels zone, intrusive zone and volcanic zone, generated a decrease in the average power factor of all the lithologies from 0.56 Kg/t to 0.35 kg/t and a decrease in the unit cost from 0.27 \$/t to 0.18 \$/t.

Keywords: Dig rate, power factor, drilling and blasting costs, degree of fragmentation, etc.

INTRODUCCIÓN

La presente tesis permite realizar el análisis de las variables operacionales y económicas de la perforación y voladura en una operación a tajo abierto, los resultados obtenidos post voladura podrá indicarnos el grado de fragmentación obtenido en diferentes frentes operacionales de acuerdo a su dureza, asimismo relacionar este grado de fragmentación a los parámetros de diseño de malla de perforación considerando la sobreperforación y su incidencia en los costos de perforación y voladura, siendo el factor de potencia la variable a analizar.

Los resultados de una buena voladura, asociado a los parámetros de diseño de malla de perforación, inciden directamente en el grado de fragmentación post voladura. La granulometría se relaciona directamente en el factor de llenado de los equipos de carguío y acarreo, por lo que el análisis del rendimiento de equipos es de vital importancia para el control y optimización en programas de reducción de costos.

Por tal motivo, se relacionará los resultados post voladura con el grado de fragmentación obtenido en diferentes frentes operacionales, considerando las diferentes durezas y asociándolas al factor de potencia y la sobreperforación.

El desarrollo de la presente tesis se explica en 4 capítulos: el Capítulo I describe y plantea el problema, objetivo e hipótesis general, así como los específicos asociados a estos ítems. También se describe la matriz de operacionalización de variables independientes y dependientes.

Durante el Capítulo II se describe los antecedentes nacionales e internacionales, así como el marco teórico del trabajo de investigación orientado al análisis de las variables operacionales y económicos de perforación y voladura.

Durante el Capítulo III se describe los diferentes parámetros y términos de la metodología y alcances de la investigación, en el desarrollo de la presente tesis.

En el Capítulo IV se analiza e interpreta los resultados obtenidos en las diferentes voladuras realizadas, analizando el grado de fragmentación post voladura de acuerdo a su dureza y parámetros de perforación y voladura.

Los autores

CAPÍTULO I PLANTEAMIENTO DEL ESTUDIO

1.1. Planteamiento y formulación del problema

1.1.1. Planteamiento del problema

Una de las áreas operativas de mayor importancia en una operación minera es el de perforación y voladura, un mal resultado de la voladura incidirá directamente en el rendimiento de los equipos, así como en el proceso de conminución (chancado y molienda), orientado al cumplimiento de los planes de producción. La incidencia asociada al rendimiento de los equipos de carguío y acarreo dependerá directamente de los resultados de la voladura, siendo el grado de fragmentación uno de los parámetros que afecta directamente al proceso mina y planta.

Un buen conocimiento de los diferentes dominios geológicos, geomecánicos y geometalúrgicos en el yacimiento permitirá un mejor diseño de malla de perforación, controlando el espaciamiento y burden asociado a cada cambio litológico y de alteración dentro de la unidad minera. Estos mejores diseños de malla de perforación asociados a los diferentes cambios por litología y alteración permitirán realizar el análisis de los diferentes explosivos y accesorios de voladura que controlarán la voladura.

La relación que genera las diferentes áreas de mina y planta están directamente relacionados al resultado de la voladura, siendo el grado de fragmentación el que afectará la gestión operacional de estas áreas. El P80 solicitado por planta tiene que estar relacionado al grado de fragmentación post voladura y el que afectará el rendimiento de los equipos de carguío y acarreo y por ende el incremento de costos operacionales.

Uno de los efectos que genera la voladura es el grado de fragmentación, por lo que su incidencia directa en planta es de gran relevancia, considerando la etapa de chancado y molienda de gran importancia en el análisis del P80 y los finos (< 1") generados por la voladura, para el control de costos.

1.1.2. Formulación del problema

Problema general

¿Cómo se puede controlar el grado de fragmentación post voladura mediante el análisis técnico y económico de la perforación y voladura en una mina a tajo abierto - 2021?

Problemas específicos

- a) ¿Cómo relacionar la dureza de la roca con el factor de potencia para el control del grado de fragmentación en una mina a tajo abierto - 2021?
- b) ¿Cómo relacionar las diferentes mallas de perforación con los componentes de voladura para el control del grado de fragmentación en una mina a tajo abierto -2021?

1.2. Objetivos

1.2.1. Objetivo general

Controlar el grado de fragmentación post voladura mediante el análisis técnico y económico de la perforación y voladura en una mina a tajo abierto – 2021.

1.2.2. Objetivos específicos

 a) Relacionar la dureza de la roca con el factor de potencia para el control del grado de fragmentación en una mina a tajo abierto – 2021. b) Relacionar las diferentes mallas de perforación con los componentes de voladura
 para el control del grado de fragmentación en una mina a tajo abierto – 2021

1.3. Justificación e importancia

1.3.1. Justificación social - práctica

Los resultados obtenidos en la presente tesis mediante el análisis técnico y económico de la perforación y voladura para el control del grado de fragmentación en los diferentes frentes operacionales de la unidad minera fueron positivos e incrementaron la rentabilidad operacional. Un buen resultado de la voladura asociado a los diferentes dominios litológicos y de alteración hidrotermal permitió la mejora del rendimiento y mejora económica.

Esta mejora económica, permite a la empresa generar programas de inversión social, implementando proyectos sostenibles con las comunidades aledañas a la unidad minera.

1.3.2. Justificación académica

El desarrollo de la presente tesis permitió la aplicación de diferentes modelos numéricos asociados a la perforación y voladura en diferentes litologías y su alteración hidrotermal presente en diferentes frentes operacionales. La relación de diferentes tipos de roca y su alteración hidrotermal correspondiente analiza las diferentes variables de perforación y voladura para un mejor control del grado de fragmentación.

Los resultados obtenidos en el presente trabajo de investigación ayudarán como guía para trabajos similares y como material de trabajo de estudiantes.

1.3.3. Justificación económica

Los resultados obtenidos permitieron una reducción de costos operacionales, producto del uso de accesorios de voladura como los retenedores de liberación de energía (bolsas de aire). Esta mejora económica mediante el uso de retenedores de energía (bolsas de aire) permitió un mejor control en el grado de fragmentación

por tipos de roca y alteración hidrotermal y su consecuente mejora en el rendimiento de equipos de carguío y acarreo. El uso de accesorios de voladura como retenedores de energía, permitió un mejor control de los parámetros de factor de potencia, altura de carga, consumo de explosivos, etc., en los diferentes frentes operacionales por tipo de roca y su alteración hidrotermal asociada.

1.4. Hipótesis de la investigación

1.4.1. Hipótesis general

El análisis técnico y económico de la perforación y voladura influye positivamente en el control del grado de fragmentación post voladura en una mina a tajo abierto – 2021.

1.4.2. Hipótesis específicas

- a) Al relacionar la dureza de la roca con el factor de potencia influye positivamente en el control del grado de fragmentación en una mina a tajo abierto 2021.
- b) Al relacionar las diferentes mallas de perforación con los componentes de voladura influye positivamente en el control del grado de fragmentación en una mina a tajo abierto - 2021

1.5. Identificación de las variables

1.5.1. Variable independiente

Análisis de las variables operacionales de perforación y voladura.

1.5.2. Variables dependientes

Control del grado de fragmentación por litología y alteración.

1.5.3. Matriz de operacionalización de variables

Tabla 1. Matriz de operacionalización de variables							
Variables	Definición conceptual	Defii	Definición operacional				
	501160 p tudi	Dimensiones Sub-		Indicadores			
VI: Análisis de las variables operacionales de perforación y voladura.	El análisis de las diferentes variables de perforación y voladura, inciden directamente en el grado de fragmentación y su correspondiente incidencia en el rendimiento de equipos de carguío y acarreo.	 Dimensiones geológicas Dimensiones geomecánicas Dimensiones Económicos 	Parámetros geológicos Parámetro geomecánico Parámetro económico.	Ley de cabeza, recuperación, etc. Propiedades del macizo rocoso Costos de perforación y voladura.			
VD: Control del grado de fragmentació n por litología y alteración.	La fragmentación post voladura, está asociado a las diferentes mallas de perforación, tipos de explosivos y accesorios de voladura, relacionado a la variabilidad geológica y geomecánica.	 Litología Parámetros de Perforación y voladura. 	Dominios geológicos. Malla de perforación y voladura.	Dureza. Sobre perforación. Factor potencia.			

CAPÍTULO II MARCO TEÓRICO

2.1. Antecedentes del problema

2.1.1. Antecedentes internacionales

- Libro titulado: "Optimization Of Blasting Parameters In Opencast Mines". Se describe los conceptos a ser aplicados en la voladura con el objetivo de fragmentar la roca en el macizo, considerando el uso de diferentes tipos de explosivos de acuerdo a su evolución, así como el análisis de diferentes máquinas perforadoras y accesorios en unidades mineras ecuatorianas. (1)
- Paper titulado "Treatment of copper-rich gold ore by cyanide leaching, ammonia pretreatment and ammoniacal cyanide leaching" de BAS y otros. En esta investigación se realiza un enfoque del uso del tratamiento por lixiviación de minerales ricos en cobre y oro. El estudio explica el comportamiento de los agentes de lixiviación por cianuro en minerales de cobre y su interferencia en la recuperación óptima del oro. El comportamiento y aumento del NH3 genera un mejor control y selectividad de la recuperación del oro, asociado al grado de fragmentación post voladura de materiales asociados a la lixiviación. (2)
- Tesis titulada: "Análisis de la perforación y tronadura en El Soldado". El enfoque asocia a la importancia de la voladura y su efecto en el rendimiento de los equipos de carguío y acarreo, así como en el proceso de conminución de chancado y molienda. El trabajo de investigación explica la aplicación de diferentes mallas de perforación y voladura cuyo resultado es maximizar el

beneficio de mina a planta. Se realizó un análisis de la granulometría, rendimiento de los equipos de carguío y el tonelaje por hora en el molino SAG. Los resultados generados, determinaron el uso de explosivos más densos asociadas a distintas configuraciones de mallas, dependiendo de los diferentes sectores a minar asociado a su variabilidad geológica y geomecánica. (3)

 Trabajo de suficiencia profesional titulado: "Reducción de costos en minería por procesos de perforación y voladura". En el mismo se realiza un estudio amplio, sobre la incidencia de los procesos unitarios de perforación y voladura, relacionando al resultado de la voladura con el P80 solicitado por planta y su incidencia en la etapa de chancado y molienda, para generar programas de reducción de costos. (4)

2.1.2. Antecedentes nacionales

- Tesis titulada: "Diseño de voladura y predicción de la fragmentación en zonas de mineral para optimizar las operaciones unitarias en mina Toquepala". La investigación tuvo el objetivo de predecir la fragmentación del macizo rocoso para poder optimizar los costos unitarios de perforación y voladura. La aplicación del nuevo modelo para controlar la fragmentación, generó buenos resultados. Definiendo un buen diseño de malla de perforación optimizando los parámetros establecidos con la finalidad de optimizar los costos, generando mayor utilidad en la operación. Finalmente, el resultado de la investigación, el investigador recomienda, estandarizar un modelo de voladura con los parámetros relacionados a estos, con la finalidad de controlar el grado de fragmentación. (5)
- Tesis titulada: "Mejora de la granulometría mediante el diseño de malla de perforación y voladura aplicando el modelo de Holmberg en la galería 370 de la zona Coturcan en la mina Huancapeti". La investigación tuvo la finalidad de mejorar la granulometría, mediante la mejora de un nuevo diseño de malla de perforación, considerando el modelo de Holmberg, considerando diferentes parámetros del macizo rocoso, tipos de explosivos y diferentes accesorios de voladura. El resultado al aplicar la nueva malla de perforación, incrementó un

24 % de taladros, con un incremento de avance lineal en 7.78 %, incrementando el tonelaje en 11.94 %. Esta mejora se observó en una menor granulometría en 27.34 cm y una reducción de consumo de explosivos en 45 %. (6)

- Tesis titulada: "Optimización de la fragmentación en las rocas con la aplicación de la doble iniciación electrónica en la explotación de cobre porfirítico a cielo abierto". La investigación tuvo el objetivo de optimizar el grado de fragmentación de la diorita de yeso y la brecha (rocas) mineralizada aplicando doble iniciación eléctrica. El resultado generó una reducción en la malla de 7m a 6.5 m de espaciamiento y en los tacos de 7m a 5.5 m. Así mismo, la mejora en el control de la fragmentación influyó en el rendimiento de los equipos de carguío, mejorando el incremento la producción diaria de mineral. Finalmente, el autor sostiene que la doble iniciación electrónica optimiza la fragmentación, mejorando la eficiencia de los procesos unitarios operacionales. (7)
- Tesis titulada: "Influencia de la aplicación de detritus en la carga por taladro en los costos de voladura del tajo Tapado Oeste La Quinua, Yanacocha S.R.L. Cajamarca, 2018". El objetivo del estudio fue la aplicación del detritus (utilizado como taco) durante la carga por taladro asociado a los costos de voladura, mediante el análisis de 2632 taladros de producción de diámetro 10 5/8" y con 1457 taladros de producción de diámetro de 9 7/8". Las variables analizadas fueron la carga usada en cada taladro asociada a sus costos de voladura, ahorrando 26 US \$ con el ANFO, 33.27 US \$ con el HA37, 37.68 US \$ con el HA55 y 37.68 US \$ con el HA46, con un ahorro de 530.37 US \$ en 4 meses. (8)

2.2. Generalidades de la unidad minera

2.2.1. Ubicación accesibilidad y generalidades

La unidad minera se ubica en la región de Ica, provincia de Nazca, distrito de Marcona a 420 Km al norte de Lima.

Tabla 2. Ruta geográfica

Ruta	Tipo vía	Tiempo	km		
Lima - Nazca Asfaltado		6.3 h	6.3 h 447		
Nazca – U. Minera	Asfaltado - trocha	55 min.	52		
Total		7.25 h	499		

Figura 1. Ubicación de la mina Tomada del Departamento de Geología

2.3. Geología general

La geología está asociada a importantes yacimientos de Cu y Fe relacionadas a rocas de grano fino (pelíticas) de la Fm Marcona de edad paleozoica, esta formación fueron intruídas por rocas volcano sedimentarios e intrusivos de la Fm Río Grande de edad Jurásico medio.

2.3.1. Geología local

El área de estudio está asociada a la cordillera de la costa, asociada al batolito de la costa compuesta principalmente por tonalitas y granodioritas.

Los intrusivos asociados al batolito de la costa, intruye las formaciones de Marcona y de Río Grande, formando diferentes yacimientos de Fe y Cu, en diferentes magnitudes de volumen.

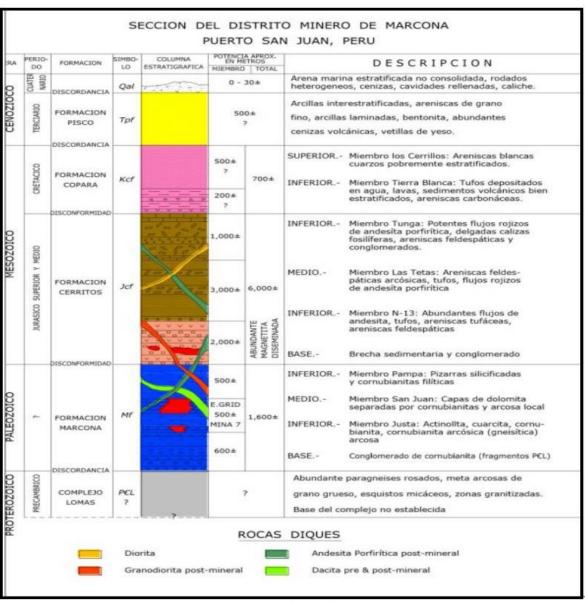


Figura 2. Estratigrafía del área de estudio Tomada del Departamento de Geología

a) Rocas volcánicas - andesitas

Asociado principalmente a estructuras post mineralización tipo *sills* y *stocks*, compuesta por andesitas porfiríticas, de rumbo NS, SE y NW.

b) Rocas intrusivas - dioritas

Asociado a estructuras post mineralización tipo diques, compuesto por plagioclasa y cuarzo, de rumbo NW.

c) Rocas intrusivas - granodiorita

Asociado principalmente a estructuras tipo dique y stocks, compuesta por una textura fina, compuesta por cuarzo, ortosa y plagioclasa de rumbo NW, SE y NS.

d) Rocas metamórficas - hornfels

Asociada principalmente a rocas formadas por el metasomatismo de contacto entre el intrusivo y rocas sedimentarias, considera un cambio físico y mineralógico.

2.3.2. Geología económica

Los estudios realizados por el estado peruano mediante el Ingemmet, relaciona la presencia de 117 cuerpos mineralizados en el sur del Perú, cubriendo una extensión de 15 x 10 kilómetros. Estos cuerpos mineralizados emplazados en rocas sedimentarias y volcánicas de edad del jurásico y paleozoico.

La mineralización presenta mantos, cuerpos, diseminados, relleno de estructuras, etc., de cobre y fierro, asociados a modelos tipo IOCG y *skarn* de Cu y *skarn* de Fe.

Los yacimientos de Fe, están representados en niveles altos de mineral tipo hematita con concentraciones de 70 a 80 % de Fe, asociados a yacimientos tipo IOCG. Así mismo, se presenta yacimientos tipo metasomatismo de contacto asociados a cuerpos irregulares de Fe y de Cu.

2.4. Bases teóricas del estudio

Uno de los grandes retos en una operación minera es controlar el grado de fragmentación post voladura, el cual influirá directamente en los procesos unitarios de mina y planta. Por lo tanto, la importancia de controlar las diferentes variables de perforación y voladura. El presente trabajo de investigación permitirá realizar un análisis técnico y económico de perforación y voladura para el control del grado de fragmentación post voladura.

Se asociará las variables de perforación y voladura, de acuerdo a tres tipos de litologías con su alteración hidrotermal correspondiente, esta correlación estará referida durante 2 periodos de enero a marzo y de abril a junio, los cuales estarán relacionados al uso de accesorios de voladura como bolsa de aire tipo taponex y su influencia en los costos unitarios (\$/ton) y su factor de potencia. Se considera una densidad de roca promedio para las diferentes litologías en estudio de 2.5 gr/cc.

2.4.1. Consideraciones de producción

El presente trabajo considera un ritmo de producción de desmonte de 60 ktp, siendo el tonelaje producido de las zonas hornfels, diorita y andesita, para su respectivo análisis.

Estas zonas de producción están relacionados a su alteración metasomática e hidrotermal correspondiente como: hornfels, potásica y propilítica respectivamente.

El periodo de análisis se realizará en 2 tramos desde el periodo enero a marzo y el periodo abril a junio, los cuales consideran ritmos de producción de desmonte durante los periodos: enero con 1,357,694 toneladas, durante el mes de febrero con 2,082,083 toneladas, durante el mes de marzo con 2,362,798 toneladas, durante el mes de abril con 1,650,648 toneladas, durante el mes de mayo con 1,418,986 y durante el mes de junio con 1,682,157 toneladas.

El total de desmonte producido durante el mes de enero a junio fue de 10,554,366 toneladas, considerando un REM de 0.47.

Tabla 3. Producción de desmonte

PRODUCCIÓN DE DESMONTE

PERIODO ENERO A JUNIO

Mes	Enero	Febrero	Marzo	Abril	Mayo	Junio	Total
Días	25	28	29	31	30	31	174
Tonelaje	7,431,652	8,454,572	8,984,728	11,184,636	11,249,513	11,516,943	58,822,043
Mineral	4,073,957	3,372,489	3,621,930	3,533,989	3,830,526	3,834,786	22,267,677
Desmonte	1,357,694	2,082,083	2,362,798	1,650,648	1,418,986	1,682,157	10,554,366
REM	0.33	0.62	0.65	0.47	0.37	0.44	0.47

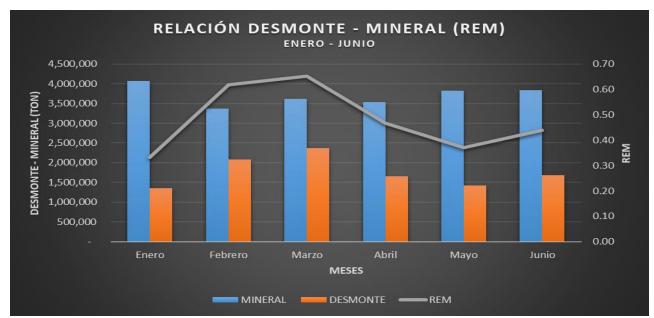


Figura 3. Relación desmonte sobre mineral (REM), periodo enero a junio Tomada del Departamento de Geología

2.4.2. Consideraciones de granulometría

El presente trabajo de investigación, considera relacionar las diferentes litologías analizadas (roca metamórfica, roca intrusiva y roca volcánica), dureza, factor de potencia, granulometría (P90) y tasa de excavación (*dig rate*).

La dureza promedia del hornfels (metamórfico) es de 2.38, de la diorita (intrusivo) es de 3.40 y de la roca volcánica (andesita) es de 2.44, y un promedio de 2.81.

La dureza asociada a las diferentes litologías considera factores de potencia promedio de 0.56 kg/t para la zona hornfels, de 0.57 kg/t para la zona del intrusivo y de 0.57 kg/t para el ambiente volcánico, con un promedio general de 0.57 kg/t.

Los factores de potencia generan grados de fragmentación (granulometría) de 3.35 pulgadas para zona de *hornfels*, de 3.53 pulgadas para la zona del intrusivo y de 3.31 pulgadas para la zona volcánica, generando un promedio de 3.41 pulgadas durante el tiempo de estudio. Esta diferencia de granulometría asociados a las características del macizo rocoso y parámetros de perforación y voladura, considera el diseño de malla con carga corrida y el diseño de malla con carga con cámara de aire (*taponex*), disminuyendo los costos de perforación y voladura.

Todo lo expuesto, asocia el resultado de la voladura y el grado de fragmentación (granulometría), teniendo un *dig rate* (tasa de excavación) de 12,383.29 t/h para la zona *hornfels*, de 11,496.50 t/h para la zona del intrusivo y de 11,530.65 t/h, con un promedio final de 11,740.71 t/h.

Tabla 4. Parámetros de estudio, en diferentes litologías, periodo enero a junio

PARAIVIETRUS DE ESTUDIO						
PERIODO ENERO A JUNIO 2021						
ALTERACIÓN/LITOLOGÍA	DUREZA	FP (kg/t)	P90 (pulgadas)	DIG RATE (t/h)		
Alt Hornfels (Rx Metamórfica)	2.38	0.56	3.35	12,383.29		
Alt. Potásica (Rx Intrusiva)	3.40	0.57	3.53	11,496.50		
Alt. Propilítica (Rx Volcánica)	2.44	0.57	3.31	11,530.65		
PROMEDIO	2.81	0.57	3.41	11,740.71		

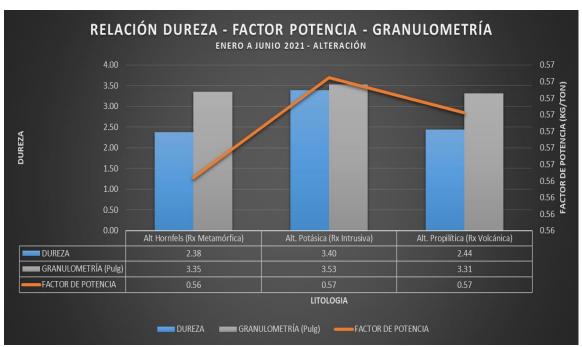


Figura 4. Relación de dureza, factor de potencia y granulometría en diferentes litologías

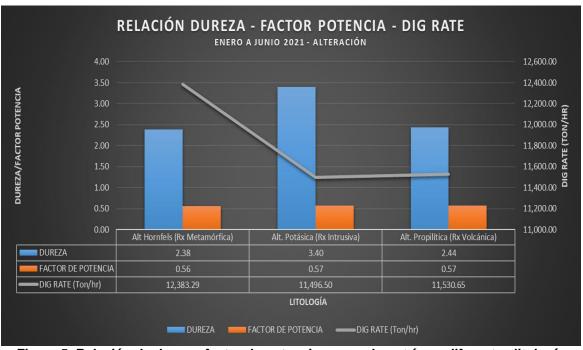


Figura 5. Relación de dureza, factor de potencia y granulometría en diferentes litologías.

2.4.3. Consideraciones de perforación

Para el presente trabajo se analizará 3 litologías: rocas metamórficas (hornfels), ígneas (diorita) y volcánicas (andesitas) con su respectivo grado de alteración hidrotermal. Considerando las siguientes mallas de perforación:

a) Zona Hornfels (8.5 m x 7.3)

Para la zona de hornfels considera los siguientes parámetros de perforación:

Tabla 5. Parámetros de perforación zona Hornfels

PARÁMETROS DE PERFORACIÓN				
ALTURA DE BANCO	m.	15.0		
DIAMETRO DE BROCA	Pulg.	12 1/4		
MALLA		triangular		
ESPACIAMIENTO	m.	8.5		
BURDEN	m.	7.3		
SUB DRILLING	m.	1.5		
ALTURA TALADRO	m.	16.5		
FACTOR ESBELTEZ		2.3		

Tomada del Departamento de Planeamiento

b) Zona Intrusivo (5.7 m x 4.9 m)

Para la zona de intrusivo considera los siguientes parámetros de perforación:

Tabla 6. Parámetros de perforación zona de intrusivo

PARÁMETROS DE PERFORACIÓN				
ALTURA DE BANCO	m.	15.0		
DIAMETRO DE BROCA	Pulg.	12 1/4		
MALLA		triangular		
ESPACIAMIENTO	m.	5.7		
BURDEN	m.	4.9		
SUB DRILLING	m.	1.0		
ALTURA TALADRO	m.	16.0		
FACTOR ESBELTEZ		3.3		

Tomada del Departamento de Planeamiento

c) Zona Volcánico

Para la zona de ambiente volcánico considera los siguientes parámetros de perforación:

Tabla 7. Parámetros de perforación zona volcánico

PARÁMETROS DE PERFORACIÓN				
ALTURA DE BANCO	m.	15.0		
DIAMETRO DE BROCA	Pulg.	12 1/4		
MALLA		triangular		
ESPACIAMIENTO	m.	7.0		
BURDEN	m.	6.0		
SUB DRILLING	m.	1.0		
ALTURA TALADRO	m.	16.0		
FACTOR ESBELTEZ		2.7		

Tomada del Departamento de Planeamiento

2.4.4. Consideraciones de voladura

Se considera las 3 litologías: rocas metamórficas (hornfels), ígneas (diorita) y volcánicas (andesitas) con su respectivo grado de alteración hidrotermal. Considerando los siguientes parámetros de voladura:

a) Zona Hornfels (8.5 m x 7.3 m)

Para la zona de *hornfels* considera los siguientes parámetros de voladura:

Considerando una altura de taladro de 16.5 metros, con una altura de carga de 9.5 metros y taco de 7 metros.

El explosivo que se utiliza en una carga corrida en una zona de *hornfels* es el MEQ 73 (emulsión 70 % y ANFO 30 %), considerando un diámetro de taladro de 12 ¼ pulgada, considera un total de 880 kg de explosivo y un factor de potencia teórico de 0.38 kg/t.

Asimismo, el explosivo que se utiliza en una carga con cámara de aire en una zona de hornfels es el MEQ 73 (emulsión 70 % y ANFO 30%), considerando un diámetro de taladro de 12 ¼ pulgada, considera un total de 778 kg de explosivo y un factor de potencia teórico de 0.33 kg/t.

CARGA CORRIDA

Figura 6. Diseño de malla de perforación, carga corrida en zona Hornfels Tomada del Departamento de Planeamiento

CARGA CON CAMARA DE AIRE

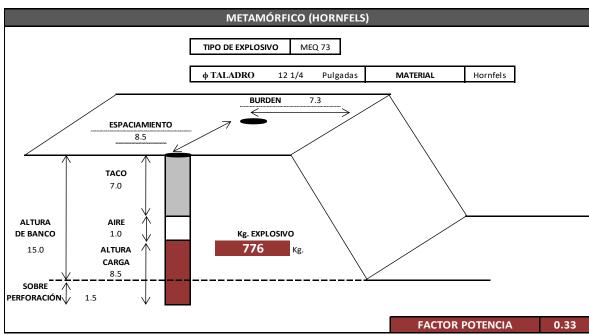


Figura 7. Diseño de malla de perforación, carga con cámara de aire en zona Hornfels Tomada del Departamento de Perforación y Voladura

b) Zona Intrusivo (5.7 m x 4.9 m)

Para la zona de intrusivo considera los siguientes parámetros de voladura:

Considerando una altura de taladro de 16.0 metros, con una altura de carga de 9.0 metros y taco de 7 metros.

El explosivo que se utiliza en una carga corrida en una zona del intrusivo es el MEQ 73 (emulsión 70 % y ANFO 30 %), considerando un diámetro de taladro de 12 ¼ pulgada, considera un total de 828 kg de explosivo y un factor de potencia teórico de 0.79 kg/t.

Asimismo, el explosivo que se utiliza en una carga con cámara de aire en una zona del intrusivo es el MEQ 73 (emulsión 70 % y ANFO 30%), considerando un diámetro de taladro de 12 ¼ pulgada, considera un total de 724 kg de explosivo y un factor de potencia teórico de 0.69 kg/t.

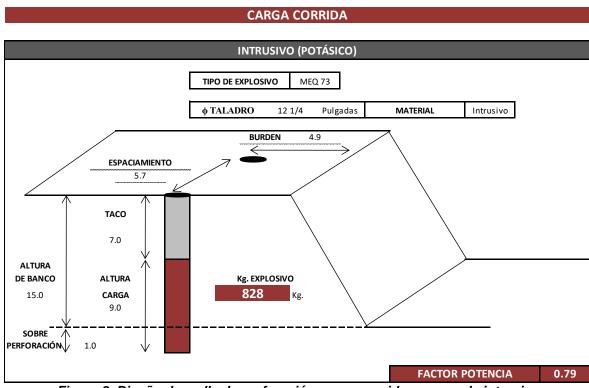


Figura 8. Diseño de malla de perforación, carga corrida en zona de intrusivo Tomada del Departamento de Perforación y Voladura

CARGA CON CAMARA DE AIRE

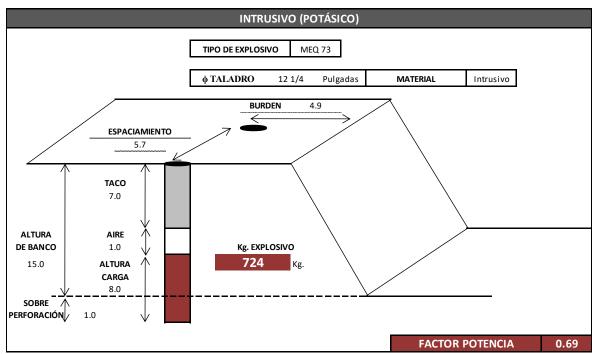


Figura 9. Diseño de malla de perforación, carga con cámara de aire en zona de intrusivo Tomada del Departamento de Perforación y Voladura

c) Zona Volcánico (7.0 m x 6.0 m)

Para la zona de ambiente volcánico considera los siguientes parámetros de voladura:

Considerando una altura de taladro de 16.0 metros, con una altura de carga de 9.5 metros y taco de 6.5 metros.

El explosivo que se utiliza en una carga corrida en una zona de roca volcánica es el MEQ 73 (emulsión 70 % y ANFO 30 %), considerando un diámetro de taladro de 12 ¼ pulgada, considera un total de 880 kg de explosivo y un factor de potencia teórico de 0.56 kg/t.

Asimismo, el explosivo que se utiliza en una carga con cámara de aire en una zona de roca volcánica es el MEQ 73 (emulsión 70 % y ANFO 30 %), considerando un diámetro de taladro de 12 ¼ pulgada, considera un total de 776 kg de explosivo y un factor de potencia teórico de 0.49 kg/t.

CARGA CORRIDA

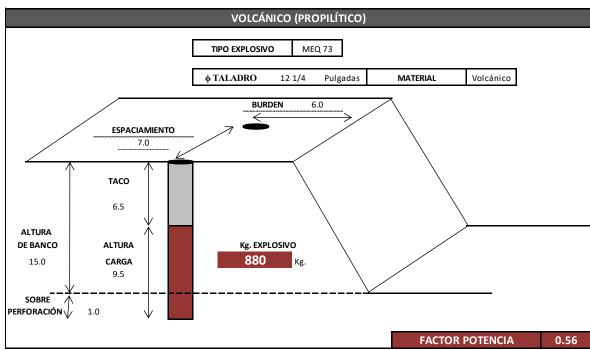


Figura 10. Diseño de malla de perforación, carga corrida en zona de roca volcánica Tomada del Departamento de Perforación y Voladura

CARGA CON CAMARA DE AIRE

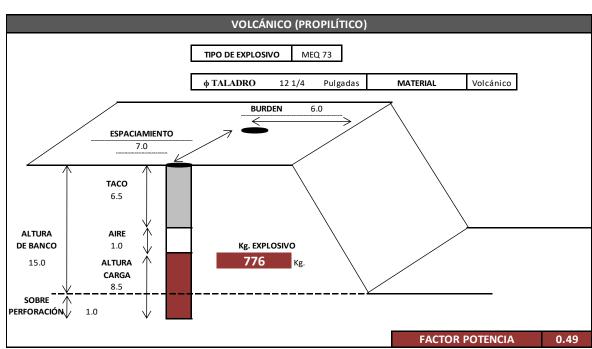


Figura 11. Diseño de malla de perforación, carga con cámara de aire en zona de roca volcánica
Tomada del Departamento de Perforación y Voladura

2.4.5. Consideraciones económicas de perforación y voladura

Las consideraciones económicas de perforación y voladura, considera los números de taladros asociados a cada periodo de estudio de enero a junio, discriminando la litología y su alteración hidrotermal presente y los costos de los componentes de voladura y accesorios, siendo para cada tipo de roca lo siguiente:

a) Zona Hornfels (8.5 m x 7.3 m)

El análisis económico en la zona hornfels, realiza el cálculo del total de material explosivo asociado al diseño de carga corrida y al diseño de carga con cámara de aire.

El costo total de explosivos en el diseño de carga corrida es de \$ 349,717, el costo total de accesorios es de \$ 31,108, generando un costo total de \$ 399,941 (considerando 5 % imprevistos). Considerando un tonelaje total de 1,129,238 toneladas, genera un costo unitario de 0.35 \$/t y un factor de potencia de 0.73 kg/t.

Cantidad de N.A.	Kg	237,727	Electrónico	Si
Cantidad de emulsion	Kg	577,808		-
	, i		0	46.000
Diesel D2	Kg	7,429	Costo	16,800
Nitrito de sodio	Kg	2,476	-	
Cantidad de explosivo	Kg	825,440	Taponex	No
Cantidad total de taladros	#	938	Taladros	110
			Costo	-
Costo explosivos	\$	349,717		
Costo de accesorios	\$	24,163		
Costo total	\$	373,880		
Costo total (5% Imprevisto	\$	392,574		
Area de disparo	m²	30,113		
Volumen de disparo	m³	451,695		
Tonelaje total	t	1,129,238		
	À1.			
Costo unitario	\$/t	0.35		
Factor de potencia	Kg/t	0.73		

Tomada del Departamento de Perforación y Voladura

El costo total de explosivos en el diseño de carga con cámara de aire es de \$ 195,079 el costo total de accesorios es de \$ 24,463, generando un costo total de \$ 230,519 (asumiendo 5 % imprevistos). Considerando un tonelaje total de 1,129,238 toneladas, genera un costo unitario de 0.20 \$/t y un factor de potencia de 0.41 kg/t.

Tabla 9. Parámetros de costos de perforación y voladura, zona Hornfels, carga con cámara

		<u>de air</u> e		
Cantidad de N.A.	Kg	132,534	Electrónico	Si
Cantidad de emulsion	Kg	322,131		
Diesel D2	Kg	4,142	Costo	10,621
Nitrito de sodio	Kg	1,381		
Cantidad de explosivo	Kg	460,188	Taponex	Si
Cantidad total de taladros	#	593	Taladros	593
			Costo	4,744
Costo explosivos	\$	195,079	<u>-</u>	
Costo de accesorios	\$	20,028		
Costo total	\$	215,107		
Costo total (5% Imprevisto	\$	225,862		
Area de disparo	m²	30,113		
Volumen de disparo	m³	451,695		
Tonelaje total	t	1,129,238		
Costo unitario	\$/t	0.20		
Factor de potencia	Kg/t	0.41		

Tomada del Departamento de Perforación y Voladura

b) Zona de Intrusivo (5.7 m x 4.9 m)

El análisis económico en la zona del intrusivo, realiza el cálculo del total de material explosivo asociado al diseño de carga corrida y al diseño de carga con cámara de aire.

El costo total de explosivos en el diseño de carga corrida es de \$ 77,549, el costo total de accesorios es de \$ 7,362 generando un costo total de \$ 89,156 (asumiendo 5% imprevistos). Considerando un tonelaje total de 383,250 toneladas, genera un costo unitario de 0.23 \$/t y un factor de potencia de 0.48 Kg/ton.

Tabla 10. Parámetros de costos de perforación y voladura, zona de Intrusivo, carga corrida

Cantidad de N.A.	Kg	52,686	Electrónico	
Cantidad de emulsion	Kg	128,056		
Diesel D2	Kg	1,646	Costo	3, 95
Nitrito de sodio	Kg	549		
Cantidad de explosivo	Kg	182,937	Taponex	Ν
Cantidad total de taladros	#	221	Taladros	11
			Costo	
Costo explosivos	\$	77,549		
Costo de accesorios	\$	1,751		
Costo total	\$	79,300		
Costo total (5% Imprevistos)	\$	83,265		
Área de disparo	m2	10,220		
Volumen de disparo	m3	153,300		
Tonelaje total	t	383,250		
Costo unitario	\$/t	0.23		
Factor de potencia	Kg/t	0.48		

El costo total de explosivos en el diseño de carga con cámara de aire es de \$ 65,706 el costo total de accesorios es de \$ 8,841, generando un costo total de \$ 78,275 (asumiendo 5 % imprevistos). Considerando un tonelaje total de 383,250 toneladas, genera un costo unitario de 0.20 \$/t y un factor de potencia de 0.40 kg/t.

Tabla 11. Parámetros de costos de perforación y voladura, zona de Intrusivo, carga con cámara de aire

		<u>camara ac</u> an c		
Cantidad de N.A.	Kg	44,640	Electrónico	Si
Cantidad de emulsion	Kg	108,500		
Diesel D2	Kg	1,395	Costo	3,833
Nitrito de sodio	Kg	465		
Cantidad de explosivo	Kg	155,000	Taponex	Si
Cantidad total de taladros	#	214	Taladros	214
			Costo	1,712
Costo explosivos	\$	65,706		
Costo de accesorios	\$	7,240		
Costo total	\$	72,947		
Costo total (5 % Imprevisto	\$	78,275		
Área dedisparo	m²	10,220		
Volumen de disparo	m³	153,300		
Tonelaje total	t	383,250		
Costo unitario	\$/t	0.20		
Factor de potencia	Kg/t	0.40		

c) Zona Volcánico (7.0 m x 6.0 m)

El análisis económico en la zona volcánica, realiza el cálculo del total de material explosivo asociado al diseño de carga corrida y al diseño de carga con cámara de aire.

El costo total de explosivos en el diseño de carga corrida es de \$ 90,598, el costo total de accesorios es de \$ 8,093 generando un costo total de \$ 103,625 (asumiendo 5 % imprevistos). Considerando un tonelaje total de 458,250 toneladas, genera un costo unitario de 0.23 \$/t y un factor de potencia de 0.47 kg/t.

Tabla 12. Parámetros de costos de perforación y voladura, zona Volcánica, carga corrida

			· ·	- J
Cantidad de N.A.	Kg	61,551	Electrónico	Si
Cantidad de emulsion	Kg	149,604		
Diesel D2	Kg	1,923	Costo	4,352
Nitrito de sodio	Kg	641		
Cantidad de explosivo	Kg	213,720	Taponex	No
Cantidad total de taladros	#	243	Taladros	110
		-	Costo	-
Costo explosivos	\$	90,598		
Costo de accesorios	\$	6,275		
Costo total	\$	96,873		
Costo total (5% Imprevisto	\$	101,717		
Área de disparo	m²	12,220		
Volumen de disparo	m³	183,300		
Tonelaje total	t	458,250		
Costo unitario	\$/t	0.23		
Factor de potencia	Kg/t	0.47		

El costo total de explosivos en el diseño de carga con cámara de aire es de \$ 48,030, el costo total de accesorios es de \$ 6,038 generando un costo total de \$ 56,771 (asumiendo 5 % imprevistos). Considerando un tonelaje total de 458,250 toneladas, genera un costo unitario de 0.12 \$/t y un factor de potencia de 0.25 kg/t.

Tabla 13. Parámetros de costos de perforación y voladura, zona Volcánica, carga con cámara de aire

		Camara de an e		
Cantidad de N.A.	Kg	32,631	Electrónico	S
Cantidad de emulsion	Kg	79,311		
Diesel D2	Kg	1,020	Costo	2,615
Nitrito de sodio	Kg	340		
Cantidad de explosivo	Kg	113,301	Taponex	S
Cantidad total de taladros	#	146	Taladros	146
			Costo	1,168
Costo explosivos	\$	48,030		
Costo de accesorios	\$	6,038		
Costo total	\$	54,068		
Costo total (5% Imprevisto	\$	56,771		
Área de disparo	m²	12,220		
Volumen de disparo	m³	183,300		
Tonelaje total	t	458,250		
Costo unitario	\$/t	0.12		
Factor de potencia	Kg/t	0.25		

CAPÍTULO III METODOLOGÍA DE LA INVESTIGACIÓN

3.1. Método y alcances de la investigación

3.1.1. Método de la investigación

La tesis a desarrollar es una investigación aplicada de un nivel explicativo, cuyo objetivo es el control del grado de fragmentación post voladura mediante el análisis de los parámetros de perforación y voladura. El método que se aplica en el presente trabajo de investigación es inductivo - deductivo, puesto que iniciamos en casos particulares a casos generales, para luego realizar la interpretación respectiva. Así, se busca una metodología que controle o mejore el grado de fragmentación post voladura.

a) Método general

Aplica el método inductivo – deductivo, donde se observará e investigará los parámetros operacionales de perforación y voladura con la finalidad de analizar técnica y económicamente el control de la fragmentación post voladura de diferentes materiales asociados a su litología y alteración hidrotermal correspondiente.

b) Métodos específicos

Para el desarrollo de la presente tesis se describe el procedimiento de recolección de información:

- Recopilación de informes anteriores. Se recopila toda la información de periodos anteriores de las diferentes áreas asociadas al trabajo de investigación como son geología, mina y planeamiento, donde se realiza el primer análisis de periodos anteriores.
- Trabajo de campo. Se realiza diferentes, observaciones de campo asociado al análisis de granulometría y variables operacionales de perforación y voladura.
- Trabajo de gabinete. Se analiza la información asociada a los parámetros de perforación y voladura, asociadas a las diferentes litologías analizadas con su alteración hidrotermal asociada al grado de fragmentación post voladura.
- Resultados. Se graficará los diferentes resultados asociados a los diferentes parámetros de perforación y voladura, relacionando la dureza del material versus el factor de potencia asociada a diferentes mallas y su grado de fragmentación.

3.1.2. Alcances de la investigación

a) Tipo de investigación

El presente trabajo de investigación es de tipo aplicada, donde se hace la utilización y aplicación de teorías que se aplican en investigaciones básicas, ya que su uso aplicación dependen de los resultados y conclusiones a obtener.

b) Nivel

El nivel de la investigación en la presente tesis es de tipo explicativo, ya que se buscará aplicar una metodología que mejore el grado de fragmentación post voladura mediante las relaciones de la dureza y el factor de potencia asociada a diferentes mallas aplicadas por su litología y alteración hidrotermal asociada.

3.2. Diseño de la investigación

El diseño de investigación consistirá en analizar las variables operacionales de perforación y voladura con la finalidad de controlar o reducir el grado de fragmentación post voladura.

3.2.1. Tipo de diseño de investigación

El diseño de investigación es de diseño no experimental de corte longitudinal (evolutivo) aplicado durante un periodo de 6 meses (enero a junio), en el cual se controla y registra las variables durante el tiempo de estudio. Se enfocará en investigar y observar las variables de gestión en operaciones de perforación y voladura, para el control de la fragmentación post voladura.

3.3. Población y muestra

3.3.1. Población

La población pertenece a las diferentes litologías (intrusivos, volcánico y rocas metamórficas). asociadas a la unidad minera

3.3.2. Muestra

La muestra pertenece a las diferentes mallas de perforación y voladura (con cámara y sin cámara de aire), en los niveles 4695 y 4680.

3.4. Técnicas e instrumentos de recolección de datos

3.4.1. Técnicas utilizadas en la recolección de datos

- ✓ Trabajo de campo
- √ Recopilación de informes anteriores
- ✓ Análisis de datos
- ✓ Aplicación y uso de software

3.4.2. Instrumentos utilizados en la recolección de datos

- ✓ Uso de plantillas de Microsoft Excel
- ✓ Uso de tesis e informes especializadas
- ✓ Uso de información de internet
- ✓ Uso de laptop y tablets
- ✓ Otros

CAPÍTULO IV RESULTADOS Y DISCUSIÓN

4.1. Resultados del tratamiento y análisis de la información

En el presente capítulo se describe los resultados obtenidos en el control del grado de fragmentación de material post voladura mediante el análisis técnico y económico de perforación y voladura en una mina a tajo abierto durante el periodo enero a junio del 2021.

4.1.1. Consideraciones generales de estudio

El presente trabajo de investigación considera el análisis de diferentes litologías: metamórfico (hornfels), intrusivo (diorita) y volcánico (andesita), los cuales han sido asociados a sus diferentes mallas de perforación y voladura considerando cargas corridas y carga con cámara de aire (retenedor de energía tipo taponex), los cuales generaron distintos grados de fragmentación post voladura, siendo enviados dicho material a zona de desmonte.

Es importante mencionar que el grado de fragmentación debe de estar en el rango de 3 a 4 pulgadas, el cual genera la estabilidad de taludes de acuerdo al tamaño de fragmento enviado a la zona de desmontera. Siendo el total de material de desmonte producido durante el tiempo de estudio de 10,554,366 toneladas, con una producción promedio diaria de 60 ktp y un striping ratio de 0.47.

Tabla 14. Producción de desmonte, periodo de enero a junio

PRODUCCIÓN DE DESMONTE

PERIODO ENERO A JUNIO

Mes	Enero	Febrero	Marzo	Abril	Mayo	Junio	Total
Días	25	28	29	31	30	31	174
Tonelaje	7,431,652	8,454,572	8,984,728	11,184,636	11,249,513	11,516,943	58,822,043
Mineral	4,073,957	3,372,489	3,621,930	3,533,989	3,830,526	3,834,786	22,267,677
Desmonte	1,357,694	2,082,083	2,362,798	1,650,648	1,418,986	1,682,157	10,554,366
REM	0.33	0.62	0.65	0.47	0.37	0.44	0.47

Figura 12. Diseño de malla de perforación, carga con cámara de aire en zona de roca volcánica Tomada del Departamento de Perforación y Voladura

4.1.2. Análisis de la granulometría

El presente trabajo de investigación considera relacionar las diferentes litologías como los sectores de roca metamórfica, roca intrusiva y roca volcánica, siendo relacionados con la dureza, factor de potencia, granulometría (P90) y el dig rate (tasa de excavación).

El estudio se analizó en 2 periodos de enero a marzo y de abril a junio, siendo cada tramo diferenciado por el diseño de malla de perforación y voladura considerando la carga corrida y la carga con cámara de aire (taponex), la variable que influye en el grado de fragmentación y el factor de potencia.

a) Granulometría – enero

Durante el mes de enero se analizó la roca hornfels, intrusivo y volcánico, siendo sus durezas de 2.32, 3.11 y 2.33 respectivamente.

Los resultados de la voladura considerando un <u>diseño de carga corrida</u> con una granulometría de 3.19 pulgadas para la zona de hornfels, de 3.22 pulgadas para el intrusivo y de 3.35 pulgadas para la zona volcánica.

El promedio de dureza durante el mes de enero fue de 2.50 con un grado de fragmentación de 3.28 pulgadas y un factor de potencia de 0.59 kg/t.

El mayor factor de potencia está relacionado a la zona de hornfels y roca volcánica por la intensidad de sus alteraciones metasomáticas y en menor medida al intrusivo por su alteración hidrotermal, relacionado a los niveles altos del yacimiento, incrementando su dureza en profundidad.

Tabla 15. Análisis granulométrico post voladura, diseño de carga corrida, periodo enero RELACIÓN LITOLOGÍA - DUREZA - GRANULOMETRÍA

NAEC	ENERO
IVIES -	EINERO

	_			
ALTERACIÓN/LITOLOGÍA	DUREZA	FP (kg/t)	P90 (pulgadas)	DIG RATE (t/h)
Alt Hornfels (Rx Metamórfica)	2.32	0.66	3.19	11,858.89
Alt. Potásica (Rx Intrusiva)	3.11	0.50	3.22	10,449.22
Alt. Propilítica (Rx Volcánica)	2.33	0.59	3.35	11,326.11
PROMEDIO	2.50	0.59	3.28	11,257.07

Figura 13. Relación dureza, factor de potencia y granulometría, periodo enero

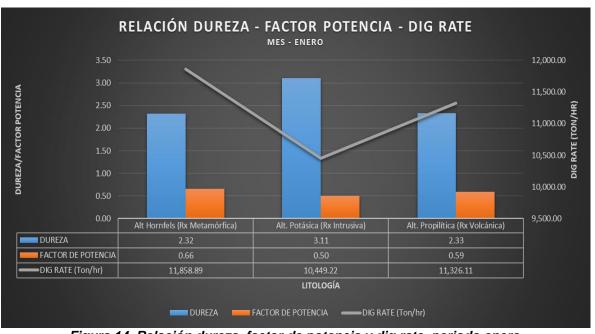


Figura 14. Relación dureza, factor de potencia y dig rate, periodo enero

El *dig rate* asociado a los diferentes grados de fragmentación fueron de 11,858.89 t/h para la zona de hornfels, de 10,449.22 t/h para el intrusivo y de 11,326.11 t/h para la zona volcánica, siendo el promedio mensual de 11,257.07 t/h.

El mayor *dig rate* está asociado a la zona de hornfels por tener una menor granulometría y así mejorar el ritmo de excavación durante el mes de enero en el orden de 11,858.59 t/h con 3.19 pulgadas.

b) Granulometría – febrero

Durante el mes de febrero se analizó la roca hornfels, intrusivo y volcánico, siendo sus durezas de 2.0, 2.50 y 4.0 respectivamente.

Los resultados de la voladura considerando un <u>diseño de carga corrida</u> con una granulometría de 3.06 pulgadas para la zona de hornfels, de 4.24 pulgadas para el intrusivo y de 5.57 pulgadas para la zona volcánica.

El promedio de dureza durante el mes de febrero fue de 2.60 con un grado de fragmentación de 4.03 pulgadas y un factor de potencia de 0.57 kg/t.

El mayor factor de potencia está relacionado a la zona del intrusivo y zona volcánica por la intensidad de su alteración metasomática y en menor medida al intrusivo por su alteración hidrotermal, relacionado a los niveles altos del yacimiento, incrementando su dureza en profundidad.

Tabla 16. Análisis granulométrico post voladura, diseño de carga corrida, periodo febrero RELACIÓN LITOLOGÍA - DUREZA - GRANULOMETRÍA

MES - FEBRERO					
ALTERACIÓN/LITOLOGÍA	DUREZA	FP (kg/t)	P90 (pulgadas)	DIG RATE (t/h)	
Alt Hornfels (Rx Metamórfica)	2.00	0.40	3.06	11,155.00	
Alt. Potásica (Rx Intrusiva)	2.50	0.68	4.24	9,849.00	
Alt. Propilítica (Rx Volcánica)	4.00	0.68	5.57	10,237.00	
PROMEDIO	2.60	0.57	4.03	10,449.00	

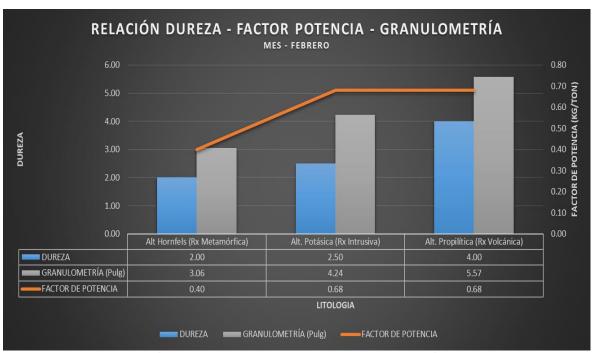


Figura 15. Relación dureza, factor de potencia y granulometría, periodo febrero

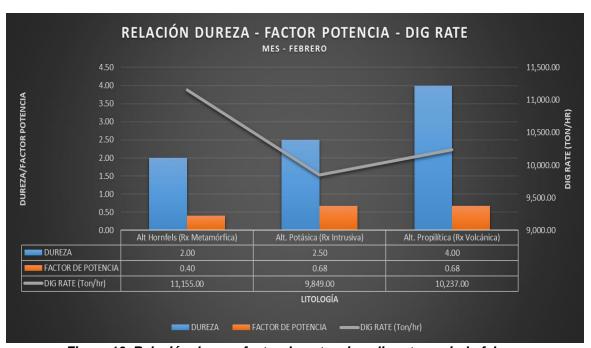


Figura 16. Relación dureza, factor de potencia y dig rate, periodo febrero

El dig rate asociado a los diferentes grados de fragmentación fueron de 11,155.00 t/h para la zona de hornfels, de 9,849.00 t/h para el intrusivo y de 10,237.00 t/h para la zona volcánica, siendo el promedio mensual de 10,449.00 t/h.

El mayor *dig rate* está asociado a la zona de hornfels por tener una menor granulometría y así mejorar el ritmo de excavación durante el mes de febrero, en el orden de 11,155.00 t/h con 3.06 pulgadas.

c) Granulometría – marzo

Durante el mes de marzo se analizó la roca hornfels, intrusivo y volcánico, siendo sus durezas de 2.75, 3.58 y 3.08 respectivamente.

Los resultados de la voladura considerando un <u>diseño de carga corrida</u> consideran una granulometría de 3.44 pulgadas para la zona de hornfels, de 3.25 pulgadas para el intrusivo y de 3.11 pulgadas para la zona volcánica.

El promedio de dureza durante el mes de marzo fue de 3.24 con un grado de fragmentación de 3.26 pulgadas y un factor de potencia de 0.58 kg/t.

El mayor factor de potencia está relacionado a la zona de hornfels por la intensidad de su alteración metasomática e hidrotermal, relacionado a los niveles altos del yacimiento, incrementando su dureza en profundidad.

Tabla 17. Análisis granulométrico post voladura, diseño de carga corrida, periodo marzo RELACIÓN LITOLOGÍA - DUREZA - GRANULOMETRÍA

MES - MARZO ALTERACIÓN/LITOLOGÍA **DUREZA** FP (kg/t) P90 (pulgadas) DIG RATE (t/h) Alt Hornfels (Rx Metamórfica) 12,036.83 2.75 0.67 3.44 Alt. Potásica (Rx Intrusiva) 3.58 0.58 3.25 11,247.21 Alt. Propilítica (Rx Volcánica) 3.08 0.55 3.11 11,664.38 **PROMEDIO** 3.24 0.59 3.26 11,551.27

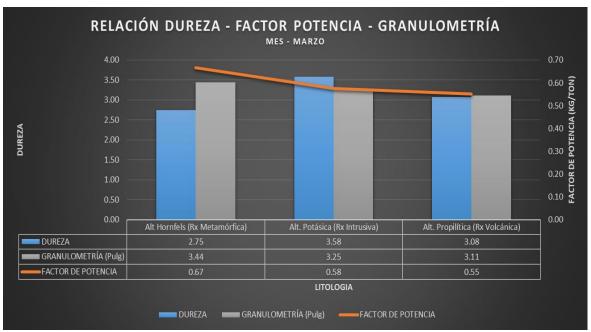


Figura 17. Relación dureza, factor de potencia y granulometría, periodo marzo

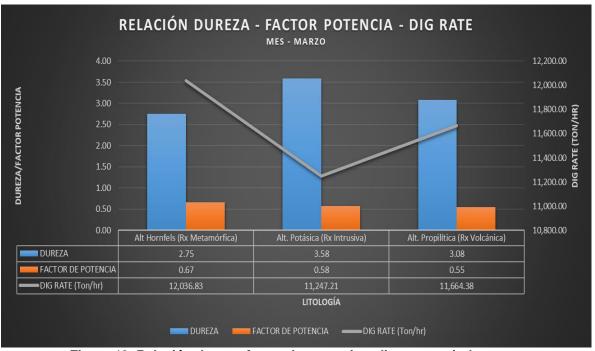


Figura 18. Relación dureza, factor de potencia y dig rate, periodo marzo

El *dig rate* asociado a los diferentes grados de fragmentación fueron de 12,036.83 t/h para la zona de hornfels, de 11,247.21 t/h para el intrusivo y de 11,664.38 t/h para la zona volcánica, siendo el promedio mensual de 11,551.27 t/h.

El mayor *dig rate* está asociado a la zona de hornfels con una granulometría de 3.44 pulgadas, esta mejora en la tasa de excavación no refleja en lo reportado en la granulometría asociado a otras litologías por su alteración relacionada.

d) Granulometría - abril

Durante el mes de abril se analizó la roca hornfels, intrusivo y volcánico, siendo sus durezas de 2.50, 3.11 y 2.82 respectivamente.

Los resultados de la voladura considerando un diseño de carga con cámara de aire con una granulometría de 3.31 pulgadas para la zona de hornfels, de 3.60 pulgadas para el intrusivo y de 3.17 pulgadas para la zona volcánica.

El promedio de dureza durante el mes de abril fue de 2.91 con un grado de fragmentación de 3.41 pulgadas y un factor de potencia de 0.57 kg/t.

El mayor factor de potencia está relacionado a la zona de hornfels por la intensidad de su alteración metasomática e hidrotermal, relacionado a los niveles altos del yacimiento incrementando su dureza en profundidad.

Tabla 18. Análisis granulométrico post voladura, diseño de carga con cámara de aire, periodo abril

RELACIÓN LITOLOGÍA - DUREZA - GRANULOMETRÍA MES - ABRIL ALTERACIÓN/LITOLOGÍA DUREZA FP (kg/t) P90 (pulgadas) DIG RATE (t/h) Alt Hornfels (Rx Metamórfica) 2.50 0.64 3.31 12,642.83

ALTERACIÓN/LITOLOGÍA	DUREZA	FP (kg/t)	P90 (pulgadas)	DIG RATE (t/h)
Alt Hornfels (Rx Metamórfica)	2.50	0.64	3.31	12,642.83
Alt. Potásica (Rx Intrusiva)	3.11	0.54	3.60	11,695.33
Alt. Propilítica (Rx Volcánica)	2.82	0.58	3.17	11,622.73
PROMEDIO	2.91	0.57	3.41	11,834.94

Figura 19. Relación dureza, factor de potencia y granulometría, periodo abril

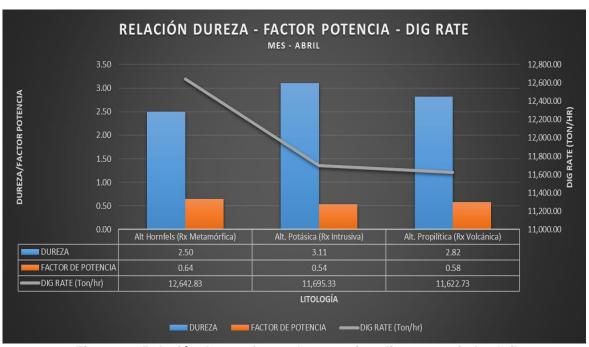


Figura 20. Relación dureza, factor de potencia y dig rate, periodo abril

El dig rate asociado a los diferentes grados de fragmentación fueron de 12,642.83 t/h para la zona de hornfels, de 11,695.33 t/h para el intrusivo y de 11,622.73 t/h para la zona volcánica, siendo el promedio mensual de 11,834.94 t/h.

El mayor *dig rate* está asociado a la zona de hornfels con una granulometría de 3.31 pulgadas, esta mejora en la tasa de excavación no refleja en lo reportado en la granulometría asociado a otras litologías por su alteración relacionada.

e) Granulometría - mayo

Durante el mes de mayo se analizó la roca hornfels, intrusivo y volcánico, siendo sus durezas de 2.13, 3.58 y 2.00 respectivamente.

Los resultados de la voladura considerando un diseño de carga con cámara de aire con una granulometría de 3.21 pulgadas para la zona de hornfels, de 3.68 pulgadas para el intrusivo y de 3.08 pulgadas para la zona volcánica.

El promedio de dureza durante el mes de abril fue de 2.90 con un grado de fragmentación de 3.45 pulgadas y un factor de potencia de 0.57 kg/t.

El mayor factor de potencia está relacionado a la zona del intrusivo por la intensidad de su alteración hidrotermal, relacionado a los niveles altos del yacimiento, incrementando su dureza en profundidad.

Tabla 19. Análisis granulométrico post voladura, diseño de carga con cámara de aire, periodo mayo

RELACION LITOLOGIA - DUREZA - GRANULOMETRIA					
MES - MAYO					
ALTERACIÓN/LITOLOGÍA	DUREZA	FP (kg/t)	P90 (pulgadas)	DIG RATE (t/h)	
Alt Hornfels (Rx Metamórfica)	2.13	0.51	3.21	12,803.79	
Alt. Potásica (Rx Intrusiva)	3.58	0.61	3.68	11,571.03	
Alt. Propilítica (Rx Volcánica)	2.00	0.58	3.08	11,988.14	
PROMEDIO	2.90	0.57	3.45	12,056.19	

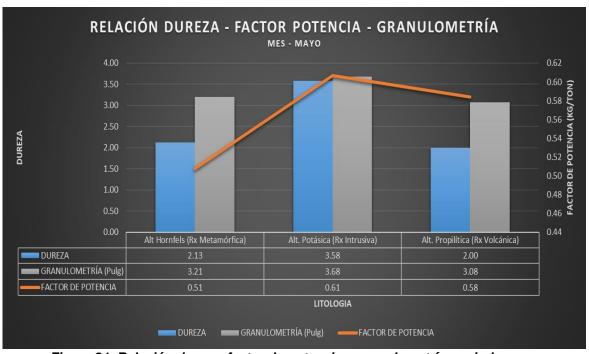


Figura 21. Relación dureza, factor de potencia y granulometría, periodo mayo

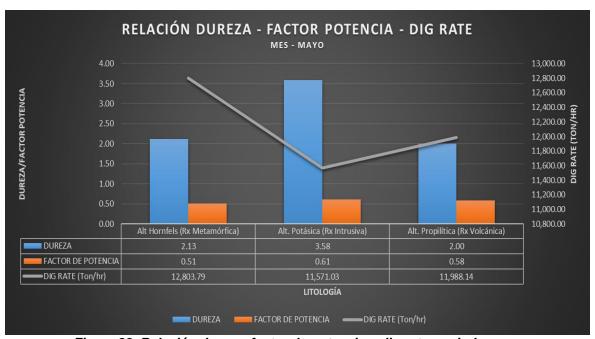


Figura 22. Relación dureza, factor de potencia y dig rate, periodo mayo

El *dig rate* asociado a los diferentes grados de fragmentación fueron de 12,803.79 t/h para la zona de hornfels, de 11,571.03 t/h para el intrusivo y de 11,988.14 t/h para la zona volcánica, siendo el promedio mensual de 12,056.19 t/h.

El mayor *dig rate* está asociado a la zona de hornfels por tener una menor granulometría y así mejorar el ritmo de excavación durante el mes de mayo, en el orden de 12,803.79 t/h con 3.21 pulgadas.

f) Granulometría - junio

Durante el mes de junio se analizó la roca hornfels, intrusivo y volcánico, siendo sus durezas de 2.56, 3.43 y 2.17 respectivamente.

Los resultados de la voladura considerando un diseño de carga con cámara de aire con una granulometría de 3.73 pulgadas para la zona de hornfels, de 3.71 pulgadas para el intrusivo y de 3.39 pulgadas para la zona volcánica.

El promedio de dureza durante el mes de junio fue de 2.73 con un grado de fragmentación de 3.59 pulgadas y un factor de potencia de 0.52 kg/t.

El mayor factor de potencia está relacionado a la zona del intrusivo por la intensidad de su alteración hidrotermal, relacionado a los niveles altos del yacimiento, incrementando su dureza en profundidad.

Tabla 20. Análisis granulométrico post voladura, diseño de carga con cámara de aire, periodo junio

RELACIÓN LITOLOGÍA - DUREZA - GRANULOMETRÍA MES - JUNIO ALTERACIÓN/LITOLOGÍA **DUREZA** FP (kg/t) P90 (pulgadas) DIG RATE (t/h) Alt Hornfels (Rx Metamórfica) 2.56 0.45 3.73 12,691.31 Alt. Potásica (Rx Intrusiva) 3.43 0.58 3.71 12,447.26 Alt. Propilítica (Rx Volcánica) 2.17 0.52 3.39 11,720.00 **PROMEDIO** 2.73 0.52 3.59 12,232.19



Figura 23. Relación dureza, factor de potencia y granulometría, periodo junio

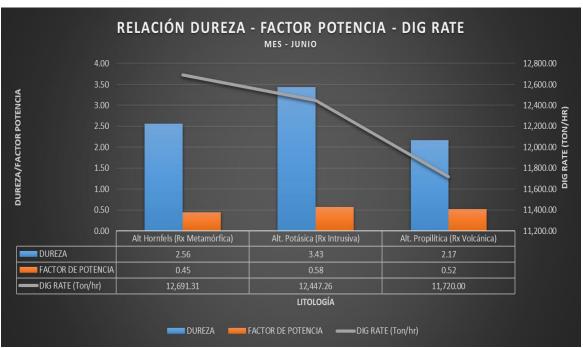


Figura 24. Relación dureza, factor de potencia y dig rate, periodo junio

El *dig rate* asociado a los diferentes grados de fragmentación fueron de 12,691.31 t/h para la zona de hornfels, de 12,447.26 t/h para el intrusivo y de 11,720.00 t/h para la zona volcánica, siendo el promedio mensual de 12,232.19 t/h.

El mayor *dig rate* está asociado a la zona de hornfels con una granulometría de 3.73 pulgadas y una tasa de excavación de 12,691.31 t/h para el mes de junio.

4.1.3. Análisis comparativo de granulometría

Para realizar el análisis de la dureza con el factor de potencia para el control del grado de fragmentación, se analizó en 2 periodos el de enero a marzo y el de abril a junio, siendo los resultados, con una mejora en el grado de fragmentación de material tipo desmonte para un mejor control de la estabilidad del talud en el área de desmontera, los que se describe a continuación.

a) Periodo enero a marzo:

En relación a los resultados obtenidos durante el periodo enero a marzo, se observa una mayor dureza en la roca volcánica con 3.14, luego el de la zona del intrusivo con 3.06 y el de menor dureza el de la zona de hornfels con 2.36.

Esta mayor dureza generó un factor de potencia de 0.61 kg/t en la roca volcánica, seguida por un factor de potencia de 0.59 kg/t en el intrusivo y un menor factor de potencia de 0.58 kg/t en la zona de hornfels.

Asimismo, la relación dureza, factor de potencia generó granulometrías mayores de 4.01 pulgadas en la roca volcánica, luego en granulometrías intermedias de 3.57 pulgadas en el intrusivo y granulometrías menores de 3.23 pulgadas en la zona de hornfels.

El promedio de análisis granulométrico durante el periodo enero a marzo fue de 3.53 pulgadas, con una dureza de 3.78 y un factor de potencia de 0.58 kg/t.

Tabla 21. Análisis granulométrico post voladura, diseño de carga corrida, periodo enero a marzo

RELACIÓN LITOLOGÍA - DUREZA - GRANLILOMETRÍA

RELACION EN DECIGIA - DOREZA - GRANGEOWETRIA								
PERIODO - ENERO A MARZO								
ALTERACIÓN/LITOLOGÍA DUREZA FP (kg/t) P90 (pulgadas) DIG RATE (t/h)								
Alt Hornfels (Rx Metamórfica)	2.36	0.58	3.23	11,683.58				
Alt. Potásica (Rx Intrusiva)	3.06	0.59	3.57	10,515.14				
Alt. Propilítica (Rx Volcánica)	3.14	0.61	4.01	11,075.83				
PROMEDIO	2.78	0.58	3.53	11085.78				

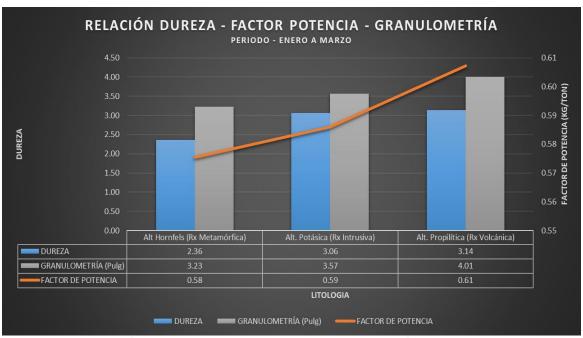


Figura 25. Relación dureza, factor de potencia y granulometría, periodo enero a marzo

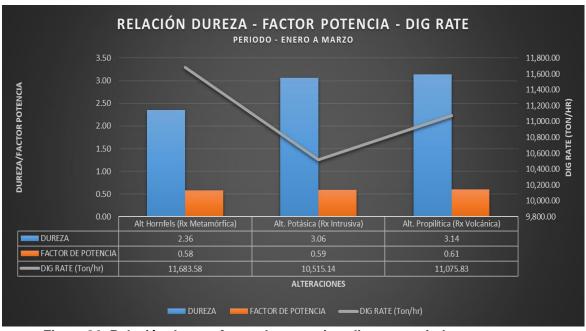


Figura 26. Relación dureza, factor de potencia y dig rate, periodo enero a marzo

b) Periodo abril a junio:

Los resultados obtenidos durante el periodo abril a junio indican una mayor dureza en la roca intrusiva con 3.38, luego el de la zona de Hornfels con 2.40 y el de menor dureza en la zona de roca volcánica con 2.33.

Esta mayor dureza generó un factor de potencia de 0.57 kg/t en la roca intrusiva, seguida por un factor de potencia de 0.56 kg/t en la roca volcánica y un menor factor de potencia de 0.53 kg/t en la zona de Hornfels.

Asimismo, la relación dureza, factor de potencia generó granulometrías mayores de 3.66 pulgadas en el intrusivo, luego en granulometrías intermedias de 3.41 pulgadas en zona de Hornfels y granulometrías menores de 3.21 pulgadas en rocas volcánicas.

El promedio de análisis granulométrico durante el periodo abril a junio fue de 3.48 pulgadas, con una dureza de 2.85 y un factor de potencia de 0.55 kg/t.

Tabla 22. Análisis granulométrico post voladura, diseño de carga con cámara de aire, periodo abril a junio

RELACIÓN LITOLOGÍA - DUREZA - GRANULOMETRÍA

PERIODO - ABRIL A JUNIO							
ALTERACIÓN/LITOLOGÍA DUREZA FP (kg/t) P90 (pulgadas) DIG RATE (t,							
Alt Hornfels (Rx Metamórfica)	2.40	0.53	3.41	12,712.65			
Alt. Potásica (Rx Intrusiva)	3.38	0.57	3.66	11,904.54			
Alt. Propilítica (Rx Volcánica)	2.33	0.56	3.21	11,776.96			
PROMEDIO	2.85	0.55	3.48	12041.11			

Figura 27. Relación dureza, factor de potencia y granulometría, periodo abril a junio

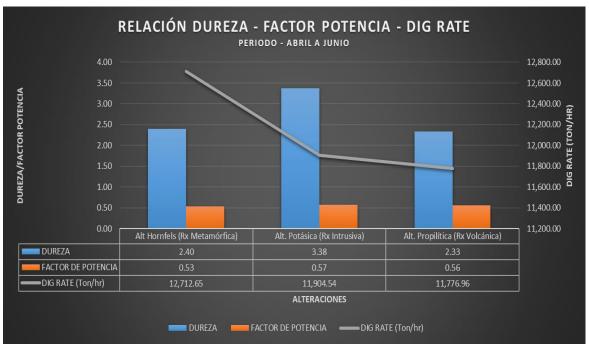


Figura 28. Relación dureza, factor de potencia y dig rate, periodo abril a junio

c) Resumen comparativo de ambos periodos:

El análisis comparativo entre los periodos enero a marzo y abril a junio permitió generar resultados positivos, mejorando las variables que inciden el grado de fragmentación durante el segundo periodo.

Como resultado del análisis granulométrico, hubo una mejora en el grado de fragmentación desde 3.26 pulgadas en el periodo enero a marzo, incrementando en 3.48 pulgadas durante el periodo abril a junio.

Esta mejora en el incremento de granulometría permitió optimizar el factor de potencia de 0.59 kg/t durante el periodo enero a marzo, disminuyendo el factor de potencia en 0.55 kg/t para el periodo abril a junio.

La mejora de la granulometría y el factor de potencia permite generar una incidencia directa en la estabilidad de taludes en zona de desmontera para generar granulometrías entre 3 a 4 pulgadas buscando optimizar hacia 4 pulgadas.

Finalmente, el mejor control de la granulometría durante el segundo periodo de estudio, permitió una mejora en el *dig rate* de 11,551.27 t/h durante el periodo enero a marzo a un incremento de 12,041.11 t/h durante el periodo abril a junio, mejorando el rendimiento en los equipos de carguío y acarreo, incrementando en 489,84 t/h.

Tabla 23. Análisis granulométrico post voladura, diseño de carga con cámara de aire, periodo abril a junio

RELACIÓN LITOLOGÍA - DUREZA - GRANULOMETRÍA

COMPARATIVO - ENERO A JUNIO							
PERIODO DUREZA FP (kg/t) P90 (pulgadas) DIG RATE (t/h)							
ENERO A MARZO	3.24	0.59	3.26	11,551.27			
BRIL A JUNIO 2.85 0.55 3.48 12,041.11							
DIFERENCIA	-0.40	-0.04	0.22	489.84			

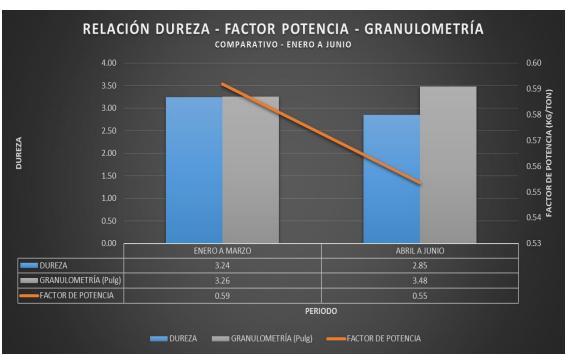


Figura 29. Comparativa dureza, factor de potencia y granulometría, periodo enero a junio

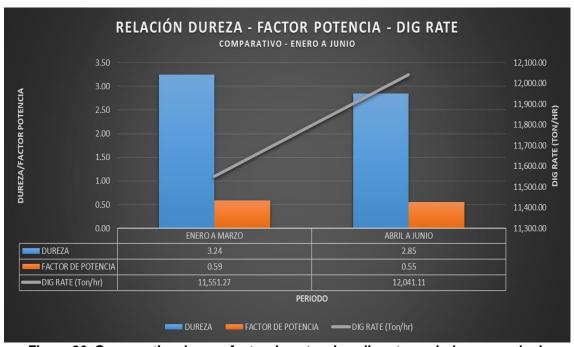


Figura 30. Comparativa dureza, factor de potencia y dig rate, periodo enero a junio

4.1.4. Análisis de parámetros de perforación y voladura

Para el presente trabajo se analizó 3 litologías: rocas metamórficas (hornfels), ígneas (diorita) y volcánicas (andesitas) con su respectivo grado de alteración hidrotermal.

Las mallas de perforación asociadas a las diferentes litologías y su factor de potencia consideran lo siguiente:

a) Zona Hornfels

Considera una dureza media de 2.8 (rango: 2.5 a 3.0), con una malla de 8.5 X 7.3 metros, con altura de banco de 15 metros, sobre perforación de 1.5 metros y un factor de potencia de 0.38 kg/t con diseño de carga corrida y un factor de potencia de 0.33 kg/t con diseño de carga con cámara de aire y considera una velocidad de perforación de 42.1 m/h.

b) Zona Intrusivo

Considera una dureza media de 3.5 (rango: 3.5 a 5.0), con una malla de 5.7 X 4.9 metros, con altura de banco de 15 metros, sobre perforación de 1.0 metros y un factor de potencia de 0.79 kg/t con diseño de carga corrida y un factor de potencia de 0.69 kg/t con diseño de carga con cámara de aire y considera una velocidad de perforación de 26.3 m/h.

c) Zona Volcánico

Considera una dureza media de 2.8 (rango: 3.0 a 3.5), con una malla de 7.0 X 6.0 metros, con altura de banco de 15 metros, sobre perforación de 1.0 metros y un factor de potencia de 0.56 kg/t con diseño de carga corrida y un factor de potencia de 0.49 kg/t con diseño de carga con cámara de aire y considera una velocidad de perforación de 31.0 m/h.

El explosivo que se utiliza en el diseño de carga corrida y con el uso de cámara de aire es el MEQ 73 (emulsión 70% y ANFO 30%), considerando un diámetro de taladro de 12 ¼ pulgada.

Las consideraciones de voladura fueron analizadas en los periodos de enero a marzo y el periodo de abril a junio, considerando su análisis por cada mes.

Tabla 24. Parámetros de perforación y voladura, periodo enero a junio

PARÁMETROS DE MALLAS DE PERFORACIÓN - DESMONTE

	DISEÑO CON CARGA CORRIDA					
Alteración	Malla	Espaciamiento	Burden	Altura Banco	Sub drill (m)	Factor de Potencia (kg/t)
METAMÓRFICO (HORNFELS)	8.5 X 7.3	8.5	7.3	15.0	1.5	0.38
INTRUSIVO (ALT. POTÁSICA)	5.7 X 4.9	5.7	4.9	15.0	1.0	0.79
VOLCÁNICO (ALT. PROPILÍTICA)	7.0 X 6.0	7.0	6.0	15.0	1.0	0.56

	DISEÑO CARGA CON CÁMARA DE AIRE					
Alteración	Malla	Espaciamiento	Burden	Altura de Banco	Sub drill (m)	Factor de Potencia (kg/t)
METAMÓRFICO (HORNFELS)	8.5 X 7.3	8.5	7.3	15.0	1.5	0.33
INTRUSIVO (ALT. POTÁSICA)	5.7 X 4.9	5.7	4.9	15.0	1.0	0.69
VOLCÁNICO (ALT. PROPILÍTICA)	7.0 X 6.0	7.0	6.0	15.0	1.0	0.49

	VELOCIDADES DE PERFORACIÓN					
Tipo de Roca	Mínutes per Hole	Hours per Hole	Meters per Hole	Net Penetratio Rate	/linutes Between Hole	Total Penetration Rate
METAMÓRFICO (HORNFELS)	22	0.37	16.5	45.0	1.5	42.1
INTRUSIVO (ALT. POTÁSICA)	35	0.58	16.0	27.4	1.5	26.3
VOLCÁNICO (ALT. PROPILÍTICA)	30	0.50	16.0	32.0	1	31.0

4.1.5. Análisis comparativo de parámetros de perforación y voladura

Los parámetros de perforación y voladura se describen en 2 periodos, enero a marzo considerando el diseño de carga corrida y el periodo de abril a junio considerando el diseño de carga con cámara de aire, siendo el análisis:

a) Periodo enero a marzo:

Durante este periodo se analizó las diferentes litologías y su alteración correspondiente con sus respectivos parámetros de perforación y voladura, considerando el diseño de carga corrida y una densidad de roca de 2.5 gr/cc:

Zona Hornfels:

Considera altura de banco de 15 m, con diámetro de perforación 12 ¼, con una malla triangular, malla de 8.5 x 7.3 m, *sub drilling* de 1.5 m y una altura de taladro de 16.5 m.

Durante el periodo de estudio de enero a marzo considerando un diseño de carga corrida, se utilizó explosivo MEQ 73 considerando la relación ANFO (30 %) y EMULSIÓN (70 %).

Tabla 25. Análisis de parámetros de voladura, roca hornfels con carga corrida, periodo enero a marzo

PARÁMETROS DE VOLADURA HORNFELS - SIN CÁMARA DE AIRE						
MES		ENERO	FEBRERO	MARZO		
Tipo explosivo		MEQ 73	MEQ 73	MEQ 73		
Material		Hornfels	Hornfels	Hornefels		
ANFO		30%	30%	30%		
Emulsión		70%	70%	70%		
Densidad explosivo	gr/cc	1.36	1.36	1.36		
Densidad lineal	kg/m	103.5	103.5	103.5		
Altura de carga	m	8.5	8.5	8.5		
Esponjamiento	m	1.0	1.0	1.0		
Camara de aire	m	0.0	0.0	0.0		
Тасо	m	7.0	7.0	7.0		
Carga/ taladro	kg/tal	880	880	880		
Tonelaje teórico	t/tal	2330	2330	2330		
Factor de potencia teórico	kg/t	0.38	0.38	0.38		

La densidad de explosivo es de 1.36 gr/cc, densidad lineal de 103,5 y considerando una altura de carga de 9.5 m (adicionando un esponjamiento de 1.0 m), por lo que se genera una carga por taladro de 880 kg/tal, y considerando un tonelaje teórico de 2,330 t/tal se define un factor de potencia teórico de 0.38 kg/t.

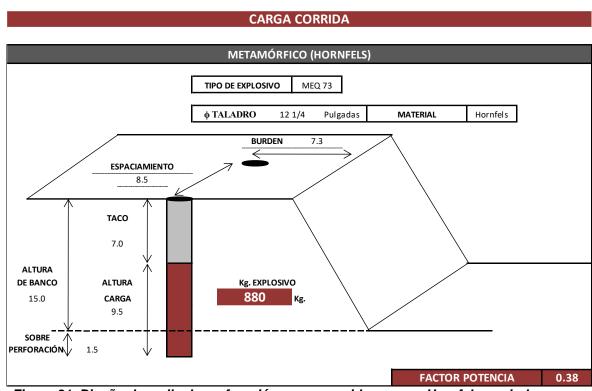


Figura 31. Diseño de malla de perforación, carga corrida en zona Hornfels, periodo enero a marzo.

Tomada del Departamento de Perforación y Voladura

Zona Intrusivo:

Considera altura de banco de 15 m, con diámetro de perforación 12 $\frac{1}{4}$, con una malla triangular, malla de 5.7 x 4.9 m, sub drilling de 1.0 m y una altura de taladro de 16.0 m.

Durante el periodo de estudio de enero a marzo, considerando un diseño de carga corrida, se utilizó explosivo MEQ 73 considerando la relación ANFO (30 %) y EMULSIÓN (70 %).

Tabla 26. Análisis de parámetros de voladura, roca Intrusivo con carga corrida, periodo enero a marzo

PARÁMETROS DE VOLADURA INTRUSIVO - SIN CÁMARA DE AIRE								
MES		ENERO	FEBRERO	MARZO				
Tipo explosivo		MEQ 73	MEQ 73	MEQ 73				
Material		Intrusivo	Intrusivo	Intrusivo				
ANFO		30%	30%	30%				
Emulsión		70%	70%	70%				
Densidad explosivo	gr/cc	1.36	1.36	1.36				
Densidad lineal	kg/m	103.5	103.5	103.5				
Altura de carga	m	8.0	8.0	8.0				
Esponjamiento	m	1.0	1.0	1.0				
Camara de aire	m	0.0	0.0	0.0				
Тасо	m	7.0	7.0	7.0				
Carga/ taladro	kg/tal	828	828	828				
Tonelaje teórico	t/tal	1048	1048	1048				
Factor de potencia teórico	kg/t	0.79	0.79	0.79				

La densidad de explosivo es de 1.36 gr/cc, densidad lineal de 103.5 y considerando una altura de carga de 9.0 m (adicionando un esponjamiento de 1.0 m), por lo que se genera una carga por taladro de 828 kg/tal, y considerando un tonelaje teórico de 1,048 t/tal se define un factor de potencia teórico de 0.79 kg/t.

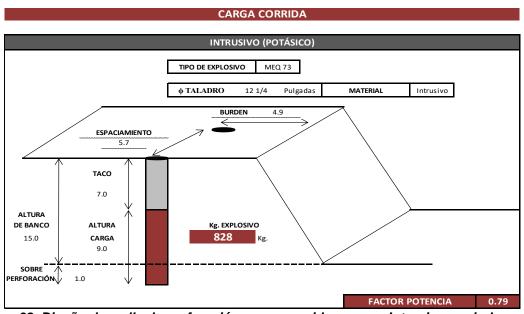


Figura 32. Diseño de malla de perforación, carga corrida en zona Intrusivo, periodo enero a marzo Tomada del Departamento de Perforación y Voladura

• Zona Volcánica:

Considera altura de banco de 15 m, con diámetro de perforación 12 ¼, con una malla triangular, malla de 7.0 x 6.0 m, *sub drilling* de 1.0 m y una altura de taladro de 16.0 m.

Durante el periodo de estudio de enero a marzo, considerando un diseño de carga corrida, se utilizó explosivo MEQ 73 considerando la relación ANFO (30 %) y EMULSIÓN (70 %).

Tabla 27. Análisis de parámetros de voladura, roca volcánica con carga corrida, periodo enero a marzo

PARÁMETROS DE VOLADURA VOLCÁNICO- SIN CÁMARA DE AIRE								
MES		ENERO	FEBRERO	MARZO				
Tipo explosivo		MEQ 73	MEQ 73	MEQ 73				
Material		Volcánico	Volcánico	Volcánico				
ANFO		30%	30%	30%				
Emulsión		70%	70%	70%				
Densidad explosivo	gr/cc	1.36	1.36	1.36				
Densidad lineal	kg/m	103.5	103.5	103.5				
Altura de carga	m	8.5	8.5	8.5				
Esponjamiento	m	1.0	1.0	1.0				
Camara de aire	m	0.0	0.0	0.0				
Тасо	m	6.5	6.5	6.5				
Carga/ taladro	kg/tal	880	880	880				
Tonelaje teórico	t/tal	1580	1580	1580				
Factor de potencia teórico	kg/t	0.56	0.56	0.56				

La densidad de explosivo es de 1.36 gr/cc, densidad lineal de 103.5 y considerando una altura de carga de 9.5 m (adicionando un esponjamiento de 1.0 m), por lo que se genera una carga por taladro de 880 kg/tal, y considerando un tonelaje teórico de 1,580 t/tal se define un factor de potencia teórico de 0.56 kg/t.

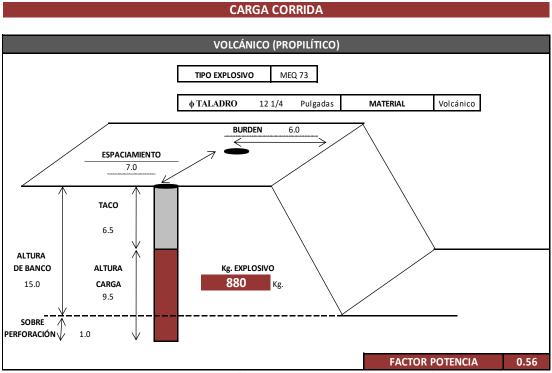


Figura 33. Diseño de malla de perforación, carga corrida en zona Volcánica, periodo enero a marzo

Tomada del Departamento de Perforación y Voladura

b) Periodo abril a junio:

Durante este periodo se analizó las diferentes litologías y su alteración correspondiente con sus respectivos parámetros de perforación y voladura, considerando el diseño de carga con cámara de aire y una densidad de roca de 2.5 gr/cc:

• Zona Hornfels:

Considera altura de banco de 15 m, con diámetro de perforación 12 ¼, con una malla triangular, malla de 8.5 x 7.3 m, *sub drilling* de 1.5 m y una altura de taladro de 16.5 m.

Durante el periodo de estudio de abril a junio, considerando un diseño de carga corrida, se utilizó explosivo MEQ 73 considerando la relación ANFO (30 %) y EMULSIÓN (70 %).

Tabla 28. Análisis de parámetros de voladura, roca hornfels con cámara de aire, periodo abril a mayo

PARÁMETROS DE VOLADURA HORNFELS - CON CÁMARA DE AIR								
MES		ABRIL	MAYO	JUNIO				
Tipo explosivo		MEQ 73	MEQ 73	MEQ 73				
Material		Hornfels	Hornfels	Hornefels				
ANFO		30%	30%	30%				
Emulsión		70%	70%	70%				
Densidad explosivo	gr/cc	1.36	1.36	1.36				
Densidad lineal	kg/m	103.5	103.5	103.5				
Altura de carga	m	7.5	7.5	7.5				
Esponjamiento	m	1.0	1.0	1.0				
Camara de aire	m	1.0	1.0	1.0				
Taco	m	7.0	7.0	7.0				
Carga/ taladro	kg/tal	776	776	776				
Tonelaje teórico	t/tal	2330	2330	2330				
Factor de potencia teórico	kg/t	0.33	0.33	0.33				

La densidad de explosivo es de 1.36 gr/cc, densidad lineal de 103,5 y considerando una altura de carga de 8.5 m (descontando la cámara de aire de 1.0 m), por lo que se genera una carga por taladro de 776 kg/tal, y considerando un tonelaje teórico de 2,330 t/tal se define un factor de potencia teórico de 0.33 kg/t.

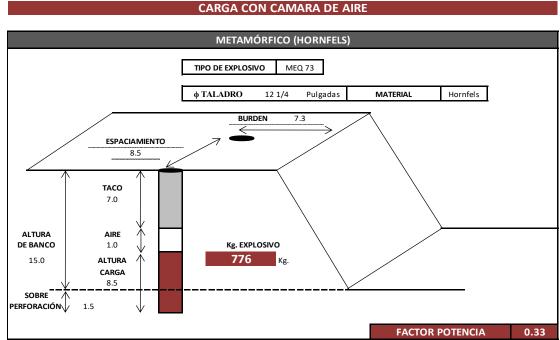


Figura 34. Diseño de malla de perforación, con cámara de aire, zona Hornfels, periodo abril a junio Tomada del Departamento de Perforación y Voladura

• Zona Intrusivo:

Considera altura de banco de 15 m, con diámetro de perforación 12 ¼, con una malla triangular, malla de 5.7 x 4.9 m, *sub drilling* de 1.0 m y una altura de taladro de 16.0 m.

Durante el periodo de estudio de abril a junio, considerando un diseño de carga corrida, se utilizó explosivo MEQ 73 considerando la relación ANFO (30 %) y EMULSIÓN (70 %).

Tabla 29. Análisis de parámetros de voladura, roca intrusiva con cámara de aire, periodo abril a junio

PARÁMETROS DE '	VOLADURA	INTRUSIVO -	CON CÁMARA	DE AIRE
MES		ABRIL	MAYO	JUNIO
Tipo explosivo		MEQ 73	MEQ 73	MEQ 73
Material		Intrusivo	Intrusivo	Intrusivo
ANFO		30%	30%	30%
Emulsión		70%	70%	70%
Densidad explosivo	gr/cc	1.36	1.36	1.36
Densidad lineal	kg/m	103.5	103.5	103.5
Altura de carga	m	7.0	7.0	7.0
Esponjamiento	m	1.0	1.0	1.0
Camara de aire	m	1.0	1.0	1.0
Тасо	m	7.0	7.0	7.0
Carga/ taladro	kg/tal	724	724	724
Tonelaje teórico	t/tal	1048	1048	1048
Factor de potencia teórico	kg/t	0.69	0.69	0.69

La densidad de explosivo es de 1.36 gr/cc, densidad lineal de 103,5 y considerando una altura de carga de 8.0 m (descontando la cámara de aire de 1.0 m), por lo que se genera una carga por taladro de 724 kg/tal, y considerando un tonelaje teórico de 1,048 t/tal se define un factor de potencia teórico de 0.69 kg/t.

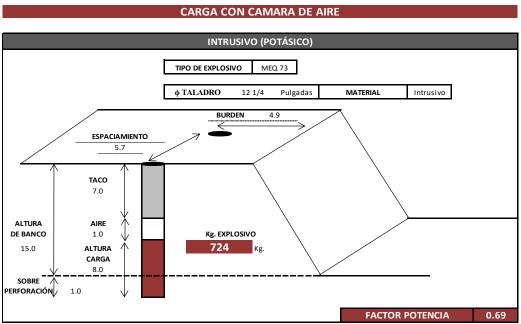


Figura 35. Diseño de malla de perforación, con cámara de aire, zona Intrusiva, periodo abril a junio Tomada del Departamento de Perforación y Voladura

• Zona Volcánica:

Considera altura de banco de 15 m, con diámetro de perforación 12 $\frac{1}{4}$, con una malla triangular, malla de 7.0 x 6.0 m, *sub drilling* de 1.0 m y una altura de taladro de 16.0 m.

Durante el periodo de estudio de abril a junio, considerando un diseño de carga corrida, se utilizó el explosivo MEQ 73 considerando la relación ANFO (30%) y EMULSIÓN (70%).

Tabla 30. Análisis de parámetros de voladura, roca volcánica con cámara de aire, periodo abril a junio

PARÁMETROS DE VOLADURA VOLCÁNICO - CON CÁMARA DE AIRE								
MES		ABRIL	MAYO	JUNIO				
Tipo explosivo		MEQ 73	MEQ 73	MEQ 73				
Material		Volcánico	Volcánico	Volcánico				
ANFO		30%	30%	30%				
Emulsión		70%	70%	70%				
Densidad explosivo	gr/cc	1.36	1.36	1.36				
Densidad lineal	kg/m	103.5	103.5	103.5				
Altura de carga	m	7.5	7.5	7.5				
Esponjamiento	m	1.0	1.0	1.0				
Camara de aire	m	1.0	1.0	1.0				
Тасо	m	6.5	6.5	6.5				
Carga/ taladro	kg/tal	776	776	776				
Tonelaje teórico	t/tal	1580	1580	1580				
Factor de potencia teórico	kg/t	0.49	0.49	0.49				

La densidad de explosivo es de 1.36 gr/cc, densidad lineal de 103,5 y considerando una altura de carga de 8.5 m (descontando la cámara de aire de 1.0 m), por lo que se genera una carga por taladro de 776 kg/tal, y considerando un tonelaje teórico de 1,048 t/tal se define un factor de potencia teórico de 0.49 kg/t.

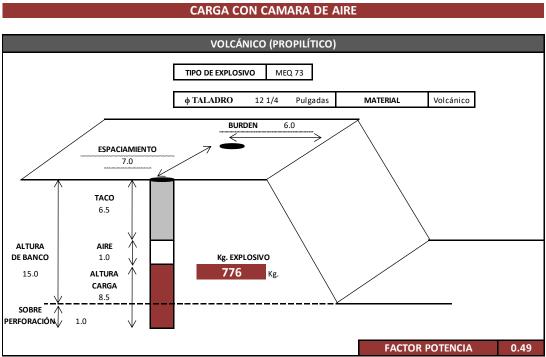


Figura 36. Diseño de malla de perforación, con cámara de aire, zona Volcanico, periodo abril a junio Tomada del Departamento de Perforación y Voladura

4.1.6. Resumen de análisis comparativo de parámetros de perforación y voladura

Se realiza el análisis de los resultados obtenidos de perforación y voladura durante los periodos de análisis entre enero a marzo, considerando el diseño de carga corrida (sin cámara de aire) y el periodo abril a junio y el diseño de carga con cámara de aire.

Estos análisis han tenido en cuenta los diferentes dominios litológicos que inciden directamente en el grado de fragmentación y el factor de potencia asociada.

Tabla 31. Resumen comparativo de parámetros de perforación y voladura, periodo enero a junio

	Table of the compared to be parameted to posterior y to lead in a posterior a justice													
	RESUMEN DE PERFORACIÓN Y VOLADURA													
	PERIODO ENERO A JUNIO													
ITEM	PERIODO	HORNFELS				INTRUSIVO			VOLCÁNICO					
		Altura taladro (m)	Altura Carga (m)	Carga por taladro(kg/tal)	Fp (kg/t)	Altura taladro (m)	Altura Carga (m)	Carga por taladro(Kg/tal)	Fp (kg/t)	Altura taladro (m)	Altura carga (m)	Carga por taladro(Kg/tal)	Fp (kg/t)	
SIN CÁMARA AIRE	ENERO A MARZO	16.50	9.50	880.00	0.38	16.00	9.00	828.00	0.79	16.00	9.50	880.00	0.56	
CON CÁMARA DE AIRI	ABRIL A JUNIO	16.50	8.50	776.00	0.33	16.00	8.00	724.00	0.69	16.00	8.50	776.00	0.49	
•	PROM/DIF	16.50	1.00	104.00	0.05	16.00	1.00	104.00	0.10	16.00	1.00	104.00	0.07	

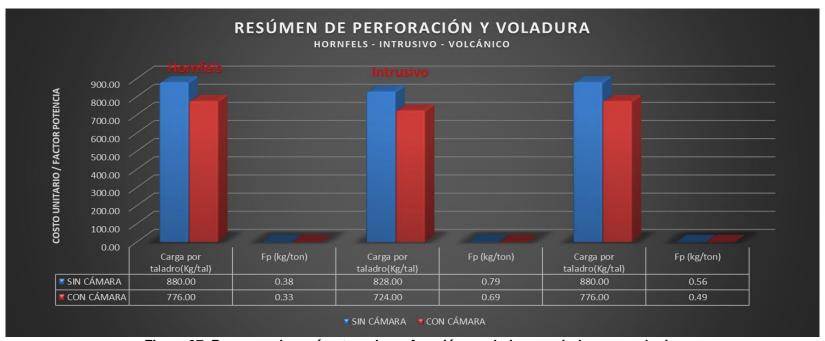


Figura 37. Resumen de parámetros de perforación y voladura, periodo enero a junio.:

Los resultados obtenidos en la roca hornfels genera una mejora del factor de potencia, disminuyendo en 0.03 kg/t, siendo durante el periodo de enero a marzo de 0.38 kg/t y disminuyendo el factor de potencia durante el periodo abril a junio en 0.33 kg/t, esta disminución del factor de potencia es asociado a un menor consumo de explosivo de 880 kg/tal a 776 kg/tal generando una disminución de 104 kg/tal, optimizando la altura de carga en 1 m, producto del uso de las cámaras de aire (tipo taponex).

Los resultados obtenidos en la roca intrusiva genera una mejora del factor de potencia, disminuyendo en 0.10 kg/t, siendo durante el periodo de enero a marzo de 0.79 kg/t y disminuyendo el factor de potencia durante el periodo abril a junio en 0.69 kg/t, esta disminución del factor de potencia es asociado a un menor consumo de explosivo de 828 kg/tal a 724 kg/tal generando una disminución de 104 kg/tal, optimizando la altura de carga en 1 m, producto del uso de las cámaras de aire (tipo taponex).

Los resultados obtenidos en la roca volcánica genera una mejora del factor de potencia, disminuyendo en 0.07 kg/t, siendo durante el periodo de enero a marzo de 0.56 kg/t y disminuyendo el factor de potencia durante el periodo abril a junio en 0.49 Kg/t, esta disminución del factor de potencia es asociado a un menor consumo de explosivo de 880 kg/tal a 776 kg/tal generando una disminución de 104 kg/tal, optimizando la altura de carga en 1 m, producto del uso de las cámaras de aire (tipo taponex).

4.1.7. Análisis económico de parámetros de perforación y voladura

El análisis económico de perforación y voladura, considera los números de taladros asociados a cada periodo de estudio de enero a junio, discriminando la litología y su alteración hidrotermal presente y los costos de perforación, voladura y accesorios asociados.

El costo unitario se relacionará en función a los periodos a comparar de enero a marzo y el periodo abril a junio, teniendo en consideración el costo unitario por tonelada generado.

a) Periodo enero a marzo:

Durante este periodo se analizó los costos unitarios de perforación y voladura de las diferentes litologías y su alteración correspondiente con sus respectivos parámetros de perforación y voladura considerando el diseño de carga corrida en este periodo y una densidad de roca de 2.5 gr/cc:

Zona Hornfels:

Considera altura de banco de 15 m, con diámetro de perforación 12 $\frac{1}{4}$, con una malla triangular, malla de 8.5 x 7.3 m, sub drilling de 1.5 m y una altura de taladro de 16.5 m.

Durante el periodo de estudio de enero a marzo, considerando un diseño de carga corrida, se utilizó el explosivo MEQ 73 considerando la relación ANFO (30 %) y EMULSIÓN (70 %). El detalle se describe a continuación:

Tabla 32. Costo unitario de perforación y voladura zona hornfels, periodo enero a marzo

COSTO UNITAR	IO DE PEF	RFORACIÓN '	Y VOLADURA	- ZONA HORNF	ELS
	PI	ERIODO ENERO) A MARZO		
Cantidad de taladros	#	223.0	365.0	350.0	
Nitrato de amonio	Kg	56,517	92,506	88,704	
Emulsion	Kg	137,368	224,840	215,600	
Diesel D2	Kg	1,766	2,891	2,772	
Nitrito de sodio	Kg	589	964	924	
Cantidad de explosivos	Kg	196,240	321,200	308,000	
Costo parcial	\$	83,142	136,084	130,491	
Cantidad de N.A.	Kg	237,727		Electrónico	Si
Cantidad de emulsion	Kg	577,808			
Diesel D2	Kg	7,429		Costo	16,800
Nitrito de sodio	Kg	2,476			
Cantidad de explosivo	Kg	825,440		Taponex	No
Cantidad total de taladros	#	938		Taladros	110
				Costo	-
Costo explosivos	\$	349,717			
Costo de accesorios	\$	24,163			
Costo total	\$	373,880			
Costo total (5 % Imprevisto	\$	392,574			
Área de disparo	m²	30,113			
Volumen de disparo	m³	451,695			
Tonelaje total	t	1,129,238			
Costo unitario	\$/t	0.35			
Factor de potencia	kg/t	0.73			

Para la zona hornfels durante el periodo enero a marzo considera un total de 938 taladros, con un total de 825,440 kilogramos de explosivo usados generando un costo total de \$399,941. Asumiendo un tonelaje total de 1,129,238 toneladas se genera un costo unitario de 0.35 \$/t.

• Zona Intrusivo:

Considera altura de banco de 15 m, con diámetro de perforación 12 ¼, con una malla triangular, malla de 5.7 x 4.9 m, *sub drilling* de 1.0 m y una altura de taladro de 16.0 m.

Durante el periodo de estudio de enero a marzo, considerando un diseño de carga corrida, se utilizó el explosivo MEQ 73 considerando la relación ANFO (30 %) y EMULSIÓN (70 %).

Tabla 33. Costo unitario de perforación y voladura zona intrusivo, periodo enero a marzo

COSTO UNITAR	IO DE PEI	RFORACIÓN Y	VOLADURA	- ZONA INTRI	JSIVO
	F	PERIODO ENERO	A MARZO		
Cantidad de taladros	#	83.0	43.0	95.0	
Nitrato de amonio	Kg	19,787	10,251	22,648	
Emulsion	Kg	48,093	24,916	55,047	
Diesel D2	Kg	618	320	708	
Nitrito de sodio	Kg	206	107	236	
Cantidad de explosivos	Kg	68,705	35,594	78,638	
Costo parcial	\$	29,125	15,089	33,336	
Cantidad de N.A.	Kg	52,686		Electrónico	Ç
Cantidad de emulsion	Kg	128,056			
Diesel D2	Kg	1,646		Costo	-
Nitrito de sodio	Kg	549			
Cantidad de explosivo	Kg	182,937		Taponex	N
Cantidad total de taladros	#	221		Taladros	11
				Costo	-
Costo explosivos	\$	77,549	•		
Costo de accesorios	\$	1,751			
Costo total	\$	79,300			
Costo total (5 % Imprevisto	\$	83,265			
		_			
Area de disparo	m²	10,220			
Volumen de disparo	m³	153,300			
Tonelaje total	t	383,250			
Costo unitario	\$/t	0.23			
Factor de potencia	Kg/t	0.48			

Para la zona de intrusivo durante el periodo enero a marzo, considera un total de 221 taladros, con un total de 182,937 kilogramos de explosivo usados generando un costo total de \$83,265. Asumiendo un tonelaje total de 383,250 toneladas se genera un costo unitario de 0.23 \$/t.

• Zona Volcánica:

Considera altura de banco de 15 m, con diámetro de perforación 12 ¼, con una malla triangular, malla de 7.0 x 6.0 m, *sub drilling* de 1.0 m y una altura de taladro de 16.0 m.

Durante el periodo de estudio de enero a marzo, considerando un diseño de carga corrida, se utilizó el explosivo MEQ 73, considerando la relación ANFO (30%) y EMULSIÓN (70 %).

Tabla 34. Costo unitario de perforación y voladura zona volcánica, periodo enero a marzo

pertorac	ion y volad	ura zona ve	oicanica, pei	riodo enei
O DE PER	FORACIÓN Y	VOLADURA -	- ZONA VOLCÁ	NICA
#	47.0	120.0	76.0	
Kg	11,905	30,396	19,251	
Kg	28,936	73,878	46,790	
Kg	372	950	602	
Kg	124	317	201	
Kg	41,337	105,541	66,842	
\$	17,523	44,740	28,335	
Kg	61,551		Electrónico	S
Kg	149,604			
Kg	1,923		Costo	4,352
Kg	641			
Kg	213,720		Taponex	N
#	243		Taladros	11
			Costo	-
\$	90,598	•		
\$	6,275			
\$	96,873			
\$	101,717			
m²	12,220			
m³	183,300			
t	458,250			
\$/t	0.23			
	# Kg	# 47.0 Kg 11,905 Kg 28,936 Kg 372 Kg 124 Kg 41,337 \$ 17,523 Kg 61,551 Kg 149,604 Kg 1,923 Kg 641 Kg 213,720 # 243 \$ 90,598 \$ 6,275 \$ 96,873 \$ 101,717 m² 12,220 m³ 183,300 t 458,250	# 47.0 120.0 Kg 11,905 30,396 Kg 28,936 73,878 Kg 372 950 Kg 124 317 Kg 41,337 105,541 \$ 17,523 44,740 Kg 61,551 Kg 149,604 Kg 1,923 Kg 641 Kg 213,720 # 243 \$ 90,598 \$ 6,275 \$ 96,873 \$ 101,717 m² 12,220 m³ 183,300 t 458,250	Kg 11,905 30,396 19,251 Kg 28,936 73,878 46,790 Kg 372 950 602 Kg 124 317 201 Kg 41,337 105,541 66,842 \$ 17,523 44,740 28,335 Kg 61,551 Kg 149,604 Kg 1,923 Kg 641 Kg 213,720 # Taponex Taladros Costo \$ 90,598 \$ \$ 6,275 \$ 96,873 \$ 101,717 m³ 12,220 m³ 183,300 t 458,250

Para la zona volcánica durante el periodo enero a marzo considera un total de 243 taladros, con un total de 213,720 kilogramos de explosivo usados, generando un costo total de \$ 101,717. Asumiendo un tonelaje total de 458,250 toneladas se genera un costo unitario de 0.23 \$/t.

b) Periodo abril a junio:

Durante este periodo se analizó los costos unitarios de perforación y voladura de las diferentes litologías y su alteración correspondiente con sus respectivos parámetros de perforación y voladura, considerando el diseño de carga con cámara de aire en este periodo y una densidad de roca de 2.5 gr/cc:

Zona Hornfels:

Considera altura de banco de 15 m, con diámetro de perforación 12 ¼, con una malla triangular, malla de 8.5 x 7.3 m, *sub drilling* de 1.5 m y una altura de taladro de 16.5 m.

Durante el periodo de estudio de abril a junio, considerando un diseño de carga con cámara de aire, se utilizó el explosivo MEQ 73, considerando la relación ANFO (30 %) y EMULSIÓN (70 %).

Tabla 35. Costo unitario de perforación y voladura zona Hornfels, periodo abril a junio

COSTO UNITA				- ZONA HORNF	
		PERIODO ABRII			
Cantidad de taladros	#	200.0	201.0	192.0	
Nitrato de amonio	Kg	44,700	44,923	42,912	
Emulsion	Kg	108,645	109,188	104,299	
Diesel D2	Kg	1,397	1,404	1,341	
Nitrito de sodio	Kg	466	468	447	
Cantidad de explosivos	Kg	155,207	155,983	148,998	
Costo parcial	\$	65,794	66,123	63,162	
			i		
Cantidad de N.A.	Kg	132,534		Electrónico	
Cantidad de emulsion	Kg	322,131			
Diesel D2	Kg	4,142		Costo	10,62
Nitrito de sodio	Kg	1,381			
Cantidad de explosivo	Kg	460,188		Taponex	
Cantidad total de taladros	#	593		Taladros	59
				Costo	4,74
Costo explosivos	\$	195,079			
Costo de accesorios	\$	20,028			
Costo total	\$	215,107			
Costo total (5 % Imprevisto	\$	225,862			
Area de disparo	m²	30,113			
Volumen de disparo	m³	451,695			
Tonelaje total	t	1,129,238			
Costo unitario	\$/t	0.20			
Factor de potencia	Kg/t	0.41			

Para la zona hornfels durante el periodo abril a junio considera un total de 593 taladros, con un total de 460,188 kilogramos de explosivo usados generando un costo total de \$ 219,542. Asumiendo un tonelaje total de 1,129,238 toneladas se genera un costo unitario de 0.20 \$/t.

• Zona Intrusivo:

Considera altura de banco de 15 m, con diámetro de perforación 12 ¼, con una malla triangular, malla de 5.7 x 4.9 m, *sub drilling* de 1.0 m y una altura de taladro de 16.0 m.

Durante el periodo de estudio de abril a junio, considerando un diseño de carga corrida, se utilizó el explosivo MEQ 73 considerando la relación ANFO (30 %) y EMULSIÓN (70 %).

Tabla 36. Costo unitario de perforación y voladura zona intrusivo, periodo abril a junio

bla 36. Costo unitario d					
COSTO UNITARI	O DE PER	FORACIÓN Y V	VOLADURA -	ZONA INTRUS	SIVO
	Р	ERIODO ABRIL <i>A</i>	A JUNIO		
Cantidad de taladros	#	33.0	25.0	156.0	
Nitrato de amonio	Kg	6,884	5,215	32,541	
Emulsion	Kg	16,731	12,675	79,093	
Diesel D2	Kg	215	163	1,017	
Nitrito de sodio	Kg	72	54	339	
Cantidad de explosivos	Kg	23,902	18,107	112,990	
Costo parcial	\$	10,132	7,676	47,898	
Cantidad de N.A.	Kg	44,640		Electrónico	S
Cantidad de emulsion	Kg	108,500			
Diesel D2	Kg	1,395		Costo	3,833
Nitrito de sodio	Kg	465	i		
Cantidad de explosivo	Kg	155,000		Taponex	S
Cantidad total de taladros	#	214		Taladros	214
				Costo	1,712
Costo explosivos	\$	65,706	·		
Costo de accesorios	\$	7,240			
Costo total	\$	72,947			
Costo total (5 % Imprevistos)	\$	78,275			
Area de disparo	m²	10,220			
Volumen de disparo	m³	153,300			
Tonelaje total	t	383,250			
Costo unitario	\$/t	0.20			
Factor de potencia	Kg/t	0.40			

Para la zona de intrusivo durante el periodo abril a junio considera un total de 214 taladros, con un total de 155,000 kilogramos de explosivo usados generando un costo total de \$ 78,275. Asumiendo un tonelaje total de 383,250 toneladas se genera un costo unitario de 0.20 \$/t.

• Zona Volcánica:

Considera altura de banco de 15 m, con diámetro de perforación 12 ¼, con una malla triangular, malla de 7.0 x 6.0 m, sub drilling de 1.0 m y una altura de taladro de 16.0 m.

Durante el periodo de estudio de abril a junio, considerando un diseño de carga corrida, se utilizó el explosivo MEQ 73, considerando la relación ANFO (30 %) y EMULSIÓN (70 %).

Tabla 37. Costo unitario de perforación y voladura zona volcánica, periodo abril a junio

COSTO UNITAR	O DE PER	FORACIÓN Y V	OLADURA	- ZONA VOLC	ÁNICA
	ſ	PERIODO ABRIL <i>A</i>	AJUNIO		
Cantidad de taladros	#	94.0	18.0	34.0	
Nitrato de amonio	Kg	21,009	4,023	7,599	
Emulsion	Kg	51,063	9,778	18,470	
Diesel D2	Kg	657	126	237	
Nitrito de sodio	Kg	219	42	79	
Cantidad de explosivos	Kg	72,947	13,969	26,385	
Costo parcial	\$	30,923	5,921	11,185	
Cantidad de N.A.	Kg	32,631		Electrónico	S
Cantidad de emulsion	Kg	79,311			
Diesel D2	Kg	1,020		Costo	2,615
Nitrito de sodio	Kg	340			
Cantidad de explosivo	Kg	113,301		Taponex	S
Cantidad total de taladros	#	146		Taladros	146
				Costo	1,168
Costo explosivos	\$	48,030			
Costo de accesorios	\$	6,038			
Costo total	\$	54,068			
Costo total (5% Imprevisto	\$	56,771			
Area de disparo	m²	12,220			
Volumen de disparo	m³	183,300			
Tonelaje total	t	458,250			
Costo unitario	\$/t	0.12			
Factor de potencia	Kg/t	0.25			

Para la zona volcánica durante el periodo abril a junio considera un total de 146 taladros, con un total de 113,301 kilogramos de explosivo usados generando un

costo total de \$ 56,771. Asumiendo un tonelaje total de 458,250 toneladas se genera un costo unitario de 0.12 \$/t.

4.1.8. Resumen de análisis económico comparativo de parámetros de perforación y voladura

El resultado del análisis económico de perforación y voladura para el control del grado de fragmentación durante el periodo enero a junio, aplicado a las diferentes litologías como zona hornfels, zona de intrusivo y zona volcánica, generó una disminución del factor de potencia de 0.56 kg/t a 0.35 kg/t y una disminución del costo unitario de 0.27 \$/t a 0.18 \$/t.

La disminución del factor de potencia en 0.20 kg/t y los costos unitarios en 0.09 \$/t fueron el resultado del uso de retenedores de energía como la bolsa de aire tipo *taponex* en los taladros perforados.

El análisis por tipo de litología durante los periodos de estudio de enero a marzo y de abril a junio ayudará a entender el control del grado de fragmentación post voladura siendo los resultados:

Zona Hornfels

Durante el periodo de estudio en la zona hornfels, generó una disminución del factor de potencia de 0.73 kg/t a 0.41 kg/t con un ahorro de 0.32 kg/t y una disminución del costo unitario de 0.35 \$/t a 0.20 \$/t, con un ahorro de 0.15 \$/t.

Zona de intrusivo

Durante el periodo de estudio en la zona del intrusivo generó una disminución del factor de potencia de 0.48 kg/t a 0.40 kg/t con un ahorro de 0.07 kg/t y una disminución del costo unitario de 0.23 \$/t, con un ahorro de 0.03 \$/t.

Zona Volcánico

Durante el periodo de estudio en la zona volcánica generó una disminución del factor de potencia de 0.47 kg/t a 0.25 kg/t con un ahorro de 0.22 kg/t y una disminución del costo unitario de 0.23 \$/t a 0.12 \$/t, con un ahorro de 0.10 \$/t.

Tabla 38. Resumen de costos unitarios de perforación y voladura, periodo enero a junio

RESÚMEN DE COSTOS DE PERFORACIÓN Y VOLADURA PERIODO ENERO A JUNIO **VOLCÁNICO** PERIODO HORNFELS INTRUSIVO PROMEDIO TOTAL ITEM \$/m \$/tal \$/t \$/m \$/tal \$/tal Fp (Kg/t) Fp (kg/t) \$/ton Fp (kg/t) \$/m \$/t Fp (kg/t) SIN CÁMARA AIRE ENERO A MARZO 43.86 372.83 0.35 0.73 43.86 350.90 0.23 0.48 43.86 372.83 0.23 0.47 0.27 0.56

307.04

328.97

0.20

0.40

0.07

43.86

43.86

328.97

350.90

0.12

0.10

0.25

0.22

0.18

0.09

0.35

0.20

43.86

43.86

CON CÁMARA DE AIRE ABRIL A JUNIO

PROMEDIO/DIF

43.86

43.86

328.97

350.90

0.20

0.15

0.41

0.32

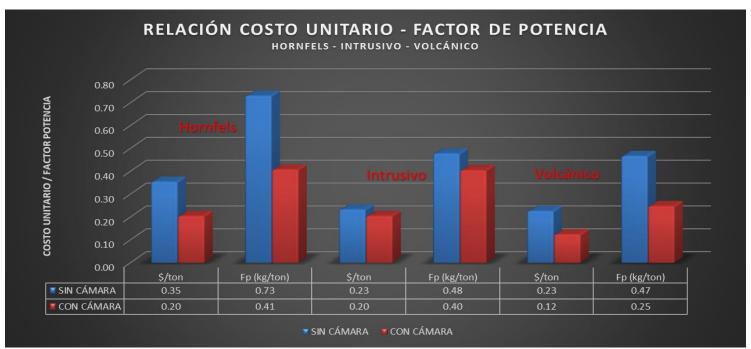


Figura 38. Resumen de relación de costo unitario y factor de potencia, periodo enero a junio

CONCLUSIONES

- 1. El presente trabajo de investigación considera el análisis de diferentes litologías: metamórfico (hornfels), intrusivo (diorita) y volcánico (andesita), los cuales han sido asociados a sus diferentes mallas de perforación y voladura, considerando cargas corridas y carga con cámara de aire (retenedor de energía tipo taponex), los cuales generaron distintos grados de fragmentación post voladura.
- 2. El análisis comparativo entre los periodos enero a marzo y abril a junio permitió generar resultados positivos en el grado de fragmentación desde 3.26 pulgadas en el periodo enero a marzo incrementando en 3.48 pulgadas durante el periodo abril a junio. Esta mejora en el incremento de granulometría, permitió optimizar el factor de potencia de 0.59 kg/t durante el periodo enero a marzo, disminuyendo el factor de potencia en 0.55 kg/t para el periodo abril a junio, producto del uso de retenedores de energía como bolsas de aire (tipo taponex) durante el segundo periodo de estudio.
- 3. La mejora de la granulometría y el factor de potencia permite generar una incidencia directa en la estabilidad de taludes en zona de desmontera, para generar granulometrías entre 3 a 4 pulgadas, buscando optimizar la mejora granulométrica hacia 4 pulgadas.
- 4. Asimismo, el mejor control de la granulometría durante el segundo periodo de estudio, permitió una mejora en el dig rate de 11,551.27 t/h durante el periodo enero a marzo a un incremento de 12,041.11 t/h durante el periodo abril a junio, mejorando el rendimiento en los equipos de carguío y acarreo, incrementando en 489.84 t/h.
- 5. El análisis de las variables de perforación y voladura obtenidos en la roca hornfels genera una mejora del factor de potencia, disminuyendo en 0.05 kg/t, siendo durante el periodo de enero a marzo de 0.38 kg/t y disminuyendo el factor de potencia durante el periodo abril a junio en 0.33 Kg/t, esta disminución del

factor de potencia es asociado a un menor consumo de explosivo de 880 kg/tal a 776 kg/tal generando una disminución de 104 kg/tal, optimizando la altura de carga en 1 m, producto del uso de las cámaras de aire (tipo taponex).

- 6. El análisis de las variables de perforación y voladura obtenidos en la roca intrusiva genera una mejora del factor de potencia, disminuyendo en 0.10 kg/t, siendo durante el periodo de enero a marzo de 0.79 kg/t y disminuyendo el factor de potencia durante el periodo abril a junio en 0.69 kg/t, esta disminución del factor de potencia es asociado a un menor consumo de explosivo de 828 kg/tal a 724 kg/tal generando una disminución de 104 kg/tal, optimizando la altura de carga en 1 m, producto del uso de las cámaras de aire (tipo taponex).
- 7. El análisis de las variables de perforación y voladura obtenidos en la roca volcánica genera una mejora del factor de potencia, disminuyendo en 0.07 kg/t, siendo durante el periodo de enero a marzo de 0.56 kg/t y disminuyendo el factor de potencia durante el periodo abril a junio en 0.49 kg/t, esta disminución del factor de potencia es asociado a un menor consumo de explosivo de 880 kg/tal a 776 kg/tal generando una disminución de 104 kg/tal, optimizando la altura de carga en 1 m, producto del uso de las cámaras de aire (tipo taponex).
- 8. El resultado del análisis económico de perforación y voladura para el control del grado de fragmentación durante el periodo enero a junio, aplicado a las diferentes litologías como zona hornfels, zona de intrusivo y zona volcánica, generó una disminución del factor de potencia de 0.56 kg/t a 0.35 kg/t y una disminución del costo unitario de 0.27 \$/t a 0.18 \$/t.
- 9. La disminución del factor de potencia en 0.21 kg/t y los costos unitarios en 0.09 \$/t, fueron el resultado del uso de retenedores de energía como la bolsa de aire tipo taponex en los taladros perforados.
- 10. Los resultados obtenidos durante el periodo de estudio en la zona hornfels generó una disminución del factor de potencia de 0.73 kg/t a 0.41 kg/t con un

ahorro de 0.32 kg/t y una disminución del costo unitario de 0.35 \$/t a 0.20 \$/t, con un ahorro de 0.15 \$/t.

- 11. Los resultados obtenidos durante el periodo de estudio en la zona del intrusivo generaron una disminución del factor de potencia de 0.48 kg/t a 0.40 kg/t con un ahorro de 0.08 kg/t y una disminución del costo unitario de 0.23 \$/t a 0.20 \$/t, con un ahorro de 0.03 \$/t.
- 12. Finalmente, los resultados obtenidos durante el periodo de estudio en la zona volcánica generaron una disminución del factor de potencia de 0.47 kg/t a 0.25 kg/t con un ahorro de 0.22 kg/t y una disminución del costo unitario de 0.23 \$/t a 0.12 \$/t, con un ahorro de 0.11 \$/t.

RECOMENDACIONES

- Se recomienda continuar realizando estudios técnicos y económicos de perforación y voladura en zonas de mezcla por alteración y determinar su influencia en el grado de fragmentación.
- 2. Se recomienda seguir utilizando los retenedores de energía, en mayores números en la columna explosiva en sus diferentes litologías y ver su influencia en la granulometría y los costos de perforación y voladura.
- Realizar una evaluación del uso de diferentes retenedores de energía como taponex, retenedores cónicos, etc., y ver la influencia en la granulometría y los costos de perforación y voladura.
- 4. Seguir realizando estudios del comportamiento de la granulometría post voladura y el rendimiento de los equipos de carguío y acarreo.
- 5. Realizar estudios geológicos de mayor detalle, para generar modelos de predictibilidad de perforación y voladura en los modelos de corto plazo.

REFERENCIAS BIBLIOGRÁFICAS

- 1. ROUT, Mannit y PARIDA, Chinmay. *Optimization of blasting parameters in open cast mines*. LAP Lambert Academic Publising, 2012. ISBN-10: 3659249351
- BAS, A. y otros. Treatment of copper-rich gold ore by cyanide leaching, ammonia pretreatment and ammoniacal cyanide leaching. *Trabzon: Science Direct.* Febrero – 2015, 25 (2), 597 - 607.
- QUIROGA, Marco. Análisis de la perforación y tronadura en El Soldado. Memoria (Título de Ingeniero de Minas). Santiago de Chile: Chile. Universidad de Chile, 2013, 119 pp.
- 4. JAUREGUI, Oscar. Reducción de costos en minería por procesos de perforación y voladura. NTR Periodismo Crítico. Liam, material digital. 2015.
- GUTIERREZ, Edwin. Diseño de voladura y predicción de la fragmentación en zonas de mineral para optimizar las operaciones unitarias en mina Toquepala.
 Tesis (Título de Ingeniero de Minas). Arequipa: Universidad Nacional de San Agustín, 2014, 217 pp.
- 6. CHÁVEZ, Yetson. Mejora de la granulometría mediante el diseño de malla de perforación y voladura aplicando el modelo de Holmberg en la galería 370 de la zona Coturcan en la mina Huancapeti – año 2015. Tesis (Título de Ingeniero de Minas). Huaraz: Universidad Nacional Santiago Antúnez de Mayolo, 2018, 130 pp.
- 7. HINOSTROZA, Jaime. Optimización de la fragmentación en las rocas con la aplicación de la doble iniciación electrónica en la explotación de cobre porfirítico a cielo abierto. Tesis (Título de Ingeniero de Minas). Lima: Universidad Nacional Mayor de San Marcos, 2014,174 pp.

8. VALDIVIA, Segundo y RAMOS, Mercedes. Influencia de la aplicación de detritus en la carga por taladro en los costos de voladura del tajo tapado oeste La Quinua, Yanacocha S.R.L. Cajamarca, 2018. Tesis (Título de Ingeniero de Minas). Cajamarca: Universidad Privada del Norte, 2018 71 pp.

ANEXOS

Anexo A Matriz de operacionalización de variables

Tabla 39. Matriz de operacionalización de variables				
Variables	Definición	Definición operacional		
	conceptual			
		Dimensiones	Sub-	Indicadores
			Dimensiones	
VI: Análisis de las variables operacionales de perforación y voladura.	El análisis de las diferentes variables de perforación y voladura, inciden directamente en el grado de fragmentación y su correspondiente incidencia en el rendimiento de equipos de carguío y acarreo.	 Dimensiones geológicas Dimensiones geomecánicas Dimensiones Económicos 	Parámetros geológicos Parámetro geomecánico Parámetro económico.	Ley de cabeza, recuperación, etc. Propiedades del macizo rocoso Costos de perforación y voladura.
VD: Control del grado de fragmentació n por litología y alteración.	La fragmentación post voladura, está asociado a las diferentes mallas de perforación, tipos de explosivos y accesorios de voladura, relacionado a la variabilidad geológica y geomecánica.	Litología Parámetros de Perforación y voladura.	Dominios geológicos. Malla de perforación y voladura.	Dureza. Sobre perforación. Factor potencia.

Anexo B

Planos en planta

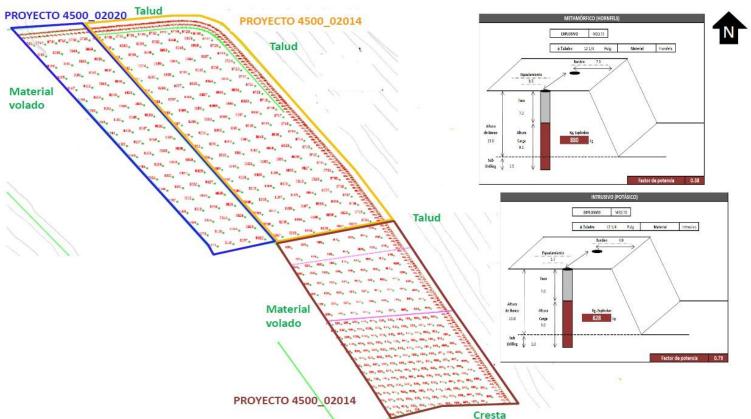


Figura 39. Diseño de perforación zona Hornfels e Intrusivo

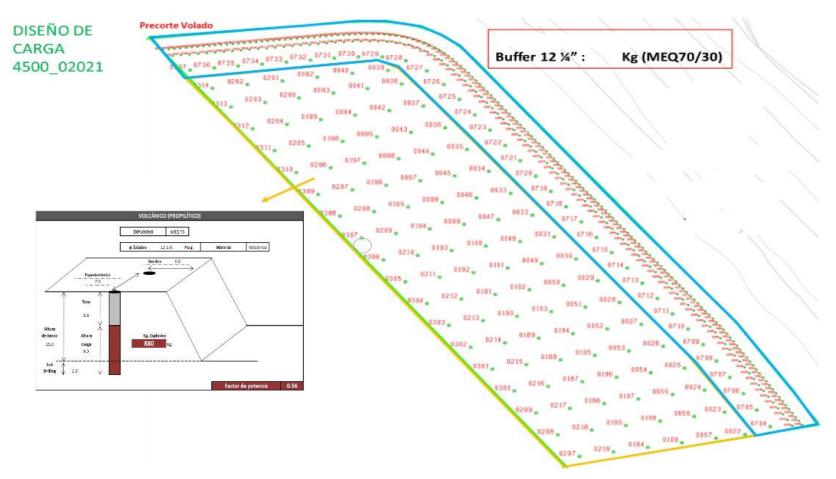


Figura 40. Diseño de perforación zona Volcánico

Anexo C

Fotos

Figura 41. Material post voladura

Figura 42. Grado de fragmentación post voladura