

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Civil

Tesis

Evaluación de la resistencia a la compresión del concreto con aditivo Sikacem Acelerante PE utilizando cementos WP - Wang Peng y Patrón, Cajamarca 2021

Dennis Xamier Villar Saldaña

Para optar el Título Profesional de Ingeniero Civil

Cajamarca, 2021

Repositorio Institucional Continental Tesis digital

Esta obra está bajo una Licencia "Creative Commons Atribución 4.0 Internacional".

AGRADECIMIENTOS

Le agradezco al Creador del universo, por haberme guiado en mi formación profesional,

por brindarme sabiduría en las situaciones complejas, en mis depresiones y

momentos de angustia y

por la experiencia adquirida a lo largo de mi vida.

Agradezco, de manera especial, al Ing. Roberto Carlos Castillo Velarde, por sus enseñanzas, su dirección y sus consejos para el logro de mi objetivo.

DEDICATORIA

Le dedico este trabajo a Nuestro Creador, por inspirarme y darme la energía para continuar con este objetivo y alcanzar uno de mis máximos sueños.

A mis padres,

por su guía incondicional y por ser una parte esencial de mi motivación diaria.

A todos los que me apoyaron y creyeron en mí durante todo este proceso.

ÍNDICE

AGRA	ADECIMIENTOS	iii
DEDI	ICATORIA	iii
ÍNDIO	CE	iv
ÍNDIO	CE DE TABLAS	ix
ÍNDIO	CE DE FIGURAS	xi
RESU	J MEN	xiv
ABST	ΓRACT	xv
INTR	ODUCCIÓN	xvi
CAPI	TULO I	1
1.1	PLANTEAMIENTO DEL ESTUDIO	1
1.1.1	PLANTEAMIENTO Y FORMULACIÓN DEL PROBLEMA	1
1.1.2	DELIMITACIÓN DEL PROBLEMA	3
1.2	FORMULACIÓN INTERROGATIVA DEL PROBLEMA	4
1.2.1	PROBLEMA GENERAL	4
1.3	OBJETIVOS	5
1.3.1	OBJETIVO GENERAL	5
1.3.2	OBJETIVO ESPECIFICO	5
1.4	JUSTIFICACIÓN E IMPORTANCIA	5
1.4.1	JUSTIFICACIÓN TEÓRICA	5
1.4.2	JUSTIFICACIÓN PRÁCTICA	6

1.5	HIPÓTESIS Y DESCRIPCIÓN DE VARIABLES
1.5.1	HIPÓTESIS7
1.5.2	VARIABLES8
CAPI	TULO II: MARCO TEÓRICO10
2.1	ANTECEDENTES DEL PROBLEMA
2.1.1	ANTECEDENTES INTERNACIONALES
2.1.2	ANTECEDENTES NACIONALES
2.1.3	ANTECENDENTES LOCALES
2.2	BASES TEÓRICAS22
2.2.1	GENERALIDADES DEL CONCRETO
2.2.2	CONCRETO POR DESEMPEÑO
2.2.3	COMPONENTES DEL CONCRETO
2.2.4	CEMENTO
2.2.5	COMPONENTES DEL CEMENTO
2.2.6	PROPIEDADES DEL CEMENTO
2.7	AGUA27
2.8	AGREGADOS29
2.9	PROPIEDADES DE LOS AGREGADOS
2.10	ADITIVOS34
2.11	PROPIEDADES DEL CONCRETO
CAPÍ	TULO III: METODOLOGÍA40
3.1	METODOLOGÍA, Y ALCANCE DE LA INVESTIGACIÓN40

	MÉTODO GENERAL	40
3.2	DISEÑO DE LA INVESTIGACIÓN	41
3.2.1	ESQUEMA DE DISEÑO EXPERIMENTOS	41
3.3	POBLACIÓN Y MUESTRA	43
3.4 TÉ	ÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS	45
3.5 IN	ISTRUMENTOS DE RECOLECCIÓN DE DATO	45
3.6	MARCOS NORMATIVOS DE LOS ENSAYOS	45
3.7 EJ	ECUCIÓN DE INVESTIGACIÓN	49
3.7.1 I	ETAPA 1 SELECCIÓN DE MATERIAL	52
3.7.1.	1 CEMENTO	52
3.7.1.2	2 AGREGADOS	52
3.7.2	ETAPA 2: CARACTERISTICAS Y PROPIEDADES DE LOS MATERIA	LES
3.7.2	ETAPA 2: CARACTERISTICAS Y PROPIEDADES DE LOS MATERIA	
		54
3.7.2.1		54 54
3.7.2.1 3.7.2.2	1 CEMENTO	54 54 55
3.7.2.1 3.7.2.2 3.7.2.3	1 CEMENTO	54 54 55
3.7.2.1 3.7.2.2 3.7.2.3 3.7.2.4	1 CEMENTO	54 54 55 55
3.7.2.2 3.7.2.2 3.7.2.2 3.7.2.4	1 CEMENTO	54 55 55 57
3.7.2.2 3.7.2.3 3.7.2.4 3.7.2.5 3.7.3 I	1 CEMENTO	54 55 55 57
3.7.2.2 3.7.2.3 3.7.2.4 3.7.2.5 3.7.3 I	1 CEMENTO	545555575757

3.7.6 I	ETAPA 6: CONCRETO EN ESTADO ENDURECIDO71
3.7.6.1 I	ELABORACIÓN DE LAS PROBETAS (N.T.P 339.033)71
3.7.6.2 I	ELABORACIÓN DE LAS PROBETAS (N.T.P 339.033)72
CAPITU	JLO IV75
4.1 F	RESULTADOS Y DISCUSIÓN75
4.1.1. I	nfluencia de aditivo acelerante con los cementos WP-WUANG PENG Y
PATRÓ	N a los 7, 14 ,28 días75
4.1.2 I	nfluencia de aditivo acelerante con los cementos WP-WUANG PENG Y
PATRÓ	N a los 7 días75
4.1.3 I	nfluencia de aditivo acelerante con los cementos WP-WUANG PENG Y
PATRÓ	N a los 14 días76
4.1.4 I	influencia de aditivo acelerante con los cementos WP-WUANG PENG Y
PATRÓ	N a los 28 días78
4.1.5 I	NFLUENCIA DE ADITIVO ACELERANTE EN EL CEMENTO PATRÓN
	79
4.2 I	PRUEBA DE HIPÓTESIS83
4.2.1 F	PRUEBA DE HIPÓTESIS PARA ADITIVO AL CONCRETO83
4.2.2 H	PRUEBA DE HIPÓTESIS PARA ADICIÓN DE ADITIVO AL CONCRETO
CON CI	EMENTO PATRÓN84
4.2.3 H	PRUEBA DE HIPÓTESIS PARA ADICIÓN DE ADITIVO AL CONCRETO
CON CI	EMENTO PATRÓN85
4.2.4 I	PRUEBA DE HIPÓTESIS PARA ADICIÓN DE ADITIVO AL CONCRETO
CON CI	EMENTO WP – WANG PENG86

4.3 DISCUSIÓN DE RESULTADOS	86
CONCLUSIONES	93
RECOMENDACIONES	94
REFERENCIAS	102
ANEXOS	102
PANEL FOTOGRAFICO	229
ANEXO E	227
MATRIZ DE CONSISTENCIA	227

ÍNDICE DE TABLAS

Tabla 1. Cuadro de operacionalización de variable	9
Tabla 2. Tipos de cemento	24
Tabla 3. Componentes Químicos del cemento Portland	25
Tabla 4. Organizaciones Cementeras en Perú	26
Tabla 5. Porcentajes Máximos de sulfatos	27
Tabla 6. Porcentajes máximos de impurezas en concreto prees forzados	28
Tabla 7. Porcentaje (%) indicado por los tamices	31
Tabla 8. Porcentajes de partículas inconvenientes agregado fino	32
Tabla 9. Porcentaje de inconvenientes en el agregado grueso	33
Tabla 10 Esquema Experimental	41
Tabla 11. Esquema de diseño experimental de la tesis	42
Tabla 12. Número de probetas a utilizar en la investigación	44
Tabla 13. Propiedades y características de los agregados	46
Tabla 14. Normativa de cemento	47
Tabla 19. Resistencia a la Compresión Requerida	65
Tabla 20. Tipos de asentamiento	66
Tabla 21. Porcentaje de aire atrapado	66
Tabla 22. Contenido de agua para el diseño.	67
Tabla 23. Relación agua cemento	67
Tabla 24. Volumen del Agregado Grueso seco y compactado	68

Tabla 25. Se observa que los mayores valores de resistencia a la comprensión a los 7, 14
y 28 días, se obtienen con el cemento patrón y el aditivo acelerante en sus distintas
dosificaciones (1.5, 2.5 y 4 %)
Tabla 26. Resultados de los cementos WP- WUANG PENG Y PATRÓN al incorporar
aditivo acelerante a los 7 días
Tabla 27. Resultados de los cementos WP- WUANG PENG Y PATRÓN al incorporar
aditivo acelerante a los 14 días
Tabla 28. Resultados de los cementos WP- WUANG PENG Y PATRÓN al incorporar
aditivo acelerante a los 28 días
Tabla 29. Análisis de Varianza Cemento Patrón79
Tabla 30. Prueba Duncan80
Tabla 31. Análisis de Varianza Cemento WP- WUANG PENG 81
Tabla 32. Prueba Duncan82

ÍNDICE DE FIGURAS

Figura 1 Componentes del Concreto. Tomada de < <diseño control="" de="" de<="" mezclas="" th="" y=""></diseño>
Concreto>>, por Steven H. Kosmatka y Beatrix Kerkhoff. 2004, p.0123
Figura 2 Variación de propiedades usadas en el concreto, en volumen absoluto. Tomada
de < <diseño concreto="" control="" de="" mezclas="" y="">>, por Steven H. Kosmatka y Beatrix</diseño>
Kerkhoff. 2004, p.01
Figura 3. Propiedades del Cemento. Tomada de < <diseño control="" de="" de<="" mezclas="" td="" y=""></diseño>
Concreto>>, por Steven H. Kosmatka y Beatrix Kerkhoff. 2004, p.70-80
Figura 4: Tipos de Cemento tomada de NTP 334.009,2020, p.7
Figura 5: Propiedades de los agregados. Tomada de < <diseño de="" mezclas="">>, Enrique</diseño>
Rivva López. 2014, p.21-25
Figura 6. Tipos de Cemento tomada de NTP 334.088,2020, p.8
Figura 7: Empleo del aditivo acelerante. Tomada de «Concreto Simple», Ing. Gerardo
A. Rivera L. p. 239-240
Figura 8: Propiedades del Concreto. Tomada de << Diseño de Mezclas>>, Enrique Rivva
López. 2014, p.30-37
Figura 9 Diseño de la investigación
Figura 10 Flujograma de proceso de investigación
Figura 11 Diagrama de etapas del trabajo51
Figura 12 Tomada de sus fichas técnicas de WP y INVERCEM
Figura 13 Tomada de Google Earth Chancadora – cantera Bazán – Cajamarca 52
Figura 14 Tomada de la Chancadora – cantera Bazán – Cajamarca-Cajamarca

Figura 15 Aditivo Sika Acelerante Pe tomada de Sika ,2022
Figura 16 Tomada de NTP 400.037 Proceso de muestreo
Figura 17 Muestreo del cuarteo del agregado fino y Grueso
Figura 18 Contenido de Humedad
Figura 19 Análisis granulométrico utilizando los tamices para agregado fino NTP
400.012
Figura 20 Proceso de peso unitario suelto del agregado grueso y fino
Figura 21 Proceso de peso Compactado del agregado grueso y Fino
Figura 22 Peso específico y absorción del agregado fino
Figura 23 Peso específico y absorción del agregado Grueso
Figura 24 Desgaste o Abrasión
Figura 25 Equipo mezclado de 80 l de capacidad70
Figura 26 Ensayo de consistencia71
Figura 27 Elaboración de probeta72
Figura 28 Curado de probetas bajo condiciones de laboratorio
Figura 29 Medición de probetas74
Figura 30 Procedimiento del ensayo de resistencia a la compresión
Figura 31 Tomada de NTP 339.034 Tipo de fallas
Figura 32 Resistencia a la compresión del concreto con aditivo acelerante utilizando WP-
WANG PENG y PATRÓN76
Figura 33 Resistencia a la compresión del concreto con aditivo acelerante utilizando WP-
WANG PENG y PATRÓN 14 Días

Figura 34 Resistencia a la compresión del concreto con aditivo acelerante utilizando W	√P-
WANG PENG y PTRÓN 28 Días.	. 78
Figura 35 Resistencia a la compresión del concreto con aditivo acelerante utilizan	ıdo
cemento patrón	. 80
Figura 36 resistencia a la compresión del concreto con aditivo acelerante utilizando W	VP-
WANG PENG	. 82
Figura 37: Ubicación de la cantera2	224
Figura 38 Muestreo del agregado grueso	224
Figura 39 Cemento Patrón Wp-Wang Peng y Aditivo Sika Acelerante pe2	225
Figura 40 Cemento Patrón, Wp-Wang Peng y Aditivo Sika Acelerante pe2	225
Figura 41 Elaboración de probetas de concreto2	226
Figura 42 Ensavo de Resistencia a la compresión de las probetas	226

RESUMEN

La finalidad de esta investigación es determinar la adición de aditivos SIKA CEM Acelerante en el concreto. Los ensayos fueron realizados en el laboratorio de materiales Kaolyn Ingenieros S.A.C. que se encuentra en la ciudad de Cajamarca.

Los agregados fueron obtenidos de la "Cantera Bazán" y usados para el diseño de mezclas, cumpliendo con la normativa NTP y ASTM, las cuales fueron aptas para la elaboración del concreto. Se aplicó cemento Portland tipo I de dos marcas: Patrón y WP-WANG PENG.

En la investigación se logró como resultados que el cemento Patrón con la adición del 1.5 % tuvo una resistencia f'c de 296.00 kg/cm³, el siguiente tratamiento del 2.5 % tuvo resultados de 228.00 kg/cm³, al 4 % mostró el resultado de 195.25 kg/cm³ y, finalmente, el cemento modelo sin adición de aditivo tuvo como resultado 241.00 kg/cm³ a los 28 días. Mientras que con el cemento WP-WANG PENG, con la adición del 1.5 % de aditivo acelerante el resultado mostrado fue de 284.25 kg/cm³, con el tratamiento del 2.5 % el resultado fue de 234.5 kg/cm³ y con la muestra del 4 % se obtuvo un resultado de 201 kg/cm³, en tanto, el cemento WP-WANG PEN sin la incorporación de aditivo nos mostró el resultado de 211.75 kg/cm³ a los 28 días, demostrando que el aditivo, al ser utilizado en la proporción adecuada y sobre todo supervisada y controlada, es de gran relevancia y apoyo para el sector de la construcción ya que puede ser aplicado tanto en columnas, zapatas, losas, etc.

Palabras claves: Resistencia a la compresión, aditivo acelerante, cemento, WP-WANG PEN, PATRÓN.

ABSTRACT

The purpose of the investigation was to determine the addition of SIKA CEM ACCELERANTE additives in the concrete; the tests were carried out in the materials laboratory KAOLYN INGENIEROS S.A.C. located in the city of Cajamarca.

The aggregates were obtained from the "Bazán Quarry" used for the design of mixtures complying with the NTP and ASTM regulations, which were suitable for the preparation of concrete; Type I Portland cement of two brands was used: PATRÓN and WP-WANG PENG.

In the investigation, results were obtained that the PATRON cement with the addition of 1.5%, an f'c resistance of 296.00 kg/cm3 was obtained, the following treatment of 2.5%, results of 228.00 kg/cm3 were obtained and at 4% the result was shown. of 195.25 kg/cm3 and finally the model cement without additive addition, the result was 241.00 kg/cm3 at the age of 28 days, with the WP-WANG PENG cement with the addition of 1.5% of accelerating additive, the results shown were 284.25 kg/cm3 with the 2.5% treatment, the result was 234.5 kg/cm3 and the 4% sample obtained results of 201 kg/cm3, the WP-WANG PEN cement without the addition of additive showed us the result of 211.75 kg/cm3 at the age of 28 days, demonstrating that the additive, when used in the appropriate proportion and above all supervised and controlled, is of great help for the construction sector that can be applied both in columns, footings, slabs, etc.

Keywords: Compressive strength, accelerating additive, cement, WP-WANG PEN, PATTERN.

INTRODUCCIÓN

La sustancia más utilizada en las construcciones a nivel global en el concreto y esto responde por su versatilidad y sus características que se adecuan a nuestro entorno en el ámbito de la construcción. A nivel nacional (Perú), específicamente, el concreto es utilizado en un 70 % de manera informal, ya que estos son fabricados en la misma obra, de manera diferente en cuanto al proceso de elaboración del concreto y los materiales que, en su mayoría, tienen impurezas y no cumplen con NTP en el mezclado del concreto, debido a que muchas veces se le hace manual y estos factores no garantizan un concreto de calidad como el que se requiere en obra ni obtener los resultados deseados. La desinformación que existe respecto de los aditivos que ayudan a perfeccionar las cualidades mecánicas del concreto, como el conocer la correcta aplicación de los aditivos que contribuye con la excelencia del concreto, es un factor desfavorable en la construcción. En el norte del Perú, se han encontrado deficiencias en cuanto a la resistencia de los aglomerantes, siendo las primeras deficiencias la cantidad de cemento por el alto costo del mismo, conllevando a disminuir la dosificación del cemento, motivo por el cual se propone la incorporación de dos nuevas marcas de cemento: WP - WANG PENG Y Patrón, las que, con un menor costo en el mercado y la incorporación del aditivo acelerante, evitarían reducir la cantidad de cemento en la dosificación.

Hoy en día, la norma NTP 334.088 clasifica en ocho los tipos de aditivos. Cada uno es clasificado por su tipo de uso. En esta investigación, se utilizó el aditivo tipo c que pertenece a los acelerantes de concreto. Estos hacen una reacción química cuando entran en contacto con el concreto y modifican sus características y propiedades mecánicas. El factor más relevante que influye en la construcción es el de usar o no los aditivos en el concreto, ya sea por desconocimiento, por el factor económico o por no saber utilizarlo

adecuadamente ni conocer las proporciones correctas que ayudarían a mejorar la calidad del concreto.

Para esta tesis se utilizaron dos marcas de cementos Portland tipo I, los cuales fueron Patrón, de procedencia peruana, que pertenece al grupo Cementos S.A. - Invercem y que tiene su planta principal en Pisco y el cemento WP-WANG PENG, de procedencia africana, que pertenece al grupo de Wuanpeng Internacional y tiene distintas plantas a nivel global y, nacional, tiene su planta en el Callao.

CAPÍTULO I

Planteamiento del estudio

1.1.1 Planteamiento y formulación del problema.

La utilización de aditivos a lo largo del tiempo se ha incrementado con el objetivo de elevar la resistencia a la compresión utilizando los cementos WP – WANG PENG y PATRON, en el norte del Perú. Se ha realizado la presente investigación teniendo en cuenta que actualmente, tenemos en el mercado una sola marca de cemento Pacasmayo, la cual es muy costosa, lo cual nos lleva a incrementar costos en la fabricación del aglomerante.

En Cajamarca, al norte del país, el hormigón que se elabora o fabrica en la mayoría de las industrias de la construcción se realiza de manera inconsecuente, no llegando a la resistencia deseada, sin tener algún criterio técnico ni cumpliendo con la dosificación deseada del cemento por el alto costo, por lo que las industrias de la construcción tienen una gran labor en desarrollar diferentes tipos de marcas de cemento con altos estándares de calidad, las cuales deberán ser distribuidas en todo el territorio peruano.

El aditivo acelerante usado en la ciudad del norte del Perú representa mucha importancia, siendo el más usado porque presenta un bajo costo, motivo por el cual los ejecutores lo prefieren dentro de todas las marcas, teniendo con una presentación fácil de movilizar.

Asimismo, en los últimos años, se ha intensificado el uso de aditivos superplastificantes, mostrando su gran potencial, buscando modificar propiedades del concreto, como la trabajabilidad del agua o el aumento de la manejabilidad de la misma

cantidad de agua, lo que optimiza la opción de usos de nuevos morteros y concretos en la capacidad de deformación bajo impacto de un medio de compactación dado. Por ende, el objetivo de esta tesis es examinar los aditivos plastificantes en el concreto (1).

Los aditivos, a finales de los 50, se fueron acoplando a nuestra nación, en una industria restringida. En los años de los 60, se empezó a consumir los "aditivos plastificantes", insumos que, hoy en día, son los más empleados en todo el planeta debido a su condición para disminuir agua en el concreto y, así, tener mezclas más duras, ahorrativas y duraderas.

El concreto es un material artificial que reactiva químicamente con el contacto con el agua que nos permite dar una forma deseada que podemos acondicionar a las exigencias de las zonas geográficas del Perú ya sea en clima caluroso o en clima de frío al no añadir ningún tipo de aditivo es nos permite manejarlo en un tiempo corto esto depende mucho del clima por el cual las nuevas tecnologías nos recomiendan el uso de los aditivos que depende de la zona geografía que nos permita mejorar y adoptar el concreto a la zona climática que se está trabajando.

De acuerdo con el Instituto Nacional de Estadística e Informática (INEI), en lo que respecta a estadísticas en obras civiles, nos aporta información de la comercialización de cemento por organización según regiones, siendo el favorito, en el norte del Perú, el cemento Pacasmayo: Tipo I. (De acuerdo a la NTP 334.009 y ASTM Cr150) y el cemento Inka, Ultra Resistente con adición de microfiller calizo Tipo ICo. (De acuerdo a la NTP 334.090/y/ASTM C-595). Estos aglomerantes se han situado en el mercado por sus propiedades físicas y químicas y por ser muy comerciales.

Hoy en día, se ignora cómo utilizar los aglomerantes y cuál es el aditivo apropiado para obtener la f´c deseadas, así mismo se desea incrementar la resistencia de los

elementos de hormigón fabricada en obra mediante el uso de los cementos WP - WANG PENG y Patrón. En ese sentido, el propósito de la investigación es desarrollar el incremento de la resistencia de los elementos de hormigón usando marcas de cemento WP - WANG PENG y Patrón, que son innovadoras en el norte del país para, así, llegar a una resistencia deseada en las construcciones a realizarse.

1.1.2 Delimitación del problema.

1.1.2.1 Especial.

Esta tesis se desarrolló en el norte de nuestro país, en la región de Cajamarca, provincia y distrito de Cajamarca, con la finalidad de agregar aditivo acelerante a las estructuras de concreto como columnas, losas, zapatas, placas, plateas de cimentación y estructuras en general de resistencia de f'c=210 K.g/cm2, la cual nos ayuda a garantizar un buen concreto que acelera el tiempo de desencofrado y el tiempo de entrega de la obra, ya que mejora sus cualidades físicas y químicas en estado fresco y endurecido del concreto, y que cumplen con los estándares correspondientes que son la N.T..P, la R.N.E, la A.S.T.M y la A.C.I.

1.1.2.2 Temporal.

Esta tesis nos muestra que las causas como la humedad, la rapidez del aire y la temperatura, influyen en las propiedades del hormigón, ya que la región de Cajamarca y todas sus provincias, por lo general, nos muestran un clima híbrido, ya que existen variedad de temperaturas y diferentes causas ambientales.

1.1.2.3 Conceptual.

La investigación se realizó utilizando un aditivo acelerante de tipo c, con el cual buscamos determinar los efectos en las cualidades fisicoquímicas de un concreto común para lograr un concreto con excelencia.

Para la evaluación, utilizamos áridos pertenecientes a las canteras y agua de la zona, los aglomerantes empleados serán aglomerantes Portland Patrón y WP- WANG PENG Tipo I.

Se tiene en cuenta una parte primordial, el diseño de concreto para obtener un óptimo comportamiento.

1.2 Formulación interrogativa del problema

1.2.1 Problema general.

• ¿Cómo influye el uso del aditivo Sikacem Acelerante pe utilizando cementos WP-WANG PENG y Patron en la resistencia a la compresión, Cajamarca 2021?

1.2.2 Problema específico.

- ¿Cuál es la influencia del aditivo Sikacem Acelerante pe en el desarrollo de la resistencia a la compresión del concreto utilizando cementos WP- WANG PENG y Patrón, Cajamarca 2021?
- ¿De qué manera influye el uso del aditivo Sikacem Acelerante pe con el cemento Patrón en la resistencia a la comprensión, Cajamarca 2021?
- ¿De qué manera influye el aditivo Sikacem Acelerante pe con el cemento WP-WANG PENG y Patrón en la resistencia a la comprensión, Cajamarca 2021?

1.3 Objetivos

1.3.1 Objetivo general.

 Determinar el efecto de la incorporación del aditivo Sikacem Acelerante pe utilizando cementos WP- WANG PENG y Patrón en la resistencia a la compresión, Cajamarca 2021.

1.3.2 Objetivo específico.

- Ver la influencia de la resistencia con la incorporación del aditivo Sikacem
 Acelerante pe con el cemento Patrón, Cajamarca 2021.
- Ver la influencia de la resistencia con la incorporación del aditivo Sikacem
 Acelerante pe con el cemento WP- WANG PENG, Cajamarca 2021.
- Ver la influencia de la resistencia de los cementos WP- WANG PENG y Patrón.

1.4 Justificación e importancia

1.4.1 Justificación teórica.

La tesis se justifica porque se propone una nueva línea de indagar a los diseños de concreto empleando dos modelos de aglomerantes el Portland Tipo I y aditivo acelerante SikaCem Acelerante PE que nos ayuda a mejorar sus propiedades fisicoquímicas en su estado endurecido y fresco de acuerdo a las nuevas tecnologías del concreto en todo el mundo.

En la investigación se demostró que mejora la f´c del concreto al incorporar aditivo acelerante SikaCem Acelerante PE con los dos modelos de aglomerante Portland Tipo I la incorporación de aditivo en los porcentajes adecuado mejora la f´c de la concreta

mejora la calidad del concreto con respecto al cemento que es la muestra. La siguiente investigación sirve como conocimiento para futuras investigaciones semejantes en Cajamarca, ya que no existe la cultura de utilizar aditivos en la construcción en Cajamarca por falta de conocimiento de su uso y de sus beneficios.

1.4.2 Justificación práctica.

Esta tesis aporta el conocimiento a las nuevas tendencias y tecnologías del concreto que al incorporar aditivo acelerante SikaCem Acelerante PE, mejorando así calidad y la durabilidad del concreto dentro del proceso constructivo la investigación prioriza el uso de aditivo acelerante y las variedades de tipos de cemento Portland tipo I ya que existen una gran variedad en las distribuidoras cajamarquina.

La tesis proporciona a ingenieros, técnicos e interesados, maestros de obra, organizaciones, tesistas y a los usuarios en general a elegir una mejor decisión cuando desean construir un proyecto de construcción en general, al momento de adquirir el concreto si se necesita reducir el tiempo de endurecimiento y mejorar la f´c con el uso de cemento tipo I y el uso de aditivo acelerante.

Es necesario esta investigación por que las obras civiles se vienen transformando a grandes pasos, sus insumos también, nuevas tecnologías y el uso de "aditivos acelerantes" que estos mejorará la f´c y disminuye el tiempo de fraguado del concreto. En la región de Cajamarca existen diferentes marcas de cementos tipo I y aditivos acelerantes existen principalmente dos marcas las más comerciales las cuales son Sika Perú (SikaCem Acelerante PE) y Chema (Chema 3) y la para la investigación se usaron dos nuevos tipos de cementos tipo I que son nuevos en nuestro país las cuales son Cemento (Patrón Tipo I) y (WP - WANG PENG Tipo I). Esto nos permitió en la investigación él estudió del

comportamiento y los efectos que genera el aditivo acelerante en la f'c del concreto en

sus edades de 7, 14 y 28 días.

Esta investigación busca motivar la aplicación de aditivos acelerantes en el

hormigón las cuales nos dan ventajas y cualidades de menor duración de fraguado

mejorando la f'c del concreto. Para incorporar al mercado de la construcción en el Perú y

en la región de Cajamarca.

1.5 Hipótesis y descripción de variables

1.5.1 Hipótesis.

1.5.1.1 Hipótesis general.

• El uso del aditivo Sikacem Acelerante pe utilizando cementos Wp- Wang Peng y

Patrón influye significativamente en la resistencia a la compresión, Cajamarca 2021.

1.5.1.2 Hipótesis específica.

• La utilización del aditivo Sikacem Acelerante pe influye significativamente en la

resistencia a la compresión con el cemento Patrón, Cajamarca 2021.

• La utilización del aditivo Sikacem Acelerante pe influye significativamente en la

resistencia a la compresión con el cemento Wp- Wang Peng, Cajamarca 2021.

• La utilización del cemento Wp - Wan Peng y PATRÓN sin aditivo influye

significativamente en la resistencia a la compresión, Cajamarca 2021.

1.5.1.3 Hipótesis estadística.

• Ho: $U_1=U_2=U_3=U_4$

7

• Ha: $U_I \neq U_J$ (al menos dos medidas son desiguales)

1.5.2 Variables.

1.5.2.1 Variable independiente.

Aditivo Acelerante Sikacem Acelerante, Cementos Patrón - Wp-Wang Peng.

• Dosis de aditivo acelerante

El acelerador químico Sikacem acelerante pe de Sika Perú se empleó en concentraciones de 1,5 %, 2,5 % y 4 % en base al peso del ligante para acelerar el proceso de curado y acortar el periodo de curado.

Cemento.

Material usado como pasta utilizada en kg. (458 kg/m3)

Material de construcción

1.5.2.2 Variable dependiente.

Resistencia a la compresión.

Ensayos del concreto endurecido y fluido para poder medir f´c a través del tiempo que se desarrolló a los 7,14 y 28 días la cual se realizó bajo las restricciones del laboratorio del concreto.

Tabla 1.Cuadro de operacionalización de variable

Variable	Definición conceptual	Dimensiones operacionales	Dimensiones	Indicadores	Fuentes	Instrumentos
Aditivo acelerante Sikacem Acelerante pe	Aditivo líquido de acto acelerante sobre el tiempo de fraguado y resistencias mecánicas del concreto.	Se realizaron cuatro diseños de mezclas con inclusión de las dosis de aditivo respecto al cemento que son medidos a través de las probetas graduadas.	Aditivo acelerante	1:2.00:2.17 + 19.78 litros de agua (1) 1:2.00:2.17+19.78 litros de agua+50ml (2) 1:2.00:2.17+ 19.78 litros de agua +100ml (3) 1:2.00:2.17+19.78 litros de agua + 150ml (4)	Ficha técnica Sika acelerante pe	Prueba granulométrica de 100 ml
Propiedades del concreto en la resistencia a la	El SikaCem Acelerante PE reduce los tiempos de desencofrado.	Ensayo a compresión de los testigos de concreto	Resistencia a la compresión	Ensayo de Slump (in)	NTP 339.035	Cono de Abrams
comprensión	• Se obtienen resistencias más altas a temprana edad.				ASTM C143	
	 Pronto uso de estructuras nuevas. Aumenta los rendimientos en la elaboración de prefabricados. 			Ensayo de Resistencia a la Compresión.	NTP 339.034	Equipo de resistencia a la compresión del concreto.
					ASTM C 403	
Cemento	 Sustancia en polvo compuesta por caliza que, al contacto con el agua, reacciona formando una pasta endurecida. 	El cemento está catalogado como un material de construcción, aportando propiedades como resistencia, durabilidad, estética	Adimensional	WP- WANG PENG PATRÓN	RNE	KG. (Indicada en la dosificación de diseño).

CAPÍTULO II: MARCO TEÓRICO

2.1 Antecedentes del problema

2.1.1 Antecedentes internacionales.

En la investigación "Análisis comparativo de sensibilidad de diferentes aditivos superplastificantes en el Hormigón", de la Universidad Estatal Península de Santa Elena, Ecuador (ALVARADO, 2020), se obtuvo como objetivos: Determinar y diferenciar los "aditivos superplastificantes" en los hormigones, considerando la Norma Técnica Ecuatoriana (N.T.E - I.N.E.N). La metodología fue investigación documental y de análisis de información. Por último, se propone una mezcla de hormigón que incluye "aditivos superplastificantes". En este ejemplo, la tesis se basó en el análisis de sensibilidad. Las conclusiones de la siguiente tesis fueron: El "diseño A" cumple gustosamente todas las solicitudes de la mezcla, siendo la f'c=344 kg/cm2 a los 90 días, el "diseño B" fue 21.8% mayor que el "diseño A", el "diseño C" fue p3.8% mayor que la "diseño-A", opuesto del "diseño-D" fue p9.01p% menor que el "diseño-A", el "diseño-E" fue dep17.15% menor que el "diseño-A", el "diseño-F" es-15.9-9% menos que el "diseño+A", el "diseño-G" fue es-20.06%. menos que el "diseño A", el "diseño H" es 11.05 % menor que el "diseño A", el "diseño I" es-22.38% menos que el "diseño 'A", A su vez, se halló que la densidad del concreto en estado duro logrando datos de 2.200 kg/cm³ y 2.350 kg/cm³ calificándolo como concreto de peso normal. Esta tesis me sirvió para comparación de los resultados ya que en su tesis describen que con la aplicación con aditivo al concreto podemos obtener mayores resistencias iniciales a los 7 días y los 28 por la cual me ayudó en la comparación de muestras en mi tesis (1).

El "Estudio de hormigones impermeables, según el origen local de materiales y la adición de aditivo impermeabilizante", de la Universidad Técnica de Ambato, Ecuador (MEDINA, 2016). El objetivo es probar la eficacia del "aditivo impermeabilizante" para garantizar que el hormigón fabricado con áridos de origen local conserve su integridad frente a las tensiones ambientales. La metodología utilizada en tesis fue experimental y descriptivo. Los frutos obtenidos del ensayo de absorción de los áridos finos arrojaron un 1,820 por ciento. Si la cifra es mayor, sugiere que la muestra tiene una mayor capacidad de absorción, lo que la haría menos idónea para su uso en la producción de hormigón impermeable en el momento de la comparación (parámetro estimado 0,2 por ciento - 2 por ciento). Las conclusiones según los resultados presentados en la tesis, la altura media de penetración de agua es de 30 mm y la altura máxima obtenida es de 40 mm cuando se utiliza una especificación de f'c = 2,10 kg/cm2; estas cifras no superan las exigencias de la norma extranjera UNE 12390-8, por lo que el hormigón se clasifica como impermeable. La siguiente tesis me ayudó en mejorar mi marco teórico y aquellos utilizan un tipo de plastificante para mejorar el concreto y si asimiló un poco a mi investigación (2).

En la tesis "Evaluación comparativa del efecto de aditivos reductores, manejadores y su mezcla en morteros", de la Fundación Universidad de América (MORENO, 2018), se tuvo como objetivo: Comparar y contrastar los efectos de varios "aditivos reductores", así como su respectiva manipulación y combinaciones, sobre la fluidez, f'c y tiempo de fraguado del mortero. Dado que los "aditivos reductores" tienen una gran cantidad de humedad debido a su menor contenido de sólidos, la metodología del enfoque experimental recomienda utilizar el agua en menos cantidades en la mezcla para evadir la segregación del mortero con la misma relación a-c en todas las muestras. El aditivo con menor porcentaje de partículas es el AR7. Se comprobó que el mortero de "cemento K" tenía la mejor fluidez en todo el tablero, lo que indicaba que sus atributos

químicos y físicos funcionarían bien con los demás componentes. En esta tesis me ayudó en reconocer mis métodos de investigación que es experimental en los efectos de los aditivos en el hormigón (3).

En tesis "Estudio para caracterizar una mezcla deconcreto con*caucho*reciclado*en*un .5. % en peso comparado con una mezcla de concreto tradicional*de*3500*PSI", de la Universidad Católica de Colombia - Facultad de Ingeniería (PÉREZ, 2017). El objetivo de esta tesis fue describir las cualidades del hormigón con un f'c = 3500 psi que había sido modificado mediante la adición de granos de caucho (5 por ciento del volumen total) en cantidades variables de material particulado grueso y fino. Según el enfoque experimental utilizado en la tesis, la f'c se reduce significativamente cuando se añade un 5 % de caucho en peso a las mezclas, y mucho más cuando se pone un 70 % de caucho grueso a la mezcla en lugar del árido grueso. La diferencia de comportamiento mecánico (débiles uniones interfaciales) entre el caucho y la pasta condujo a este resultado de las probetas (C 70%/30%), así como los efectos negativos de la gran porosidad generada por el caucho grueso y su baja adherencia, que condujeron a la formación de puntos de fallo o, en el caso del hormigón debilitado, de espacios de aire. Un mayor porcentaje de caucho grueso en la mezcla proporciona al hormigón mejores propiedades e incluso ayuda a la adherencia entre la mezcla y el caucho, una conducta que estaba presente en el acto en que se produjeron las fracturas bajo carga en las probetas, pero que no se separaron debido a la ductilidad del hormigón. La siguiente tesis me ayudó a mejorar e interpretar mis resultados, ya que se muestran comportamiento diferentes al aplicar caucho reciclado al concreto en variadas proporciones (4).

En la tesis "Optimización de hormigón f'c=350kg/cmt2 aplicando diferentes aditivos superplastificantes", de la Universidad Estatal Península de Santa Elena,

Ecuador (TOMALÁ, 2020), se tiene como objetivo: Determinar si es posible construir un hormigón con una f'c = 350 kg/cm2 utilizando diversos "aditivos superplastificantes" dentro de un presupuesto razonable de 1 m3 de hormigón. La metodología empleada en la tesis fue es experimental. Los frutosconseguidos fueron los porcentajes de mayor de f'c a los 7, 14 días tomando en cuenta las 5 proporciones el primer dato de 127.08k.g/.cm² ésta se obtuvo con un diseño de f'c= 2.8.0k.g/.cm² -1,5% SIKAMENT N°100. Con la adición de "aditivos superplastificantes", las proporciones alcanzaron toda la resistencia prevista. Si un f'c es de 280 kg/cm2, entonces el 1% del mismo es un f'c. Comparativamente, se consiguió menos resistencia con ADITEC SF-106 en comparación con las otras concentraciones de aditivos. La tesis encontró que una disminución del 30 por ciento en el contenido de agua y la adición del 1 por ciento de cada uno de los aditivos superplastificantes Sikament N.100 y Aditec SF-106 dio lugar a una consistencia de 1 y 2 centímetros, respectivamente, dando lugar a una mezcla de hormigón de asentamiento seco. A excepción del diseño de hormigón que incluía el 1% de aditivo Sikament, todos los demás diseños con dos tipos de aditivos superplastificantes (f'c= 280 kg/cm2) alcanzaron f'c= 350 kg/cm2 en este estudio. El aditivo superplastificante (Sikament N°100 o Aditec SF-106) en proporción de 1.0 y 1.5 por ciento del peso del cemento y la disminución del agua en un 30 por ciento hace posible esta tesis y se lleva a cabo elaborando un diseño f'c=280 kg/cm2, resultando en un incremento de entre 24 y 28 por ciento de resistencia adicional con el "aditivo Sikament N.º 100" y entre 41 y 48 por ciento de resistencia adicional con "aditivo Aditec SF-106". Esta tesis me ayudó a diferenciar y a mejorar mis resultados en mi investigación ya que se una un retardante y se asemeja a mi investigación y a mejorar mi marco teórico (5).

2.1.2 Antecedentes nacionales.

López, en su investigación "Efecto de la incorporación de aditivos acelerantes de fragua, sobre la resistencia a la compresión del concreto, aplicables a obras hidráulicas para las altitudes 2600 m.s.n.m a 3500 m.s.n.m, Áncash", de la Universidad Nacional Santiago Antúnez De Mayolo (LOPEZ, 2020). El estudio pretende demostrar cómo el uso de aditivos "aceleradores del fraguado" modifica el f'c del hormigón en obras hidráulicas en regiones que se encuentran a 2600-3500 metros sobre el nivel del mar. La metodología utilizada es de tipo cuantitativo, experimental, no probabilístico de tipo intencional, aplicado porque las conclusiones generadas en la tesis servirán para futuras investigaciones, los resultados muestran que el aumento de la resistencia a la compresión mediante la incorporación del aditivo acelerador Sika 3 arroja resultados de 270,98 ktg/cm2 y el aditivo Chema 3 arroja resultados de 260,10 kg/cm2 aumenta la resistencia a la compresión. Se considera que este estudio servirá como referencia importante para nuestro estudio pues vamos a revalidar los procedimientos a nuestra realidad problemática y los objetivos de la investigación (6).

La tesis "Evaluación de las propiedades físicas y mecánicas de un concreto convencional, con aditivos superplastificantes de las marcas, SIKA, CHEMA y Z Aditivos", de la Universidad Privada Antenor Orrego Trujillo (QUISPE, 2021) tiene el propósito de comparar los efectos del aditivo superplastificante SikaCem Plasticizer, Chema Plast y Z Fluidizing SR sobre el asentamiento, f'c y tiempo de fraguado de una mezcla de hormigón que no ha sido integrada. La metodología utiliza una investigación aplicada de diseño preexperimental longitudinal y recogen resultados en diferentes periodos de tiempo de los experimentos, según los resultados obtenidos con aditivo superplastificante adición Chemaplast con a la de los porcentajes (0.35%, 0.60%, 0.85%) y obtuvieron resultados promedio de 215.89 kg/cm2, 227.93 kg.

/ cm2, 253.03 kg / cm2 a las edades de 28 días, con aditivo superplastificante SikaCem con la adición de los porcentajes de (0.35%,0.60%,0.85%) y obtuvieron resultados promedio de 221.08 kg / cm2, 243.22 kg / cm2, 253.21 kg / cm2 resistencia a la compresión a las edades de 28 días con aditivo superplastificante ZPlast con la adición de los porcentajes de (0.45%,0.50%,0.55%) y obtuvieron resultados promedio de 272.14 kg / cm2, 274.68 kg / cm2, 279.62 kg / cm2 a las edades de 28 días . Como conclusión, según los hallazgos del autor, los aditivos aumentan la trabajabilidad a la vez que beneficia a la resistencia a la compresión en un 30% en paralelo con la muestra de control. Se considera que este estudio servirá como una referencia importante para mi estudio pues vamos a revalidar la metodología a seguir en su investigación y en ampliar mis resultados y mis conclusiones (7).

En la tesis "Análisis y determinación del porcentaje óptimo de aditivo tipo a, para un concreto f'c= 210 kg/cm2, empleando cemento tipo i, en la ciudad de Pucallpa", de la Universidad Nacional de Ucayali (NAVAS, 2021), se tiene como objetivo establecer qué proporción de aditivo Tipo A se debe utilizar en el cemento Tipo I para producir un hormigón con una f'c= 210 kg / cm2 en la ciudad de Pucallpa. La metodología utilizada tiene un enfoque Cuantitativo y de tipo explicativo que nos permita la incorporación de las variables independientes para ver su efecto sobre las variables dependientes siendo el diseño experimental según los resultados para determinar el porcentaje adecuado de una resistencia a los 28 días con un diseño de mezclas de 210 kg/cm2 para una resistencia requerida de 294 kg/cm2 se utilizaron dos tipos de metodología la metodología 1 nos muestra que al incorporar el aditivo superplastificante al 0.5 % es el porcentaje optimo nos muestra que al incorporar el aditivo superplastificante al 0.9% es el porcentaje optimo nos muestra que al incorporar el aditivo superplastificante al 0.9% es el porcentaje optimo nos muestra resultados de 309.58 de resistencia a la compresión, El autor concluye

que la resistencia a la compresión tiende a crecer hasta el 0,5 por ciento de aditivo superplastificante y luego disminuye hasta el 0,6 por ciento, mientras que el metodólogo 2 es incapaz de precisar las causas de esta reducción de la resistencia. Se considera que este estudio servirá como una referencia importante para nuestro estudio vamos a revalidar la metodología y a ampliar mis resultados y mis conclusiones (8).

En la tesis "Efecto de aditivos de última generación en las propiedades en estado fresco y endurecido en concretos por desempeño para transporte prolongado - Huancayo 2020", de la Universidad Continental (CANCHAYA, 2021), el objetivo fue hallar el efecto que los aditivos de última generación tienen sobre la fluidez y las cualidades de endurecimiento del hormigón premezclado durante el transporte a larga distancia. El enfoque utilizado fue un diseño cuasi-experimental ya que el estudio incluyó variables y éstas no fueron asignadas arbitrariamente, sino que la investigación se realizó a través de grupos experimentales formados mediante agrupaciones integrales de acuerdo con las necesidades de la tesis. Según los resultados nos muestra que al agregar la leche igualmente su f'c en un 31 % a las edades de 28 días existe un incremento ligero de acuerdo a la dosis implementada lo que nos muestra el análisis estadístico muestra una diferencia significativa de 5.5 % ,7.7 % y 10.0 % respecto a sus edades de 3, 7, 28, esto influye positivamente al desempeño y durabilidad. El autor encuentra que las características frescas y endurecidas a las edades de 714 y 28 días fueron del 55 %, 77 % y 100 %, respectivamente, de acuerdo con la resistencia necesaria, y que consigue superar la resistencia a la compresión a la edad de 28 años en un 22 %. Se considera que este estudio serviría como una referencia importante para nuestro estudio pues vamos a mejorar el marco teórico y en la interpretación de mis resultados y mis conclusiones (9).

En la tesis "Influencia de los porcentajes de aditivos superplastificantes en la consistencia de concretos fluidos en Lima 2021", de la Universidad Privada del Norte

(AGURTO, 2021), se tuvo como propósito: Determinar cómo afectan las diferentes concentraciones de aditivos superplastificantes a la fluidez del hormigón trabajable. Al dividir las variables en V.I y V.P, el método experimental pone de manifiesto las relaciones causales entre los dos tipos de variables. Se demostró que la incorporación de un "aditivo superplastificante" al hormigón en una proporción del 1 % al 2,5 % aumentaba la resistencia a la compresión. Esto se consiguió reduciendo el vínculo agua-cemento (a/c). Según el autor, se puede conseguir una mayor uniformidad inicial y un mantenimiento en la duración aumentando la proporción de "aditivos superplastificantes" en el asentamiento del hormigón en su estado fluido. Se considera que este estudio serviría como una referencia de gran aporte para nuestro estudio pues vamos a revalidar mis recomendaciones (10).

2.1.3 Antecedentes locales.

Vargas, en su investigación "Estudio comparativo de la resistencia a la compresión a tempranas edades de un concreto f°c = 300 Kg/cm2, modificado con aditivo SIKA CEM Acelerante PE CAJAMARCA 2018", de la Universidad Nacional de Cajamarca (VARGAS, 2021), tuvo el objetivo de Analizar el impacto de la incorporación del aditivo SIKA CEM Acelerante PE en hormigones con una f°c inicial de 300 kg/cm2 en Cajamarca, Perú en 2018. La metodología aplicada fue experimental de enfoque cuantitativo y de nivel explicativa ya que se manipulan las variables independientes según los resultados que al incorporar aditivo al 4% obtenemos resultados de 285 .50 Kg/cm2 de resistencia a la compresión esto representa a un 95.17% respecto del diseño donde se demuestra que al incorporar el aditivo acelerante a las edades de 3 días se logran resultados similares que a los 7 días de concreto de f°c = 300 Kg/cm2. Aunque el autor razonó que una mayor dosificación del aditivo en el hormigón daría lugar a una alta

resistencia a la compresión, donde obtuvieron resultados indicaron que una mayor dosificación del aditivo SIKA CEM Acelerante dio lugar a un mayor módulo de elasticidad. Se considera que este estudio serviría como una referencia importante para nuestro estudio vamos a mejorar el marco teórico y las recomendaciones de nuestra investigación (11).

Santillán, en su tesis "Evaluación de la resistencia a la compresión del concreto F'c:280kg/cm2 con aditivo CHEMA 3 utilizando cemento PACASMAYO tipo I y cemento INKA ULTRA Resistente tipo ICo", de la Universidad Nacional de Cajamarca (SANTILLÁN, 2019), señala que la mezcla del aglutinante Pacasmayo Tipo I y el aglutinante Inka Ultra Resistant Tipo ICo fue desarrollada para encontrar la f "c = 280 Kg/cm² con el aditivo Chema 3. La metodología empleada fue experimental de tipo explicativa ya nos permite manipular las variables dependientes según los resultados que al aumentar aditivo acelerante Chema 3 cuyo aumenta la f''c del concreto con los dos tipos de cementos que se usaron los cuales fueron Pacasmayo Tipo I obtuvieron resultados de 370.39 kg/cm2 y Inka Tipo ICo obtuvieron resultados de 348.60kg/cm2 para una proporción de 750ml a las edades de 28 días. En opinión del autor se concluye que al incorporar el aditivo acelerante con el cemento Pacasmayo Tipo I obtenemos un aumento en la resistencia de 132.28 % con respecto al diseño y con el cemento Inka Tipo ICo obtenemos un aumento en la resistencia del 124.50% al comparar los distintos periodos de curado 7,1.4 y 2.8 días para un diseño de mezclas de 280. kg / cm2 un mejor comportamiento muestra el aglomerante Pacasmayo Tipo I a comparación del aglomerante Inka Tipo ICo. Se considera que este estudio serviría como una referencia importante para nuestro estudio vamos a revalidar la metodología y mis análisis de resultados (12).

La tesis "Permeabilidad de un concreto $F'C = 210 \, KG/CM2$ utilizando diferentes porcentajes de aditivo plastificante, Cajamarca, 2016", de la Universidad Privada del Norte de Cajamarca (ABANTO, 2016), tuvo como objetivo: Medir el cambio de permeabilidad que se produce al añadir diferentes cantidades de "aditivo plastificante" a una estructura con f'c = 210 kg/cm2. Como este enfoque permite regular el crecimiento o la contracción de unas pocas variables clave en la tesis, se aplicó la metodología experimental aplicativa. Se encontró que la permeabilidad a los 7 días se redujo con el uso de "aditivos plastificantes", con un porcentaje del 92 % alcanzado cuando se utilizó un aditivo del 2 %, y porcentajes del 81 % y 81 %, respectivamente, cuando se utilizó el 8 % y el 4 % del aditivo en lugar del cemento normal. En opinión del autor se concluye que al incorporar el 2 % y 4 % de aditivo plastificante que la permeabilidad del concreto al incorporar el 2 % de aditivo disminuyo en un 8 % y 19 % a los 7 días a los 14 días de curado disminuye en 11 % y 19 % respecto a los 21 días disminuye en 12 % y 20 % y para los 28 días disminuyen en 29 % para el 2 % y en un 42 % para el 4 % de aditivo. Se considera que este estudio serviría como una referencia importante para nuestro estudio pues vamos a revalidar mis objetivos específicos y en ampliar mis conclusiones (13).

La tesis "Comparación de los aditivos Sikament TM-140, EUCO 1037 Y Z Fluidizante SR, en las propiedades del estado fresco y endurecido del concreto, Cajamarca 2020", de la Universidad Privada del Norte de Cajamarca (GUZMAN, 2021), tuvo como objetivo que, utilizando aditivos como "SIKAMENT TM-140", " EUCO 1037" y "Z FLUIDIZANTE SR", los autores esperan definir mejor la transición entre los estados fluido y duro del hormigón. El enfoque utilizado en este estudio fue cuantitativo y se basó en la investigación práctica, lo que significa que se utilizó el análisis y la interpretación estadística para obtener resultados fiables, según los resultados que al incorporar el aditivo Superplastificante en las dosificaciones de 0.7 %, 0.9 %, 1.1 % el

aditivo Sikament TM-140 al incorporar el 1.1 % es la máxima resistencia que se alcanza que es de 228.7.4 kg/cm2 y una mínima de 218.55 kg./cm2 logrando una resistencia promedio de 223.74 kg/cm² en las otras dosificaciones de 0.7 % y 0.9 % tiene un comportamiento decreciente con respecto al aditivo EUCO 1037 al incorporar el 1.1 % es la máxima resistencia que se alcanza que es de 235.76 kg/cm2 y una mínima de 226.57 kg/cm2 logrando una resistencia promedio de 231.16 kg/cm2 en las otras dosificaciones de 0.7 % y 0.9 % tiene un comportamiento decreciente con respecto al aditivo Z Fluidizante SR al incorporar el 0.9 % es la máxima resistencia que se alcanza que es de 263.33 kg/cm2 y una mínima de 250.22 kg/cm2 obteniendo una resistencia promedio de 256.77 kg/cm² en las otras dosificaciones de 0.7 % y 1.1 % tiene un comportamiento decreciente. El autor concluye que el uso de productos químicos superplastificantes mejora las cualidades tanto cuando el material es nuevo como una vez endurecido. La adición de EUCO 1037 proporciona más fluidez al hormigón, mientras que el Z Fluidizante SR, a una dosis del 0,9 % que da lugar a 256,7 kg/cm², es el que mejor se comporta en termino de resistencia a la compresión. Se considera que este estudio serviría como una referencia importante para nuestro estudio pues vamos a ampliar mi marco teórico mis recomendaciones y mis conclusiones (14).

La tesis "Optimización de la resistencia a compresión del concreto, elaborado con cementos tipo I y aditivos superplastificantes", de la Universidad Nacional de Cajamarca (BERNAL, 2017), tuvo como objetivo mejorar la f'c del hormigón fabricado con un ligante de tipo I y aditivos superplastificantes. La metodología empleada fue una investigación experimental, ya que podemos manipular la variable experimental no comprobada según los resultados obtenidos con los distintos tipos de aglomerantes y aditivos obtenemos lo siguientes resultados con el aditivo Chema Súper Plast utilizando el aglomerante Andino obtenemos resultados de f´c=307.66 Kg / cm2, los fabricados con

aglomerantes Pacasmayo Tipo I más añadiendo el aditivo "Chema Súper Plast" obtenemos resultados de f'c=326.63 Kg/cm2, los fabricados con el aglomerante Sol y añadiendo el aditivo "Chema Súper Plast" obtenemos resultados de f'c=310.14 Kg/cm2. Al añadir el aditivo "EUCO 37" con el aglomerante Andino obtenemos resultados de f'c=299.21 Kg/cm2, los fabricados con el aglomerante Pacasmayo Tipo I y añadiendo el "aditivo EUCO 37" obtenemos resultados de f'c=305.50 Kg/cm2, los fabricados con el aglomerante Sol y añadiendo el "aditivo EUCO 37" obtenemos resultados de f'c=303.47 Kg/cm2 y al añadir el aditivo Sika Plast 1000 con el cemento Andino obtenemos resultados de f'c=320.19 Kg/cm2, los fabricados con aglomerante Pacasmayo Tipo I al añadir el aditivo "Sika Plast 1000" obtenemos resultados de f'c=349.43 Kg/cm2, los fabricados con el aglomerante Sol al añadir el aditivo "Sika Plast 1000" obtenemos resultados de f'c=331.07 Kg/cm2 a las edades de 28 días. La máxima f'c se logró utilizando la adición "Sika Plast 1000" en combinación con el aglutinante Pacasmayo Tipo I, lo que lleva al autor a concluir que el uso de aditivos tiene un profundo impacto en las características de los estados fluido y duro. Se considera que este estudio serviría como una referencia importante para nuestro estudio que me ayudó a ampliar mi mesología de investigación mi recolección de datos y mi estudio estadístico que necesitó mi estudio (15).

2.2 Bases teóricas

2.2.1 Generalidades del concreto.

Aunque el concreto es el material de construcción más populares por su adaptabilidad a una amplia gama de aplicaciones estructurales y condiciones ambientales, no está exento de límites (16). El concreto es un elemento que se le denomina pasta ligante esto está conformado por partículas ligado llamado agregado (17). Los agregados es la etapa discontinua del hormigón por lo que las partículas no se ubican juntas ni contactado entre sí que se encuentra separas por la pasta endurecida (17). Sus características del concepto principalmente son química y físicamente de sus materiales es mejor evaluar la naturaleza del concreto (17).

2.2.2 Concreto por desempeño.

El concreto eleva el funcionamiento es el que requiere combinaciones especiales por tiene requisitos por su uniformidad y desempeño eso no puede ser aplicado utilizando los componentes comunes, combinado normalmente, criterios de incorporación y prácticas de curado (9).

El concreto tiene ciertas propiedades que son ejecutadas para una colocación y medioambiente en particular (18).

2.2.3 Componentes del concreto.

La moderna tecnología explica al hormigón en cuatro ingredientes que son aglomerante, agua, áridos, aditivos y el aire como algo pasivo. Considera la aplicación de aditivos (opcional), pero las nuevas tecnologías del concreto han demostrado científicamente que la aplican de aditivos nos lleva tener grandes benéficos como su f´c,

trabajabilidad y la durabilidad siendo una solución más barata mano en reparaciones, mano de obra, mantenimiento y a usar menos cemento (19).

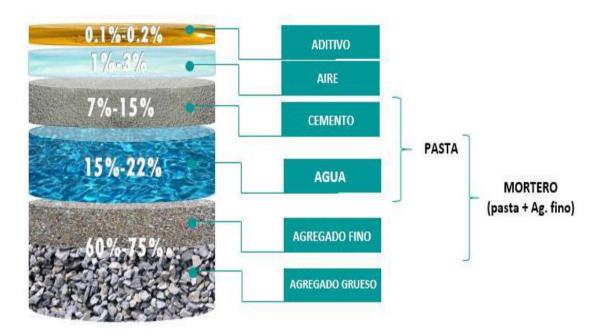


Figura 1. Componentes del concreto. Tomada de <<Diseño y Control de Mezclas de Concreto>>, por Steven H. Kosmatka y Beatrix Kerkhoff. 2004, p. 1.

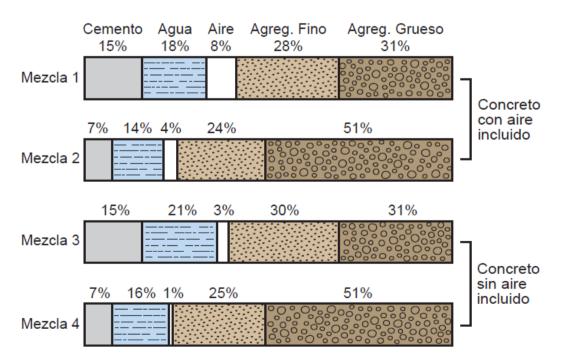


Figura 2. Variación de propiedades usadas en el concreto, en volumen absoluto. Tomada de << Diseño y Control de Mezclas de Concreto>>, por Steven H. Kosmatka y Beatrix Kerkhoff. 2004, p. 1.

2.2.4 Cemento.

Es considerada como uno de los elementos de la familia de conglomerantes hidráulicos que forma un material de polvo artificial que reacciona químicamente con el contacto del igual formado un producto rígido y resistente al agua como al aire. Cemento Portland es usado en todo tipo de estructuras debido a su versatilidad y a su combinación de piedra caliza yeso, y arcilla la utilización de los aglomerantes es empleado para realizar morteros, y concreto cuando se mezcal agregados, agua y cemento obtenemos el material de construcción donde se va a realizar la construcción (20).

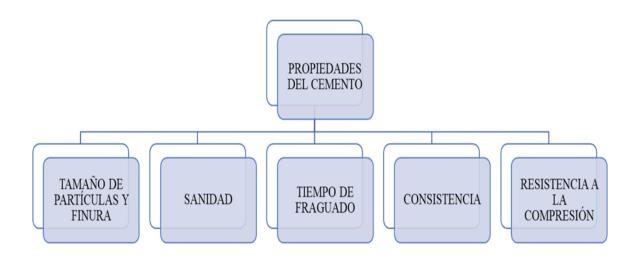
Tabla 2. *Tipos de cemento*

ESPECIFICACIONES	NTP	ASTM
Cemento Portland	NTP 334.009	ASTM C150
Cemento Portland adicionado	NTP 334.090	ASTM C595
Cemento Portland por desempeño	NTP 334.082	ASTM C1157
Cemento blanco	NTP 334.050	ASTM C150
Cemento a pedido	NTP 334.069	ASTM C91

Nota: Tomada Diseño de Mezclas, p. 39.

2.2.5 Componentes del cemento.

El aglomerante es la combinación de varios elementos resulta inviable su con fórmulas de química. Hay cuatro elementos que influyen del 90 % del peso del cemento y son Cada tipo de componentes del aglomerante se conforma en la conducta del aglomerante cuando pasa del estado fluido al estado duro luego del fraguado cuales son las siguientes (21).


Tabla 3. *Componentes Químicos del cemento Portland*

COMPUESTO QUÍMICO	FÓRMULA	%
Silicato tricálcico	3CaO.SiO2 (C3S)	40 %
Silicato dicálcico	2CaO.SiO2 (C2S)	30 %
Aluminato tricálcico	3CaO.Al2O3 (C3A)	11 %
Aluminato de tricálcico	4CaO.Al2O3.Fe2O3 (C3AF)	11 %

Nota: Tomada Tecnología del Concreto, p. 10.

2.2.6 Propiedades del cemento.

Las especificaciones de los cementos son importantes ya que nos brindan las propiedades físicas y su composición química, lo cual es importante para interpretar mejor el producto de las pruebas, pero sólo se deben usar para examinar las propiedades del aglomerante. Las especificaciones nos limitan de acuerdo al tipo de cemento (22).

Figura 3. Propiedades del Cemento. Tomada de «Diseño y Control de Mezclas de Concreto», por Steven H. Kosmatka y Beatrix Kerkhoff. 2004, pp. 70-80.

Figura 4. Tipos de Cemento tomada de NTP 334.009,2020, p. 7.

2.2.6.1 Tipos de cementos.

2.2.6.2 Cementos en nuestro país.

En nuestro país, hoy en día tenemos las siguientes organizaciones de cementos:

Tabla 4. *Organizaciones cementeras en Perú*

NOMBRE	UBICACIÓN	
Cementos Pacasmayo S. A. A.	Pacasmayo - La Libertad	
Cemento Andino S. A.	Condorcocha - Tarma (Junín)	
Cementos Lima S. A.	Atocongo - Lima	
Yura S. A.	Yura - Arequipa	
Cemento Sur S. A.	Caracote - Juliaca (Puno)	
Cemento Rioja	Pucallpa - Ucayali	
Cementos Inka	Pisco - Ica	
Cemex Perú	Callao- Lima	
Cemento Patrón S. A.	Pisco - Ica	
Cemento WP - Wang Peng	Callao - Lima	

2.7 Agua

El agua empleada para el curado del concreto debe obedecer a la norma (NTP 339.08, 2011) y de prioridad debe ser potable. Está completamente vedado el empleo de aguas hervidas con residuos sólidos u orgánicos y aguas acidas que su pH sea neutro; Que provienen de las actividades mineras las que tengan mayor en 1 % de sulfatos; que contengan azúcares. Igualmente está restringido la incorporación de aguas que contengas altas cantidades de sales de sodio el concreto debe fabricarse con agua analizada en un laboratorio para garantizar su calidad, y también no debe contar con ácidos, aceites, sales, materia orgánica u otros contaminantes (16).

Tabla 5. *Porcentajes máximos de sulfatos*

	Máximo
Cloruros	300ppm
Sulfatos	300ppm
Sales de magnesio	150ppm
Sales solubles totales	1500pp
PH	Mayor 7
Sólidos en suspensión	1500ppm
Materia orgánica	10ppm

Nota: Tomada de Diseño de Mezclas, p. 26.

La selección se realiza a por ensayos de probetas de hormigón en la cual se haya empleado a fuente agua seleccionada y las probetas de hormigón donde se empleó el agua selecciona tiene que cumplir con la norma americana (A.S.T.M C 109) a los 7,14 y 28 tiene que alcanzar f´c mayor al 90 % que se utilizó el agua seleccionada (16).

Las sales u materiales dañados que se encuentran en el agua, agregados y aditivos se tiene que sumar el agua del mezclado para evaluar si la totalidad de las sustancias es dañina para el concreto el acero. Si en el concreto están incorporados elementos como

aluminio o fierro galvanizado el contenido de cloruros no debe reducir de50ppm el ion de cloruro que se encuentra en el agua y los demás componentes d5el hormigón no debe exceder peso del cemento su unidad es en porcentajes con los siguientes valores (16).

Tabla 6.Porcentajes máximos de impurezas en concreto prees forzados

Concreto Preesforzado	0.06 %
Concreto armado, con elementos de aluminio o de fierros galvanizados embebidos.	0.06 %
Concreto armado expuesto a la acción de cloruros.	0.10 %
Concreto armado no protegido, el cual puede estar sometido a un ambiente húmedo, pero no expuesto a cloruros.	0.15 %
Concreto armado que deberá estar seco o protegido a la humedad durante su vida por medio de recubrimiento impermeable.	0.80 %

Nota: Tomada de Diseño de Mezclas, p. 26.

El agua de mal puede ser usado solo si se autoriza el proyectista y en estricto control es recomendad que el mezcal tenga como mínimo 350kg/m3 de cemento y una relación menos a 70mm el agua de mar está prohibido en el mezclado en los siguientes pasos (16).

- Concreto que su característica sea de preesforzado.
- Concretos que su resistencia a la compresión sea mayor a 175 (kg/cm²) a los 28 días de curado.
- Concreto tiene que estar sin "aluminio" o "fiero galvanizado".

- Vaciado de concreto u hormigón en obra en diferentes climas ya sean cálidos extremos.
- Concretos que requieran acabados superficiales y concretos cara vista y expuestos.

2.8 Agregados

Los agregados tienen que tener el peso de (2200 Kg/m3 a 2500 Kg/m3) tienen que efectuar con la N..T.P 400.037.2011 o la A.S.T.M C 33 en caso de no efectuarse o cumplir, el contratista tiene que realizar pruebas en los laboratorios o certificados de costumbres en obras que aseguren que los agregados no afecten a las propiedades requeridas del concreto los agregados tiene que ser manejas independiente ya que la unión de estos más el cemento tenemos como resultado el concreto este tiene que cumplir con la RNE E060. Los agregados se tienen que procesar y ser almacenados cuidadosamente y dosificados que nos garanticen (17).

- Que sea mínima la pérdida de finos.
- Uniformidad de los de los áridos tiene que ser constantes.
- No debe tener agentes extraños o sustancias que afecten al concreto
- No debe existir segregación o partirse el concreto.

Los agregados que estén expuestos a humedad prolongadas o ambientes húmedos o que tengan contacto con suelos salitrosos o húmedos que hagan reacción con Álcalis del cemento se realizar el ensayo de (N.T.P 400.037) o (A.S.T.M C 88), solo se realizaran a los áridos que serán empleados para el hormigón que van hacer empelados en congelamiento y deshielo que cumplan con las condiciones mínimas y extremas (17).

- Se utilizará como reactivo de sulfato de magnesio para agregados finos con una pérdida inferior al 15 %, y como reactivo de sulfato para agregados finos con una pérdida inferior al 10 %.
- El sulfato de sodio se utilizará como reactivo si la pérdida es inferior al 18 %.

Los áridos que no cumplan con la lo mencionado podrán ser empleados si el hormigón es probado satisfactoriamente bajo las mismas condiciones que fueron sometidas a pruebas de deshielo y congelación desacuerdo a lanorma (ATM C 666). Las concentraciones de cloruro cálcico en el árido grueso deben ser inferiores al 0,04 % y el árido fino tiene que ser inferior al 0,015 % para que se considere que cumple la norma (ASTM D 1411). Los agregados que tengan procedencia marina no deben ser utilizado en caso que se tiene que utilizar tiene que cumplir con la autorización de una inspección y tiene que tener un tratamiento por lavado son agua potable (17).

- La granulometría que será seleccionada debe estar en los valores de los tamices N.°
 4, N.° 8, N.° 16, N.° 30, N.° 50 y N.° 100.
- El agregando no tendrá que retener más del 45 % en las mallas.
- Es grato que el análisis granulométrico seste dentro de los rangos límites.

Tabla 7. *Porcentaje (%) indicado por los tamices*

MALLA	% QUE PASA
3/8	100
N.° 4	95-100
N.° 8	80-100
N.° 16	50-85
N.° 30	25-60
N.° 50	05-30
N.° 100	0-10

Nota: tomada Diseño de mezclas, p. 23.

Los porcentajes de la malla N. ° 50 y 100 tiene que ser de al menos al 5% y 0% si se emplea con aire incorporado con el aglomerante es mayor a 225 Kg/m3 si se lo emplea con dativos para poder compensar los porcentajes que pasan las diferencias de los porcentajes el módulo de finura tiene que ser menor al 0.2 que está dentro del milite del calor del concreto tenemos como referencia valores entre 2,35 y 3,15 el agregado no debe tener materia orgánica de acuerdo con la (NTP 400.013,2014) (21).

Podrán emplearse los agregados finos que no responda a estos requisitos:

 Las coloraciones en los agrados son por impurezas de partículas de carbón o similares. Al realizar los ensayos de morteros a los 7 días de resistencia si es menor al 95 % o similares se realiza otro ensayo con otra proporción con agregados finos lavado con 3 % de hidróxido de sodio.

Los siguientes rangos no deben ser excedidos para la cantidad de material indeseable en el agregado final

 Tabla 8.

 Porcentajes de partículas inconvenientes agregado fino

Lentes de arcilla y partículas desmenuzables	3 %	
Material más fino que la malla N.º 200		
a) Concreto sujeto a absorción		
b) Otros concretos	3 %	
	5 %	
Carbón		
a) Cuando la apariencia de la superficie del	0,5 %	
concreto es importante		
b) Otros cementos	1 %	

Nota: Tomada Diseño de Mezclas, p 23.

El árido grueso es retenido por la malla 4.7u5 mum que proveniente de forma natural, los agregados gruesos podrán ser considerados graba se utiliza para la elaboración de concretos ligeros las partículas deber químicamente estables y estar libres de impurezas sales u otros debe de estar graduado de acuerdo con lo mencionado en la norma (N.T.P 400.037,2014) y (A.S.T.M C 33) considerar las consideraciones siguientes(16).

a) La granulometría tiene que ser continua.

- b) La granulometría debe permitir una trazabilidad adecuada, consistencia y la máxima densidad en función a los requisitos del concreto.
- c) La granulometría escogida debe carecer más del 5 % de retenidos en la malla 1 ½ no más del 6 % en lo que pasan en la malla ¼.

Tabla 9.

Porcentaje de inconvenientes en el agregado grueso

Porcentaje de inconvenientes en el agregado grueso		
Lentes de arcilla y partículas desmenuzables	3 %	
Material más fino que la malla N.° 200		
a) Concreto sujeto a absorción		
b) Otros concretos	3 %	
	5 %	
Carbón		
a) Cuando la apariencia de la superficie del	0,5 %	
concreto es importante		
b) Otros cementos	1 %	

Nota: Tomada Diseño de Mezclas, p. 25.

En caso de que los limites excedan y perjudiciales en los límites permitidos podrán ser aceptados la preparación del conceto se utilice el mismo agregado hayan sido satisfactorio cuando han sido expuesto a las mismas condiciones del estudio y que cumplan las propiedades de las pruebas o ensayos (21).

2.9 Propiedades de los agregados

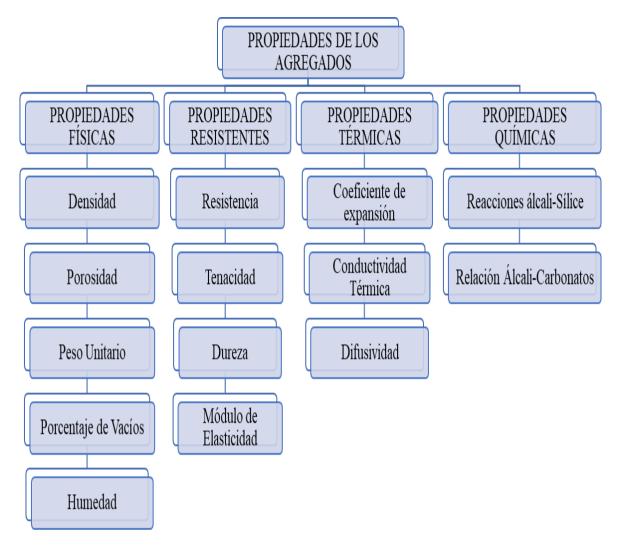


Figura 5: Propiedades de los agregados. Tomada de <<Diseño de Mezclas>>, Enrique Rivva López. 2014, p.21-25

2.10 Aditivos

Los aditivos son definidos por el "Comité 116R del ACI" y su norma americana es la "A.S.T.M C 125" empleado en la mezcla antes o durante de su preparación. La norma de la República de Perú es la N.T.P 3.39.088 lo expresa como sustancia añadida a los insumos del concreto con la finalidad que mejoren las características del concreto, los aditivos son añadidos durante los pasos de su preparación con el fin de mejorar (22).

 Modificar una o algunas de sus propiedades con el fin de cumplir los requeridos del concreto que son requeridos.

- Aumentar la facilitar y trabajabilidad en el procedimiento de puesto en obra.
- Mejorar el rendimiento en el empleo, transporte.
- Facilitar el rendimiento en el trasporte la elaboración y el trasporte del concreto.
- Aumente la eficacia y mejore el rendimiento ajustando los componentes o las cantidades de la mezcla.
- Lograr mejores resultados y una mejor economía por cambios en a la f´c.

La NTP 334.088 cataloga a los aditivos en ocho tipos.

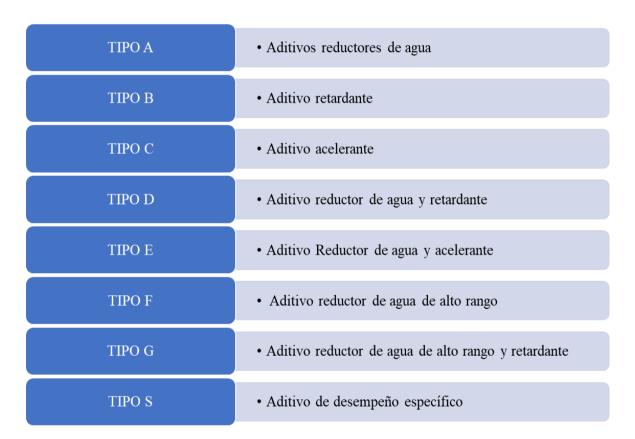


Figura 6. Tipos de Cemento tomada de NTP 334.088,2020, p.8

2.10.1 Aditivo acelerante.

Son aditivos químicos en su mayoría líquidos que estos posibilita agilizar el fraguado estos se utilizan mayormente en las dosificaciones de 1,5 y 0,5 de la masa del cemento ayuda a tener mejores resistencias iniciales y finales obteniendo las ventajas de (23).

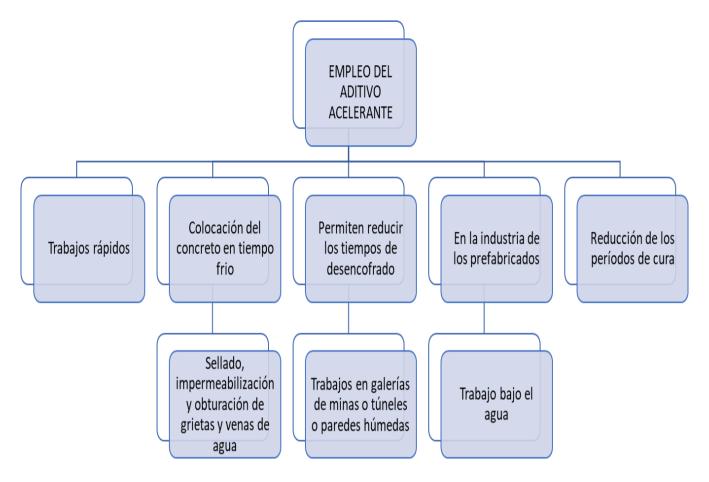


Figura 7: Empleo del aditivo acelerante. Tomada de «Concreto Simple», Ing. Gerardo A. Rivera L. pp. 239-240.

2.11 Propiedades del concreto

Las cualidades del hormigón en estado fluido "freso" con importes ya estas afectan la apariencia de las estructuras terminas los materiales deben elegirse que nos permitan ser trasportado con facilidad obtener resistencias necesarias los agrados tiene

que ser elegidos por su granulometría su tamaño máximo, así como el vínculo agua cemento estos factores son importantes en las características del hormigón fluido (16).

Figura 8: Propiedades del Concreto. Tomada de <<Diseño de Mezclas>>, Enrique Rivva López. 2014, pp.30-37

2.11.1 Trabajabilidad.

Es una característica que permite su capacidad de manipulación con un mínimo de trabajo y máximo homogenización sin presentar segregación tiene la capacidad de cohesión, compactación la trabajabilidad tiene que ser fluido con x uniformidad y plasticidad ya que ambas tienen influencia importante en comportamiento de la estructura (16).

2.11.2 Consistencia.

Es una propiedad la cual se define que a mayor humedad el grado de fluides será mayor esto facilita que el concreto fluya en la colocación de obra. La constancia tiene relación con la trabajabilidad, pero no es lo mismo ya que la mezcla de un pavimento poder ser fluido en cuando a un mortero poco trabajable, pero con alta presencia de hierro puede ser plástica (16).

2.11.3 Resistencia.

Es una propiedad la cual tiene el objetivo de soportar el máximo esfuerzo del Concreto está diseñado a resistir esfuerzos de compresión dicho es fuerzo se emplea como estándar de calidad (16).

2.11.4 Durabilidad.

Es una propiedad donde el hormigón debe ser capaz de fraguar continuando con sus características en condiciones normales, se define un hormigón duro cuando resiste en un grado de satisfacción las condiciones y los efectos para las cuales fue diseñado (16).

2.11.5 Generación de calor.

Es una propiedad importante en los concretos masivos por su uso en estructuras esto lleva a la colocación de grandes cantidades de concretos nos obliga a tomar acciones por la generación de calor pro el proceso de hidratación del aglomerante conlleva a la fisura miento la temperatura debe de estar entre el 6°C a 11° por m3 de concreto si no se controla la temperatura puede presentar agrietamientos para controla la temperatura se pueden considerar o añadir una temperatura de colocación o por medios de tubos o aislamiento de la superficie del concreto (16).

2.11.6 Elasticidad.

Es una propiedad donde del concreto no es totalmente elástico su semejanza es "esfuerzo-deformación" para el peso constante toma la deformación curva esto se le llama generalmente como el módulo de elasticidad para las estructuras se supone que es constante la medida de elasticidad en la práctica es una dimensión variable el valor

promedio es mayor al que obtenemos por fórmula el diseño de concreto debe obtener el módulo de elasticidad en los siguientes factores (16).

2.11.7 Escurrimiento plástico.

Es una propiedad que el concreto está sujeta a carga a deformaciones elásticas eso aparece cuando se emplea una carga es el escurrimiento plástico el cual se desarrolla de forma gradual. La tensión o la compresión constantes hacen que una estructura de concreto se acorte y se alargue con el tiempo. Bajo una tensión constante, la fluencia pasiva tiende a disminuir hasta un valor mínimo (16).

2.11.8 Dilatación térmica.

Cuando hay unidades distintas en lados opuestos, esta cualidad se comunica a través del área de la sección transversal y el espesor de la unidad y está vinculada a la conservación de valores mínimos para los cambios de volumen. Dado que el coeficiente de dilatación térmica varía en magnitud en función de factores como el tipo de cemento, las propiedades de los áridos, la humedad y la definición de la sección transversal, es aceptable un valor de 1/100. Se utiliza la conducción térmica y se relaciona con el calor específico y la densidad, lo que se denomina difusividad (16).

CAPÍTULO III: METODOLOGÍA

3.1 Metodología, y alcance de la investigación

3.1.1 Método general.

3.1.1.1 Método científico.

Se toma en consideración para la investigación el método científico experimental, ya que, la tesis elaborada está desarrollada de variedades de pruebas en estado fresco y endurecido en laboratorio, es por eso que con los resultados de dichos ensayos se logró obtener los resultados o viabilidad que permitieron mejorar el problema de la investigación (24).

3.1.1.2 Método específico.

El enfoque cuantitativo, que propone descubrir la realidad más exacta a través de la recogida y análisis de datos que puedan responder a las preguntas planteadas y comprobar las hipótesis de la investigación, hará uso de la medición numérica, el recuento y la aplicación de la estadística para establecer con precisión el comportamiento de los testigos con y sin controles aditivos (25).

3.1.1.3 Tipo de investigación.

Se consideró una tesis aplicada que busca reconocer la realidad problemática ya que se aplicaron conocimientos teóricos y prácticos ya que buscamos conocer la realidad problemática que aplica inmediatamente sobre el estudio (25).

3.1.1.4 Nivel de investigación.

Está presenta una relación entre las variables aplicadas para lograr la obtención de resultados estadísticos y la correlación entre ellas, lo que hace que este estudio sea correlacional explicativo en el que se consideran las consecuencias y sus causas (24).

Hernández explica que el ámbito correlacional se utiliza para analizar la relación o grado de asociación entre ellos, y que esto muestra el nivel de vinculación que presenta entre ellos en los resultados obtenidos a nivel explicativo (24).

3.2 Diseño de la investigación

Esta tesis fue realizada en un enfoque cuasi-experimental, con variables no asignadas al azar y en grupos completos determinados por las necesidades del estudio (24).

Figura 9. Diseño de la Investigación

3.2.1 Esquema de diseño experimentos.

Tabla 10.	Γabla	10.	
-----------	-------	-----	--

GC: 01			2
GE:03		X	4
GE	:	:	Grupo experimental
GC		:	Grupo de control
01 Y 03		:	Pretes
02 Y 04		:	Postest
X		:	Manipulación de variable independiente

Tabla 11. Esquema de diseño experimental de la tesis

	GRUPOS		VARIABLE INDEPENDIENTE	POSPRUEBA
GCO	Diseño de muestra		Sin aditivo	
GCO1	Diseño de muestra		Sin aditivo	Resistencia a
GE1	Diseño de mezclas con aditivo acelerante	X1	Dosis de aditivo acelerante de acuerdo al diseño de mezclas.	la compresión para concreto de 210kg/cm ₂
GE2	Diseño de mezclas con aditivo acelerante	X2	Dosis de aditivo acelerante de acuerdo al diseño de mezclas.	

De acuerdo con lo mostrado en el diseño estructural de la tesis nos muestra:

El grupo de muestra en la presente tesis está compuesto por los diseños de concreto que se consideró en el grupo, de aditivo con un diseño sin aditivo.

- El conjunto experimental lo forman los diseños de concreto fruto de añadir el aditivo acelerante de fraguado.
- Manipulación de variable independiente por lo que se considera proporciones de 1.5
 %,2.5 % y 4 % de cantidad de aditivo acelerante con respecto la masa del aglomerante en el diseño de mezclas.
- Las evaluaciones pospruebas, el resultados y las mediciones de acuerdo a las variables son la f',c=210 kg/cm².

3.3 Población y muestra.

Según (25) Los resultados de esta tesis se derivan de una investigación del fenómeno en su conjunto, en la que las características comunes entre los componentes de la población son un punto central de la investigación.

Comúnmente conocidos como "probeta", los "testigos de concreto" son el término preciso para la unidad de medida utilizada en este estudio. Se ensayaron un total de 96 muestras de hormigón, con tiempos de curado que iban de 7 a 14 o hasta 28 días y una resistencia a la compresión de f'c=210 kg/cm2. El número total de probetas analizadas para esta tesis puede verse en la Tabla 12.

Tabla 12. *Número de probetas a utilizar en la investigación.*

	Número de probetas por ensayo				
Cemento (Tipo I)	F'c 210	7 días	14 días	28 días	TOTAL
W-P	210 kg/cm2	4	4	4	12
Patrón	210 kg/cm2	4	4	4	12
	Subt	otal de prob	etas		24
W-P (1.5 %)	210 kg/cm2	4	4	4	12
W-P (2.5 %)	210 kg/cm2	4	4	4	12
W-P (4 %)	210 kg/cm2	4	4	4	12
Subtotal o	le probetas con	cemento W-	P con aditivo	acelerante	36
Patrón (1.5 %)	210 kg/cm2	4	4	4	12
Patrón (2.5 %)	210 kg/cm2	4	4	4	12
Patrón (4 %)	210 kg/cm2	4	4	4	12
Subtotal de	e probetas con c	emento Patr	rón con aditivo	acelerante	36
	TOTAL DE P	ROBETAS A	A ENSAYAR		96

3.4 Técnicas e instrumentos de recolección de datos

Las técnicas que se emplearon en la investigación presente se dio en la técnica de observación y la de experimentación, se desarrollaron 3 diseños de mezcla con f´c = 210 kgf/cm2 de relación a/mc (relación agua – material cementante) con aditivo al 1.5%,2.5% y 4% es así como, bajo estos parámetros se consideraron ensayos que ayudaran analizar los resultados de estos como el caso de la consistencia de la mezcla, el tiempo de fraguado y la resistencia a la compresión (7, 14 y 28 días).

3.5 Instrumentos de recolección de datos

Pruebas estandarizadas

Las herramientas cuantitativas utilizadas en la realización de nuestro estudio experimental fueron:

- Pruebas estandarizadas con peruana (N.T.P) y las americanas (A.S.T.M), donde ubicamos los pasos para elaborar las pruebas de concreto en estado fluido y en estado duro.
- Los equipos de medición para las características del concreto duro es la prensa.

3.6 Marcos normativos de los ensayos

Esta tesis se hizo con los estándares que aseguran los pasos de calidad y los ensayos de cada proceso para la obtener los frutos, es así que en base a ese criterio se tomó las normas vigentes la N.T.P y la norma americana como la A.S.T..M, de acuerdo a esto, se abordaron los ensayos de control en estado fluido y duro, la norma de proceso y los parámetros del hormigón premezclado y curado, y se adquirieron muestras y calidades de áridos, todo ello de acuerdo con esta tesis.

Tabla 13. Propiedades y características de los agregados

Propiedades y características de los agregados			
Prueba / Ensayo	Norma NTP	Norma ASTM	
Extracción y preparación de las muestras.	NTP 400.010 –	ASTM D75	
	2016		
Práctica normalizada para reducir las muestras de	NTP 400.043 -	ASTM C702	
agregados a tamaño de ensayo.	2015		
Método de ensayo normalizado para peso	NTP 400.022 -	ASTM C128	
específico y absorción del agregado fino.	2013		
Método de ensayo normalizado para peso	NTP 400.021 -	ASTM C127	
específico y absorción de agregado grueso.	2018		
Método de ensayo normalizado para determinar	NTP 400.017 -	ASTM C29	
la masa por unidad de volumen o densidad y los	2011		
vacíos en los agregados.			
Método de ensayo normalizado para contenido de	NTP 339.185 -	ASTM C566	
humedad total evaporable del agregado por	2013		
secado.			
Análisis granulométrico del agregado fino,	NTP 400.012 -	ASTM C136	
grueso y global.	2001		
Método de ensayo normalizado para determinar	NTP 400.018 -	ASTM C117	
materiales más finos que pasan por el tamiz	2002		
normalizado 75um (200) por lavado en			
agregados.			
Requisitos técnicos d	le agregados		
Especificaciones normalizadas para agregados	NTP 400.037 -	ASTM C33	
en hormigón (concreto)	2014		

Nota. Tomada de Rivva López, Diseño de Mezclas, 2014.

Tabla 14. *Normativa de cemento*

Requisitos técnicos del cemento			
Prueba / Ensayo	Norma NTP	Norma ASTM	
Cemento Portland. Requisitos.	NTP 334.009 -	ASTM C150	
	2018		

Nota. Tomada de Rivva López, Diseño de Mezclas, 2014.

Tabla 15. *Requisitos técnicos del agua*

Requisitos técnicos	s del agua		
Prueba / Ensayo	Norma NTP	Norma ASTM	
Agua de mezcla utilizada en la producción de	la en la producción de NTP 339.088 –		
concreto de cemento Portland. Requisitos.	2019	ASTM C1602	

Nota. Tomada de Rivva López, Diseño de Mezclas, 2014.

Tabla 16. *Requisitos técnicos de los aditivos*

Requisitos técnicos de aditivos			
Prueba / Ensayo	Norma NTP	Norma ASTM	
Aditivos químicos en pastas, morteros y concreto. Especificaciones.	NTP 334.088 – 2015	ASTM C494	

Nota. Tomada de Rivva López, Diseño de Mezclas, 2014.

Tabla 17. *Ensayos en concreto fresco*

Procedimientos de ensayos de concreto fresco			
Prueba / Ensayo	Norma NTP	Norma ASTM	
Práctica normalizada para la elaboración y curado	NTP 339.183 -	ASTM C31	
de especímenes de concreto en el laboratorio.	2013		
Método de ensayo para la medición de	NTP 339.035 -	ASTM C143	
asentamiento del concreto de cemento Portland.	2015		
Método de ensayo normalizado para la	NTP 339.082 -	ASTM C403	
determinación del tiempo de fraguado de mezclas	2011		
por medio de la resistencia a la penetración.			
Método de ensayo normalizada para determinar la	NTP 339.184 –	ASTM C1064	
temperatura de mezclas de hormigón (concreto).	2018		
Métodos de ensayos normalizado para la	NTP 339.077 –	ASTM C232	
exudación del hormigón (concreto).	2013		
Método de ensayo para la determinación del	NTP 339.080 -	ASTM C231	
contenido de aire en el concreto fresco. Método de	2017		
presión.			

Nota. Tomada Rivva López, Diseño de Mezclas, 2014.

Tabla 18.Ensayos del concreto endurecido

Procedimientos de ensayos del concreto endurecido			
Prueba / Ensayo	Norma NTP	Norma ASTM	
Método de ensayo normalizado para la	NTP 339.034 -	ASTM C39	
determinación de la resistencia a la compresión	2008		
del concreto en muestras cilíndricas.			

Nota. Tomada de Rivva López, Diseño de Mezclas.

3.7 Ejecución de investigación

Para la presente investigación, se tomaron las siguientes etapas.

- Etapa 1: selección de materiales
- Etapa 2: características y propiedades de los materiales
- Etapa 3: diseño de mezclas
- Etapa 4: proceso de vaciado del concreto
- Etapa 5: ensayos en concreto fresco
- Etapa 6: ensayos en concreto endurecido

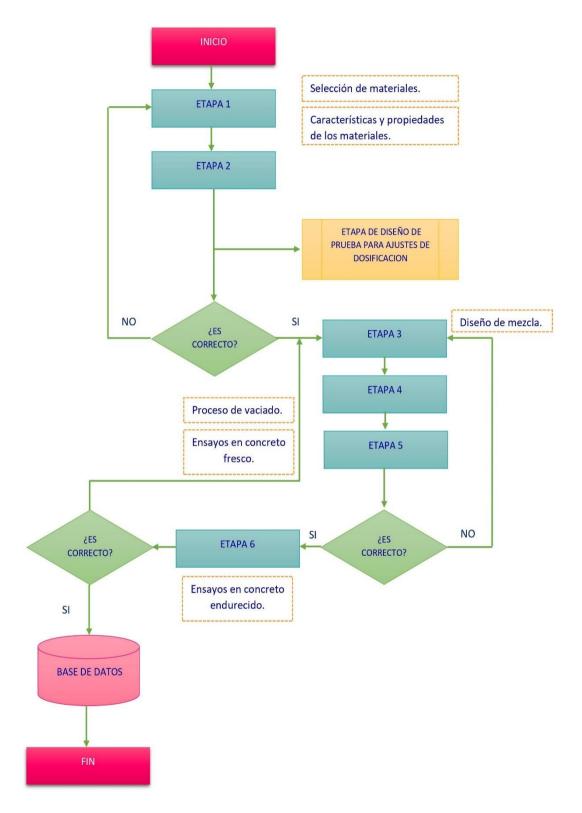


Figura 10. Flujograma de proceso de investigación

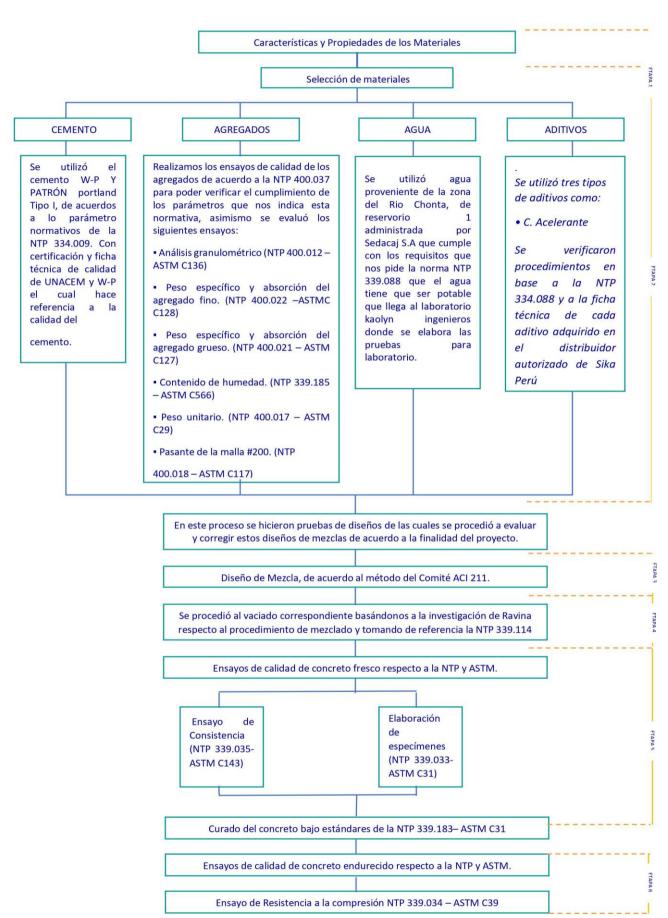


Figura 11. Diagrama de etapas del trabajo

3.7.1 Etapa 1 selección de material.

3.7.1.1 Cemento.

En esta investigación se aplicó dos tipos de aglomerantes se emplean en el hormigón y fue estudio con el aglomerante tipo I del Grupo INVERCEM y WP-WANG PENG destinado para uso general en el mercado de la construcción, las consideraciones son normas NTP 334.009 y la ASTM C 150.

Figura 12. Tomada de sus fichas técnicas de WP y INVERCEM

3.7.1.2 Agregados.

3.7.1.2.1 Agregado fino.

Esta tesis empleo áridos localizados en la cantera Bazán de la región, provincia y distrito de Cajamarca, ubicada a orillas del rio cajamarquino al lado derecho con coordenadas UTM son E=773430.70 y N=9210623.13 y la altitud de Z=2739 m.s.n.m.

Figura 13. Tomada de Google Earth Chancadora – cantera Bazán – Cajamarca

3.7.1.2.2 Agregado grueso.

En esta tesis se empleó piedra chancada de ½ que se ubica en la cantera Bazán ubicada en la región, provincia y distrito de Cajamarca a orillas del rio Cajamarquino con coordenadas UTM son E=773430.70 y N=9210623.13 y la altitud de Z=2739 m.s.n.m.

Figura 14. Tomada de la Chancadora – cantera Bazán – Cajamarca-Cajamarca

3.7.1.2.3 Agua.

El agua utilizada en el laboratorio KAYLIN INGENIEROS SAC para preparar y curar las probetas también es utilizada nuestro propio consumo a mediante la red de SEDACAJ en la ciudad de Cajamarca, respetando los parámetros mínimos y máximos según el Reglamento de Calidad del Agua para Consumo Humano según el DS N° 031-2010-SA, así como la norma N.T.P. 339.088. para la fabricación y curado del concreto.

3.7.1.2.4 Aditivos.

Para disminuir el tiempo que conlleva el fraguado y desarrollar la resistencia temprana del hormigón, los investigadores utilizaron un aditivo llamado Sika Cem Acelerante PE (16).

Los aceleradores en Perú pueden proporcionar un efecto u otro, o ambos, dependiendo del modelo. Existe una norma americana para los aditivos (A.S.T.M. C.494, "tipo C") (16).

Figura 15. Aditivo Sika Acelerante Pe tomada de Sika ,2022

3.7.2 Etapa 2: Características y propiedades de los materiales.

3.7.2.1 Cemento.

Esta tesis empleó dos cementos Portland Patrón Tipo I y WP - WANG PENG que cumplen con la norma peruana la (N.T.P 334.00 9 Cemento Portland). Los estándares establecen límites de acuerdo a sus ingredientes y características, también el aglomerante un ingrediente primordial para el hormigón, contiene propiedades para ser un aglomerante fundamental para el concreto, en el diseño de hormigón solo la densidad o peso específico del aglomerante que nos brinda el que manufactura de acuerdo a su ficha técnica, para el

cemento PATRÓN es ρ =3.12 gr/cm³ y para el cemento WP- WANG PENG es ρ =3.12 gr/cm³ (26).

3.7.2.2 Agregados.

Esta tesis estudio las cualidades físicas de los áridos finos y gruesos: Peso Específico, Granulometría, PUS, PUC, W% y Absorción. Las pruebas se realizaron basándose en la N.T.P y la A.S.T.M. donde dan a conocer como se debe realizar los pasos oportunos para los frutos verídicos y con esto elaborar un diseño de concreto exitoso (21).

La preparación y Extracción de muestras, se empleó y se realizó de acuerdo a la norma (A.S.T.M 400.01) donde indican los pasos y los estándares. También se hace mención que se empleó el ensayo de Reducción de muestras de agregados a tamaño de ensayo de acuerdo a la norma (A.S.T.M C 702) (21).

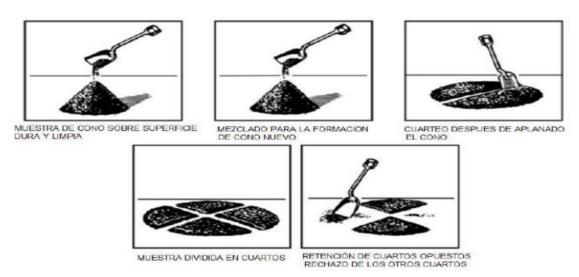


Figura 16. Tomada de NTP 400.037 Proceso de muestreo.

3.7.2.3 Contenido de humedad (w%) de los agregados.

De acuerdo con las normas peruanas (NTP 339.185, 2013), se deben realizar pruebas para determinar el contenido de humedad de los agregados. Una vez que Tiene tenido lugar el proceso de secado, la humedad se mide cuando el peso y el contenido de humedad del agregado se relacionan un través del horno, aunque no de forma natural (27).

INSUMOS Y APARATOS

- Agregado grueso con humedad de in situ.
- Agregado fino con humedad de in situ.
- Equipo de Horno con temperatura de 110 °C.
- Fuente o tara.
- Balanza.
- Cuchara y Guantes térmico.

Figura 17. Muestreo del cuarteo del agregado fino y Grueso

Ecuación del Contenido de Humedad:

$$W\% = \frac{Peso\ H\'umedo - Peso\ Seco}{Peso\ Seco}x100$$

Figura 18. Contenido de humedad

3.7.2.4 Granulometría.

El análisis del tamaño de las partículas utilizando varios tamices de distintos tamaños puede revelar la abundancia relativa de las distintas formas de partículas del agregado. La granulometría se comunica como la fracción de una muestra que pasa por un determinado tamiz, como porcentaje de la muestra total. A menudo se utilizan gráficos de las curvas granulométricas. Se utilizó como norma la ASTM C 136 y la NTP 400.012, donde los ápices (eje X) representan los diámetros de los tamices en milímetros y las ordenadas (eje Y) los porcentajes (por ciento) correspondientes a cada tamaño (16).

3.7.2.5 Muestra finos.

- Agregado Fino seco en horno.
- Mallas N°4-N°8-N°16-N°30-N°50-N°100- N°200 y Cazoleta.
- Fuentes o taras.
- Balanza.
- Guantes.

Ecuación del M.F del árido fino.

Mf =
$$\frac{\sum \% \text{ Ret. Acum. } (4^{\circ}, 8^{\circ}, 16^{\circ}, 30^{\circ}, 50^{\circ}, 100^{\circ})}{100}$$

3.7.2.6 Muestra gruesa.

Insumos Y Aparatos

- Agregados grueso seco en horno.
- Mallas 1"-3/4"-1/2"-3/8" y N°4.
- Fuentes.
- Guantes.
- Balanza.

Ecuación del M.F del árido grueso.

Mf =
$$\frac{\sum \% \text{ Ret. Acum. } (3/4", 3/8", N^{\circ}4 + 500)}{100}$$

Figura 19. Análisis granulométrico utilizando los tamices para agregado fino NTP 400.012.

3.7.2.3 Peso unitario suelto (pus) de los áridos gruesos y finos.

Asociado con NTP 400.017, se ha preparado una prueba de peso unitario, proporcionando métodos de prueba para determinar el densidad aparente y recuento de vacíos de agregados finos y gruesos. Estos valores se pueden calcular como peso seca y peso de comprimida (28).

Materiales y equipos

- Se necesita del material de manera indispensable para producir en la mezcla. Se necesita de material grava y arena en cantidad suficiente y exacta para que no exceda los límites del molde.
- Balanza para medir.
- Recipiente volumétrico.
- Cucharón metálico.
- Varilla plana.

Ecuación del (PUS) de los Áridos Finos y Gruesos

$$PUS = \frac{(Peso\ del\ material + recipiente) - Peso\ recipiente}{Volumen\ del\ recipiente}$$

Figura 20. Proceso de peso unitario suelto del agregado grueso y fino

3.7.2.8 Peso unitario compactado (puc) de áridos fino y grueso.

Insumos Y Aparatos

- Grava y arena en cantidad suficiente para que exceda el molde.
- Balanza, recipiente volumétrico.
- Cucharón metálico y varilla plana.
- Varilla compactadora: debe ser lisa, redonda de acero de diámetro de 5/8" y de largo de 24".

Ecuación del (PUC) del árido fino y grueso.

$$PUS = \frac{(Peso\ del\ material + recipiente) - Peso\ del\ recipiente}{Volumen\ del\ recipiente}$$

Figura 21. Proceso de peso Compactado del agregado grueso y fino

3.7.2.9 Ensayo de peso específico y absorción.

La norma NTP 400. 022 proporciona métodos de prueba para determinar el peso específico (densidad) del agregado fino, el peso específico saturada de la superficie seca, el peso específico aparente y la absorción después de 24 horas en agua (29).

3.7.2.10 Agregado fino (NTP 400.022).

INSUMOS Y APARATOS

- Agregado fino suficiente para el ensayo.
- Molde de cono truncado.
- Balanza.
- Fiola de 500ml.
- Gotero.
- Horno a 110 °C ±5 °C.
- Agua (en la investigación se utilizó agua del laboratorio proveniente de la red de SEDACAJ).

Ecuación del P.E del Agregado Fino.

$$Pe = \frac{(Peso\ de\ la\ muestra\ seca)}{(Vol.\ frasco-Vol.\ agua\ añadida)}$$

Ecuación del hallar la A% del Agregado Fino.

$$\propto = \frac{(Peso\ ss - Peso\ de\ la\ muestra\ seca)}{Peso\ de\ la\ muestra} x100$$

Figura 22. Peso específico y absorción del agregado fino

3.7.2.11 Árido grueso (NTP 400.021).

Materiales y equipos

- Balanza sensible a 0.5 gr. Incluye equipo para suspender la muestra en una canastilla.
- Canastilla con malla de alambre con abertura 3.35 mm o menor, con capacidad de 4L
 a 7L y franela o paño.
- Tanque para depositar el agua (se debe de tener en cuenta el volumen).
- Horno a 110 °C ±5 °C.
- Agua (en la investigación se utilizó agua del laboratorio proveniente de la red de SEDACAJ).

Fórmula para determinar el Peso Específico del Agregado grueso.

$$Pe = \frac{(Peso \ de \ la \ muestra \ seca)}{(Vol. \ masa + Vol. \ vacíos)}$$

Fórmula para determinar la Absorción del Agregado grueso

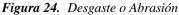
$$\propto = \frac{(Peso \, SS - Peso \, de \, la \, muestra \, seca)}{Peso \, de \, la \, muestra \, seca} x 100$$

Figura 23. Peso específico y absorción del agregado Grueso

3.7.2.12 Desgaste o abrasión.

Las pruebas de abrasión se especifican en varios estándares internacionales para agregados. El Ensayo de Los Ángeles está estandarizado y representado por ASTM. Los pisos de concreto, pisos erosionados y/o erosionados o los agregados utilizados en las edificaciones no presentan una pérdida mayor al 50% en las pruebas de abrasión realizadas de acuerdo a las normas establecidas en ASTM o NTP 400. 019 o 400.020 (30).

Materiales y equipos


- Balanza.
- Horno a 110 °C ±5 °C.
- Tamices de 1/2" y 3/8" (por el tamaño del agregado grueso).
- Tamiz N.° 12.

- Máquina de los Ángeles.
- Carga abrasiva (12 esferas de acero).
- Muestra del agregado grueso.
- Con los resultados en los ensayos de granulometría del agregado grueso, se define el
 (TMN), pero el agregado grueso no deberá ser mayor que:
- 1/5 de la menor dimensión entre caras del encofrado,
- 1/3 del peralte de la losa o
- 3/4 del espacio libre mínimo entre barras.

Fórmula para determinar la abrasión del agregado grueso.

% Abración =
$$\frac{(Peso\ Inicial - Peso\ Final)x100}{Peso\ Inicial}$$

3.7.3 Etapa 3: diseño de mezclas.

Insumos y Aparatos

- Áridos grueso y finos.
- Balanza.
- Trompo de 1p3.
- Cucharon metálico.
- Varilla lisa.
- Cementos Portland tipo I.
- Buggie o carretilla.
- Provetas o moldes de concreto.

Tabla 19. Resistencia a la compresión requerida

RESITENCIA A COMPRESIÓN (KG/CM2)	RESITENCIA A LA COMPRESIÓN REQUERIDA (KG/CM2)
F'c < 210	f'cr = f'c + 70
$210 \le f'c < 350$	f'cr=f'c+85
F'c >350	f'cr=1.1 f'c+50

Nota. Tomada de Rivva (2014)

Tabla 20. *Tipos de asentamiento*

Tipo de estructura	Slump	Slump
	Máximo	Máximo
Zapatas y muros de cimentación reforzados	3"	1"
Cimientos simples y calzaduras	3"	1"
Vigas y muros armados	4"	1"
Columnas	4"	2"
Muros y pavimentos	3"	1"
Concreto ciclópeo	2"	1"
		d.

Nota. Tomada de Rivva (2014)

• Con la granulometría de los agregados grueso se obtiene TMN. Luego, considerando una mezcla de tipo plástica (3"-4"), se selecciona el aire atrapado.

Tabla 21. *Porcentaje de aire atrapado.*

Aire atrapado (%)
2.5
2.0
1.5
_

Nota. Tomada de Rivva (2014).

• Luego procedemos a seleccionar el contenido de agua, según el TMN y el SLUMP, que se ve en la tabla que muestra el contenido de agua para elaborar el diseño de mezclas.

Tabla 22. *Contenido de agua para el diseño.*

	Agua en Lt/m³				
Asentamiento	3/4"	1"	1 1/2"	2"	
1" - 2"	190	179	166	154	
3" - 4"	205	193	181	169	
6" - 7"	216	202	190	178	

Nota. Tomada de Rivva (2014).

• Relación agua/cemento por resistencia.

Teniendo en consideración la resistencia promedio (f'cr) y para un concreto sin aire incorporado, se halla la relación (a/c).

Tabla 23.Relación agua cemento

	Relación agua	a cemento por		
$\mathbf{F'_{cr}}$	resistencia			
(28 Días)	Concreto sin aire	Concreto con		
	incorporado	aire incorporado		
150	0.8	0.71		
200	0.70	0.61		
250	0.62	0.53		
300	0.55	0.46		
350	0.48	0.40		
400	0.43			
450	0.38			

Nota. Tomada de Rivva (2014).

• Seleccionar el peso del agregado grueso según TMN y MF de árido fino. Para encontrar su valor, el resultado debe ser interpolado y multiplicado por el PUC en kg de agregado grueso. en la Tabla 11 se muestra los valores del volumen de agregados (16).

Tabla 24.Volumen del Agregado Grueso seco y compactado

T.M.N del	Vol. Del AG seco y compactado por unidad de volumen de concre para diversos módulos de fineza del fino					de concreto
agregado grueso	2.40	2.60	2.80	3.00	3.20	3.40
1/2"	0.59	0.57	0.55	0.53	0.51	0.49
3/4"	0.66	0.64	0.62	0.60	0.58	0.56
1"	0.71	0.69	0.67	0.65	0.63	0.61
1 1/2"	0.76	0.74	0.72	0.70	0.68	0.66

Nota. Tomada de Rivva (2014).

- Medido en metros cúbicos, es el volumen total de ligante, agua y partículas gruesas.
 Para calcular el volumen de aire retenido, primero tenemos que convertir el resultado a 1 m3 de hormigón (1 m3 vol. Abs.).
- En este paso se determina el peso de A.fdry . Basándose en el Vol. Af y el P.E.
- El P.E. se calcula dividiendo la masa por su volumen.

Ecuación del peso específico:

$$Pe = \frac{Peso}{Volumen}$$

 Combinando el peso específico y el volumen de los áridos finos, podemos obtener el peso seco de los áridos, que puede ajustarse en función del contenido de humedad de los mismos (16).

Ecuación de la corrección por contenido de humedad:

$$A = 1 + \frac{W\%}{100} x Peso Seco Del Agregado$$

A continuación, se determinó el contenido de agua de los áridos.

Ecuación para el aporte del agua en el diseño de mezcla:

$$A = \frac{W\% - \propto \%}{100} x Peso Seco del agregado$$

- Se añade el agua de los agregados ("Contenido de agua"), y este número se elimina del contenido de agua (Tabla 17).
- Después de multiplicar por el peso de una bolsa de cemento (42,5 kg), dividimos el resultado por el peso seco del cemento para obtener el agua efectiva.
- Dividiendo el peso total del cemento y de los áridos por el peso del cemento,
 podemos lograr el volumen efectivo corregido de la mezcla.

Unidades de estudio:

Se construyeron 96 especímenes de hormigón (unidades de estudio), teniendo cada diseño de mezcla un porcentaje de aditivo diferente (0 por ciento, 1,5 por ciento, 2,5 por ciento y 4 por ciento) como se muestra en los tres puntos anteriores.

3.7.4 Etapa 4: paso de vaciado del concreto.

En este punto del proceso deben tenerse en cuenta los insumos, incluidos los posibles aditivos, así como el equipo de mezcla ("trompo") que se empleará de acuerdo con el método de lotes por diseño (23).

Figura 25. Equipo mezclado de 80 l de capacidad

3.7.5 Etapa 5: concreto en estado fresco.

3.7.5.1 SLUMMP (NTP 339.035).

Este ensayo como nos indica la Norma Técnica Peruana 339.183 es incrementar la resistencia a la compresión esto se refiere al uso de carga en el cilindro este proceso se lleva a cabo bajo una velocidad constante depende del tamaño del cilindro (31).

Materiales y equipos

- Cono de Abrams
- Barra Compactadora
- Cintra Métrica

Cucharón

Figura 26. Ensayo de consistencia.

3.7.6 Etapa 6: concreto en estado endurecido.

3.7.6.1 Elaboración de las probetas (NT P 339.033).

Las mezclas aplicadas para desarrollar especímenes de concreto esto deber se muestreada en situ no es recomendable elaborar especímenes de concreto los cuales no tiene un Slump como lo indica la norma (32).

Materiales y Equipo

- Molde Cilíndrico de material de 15 cm de diámetro y 30cm de altura
- Varilla de compactación
- Cuchara y pala pequeña

Figura 27. Elaboración de probeta

3.7.6.2 Elaboración de las probetas (NT P 339.033).

Se debe considerar el desarrollo de la cura en condiciones de laboratorio para lograr una resistencia, permeabilidad y resistencia del concreto. los testigos tienen que estar en agua 7,14 y 28 días tal como nos menciona la norma (33).

Figura 28. Curado de probetas bajo condiciones de laboratorio.

3.7.6.3 Ensayo de resistencia a la compresión (NTP 339.034).

Bajo los requisitos de laboratorio para el desarrollo de ensayos de resistencia a la compresión, al momento de obtener la evidencia en fresco y aplicar o desarrollar los postratamientos correspondientes asociados a la NTP 339.183, este proceso se ensaya a la velocidad o por debajo de la especificada en Los procesos y parámetros son considerados y aplicados bajo normas técnicas (34).

Materiales y Equipos

- Máquina de ensayo a la compresión.
- Vernier.
- Balanza.

Figura 29. Medición de probetas

Figura 30. Procedimiento del ensayo de resistencia a la compresión

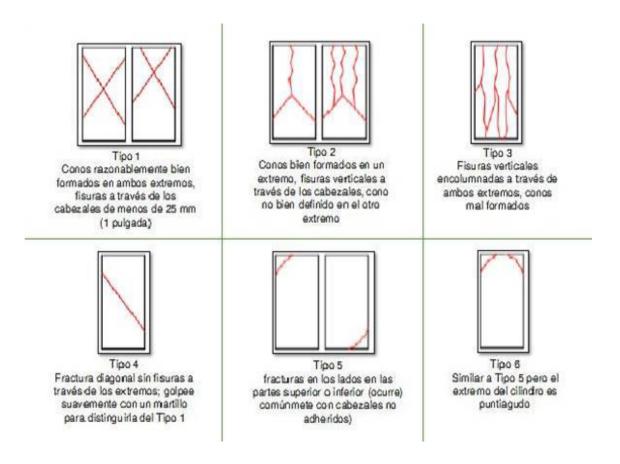


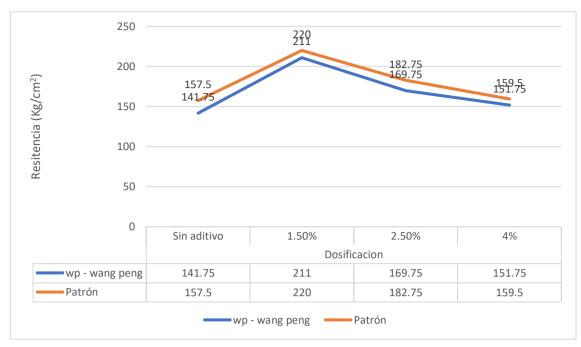
Figura 31. Tomada de NTP 339.034 Tipo de fallas

CAPÍTULO IV

4.1 Resultados y discusión

4.1.1. Influencia de aditivo acelerante con los cementos WP-WUANG PENG Y PATRÓN a los 7, 14,28 días.

Tabla 25. Se observa que los mayores valores de resistencia a la comprensión a los 7, 14 y 28 días, se obtienen con el cemento patrón y el aditivo acelerante en sus distintas dosificaciones (1.5, 2.5 y 4 %).


Dosificación	WP- WANG PENG		PATRÓN			
(%)	7 días	14 días	28 días	7 días	14 días	28 días
Sin aditivo	141.75	162.75	212.75	157.5	175.5	241
1.5%	211	244	284.25	220	245.75	296
2.5%	169.75	202	234.5	182.75	211.25	228
4%	151.75	174.25	201	159.5	181.75	195.25

4.1.2 Influencia de aditivo acelerante con los cementos WP-WUANG PENG Y PATRÓN a los 7 días.

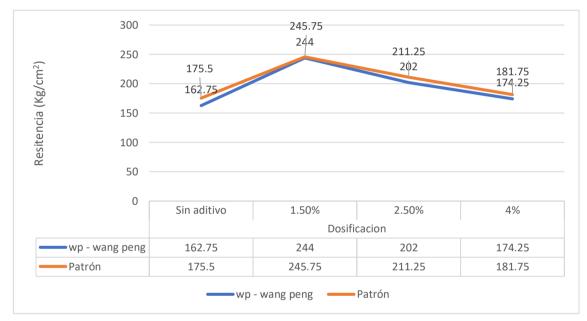
En la tabla 24, se observa que la Resistencia a la compresión del concreto con aditivo acelerante utilizando cemento Wp - Wang Peng y cemento Patrón, a los 7 días.

Tabla 26.Resultados de los cementos WP- WUANG PENG Y PATRÓN al incorporar aditivo acelerante a los 7 días.

Aditivo	Dosificación			
Sikacem	Sin aditivo	1.50%	2.50%	4%
Acelerante	Sili aditivo	1.30%	2.30%	4%
WP- WANG	=-			
PENG	141.75	211	169.75	151.75
PATRÓN	157.5	220	182.75	159.5

Figura 32 Resistencia a la compresión del concreto con aditivo acelerante utilizando WP-WANG PENG y PATRÓN.

La tabla 26 y la figura 31 demuestra que cuando se utiliza un cemento normal y se le somete a la influencia del aditivo en varias dosis, el hormigón resultante presenta una mayor resistencia a la compresión que cuando se utiliza un cemento wp - wang peng. Cuando se utiliza el 1,5% de aditivo (wp - wang peng: 211 Kg/cm2; cemento normal: 220 Kg/cm2), la resistencia del hormigón es máxima; cuando se utiliza el 2,5% y el 4% de aditivo, la resistencia del hormigón empieza a disminuir.


4.1.3 Influencia de aditivo acelerante con los cementos WP-WUANG PENG Y PATRÓN a los 14 días.

La tabla 25 muestra la resistencia a la compresión a los 14 días del hormigón fabricado con un aditivo acelerante y con cemento Wp - Wang Peng y Patrón.

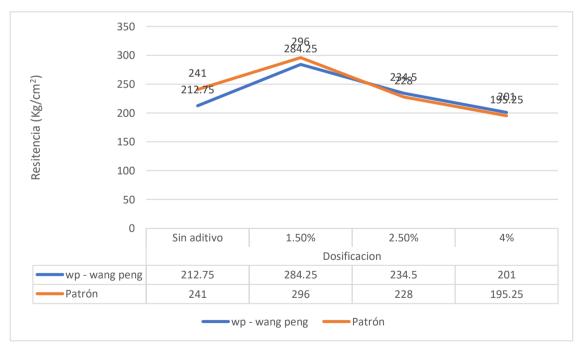
Tabla 27.

Resultados de los cementos WP- WUANG PENG Y PATRÓN al incorporar aditivo acelerante a los 14 días.

Aditivo	Dosificación			
Sikacem Acelerante	Sin aditivo	1.50%	2.50%	4%
WP- WANG PENG	162.75	244	202	174.25
PATRÓN	175.5	245.75	211.25	181.75

Figura 33 Resistencia a la compresión del concreto con aditivo acelerante utilizando WP-WANG PENG y PATRÓN 14 Días.

En la tabla 25 y en la figura 32 visualizamos que la resistencia a la compresión del concreto hecho con el cemento ordinario y el impacto del aditivo en sus distintas dosis es mayor que la del hormigón preparado con el cemento wp - wang peng. En ambas situaciones, la resistencia a la compresión del hormigón tiende a reducir cuando se utiliza el 2,5 % y el 4 % del aditivo, respectivamente (wp - wang peng: 244 Kg/cm2; cemento ordinario: 245,75 Kg/cm2).


4.1.4 Influencia de aditivo acelerante con los cementos WP-WUANG PENG Y PATRÓN a los 28 días.

En el día 28, la resistencia a la compresión del concreto fabricado con cemento Wp - Wang Peng y cemento Patrón y un aditivo acelerador sikacem se demuestra en la tabla continuación.

Tabla 28.

Resultados de los cementos WP- WUANG PENG Y PATRÓN al incorporar aditivo acelerante a los 28 días.

Aditivo Sikacem		Dosific	cación	
Acelerante _	Sin aditivo	1.50%	2.50%	4%
WP- WANG	212.75	284.25	234.5	201
PENG			200	
PATRÓN	241	296	228	195.25

Figura 34. Resistencia a la compresión del concreto con aditivo acelerante utilizando WP-WANG PENG y PTRÓN 28 Días.

Según los resultados presentados en la tabla 26 y figura 34, la resistencia a la compresión del hormigon obtenido con el cemento patrón y bajo el efecto del aditivo en

sus distintas dosificaciones, es mayor a la resistencia obtenida con el cemento wp - wang peng. En ambos casos, el mejor comportamiento de la resistencia del concreto se obtiene cuando se emplea 1.5 % de aditivo (wp - wang peng: 244 Kg/cm2; cemento patrón: 245.75 Kg/cm2), con 2.5 % y 4 % del aditivo la residencia a la compresión presenta una tendencia decreciente.

4.1.5 Influencia de aditivo acelerante en el cemento patrón.

Tabla 29. *Análisis de Varianza Cemento Patrón*

E V	E 17	7 d	7 días 14 días 28 día		7 días 14 días 28 días		días
F. V	F. V	CM	P- Valor	CM	P- Valor	CM	P- Valor
Dosificación	3	3378.73	0.000	4136.23	0.000	7045	0.000
de aditivo		3376.73	0.000	4130.23	0.000	7043	0.000
Error	12	2.	23	54	4.6	1:	5.23
Total	15						
R2(%)		99	.74	94	.98	9	9.14

Como puede verse en la tabla 27, el valor significativo (valor p) para el factor de la dosificación del aditivo a los 7, 14 y 28 días es inferior al 5 %, lo que indica la significación estadística en el análisis de la varianza para la resistencia a la compresión del hormigón con aditivo acelerante utilizando cemento estándar. Esta investigación sugiere que el aditivo tiene un impacto importante en la resistencia a la compresión del hormigón fabricado con cemento concreto ordinario. Adicionalmente, el R2 supera el 99 % a los 7, 14 y 28 días, el cual indica que la incorporación del aditivo acelerante al cemento patrón explican en más del 99 % la resistencia del concreto.

Tabla 30.

Dosificación de		Resistencia (Kg/cm2))
aditivos	7 días	14 días	28 días
1.50%	220 a	245.75 a	296 a
2.50%	187.75 b	211.25 b	228 c
4%	159.5 c	181.75 c	195.25 d
Sin aditivo	157.5 c	175.5 c	241 b

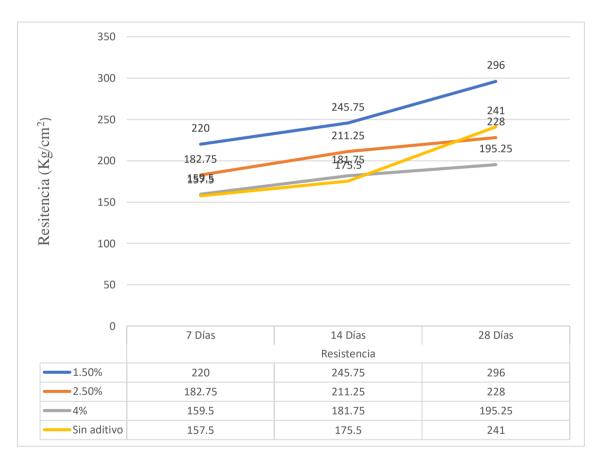


Figura 35. Resistencia a la compresión del concreto con aditivo acelerante utilizando cemento patrón.

Cuando se comparan los resultados obtenidos con la otra dosificación del aditivo en el cemento estándar (tabla 28 y figura 35), el aditivo acelerante al 1,5 % produjo la mejor resistencia a la compresión del concreto. Con esta dosificación, la resistencia a los 7, 14 y 28 días fue de 220, 245.75 y 296 Kg / cm2, respectivamente. La resistencia a los

7, 14 y 28 días con la adición del 2,5% fue de 182,75 Kg / cm2, 211,25 Kg / cm2 y 228 Kg / cm2, respectivamente. Con un 4 % de aditivo, la resistencia a los 7, 14 y 28 días fue de 159.9, 181.75 y 195.25 Kg / cm2, respectivamente. Finalmente, con la muestra sin aditivo la resistencia a los 7, 14 y 28 días fue de 157.5, 175.5 y 241 Kg / cm2, respectivamente. La resistencia a la compresión del concreto obtenida bajo el efecto del aditivo en sus diferentes dosificaciones muestra que la dosificación de 1,5 por ciento de aditivo es superior a la dosificación de 2,5 por ciento, 4 por ciento, y al modelo de muestra teniendo un comportamiento diferente, disminuyendo a los 28 días en función de la dosificación de aditivo y sin ella en función del tiempo de curado.

Tabla 31.Análisis de Varianza Cemento WP- WUANG PENG

		7 días		14 días		28 días	
F. V	F. V	CM	P-	CM	P-	CM	P-
			Valor		Valor		Valor
Dosificación	3	3738.56	0.000	5224.5	0.000	5417.08	0.000
de aditivo		3736.30	0.000	3224.3	0.000	3417.06	0.000
Error	12	3.02		7.29		11.54	
Total	15						
R2(%)		99.	68	99.	44	99.	15

El análisis de la varianza para la resistencia a la compresión del hormigón con aditivo acelerante utilizando cementos Wp - Wang Peng se muestra en la Tabla 29; la información obtenida demuestra que el factor de la dosificación del aditivo a los 7, 14 y 28 días es estadísticamente significativo (p-valor). Estos resultados sugieren que el aditivo tiene un papel importante para establecer la resistencia a la compresión del hormigón fabricado con cemento Wp - Wang peng. Además, el R2 supera el 99 % a los 7, 14 y 28 días, el cual indica que la incorporación del aditivo acelerante al cemento Wp - Wang Peng explican en más del 99 % la resistencia del concreto.

Tabla 32. Prueba Dunca

Dosificación de		Resistencia (Kg/cm2)					
ac	litivos	7 días	14 días	28 días			
1	.50%	211 a	244 a	284.25 a			
2	2.50% 169.75 b		202 b	234.5 c 201 d 212.75 c			
4% Sin aditivo		151.75 с	174.25 c				
		141.75 d	162.75 d				
	300			284.25			
	250 —		244	234.5			
Ę.	250	211	202	212.75 201			
8	200 ———	169.75 151.75	174.25 162:75				
Kesitencia (Kg/cm²)	150	141.73					
i i	100 ———						
Yesi.	50 ———						
_							
	0	7 Días	14 Días	28 Días			
		'	Resistencia				
1.50%		211	244	284.25			
2.50%		169.75	202	234.5			
4%		151.75	174.25	201			
Sin aditivo		141.75	162.75	212.75			

Figura 36. resistencia a la compresión del concreto con aditivo acelerante utilizando WP-WANG PENG

La resistencia a la compresión a los 7, 14 y 28 días fue de 211, 244 y 284.25 Kg/cm2, respectivamente, cuando se utilizó el aditivo acelerante en una dosis de 1.5 por ciento, apreciándolo en la Tabla 30 y la Figura 36. Estos resultados fueron estadísticamente superiores y diferentes a los obtenidos con la otra dosis del aditivo acelerante. Con el 2.5 % de aditivo, la resistencia a los 7, 14 y 28 días fue de 169.75, 202 y 234.5 Kg/cm2, respectivamente. Con el 4 % de aditivo, la resistencia a los 7, 14 y 28 días fue de 151.75, 174.25 y 201 Kg/cm2, respectivamente. Finalmente, con la muestra sin aditivo la resistencia a los 7, 14 y 28 días fue de 141.75, 162.75 y 212.75 Kg/cm2,

respectivamente. Basándonos en los resultados que obtuvimos, la resistencia a la compresión del concreto obtenido bajo el efecto del aditivo en sus distintas dosificaciones muestra que la dosificación de 1.5% de aditivo es superior a la dosificación de 2.5%, 4% y al modelo de muestra sin aditivo teniendo a un comportamiento distinto siendo decreciente a los 28 días en función de la dosificación de aditivo y sin ella y al tiempo de curado.

4.2 Prueba de hipótesis

Con este estudio, investigaremos si "El uso del aditivo Sikacem Acelerante pe utilizando cementos Wp- Wang Peng y Patrón afecta relativamente en la resistencia a la compresión, Cajamarca 2021" es cierto o no. Para ello utilizamos el Anova, un método estadístico paramétrico para diseñar experimentos con muchos factores.

4.2.1 Prueba de hipótesis para aditivo al concreto.

Esto es especialmente importante cuando se piensa en la noción de que "El uso del aditivo Sikacem Acelerante pe utilizando cementos Wp- Wang Peng y Patrón afecta la resistencia a la compresión significativamente, Cajamarca 2021"

Ho: La resistencia a la compresión del concreto no se visualiza muy alterada por la aplicación de un aditivo acelerador.

Ha: La resistencia a la compresión es una de las cualidades del concreto que se visualiza muy afectada por el uso del aditivo acelerante.

Según el análisis estadístico paramétrico Anova mostrada en la tabla 23 y 25, muestra que el p valor (0.00) es menor al (0.05). Según se refleja. Resulta que la mezcla

tiene un impacto importante en la resistencia a la compresión del hormigón, por lo que podemos descartar Ho y aceptar Ha.

- **Tratamiento:** La resistencia a la compresión del hormigón está siendo influye significativamente por la dosis de aditivos utilizada en el proceso de tratamiento.
- **Bloques:** Existe una relación muy significativa entre la cantidad de aditivo empleado y la resistencia a la compresión a los 7, 14 y 28 días.

Las tablas 26 y 30 ilustran los resultados de la utilización del test de Duncan para comparar numerosos tratamientos a la vez.

4.2.1.1. Interpretación.

- Los tratamientos de 1.5 %, 2.5 % y 4 % tienen reuntados diferentes en todos los % del aditivo.
- Asimismo, se muestra que al incorporar al 1.5% de aditivos muestran un mejor comportamiento que los demás.

4.2.2 Prueba de hipótesis para adición de aditivo al concreto con cemento patrón.

Considerando la hipótesis planteada "La aplicación del aditivo acelerante afecta significativamente en el crecimiento de la resistencia a la compresión del concreto con el cemento Patrón."

Ho: El crecimiento de la resistencia a la compresión en el hormigón elaborado con cemento ordinario no se visualiza afectado por la dependencia de un aditivo acelerante.

Ha: El desarrollo de la resistencia a la compresión en el hormigón fabricado con cemento Patrón se ve considerablemente afectado por el uso de un aditivo acelerante.

Según el análisis estadístico paramétrico Anova mostrada en la tabla 23 se muestra que el p valor es menor es (0.00) es menor al (0.05). Dado que el aditivo manifiesta un impacto importante en la resistencia a la compresión del hormigón, debemos rechazar Ho y aceptar Ha.

- Tratamiento: La resistencia a la compresión del hormigón varía mucho en relación de la dosis de aditivo utilizada en los arranques.
- Bloques: Dependiendo de la cantidad de aditivos, hay una notable variación en la resistencia a la compresión.

4.2.3 Prueba de hipótesis para adición de aditivo al concreto con cemento patrón.

Ho: El desarrollo de la resistencia a la compresión en el hormigón fabricado con cemento Wp - Wang Peng no se ve afectado por la aplicación del aditivo acelerador.

Ha: El desarrollo de la resistencia a la compresión del hormigón fabricado con cemento Wp-Wang Peng se ve muy afectado por el uso de un aditivo acelerante.

Según el análisis estadístico paramétrico Anova mostrada en la tabla 23 se muestra que el p valor es menor es (0.00) es menor al (0.05). Resulta que la mezcla tiene un impacto importante en la resistencia a la compresión del hormigón, por lo que podemos descartar Ho y aceptar Ha.

- Tratamiento: La resistencia a la compresión del concreto varía mucho en función de la cantidad de aditivos utilizados.
- Bloques: Dependiendo de la cantidad de aditivos, hay una notable variación en la resistencia a la compresión.

4.2.4 Prueba de hipótesis para adición de aditivo al concreto con cemento WP – WANG PENG.

Considerando la hipótesis planteada "La aplicación del aditivo acelerante afecta significativamente en el crecimiento de la resistencia a la compresión del concreto con el cemento Wp- Wang Peng"

Ho: El crecimiento de la resistencia a la compresión en el hormigón fabricado con cemento Wp - Wang Peng no se ve afectado por la aplicación del aditivo acelerador.

Ha: El crecimiento de la resistencia a la compresión del hormigón fabricado con cemento Wp-Wang Peng se ve muy afectado por el uso de un aditivo acelerante.

Según el análisis estadístico paramétrico Anova mostrada en la tabla 29 se muestra que el p valor es menor es (0.00) es menor al (0.05). Resulta que la mezcla tiene un impacto importante en la resistencia a la compresión del hormigón, por lo que podemos descartar Ho y aceptar Ha.

- Tratamiento: La resistencia a la compresión del hormigón varía mucho en función de la totalidad de aditivos utilizados.
- Bloques: Dependiendo de la cantidad de aditivos, hay una notable variación en la resistencia a la compresión.

4.3 Discusión de resultados

Se investigó la resistencia a la compresión del hormigón para conocer el efecto de la proporción del aditivo acelerador.

En el estudio presente se utilizó el cemento Patrón y para la recolección de información se tuvo que emplear un análisis estadísticamente con el análisis paramétrico Anova qué nos muestra la tabla 24 esto nos dio un resultado donde nos muestra que el p-

valor es de 0.00 donde el factor de significancia R2 es mayor al 99 %, esto quiere decir que la incorporación de aditivo a sus porcentajes 1.5 %, 2.5 % y 4% tienen el grado de significancia más del 99 %, esto quiere decir que el aditivo influye significativamente en la resistencia a la compresión del concreto en la tabla 24 que usamos la tabla Duncan para el análisis de datos, nos muestra que a los 7 días con la agregación de aditivo al 1.5 % en relación al peso del cemento donde aumenta su resistencia al compresión en un 25 % y a los 14 sigue aumentando de una forma creciente en su resistencia a la compresión siendo esta de 32 % y a los 28 días llega a su resistencia máxima que es del 54 % siendo esta adición la que muestra mejor conducta a la resistencia a la compresión ya que al incorporar al 2.5 % respecto al peso del cemento nos muestra un comportamiento decreciente ya que a los 7 días la tabla numero 24 nos muestra unos resultados de 13 % y a los 14 sigue aumentando en 20 % de una forma creciente en su resistencia y a los 28 días nos muestra un incremento de 28 % la cual nos muestra su máxima resistencia nos muestra un comportamiento decreciendo por el porcentaje de aditivo utilizado en el concreto al incorporar el 4 % respecto al peso del cemento la tabla 24 nos muestra un resultado decreciente que a los 7 días un crecimiento a la resistencia a la compresión de 3% sigue aumentando pero de una forma decreciente con respecto a los otros porcentajes de aditivo a los 14 días sigue aumentando en un 8 % pero de una forma decreciente y a los 28 días nos muestra un compartimiento decreciendo de -5 % de resistencia a la compresión. La muestra sin aditivo la tabla 24 da a conocer los resultados que se asemeja al de 4 % de en los 7 y 14 días que los promedios son iguales de acuerdo a la tabla 24 pero a los 28 vemos un comportamiento creciente que aumentó un 32 %.

En la investigación utilizando el cemento patrón nos muestra que al incorporar el 1.5 % de aditivo acelerante respecto al peso del cemento muestra un mejor comportamiento que todas las dosificaciones empleadas en la investigación, pero al usar

la dosificación 2.5 % se comporta de una manera distinta teniendo resultados decrecientes respecto a la dosificación de 1.5 % pero al usar la dosificación de 4 % nos muestra un comportamiento decreciente en todas las edades de resistencia a la compresión. Pero el diseño de muestra nos muestra resultados similares a los del 4% de incorporación de aditivos a las edades de 7 y 14 días llegado a los 28 días a tener un mejor comportamiento que incluso mejor que al 2.5% teniendo una mejor resistencia a la compresión que las dosificaciones de 2.5 % y 4 %.

El cemento Wp-Wang Peng fue empleado para el estudio presente y se dio un análisis estadísticamente con el análisis paramétrico un Anova para recopilar información qué nos muestra la tabla 25, esto nos dio un resultado donde nos muestra que el p-valor es de 0.00 donde el factor de significancia R2 es mayor al 99 %, esto quiere decir que la incorporación de aditivo a sus porcentajes 1.5 %, 2.5 % y 4 % tienen el grado de significancia más del 99 % esto quiere decir que el aditivo influye significativamente en la resistencia a la compresión del concreto en la tabla 26 que usamos la tabla Duncan para el análisis de datos nos muestra que a los 7 días al incorporación de aditivo al 1.5 % respecto al peso del cemento donde aumenta su resistencia al compresión en un 15 % y para los 14 días sigue aumentando de una forma creciente en su resistencia a la compresión siendo 25 % y a los 28 días llega a su resistencia máxima de 48 % siendo esta adición la que muestra una mejor conducta a la resistencia a la compresión ya que al incorporar el 2.5 % respecto al peso del cemento nos muestra un comportamiento decreciente ya que a los 7 días la tabla 26 nos muestra unos resultados de 10 % y a los 14 sigue aumentando en 17 % de una forma creciente en su resistencia y a los 28 días nos muestra un incremento de 23 % la cual nos muestra su máxima resistencia nos muestra un comportamiento decreciendo por el porcentaje de aditivo utilizado en el concreto al incorporar el 4 % respecto al peso del cemento la tabla 26 nos muestra un resultado decreciente que a los 7 días un aumento a la resistencia a la compresión de 2 % sigue aumentando pero de una forma decreciente con respecto a los otros porcentajes de aditivo a los 14 días sigue aumentando en un 6 % pero de una forma decreciente y a los 28 días nos proporciona un comportamiento decreciendo de -3 % de resistencia a la compresión. La muestra sin aditivo la tabla 26 dio a conocer los resultados que se asemeja al de 4% de en los 7 y 14 días que los promedios son iguales de acuerdo a la tabla 26 pero a los 28 vemos una conducta creciente que aumentó un 2 %.

En la investigación, utilizando el cemento Wp-Wang Peng se muestra que al incorporar el 1.5 % de aditivo acelerante respecto al peso del cemento muestra un mejor comportamiento que todas las edades de 7, 14 y 28 días en las dosificaciones empleadas en la investigación, pero al usar la dosificación 2.5 % se comporta de una manera distinta teniendo resultados decrecientes respecto a la dosificación de 1.5 % pero al usar la dosificación de 4% nos muestra un comportamiento decreciente en todas las edades de resistencia a la compresión. Pero el diseño de muestra nos da resultados similares a los del 4 % de incorporación de aditivo a las edades de 7 y 14 días llegando a los 28 días a tener un mejor comportamiento que el del 4% pero menor que las dosificaciones de 1.5 % y 2.5 % ya que estas muestran tienen un comportamiento diferente que aumentan su resistencia a la compresión del concreto por la dosificación de aditivo acelerante.

En la investigación presente, la tabla 30 nos muestra los resultados generales donde comparamos los dos cementos sin aditivo y con aditivo para poder saber cuál de los dos cementos se adapta mejor a la resistencia a la compresión sin aditivo acelerante y al incorporar el aditivo acelerante la cuan nos da los resultados que el cemento Patrón nos da un mejor comportamiento en las dosificaciones sin aditivo y y con aditivo al 1.5 % en cambio el Wp-Wang Peng nos muestra un mejor comportamiento a la resistencia en la dosificaciones de 2.5 % y 4 % a edades de 28 días.

Al respecto Albarado (2020), en su tesis de grado titulada "Análisis comparativo de sensibilidad de diferentes aditivos superplastificantes en el hormigón", citada como antecedente internacional, se pudo apreciar que para diferentes resultados de que la mescla a los 90 días de 344 Kg/cm2, la mezcla A cumple con el diseño en su totalidad, siendo la resistencia a la compresión a los 90 días de 344 kg/cm2, B mayor a A en 21.8 por ciento, C mayor que A en 3.8 por ciento, D es menor que A en 9.01 por ciento, E es menor que A en 17.15 por ciento, F es menor A en 15.99 por ciento, G es menor que A en 20.06 por ciento, H es menor que A en 11.05 por ciento, I es menor que A en 22.38 por ciento. La densidad del concreto endurecido está entre 2200/y 2350/calificándolo como hormigón de peso normal.

En consecuencia, tras analizar y discutir los resultados se procedió a presentar algunas discusiones que muestra su investigación, la mía muestra resultados más altos por que el uso un diseño de mezclas diferente, por eso muestra resultados diferentes el aditivo usado no es el mismo la cual se comporta de diferente manera en la resistencia a la compresión teniendo diferentes respuestas.

Ambas investigaciones coinciden en que los aditivos perfeccionan al concreto en la resistencia a la compresión.

Asimismo, con López (2020) en su tesis de grado titulada "Efecto de la incorporación de aditivos acelerantes de fragua, sobre la resistencia a la compresión del concreto, aplicables a obras hidráulicas para las altitudes 2600 a 3500 m.s.n.m, Áncash", citada como antecedente nacional, se pudo rescatar que se midió la resistencia a la compresión comprobándose que la dependencia del aditivo Sika 3 al hormigón la aumentaba de 252,59 kg/cm3 a 262,40 kg/cm3. La resistencia a la compresión fue menor (258,21 kg/cm3) en el método responde a la adición del aditivo Chema 3 que con el

método correspondiente a la adición del aditivo Sika 3. Ambos aditivos afectaron al tiempo de secado y a la resistencia del concreto, sin embargo, el tratamiento con el aditivo Sika 3 obtuvo los resultados más significativos debido a su mayor resistencia en igualdad con el tratamiento con el aditivo Chema 3. En su investigación existen ciertas similitudes porque tiene un diseño de mezclas similares, pero no se tiene los mismos resultados porque su granulometría es diferente y la incorporación de dosificación de aditivos son diferentes y el aditivo usado no es el mismo.

Ambas investigaciones concluyen que al incorporar aditivo esta mejora sus propiedades del concreto y en la resistencia a la compresión del concreto.

Bernal (2017), en su tesis de maestría titulada "Optimización de la resistencia a compresión del concreto, elaborado con cementos tipo I y aditivos superplastificantes", citada como antecedente local, mostró que los resultados muestran que el motivo de la investigación fue identificar la mejor coherencia o relacion entre el cemento tipo I y el aditivo superplastificante para aumentar la resistencia a la compresión del hormigón. Se prepararon ocho especímenes para cada equipo de control utilizando Andino, Pacasmayo y sol sin aditivo, y ocho especímenes para cada grupo experimental utilizando Chema Sper Plast, Euco37 y Sika Plast 1000. Los métodos incluyeron el cálculo de los parámetros físico-mecánicos de los agregados de la cantera del río Chonta, los pesos específicos de los aditivos y las densidades del cemento Portland Tipo I. Se tomó en consideración la técnica del módulo de finura de la combinación de áridos, diseñamos una mezcla para alcanzar una resistencia a la compresión objetivo de 280 kg/cm2 después de 28 días. Mezcla de control, que era un hormigón sin aditivos. Hormigón con supe plastificante. Tras la ejecución del diseño, se determinó que tanto el equipo de control como el experimental alcanzaron resistencias a la compresión superiores a las especificadas en el diseño. La máxima resistencia a la compresión se produjo al combinar el aditivo supe plastificante Sika Plast 1000 con el cemento tipo I de Pacasmayo, cuya resistencia fue superior en un factor de 11. Además de mejorar la trabajabilidad del hormigón, los aditivos utilizados redujeron el coste de las mezclas de los grupos experimentales en un 14,03% en comparación con la combinación del grupo de control sin aditivos.

En la siguiente investigación no existen semejanzas si similitudes que utilizo agregados de diferentes canteras se usó un diseño de mezclas diferentes el cual le dio resultados diferentes en los ensayos realizados y los porcentajes de aditivos fueron diferentes, así como el tipo de aditivo utilizado y los cementos utilizados fueron distintos.

El hormigón manifiesta las cualidades físicas y químicas, en concreto su resistencia a la compresión a los 28 días, se ven reforzadas por el uso de aditivos, como ya se ha establecido.

CONCLUSIONES

- Se corroboro que la resistencia a la compresión aumentaba en un 54 %, a los 28 días, cuando se añadía un aditivo acelerador del 1,5 % al cemento Patrón, lo que daba lugar a mejores propiedades físicas y químicas del hormigón y a tiempos de fraguado más cortos. Sin embargo, el mismo aditivo redujo la resistencia a la compresión a los 7, 14 y 28 días cuando se añadió en concentraciones del 2,5 % y 4 %, respectivamente.
- La incorporación de un aditivo acelerante del 1,5 % con el cemento WP-WANG
 PENG proporciona una mejor resistencia a la compresión en un 48 % a los 28 días,
 tal y como se ha determinado en esta tesis.
- El valor p de 0,00 para ambos cementos estudiados en esta tesis indica que la adición tiene un alto grado de relevancia en las cualidades físicas y químicas del hormigón, concretamente en el incremento de su resistencia a los 7, 14 y 28 días.
- Según los resultados de este estudio, la resistencia a la compresión y el tiempo de fraguado del concreto se ven considerablemente afectados por la agregación de un aditivo acelerante en porcentajes del 1,5 %, 2,5 % y 4 %.

RECOMENDACIONES

- Dado que el cemento representa un porcentaje elevado dentro de los costos para un hormigón de 210kg/cm2, que es el más utilizado en las construcciones civiles, es importante optimizar la cuantía de cemento agregando aditivo para lograr a la resistencia adecuada.
- Para aumentar la resistencia inicial y reducir el tiempo de fraguado, se aconseja que las empresas constructoras apliquen un aditivo acelerador en una proporción del 1,5 % en peso del cemento.
- Añadir el aditivo acelerante al agua de amasado, en lugar de directamente al hormigón garantiza que el aditivo se distribuirá uniformemente por toda la mezcla. Si no se tiene en cuenta esto, una parte de la superficie puede acumularse más rápido que el resto, lo que podría dar lugar a resultados no deseados.
- En aras del estudio y la observación, se sugiere realizar un experimento utilizando varias marcas de aditivos aceleradores.
- Los aditivos acelerantes no deben superar el 4 % del peso total del cemento cuando se utilizan en zonas cálidas. Esto responde a que se encontraron resultados negativos para la resistencia a la compresión en niveles más elevados al 4 %.
- A la luz de estos resultados, se sugiere que, en futuros estudios, se utilice un tipo diferente de cemento, áridos de otras canteras con un tamaño máximo nominal variado y varias marcas de aditivos acelerantes.
- Se debe fomentar el uso de equipos y materiales estandarizados, así como un estricto control de calidad sobre todos los futuros suministros de investigación.

REFERENCIA BIBLIOGRÁFICA

- 1. **Alvarado Boza , Isidro Isidro y Tivanta Jaramillo, Karen Jael.** repositorio.upse.edu.ec. *repositorio.upse.edu.ec*. [En línea] Universidad Estatal Península de Santa Elena, 2020., 05 de febrero de 2020. [Citado el: 20 de diciembre de 2021.] https://repositorio.upse.edu.ec/handle/46000/5267. UPSE-TIC-2020-0003.
- 2. **Medina Robalino, Wilson Santiago y Rodríguez Villacís, Santiago Ismael.** repositorio.uta.edu.ec. *repositorio.uta.edu.ec*. [En línea] Universidad Técnica de Ambato. Facultad de Ingeniería Civil y Mecánica. Carrera de Ingeniería Civil, 18 de Agosto de 2016. [Citado el: 27 de Diciembre de 2021.] http://repositorio.uta.edu.ec/jspui/handle/123456789/23635.
- 3. **Moreno Pachon, Ana Maria.** epository.uamerica.edu.co. *epository.uamerica.edu.co*. [En línea] Fundación Universidad de América, 08 de Agosto de 2018. [Citado el: 27 de Diciembre de 2021.] http://hdl.handle.net/20.500.11839/6950.
- 4. Pérez Oyola, , Juan Carlos y Arrieta-Ballén , Yeison Leonardo.
 repository.ucatolica.edu.co. repository.ucatolica.edu.co. [En línea] Derechos Reservados
 Universidad Católica de Colombia, 2017, 08 de Febrero de 2018. [Citado el: 20 de
 Diciembre de 2021.] http://hdl.handle.net/10983/15486.
- 5. Tomalá Pozo, , José Manuel y Cucalón Rosales, Ronald Fabricio. repositorio.upse.edu.ec. repositorio.upse.edu.ec. [En línea] La Libertad: Universidad Estatal Península de Santa Elena, 2020., 03 de Setiembre de 2020. [Citado el: 20 de Diciembre de 2021.] https://repositorio.upse.edu.ec/handle/46000/5367. UPSE-TIC-2020-0011.
- 6. **MACEDO, LAURA YSABEL LÓPEZ.** www.repositorio.unasam.edu.pe/. www.repositorio.unasam.edu.pe/. [En línea] UNIVERSIDAD NACIONAL SANTIAGO

ANTÚNEZ DE MAYOLO, 18 de Enero de 2020. [Citado el: 20 de Diciembre de 2021.] http://repositorio.unasam.edu.pe/handle/UNASAM/4450.

- 7. **Javier** Orlando. http://repositorio.upao.edu.pe/. Quispe Guevara, http://repositorio.upao.edu.pe/. [En línea] Universidad Privada Antenor Orrego - UPAO, 07 Octubre de 2021. [Citado el: 20 de Diciembre 2021.1 https://hdl.handle.net/20.500.12759/8084. T_CIV_1982.
- 8. Navas Luis. http://repositorio.unu.edu.pe/. Gonzales. **Jorge** http://repositorio.unu.edu.pe/. [En línea] Universidad Nacional de Ucayali, 24 de **Nobiembre** de 2021. [Citado el: 20 de Diciembre de 2021.1 http://repositorio.unu.edu.pe/handle/UNU/5060.
- 9. Canchaya Cano, Liseth Marjhorit. Repositorio Institucional Continental. *Repositorio Institucional Continental*. [En línea] Universidad Continental, 12 de Diciembre de 2021. [Citado el: 20 de Diciembre de 2021.] https://hdl.handle.net/20.500.12394/10397. 732016.
- 10. **Agurto Marcelo, Peter Andres.** https://repositorio.upn.edu.pe/. https://repositorio.upn.edu.pe/. [En línea] Universidad Privada del norte, 07 de Junio de 2021. [Citado el: 28 de Diciembre de 2021.] https://hdl.handle.net/11537/27703. 777-780.
- 11. Vargas **Carlos** Iván. https://repositorio.unc.edu.pe/. Salazar, https://repositorio.unc.edu.pe/. [En línea] Universidad Nacional de Cajamarca, 20 de Abril de 2021. [Citado el: 2020 de Diciembre de 2021.] https://repositorio.unc.edu.pe/handle/20.500.14074/4131?show=full.
- 12. **Santillán Requelme, Manuel.** Repositorio Institucional UNC. *Repositorio Institucional UNC*. [En línea] Universidad Nacional de Cajamarca, 01 de Julio de 2019.

[Citado el: 20 de Diciembre de 2021.] https://repositorio.unc.edu.pe/handle/20.500.14074/3029.

- 13. **Abanto Cabellos, Tatiana Enet.** Repositorio Institucional UPN. *Repositorio Institucional UPN*. [En línea] Universidad Privada del Norte, 29 de Octrubre de 2016. [Citado el: 20 de Diciembre de 2021.] https://hdl.handle.net/11537/10351. 624 ABAN/P 2016.
- 14. **Guzman Manihuari, Jorge Luis, Novoa Sangay, Susana Elisabeth.** Repositorio Institucional UPN. *Repositorio Institucional UPN*. [En línea] Universidad Privada del Norte, 20 de 04 de 2021. [Citado el: 20 de Diciembre de 2021.] https://hdl.handle.net/11537/28156. 624.1834 GUZM 2021.
- 15. **Bernal Díaz, Daniel.** Repositorio Institucional UNC. *Repositorio Institucional UNC*. [En línea] Universidad Nacional de Cajamarca. Escuela de Posgrado, 17 de 11 de 2017. [Citado el: 20 de 12 de 2021.] https://repositorio.unc.edu.pe/handle/20.500.14074/1233?show=full. 2017.
- 16. Rivva lopes, Enrique. diseño de mezclas. [ed.] Instituto de la Costrucción y Gerencia
 ICG. Lima: Instituto de la Costrucción y Gerencia ICG, 2014. Vol. Segundo . 2014-06426.
- 17. **Rivva Lopes, Enrrique.** *NATURALEZA Y MATERIALES PARA EL CONCRETO*. [ed.] Instituto de la cosntrucción y gerencia ICG. Lima : Instituto de la cosntrucción y gerencia ICG, 2014. pág. 402. Vol. Segunda Edición . 2014-06419.
- Committee, Approved by ACI Technical Activities. Terminology, ACI Concrete.
 Chicago: s.n., 2019. pág. 188.

- 19. **Pasquel Carbajar, Enrique.** *TOPICOS DE TECNOLOGIA DEL CONCRETO*. Lima : Colegio de Ingenieros del Perú Consejo nacional, 1998. pág. 400. Vol. Segunda Edición .
- 20. **FERNÁNDEZ CÁNOVAS, Manuel.** *HORMIGON* . MADRID : GRAFIAS GOICHÉ, S.L.-Cerámica, 64 28038 Madrid, 2013. 978-380-0364-0.
- 21. **Abanto Castillo, Favio.** *TECNOLOGIA DEL CONCRETO*. Segunda edición . LIMA : SAN MARCOS E.I.E.R.L., 2009. pág. 189. 978-612-302-060-6.
- 22. Seteven H. Kosmatka, Beatrix Kerkhoff, William C. Panarese, Jussara Tanesi. Diseño y Control De Mezclas de Concreto. Chicago: Protlan Cementos Association, 2004. pág. 537. 0-89312-233-55.
- 23. L., ING. GERARDO A. RIVERA. CONCRETO SIMPLE. Primera Edición . Cauca : Facultad de Ingeniería Civil de la Universidad del Cauca, 2013. pág. 253.
- 24. **Hernández Sampieri, Roberto.** *Metodología de la investigación* . Sexta edición. México D.F. : INTERAMERICANA EDITORES, S.A. DE C.V., 2014. pág. 736. Vol. Sexta edición. 978-1-4562-2396-0.
- 25. **Borja S., Manuel.** *Metodologia de la investigación cientifica*. Chiclayo : s.n., 2016. pág. 100.
- 26. NORMA TÉCNICA PERUANA, (NTP 334.009). https://tiendavirtual.inacal.gob.pe/0/home_tienda.aspx.

 https://tiendavirtual.inacal.gob.pe/0/home_tienda.aspx. [En línea] Comisión de Reglamentos Técnicos y Comerciales INDECOPI, 31 de 03 de 2005. [Citado el: 20 de 01 de 2022.] https://fdocuments.in/document/ntp-334009.html?page=1.

- 27. **NORMATÉCNICA PERUANA, (NTP 339.185).** https://tiendavirtual.inacal.gob.pe/0/modulos/TIE/TIE_DetallarProducto.aspx?PRO=56 04.
- https://tiendavirtual.inacal.gob.pe/0/modulos/TIE/TIE_DetallarProducto.aspx?PRO=5 604. [En línea] INAKAL, 07 de 08 de 2013. [Citado el: 15 de 01 de 2022.] https://kupdf.net/download/ntp-3391852013-agregados-metodo-contenido-de-humedad-total-evaporable-de-agregados-por-secado_59c03b5808bbc55813686f84_pdf.
- 28. NORMA TÉCNICA PERUANA , (NTP 400.017). https://tiendavirtual.inacal.gob.pe/0/modulos/TIE/TIE_DetallarProducto.aspx?PRO=16 72.

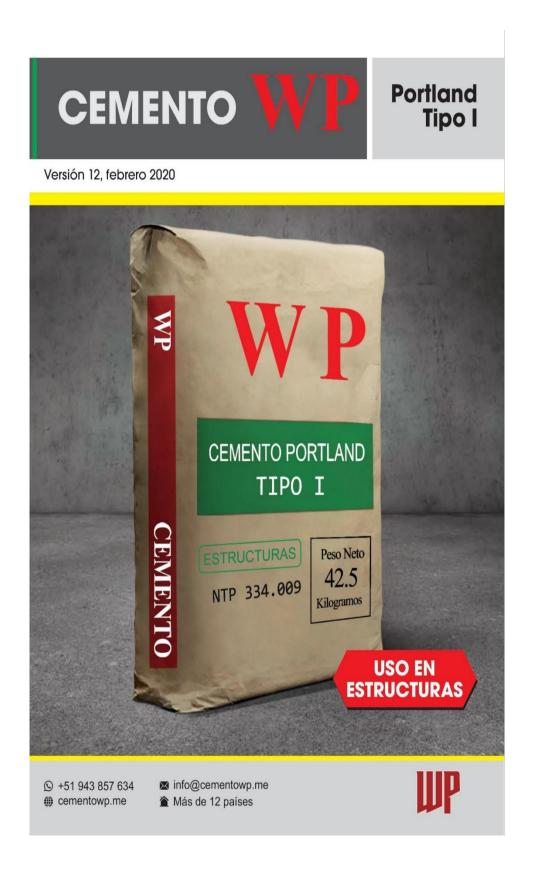
https://tiendavirtual.inacal.gob.pe/0/modulos/TIE/TIE_DetallarProducto.aspx?PRO=1 672. [En línea] INAKAL, 02 de 02 de 2011. [Citado el: 15 de 01 de 2022.] https://www.studocu.com/pe/document/universidad-san-pedro/ntp-400-norma-tecnica-peruana-4000172011/9733585.

- 29. NORMA TÉCNICANTP PERUANA , (NTP 400.022). https://tiendavirtual.inacal.gob.pe/0/modulos/TIE/TIE_DetallarProducto.aspx?PRO=45 43.
- https://tiendavirtual.inacal.gob.pe/0/modulos/TIE/TIE_DetallarProducto.aspx?PRO=4 543. [En línea] INAKAL, 26 de 12 de 2013. [Citado el: 15 de 01 de 2022.] https://kupdf.net/download/ntp-4000222013-agregados-metodo-peso-especifico-y-absorcion-del-agregado-fino_59c03df208bbc5f314686f9e_pdf.
- 30. NORMA TÉCNICA PERUANA , (NTP 400.019). https://tiendavirtual.inacal.gob.pe/0/modulos/TIE/TIE_DetallarProducto.aspx?PRO=61 66.

https://tiendavirtual.inacal.gob.pe/0/modulos/TIE/TIE_DetallarProducto.aspx?PRO=6 166. [En línea] 3° Edición , INAKAL, 04 de 12 de 2014. [Citado el: 20 de 01 de 2022.] https://es.scribd.com/document/413798334/NTP-400-019.

31. NORMA TÉCNICA PERUANA , (NTP 339.035). https://tiendavirtual.inacal.gob.pe/0/modulos/TIE/TIE_DetallarProducto.aspx?PRO=52 90.

https://tiendavirtual.inacal.gob.pe/0/modulos/TIE/TIE_DetallarProducto.aspx?PRO=5 290. [En línea] INACAL, 22 de 12 de 2015. [Citado el: 20 de 01 de 2022.] https://www.coursehero.com/file/125440022/NTP-339035-2015-MEDICI%C3%93N-DEL-ASENTAMIENTO-v2pdf/.


- 32. NORMA TÉCNICA PERUANA, (NTP 339.033). https://tiendavirtual.inacal.gob.pe/0/modulos/TIE/TIE_DetallarProducto.aspx?PRO=52 90.
- https://tiendavirtual.inacal.gob.pe/0/modulos/TIE/TIE_DetallarProducto.aspx?PRO=5 290. [En línea] Dirección de Normalización INACAL, 22 de 12 de 2015. [Citado el: 22 de 01 de 2022.] https://www.coursehero.com/file/54011352/NTP-339033-2015pdf/.
- 33. NORMA TÉCNICA PERUANA , (NTP 339.183). https://tiendavirtual.inacal.gob.pe/0/modulos/TIE/TIE_DetallarProducto.aspx?PRO=45 41.

https://tiendavirtual.inacal.gob.pe/0/modulos/TIE/TIE_DetallarProducto.aspx?PRO=4
541. [En línea] 2ª Edición, Comisión de Normalización y de Fiscalización de Barreras
Comerciales no Arancelarias - INDECOPI, 16 de 01 de 2013. [Citado el: 28 de 01 de 2022.] https://es.scribd.com/document/372901325/NTP-339-183-2013-pdf.

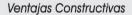
- 34. **NORMA TÉCNICA PERUANA , (NTP 339.034).** https://tiendavirtual.inacal.gob.pe/0/modulos/TIE/TIE_DetallarProducto.aspx?PRO=52 73.
- https://tiendavirtual.inacal.gob.pe/0/modulos/TIE/TIE_DetallarProducto.aspx?PRO=5 273. [En línea] Dirección de Normalización INACAL, 22 de 12 de 2015. [Citado el: 20 de 01 de 2022.] https://es.scribd.com/document/417389764/Ntp-339-034-Metodo-de-Ensayo-Normalizado-Para-La-Determinacion-de-La-Resistencia-a-La-Compresion-Del-Concreto-en-Muestras-Cilindricas.
- 35. **SANTILLÁN REQUELME, Manuel.** repositorio.unc.edu.pe. *repositorio.unc.edu.pe.* [En línea] Universidad Nacional De Cajamarca, 20 de mayo de 2019. [Citado el: 28 de Diciembre de 2021.] http://hdl.handle.net/20.500.14074/3029. 2019-07-01T18:09:05Z.

ANEXOS

ANEXO A. DESCRIPCIÓN DEL CEMENTO WP

Qué es Cemento WP?

Es un cemento especial para la producción de concretos estructurales, tales como los destinados para columnas, vigas, losas, muros y cimentaciones en todo tipo de edificaciones y obras de infraestructura. Es un Cemento Portland Tipo I, cuyas especificaciones cumplen con los valores de la Norma Técnica Peruana NTP 334.009 y el ASTM C-150


Usos y Aplicaciones

Concretos para pavimentos y pisos industriales. Producción de concretos que requieren una mayor resistencia inicial.

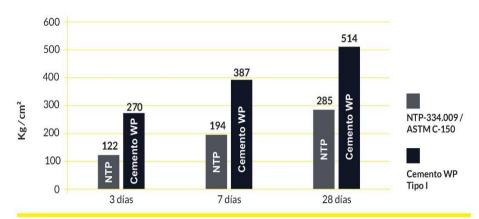
Elementos de concreto pretensado y postensado. Diversos formatos de prefabricados con altas prestaciones estructurales. Puentes, Túneles, Shotcrete, Represas, Canales, Edificios, Estadios, entre otros.

Beneficios

- Es un cemento empacado de altas prestaciones, lo cual permite la producción en obra de mezclas de concreto más eficientes.
- Este cemento ofrece un buen desempeño a edades iniciales y finales, por tal motivo permite reducir los tiempos de ejecución en obra.

Presentación

- Sacos de polipropileno de 42.5 kg., envasados en bolsones (Jumbo Bags o Big Bags de 2Tons.
- Son 45 sacos (de 42.5kg) por cada Bolsón de 2 Toneladas, con protección antihumedad


Almacenamiento

- Usar y aplicar este tipo de cemento bajo los lineamientos de las normas técnicas de construcción.
- Almacenar en un lugar seco y ventilado, bajo techo, protegido de humedad y evitando el contacto con el agua, hasta el término máximo de doce meses contados a partir de su expedición.
- Conservar los sacos sobre parihuelas y no sobre el suelo. Consumir el mismo día en que fue abierto el saco.
- Almacenar en pilas de menos de 10 sacos.
- © +51 943 857 634
- @ cementowp.me
- info@cementowp.me
- Más de 12 países

Comparación resistencias NTP-334.009-2016 / ASTM C-150 vs. Cemento WP Tipo I

DESCRIPCÍON	UNIDAD	Cemento WP Tipo I	REQUISITOS NTP-334.009-2016 / ASTM C-150
Contenido de aire	%	5.30	Máximo 12
Expansión autoclave	%	0.02	Máximo 0.80
Superficie específica	m²/kg	398	Mínimo 260
Densidad	g/ml	3.12	No especifica
Resistencia a la Compresión			
Resistencia a la compresión a 3 días	kg/cm ²	270	Mínimo 122
Resistencia a la compresión a 7 días	kg/cm ²	387	Mínimo 194
Resistencia a la compresión a 28 días	kg/cm²	514	Mínimo 285
Tiempo de Fraguado			
Fraguado Vicat inicial	min	136	Mínimo 45
Fraguado Vicat final	min	172	Máximo 375
Composición Química			
MgO	%	1.80	Máximo 6.0
SO3	%	2.43	Máximo 3.0
Pérdida por ignición	%	3.08	Máximo 3.5
Residuo insoluble	%	0.28	Máximo 1.5
Óxido de Aluminio (Al ₂ O ₃)	%	4.60	No especifica
Óxido Férrico (Fe ₂ O ₃)	%	3.24	No especifica
Álcalis Equivalentes			
Total Alkalí	%	0.44	Máximo 0.60

© +51 943 857 634

info@cementowp.me

cementowp.me

Más de 12 países

COMPARATIVO DE PRUEBAS FÍSICAS/QUÍMICAS

DESCRIPCÍON	UNIDAD	Mochica GU	Pacasmayo Tipo ICo	Nacional Tipo I	Pacasmayo Tipo I	Qhuna Tipo I	Cemex Tipo I	WP Tipo I
Contenido de aire	%	5.00	5.00	9.00	7.00	7.00	6.10	5.30
Expansión autoclave	%	0.08	0.08	0.008	0.13	0.05	0.01	0.02
Superficie específica	m²/kg	593	590	420	397	395	399	398
Densidad	g/ml	2.96	2.96	3.06	3.08	3.09	3.13	3.12
Resistencia a la Compresión								
Resistencia a 3 días	kg/cm ²	226	229	290	308	300	315	271
Resistencia a 7 días	kg/cm ²	302	304	350	379	367	401	387
Resistencia a 28 días	kg/cm²	385	386	390	449	449	497	514
Tiempo de Fraguado								
Fraguado Vicat inicial	min	159	157	120	121	146	150	136
Fraguado Vicat final	min	270	260	260	240	244	195	172
Composición Química								
MgO	%	N.E.	2.10	3.30	2.20	1.90	2.30	1.80
SO3	%	N.E.	2.40	2.00	2.70	2.80	2.54	2.43
Pérdida por ignición	%	N.E.	N.E.	3.50	3.10	3.10	3.02	3.08
Residuo insoluble	%	N.E.	N.E.	N.E.	0.70	0.60	0.23	0.28
Óxido de Aluminio (Al ₂ O ₃)	%	N.E.	N.E.	4.90	N.E.	N.E.	4.63	4.60
Óxido Férrico (Fe ₂ O ₃)	%	N.E.	N.E.	3.50	N.E.	N.E.	3.05	3.24
Álcalis Equivalentes								
Total Alkalí	%	N.E.	N.E.	N.E.	N.E.	N.E.	0.43	0.44

⁽¹⁾ Fuente: Corresponde a información obtenida del certificado de calidad emitido por Cemento Nacional en Noviembre 2019

⁽²⁾ Fuente: información obtenida del certificado de calidad número 2019100344 emitido por el laboratorio independiente BALTIC CONTROL CMACONTROL CMA

⁽³⁾ Fuente: Información obtenida del certificado de calidad número 2019100401 emitido por el laboratorio independiente BALTIC CONTROL CMACONTROL CMA

⁽⁴⁾ Fuente: Acorde a los Ensayos de laboratorio de fecha 11 de febrero de 2020 emitidos y proporcionados por Cementos Pacasmayo SAA.

⁽⁵⁾ Fuente: Acorde al certificado de Calidad proporcionado por Distribuidora Norte Pacasmayo SRL (DINO), de fecha 11 de Diciembre 2019.

Los valores de resistencia a la compresión han sido redondeados N.E=No especifica.

^{© +51 943 857 634}

info@cementowp.me

cementowp.me

Más de 12 países

COMPARATIVO DE PRUEBAS FÍSICAS/QUÍMICAS

		Apu	Nacional	Sol	Andino	Cemex	WP
DESCRIPCÍON	UNIDAD	UG (1)	Tipo I	Tipo I	Tipo I	Tipo I	Tipo I
Contenido de aire	%	3.03	9.00	6.55	4.82	6.10	5.30
Expansión autoclave	%	0.06	0.008	0.09	0.01	0.01	0.02
Superficie específica	m²/kg	365	420	327	387	399	398
Densidad	g/ml	N.E.	3.06	3.12	3.15	3.12	3.12
Resistencia a la Compresión							
Resistencia a 3 días	kg/cm ²	269	290	295	248	315	270
Resistencia a 7 días	kg/cm ²	315	350	353	311	401	387
Resistencia a 28 días	kg/cm²	369	390	442	402	497	514
Tiempo de Fraguado							
Fraguado Vicat inicial	min	128	120	126	106	150	136
Fraguado Vicat final	min	294	260	303	285	195	172
Composición Química							
MgO	%	2.78	3.30	3.02	1.41	2.30	1.80
SO3	%	2.82	2.00	3.05	2.66	2.54	2.43
Pérdida por ignición	%	N.E.	3.50	2.02	1.63	3.02	3.08
Residuo insoluble	%	N.E.	N.E.	0.70	0.72	0.28	0.28
Óxido de Aluminio (Al ₂ O ₃)	%	5.57	4.90	5.94	4.75	4.63	4.60
Óxido Férrico (Fe ₂ O ₃)	%	3.20	3.50	3.41	3.56	3.05	3.24
Álcalis Equivalentes							
Total Alkalí	%	0.44	N.E.	0.44	0.47	0.43	0.44

(1) Fuente: Información obtenida del obtenidos de los certificados de calidad emitidos por UNACEM en Marzo 2019.

- N.E = No especifica.
- Los valores de resistencia a la compresión han sido redondeados

- © +51 943 857 634
- info@cementowp.me
- cementowp.me
- Más de 12 países

ANEXO B. DESCRIPCIÓN DEL CEMENTO PATRÓN

CEMENTO TIPO I / IIBajo contenido de Álcalis

Cemento Portland TIPO I, es un cemento de uso general, fabricado mediante la molienda de clinker y yeso en adecuadas proporciones, asegurando de esa manera un producto de calidad, para construcciones donde se requieran propiedades de avance y durabilidad en obra. Cumple con los requisitos de las normas técnicas NTP 334.009 y ASTM C 150.

CARACTERÍSTICAS TÉCNICAS

PROPI	EDADES FÍSICAS	CEMENTO PORTLAND TIPO 1	REQUISITO DE NORMA 334.009 - ASTM C 150
Superficie E	específica (cm²/gr)	3660	Mínimo 2800
Retenido 45	iμm (%)	1.6	No Especifica
Contenido d	de Aire (%)	8.0	Máx. 12.0
Densidad (g/ml)	3.12	No Especifica
Pérdida Poi	r Ignición (%)	3.1	Máx. 3.5
RESISTENCIA	A A LA COMPRESIÓN		
1 DÍA	Mpa (kg/cm²)	12.6 (128.5)	NE
3 DÍAS	Mpa (kg / cm ²)	32.4 (330.4)	12.0 (122)
7 DÍAS	Mpa (kg / cm ²)	45.7 (466.0)	19.0 (194)
28 DÍAS	Mpa (kg / cm ²)	56.0 (571.0)	28.0 (286)
TIEMPO DE	FRAGUADO		
Fraguado Ir	nicial (Minutos)	120′	Mínimo 45
Fraguado F	inal (Minutos)	272′	Máximo 375'

COMPARATIVO DE RESISTENCIAS

Página 1 | 2

CEMENTO TIPO I / II

Bajo contenido de Álcalis

APLICACIONES

- Para uso en obras de construcción en general, proporciona altas resistencias.
- Para preparación de concretos en cimientos, sobre cimientos, zapatas, vigas, columnas y techado de edificaciones.
- Para uso en la construcción de todo tipo de elementos o estructuras de concreto, simple o armado.
- Usado en la fabricación de ladrillos o bloques de alta resistencia, alcantarillados o adoquines.
- Para asentar ladrillos, tarrajear, enchapes de mayólicas, pisos cerámicos y otros materiales.

RECOMENDACIONES

- Usar agregados y materiales de propiedades conocidas, certificados y de buena calidad.
- Preparar la mezcla sobre una superficie limpia, libre de materiales ajenos a la preparación.
- Es recomendable realizar el curado con agua o un agente curador químico al momento del vaceado, esto para lograr una eficiente hidratación del cemento con el objetivo de optimizar el desarrollo de la resistencia a la compresión.

 Para asegurar la conservación del cemento, se recomienda almacenar las bolsas bajo techo,
- separadas de paredes o pisos y protegidas de la humedad.
- Evitar apilar las bolsas en más de 10, para evitar la compactación de las mismas.
- Controlar la cantidad de agua de la mezcla, cuidando que no exceda la relación agua/cemento, determinada en el diseño.

RECOMENDACIONES DE SEGURIDAD

Este producto, seco o húmedo puede causar irritación o quemadura a los ojos y la piel, por ende, evitar el contacto directo.

Usar lentes de protección, guantes y botas de jebe, así como respiradores de polvo apropiados cuando se abra la bolsa o se ejecute el trabajo.

Cubra sus brazos y piernas adecuadamente, para evitar irritación.

Mantener fuera del alcance de los niños.

ANEXO C. DESCRIPCIÓN DE SIKACEM ACELERANTE PE

HOJA DE DATOS DEL PRODUCTO

SikaCem® Acelerante PE

ACELERANTE DE FRAGUA Y RESISTENCIAS PARA MEZCLAS DE CONCRETO Y MORTERO

DESCRIPCIÓN DEL PRODUCTO

Aditivo líquido de acción acelerante sobre tiempo de fraguado y resistencias mecánicas del concreto.

USOS

SikaCem® Acelerante PE debe usarse cuando se requiera:

Obtener concreto con altas resistencias a temprana edad, reducir el tiempo de desencofrado y facilitar el rápido avance de las obras, colocar concreto en ambiente frío o efectuar reparaciones rápidas en todo tipo de estructuras.

CARACTERÍSTICAS / VENTAJAS

- El SikaCem[®] Acelerante PE reduce los tiempos de desencofrado.
- Se obtienen resistencias más altas a temprana edad.
- Pronto uso de estructuras nuevas.
- Rápida puesta en uso de estructuras reparadas.
- SikaCem[®] Acelerante PE contrarresta el efecto del frío sobre las resistencias y el fraguado.

Aumenta los rendimientos en la elaboración de prefabricados

CERTIFICADOS / NORMAS

Cumple norma ASTM 494, tipo C.

INFORMACIÓN DEL PRODUCTO

Empaques	
Apariencia / Color	Incoloro a tonalidad amarrilla
Vida Útil	1 año
Condiciones de Almacenamiento	El producto debe de ser almacenado en un lugar fresco y bajo techo en su envase original bien cerrado.
Densidad	1.38 kg/L +/- 0.01

Hoja De Datos Del Producto SikaCem® Acelerante PE Mayo 2019, Versión 01.01 021402021000000090

INSTRUCCIONES DE APLICACIÓN

SikaCem® Acelerante PE viene listo para usarse, agregándose al agua de mezcla.

DOSIFICACIÓN

Dependiendo del grado de aceleramiento deseado, SikaCem® Acelerante PE se dosifica del 1% al 4% del peso del cemento (aproximadamente de 300 mL a 1200 mL por bolsa de cemento de 42.5 Kg). De acuerdo con nuestra experiencia y como una guía en el uso de SikaCem® Acelerante PE,se puede decir que con una dosificación del 4% se obtienen resistencias mecánicas a 3 días equivalentes a 7 días y a 7 días las equivalentes a 15 días. Este efecto puede variar con el tipo y la edad del cemento, como también con la temperatura del ambiente. Recomendamos hacer ensayos previos para determinar la dosificación óptima en cada caso.

NOTAS

Todos los datos técnicos recogidos en esta hoja técnica se basan en ensayos de laboratorio. Las medidas de los datos actuales pueden variar por circunstancias fuera de nuestro control.

RESTRICCIONES LOCALES

Nótese que el desempeño del producto puede variar dependiendo de cada país. Por favor, consulte la hoja técnica local correspondiente para la exacta descripción de los campos de aplicación del producto.

ECOLOGÍA, SALUD Y SEGURIDAD

Para información y asesoría referente al transporte, manejo, almacenamiento y disposición de productos químicos, los usuarios deben consultar la Hoja de Seguridad del Material actual, la cual contiene información médica, ecológica, toxicológica y otras relacionadas con la seguridad.

NOTAS LEGALES

La información y en particular las recomendaciones sobre la aplicación y el uso final de los productos Sika son proporcionadas de buena fe, en base al conocimiento y experiencia actuales en Sika respecto a sus productos, siempre y cuando éstos sean adecuadamente almacenados, manipulados y transportados; así como aplicados en condiciones normales. En la práctica, las diferencias en los materiales, sustratos y condiciones de la obra en donde se aplicarán los productos Sika son tan particulares que de esta información, de alguna recomendación escrita o de algún asesoramiento técnico, no se puede deducir ninguna garantía respecto a la comercialización o adaptabilidad del producto a una finalidad particular, así como ninguna responsabilidad contractual. Los derechos de propiedad de las terceras partes deben ser respetados. Todos los pedidos aceptados por Sika Perú S.A.C. están sujetos a Cláusulas Generales de Contratación para la Venta de Productos de Sika Perú S.A.C. Los usuarios siempre deben remitirse a la última edición de la Hojas Técnicas de los productos; cuyas copias se entregarán a solicitud del interesado o a las que pueden acceder en Internet a través de nuestra página web www.sika.com.pe. La presente edición anula y reemplaza la edición anterior, misma que deberá ser des-

SikaCemAcelerantePE-es-PE-(05-2019)-1-1.pdf

Hoja De Datos Del Producto SikaCem® Acelerante PE Mayo 2019, Versión 01.01 021402021000000090

ANEXO D. ENSAYOS

ENSAYOS DE LABORATORIO DE MECÂNICA DE SUELOS Y CONCRETO

PROYECTO: "EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"

DESCRIPCIÓN: ENSAYO DE MATERIALES DE LA CANTERA "BAZÁN"

SOLICITANTE: NÚMERO DE ENSAYO : DENNIS XAMIER VILLAR SALDAÑA KISAC-DM-70-2022

Jr.PARAISO N° 120- CAJAMARCA
Teléfonos: MOV. 976909440 CLARO: 984336450
RUC: 20529476931
kisac@hotmail.es CONTENIDO DE HUMEDAD ASTM D 4643 / D 2216 Código de control Nro. KISAC-F02 Nro de revisión: 1

Proyecto:	"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"	Fecha muestreo:	24-Jan-22	Muestra:	
Ubicación:	CAJAMARCA- CAJAMARCA- CAJAMARCA			_	
Muestreado por:	SOLICITANTE			_	
Solicitado por:	DENNIS XAMIER VILLAR SALDAÑA				

Cód. Muestra No.		KISAC-DM-70-2022			
Ubicación		E=	N =	C =	
Prof	undidad				
Muestra o ensayo		1	2	3	4
RECIPIENTE No		A-33	A-01		
Pr + Ph	Α	805.2	863.9		
Pr + Ps	В	762.6	815.4		
Pr	С	128.2	108.0		
P. AGUA	D = A - B	42.6	48.5		
Ps	E = B - C	634.4	707.4		
% DE HUMEDAD	(D/E) * 100	6.7	6.9	Promedio = 6.8	

OBSERVACIONES	CONTENIDO DE H	IUMEDAD DE ARENA			
	_				

	
· · · · · · · · · · · · · · · · · · ·	
R= PESO DEL RECIPIENTE	
H= PESO HUMEDO	
H= PESO HUMEDO	де ково́
PR= PESO DEL RECIPIENTE PH= PESO HUMEDO S≤ PESO SECO EJECUTÓ	APROBÓ
PH= PESO HUMEDO PS= PESO SECO	1 1
PH= PESO HUMEDO PS= PESO SECO	APROBÓ KAGLYMÁNGEMIEROS SAD
PH= PESO HUMEDO PS= PESO SECO	KAGLAWANGEHIEROGEAGO
PH= PESO HUMEDO PS= PESO SECO	1 1

No. of the last of	25/					29476931		
Título:		RANULOMÉT.	RICO		kisac@h	otmail.es	Código de control N	Iro.
Vro de revisio	ASTM C136			1			AMYSGSRL - F03	
vio de revisio	on.						Página 1	de 1
Proyecto:	CONCRETO	A LA RESISTENC CON ADITIVO SIN CEMENTOS WP- CAJAMARCA	(ACEM ACELERA WANG PENG Y P	NTE PE	Fecha muestreo:	24-Jan-22	Cód. Muestra No. KISAC	-DM-70-2022
lbicación:	CAJAMARCA- CA	JAMARCA- CAJAI	MARCA				Muestre:	
fuestreado por:	SOLICITANTE							
colicitado por:	DENNIS XAMIER	VILLAR SALDAÑA	1					
Tamaño Tamiz	Peso Reten. Acumulado	% Retenido	% Pasa	Especific. NTP 400.037	Cantidad de suelo que pa	asa el tamiz No. 4 (Compacta	ción AASHTO):	
8"	0.0	0.0	100.0	400.007	[1-contenido de humedeo	(-No.4)/100*(6000g 6 13.23	(lb)*(-No. 4)*(-2*)]	
6*	0.0	0.0	100.0		-			
4" 3"	0.0	0.0	100.0	-				
2*	0.0	0.0	100.0		1.01*(6000 6 13.231 lb)*[(-2")-(No.4)](-2")		
1 1/2"	0.0	0.0	100.0		1-			
3/4"	0.0	0.0	100.0		Condiciones de Scoods	I avedo del suelo Retonido	an la malla N° 4	
1/2"	0.0	0.0	100.0		Secado a 110°C sin lava	/ Lavado del suelo Retenido e r.	nr ra mana 14 .4	
3/8"	0.0	0.0	100.0	100				
1/4"	0.0	0.0	100.0	00 400			4050.0	
No. 4	216.0 319.0	5.0 19.4	95.0 80.6		Peso suelo Húmedo que Peso suelo seco que pas		4250.0 4,074.8	_
No. 10	914.0	46.3	53.7		Peso suelo seco retenido		216.0	
No. 16	994.0	49.9	50.1	45 100	Peso suelo seco total (g)		4290.8	
No. 20 No. 30	1456.0	70.8	29.2	25 80				
No. 40	7430.0	70.0	23.2	25 00	OVER=	0.0 %		
No. 50	1758.0	84.5	15.5	5 48	GRAVA=	5.0 %		
No. 60	1000.0		- 10		ARENA=			
No. 100 No. 140	1992.8	95.1	4.9	0 12	FINOS=	0.4 %		
No. 200	2092.8	99.6	0.4					
Platillo	2092.9				MOD. FINEZA	3.25	E a swiner L	
100	0000	AT ORGAN MORE MOTOR	ADMITM.	Tamato en mm	DESCRIPCIÓN:	ARENA		
90					COLOR:	GRIS]	
			N H H			le la fracción de Suelo seco q	we % de suelo seco que pasa	la malla No. 20
70					pasa	la malla Nº 4.		
50		$+++\Lambda++$	N					
50		++++++			No. Tara	A-30	No. Tara	Α-
40		$\parallel \parallel \parallel \parallel \parallel$			Peso Humedo + Tara	2240.0	Peso Seco + Tara	21
80					Peso Seco + Tara	2150.0	P. Seco Lavado +Tara	21-
20					Peso de Tara	48.2	Peso de Tera	41
10					Peso del Agua	90.0	Suelo Seco (-No. 200) g	8
					Peso Seco	2101.8	Suelo Seco (+No. 200) g	209
TAMIZ		k k]]]		1	Cont. de humedad %	4.3	Suelo Seco (-No. 200) %	0
BSERVACION		AGREGADOS PA	RA DISEÑO DE M	EZCLA				
		EJECUTÓ				A	PROBÓ	
	(F)	Y Or Park	>			KAGUNA NG LILIAN ROCIO VI EMPERALISTI DE MENTO CIP 1167	MEENIEMOS SAIL LANGEVA BAZ N governos Accuración	
	KAOI	LYN INGENIERO	S SAC				D ESPECIALISTA	-

Jr.PARAISO N° 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931

PESO UNITARIO SUELTO

Ref. AASHTO T-19

PROYECTO

UBICACIÓN

"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"

DESCRIPCIÓN

: AGREGADO FINO

MUESTREADO POR : SOLICITANTE

CÓDIGO DE MUESTRA FECHA DE ENSAYO

: KISAC-DM-70-2022

: 24/01/2022

: CAJAMARCA-CAJAMARCA-CAJAMARCA

COLOR DE MATERIAL : GRIS

PESO UNITARIO SUELTO

No de Prueba	UND	1	2	3
PESO DE RECIPIENTE + MUESTRA	Kg	12640.0	12890.0	12690.0
PESO DEL RECIPIENTE	Kg	7900.0	7900.0	7900.0
PESO DE LA MUESTRA	Kg	4740.0	4990.0	4790.0
VOLUMEN	m3	2400.0	2400.0	2400.0
PESO UNITARIO SUELTO	kg/m3	1.975	2.079	1.996
		PROM	MEDIO	2.017

PESO UNITARIO COMPACTADO

No de Prueba	UND	1	2	3
PESO DE RECIPIENTE + MUESTRA	Kg	13030.0	12720.0	12810.0
PESO DEL RECIPIENTE	Kg	7900.0	7900.0	7900.0
PESO DE LA MUESTRA	Kg	5130.0	4820.0	4910.0
VOLUMEN	m3	2400.0	2400.0	2400.0
PESO UNITARIO SUELTO	kg/m3	2.138	2.008	2.046
		PROM	MEDIO	2.064

EJECUTÓ THE LILIAN ROCIO VILLANUEVA BA KAOLYN INGENIEROS SAC

KAOLYN INGENIEROS S.A.C Jr.PARAISO N° 120- CAJAMARCA Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931

PESO UNITARIO SUELTO Ref. AASHTO T-19

PROYECTO

"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"

DESCRIPCIÓN

: AGREGADO GRUESO

KISAC-DM-70-2022

MUESTREADO POR:

SOLICITANTE

CÓDIGO DE MUESTRA FECHA DE ENSAYO UBICACIÓN

: 24/01/2022 : CAJAMARCA- CAJAMARCA- CAJAMARCA

COLOR DE MATERIAL : GRIS

PESO UNITARIO SUELTO

No de Prueba	UND	1	2	3
PESO DE RECIPIENTE + MUESTRA	Kg	11340.0	11400.0	11590.0
PESO DEL RECIPIENTE	Kg	7900.0	7900.0	7900.0
PESO DE LA MUESTRA	Kg	3440.0	3500.0	3690.0
VOLUMEN	m3	2400.0	2400.0	2400.0
PESO UNITARIO SUELTO	kg/m3	1.433	1.458	1.538
		PROM	/EDIO	1.476

PESO UNITARIO COMPACTADO

No de Prueba	UND	1	2	3
PESO DE RECIPIENTE + MUESTRA	Kg	11690.0	11650.0	11680.0
PESO DEL RECIPIENTE	Kg	7900.0	7900.0	7900.0
PESO DE LA MUESTRA	Kg	3790.0	3750.0	3780.0
VOLUMEN	m3	2400.0	2400.0	2400.0
PESO UNITARIO SUELTO	kg/m3	1.579	1.563	1.575
		PRON	MEDIO	1.572

EJECUTÓ

KAOLYN INGENIEROS SAC

KA	OLYN NIEROLAAC	Teléfonos: MO	AISO N° 120- CAJAMARCA IV. 970909450 CLARO: 984336 RUC: 20529476931 kisac@hotmail.es	450		
Título:	CANTIDAD DE MATERIAL FINO QUE ASTM C - 117				Código de Control Nro. KISAC - F3C	
Vro de revisión:			1		Página	1 de 1
Proyecto :	"EVALUACION A LA RESISTENCIA A CONCRETO CON ADITIVO SIKACEM AC CEMENTOS WP- WANG PENG Y PATI	Fecha Muest.: 24	1-Jan-22	CODIGO: KISAC-DM-70-2022		
Coordenadas:	E: - /	v: -	Cota:	10/	MUESTRA Nº: M-1	
Descripción:	AGREGADO FINO					
luestreado por	: SOLICITANTE					
8	ENSAYO N°	1	2		3	-
	Peso seco Inicial + Tara (gr.)	975.2	855.6		907.4	
	Peso seco final lavado+ Tara (gr.)	965.6	846.9		896.1	
	N° Tara	A-03	L-03		M-03	
	Peso de Tara (gr.)	120.0	138.0	-	127.4	
	Pasante la Malla Nº200 (gr.)	9.6	8.7	-	11.3	_
	Peso Inicial (gr.)	855.2	718		780	PROMEDIO
	% Pasante la Malla N°200	1.1	1.2		1.4	1.3
	Observaciones: M-1					
	EJECUTÓ		-		APROBÓ A	
	Ministration of the Control of the C	r	NIC IN I	KAOLIN ROCK	N INGENIEROS SO VILLANUEVA BAZ N 116722)
	KAOLYN INGENIEROS S	AC		INGEN	IIERO ESPECIALISTA	

Jr.PARAISO N° 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

DEL CONCRETA PE UTILIZAN PA CAJAMARCA- CAJ SOLICITANTE DENNIS XAMIER V Preso Reiter. Asterides 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	A LA RESISTEM D CON ADITIVO DIDO CEMENTO LITRÓN, CAJAM AMARCA- CAJAM ** Returnido 0.0 0.0 0.0 0.0 0.0 0.0 7.7 41.8 65.6	NCIA A LA COMB D SIKACEM ACE: S WP- WANG P! ARCA 2021* MARCA S Plass 100.0 100.0 100.0 100.0 100.0 100.0 100.0 90.3	ERANTE ENG Y Especific	-	24-Jan-22 3 el tamiz No. 4 (Compectación No.4)/100/(8000g 6 13.231 b)*		de 1
"EVALUACION DEL CONCRETI PE UTILIZAN PA CAJAMARCA- CAJ SOLICITANTE DENNIS XAMIER V Prop Relies Assembles 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	O CON ADITIVO DO CEMENTO LTRÓN, CAJAM AMARCA- CAJAM VILLAR SALDAÑA ** Reservido 0.0 0.0 0.0 0.0 0.0 0.0 7.7 41.8 65.6	SIKACEM ACE S WP- WANG PI ARCA 2021" MARCA 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 92.3	PRESION LERANTE ENG Y Especific	Cantided de suelo que pass [1-contanido de humedad (a el tamiz No. 4 (Compactación :	Cód. Muestra No. KISAC-L Muestra: AASHTO):	
DEL CONCRETA PE UTILIZAN PA CAJAMARCA- CAJ SOLICITANTE DENNIS XAMIER V Preso Reiter. Asterides 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	O CON ADITIVO DO CEMENTO LTRÓN, CAJAM AMARCA- CAJAM VILLAR SALDAÑA ** Reservido 0.0 0.0 0.0 0.0 0.0 0.0 7.7 41.8 65.6	SIKACEM ACE S WP- WANG PI ARCA 2021" MARCA 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 92.3	ERANTE ENG Y Especific	Cantided de suelo que pass [1-contanido de humedad (a el tamiz No. 4 (Compactación :	Muestra:	DM-70-2022
SOLICITANTE DENNIS XAMIER V Patr Pater. Assemble b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	### PALDAÑA *** *** *** *** *** *** *** *** ***	N Pass 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 92.3		[1-contenido de humedad (- -		aashto):	
Petro Relate. Assembled. Assembled. 0.0 0.0 0.0 0.0 0.0 0.0 0.0	% Reterrido 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.8 65.6	\$ Pass 100.0 100.0 100.0 100.0 100.0 100.0 100.0 92.3		[1-contenido de humedad (- -		aashto):	
Press Relates. Assembleds 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	% Reterrido 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.8 65.6	\$ Pass 100.0 100.0 100.0 100.0 100.0 100.0 100.0 92.3		[1-contenido de humedad (- -			
Acuminato 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Returido 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 41.8 65.6	100.0 100.0 100.0 100.0 100.0 100.0 100.0 92.3		[1-contenido de humedad (- -			
Acuminato 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Returido 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 41.8 65.6	100.0 100.0 100.0 100.0 100.0 100.0 100.0 92.3		[1-contenido de humedad (- -			
0.0 0.0 0.0 0.0 0.0 0.0 995.3 5392.2 8463.2 10274.8 12240.5 93.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.7 41.8 65.6	100.0 100.0 100.0 100.0 100.0 100.0 100.0 92.3			No.4)/100"(8000g ó 13.231 lb)"	(-No. 4)*(-2")]	
0.0 0.0 0.0 0.0 0.0 995.3 5392.2 8463.2 10274.8 12240.5 93.6	0.0 0.0 0.0 0.0 0.0 7.7 41.8 65.6	100.0 100.0 100.0 100.0 100.0 92.3		1 0178000 6 13 231 lb1%			
0.0 0.0 0.0 0.0 995.3 5392.2 8463.2 10274.8 12240.5 93.6	0.0 0.0 0.0 0.0 7.7 41.8 65.6	100.0 100.0 100.0 100.0 92.3		1.01*/8000 6.13.231 Jb)*//-2			
0.0 0.0 0.0 995.3 5392.2 8463.2 10274.8 12240.5 93.6	0.0 0.0 0.0 7.7 41.8 65.6	100.0 100.0 100.0 92.3		1 01*/6000 6 13 231 /61*//-			
0.0 0.0 995.3 5392.2 8463.2 10274.8 12240.5 93.6	0.0 0.0 7.7 41.8 65.6	100.0 100.0 92.3			?")-(No.4)](-2")		
995.3 5392.2 8463.2 10274.8 12240.5 93.6	7.7 41.8 65.6	92.3		1-	The state of the s		
5392.2 8463.2 10274.8 12240.5 93.6	41.8 65.6		100				
8463.2 10274.8 12240.5 93.6	65.6		90 100		avado del suelo Retenido en la	malla N° 4	
10274.8 12240.5 93.6		58.2 34.4	20 55	Secado a 110°C sin lavar.			
12240.5 93.6	79.7	20.3	20 55	1			
	94.9	5.1	0 10	Peso suelo Húmedo que pa	asa (g)	2685.3	
	95.8	4.2	0 5	Peso suelo seco que pasa	(g)	2,624.9	24-24
159.7	96.5	3.5			a)	10274.8	
				Peso suelo seco total (g)		12899.7	
255.9	97.5	2.5					
339.6	98.3	17		OVER=	0.0%	1	
	00.0						
459.8	99.5	0.5					
				FINOS=	0.4 %		
		The second second second second					
	99.6	0.4				1	
	11 1 11		3 Tamato en mm	DESCRIPCIÓN.	CRAVA		
ALL AND ADDRESS OF THE PARTY OF	STREET, MICHA WIDA	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAME		DESCRIPCION.	GRAVA		
				COLOR:	GRIS		
$\Box\Box\Box\Box$							
				Contenido de humedad de pasa la	la fracción de Suelo seco que malla Nº 4.	% de suelo seco que pasa la	malla No. 200
	\						
				No. Tara	A-35	No. Tara	A-35
				Peso Humedo + Tara	573.6	Peso Seco + Tara	562.1
				Peso Seco + Tara	562.1	P. Seco Lavado +Tara	525.9
				Peso de Tara	52.0	Peso de Tara	52.0
				Peso del Agua	11.5	Suelo Seco (-No. 200) g	36.2
				Peso Seco	510.1	Suelo Seco (+No. 200) g	473.9
	1 1 11		ase ov	Cont. de humedad %	2.3	Suelo Seco (-No. 200) %	0.4
			EZCLA				
	EJECUTÓ				APR	ОВО	
6	7 Subs.	>	200	100	and del	ANUEVA BAZ N	
	469.7 473.8 473.9	255.9 97.5 339.6 98.3 459.8 99.5 469.7 99.6 473.8 99.6 473.9 S AGREGADOS PAL PIEDRA CHANCA	255.9 97.5 2.5 339.6 98.3 1.7 459.8 99.5 0.5 469.7 99.6 0.4 473.9 99.6 0.4 473.9 S AGREGADOS PARA DISEÑO DE MI	255.9 97.6 2.5 339.6 98.3 1.7 459.8 99.5 0.5 469.7 99.6 0.4 473.9 99.6 0.4 473.9 39.6 0.4 473.9 11 11 11 11 11 11 11 11 11 11 11 11 11	255.9 97.5 2.5 339.6 98.3 1.7 OVER-GRAVA= 459.8 99.5 0.5 ARENA= FINOS= 469.7 99.6 0.4 473.9 DESCRIPCIÓN: COLOR: Contienido de humedad de passa la pas	Peso suelo seco (stal (g)	Peace surfor secon total (g) 12899.7

KACLIN Konstantan

KAOLYN INGENIEROS S.A.C

Jr.PARAISO Nº 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931

		kisac@hotmail.es	i.es				
Título:	CONTENIDO DE HUMEDAD ASTM D 4643 / D 2216	Código de control Nro. KISAC-F02					
Nro de revisión:		1	Página 1 de 1				

Proyecto:	"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"	Fecha muestreo:	24-Jan-22	Muestra:	
Ubicación:	CAJAMARCA- CAJAMARCA- CAJAMARCA				
Muestreado por:	SOLICITANTE			-	
Solicitado por:	DENNIS XAMIER VILLAR SALDAÑA				

Cód. Mue	stra No.	KISAC-DM-70-2022			
Ubica	clón	E=	N =	C =	
Profun	didad				
Muestra d	ensayo	1	2	3	4
RECIPIENTE No		A-52	A-50		
Pr + Ph	Α	1290.6	986.2		
Pr + Ps	В	1270.8	969.4		
Pr	С	85.0	69.0		
P. AGUA D) = A - B	19.8	16.8		
Ps E	= B - C	1185.8	900.4		
% DE HUMEDAD (I	D/E) * 100	1.7	1.9	Promedio = 1.8	
OBSERVACIONES		IMEDAD DE PIEDRA CHANCADA			
	-				
	AGREGADOS PARA	DISEÑO DE MEZCLA			

PARA DISENO DE MEZCLA			
			
+			8
			•
			A L
EJECUTÓ			APROBÓ
LICENTAL ALL		/	HERNESS SAC
	-,1	NG LILIAN ROCIO VIL	LANUEVA BAZ N
	EJECUTÓ	EJECUTÓ	

Jr.PARAISO N° 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931 kisac@hotmail.es

Título:	PESO ESPECÍFICO DEL AGREGADO GRUESO ASTM C127	Código de Control Nro. F9-10-OC			
Nro de Revisión	1	Página 1 de 1			

Obra :	"EVALUACION A LA RESISTENCIA A L DEL CONCRETO CON ADITIVO SIKACI PE UTILIZANDO CEMENTOS WP- W PATRÓN, CAJAMARCA 20	EM ACELERANTE VANG PENG Y F. mue	streo: 24-Ene-22	Muestra N°: KISAC-DM-70-2	022
Localización E =	N =	Cota m.s.n.m.		Capa	
Descripción:	CAJAMARCA- CAJAMARCA- CAJAMARCA				
Solicitado por:	DENNIS XAMIER VILLAR SALDAÑA				
lo. De Particulas	> 3 pulg.		_		-
Vo. Bandeja			A-13	A-12	A-15
Agregado Saturad	lo Superficial Seco + Tara		11260.0	11240.0	11290.0
Agregado Seco +	Tara		10800.0	10760.0	10790.0
Peso de Tara		== 1	1370.0	1370.0	1370.0
Igregado Saturad	lo Superficial Seco B		9,890.0	9,870.0	9,920.0
Agregado Seco	A		9,430.0	9,390.0	9,420.0
Agregado + Canas	stilla sumergida		7620.1	7610.0	7640.5
Peso Canastilla su	ımergida		970.1	970	970.5
Agregado Saturad	lo Sumergido C		6650.0	6640	6670
Temperatura del A	Agua		23°C	23°C	23°C
actor de Correcc	ión		1	1	1
Peso Especifico A	parente (A / (A-C))		3.39	3.41	3.43
Gravedad Especi	fica Bulk SSS (B / (B-C))		3.05	3.06	3.05
Gravedad Especi	fica Bulk (A / (B-C))		2.91	2.91	2.90
Absorción			4.88	5.11	5.31
Porcentaje Reteni	do No. 4		-	_	
Porcentaje Pasa N	No. 4				
Peso Agregado qu	ue Pasa No. 4			_	
Peso Especifico P	romedio		2.91	2.91	2.90
OBSERVACIONE	S AGREGADOS PARA DISEÑO	DE MEZCLA			
	•				
	EJECUTÓ			APROBÓ	
	Manufacture A L		ING MIAN EMPERALISM	ROCIO VILLANUEVA BAZ AN ERECHIO VILLANUEVA BAZ AN CIRCUMSTANCIO CON TRANSPORTO	
	KAOLYN INGENIEROS SAC			INGENIERO ESPECIALISTA	

Jr.PARAISO N° 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931 kisac@hotmail.es

Título:	PESO ESPECÍFICO DEL AGREGA ASTM C127	ADO GRUESO	Código de Control Nro. F9-10-OC
Nro de Revisión.		1	Página 1 de 1

M1 500 161.72 661.7 500.0 973.7 491.6 311.98	M2 500 161.72 661.7 500.0 975.9	M3 500 161.72 661.7 500.0 979.8
500 161.72 661.7 500.0 973.7 491.6	500 161.72 661.7 500.0	500 161.72 661.7 500.0
161.72 661.7 500.0 973.7 491.6	161.72 661.7 500.0	161.72 661.7 500.0 979.8
661.7 500.0 973.7 491.6	661.7 500.0 975.9	661.7 500.0 979.8
500.0 973.7 491.6	500.0 975.9	500.0 979.8
973.7 491.6	975.9	979.8
491.6		
	490.4	402.2
311.98		492.2
	314.21	318.05
311.98	314.21	318.05
2.61	2.64	2.70
	2.65	
2.66	2.69	2.75
	2.70	
2.74	2.78	2.83
	2.78	
1.71	1.96	1.59
	175%	
	2.74	2.66 2.69 2.70 2.74 2.78 2.78 1.71 1.96

KAOLY	Jr.PARAISO N° 120- CAJAMARCA Teléfonos: MOV. 970909450 CLARO: 984336450 RUC: 20529476931 kisac@hotmail.es ABRASION DE AGREGADOS EN LA MAQUINA DE LOS ANGELES Código de Control Nro.									
	RASION DE AGREGAI TM C131/C535	OOS EN LA N	IAQUINA DE L			Código de Control Nro. F8-10				
Nro de Revisión:			1			Página	1	de 1		
Proyecto:	"EVALUACION A L CON ADITIVO SIK WAN	ACEM ACELE		ILIZANDO CEM		F. Muestreo:	24-	Jan-22		
Coordenadas:	E:		N:		Z:					
Descripción :	CAJAMARCA- CAJAMA	RCA- CAJAMA								
Ensayo Nº:	KISAC-DM-70-2022									
Solicitado por:	DENNIS XAMIER VILLA	AR SALDAÑA								
Prueba				1						
Gradación usada				Α						
No de esferas			_	11						
No de revolucione:	S			500						
Peso muestra seca	a antes de ensayo (g)			5002.0						
	a después de ensayo (g)			3520.0						
Pérdida (g)			1482							
% de desgaste		29.6								
Especificación % r	menor de									
*****		TOS SOBRE G		RGA ABRASIVA						
PASA	O DEL TAMIZ RETENIDO			PESOS Y GRADA						
3"	2 1/2"	Α	В	C	D	1	2	3		
2 1/2"	2"			Tage 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
2"	1 1/2"									
11/2"	1"									
1"	3/4"		2504		7 7					
3/4"	1/2"		2498							
1/2"	3/8"		2490							
3/8"	1/4"									
1/4"	N°4									
N°4	N°8									
	1 1/10									
No de esferas		12	11	8	6	12	12	12		
No de revolucion	es	500	500	500	500	1000	1000	1000		
OBSERVACIONES:	MUESTRA DE AGREG	ADO GRUESO								
	EJECUTÓ					APROBÓ				
KAOLYN INGENIEROS SAC						CIO VILLANDIEVA AMELIO SAPECIALI ERO ESPECIAL				

ENSAYOS DE LABORATORIO DE MECÂNICA DE SUELOS Y CONCRETO

PROYECTO: "EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"

DESCRIPCIÓN: DISEÑO DE MEZCLA PARA CONCRETO DE F'C = 210 Kg/cm2

CEMENTO PATRÓN

SOLICITANTE: NÚMERO DE ENSAYO : DENNIS XAMIER VILLAR SALDAÑA KISAC-ASLL-DM-04-2022

Jr.PARAISO N° 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931 kisac@hotmail.es

Título: DISEÑO DE MEZCLA DE CONCRETO MÉTODO COMITÉ ACI

Código de control Nro.

Proyecto:

"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"

Localización:

Cota m.s.n.m.

Ubicación:

CAJAMARCA- CAJAMARCA- CAJAMARCA

Fecha muestreo:

24-Jan-22

Muestreado por:

SOLICITANTE

Cód. Muestra No. KISAC-ASLL-DM-04-2022

Solicitado por:

DENNIS XAMIER VILLAR SALDAÑA

F'C=210KG/CM2

A. DESCRIPCIÓN DE LOS MATERIALES

1. CEMENTO

Cemento Portland - Tipo

(ASTM C 150)

CEMENTO PATRÓN

Peso específico: Altitud de ensayo:

gr/cm3 3.12

2750 m.s.n.m.

2. AGREGADOS

2.1. AGREGADO FINO

Procedencia:	CANTERA BAZÁN		
Peso específico aparente:	2.78 gr/cm3		
Peso unitario suelto seco:	2.02 gr/cm3		
Peso unitario seco compactado:	2.06 gr/cm3		
Humedad Natural:	6.8 %		
Absorción:	1.75 %		
Módulo de Finura:	3.35		
Material fino pasa malla 200:	1.3 %		

2. 2. AGREGADO GRUESO

Procedencia:	CANTERA BAZÁN		
Peso específico aparente:	3.41 gr/cm3		
Peso unitario suelto seco:	1.48 gr/cm3		
Peso unitario seco compactado	1.57 gr/cm3		
Tamaño máximo nominal:	1/2 "		
Humedad Natural:	1.8 %		
Absorción:	5.1 %		
Abrasión:	29.6 %		

B. REQUISITOS ESCTRUCTURALES

Resistencia a la compresión de Diseño:	f'c =	210	Kg/cm2
Resistencia a la compresión promedio:	f'cr =	295	Kg/cm2
Asentamiento:		3 - 4	

Jr.PARAISO N° 120- CAJAMARCA Teléfonos: MOV. 970909450 CLARO: 984336450 RUC: 20529476931

		kisac@hotmail.es					
Título:	DISEÑO DE MEZCI MÉTODO COMITÉ			Código de control Nro.			
Proyecto::				RETO CON ADITIVO SIKAO PATRÓN, CAJAMARCA 20:			
Localización:	E:	N	Cota m.s.n.m.				
Jbicación:	CAJAMARCA- CAJAMA	RCA- CAJAMARCA	Fecha muestreo:	24-Jan-22			
Auestreado por:	SOLICITANTE		Cód. Muestra No.	KISAC-ASLL-DM-04-2022			
Solicitado por:	DENNIS XAMIER VILLAR SALDAÑA			F'C=210KG/CM2			
Agregado fino seco		802 Kg 1022 Kg					
Agregado fino seco		802 Kg					
Agua:	000.	220 Lt					
Contenido de aire a	atrapado:	2.5 %					
	TERIAL CORREGIDOS F						
Cemento:		458 Kg					
Agregado fino seco	:	857 Kg					
Agregado grueso se	eco:	1040 Kg					
Agua:		213 Lt					
D. PROPORCIÓN DE	MATERIALES						
I. PROPORCIÓN EN	PESO						
1: 1.87: 2.27 / 19.77	7 It/bolsa						

2. PROPO	DRCIÓN EN	VOLUMEN

1: 2.01: 2.18 / 19.77 lt/bolsa

EJECUTÓ KAOLYN INGENIEROS SAC

Jr.PARAISO Nº 120- CAJAMARCA Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931 kisac@hotmail.es

DISEÑO DE MEZCLA DE CONCRETO Título: MÉTODO COMITÉ ACI

Código de control Nro.

Proyecto::

"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"

Cota m.s.n.m.

Localización:

CAJAMARCA- CAJAMARCA- CAJAMARCA

24-Jan-22

Ubicación: Muestreado por: SOLICITANTE

Fecha muestreo: Cód. Muestra No. KISAC-ASLL-DM-04-2022

Solicitado por:

DENNIS XAMIER VILLAR SALDAÑA

F'C=210KG/CM2

E. CONCLUSIONES Y RECOMENDACIONES

- 1.0 De las muestras remitidas por el solicitante, se ha obtenido un contenido de humedad del agregado fino de 6.8 % y una absorción de 2.81 %; asimismo el contenido de humedad del agregado grueso de 1.8 % y una absorción de 2.39 %, por lo tanto cuando se prepare la tanda de concreto en obra, se recomienda tener en cuenta éstos parámetros, con la finalidad de corregir periodicamente el contenido de agua efectiva, en el proporcionamiento de los materiales.
- 2.0 El coeficiente considerado para la determinación de la resistencia promedio (f'cr) está acorde con lo especificado en la
- 3.0 Al preparar la tanda de concreto en obra, se debe tener en cuenta la corrección periodica del contenido de aqua efectiva. en el proporcionamiento de los materiales, debido a la variación permanente en el contenido de humedad de los agregados.
- 4.0 Se recomienda que al realizar la dosificación correcta en volumen de obra, se debe utilizar recipientes adecuados, a fin de evitar variación volumétrica de los componentes de la mezcla, teniendo como base el volumen de una bolsa de cemento, considerado como un pie cúbico.
- 5.0 la curva granulométrica del agregado grueso, se ajusta al huso granulométrico Nº 67 ,especificado en la norma ASTM C33M-11
- 6.0 La curva granulometrica del agregado fino, se adapta en un 70% al uso granulométrico "M" de la Norma NTP 400.037
- 7.0 Los agregados fueron muestreados, codificados y alcanzados por el solicitante.
- 8.0 Los requisitos estructurales , fueron especificados por el solicitante.
- 9.0 De acuerdo a las especificaciones del solicitante y las condiciones de exposición del concreto no son severas, se ha diseñado sin aire incorporado.
- 10.0 Se recomienda utilizar Sika Antisol para prevenir fisuras por acción del clima.
- 11.0 LA ALTITUD DE CAJAMARCA ES DE 2750 m.s.n.m., por lo que no se requiere realizar una incorporación de aire con respecto a la altitud considerada, debido a que es menor a 3000 m.s.n.m.

KAOLYN INGENIEROS SAC INGENIERO ESPECIALISTA

Jr.PARAISO Nº 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450 RUC: 20529476931

Título:	CONTENIDO DE HUMEDAD ASTM D 4643 / D 2216	kisac@hotmail.es	Código de control Nro. KISAC-F02
Nro de revisión:		1	Página 1 de 1
	"EVALUACION A LA DESISTENCIA A LA COMPRESION DE	L CONCRETO CON ADITIVO	

Proyecto:	"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"	Fecha muestreo:	24-Jan-22	Muestra:
Ubicación:	CAJAMARCA- CAJAMARCA- CAJAMARCA			-
Muestreado por:	SOLICITANTE			
Solicitado por:	DENNIS XAMIER VILLAR SALDAÑA	F'C=210KG/CM2		

Cód. Muestra No.	KISAC-ASLL-DM-04-2022						
Ubicación	E =	N =	C=				
Profundidad							
Muestra o ensayo	1	2	3	4			
RECIPIENTE No	A-33	A-01					
r+Ph A	805.2	863.9					
Pr + Ps B	762.6	815.4					
r c	128.2	108.0					
P. AGUA D = A - B	42.6	48.5					
Ps	634.4	707.4					
6 DE HUMEDAD (D/E) * 100	6.7	6.9	Promedio = 6.8				
2005014010450 00455							
DBSERVACIONES CONTEN	CONTENIDO DE HUMEDAD DE ARENA						

= PESO HUMEDO = PESO SECO		
= PESO DEL RECIPIENTE		

Jr.PARAISO Nº 120- CAJAMARCA Teléfonos: MOV. 970909450 CLARO: 984336450 RUC: 20529476931

kisac@hotmail.es ANÁLISIS GRANULOMÉTRICO Código de control Nro. ASTM C136 AMYSGSRL - F03 Nro de revisión: Página de 1 'EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP. WANG PENG Y PATRÓN, CAJAMARCA 2021* Fecha muestreo: 24-Jan-22 Cód. Muestra No. KISAC-ASLL-DM-04-2022 CAJAMARCA- CAJAMARCA- CAJAMARCA SOLICITANTE DENNIS XAMIER VILLAR SALDAÑA F'C=210KG/CM2 Peso Rete Acumula 0.0 antidad de suelo que pasa el tamiz No. 4 (Compaci 100.0 0.0 ntenido de humedad (-No.4)/100*(6000g ó 13.231 lb)*(-No. 4)*(-2")) 100.0 100.0 100.0 100.0 0.0 0.0 0.0 1.01*(6000 6 13.231 lb)*[(-2")-(No.4)](-2") 0.0 100.0 100.0 100.0 1 1/2" 0.0 0.0 0.0 ciones de Secado y Lavado del suelo Retenido en la malla Nº 4 0.0 100.0 100.0 100.0 0.0 0.0 1/2 Secado a 110°C sin lavar. 3/8" 0.0 0.0 9.3 26.6 43.7 No. 4 No. 8 90.7 73.4 100 Peso suelo Húmedo que pasa (g) 100 Peso suelo seco que pasa (g) 3862.6 3,703.4 381.0 400.0 797.0 65 100 No. 10 No. 16 No. 20 56.3 Peso suelo seco retenido (g) 381.0 45 100 1023.0 53.4 46.6 4084.4 No. 30 No. 40 No. 50 1298.0 65.3 34.7 25 80 OVER= 10.0 % GRAVA= 9.3 % ARENA= 90.3 % 1758.0 85.2 14.8 48 5 No. 60 No. 100 No. 140 1992.8 95.3 4.7 0 12 FINOS= 0.4 % 2092.8 99.6 No. 200 0.4 2092.9 MOD. FINEZA 3.35 COLOR GRIS Contenido de humedad de la fracción de Suelo seco que pasa la malla Nº 4. % de suelo seco que pasa la malla No. 200 No. Tara A-30 No. Tara A-30 Peso Humedo + Tara Peso Seco + Tara 2240.0 2150.0 Peso Seco + Tara 2150.0 P. Seco Lavado +Tara 2141.1 eso de Tara 48.2 eso de Tara 48.2 eso del Agua 90.0 uelo Seco (-No. 200) g 8.9 Peso Seco 2101.8 uelo Seco (+No. 200) g 2092.9 Cont. de humedad % Suelo Seco (-No. 200) % 0.4 AGREGADOS PARA DISEÑO DE MEZCLA EJECUTÓ APROBÓ KADEYN WEEMERIOS SAC WASHING LULIAN ROCID VILLANDE VARAZAN RNG LULIAN ROCID VILLANDE VARAZAN EMPERINISTADE WEEMEN LOS VORDETO KINCENJENGS YAN CIP 116722 INGENIERO ESPECIALISTA

KAOLYN INGENIEROS SAC

Jr.PARAISO N° 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931

PESO UNITARIO SUELTO Ref. AASHTO T-19

PROYECTO

"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"

CÓDIGO DE MUESTRA FECHA DE ENSAYO UBICACIÓN

: KISAC-ASLL-DM-04-2022 : 24/01/2022 : CAJAMARCA- CAJAMARCA- CAJAMARCA

MUESTREADO POR:

SOLICITANTE

COLOR DE MATERIAL :

PESO UNITARIO SUELTO

No de Prueba	UND	1	2	3
PESO DE RECIPIENTE + MUESTRA	Kg	12640.0	12890.0	12690.0
PESO DEL RECIPIENTE	Kg	7900.0	7900.0	7900.0
PESO DE LA MUESTRA	Kg	4740.0	4990.0	4790.0
VOLUMEN	m3	2400.0	2400.0	2400.0
PESO UNITARIO SUELTO	kg/m3	1.975	2.079	1.996
		PROM	IEDIO	2.017

PESO UNITARIO COMPACTADO

No de Prueba	UND	1	2	3
PESO DE RECIPIENTE + MUESTRA	Kg	13030.0	12720.0	12810.0
PESO DEL RECIPIENTE	Kg	7900.0	7900.0	7900.0
PESO DE LA MUESTRA	Kg	5130.0	4820.0	4910.0
VOLUMEN	m3	2400.0	2400.0	2400.0
PESO UNITARIO SUELTO	kg/m3	2.138	2.008	2.046
		PROM	IEDIO	2.064

EJECUTÓ

KAOLYN INGENIEROS SAC

PROYECTO

KAOLYN INGENIEROS S.A.C Jr.PARAISO N° 120- CAJAMARCA aléfonos: MOV. 970909450 CLARO: 984336450 RUC: 20529476931

PESO UNITARIO SUELTO Ref. AASHTO T-19

"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WF- WANG PENG Y PATRÓN, CAJAMARCA 2021"

DESCRIPCIÓN : AGREGADO GRUESO : KISAC-ASLL-DM-04-2022

MUESTREADO POR

: SOLICITANTE

CÓDIGO DE MUESTRA FECHA DE ENSAYO UBICACIÓN

: 24/01/2022 : CAJAMARCA- CAJAMARCA- CAJAMARCA

COLOR DE MATERIAL : GRIS

PESO UNITARIO SUELTO

No de Prueba	UND	1	2	3
PESO DE RECIPIENTE + MUESTRA	Kg	11340.0	11400.0	11590.0
PESO DEL RECIPIENTE	Kg	7900.0	7900.0	7900.0
PESO DE LA MUESTRA	Kg	3440.0	3500.0	3690.0
VOLUMEN	m3	2400.0	2400.0	2400.0
PESO UNITARIO SUELTO	kg/m3	1.433	1.458	1.538
		PROM	ŒDIO	1.476

PESO UNITARIO COMPACTADO

No de Prueba	UND	1	2	3
PESO DE RECIPIENTE + MUESTRA	Kg	11690.0	11650.0	11680.0
PESO DEL RECIPIENTE	Kg	7900.0	7900.0	7900.0
PESO DE LA MUESTRA	Kg	3790.0	3750.0	3780.0
VOLUMEN	m3	2400.0	2400.0	2400.0
PESO UNITARIO SUELTO	kg/m3	1.579	1.563	1.575
		PROM	IEDIO	1.572

KA	OLYN WEGOLAA	Teléfonos: MOV. 970 RUC:	1° 120- CAJAMARCA 1909450 CLARO: 98433641 20529476931	50	
itulo:	CANTIDAD DE MATERIAL FINO QU		@hotmail.es	Código de Control Nro.	
ro de revisión:	ASTM C - 117		1	KISAC - F3C	
				Página	1 de 1
royecto :	"EVALUACION A LA RESISTENCIA A LA CON ADITIVO SIKACEM ACELERANTE P WANG PENG Y PATRÓN, C	E UTILIZANDO CEMENTOS WP-	Fecha Muest.: 24-	Jan-22 codigo: KISA(C-ASLL-DM-04-202
oordenadas:	E: -	N:	Cota:	- MUESTRA Nº: M - 1	
escripción:	AGREGADO FINO				
uestreado por	SOLICITANTE	F'C=210KG/CM2			
	ENSAYO N°	1	2	3	No.
	Peso seco Inicial + Tara (gr.)	975.2	855.6	907.4	
	Peso seco final lavado+ Tara (gr.)	965.6	846.9	896.1	
	Nº Tara	A-03	L-03	M-03	
	Peso de Tara (gr.)	120.0	138.0	127.4	
	Pasante la Malla N°200 (gr.)	9.6	8.7	11.3	
	Peso Inicial (gr.)	855.2	718	780	PROMEDIO
	% Pasante la Malla N°200	1.1	1.2	1.4	1.3
	Observaciones: M-1				
	EJECUTÓ			APROBÓ	
	Kinusajanos y A.N	5	ING LILLAN EXPECIALISTA	RACY'N BICENIE MOSSAC OCHUM I POCIO VILLANDE VA BAZAN E RECHICA DE SIELOS Y POLICIETO CIP. 11672	P

Jr.PARAISO Nº 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

-						529476931 otmail.es		
Título:		RANULOMÉT	RICO		Kisac@ii	ounan.es	Código de control	Nro.
Nro de revisi	ASTM C136			1			KISAC- F03	
							Página	1 de 1
Proyecto::	DEL CONCRE PE UTILIZA	N A LA RESISTE TO CON ADITIVO ANDO CEMENTO PATRÓN, CAJAM	O SIKACEM ACI OS WP- WANG I	ELERANTE	. Fecha muestreo:	24-Jan-22	Cód. Muestra No. KISA	IC-ASLL-DM-04-2022
Ubicación:	CAJAMARCA- CA	AJAMARCA- CAJA	MARCA				Muestra:	
Muestreado por:	SOLICITANTE							7-2-
Solicitado por:	DENNIS XAMIER	VILLAR SALDAÑ	4		F'C=210KG/CM2			
							No.	
Tamaño Tamiz	Peso Reten. Acumulado	% Referido	% Pasa	Especific	Cantidad de suelo que pa	sa el tamiz No. 4 (Compacta	ción AASHTO):	10.
8*	0.0	0.0	100.0		[1-contenido de humedad	(-No.4)/100*(6000g 6 13.231	(Ib)*(-No. 4)*(-2")]	
6" 4"	0.0	0.0	100.0		-}`			
3*	0.0	0.0	100.0					
2*	0.0	0.0	100.0		1.01*(6000 6 13.231 lb)*((-2")-(No.4)](-2")		
1 1/2"	0.0	0.0	100.0]-			
1" 3/4"	0.0	0.0	100.0	100				
1/2"	995.3 5392.2	7.7	92.3 58.2	90 100	Condiciones de Secado y Secado a 110°C sin lavar.	Lavado del suelo Retenido e	en la malla N° 4	
3/8"	8463.2	65.6	34.4	20 55	Second a 770 C sin lavar.			
1/4"	10274.8	79.7	20.3		1			
No. 4	12240.5	94.9	5.1	0 10	Peso suelo Húmedo que p		2685.3	
No. 8	93.6	95.8	4.2	0 5	Peso suelo seco que pasa		2,624.9	
No. 10 No. 16	159.7	96.5	3.5		Peso suelo seco retenido Peso suelo seco total (g)	(g)	10274.8 12899.7	
No. 20	255.9	97.5	2.5		, coo dadio dede total (g)		7200.7	
No. 30								
No. 40	339.6	98.3	1.7		OVER=			
No. 50 No. 60	459.8	99.5	0.5		GRAVA= ARENA=			
No. 100	400.0	88.0	0.5		FINOS=			
No. 140	469.7	99.6	0.4					
No. 200	473.8	99.6	0.4				_	
Platillo	473.9	11 1 11		B B Temeto en mo				
100	gress [w	AUTOMINAL MINA SPEN	MONTHA	1	DESCRIPCIÓN:	GRAVA		
	I I N				COLOR:	GRIS		
**					OOLON:	6,40		
80								
					Contenido de humedad de	e la fracción de Suelo seco q	que % de suelo seco que pass	a la malla No. 200
A					pasa la	a malla Nº 4.		
, « ·		\mathbb{H}						
S S S		\mathbf{H}			No. Tara	A-35	No. Tara	A-35
					Peso Humedo + Tara	573.6	Peso Seco + Tara	
40					reso numedo + rara	5/3.0	reso 3600 + 1ara	562.1
50		\mathbb{N}			Peso Seco + Tara	562.1	P. Seco Lavado +Tara	525.9
20					Peso de Tara	52.0	Peso de Tara	52.0
as a second					Rese del Agir			
10		114			Peso del Agua	11.5	Suelo Seco (-No. 200) g	36.2
, Lilling			++++		Peso Seco	510.1	Suelo Seco (+No. 200) g	473.9
TAMIZ		b b 1 -11	11111111	3 8	Cont. de humedad %	2.3	Suelo Seco (-No. 200) %	0.4
OBSERVACIO	VES	AGREGADOS PA		MEZCLA				
		PIEDRA CHANCA	ALA					
		EJECUTÓ				Ai	PROBÓ	
	C	NUENJEROS Y A			NG ENPER	ULIAN ROCIO VILLAN MAISTADE MECANICADE SUE CIP 116722		
Landy Comment	KAOI	YN INGENIERO	SSAC			INGENIERO	ESPECIALISTA	

| KAOLYN INGENIEROS S.A.C | Jr.PARAISO N° 120- CAJAMARCA | | Teléfonos: MOV. 970909450 CLARO: 984336450 | | RUC: 20529476931 | | Ruc: 20529476931 | | Kisac@hotmail.es | | Código de control Nro. | | KISAC-F02 | | KISAC-F02 | | Pégina 1 de 1

Proyecto:	"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"	Fecha muestreo:	24-Jan-22	Muestra:
Ubicación:	CAJAMARCA- CAJAMARCA- CAJAMARCA			i i
Muestreado por:	SOLICITANTE			
Solicitado por:	DENNIS XAMIER VILLAR SALDAÑA	F'C=210KG/CM2		

Cód. Mu	estra No.	KISAC-ASLL-DM-04-2022			
Ubic	ación	E =	N =	C=	
Profu	ndidad				
Muestra	o ensayo	1	2	3	4
RECIPIENTE No		A-52	A-50		
Pr + Ph	Α	1290.6	986.2		
Pr + Ps	В	1270.8	969.4		
Pr	С	85.0	69.0		
P. AGUA	D = A - B	19.8	16.8		
Ps	E = B - C	1185.8	900.4		
% DE HUMEDAD	(D/E) * 100	1.7	1.9	Promedio = 1.8	
OBSERVACIONES	CONTENIDO DE H	IUMEDAD DE PIEDRA CHANCADA			
	_				
	AGREGADOS PAR	RA DISEÑO DE MEZCLA			

		The same of the sa			the state of the s	
					P. Carlotte	
						8
		 -				
					_	

H= PESO HUMEDO					Λ	
R= PESO DEL RECIPIENTE H= PESO HUMEDO S= PESO SECO	EJECUTÓ			APR	OBÓ A	
H= PESO HUMEDO			NG L	KAOL NINGE ILIAN ROOJO VILTAN AUSTAD BEENMAADS BAE CIP 118722	MIEROS SAC)

Jr.PARAISO N° 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931 kisac@hotmail.es

	ASTM C127		F9-10-OC	F9-10-OC	
Nro de Revisión:		1	Página	1 de 1	
Obra :	"EVALUACION A LA RESISTENCIA A LA COMPRE DEL CONCRETO CON ADITIVO SIKACEM ACELER PE UTILIZANDO CEMENTOS WP- WANG PENC PATRÓN, CAJAMARCA 2021"	RANTE E musetres: 34 Fee 33	Muestra Nº: KISAC-ASLL-L	DM-04-2022	
Localización E =	N = Cota	m.s.n.m.	Сара		
Descripción:	CAJAMARCA- CAJAMARCA			X	
Solicitado por:	DENNIS XAMIER VILLAR SALDAÑA	F'C=210KG/CM	12		
No. De Particulas >	> 3 pulg.				
No. Bandeja	*	A-13	A-12	A-15	
Agregado Saturado	o Superficial Seco + Tara	11260.0	11240.0	11290.0	
Agregado Seco + 1	Tara	10800.0	10760.0	10790.0	
Peso de Tara		1370.0	1370.0	1370.0	
Agregado Saturado	o Superficial Seco B	9,890.0	9,870.0	9,920.0	
Agregado Seco	A	9,430.0	9,390.0	9,420.0	
Agregado + Canas	tilla sumergida	7620.1	7610.0	7640.5	
Peso Canastilla su	mergida	970.1	970	970.5	
Agregado Saturado	o Sumergido C	6650.0	6640	6670	
Temperatura del A	gua	23°C	23°C	23°C	
Factor de Correcci	ón	1	1	1	
Peso Especifico Ap	parente (A / (A-C))	3.39	3.41	3.43	
Gravedad Especifi	ica Bulk SSS (B / (B-C))	3.05	3.06	3.05	
Gravedad Especifi	ica Bulk (A / (B-C))	2.91	2.91	2.90	
Absorción		4.88	5.11	5.31	
Porcentaje Retenio	lo No. 4		J. S. M		
Porcentaje Pasa N	0. 4		· · · ·		
Peso Agregado qu	e Pasa No. 4		-		
Peso Especifico Pr	omedio	2.91	2.91	2.90	
OBSERVACIONES	S AGREGADOS PARA DISEÑO DE MEZCL	Δ			

EJECUTÓ

KAOLYN INGENIEROS SAC

IAN ROCIO VILLANUEVA BAZAN ITADE MECANICADE SUELOS Y CONCRETO CIP. 116722 INGENIERO ESPECIALISTA

Jr.PARAISO N° 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931 kisac@hotmail.es

Título:	PESO ESPECIFICO DEL AGREGADO GRUESO ASTM C127	Código de Control Nro. F9-10-OC
Nro de Revisión:	1	Página 1 de 1

Obra :	"EVALUACION A LA RESISTENCIA A LA COMPRES DEL CONCRETO CON ADITIVO SIKACEM ACELERA PE UTILIZANDO CEMENTOS WP- WANG PENG PATRON, CAJAMARCA 2021"	NTE	Muestra №: KISAC-ASLL-L	DM-04-2022	
Localización E =	N = Cota m.	s.n.m.	Capa		
Descripción:	CAJAMARCA- CAJAMARCA				
Solicitado por:	DENNIS XAMIER VILLAR SALDAÑA	F'C=210KG/CI	M2		
		M1	M2	МЗ	
PESO DEL AGR	EGADO S.S.S. (gr)	500	500	500	
PESO DE LA FIO	DLA (gr)	161.72	161.72	161.72	
PESO DEL AGR	EGADO S.S.S. + FIOLA (gr)	661.7	661.7	661.7	
V= VOLUMEN D	E LA FIOLA (cm3)	500.0	500.0	500.0	
Peso de fiola + a	gregado S.S.S. + agua (gr)	973.7	975.9	979.8	
Wo =Peso de la l	muestra en el aire secada al horno	491.6	490.4	492.2	
Pa=Peso del agu	ua añadida al frasco	311.98	314.21	318.05	
Va=Volumen del	agua añadida al frasco (cm3)	311.98	314.21	318.05	
Peso especifico d	de masa (Pe=Wo/(V-Va)	2.61	2.64	2.70	
Peso especifico	de masa promedio (gr/cm3)		2.65		
P. especifico de i	masa saturado superficie seca Pe= 500/(V-Va)	2.66	2.69	2.75	
Peso específico	de masa saturado superficie seco (gr/cm3)		2.70		
Peso especifico ap	varente Pe=Wo/((V-Va)-(500-Wo))	2.74	2.78	2.83	
P. especifico Apa	rente (gr/cm3)		2.78		
ABSORCION Abs	=((500-Wo)/Wo)x100 (%)	1.71	1.96	1.59	
ABSORCION PRO	OMEDIO (%)		175%		
OBSERVACIONES	S AGREGADOS PARA DISEÑO DE MEZO	LA			
	EJECUTÓ		APROBÓ		
	K _{INCENT} USS & A	ING LULA	N ROCIO VILLANDE VI CONCRETO CIP 116722	P	
	KAOLYN INGENIEROS SAC		INGENIERO ESPECIALISTA		

KAOLYN INGENIEROS S.A.C Jr.PARAISO N° 120- CAJAMARCA Teléfonos: MOV. 970909450 CLARO: 984336450 RUC: 20529476931 kisac@hotmail.es ABRASION DE AGREGADOS EN LA MAQUINA DE LOS ANGELES Código de Control Nro. Título: ASTM C131/C535 F8-10 Nro de Revisión: de 1 Página "EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- F. Muestreo: WANG PENG Y PATRÓN, CAJAMARCA 2021" Proyecto: 24-Jan-22 Coordenadas: Descripción : CAJAMARCA- CAJAMARCA- CAJAMARCA Ensayo Nº: KISAC-ASLL-DM-04-2022 F'C=210KG/CM2 Solicitado por: DENNIS XAMIER VILLAR SALDAÑA Prueba Gradación usada A No de esferas 11 No de revoluciones 500 Peso muestra seca antes de ensayo (g) 5002.0 Peso muestra seca después de ensayo (g) 3520.0 1482 Pérdida (g) % de desgaste 29.6 Especificación % menor de DATOS SOBRE GRADACIÓN, CARGA ABRASIVA Y REVOLUCIONES TAMAÑO DEL TAMIZ PESOS Y GRADACIÓN DE LA MUESTRA (g) PASA RETENIDO В C D 2 3 3" 2 1/2 2 1/2" 2" 2" 1 1/2" 11/2" 1" 1" 3/4" 2504 3/4" 1/2" 2498 1/2" 3/8" 3/8" 1/4" 1/4" Nº4 Nº4 Nº8 No de esferas 11 8 6 12 12 12 500 500 1000 1000 1000 500 500 No de revoluciones OBSERVACIONES: MUESTRA DE AGREGADO GRUESO

KAOLYN INGENIEROS SAC

ENSAYOS DE LABORATORIO DE MECÂNICA DE SUELOS Y CONCRETO

PROYECTO: "EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"

DESCRIPCIÓN: DISEÑO DE MEZCLA PARA CONCRETO DE F'C = 210 Kg/cm2

CEMENTO WP WANG PENG

SOLICITANTE: NÚMERO DE ENSAYO : DENNIS XAMIER VILLAR SALDAÑA KISAC-ASLL-DM-03-2022

Jr.PARAISO № 120- CAJAMARCA Teléfonos: MOV. 970909450 CLARO: 984336450 RUC: 20529476931

RIU: 20329476931
kisac@hotmail.es

Título: DISEÑO DE MEZCLA DE CONCRETO Código de control Nro.

"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"

Localización: E :

E: _____N

Cota m.s.n.m.

Ubicación:

CAJAMARCA- CAJAMARCA

Fecha muestreo:

Cód. Muestra No.

KISAC-ASLL-DM-03-2022

24-Jan-22

Muestreado por: SOLICITANTE

DENNIS XAMIER VILLAR SALDAÑA

MÉTODO COMITÉ ACI

F'C=210KG/CM2

A. DESCRIPCIÓN DE LOS MATERIALES

1. CEMENTO

Solicitado por:

Proyecto::

Cemento Portland - Tipo

(ASTM C 150)

CEMENTO WP WANG PENG

Peso específico :

3.11 gr/cm3

Altitud de ensayo: 2750 m.s.n.m.

2. AGREGADOS

2.1. AGREGADO FINO

Procedencia:

 Peso específico aparente:
 2.78 gr/cm3

 Peso unitario suelto seco:
 2.02 gr/cm3

 Peso unitario seco compactado:
 2.06 gr/cm3

 Humedad Natural:
 6.8 %

 Absorción:
 1.75 %

 Módulo de Finura:
 3.35

 Material fino pasa malla 200:
 1.3 %

2. 2. AGREGADO GRUESO

Procedencia:

 Peso específico aparente:
 3.41 gr/cm3

 Peso unitario suelto seco:
 1.48 gr/cm3

 Peso unitario seco compactado
 1.57 gr/cm3

 Tamaño máximo nominal:
 1/2 "

 Humedad Natural:
 1.8 %

 Absorción:
 5.1 %

 Abrasión:
 29.6 %

W.C. S. P. L.

NG LUTAN POORS VILLANDE A BAY IN EMPERIAL MARKET BEAUTH OF THE POOR OF THE PO

B. REQUISITOS ESCTRUCTURALES

Resistencia a la compresión de Diseño: f c = 210 Kg/cm2 Resistencia a la compresión promedio: f cr = 295 Kg/cm2

Asentamiento: 3 - 4 "

KAOLYN INGENIEROS S.A.C Jr.PARAISO N° 120- CAJAMARCA

KAOLYN	DISEÑO DE MEZ	Teléfonos: MOV. 970909450 CLARO: 984336450 RUC: 20529476931 kisac@hotmail.es DISEÑO DE MEZCLA DE CONCRETO				
Título:	MÉTODO COMITE			Código de control Nro.		
Proyecto::				RETO CON ADITIVO SIKAC PATRÓN, CAJAMARCA 202		
Localización:	E:	N	Cota m.s.n.m.			
Ubicación:	CAJAMARCA- CAJAN	MARCA- CAJAMARCA	Fecha muestreo:	24-Jan-22		
Muestreado por:	SOLICITANTE		Cód. Muestra No.	KISAC-ASLL-DM-03-2022		
Solicitado por:	DENNIS XAMIER VIL	LAR SALDAÑA		F'C=210KG/CM2		
Agregado grueso s Agua: Contenido de aire 2. CANTIDAD DE M. Cemento:	atrapado:	1022 Kg 220 Lt 2.5 % 6 POR HUMEDAD POR M3 458 Kg	3			
Agregado fino sec		855 Kg				
Agregado grueso s	seco:	1040 Kg				
Agua:		213 Lt				
D. PROPORCIÓN D	E MATERIALES					
1. PROPORCIÓN EN	N PESO					
1: 1.87: 2.27 / 19.7	78 It/bolsa					
2. PROPORCIÓN EI	VOLUMEN					
1: 2.00: 2.17 / 19.7	78 lt/bolsa					

EJECUTÓ	APROBÓ
Muchalian Tabl	ING LILIAN EQUID VILLANUE VABAZZAN ERREELIJANIE CIP 116722
KAOLYN INGENIEROS SAC	INGENIERO ESPECIALISTA

Jr.PARAISO № 120- CAJAMARCA
Teléfonos: MOV. 970909450 CLARO: 984336450
RUC: 20529476931

Título:	DISEÑO DE MEZCLA MÉTODO COMITÉ AC			Código de control Nro.
Proyecto::				RETO CON ADITIVO SIKACEM PATRÓN, CAJAMARCA 2021"
Localización:	E:	N	Cota m.s.n.m.	
Ubicación:	CAJAMARCA- CAJAMARC	A- CAJAMARCA	Fecha muestreo:	24-Jan-22
Muestreado por:	SOLICITANTE		Cód. Muestra No.	KISAC-ASLL-DM-03-2022
Solicitado por:	DENNIS XAMIER VILLAR S	SALDAÑA		F'C=210KG/CM2

E. CONCLUSIONES Y RECOMENDACIONES

- 1.0 De las muestras remitidas por el solicitante, se ha obtenido un contenido de humedad del agregado fino de 6.8 % y una absorción de 2.81 %; asimismo el contenido de humedad del agregado grueso de 1.8 % y una absorción de 2.39 %, por lo tanto cuando se prepare la tanda de concreto en obra, se recomienda tener en cuenta éstos parámetros, con la finalidad de corregir periodicamente el contenido de agua efectiva, en el proporcionamiento de los materiales.
- 2.0 El coeficiente considerado para la determinación de la resistencia promedio (f'cr) está acorde con lo especificado en la norma ASTM C 94 -07.
- 3.0 Al preparar la tanda de concreto en obra, se debe tener en cuenta la corrección periodica del contenido de agua efectiva, en el proporcionamiento de los materiales, debido a la variación permanente en el contenido de humedad de los agregados.
- 4.0 Se recomienda que al realizar la dosificación correcta en volumen de obra, se debe utilizar recipientes adecuados, a fin de evitar variación volumétrica de los componentes de la mezcla, teniendo como base el volumen de una bolsa de cemento, considerado como un pie cúbico.
- 5.0 la curva granulométrica del agregado grueso, se ajusta al huso granulométrico N° 67 ,especificado en la norma ASTM C33M-11
- 6.0 La curva granulometrica del agregado fino, se adapta en un 70% al uso granulométrico "M" de la Norma NTP 400.037
- 7.0 Los agregados fueron muestreados, codificados y alcanzados por el solicitante.
- 8.0 Los requisitos estructurales , fueron especificados por el solicitante.
- 9.0 De acuerdo a las especificaciones del solicitante y las condiciones de exposición del concreto no son severas, se ha diseñado sin aire incorporado.
- 10.0 Se recomienda utilizar Sika Antisol para prevenir fisuras por acción del clima.
- 11.0 LA ALTITUD DE CAJAMARCA ES DE 2750 m.s.n.m., por lo que no se requiere realizar una incorporación de aire con respecto a la altitud considerada, debido a que es menor a 3000 m.s.n.m.

EJECUTÓ	APROBÓ	
Ministrative Tal	NG LILIAN FOCIO VILLANIEVA BAZA NA EMPERIASTINA CIP 118722	
KAOLYN INGENIEROS SAC	INGENIERO ESPECIALISTA	_

Jr.PARAISO N° 120- CAJAMARCA Teléfonos: MOV. 970909450 CLARO: 984336450 RUC: 20529476931 kisac@hotmail.es CONTENIDO DE HUMEDAD ASTM D 4643 / D 2216 Código de control Nro. KISAC-F02 Nro de revisión:

Muestreado por: Solicitado por:	SOLICITANTE DENNIS XAMIER VILLAR SALDAÑA	F'C=210KG/CM2		
Ubicación:	CAJAMARCA- CAJAMARCA- CAJAMARCA			-
Proyecto:	"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZADO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"	Fecha muestreo:	24-Jan-22	Muestra:

Cód. Muestra No.	KISAC-ASLL-DM-03-2022			
Ubicación	E =	N =	C=	
Profundidad				
Muestra o ensayo	1	2	3	4
RECIPIENTE No	A-33	A-01		
Pr + Ph A	805.2	863.9		
Pr + Ps B	762.6	815.4		
Pr C	128.2	108.0		
P. AGUA D = A - B	42.6	48.5		
Ps	634.4	707.4		
% DE HUMEDAD (D/E) * 100	6.7	6.9	Promedio = 6.8	
OBSERVACIONES CONTENIDO DE	HUMEDAD DE ARENA			
-				
AGREGADOS P.	ARA DISEÑO DE MEZCLA			

(APROBO)
APROBÓ
NG LILIAM PROGO VALIANLEVA BAZ 'N ERFERIALINA ERFORMANTE ON VALORITO (PH 11672)

Jr.PARAISO N° 120- CAJAMARCA Teléfonos: MOV. 970909450 CLARO: 984336450 RUC: 20529476931 kisac@hotmail.es ANALISIS GRANULOMÉTRICO Título: ASTM C136 AMYSGSRL - F03 Nro de revisión. Página de 1 'EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021* 24-Jan-22 Proyecto: Fecha muestreo: Cód. Muestra No. KISAC-ASLL-DM-03-2022 CAJAMARCA- CAJAMARCA- CAJAMARCA SOLICITANTE DENNIS XAMIER VII I AR SAI DAÑA F'C=210KG/CM2 Cantidad de suelo que pasa el tamiz No. 4 (Compactación AASHTO): 0.0 0.0 100.0 -contenido de humedad (-No.4)/100*(6000g ó 13.231 lb)*(-No. 4)*(-2*)] 100.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0 1.01*(6000 6 13.231 lb)*[(-2")-(No.4)](-2") 1 1/2 0.0 100.0 100.0 100.0 0.0 0.0 ones de Secado y Lavado del suelo Retenido en la malla Nº 4 0.0 0.0 Secado a 110°C sin lavar. 100.0 100 3/8* 100 Peso suelo Húmedo que pasa (g) Peso suelo seco que pasa (g) Peso suelo seco retenido (g) 381.0 9.3 No. 4 3,703.4 381.0 4084.4 No. 8 400.0 797.0 26.6 43.7 73.4 56.3 65 100 100 45 Peso suelo seco total (g) No. 16 1023.0 53.4 46.6 No. 20 No. 30 1298.0 65.3 34.7 25 80 OVER= 0.0 % GRAVA= 9.3 % ARENA= 90.3 % FINOS= 0.4 % No. 40 No. 50 No. 60 1758.0 85.2 14.8 48 1992.8 95.3 12 No. 100 4.7 -0 No. 140 2092.8 99.6 No. 200 MOD. FINEZA 3.35 Platillo 2092.9 DESCRIPCIÓN: ARENA COLOR GRIS Contenido de humedad de la fracción de Suelo seco que pasa la malla № 4. % de suelo seco que pasa la malla No. 200 A-30 Vo. Tara so Seco + Tara Peso Seco + Tara 2150.0 . Seco Lavado +Tara eso de Tara eso de Tara 48.2 Peso del Agua 90.0 uelo Seco (-No. 200) g 8.9 eso Seco 2101.8 Suelo Seco (+No. 200) g 2092.9 Suelo Seco (-No. 200) % Cont. de humedad % 0.4 DBSERVACIONES AGREGADOS PARA DISEÑO DE MEZCLA EJECUTÓ APROBÓ/

INGENIERO ESPECIALISTA KAOLYN INGENIEROS SAC

Jr.PARAISO Nº 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931

PESO UNITARIO SUELTO

Ref. AASHTO T-19

PROYECTO

"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP. WANG
PENG Y PATRÓN, CAJAMARCA 2021"

DESCRIPCIÓN

: AGREGADO FINO

CÓDIGO DE MUESTRA FECHA DE ENSAYO

: KISAC-ASLI-DM-03-2022 : 24/01/2022 : CAJAMARCA- CAJAMARCA- CAJAMARCA

MUESTREADO POR : SOLICITANTE

UBICACIÓN

COLOR DE MATERIAL : GRIS

PESO UNITARIO SUELTO

No de Prueba	UND	1	2	3
PESO DE RECIPIENTE + MUESTRA	Kg	12640.0	12890.0	12690.0
PESO DEL RECIPIENTE	Kg	7900.0	7900.0	7900.0
PESO DE LA MUESTRA	Kg	4740.0	4990.0	4790.0
VOLUMEN	m3	2400.0	2400.0	2400.0
PESO UNITARIO SUELTO	kg/m3	1.975	2.079	1.996
		PROM	IEDIO	2.017

PESO UNITARIO COMPACTADO

No de Prueba	UND	11	2	3
PESO DE RECIPIENTE + MUESTRA	Kg	13030.0	12720.0	12810.0
PESO DEL RECIPIENTE	Kg	7900.0	7900.0	7900.0
PESO DE LA MUESTRA	Kg	5130.0	4820.0	4910.0
VOLUMEN	m3	2400.0	2400.0	2400.0
PESO UNITARIO SUELTO	kg/m3	2.138	2.008	2.046
		PROMEDIO		2.064

KAOLYN INGENIEROS SAC

KAOLYN INGENIEROS S.A.C Jr.PARAISO N° 120- CAJAMARCA Teléfonos: MOV. 970909450 CLARO: 984336450 RUC: 20529476931

PESO UNITARIO SUELTO Ref. AASHTO T-19

PROYECTO

"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"

DESCRIPCIÓN

: AGREGADO GRUESO KISAC-ASLL-DM-03-2022

MUESTREADO POR

: SOLICITANTE

CÓDIGO DE MUESTRA FECHA DE ENSAYO UBICACIÓN

24/01/2022 CAJAMARCA- CAJAMARCA- CAJAMARCA

COLOR DE MATERIAL ; GRIS

PESO UNITARIO SUELTO

No de Prueba	UND	1	2	3
PESO DE RECIPIENTE + MUESTRA	Kg	11340.0	11400.0	11590.0
PESO DEL RECIPIENTE	Kg	7900.0	7900.0	7900.0
PESO DE LA MUESTRA	Kg	3440.0	3500.0	3690.0
VOLUMEN	m3	2400.0	2400.0	2400.0
PESO UNITARIO SUELTO	kg/m3	1.433	1.458	1.538
		PROM	EDIO	1.476

PESO UNITARIO COMPACTADO

No de Prueba	UND	1	2	3
PESO DE RECIPIENTE + MUESTRA	Kg	11690.0	- 11650.0	11680.0
PESO DEL RECIPIENTE	Kg	7900.0	7900.0	7900.0
PESO DE LA MUESTRA	Kg	3790.0	3750.0	3780.0
VOLUMEN	m3	2400.0	2400.0	2400.0
PESO UNITARIO SUELTO	kg/m3	1.579	1.563	1.575
		PROMEDIO		1.572

(KA	Jr.PARAISO № 120- CAJAMARCA Teléfonos: MOV. 970909450 CLARO: 984336450				
Mar		RUC:	20529476931 @hotmail.es	30	
ítulo:	CANTIDAD DE MATERIAL FINO ASTM C - 117	QUE PASA POR EL TAMIZ (N°200)	Wildings	Código de Control Nro. KISAC - F3C	
ro de revisión:	ACTIN C-111		1	Página	1 de 1
royecto :	"EVALUACION A LA RESISTENCIA A CON ADITIVO SIKACEM ACELERAN' WANG PENG Y PATRÓ	TE PE UTILIZANDO CEMENTOS WP-	Fecha Muest.: 24	-Jan-22 codigo: KISA	AC-ASLL-DM-03-2022
oordenadas:	E: -	N: -	Cota:	- MUESTRA Nº: M -	1
escripción:	AGREGADO FINO		-		
luestreado por	SOLICITANTE	F'C=210KG/CM2			
		×			
	ENSAYO N°	1	2	3	
	Peso seco Inicial + Tara (gr.)	975.2	855.6	907.4	
	Peso seco final lavado+ Tara (gr.)	965.6	846.9	896.1	
	Nº Tara	A-03	L-03	M-03	
	Peso de Tara (gr.)	120.0	138.0	127.4	
	Pasante la Malla N°200 (gr.)	9.6	8.7	11.3	
	Peso Inicial (gr.) % Pasante la Malla N°200	855.2	718	780	PROMEDIO 1.3
	Observaciones: M-1				
			Name of the last o		
	50				
	-				
		A			
	EJECUTÓ			APROBÓ A	
				Leliaus A	?
	Minicipalitate	^*	ESPECIALSIA	ROCIO VILLANUE VA BAZ A	0

KAOLYN INGENIEROS SAC

Jr.PARAISO Nº 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931

kisac@hotmail.es ANALISIS GRANULOMÈTRICO Código de control Nro. Titulo: ASTM C136 KISAC- F03 Nro de revisión: Página "EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIRACEM ACELERANTE PE UTILIZANDO CEMENTOS WP. WANG PENG Y PATRÓN, CAJAMARCA 2021" Fecha muestreo: 24-Jan-22 Cód. Muestra No. KISAC-ASLL-DM-03-2022 CAJAMARCA- CAJAMARCA- CAJAMARCA Muestra: SOLICITANTE Muestreado por: DENNIS XAMIER VILLAR SALDAÑA F'C=210KG/CM2 Cantidad de suelo que pasa el tamiz No. 4 (Compactación AASHTO): 0.0 100.0 contenido de humeded (-No.4)/100*(6000g 6 13.231 lb)*(-No. 4)*(-2")] 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 1.01*(6000 & 13.231 lb)*l(-2*)-(No.4)](-2*) 0.0 100.0 100 995.3 5392.2 8463.2 7.7 41.8 65.6 92.3 58.2 34.4 Condiciones de Secado y Lavado del suelo Retenido en la malla N° 4 3/4" 90 100 55 3/8" 20 1/4" No. 4 10274.8 12240.5 79.7 94.9 20.3 5.1 2685.3 2,624.9 10 No. 8 93.6 95.8 0 5 eso suelo seco que pasa (g) 159.7 96.5 3.5 10274.8 so suelo seco total (g) 12899.7 255.9 97.5 2.5 No. 20 OVER= 0.0 % GRAVA= 94.9 % ARENA= 4.7 % FINOS= 0.4 % 339.6 98.3 1.7 No. 50 459.8 99.5 0.5 No. 100 99.6 99.6 No. 140 469.7 473.8 0.4 473.9 8 8 8 8 8 8 8 8 DESCRIPCIÓN Contenido de humedad de la fracción de Suelo seco que pasa la malla Nº 4. % de suelo seco que pasa la malla No. 200 No. Tara 4-35 No. Tere A-35 so Humedo + Tara 573 6 eso Seco + Tara 562.1 Peso Seco + Tara 562.1 . Seco Lavado +Tara 525.9 Peso de Tara Peso de Tara 52.0 52.0 Suelo Seco (-No. 200) g Peso del Aqua 11.5 36.2 Suelo Seco (+No. 200) g 510.1 473.9 Peso Seco uelo Seco (-No. 200) % Cont. de humedad % 0.4 DBSERVACIONES AGREGADOS PARA DISEÑO DE MEZCLA PIEDRA CHANCADA APROBÓ EJECUTÓ KAOLYN INGENIEROS SAC INGENIERO ESPECIALISTA

Jr.PARAISO Nº 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450 RUC: 20529476931

kisac@hotmail.es CONTENIDO DE HUMEDAD ASTM D 4643 / D 2216 Código de control Nro. KISAC-F02 Nro de revisión:

Proyecto:	"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"	Fecha muestreo:	24-Jan-22	Muestra:
Ubicación:	CAJAMARCA- CAJAMARCA- CAJAMARCA			39
Muestreado por:	SOLICITANTE			
Solicitado por:	DENNIS XAMIER VILLAR SALDAÑA	F'C=210KG/CM2		

Cód.	Muestra No.	KISAC-ASLL-DM-03-2022			
L	bicación	E =	N =	C =	
Pr	ofundidad				
Mues	tra o ensayo	1	2	3	4
RECIPIENTE No		A-52	A-50		
Pr + Ph	А	1290.6	986.2		
Pr + Ps	В	1270.8	969.4		
Pr	С	85.0	69.0		
P. AGUA	D = A - B	19.8	16.8		
Ps	E = B - C	1185.8	900.4		
% DE HUMEDAD	(D/E) * 100	1.7	1.9	Promedio = 1.8	
OBSERVACION	ES CONTENIDO DE F	HUMEDAD DE PIEDRA CHANCADA			
	-				
	AGREGADOS PAR	RA DISEÑO DE MEZCLA			

			8
			·
man in a con-			
R= PESO DEL RECIPIENTE			
H= PESO HUMEDO			
S= PESO SECO		 	
	EJECUTÓ	AF	PROBÓ
			- //-
	- Control of the Cont	alle a series and the series and	EMERIOS SACTO
3	TAYN	Comme Report in	Taul
1	NUEMIENOS . A.	as her	
		NG LILIAN ROCIO VILL EMPENILIAIA E MECANICADE INGENIERO	ANUEVA MACIETO
- KAO	LYN INGENIEROS SAC	 ESPECIALISMS CAR 116722	

Jr.PARAISO N° 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931 kisac@hotmail.es

Código de Control Nro. F9-10-OC

Nro de Revisión:		1	Página	1 de 1
Obra :	"EVALUACION A LA RESISTENCIA A LA COMPI DEL CONCRETO CON ADITIVO SIKACEM ACEL PE UTILIZANDO CEMENTOS WP- WANG PE PATRÓN, CAJAMARCA 2021"	RESION ERANTE NG Y F. muestreo: 24-Ene-22	Muestra №: KISAC-ASLL-E	DM-03-2022
Localización E =	N = Cot	'a m.s.n.m.	Сара	
Descripción:	CAJAMARCA- CAJAMARCA	***************************************		
Solicitado por:	DENNIS XAMIER VILLAR SALDAÑA	F'C=210KG/C	M2	
				-
No. De Particulas	> 3 pulg.		-	
No. Bandeja		A-13	A-12	A-15
Agregado Saturad	o Superficial Seco + Tara	11260.0	11240.0	11290.0
Agregado Seco +	Tara	10800.0	10760.0	10790.0
Peso de Tara		1370.0	1370.0	1370.0
Agregado Saturad	o Superficial Seco B	9,890.0	9,870.0	9,920.0
Agregado Seco	А	9,430.0	9,390.0	9,420.0
Agregado + Canas	stilla sumergida	7620.1	7610.0	7640.5
Peso Canastilla su	mergida	970.1	970	970.5
Agregado Saturad	o Sumergido C	6650.0	6640	6670
Femperatura del Agua		23°C	23°C	23°C
Factor de Correcci	actor de Corrección		1	1
Peso Especifico A	parente (A / (A-C))	3.39	3.41	3.43
Gravedad Especit	fica Bulk SSS (B / (B-C))	3.05	3.06	3.05
Gravedad Especit	fica Bulk (A / (B-C))	2.91	2.91	2.90
Absorción		4.88	5.11	5.31
Porcentaje Retenio	do No. 4	T	-	
Porcentaje Pasa N	lo. 4		\ <u>-</u>	
Peso Agregado qu	ue Pasa No. 4	-	-	
Peso Especifico Pi	romedio	2.91	2.91	2.90
OBSERVACIONES	S AGREGADOS PARA DISEÑO DE MEZO	CLA		
	EJECUTÓ		APROBÓ	
8	Machagluba A P	NC THAN	ROCIO VILLANUEVA BAZ'N CIP 18722	2
	KAOLYN INGENIEROS SAC		INGENIERO ESPECIALISTA	4

Jr.PARAISO N° 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931

Título:	PESO ESPECÍFICO D	PEL AGREGADO GRUESO	Código de Control Nro.
	ASTM C127		F9-10-OC
Nro de Revisión:		1	Página 1 de 1

Obra :	"EVALUACION A LA RESISTENCIA A LA COMPRESI DEL CONCRETO CON ADITIVO SIKACEM ACELERAN PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÔN, CAJAMARCA 2021"	ITE - 01 F 00	Muestra №: KISAC-ASLL-L	DM-03-2022	
Localización E =	N = Cota m.s	.n.m.	Сара		
Descripción:	CAJAMARCA- CAJAMARCA				
Solicitado por:	DENNIS XAMIER VILLAR SALDAÑA	F'C=210KG/CM	12		
		M1	M2	МЗ	
PESO DEL AGI	REGADO S.S.S. (gr)	500	500	500	
PESO DE LA FI	IOLA (gr)	161.72	161.72	161.72	
PESO DEL AGI	REGADO S.S.S. + FIOLA (gr)	661.7	661.7	661.7	
V= VOLUMEN I	DE LA FIOLA (cm3)	500.0	500.0	500.0	
Peso de fiola +	agregado S.S.S. + agua (gr)	973.7	975.9	979.8	
Wo =Peso de la	muestra en el aire secada al horno	491.6	490.4	492.2	
Pa=Peso del ag	ua añadida al frasco	311.98	314.21	318.05	
Va=Volumen de	el agua añadida al frasco (cm3)	311.98	314.21	318.05	
Peso especifico	de masa (Pe=Wo/(V-Va)	2.61	2.64	2.70	
Peso especific	o de masa promedio (gr/cm3)		2.65		
P. especifico de	masa saturado superficie seca Pe= 500/(V-Va)	2.66	2.69	2.75	
Peso especific	o de masa saturado superficie seco (gr/cm3)		2.70		
Peso especifico a	parente Pe=Wo/((V-Va)-(500-Wo))	2.74	2.78	2.83	
P. especifico Ap	arente (gr/cm3)				
ABSORCION Ab	s=((500-Wo)/Wo)x100 (%)	1.71	1.96	1.59	
ABSORCION PR	OMEDIO (%)		175%		
OBSERVACIONE	ES AGREGADOS PARA DISEÑO DE MEZCL	A			
	EJECUTÓ		APROBÓ		
	Mountain Land	NG INDANE	AOYNINGSHERDS AC DONO JULIANUEVA BAZ IN MECHANICA BUR ST TO MACHINO CRP 116722	2	
	KAOLYN INGENIEROS SAC	INGENIERO ESPECIALISTA			

KAOLYN INGENIEROS S.A.C Jr.PARAISO Nº 120- CAJAMARCA Teléfonos: MOV. 970909450 CLARO: 984336450 RUC: 20529476931 kisac@hotmail.es ABRASION DE AGREGADOS EN LA MAQUINA DE LOS ANGELES Código de Control Nro. F8-10 ASTM C131/C535 Nro de Revisión: de 1 "EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- F. Muestreo: WANG PENG Y PATRÓN, CAJAMARCA 2021" Proyecto: 24-Jan-22 Coordenadas: E: Descripción : CAJAMARCA- CAJAMARCA- CAJAMARCA Ensayo Nº: KISAC-ASLL-DM-03-2022 Solicitado por: DENNIS XAMIER VILLAR SALDAÑA F'C=210KG/CM2 Prueba Gradación usada No de esferas 11 No de revoluciones 500 Peso muestra seca antes de ensayo (g) 5002.0 Peso muestra seca después de ensayo (g) 3520.0 Pérdida (g) 1482 % de desgaste 29.6 Especificación % menor de DATOS SOBRE GRADACIÓN, CARGA ABRASIVA Y REVOLUCIONES TAMAÑO DEL TAMIZ PESOS Y GRADACIÓN DE LA MUESTRA (g) PASA RETENIDO В D 2 3 2 1/2 2 1/2" 1 1/2" 2" 11/2" 1" 3/4" 2504 3/4" 1/2" 2498 1/2" 3/8" 3/8" 1/4" 1/4" Nº4 Nº4 Nº8 No de esferas 12 11 12 12

500

500

MUESTRA DE AGREGADO GRUESO

No de revoluciones

OBSERVACIONES:

APROBO

KAQUAN NGSATERIOS SAG

NG ULIAN POCHO VILLANUEVA BAZ N

BROCH UNINGENIERO SAC

KAOLYN INGENIERO SAC

NOSENIERO ESPECIALISTA

500

500

1000

1000

1000

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FISICOS, QUIMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION: 018207-2015/DSD

Jr. PARAISO Nro. 120 Urb. COLUMNBO, CAJAMARCA - CAJAMARCA - CAJAMARCA

	LÍMITES DE ASTM D 4318	CONSISTENCIA			Código de control N KISAC-DM-70-2022	Iro.
lro de revisión:		А	Fecha de revisión de formato:	JULIO, 2022	Página	1 de 1
ora:			A COMPRESION DEL CONCRE		Fecha de Muestreo:	24-Jan-22
calización E =		N =	Cota m.s.n.m		Zona	SIERRA, RURAL
	AGREGADO DE			-	-	
	KISAC-DM-70-20					
and the second second		VILLAR SALDAÑA				
estreado por:	SOLICITANTE					
			LÍMITES DE CONSISTEM LÍMITE LÍQUIDO	CIA		
Muestra o	ensayo	1	2	3		4
DE GOLPES						
CIPIENTE No + Ph						
+ Ps			O PRES	$+NT\Delta$	-	
AGUA		17	I I ILL	41417		
		 				
DE HUMEDAD						
OURIELITE II			LÍMITE PLÁSTICO			
Ph		 				
+ Ps		N	OPRES	ENTA	4	
AGUA		1 1 1	OTIVES	HIVIA		
DE HUMEDAD				Promedio= 0.00		
50				ним	EDAD NATURAL %:	
200					MITE LÍQUIDO %:	
45				100	ITE PLÁSTICO %:	
40				ÍNDICE	DE PLASTICIDAD %:	
35 30 25				100000	No. Factor Golpes K	
30					20 0.974	
30					22 0.985	
25					24 0.995 25 1.000	
					26 1.005 27 1.009	
20 10	-	N' DE GOLPES	100		28 1.014 29 1.018	
		N DE GOEFEG]	30 1.022	
SERVACIONES:						
, oentholoneo						
R= PESO DEL RECIP	PIENTE	TEMPERATURA DE SECA	DO	AGUA USA	ADA .	
= PESO HUMEDO		PREPARACION DE LA MUI		AMBIENTE DESTILAD		OTRA
= PESO SECO		CONTENIDO DE HUMEDA	D 60° C	110° C POTABLE		
	EJECU	TÓ		PROBÓ	DEC	JLTADO
8	76	Y. S.	GA KA	OLYN INGENEROS AND	2 0	CUMPLE NO CUMPLE
	The state of the s		27	CIO VILLANUEVA BAZ. W		NO APLICA

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FISICOS, QUIMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION: 018207-2015/DSD

Jr. PARAISO Nro. 120 Urb. COLUMNBO, CAJAMARCA - CAJAMARCA - CAJAMARCA Contacto: 970909450 / 984336450 - Correo: kisac@notmail.es

Título:	DETERMINACIÓN DEL EQUIVALENTE DE ARENA NTP 339.146- 2000	Código de control Nro. KISAC-EMS-115-2022		
Nro. De Revisión:	A	Página	1 de	1
Obra:	"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"	Fecha muestreo	24/08/2022	
Ubicación:	CAJAMARCA- CAJAMARCA			
Muestreado por:	SOLICITANTE			1
Solicitado por:	DENNIS XAMIER VILLAR SALDAÑA			
	EQUIVALENTE DE ARENA ASTM D2419			

DATOS DE LA MUESTRA

ITEM	DESCRIPCION	ENSAYOS	
1	Tamaño Maximo (mm)	4.76	4.76
2	Muestra Nº	1.00	2.00
3	Hora de Entrada	09:10:00	09:12:00
4	Hora de Salida	09:20:00	09:22:00
5	Hora de Entrada	09:22:00	09:24:00
6	Hora de Salida	09:42:00	09:44:00
7	Altura Maxima de la Arena (Pulgadas)	4.80	4.67
8	Altura Maxima de Material Fino (Pulgadas)	6.31	6.11
9	Equivalente de Arena (%)	76.07	76.43
10	Equivalente de Arena Promedio (%)	76	.25

EJECUTÓ	APROBÓ	RESULTADO
	00060	⊗ CUMPLE
M. Cealing Y. P.	KARTYN INDENIEROSI AND LUCIUS	O NO CUMPLE
	NG LILIAN ROCKO VIII ANTIGUE BAZZAN BENEGLETSINCE BECOMO DE GUE OS Y CACRETO EN CONTRACTOR DE GUE OS Y CACRETO	O NO APLICA
KAOLYN INGENIEROS SAC	INGENIERO ESPECIALISTA	CONCLUSIÓN

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FISICOS, QUIMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION: 018207-2015/DSD

Jr. PARAISO Nro. 120 Urb. COLUMNBO. CAJAMARCA - CAJAMARCA - CAJAMARCA Contacto: 970909450 / 984336450 - Correo: kisac@hotmail.es

Título:	CONTENIDO DE MATERIA ORGÁNICA NTP 400.024- 2011	Código de control Nro. KISAC-EMS-115-2022		
Nro. De Revisión:	A	Página	1 de	1
Obra:	"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"	Fecha muestreo:	24/08/2022	
Ubicación:	CAJAMARCA- CAJAMARCA			
Muestreado por:	SOLICITANTE			
Solicitado por:	DENNIS XAMIER VILLAR SALDAÑA			
	CONTENIDO DE MATERIA ORGÁNICA (PÉRDIDA POR IGNICIÓN) NTP 400.024- 2011			

DATOS DE LA MUESTRA

ENSAYO N°	1	2	
N° TARA		C5	C4
PESO TARA + SUELO SECO INICIAL	(g)	106.32	109.39
PESO TARA + SUELO SECO FINAL	(g)	105.74	108.72
PESO DE MATERIA ORGANICA	(g)	0.58	0.67
PESO DE LA TARA	(g)	87.53	87.62
PESO DEL SUELO SECO	(g)	18.21	21.10
MATERIA ORGANICA	(%)	3.19	3.18
CONTENIDO DE HUMEDAD PROMEDIO	(%)	3.18	%

EJECUTÓ	APROBÓ	RESULTADO
	Do - to	⊗ CUMPLE
Ministration A. C.	KACHYN INCHWENOS SYC	O NO CUMPLE
	SNG LILIAN ROCIO VILLANUEVA BAZ 'N ESPENALISTA DE MEDANICA DE SUE DE VALCRETO	O NO APLICA
KAOLYN INGENIEROS SAC	INGENIERO ESPECIALISTA	CONCLUSIÓN

ENSAYOS DE LABORATORIO DE MECÂNICA DE SUELOS Y CONCRETO

PROYECTO: "EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"

DESCRIPCIÓN: DISEÑO DE MEZC<mark>LA PA</mark>RA CONCRETO DE F'C = 210 Kg/cm²

CON ADICION DE ADITIVO SIKACEM ACELERANTE PE

SOLICITANTE: NÚMERO DE ENSAYO : DENNIS XAMIER VILLAR SALDAÑA KISAC-ASLL-DM-05-2022

Jr.PARAISO N° 120- CAJAMARCA eléfonos: MOV. 970909450 CLARO: 984336450

Teléfonos: MOV. 970909450 CLARO: 984336450 RUC: 20529476931

kisac@hotmail.es

Título:	DISENO DE MEZCLA MÉTODO COMITÉ AC			Código de control Nro.
Proyecto::				RETO CON ADITIVO SIKACEM ATRÓN, CAJAMARCA 2021"
Localización:	E:	N	Cota m.s.n.m.	
Ubicación:	CAJAMARCA- CAJAMARC	A- CAJAMARCA	Fecha muestreo:	24-Jan-22
Muestreado por:	SOLICITANTE		Cód. Muestra No.	KISAC-ASLL-DM-05-2022
Solicitado nor	DENNIS YAMIER VII I AR S	ΕΔΙ ΠΔÑΔ		E'C=210KG/CM2

A. DESCRIPCIÓN DE LOS MATERIALES

1. CEMENTO

Cemento Portland - Tipo

(ASTM C 150)

Peso específico :

3.11 gr/cm3

Altitud de ensayo:

2750 m.s.n.m.

2. AGREGADOS

2.1. AGREGADO FINO

Procedencia:

Peso específico aparente: Peso unitario suelto seco: 2.78 gr/cm3 2.02 gr/cm3

Peso unitario seco compactado: Humedad Natural: 2.06 gr/cm3 6.8 %

Absorción: Módulo de Finura: 1.75 % 3.35

Material fino pasa malla 200:

1.3 %

2. 2. AGREGADO GRUESO

Procedencia:

 Peso específico aparente:
 3.41 gr/cm3

 Peso unitario suelto seco:
 1.48 gr/cm3

 Peso unitario seco compactado
 1.57 gr/cm3

 Tamaño máximo nominal:
 1/2 "

 Humedad Natural:
 1.8 %

 Absorción:
 5.1 %

 Abrasión:
 29.6 %

Kincenjubstan

ING LILIAN ROCIO

B. REQUISITOS ESCTRUCTURALES

Resistencia a la compresión de Diseño:

Resistencia a la compresión promedio:

f'c = 210 f'cr = 295

210 Kg/cm2295 Kg/cm2

Asentamiento:

3 - 4 "

0.9 Litros X Bolsa

KAOLYN INGENIEROS S.A.C

Jr.PARAISO N° 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931 kisac@hotmail.es Título: DISEÑO DE MEZCLA DE CONCRETO Código de control Nro. MÉTODO COMITÉ ACI "EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021" Proyecto:: Localización: N Cota m.s.n.m. Ubicación: CAJAMARCA- CAJAMARCA- CAJAMARCA Fecha muestreo: 24-Jan-22 SOLICITANTE Cód. Muestra No. KISAC-ASLL-DM-05-2022 Muestreado por: Solicitado por: DENNIS XAMIER VILLAR SALDAÑA F'C=210KG/CM2 C. CANTIDAD DE MATERIAL POR M3 DE CONCRETO 1. CANTIDAD DE MATERIAL POR M3 Cemento: 458 Kg Agregado fino seco: 801 Kg Agregado grueso seco: 1022 Kg 220 Lt Contenido de aire atrapado: 2.5 % 2. CANTIDAD DE MATERIAL CORREGIDOS POR HUMEDAD POR M3 Cemento: 458 Kg Agregado fino seco: 855 Kg Agregado grueso seco: 1040 Kg Agua: 213 Lt D. PROPORCIÓN DE MATERIALES 1. PROPORCIÓN EN PESO 1: 1.87: 2.27 / 18.88 lt/bolsa 2. PROPORCIÓN EN VOLUMEN 1: 2.00: 2.17 / 18.88 lt/bolsa 3. PROPORCIÓN DE SIKACEM ACELERANTE PE

EJECUTÓ	APROBÓ	
Kindragura y A. P.	**KAOLYN INGEMIERIOS SAL **MIG LILIAM ROCIO VILLANUEVA BAZZAN EMPEDIALISTA DE MEZINA DE SIGLOGY CONCRETO CIP 116722	
KAOLYN INGENIEROS SAC	INGENIERO ESPECIALISTA	

Jr.PARAISO Nº 120- CAJAMARCA Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931 kisac@hotmail.es

DISEÑO DE MEZCLA DE CONCRETO MÉTODO COMITÉ ACI

Código de control Nro.

Proyecto::

Título:

"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"

l ocalización: Ubicación:

CAJAMARCA- CAJAMARCA- CAJAMARCA

Cota m.s.n.m. Fecha muestreo:

24-Jan-22

Muestreado por:

SOLICITANTE

Cód. Muestra No. KISAC-ASLL-DM-05-2022

Solicitado por:

DENNIS XAMIER VILLAR SALDAÑA

F'C=210KG/CM2

E. CONCLUSIONES Y RECOMENDACIONES

- 1.0 De las muestras remitidas por el solicitante, se ha obtenido un contenido de humedad del agregado fino de 6.8 % y una absorción de 2.81 % ; asimismo el contenido de humedad del agregado grueso de 1.8 % y una absorción de 2.39 % , por lo tanto cuando se prepare la tanda de concreto en obra, se recomienda tener en cuenta éstos parámetros, con la finalidad de corregir periodicamente el contenido de agua efectiva, en el proporcionamiento de los materiales.
- 2.0 El coeficiente considerado para la determinación de la resistencia promedio (f'cr) está acorde con lo especificado en la norma ASTM C 94 -07.
- 3.0 Al preparar la tanda de concreto en obra, se debe tener en cuenta la corrección periodica del contenido de agua efectiva, en el proporcionamiento de los materiales, debido a la variación permanente en el contenido de humedad de los agregados.
- 4.0 Se recomienda que al realizar la dosificación correcta en volumen de obra, se debe utilizar recipientes adecuados, a fin de evitar variación volumétrica de los componentes de la mezcla, teniendo como base el volumen de una bolsa de cemento, considerado como un pie cúbico.
- 5.0 la curva granulométrica del agregado grueso, se ajusta al huso granulométrico N° 67 ,especificado en la norma ASTM C33M-11
- 6.0 La curva granulometrica del agregado fino, se adapta en un 70% al uso granulométrico "M" de la Norma NTP 400.037
- 7.0 Los agregados fueron muestreados, codificados y alcanzados por el solicitante.
- 8.0 Los requisitos estructurales , fueron especificados por el solicitante.
- 9.0 De acuerdo a las especificaciones del solicitante y las condiciones de exposición del concreto no son severas, se ha diseñado sin aire incorporado.
- 10.0 Se recomienda utilizar Sika Antisol para prevenir fisuras por acción del clima.
- 11.0 LA ALTITUD DE CAJAMARCA ES DE 2750 m.s.n.m., por lo que no se requiere realizar una incorporación de aire con respecto a la altitud considerada, debido a que es menor a 3000 m.s.n.m.
- 12.0 Se utilizó el uso de Sikacem Acelerante la cantidad de 0.9 L x bolsa, la cual ha intervenido en el diseño de mezcla, al reemplazar lo que se le hecha de aditivo por agua en su misma proporción.
- 13 El aditivo se le adicionó a ambos cementos utilizados en la presente tesis.

EJECUTÓ llas KAOLYN INGENIEROS SAC INGENIERO ESPECIALISTA

Jr.PARAISO N° 120- CAJAMARCA Teléfonos: MOV. 970909450 CLARO: 984336450 RUC: 20529476931

		kisac@hotmail.es	
Título:	CONTENIDO DE HUMEDAD ASTM D 4643 / D 2216		Código de control Nro. KISAC-F02
Nro de revisión:		1	Página 1 de 1

Proyecto:	"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"	Fecha muestreo:	24-Jan-22	Muestra:
Ubicación:	CAJAMARCA- CAJAMARCA	•		-
Muestreado por:	SOLICITANTE			
Solicitado por:	DENNIS XAMIER VILLAR SALDAÑA	F'C=210KG/CM2		

Cód. Muestra No.	KISAC-ASLL-DM-05-2022			
Ubicación	E=	N =	C =	
Profundidad				
Muestra o ensayo	1	2	3	4
RECIPIENTE No	A-33	A-01		
Pr + Ph A	805.2	863.9		
Pr + Ps B	762.6	815.4		
Pr C	128.2	108.0		
P. AGUA D = A - B	42.6	48.5		
Ps	634.4	707.4		
% DE HUMEDAD (D/E) * 100	6.7	6.9	Promedio = 6.8	
OBSERVACIONES CONTENIDO DE	HUMEDAD DE ARENA			
-				
AGREGADOS P	ARA DISEÑO DE MEZCLA			

AGREGA	DOS PARA DISEÑO DE MEZCLA				
			telement in the second		
			100		
					_
					-
R- DESO DEI DECIDIENTE					
H= PESO HUMEDO					
PH= PESO HUMEDO	EIECUTÁ		AR	PORÓ	
H= PESO HUMEDO	EJECUTÓ		API	ROBÓ	
PR= PESO DEL RECIPIENTE TH= PESO HUMEDO PS= PESO SECO	EJECUTÓ	e5	Both.) - 10	
PH= PESO HUMEDO	EJECUTÓ	(Both.	ROBÓ	
H= PESO HUMEDO	EJECUTÓ KINDERJANGS PA A	6	KAOLYNIN	OTHIEROS SAD	
H= PESO HUMEDO	EJECUTÓ KINGENJERGO F A	Professional Control Control	Both.	OTHIEROS SAD	

Jr.PARAISO Nº 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450 RUC: 20529476931 kisac@hotmail.es ANÁLISIS GRANULOMÉTRICO Código de control Nro. ASTM C136 AMYSGSRL - F03 Nro de revisión: Página de 1 "EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP. WANG PENG Y PATRÓN, CAJAMARCA 2021" 24-Jan-22 Cód. Muestra No. KISAC-ASLL-DM-05-2022 CAJAMARCA- CAJAMARCA- CAJAMARCA Uhicación SOLICITANTE Muestreado por: DENNIS XAMIER VILLAR SALDAÑA olicitado por F'C=210KG/CM2 Cantidad de suelo que pasa el tamiz No. 4 (Compecta 100.0 0.0 ntenido de humedad (-No.4)/100*(6000g 6 13.231 lb)*(-No. 4)*(-2*)] 0.0 0.0 100.0 0.0 100.0 100.0 100.0 0.0 1.01*(6000 & 13.231 lb)*((-2")-(No.4))(-2") 0.0 0.0 0.0 1 1/2 100.0 100.0 Condiciones de Secado y Lavado del suelo Retenido en la malla Nº 4 3/4" 0.0 100.0 0.0 Secado a 110°C sin lavar. 1/4 0.0 100.0 Peso suelo Húmedo que pasa (g) Peso suelo seco que pasa (g) Peso suelo seco retenido (g) No. 4 9.3 90.7 381.0 3862 6 3,703.4 400.0 797.0 100 56.3 46.6 No. 10 43.7 381.0 1023.0 53.4 45 100 4084 4 1298.0 65.3 34.7 25 80 No. 30 OVER= 0.0 % GRAVA= 9.3 % ARENA= 90.3 % 1758.0 85.2 14.8 5 .48 No. 60 1992.8 95.3 4.7 0 12 FINOS= 0.4 % No. 140 No. 200 2092.8 99.6 0.4 2092.9 MOD. FINEZA 3.35 COLOR GRIS Contenido de humedad de la fracción de Suelo seco que pasa la malla Nº 4. % de suelo seco que pasa la malla No. 200 No. Tara No. Tara A-30 A-30 Peso Humedo + Tara Peso Seco + Tara 2240.0 2150.0 Peso Seco + Tara 2150.0 P. Seco Lavado +Tara 2141.1 Peso de Tara Peso de Tara 48.2 48.2 90.0 uelo Seco (-No. 200) g Peso del Agua 8.9 Suelo Seco (+No. 200) g Peso Seco 2101.8 2092.9 Suelo Seco (-No. 200) % DBSERVACIONES AGREGADOS PARA DISEÑO DE MEZCLA EJECUTÓ ∩ APROBÓ KACHA HOGENIEROS SAC KINCENJENGS YAT ING LILIAN ROCIO VILLANDEVABAZAN ESPECIALISTA DE MECANICA DE SUELOS Y CONCRETO CIP 116722

KAOLYN INGENIEROS SAC

Jr.PARAISO Nº 120- CAJAMARCA

onos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931

PESO UNITARIO SUELTO

Ref. AASHTO T-19

"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG
PENG Y PATRÓN, CAJAMARCA 2021"

CÓDIGO DE MUESTRA FECHA DE ENSAYO

MUESTREADO POR : SOLICITANTE

UBICACIÓN

: KISAC-ASLL-DM-05-2022 : 24/01/2022 : CAJAMARCA- CAJAMARCA- CAJAMARCA

COLOR DE MATERIAL :

PESO UNITARIO SUELTO

No de Prueba	UND	1	2	3
PESO DE RECIPIENTE + MUESTRA	Kg	12640.0	12890.0	12690.0
PESO DEL RECIPIENTE	Kg	7900.0	7900.0	7900.0
PESO DE LA MUESTRA	Kg	4740.0	4990.0	4790.0
VOLUMEN	m3	2400.0	2400.0	2400.0
PESO UNITARIO SUELTO	kg/m3	1.975	2.079	1.996
		PROMEDIO		2.017

PESO UNITARIO COMPACTADO

No de Prueba	UND	1	2	3
PESO DE RECIPIENTE + MUESTRA	Kg	13030.0	12720.0	12810.0
PESO DEL RECIPIENTE	Kg	7900.0	7900.0	7900.0
PESO DE LA MUESTRA	Kg	5130.0	4820.0	4910.0
VOLUMEN	m3	2400.0	2400.0	2400.0
PESO UNITARIO SUELTO	kg/m3	2.138	2.008	2.046
		PROMEDIO		2.064

EJECUTÓ

KAOLYN INGENIEROS SAC

KAOLYN INGENIEROS S.A.C

Jr.PARAISO N° 120- CAJAMARCA
Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931

PESO UNITARIO SUELTO Ref. AASHTO T-19

PROYECTO

"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"

DESCRIPCIÓN

: AGREGADO GRUESO

MUESTREADO POR

SOLICITANTE

CÓDIGO DE MUESTRA FECHA DE ENSAYO UBICACIÓN

: KISAC-ASLL-DM-05-2022

: 24/01/2022 : CAJAMARCA- CAJAMARCA- CAJAMARCA

COLOR DE MATERIAL:

PESO UNITARIO SUELTO

No de Prueba	UND	1	2	3
PESO DE RECIPIENTE + MUESTRA	Kg	11340.0	11400.0	11590.0
PESO DEL RECIPIENTE	Kg	7900.0	7900.0	7900.0
PESO DE LA MUESTRA	Kg	3440.0	3500.0	3690.0
VOLUMEN	m3	2400.0	2400.0	2400.0
PESO UNITARIO SUELTO	kg/m3	1.433	1.458	1.538
		PROM	IEDIO	1.476

PESO UNITARIO COMPACTADO

No de Prueba	UND	1	2	3
PESO DE RECIPIENTE + MUESTRA	Kg	11690.0	11650.0	11680.0
PESO DEL RECIPIENTE	Kg	7900.0	7900.0	7900.0
PESO DE LA MUESTRA	Kg	3790.0	3750.0	3780.0
VOLUMEN	m3	2400.0	2400.0	2400.0
PESO UNITARIO SUELTO	kg/m3	1.579	1.563	1.575
		PROM	IEDIO	1.572

KAOLYN INGENIEROS SAC

ING	The state of the s	RU	970909450 CLARO: 984336450 C: 20529476931 sac@hotmail.es	= 2 ₁	
ítulo:	CANTIDAD DE MATERIAL FINO ASTM C - 117	QUE PASA POR EL TAMIZ (Nº200)		Código de Control Nro. KISAC - F3C	
lro de revisión:			1	Página	1 de 1
royecto:	"EVALUACION A LA RESISTENCIA A CON ADITIVO SIKACEM ACELERAN' WANG PENG Y PATRÓ	TE PE UTILIZANDO CEMENTOS WP-	Fecha Muest.: 24-Jan-22	copieo: KISA	C-ASLL-DM-05-202
Coordenadas:	E: -	N: -	Cota: -	MUESTRA Nº: M - 1	
escripción:	AGREGADO FINO	_			
luestreado po	r: SOLICITANTE	F'C=210KG/CM2			
	ENSAYO N°	1	2	3	
	Peso seco Inicial + Tara (gr.)	975.2	855.6	907.4	
	Peso seco final lavado+ Tara (gr.)	965.6	846.9	896.1	
	Nº Tara	A-03	L-03	M-03	
	Peso de Tara (gr.)	120.0	138.0	127.4	
	Pasante la Malla N°200 (gr.)	9.6	8.7	11.3	
	Peso Inicial (gr.)	855.2	718	780	PROMEDIC
	% Pasante la Malla N°200	1.1	1.2	1.4	1.3
	Observaciones: M-1				
					_
				Y	
	EJECUTÓ	5		APROBÓ	
	2320070		entire v	AOLYN INGENERIOS S	AER)
	KINCENIEROS SAN	>	NG ULIAN F	OCIO VILLANUEVA BA MECANICA DE SUELOS Y CONCR CIP 116722	
	V401 V41 B/05***	202 200	INC.	ENIERO ESPECIALIST	4
	KAOLYN INGENIE	MUS SAU	ING	LIVIERO ESPECIALISTA	-

Jr.PARAISO N° 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931 kisac@hotmail.es

					kisac@h	otmail.es		
Título:	ANÁLISIS GF ASTM C136	RANULOMÉT	RICO				Código de control N KISAC- F03	lro.
Nro de rev	risión:			1			Página 1	de 1
Proyecto::	DEL CONCRET PE UTILIZA	TO CON ADITIV	NCIA A LA COMI O SIKACEM ACE OS WP- WANG P MARCA 2021"	LERANTE	Fecha muestreo:	24-Jan-22	Cód. Muestra No. KISAC	-A SLL-DM-05-2022
Ubicación:	CAJAMARCA- CA	JAMARCA- CAJA	MARCA				Muestra:	
Muestreado po								
Solicitado por:	DENNIS XAMIER	VILLAR SALDAÑ	4		F'C=210KG/CM2			
Tamaño Tamiz	Peso Reten. Acumulado	% Retenido	% Pasa	Especific.	Cantidad de suelo que pas	sa el tamiz No. 4 (Compactacio	ón AASHTO):	
8"	0.0	0.0	100.0		[1-contenido de humedad	(-No.4)/100*(6000g 6 13.231 I	(b)*(-No. 4)*(-2")]	
6"	0.0	0.0	100.0		1			
4" 3"	0.0	0.0	100.0					
2"	0.0	0.0	100.0		1.01*(6000 6 13.231 lb)*[(-	-2")-(No.4)](-2")		
1 1/2"	0.0	0.0	100.0		-			
1*	0.0	0.0	100.0	100				
3/4"	995.3	7.7	92.3	90 100		Lavado del suelo Retenido en	la malla N° 4	
1/2" 3/8"	5392.2 8463.2	41.8 65.6	58.2 34.4	20 55	Secado a 110°C sin lavar.			
1/4"	10274.8	79.7	20.3	20 00				
No. 4	12240.5	94.9	5.1	0 10	Peso suelo Húmedo que p	oasa (g)	2685.3	
No. 8	93.6	95.8	4.2	0 5	Peso suelo seco que pasa		2,624.9	
No. 10	159.7	96.5	3.5		Peso suelo seco retenido Peso suelo seco total (g)	(g)	10274.8 12899.7	_
No. 16 No. 20	255.9	97.5	2.5		Peso saelo seco total (g)		72000.7	
No. 30	200.0						_	
No. 40	339.6	98.3	1.7		OVER=			
No. 50	459.8	99.5	0.5		GRAVA= ARENA=			
No. 60 No. 100	459.8	99.5	0.5	 	FINOS=			
No. 140	469.7	99.6	0.4			Access of the Control		
No. 200	473.8	99.6	0.4				_	
Platillo	473.9	3 3 3 33	1111111	1			_	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NATIONAL MANAGEMENT	AGHITAA	Temento en mm	DESCRIPCIÓN:	GRAVA		
- 1					COLOR:	GRIS		
80					COLOA.	GNIO		
80								
70					Contenido de humedad d pasa li	e la fracción de Suelo seco qu a malla Nº 4.	ue % de suelo seco que pasa	la maila No. 200
* PASA *		$\parallel \parallel \parallel$			No. Tara	A-35	No. Tara	A-35
50					Peso Humedo + Tara	573.6	Peso Seco + Tara	562.1
40					Peso Seco + Tara	562.1	P. Seco Lavado +Tara	525.9
30					Peso de Tara	52.0	Peso de Tara	52.0
20					Peso del Agua	11.5	Suelo Seco (-No. 200) g	36.2
10					Peso Seco	510.1	Suelo Seco (+No. 200) g	473.9
TAMIZ		b b 1 11		11	Cont. de humedad %	2.3	Suelo Seco (-No. 200) %	0.4
OBSERVAC			ARA DISEÑO DE I		-			
		PIEDRA CHANG	CADA					
		EJECUTÓ				AF	PROBÓ	
_	Kindel	NJEROS YAN	5		ENG.	LILIAN ROCIO VILLAN ROCIO VILLA	NIEROS AN IUEVA BAZIN IOS Y CONCRETO	
	KAO	LYN INGENIER	OS SAC			INGENIERO	ESPECIALISTA	-
	AAU	II III GENIER			Line and the second	OLITIERO		

Jr.PARAISO Nº 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450 RUC: 20529476931

	k	isac@hotmail.es
Título:	CONTENIDO DE HUMEDAD ASTM D 4643 / D 2216	Código de control Nro. KISAC-F02
Nro de revisión:	1	Página 1 de 1

The state of the s				A Commission of the	
Proyecto:	"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP-WANG PENG Y PATRÓN, CAJAMARCA 2021"	Fecha muestreo:	24-Jan-22	Muestra:	
Ubicación:	CAJAMARCA- CAJAMARCA			-	
Muestreado por:	SOLICITANTE				
Solicitado por:	DENNIS XAMIER VILLAR SALDAÑA	F'C=210KG/CM2			

Cód. Muestra No	. KISAC-ASLL-DM-05-2022			
Ubicación	E=	N =	C=	
Profundidad				
Muestra o ensay	1	2	3	4
RECIPIENTE No	A-52	A-50		
Pr + Ph A	1290.6	986.2		
Pr + Ps B	1270.8	969.4		
Pr C	85.0	69.0		
P. AGUA D = A - E	19.8	16.8		
Ps	1185.8	900.4		
% DE HUMEDAD (D/E) * 1	00 1.7	1.9	Promedio = 1.8	
OBSERVACIONES CON	TENIDO DE HUMEDAD DE PIEDRA CHANCADA			
	GADOS PARA DISEÑO DE MEZCLA			

		 	 		Harris American Inches
					8
					8
			10, 25, 17	- 1	
		 	 	_	
				X	
XX X X X X X X X X X X X X X X X X X X					
PH= PESO HUMEDO					
PR= PESO DEL RECIPIENTE PH= PESO HUMEDO PS= PESO SECO	EJECUTÓ			APROBÓ	
PH= PESO HUMEDO			NG LILIAN ROCE EMPERALIST, CE MED	APROBO LYA, INGENIERA LIANIERA LIANIERA LIANIERA	XX

Jr.PARAISO Nº 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931 kisac@hotmail.es

Código de Control Nro. F9-10-OC

ACION A LA RESISTENCIA A LA COMPRE ICRETO CON ADITIVO SIKACEM ACELER ICILIZANDO CEMENTOS WP- WANG PENG PATRÓN, CAJAMARCA 2021* N = Cota I CA- CAJAMARCA- CAJAMARCA AMIER VILLAR SALDAÑA I Seco + Tara	SION IANTE F. muestreo: 24-Ene-22 m.s.n.m. F'C=210KG/CM A-13 11260.0 10800.0 1370.0	Сара	 A-15 11290.0
CA- CAJAMARCA- CAJAMARCA AMIER VILLAR SALDAÑA J Seco + Tara	F'C=210KG/CM A-13 11260.0 10800.0	A-12 11240.0	A-15
AMIER VILLAR SALDAÑA I Seco + Tara	A-13 11260.0 10800.0	 A-12 11240.0	A-15
l Seco + Tara	A-13 11260.0 10800.0	 A-12 11240.0	A-15
	A-13 11260.0 10800.0	A-12 11240.0	A-15
	A-13 11260.0 10800.0	A-12 11240.0	A-15
	11260.0 10800.0	11240.0	
	10800.0		11290.0
/ Seco B		10760.0	
l Seco B	1370.0		10790.0
l Seco B		1370.0	1370.0
	9,890.0	9,870.0	9,920.0
A	9,430.0	9,390.0	9,420.0
ida	7620.1	7610.0	7640.5
	970.1	970	970.5
ОС	6650.0	6640	6670
	23°C	23°C	23°C
	1	1	1
(A / (A-C))	3.39	3.41	3.43
S (B/(B-C))	3.05	3.06	3.05
(A / (B-C))	2.91	2.91	2.90
	4.88	5.11	5.31
		-	
4	-		
	2.91	2.91	2.90
	(A/(A-C)) S (B/(B-C)) (A/(B-C))	C 6650.0 23°C 1 (A/(A-C)) 3.39 S (B/(B-C)) 3.05 (A/(B-C)) 2.91 4.88	C 6650.0 6640 23°C 23°C 1 1 (A/(A-C)) 3.39 3.41 S (B/(B-C)) 3.05 3.06 (A/(B-C)) 2.91 2.91 4.88 5.11 2.91 2.91

Jr.PARAISO N° 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931

		KIĐO	ic@notman.e.	5					
Título:	PESO ESPECÍFICO DEL AGREGADO GRUESO ASTM C127				Código de Co F9-10-OC	ontrol Nro.			
Nro de Revisión:	_ 1				Página	1	de	1	_
Obra :	"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP. WANG PENG Y PATRON, CAJAMARCA 2021"	F. muestreo:	24-Ene-22	Muestra Nº:	KISAC-ASLL-D	M-05-2022	1,11		

Obra :	"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRÓN, CAJAMARCA 2021"		Muestra Nº: KISAC-ASLL-E	DM-05-2022
Localización E =	N = Cota m.s.n.	m	Сара	
Descripción:	CAJAMARCA- CAJAMARCA			
Solicitado por:	DENNIS XAMIER VILLAR SALDAÑA	F'C=210KG/CI	M2	
		M1	M2	М3
PESO DEL AGR	PEGADO S.S.S. (gr)	500	500	500
PESO DE LA FIG	OLA (gr)	161.72	161.72	161.72
PESO DEL AGR	PEGADO S.S.S. + FIOLA (gr)	661.7	661.7	661.7
V= VOLUMEN D	DE LA FIOLA (cm3)	500.0	500.0	500.0
Peso de fiola + a	gregado S.S.S. + agua (gr)	973.7	975.9	979.8
Wo =Peso de la	muestra en el aire secada al horno	491.6	490.4	492.2
Pa=Peso del agu	ua añadida al frasco	311.98	314.21	318.05
Va=Volumen del	agua añadida al frasco (cm3)	311.98	314.21	318.05
Peso especifico	de masa (Pe=Wo/(V-Va)	2.61	2.64	2.70
Peso especifico	o de masa promedio (gr/cm3)		2.65	
P. especifico de	masa saturado superficie seca Pe= 500/(V-Va)	2.66	2.69	2.75
Peso especifico	o de masa saturado superficie seco (gr/cm3)		2.70	
Peso especifico ap	parente Pe=Wo/((V-Va)-(500-Wo))	2.74	2.78	2.83
P. especifico Apa	arente (gr/cm3)		2.78	
ABSORCION Abs	=((500-Wo)/Wo)x100 (%)	1.71	1.96	1.59
ABSORCION PRO	OMEDIO (%)		175%	
OBSERVACIONE:	S AGREGADOS PARA DISEÑO DE MEZCLA			
	_	,		
	EJECUTÓ		APROBÓ	
<	Knorenje kos y A P	NG ULIAN ESPECIALISTA	HAGUN INGENIEROS SAG HROCIO VILLANUEVA BAZAN GE MACONACO E SUELO SY CARCRETO CIP-116722	0
	KAOLYN INGENIEROS SAC		INGENIERO ESPECIALISTA	1

ACION A LA RESISTEN ITIVO SIKACEM ACELE WANG PENG Y F CA- CAJAMARCA- CAJAMAI L-DM-05-2022 MIJER VILLAR SALDAÑA Sayo (g) PISBAYO (g) DATOS SOBRE C	RANTE PE UT ATRÓN, CAJA N:	ILIZANDO CEM	CONCRETO ENTOS WP- Z:		24-J	de 1
ITIVO SIKACEM ACELE WANG PENG Y P CA- CAJAMARCA- CAJAMAI L-DM-05-2022 MIER VILLAR SALDAÑA Rayo (g) Pensayo (g)	RANTE PE UT ATRÓN, CAJA N:	1 A 11 500 5002.0 3520.0 1482	ENTOS WP-			lan-22
L-DM-05-2022 MMIER VILLAR SALDAÑA Fayo (g) Ponsayo (g)		1 A 11 500 5002.0 3520.0 1482		0 8		
L-DM-05-2022 MMIER VILLAR SALDAÑA Fayo (g) Ponsayo (g)		1 A 11 500 5002.0 3520.0 1482		0 8		
L-DM-05-2022 MMIER VILLAR SALDAÑA Fayo (g) Ponsayo (g)		A 11 500 5002.0 3520.0 1482	F'C	=210KG/CM2		
amier Villar Saldaña sayo (g) ensayo (g)		A 11 500 5002.0 3520.0 1482	FC	=210KG/CM2		
ayo (g) ensayo (g)		A 11 500 5002.0 3520.0 1482	70	-210KG/CM2	-	
ensayo (g)		A 11 500 5002.0 3520.0 1482				
ensayo (g)		11 500 5002.0 3520.0 1482				
ensayo (g)		500 5002.0 3520.0 1482				
ensayo (g)		5002.0 3520.0 1482				
ensayo (g)		3520.0 1482				
- Leave		1482			1	
DATOS SOBRE (1 1	
DATOS SOBRE (
DATOS SOBRE (
NIDO A	В	PESOS Y GRADA C	D	1	2	3
1000			A TANK OF THE			
			en lier t			
4"	2504					
2"	2498		1			
8"						
		77 - 15				
28						
12	11	8	6	12	12	12
1	500	500	500	1000	1000	1000
1 2 1 1 / / /	1/2" "" 1/2" 11" 1/4" 1/2" 1/4" 1/9" 1/2" 1/4" 1/4" 1/9" 1/4" 1/9" 1/4" 1/9" 1/4"	1/2" " 1/2" 11" 14" 2504 2/2" 2498 44" 44"	1/2" 2" 11" 1/4" 2504 2498 12 11 8	1/2" 2" 1/1/2" 11" 1/4" 2504 2498 12 11 8 6	1/2" 2" 1/2" 11" 1/4" 2504 2498 12 11 8 6 12	1/2" 2" 1/1/2" 11" 1/4" 2504 2498 12 11 8 6 12 12

Provecto:

KAOLYN INGENIEROS S.A.C

Jr.PARAISO N° 120- CAJAMARCA

Teléfonos: MOV. 970909450 CLARO: 984336450

RUC: 20529476931 kisac@hotmail.es

INCORPORACION DE ADITIVO SIKACEM ACELERANTE PE Código de Control Nro. Página

"EVALUACION A LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- F. Muestreo:

WANG PENG Y PATRÓN, CAJAMARCA 2021

Coordenadas: E:

Descripción : CAJAMARCA- CAJAMARCA- CAJAMARCA

Ensayo Nº: KISAC-ASLL-DM-05-2022 Solicitado por: DENNIS XAMIER VILLAR SALDAÑA

F'C=210KG/CM2

24-Jan-22

USO DE SIKACEM ACELERANTE PE

HOJA DE DATOS DEL PRODUCTO

SikaCem® Acelerante PE

INFORMACIÓN DEL PRODUCTO Empaques Apariencia / Color Incoloro a tonalidad amarrilla Vida Útil 1 año Condiciones de Almacenamiento El producto debe de ser almacenado en un lugar fresco y bajo techo en su envase original bien cerrado. 1.38 kg/L +/- 0.01

DOSIFICACIÓN

Dosificación

Dependiendo del grado de aceleramiento deseado, SikaCem® Acelerante PE se dosifica del 1% al 4% del peso del cemento (aproximadamente de 300 mL a 1200 mL por bolsa de cemento de 42.5 kg). De acuerdo con nuestra experiencia y como una guía en el uso de SikaCem® Acelerante PE, se puede decir que con una dosificación del 4% se obtienen resistencias mecánicas a 3 días equivalentes a 7 días y a 7 días las equivalentes a 15 días. Este efecto puede variar con el tipo y la edad del cemento, como también con la temperatura del ambiente. Recomendamos hacer ensayos previos para determinar la dosificación óptima en cada caso.

EJECUTO KAOLYN INGENIEROS SAC

ING LILIAN ROCIO VILLANUES ESPECIALISTA DE NECANICA DE SUELOS Y CIP. 116722 INGENIERO ESPECIALISTA

170

KAOLYM

KAOLYN INGENIEROS SAC

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FÍSICOS, QUÍMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION: 018207-2015/DSD

Jr. PARAISO Nro. 120 Urb. COLUMNBO. CAJAMARCA - CAJAMARCA - CAJAMARCA

Confacto: 970909450 / 984336450 - Correo: kisac@notmail.es

ROTURA DE ESPECIMENES DE CONCRETO

TESIS:

EVALUACION DE LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRON, CAJAMARCA 2021

Solicitante:

DENNIS XAMIER VILLAR SALDAÑA

Ubicación:

Departamento

: CAJAMARCA

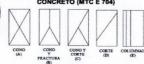
Provincia

: CAJAMARCA

Distrito

: CAJAMARCA

Cajamarca, marzo del 2022



KAOLYN INCENIEROS SAC

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FÍSICOS, QUÍMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION:
018207-2015/DSD

No de Revisión: A Fecha de Revisión del Formato: ENERO, 2022 Código de Control Nro.: KISAC-RP-ASLI-53-2022 Proyecto: EVALUACION DE LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRI DE CAJAMARCA- CAJAMARCA CEMENTO PATRON CAJAMARCA- CAJAMARCA CAJAMARCA CEMENTO PATRON Nº DESCRIPCIÓN FECHA DE MOLDEO EDAD (DÍAS) FECHA DE ROTURA CARGA (KG) DIAMETRO (KG/cm2) RESIST. (Kg/cm2) RESIST. PROM. (Kg/em2) % RESIST. PENCIA (Kg/cm2) % RESIST. PENCIA (Kg/cm2) 30614 15.00 173 210 82 A 6 MUESTRA Nº 05 10/02/2022 14 24/02/2022 30766 14.95 175 210 83 A	Página 1 de 1 N, CAJAMARCA 2
CAJAMARCA- CAJAMARCA CEMENTO PATRON BACH_DENNIS XAMIER VILLAR SALDAÑA MUESTRA SIN ADITIVO THE DESCRIPCIÓN FECHA DE MOLDEO (DÍAS) MUESTRA Nº 05 MUESTRA Nº 05 CARGA (KG) DIAMETRO (CM) CARGA (KG) DIAMETRO (CM) CARGA (KG) DIAMETRO (Kg/cm2) PROM. (Kg/cm2) RESIST. (Kg/cm2)	N, CAJAMARCA 2
	T
N° DESCRIPCIÓN FECHA DE MOLDEO EDAD (DÍAS) FECHA DE ROTURA CARGA (KG) DIAMETRO (CM) RESISTENCIA (Kg/cm2) RESIST. DISEÑO (Kg/cm2) % RESISTENCIA DISEÑO (Kg/cm2) % RESISTENCIA (Kg/cm2) 7 RESISTENCIA (Kg/cm2) 7 RESISTENCIA (Kg/cm2) 3 NOTURA 5 MUESTRA № 05 10/02/2022 14 24/02/2022 30614 15.00 173 210 82 A	
№ DESCRIPCIÓN PECHA DE MOLDEO EDIAD (DÍAS) CARGA (KG) DIAMETRO (KG/cm2) RESISTENCIA (Kg/cm2) PROM. (Kg/cm2) DISEÑO (Kg/cm2) **RESISTENCIA (Kg/cm2) **RESISTENCIA (Kg/cm2) **RESISTENCIA (Kg/cm2) **PROM. (Kg/cm2) **RESISTENCIA (K	T
	OBSERVACION
6 MUESTRA Nº 06 10/02/2022 14 24/02/2022 30766 14.95 175 210 83 A	
176	
7 MUESTRA № 07 10/02/2022 14 24/02/2022 30952 14.95 176 210 84 B	
8 MUESTRA Nº 08 10/02/2022 14 24/02/2022 31492 15.00 178 210 85 B	
OBSERVACIONES: Los testigos han sido ingresados al Laboratorio de KAOLYN INGENIEROS SAC, por el solicitante.	

0011	
EDAD	PARAMETRO
1 DÍA	25% - 35%
3 DÍAS	42% - 53%
7 DIAS	70% - 85%
14 DÍAS	85% - 95%
28 DÍAS	100% - 120%

KAOLYN INGENIEROS SAC LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FÍSICOS, QUÍMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION: 018207-2015/DSD Jr. PARAISO Nro. 120 Urb. COLUMNBO. CAJAMARCA - CAJAMARCA - CAJAMARCA Contacto: 970909450 / 984336450 - Correo: kisac@hotmail.es PRUEBA DE RESISTENCIA A LA COMPRESIÓN DE LOS ESPECÍMENES CILÍNDRICOS DE CONCRETO NORMA ASTM C - 39 Nro de Revisión: Fecha de Revisión del Formato: ENERO, 2022 Código de Control Nro.: KISAC-RP-ASLL-52-2022 EVALUACION DE LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRON, CAJAMARCA 2021 CAJAMARCA- CAJAMARCA- CAJAMARCA CEMENTO PATRON BACH.DENNIS XAMIER VILLAR SALDAÑA MUESTRA SIN ADITIVO RESIST. DISEÑO (Kg/cm2) RESIST. FECHA DE FECHA DE DIAMETRO RESISTENCIA TIPO DE ROTURA % RESIS-Nº DESCRIPCIÓN CARGA (KG) PROM. (Kg/cm2) **OBSERVACIONES** MOLDEO (DÍAS) ROTURA (CM) (Kg/cm2) TENCIA MUESTRA Nº 01 10/02/2022 17/02/2022 27487 15.00 156 2 MUESTRA № 02 10/02/2022 17/02/2022 27999 15.00 158 B 210 75 158 MUESTRA № 03 3 10/02/2022 17/02/2022 27822 15.00 157 210 75 MUESTRA № 04 10/02/2022 17/02/2022 15.00 76 OBSERVACIONES: Los testigos han sido ingresados al Laboratorio de KAOLYN INGENIEROS SAC, por el solicitante. TIPOS DE FALLA DE LOS CILINDROS DE RESISTENCIA EN FUNCIÓN DE LA EDAD DEL CONCRETO CONCRETO (MTC E 704) PARAMETRO 1 DÍA 25% - 35% 3 DIAS 42% - 53% 7 DIAS 70% - 85% 14 DÍAS 85% - 95% KAOLYN INGENIEROS SAC INGENIERO ESPECIALISTA 100% - 120% 28 DIAS

KAOLYN INGENIEROS SAC

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FISICOS, QUIMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION:
018207-2015/DSD

Jr. PARAISO Nro. 120 Urb. COLUMNARCA - CAJAMARCA - CAJAMARCA
Contacto: 970909450 / 984336450 - Correo: kisac@hotmail.es

A EVALUACION DE LA R CAJAMARCA- CAJAMARC BACH. DENNIS XAMIER VI DESCRIPCIÓN	CA- CAJAMARCA	MPRESION		O, 2022 CON ADITIVO : CEMENTO PATR MUESTRA SIN A	SIKACEM ACE	Control Nro.:		C-RP-ASLL-54			ágina 1 de 1 I, CAJAMARCA 20
CAJAMARCA- CAJAMARC BACH.DENNIS XAMIER VI	CA- CAJAMARCA ILLAR SALDAÑA FECHA DE	EDAD		CEMENTO PATR	RON	ELERANTE PE U	TILIZANDO C	EMENTOS W	P- WANG PE	NG Y PATRO	I, CAJAMARCA 20
BACH.DENNIS XAMIER VI	ILLAR SALDAÑA FECHA DE		FECHA DE								
	FECHA DE		FECHA DE	MUESTRA SIN A	DITIVO						
DESCRIPCIÓN			FECHA DE								
		(DÍAS)	ROTURA	CARGA (KG)	DIAMETRO (CM)	RESISTENCIA (Kg/cm2)	RESIST. PROM. (Kg/cm2)	RESIST. DISEÑO (Kg/cm2)	% RESIS- TENCIA	TIPO DE ROTURA	OBSERVACIONES
MUESTRA № 09	10/02/2022	28	10/03/2022	42818	14.95	244		210	116	В	
MUESTRA Nº 10	10/02/2022	28	10/03/2022	43442	14.90	249		210	119	А	
MUESTRA Nº 11	10/02/2022	28	10/03/2022	41314	15.00	234	241	210	111	В	****
MUESTRA № 12	10/02/2022	28	10/03/2022	41850	15.00	237		210	113	А	
M	UESTRA № 10 UESTRA № 11	UESTRA № 10 10/02/2022 UESTRA № 11 10/02/2022	UESTRA N° 10 10/02/2022 28 UESTRA N° 11 10/02/2022 28	UESTRA N* 10 10/02/2022 28 10/03/2022 UESTRA N* 11 10/02/2022 28 10/03/2022	UESTRA N° 10 10/02/2022 28 10/03/2022 43442 UESTRA N° 11 10/02/2022 28 10/03/2022 41314	UESTRA N° 10 10/02/2022 28 10/03/2022 43442 14.90 UESTRA N° 11 10/02/2022 28 10/03/2022 41314 15.00	UESTRA N* 10 10/02/2022 28 10/03/2022 43442 14.90 249 UESTRA N* 11 10/02/2022 28 10/03/2022 41314 15.00 234	UESTRA N° 10 10/02/2022 28 10/03/2022 43442 14.90 249 241 UESTRA N° 11 10/02/2022 28 10/03/2022 41314 15.00 234	UESTRA N° 10 10/02/2022 28 10/03/2022 43442 14.90 249 210 UESTRA N° 11 10/02/2022 28 10/03/2022 41314 15.00 234 210	UESTRA N° 10 10/02/2022 28 10/03/2022 43442 14.90 249 210 119 UESTRA N° 11 10/02/2022 28 10/03/2022 41314 15.00 234 210 111	UESTRA N* 10 10/02/2022 28 10/03/2022 43442 14.90 249 241 210 119 A UESTRA N* 11 10/02/2022 28 10/03/2022 41314 15.00 234 241 210 1111 B

OBSERVACIONES: Los testigos han sido ingresados al Laboratorio de KAOLYN INGENIEROS SAC, por el solicitante.

KAOLYN INGENIEROS SAC



INGENIERO ESPECIALISTA

RESISTENCIA EN FUNCIÓN DE LA EDAD DEL CONCRETO

EDAD	PARAMETRO
1 DÍA	25% - 35%
3 DÍAS	42% - 53%
7 DÍAS	70% - 85%
14 DÍAS	85% - 95%
28 DIAS	100% - 120%

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FISICOS, QUIMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION: 018207-2015/DSD Jr. PARAISO Nro. 120 Urb. COLUMNBO. CAJAMARCA - CAJAMARCA Contacto: 970909450 / 984336450 - Correo: kisac@hotmail.es

Título:	PRUEBA DE RESISTENCIA À LA COMPRESIÓN DE LOS ESPECÍMENES CILÍNDRICOS DE CONCRETO NORMA ASTM C - 39 A Feche de Revisión del Formato: ENERO, 2022 Código de Control Nro.: KISAC-RP-ASIL-55-2022 Pápina 1 de											
Nro de Revisión:	A	Fecha de Revisión	del Formato:	ENER	O, 2022	Código de	Control Nro.:	KISA	C-RP-ASLL-55	-2022	P	ágina 1 de 1
Proyecto:	EVALUACION DE LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP-WANG PENG Y 2021											RON, CAJAMARC
Ibicación:	CAJAMARCA- CAJAMAR	CA- CAJAMARCA			WP- WANG PEN	G						
Clinte:	BACH.DENNIS XAMIER	VILLAR SALDAÑA			MUESTRA SIN A	DITIVO						
Nº	DESCRIPCIÓN	FECHA DE MOLDEO	EDAD (DÍAS)	FECHA DE ROTURA	CARGA (KG)	DIAMETRO (CM)	RESISTENCIA (Kg/cm2)	RESIST. PROM. (Kg/cm2)	RESIST. DISEÑO (Kg/cm2)	% RESIS- TENCIA	TIPO DE ROTURA	OBSERVACIONES
1	MUESTRA № 01	10/02/2022	7	17/02/2022	24916	14.90	143		210	68	В	
2	MUESTRA № 02	10/02/2022	7	17/02/2022	24302	14.95	138		210	66	Α	
3	MUESTRA № 03	10/02/2022	7	17/02/2022	25195	14.95	144	142	210	68	А	
4	MUESTRA Nº 04	10/02/2022	7	17/02/2022	24788	14.90	142		210	68	А	

OBSERVACIONES: Los testigos han sido ingresados al Laboratorio de KAOLYN INGENIEROS SAC, por el solicitante.

KAOLYN INGENIEROS SAC

RESISTENCIA EN FUNCIÓN DE LA EDAD DEL CONCRETO

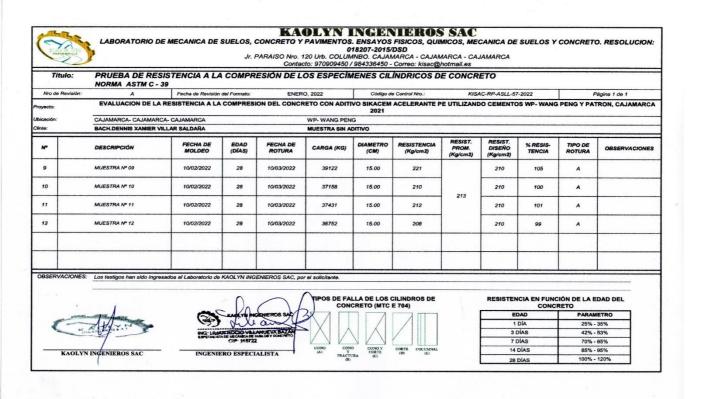
	EDAD	PARAMETRO
	1 DÍA	25% - 35%
	3 DIAS	42% - 53%
	7 DÍAS	70% - 85%
	14 DÍAS	85% - 95%
-	28 DÍAS	100% - 120%

KAOLYN INGENIEROS SAC
LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FÍSICOS, QUÍMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION: 018207-2015/DSD

Jr. PARAISO Nro. 120 Urb. COLUMNBO. CAJAMARCA - CAJAMARCA - CAJAMARCA Contacto: 970909450 / 984336450 - Correo: kisac@hotmail.es

Título:	NORMA ASTM C	SISTENCIA A LA - 39											
Nro de Revisión:	A	Fecha de Revisión	del Formato:	ENER	0, 2022	Código de	Control Nro.:	KISA	C-RP-ASLL-56	-2022	P	ágina 1 de 1	
royecto:	EVALUACION DE L	A RESISTENCIA A LA	COMPRESI	ON DEL CONCR	ETO CON ADITI	VO SIKACEM 2021	ACELERANTE P	E UTILIZAND	O CEMENTO	S WP- WANG	PENG Y PAT	RON, CAJAMARCA	
bicación:	CAJAMARCA- CAJAMAR	RCA- CAJAMARCA			WP- WANG PEN	G							
linte:	BACH.DENNIS XAMIER VILLAR SALDAÑA MUESTRA SIN ADITIVO												
Nº	DESCRIPCIÓN	FECHA DE MOLDEO	EDAD (DÍAS)	FECHA DE ROTURA	CARGA (KG)	DIAMETRO (CM)	RESISTENCIA (Kg/cm2)	RESIST. PROM. (Kg/cm2)	RESIST. DISEÑO (Kg/cm2)	% RESIS- TENCIA	TIPO DE ROTURA	OBSERVACIONES	
5	MUESTRA № 05	10/02/2022	14	24/02/2022	28272	15.00	160		210	76	A		
6	MUESTRA № 06	10/02/2022	14	24/02/2022	29253	14.95	167	400	210	79	В		
7	MUESTRA № 07	10/02/2022	14	24/02/2022	28038	14.90	161	163	210	77	А		
8	MUESTRA № 08	10/02/2022	14	24/02/2022	28450	14.90	163		210	78	Α		

OBSERVACIONES: Los testigos han sido ingresados al Laboratorio de KAOLYN INGENIEROS SAC, por el solicitante.



INGENIERO ESPECIALISTA

RESISTENCIA EN FUNCIÓN DE LA EDAD DEL CONCRETO

PARAMETRO
25% - 35%
42% - 53%
70% - 85%
85% - 95%
100% - 120%

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FISICOS. QUIMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION: 018207-2015/DSD Jr. PARAISO Nro. 120 Urb. COLUMNBO. CAJAMARCA - CAJAMARCA - CAJAMARCA

Contacto: 970909450 / 984336450 - Correo: kisac@hotmail.es

ROTURA DE ESPECIMENES DE **CONCRETO**

TESIS:

EVALUACION DE LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRON, CAJAMARCA 2021

Solicitante:

DENNIS XAMIER VILLAR SALDAÑA

Ubicación:

Departamento

: CAJAMARCA

Provincia

: CAJAMARCA

Distrito

: CAJAMARCA

Cajamarca, marzo del 2022

Nro de Revisio oyecto: picación: iente:						INES CILII	NDRICOS DE	CONCRE				_
bicación:	EVALUACION DE LA PI	Fecha de Revisión	del Formato:	ENER	O, 2022	Código d	Control Nro.:	KISA	C-RP-ASLL-58	3-2022	F	Página 1 de 1
	EVALUACION DE LA R	ESISTENCIA A LA CO	MPRESION	DEL CONCRETO	CON ADITIVO	SIKACEM ACE	LERANTE PE UT	ILIZANDO CI	EMENTOS W	P- WANG PEN	NG Y PATRON	I, CAJAMARCA 20
iente:	CAJAMARCA- CAJAMARCA	A- CAJAMARCA		CEMENTO PATR	ON							
	BACH.DENNIS XAMIER VIL	LAR SALDAÑA		CON ADITIVO AL	. 1.5%							
Nº	DESCRIPCIÓN	FECHA DE MOLDEO	EDAD (DÍAS)	FECHA DE ROTURA	CARGA (KG)	DIAMETRO (CM)	RESISTENCIA (Kg/cm2)	RESIST. PROM. (Kg/cm2)	RESIST. DISEÑO (Kg/cm2)	% RESIS- TENCIA	TIPO DE ROTURA	OBSERVACIONE
1	MUESTRA № 01-1.5%	11/02/2022	7	18/02/2022	38595	14.95	220		210	105	A	
2	MUESTRA № 02-1.5%	11/02/2022	7	18/02/2022	38477	15.00	218	220	210	104	A	
3	MUESTRA № 03-1.5%	11/02/2022	7	18/02/2022	38719	15.00	219	220	210	104	A	
4	MUESTRA № 04-1.5%	11/02/2022	7	18/02/2022	39147	14.95	223		210	106	A	
_												
OBSERVACIO	NES: Los testigos han sido ingres	ados al Laboratorio de KA	OLYN INGEN	NIEROS SAC, por	el solicitante.						L	
			000			LLA DE LOS (CILINDROS DE E 704)		RESISTEN	ICIA EN FUNC	CIÓN DE LA E	DAD DEL
	Comment of the last of the las	()	KADITHING	ENIEROS BAG					E	DAD	PARAM	METRO
1	ZHA Z		yello	u l	X					DÍA	25% -	
		ESPECIALISTAT	CIP 116722	ELOS Y CONCRETO						DIAS	42% - 70% -	
				1	cono con	O CONO Y	CORTE COLUMNAL					
KA	OLYN INGENIEROS SAC	INGENIE	RO ESPECI	ALISTA	(A) Y FRACTI	CORTE	(D) (E)			DIAS DIAS	85% - 100% -	

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FÍSICOS, QUÍMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION: OS, ENGRETO F PAVIMENT US. ENGATUS FIGURES, GUIMINOS, INECERTICA 018207-2015/DS - CAJAMARCA - CAJAMARCA - CAJAMARCA Contacto: 970909450 / 98433450 - Corros: kisac@hotmail.es

Título:	PRUEBA DE RESISTENCIA A LA COMPRESIÓN DE LOS ESPECÍMENES CILÍNDRICOS DE CONCRETO NORMA ASTIM C - 39 ENERO, 2022 Código de Control Nro.: KISAC-RP-ASIL-59-2022												
Nro de Revisión:	A	Fecha de Revisión	del Formato:	ENER	0, 2022	Código de	Control Nro.:	KISA	C-RP-ASLL-59	-2022	P	ágina 1 de 1	
oyecto:	EVALUACION DE LA RE	SISTENCIA A LA COI	MPRESION I	DEL CONCRETO	CON ADITIVO S	IKACEM ACE	LERANTE PE UT	ILIZANDO CE	MENTOS W	- WANG PEN	IG Y PATRON	, CAJAMARCA 202	
picación:	CAJAMARCA- CAJAMARCA	- CAJAMARCA		CEMENTO PATRON									
iente:	BACH.DENNIS XAMIER VILI	LAR SALDAÑA		CON ADITIVO AL	1.5%								
Nº	DESCRIPCIÓN	FECHA DE MOLDEO	EDAD (DÍAS)	FECHA DE ROTURA	CARGA (KG)	DIAMETRO (CM)	RESISTENCIA (Kg/cm2)	RESIST. PROM. (Kg/cm2)	RESIST. DISEÑO (Kg/cm2)	% RESIS- TENCIA	TIPO DE ROTURA	OBSERVACIONE	
5	MUESTRA № 05-1.5%	11/02/2022	14	25/02/2022	44818	15.00	254		210	121	A		
6	MUESTRA № 06-1.5%	11/02/2022	14	25/02/2022	44604	14.95	254		210	121	А		
7	MUESTRA № 07-1.5%	11/02/2022	14	25/02/2022	44414	14.95	253	253	210	120	А		
8	MUESTRA Nº 08-1.5%	11/02/2022	14	25/02/2022	44520	15.00	252		210	120	А		
							A-4-11-1-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-						
	·												

KAOLYN INGENIEROS SAC

INGENIERO ESPECIALISTA

RESISTENCIA EN FUNCIÓN DE LA EDAD DEL CONCRETO

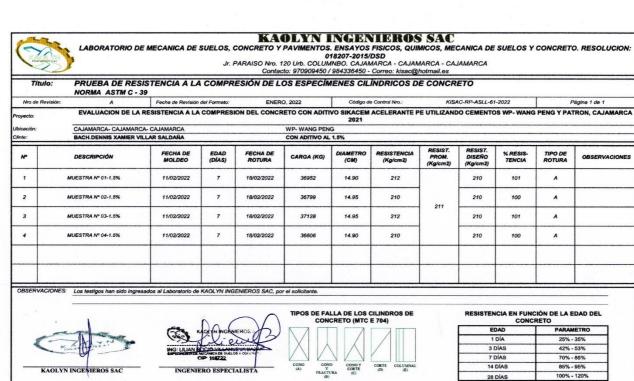
EDAD PARAMETRO 1 DÍA 25% - 35% 3 DÍAS 42% - 53% 7 DÍAS 70% - 85% 14 DÍAS 85% - 95% 28 DÍAS 100% - 120%

KAOLYN INGENIEROS SAC LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FÍSICOS, QUÍMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION: Jr. PARAISO Nro. 120 Urb. COLUMNBO. CAJAMARCA - CAJAMARCA - CAJAMARCA - CAJAMARCA - CAJAMARCA - COnteado: 970909450 / 984336450 - Correo: kisac@hotmail.es

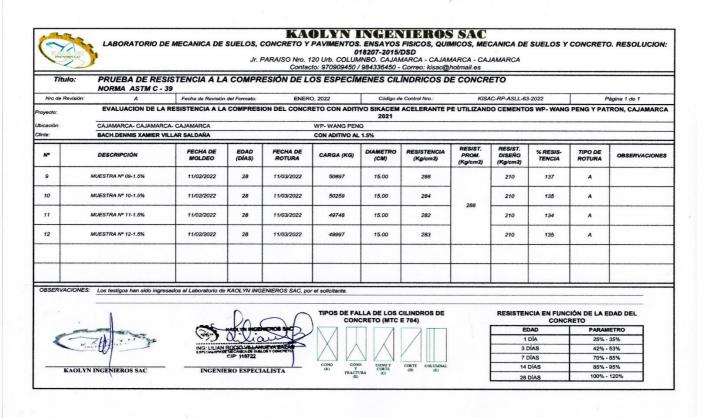
Título:	PRUEBA DE RESI NORMA ASTM C - 39		COMPRE	SIÓN DE LO	OS ESPECÍM	ENES CILI	NDRICOS D	E CONCR	ETO			
Nro de Revisión:	A	Fecha de Revisión	del Formato:	ENER	O, 2022	Código de	Control Nro.:	KISA	C-RP-ASLL-60	-2022	P	ágina 1 de 1
Proyecto:	EVALUACION DE LA RE	SISTENCIA A LA CO	MPRESION	DEL CONCRETO	CON ADITIVO	SIKACEM ACI	ELERANTE PE U	TILIZANDO C	EMENTOS W	P- WANG PE	NG Y PATROI	N, CAJAMARCA 202
Jbicación:	CAJAMARCA- CAJAMARCA	A- CAJAMARCA	-		CEMENTO PATE	ON	Here was the district					
Clinte:	BACH.DENNIS XAMIER VIL	LAR SALDAÑA			CON ADITIVO AL	1.5%						
~	DESCRIPCIÓN	FECHA DE MOLDEO	EDAD (DÍAS)	FECHA DE ROTURA	CARGA (KG)	DIAMETRO (CM)	RESISTENCIA (Kg/cm2)	RESIST. PROM. (Kg/cm2)	RESIST. DISEÑO (Kg/cm2)	% RESIS- TENCIA	TIPO DE ROTURA	OBSERVACIONES
9	MUESTRA № 09-1.5%	11/02/2022	28	11/03/2022	51990	14.95	296		210	141	A	
10	MUESTRA № 10-1.5%	11/02/2022	28	11/03/2022	52198	14.90	299	296	210	143	A	
11	MUESTRA № 11-1.5%	11/02/2022	28	11/03/2022	51709	15.00	293	296	210	139	А	
12	MUESTRA № 12-1.5%	11/02/2022	28	11/03/2022	52359	15.00	296		210	141	A	

OBSERVACIONES: Los testigos han sido ingresados al Laboratorio de KAOLYN INGENIEROS SAC, por el solicitante

KAOLYN INGENIEROS SAC



INGENIERO ESPECIALISTA


RESISTENCIA EN FUNCIÓN DE LA EDAD DEL CONCRETO

PARAMETRO 1 DÍA 25% - 35% 3 DIAS 42% - 53% 7 DÍAS 70% - 85% 14 DÍAS 85% - 95% 100% - 120% 28 DÍAS

Página 1 de 1

OBSERVACIONES

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FISICOS, QUÍMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION: 018207-2015/DSD

Jr. PARAISO Nro. 120 Urb. COLUMNBO. CAJAMARCA - CAJAMARCA - CAJAMARCA

Contecto: 970909450 / 984336450 - Correo: kisac@hatmail.es

ROTURA DE ESPECIMENES DE CONCRETO

TESIS:

"EVALUACION DE LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRON, CAJAMARCA 2021"

Solicitante:

DENNIS XAMIER VILLAR SALDAÑA

Ubicación:

Departamento

: CAJAMARCA

Provincia

: CAJAMARCA

Distrito

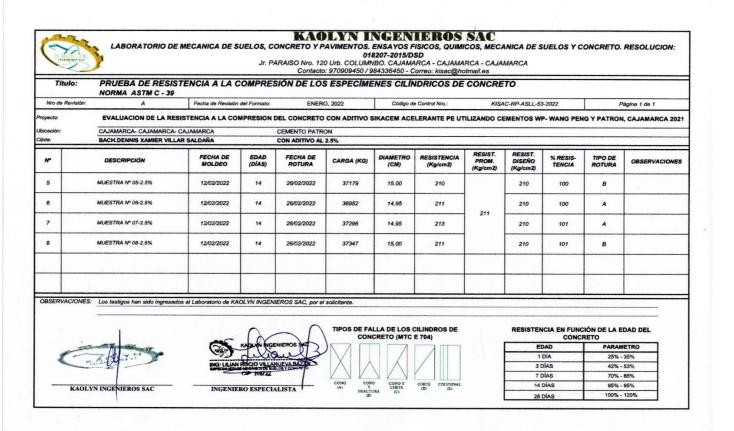
: CAJAMARCA

Cajamarca, marzo del 2022

KAOLYN INGENIEROS SAC LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FISICOS, QUÍMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION: 018207-2015/DSD Jr. PARAISO Nro. 120 Urb. COLUMINBO. CAJAMARCA - CAJAMARCA - CAJAMARCA Contacto: 970909450 / 984334650 - Correto: kisan@hohtmail as

				Contact	o: 970909450 / 9	984336450 - 0	Correo: kisac@h	otmail.es				
Títul	o: PRUEBA DE RESIS NORMA ASTM C - 39		COMPRE	SIÓN DE LO	S ESPECIMI	ENES CILÍ	NDRICOS DE	CONCRE	то			
Nro de Re	visión: A	Fecha de Revisión	del Formato:	ENER	O, 2022	Código d	e Control Nro.:	KISA	C-RP-ASLL-52	2-2022	P	Página 1 de 1
Proyecto:	EVALUACION DE LA RE	SISTENCIA A LA CO	MPRESION	DEL CONCRETO	CON ADITIVO	SIKACEM ACE	LERANTE PE U	TILIZANDO C	EMENTOS W	P- WANG PEN	IG Y PATRON	I, CAJAMARCA 202
Ubicación:	CAJAMARCA- CAJAMARCA	- CAJAMARCA		CEMENTO PATR	ON							
Cliente:	BACH.DENNIS XAMIER VILI	LAR SALDAÑA		CON ADITIVO AL	. 2.5%							
N *	DESCRIPCIÓN	FECHA DE MOLDEO	EDAD (DÍAS)	FECHA DE ROTURA	CARGA (KG)	DIAMETRO (CM)	RESISTENCIA (Kg/cm2)	RESIST. PROM. (Kg/cm2)	RESIST. DISEÑO (Kg/cm2)	% RESIS- TENCIA	TIPO DE ROTURA	OBSERVACIONES
1	MUESTRA № 01-2.5%	12/02/2022	7	19/02/2022	32085	14.95	183		210	87	A	11
2	MUESTRA № 02-2.5%	12/02/2022	7	19/02/2022	32446	15.00	184	183	210	87	В	
3	MUESTRA № 03-2.5%	12/02/2022	7	19/02/2022	32213	15.00	182	103	210	87	А	
4	MUESTRA Nº 04-2.5%	12/02/2022	7	19/02/2022	31987	14.95	182		210	87	А	
-			-									

OBSERVACIONES: Los testigos han sido ingresados al Laboratorio de KAOLYN INGENIEROS SAC, por el solicitante.



TIPOS DE FALLA DE LOS CILINDROS DE CONCRETO (MTC E 704)

RESISTENCIA EN FUNCIÓN DE LA EDAD DEL CONCRETO

EDAD	PARAMETRO
1 DÍA	25% - 35%
3 DÍAS	42% - 53%
7 DÍAS	70% - 85%
14 DÍAS	85% - 95%
28 DÍAS	100% - 120%

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FÍSICOS, QUÍMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION: O18207-2015/DSD

Jr. PARAISO Nro. 120 Urb. COLUMNBO. CAJAMARCA - CAJAMARCA - CAJAMARCA - COntacto: 970909450 / 984336450 - Correo: kisac@hotmail.es

A EVALUACION DE LA RE CAJAMARCA- CAJAMARCA BACH.DENNIS XAMIER VIL	A- CAJAMARCA			O, 2022 O CON ADITIVO		Control Nro.:		C-RP-ASLL-54	-2022	P	ágina 1 de 1
CAJAMARCA- CAJAMARCA	A- CAJAMARCA	MPRESION	DEL CONCRETO	CON ADITIVO	SIKACEM ACI	ELEDANTE DE LI					
				and the second s		LERANIE PE U	TILIZANDO C	EMENTOS W	P- WANG PE	NG Y PATRON	I, CAJAMARCA 202
BACH.DENNIS XAMIER VIL	LAR SALDAÑA			CEMENTO PATR	ON					-	
				CON ADITIVO AL	. 2.5%						
DESCRIPCIÓN	FECHA DE MOLDEO	EDAD (DÍAS)	FECHA DE ROTURA	CARGA (KG)	DIAMETRO (CM)	RESISTENCIA (Kg/cm2)	RESIST. PROM. (Kg/cm2)	RESIST. DISEÑO (Kg/cm2)	% RESIS- TENCIA	TIPO DE ROTURA	OBSERVACIONES
UESTRA № 09-2.5%	12/02/2022	28	12/03/2022	40432	14.95	230		210	110	A	
UESTRA № 10-2.5%	12/02/2022	28	12/03/2022	40026	14.90	230	***	210	109	В	
UESTRA № 11-2.5%	12/02/2022	28	12/03/2022	39813	15.00	225	228	210	107	А	
UESTRA № 12-2.5%	12/02/2022	28	12/03/2022	40155	15.00	227		210	108	В	
		<u> </u>		-							
	IESTRA № 09-2.5% IESTRA № 10-2.5% IESTRA № 11-2.5%	MOLDEO JESTRA Nº 09-2.5% 12/02/2022 JESTRA Nº 10-2.5% 12/02/2022 JESTRA Nº 11-2.5% 12/02/2022	MOLDEO (DIAS) #ESTRA Nº 09-2.5% 12/02/2022 28 #ESTRA Nº 10-2.5% 12/02/2022 28 #ESTRA Nº 11-2.5% 12/02/2022 28	MOLDEO (DIAS) ROTURA #ESTRA Nº 09-2.5% 12/02/2022 26 12/03/2022 #ESTRA N° 10-2.5% 12/02/2022 26 12/03/2022 #ESTRA N° 11-2.5% 12/02/2022 28 12/03/2022	MOLDEO (DIAS) ROTURA 12/02/2022 28 12/03/2022 40432 IESTRA Nº 10-2.5% 12/02/2022 28 12/03/2022 40026 IESTRA Nº 11-2.5% 12/02/2022 28 12/03/2022 39813	MOLDEO (DIAS) ROTURA (CM) WESTRA Nº 09-2.5% 12/02/2022 28 12/03/2022 40432 14.95 WESTRA Nº 10-2.5% 12/02/2022 28 12/03/2022 40026 14.90 WESTRA Nº 11-2.5% 12/02/2022 28 12/03/2022 39813 15.00	MOLDEO (DIAS) ROTURA (CM) (Rg/em2)	MOLDEO (DIAS) ROTURA (CM) (Rg/cm2) (Kg/cm2) WESTRA M 09-2.5% 12/02/2022 28 12/03/2022 40432 14.95 230 WESTRA M 10-2.5% 12/02/2022 28 12/03/2022 40026 14.90 230 WESTRA M 11-2.5% 12/02/2022 28 12/03/2022 39813 15.00 225	### MOLDEO (DIAS) NOTURA (CM) (Rg/em2) (Kg/em2)	#STRA N° 09-2.5% 12/02/2022 28 12/03/2022 40432 14.95 230 210 110 #ESTRA N° 10-2.5% 12/02/2022 28 12/03/2022 40026 14.90 230 210 109 #ESTRA N° 11-2.5% 12/02/2022 28 12/03/2022 39813 15.00 225 228 210 107	#STRA N° 10-2.5% 12/02/2022 28 12/03/2022 40026 14.90 230 228 210 100 B #ESTRA N° 11-2.5% 12/02/2022 28 12/03/2022 39813 15.00 225 210 107 A

OBSERVACIONES: Los testigos han sido ingresados al Laboratorio de KAOLYN INGENIEROS SAC, por el solicitante.

KAOLYN INGENIEROS SAC

RESISTENCIA EN FUNCIÓN DE LA EDAD DEL CONCRETO

EDAD	PARAMETRO
1 DÍA	25% - 35%
3 DÍAS	42% - 53%
7 DIAS	70% - 85%
14 DÍAS	85% - 95%
28 DÍAS	100% - 120%

KAOLYN INCENIEROS SAC
LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FÍSICOS, QUÍMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION:

018207-2015/DSD

Jr. PARAISO Nro. 120 Urb. COLUMNBO. CAJAMARCA - CAJAMARCA - CAJAMARCA COntacto: 970909450 / 984338450 - Correa: kisac@hotmail.es

Título	PRUEBA DE RES		COMPRI	ESION DE L	DE LOS ESPECÍMENES CILÍNDRICOS DE CONCRETO							
Nro de Rev	sión: A	Fecha de Revisión	del Formato:	to: ENERO, 2022 Código de Control Nro.:				KISA	C-RP-ASLL-55	Página 1 de 1		
royecto:	EVALUACION DE LA	RESISTENCIA A LA	COMPRESI	ON DEL CONCR	ETO CON ADITI	VO SIKACEM 2021	ACELERANTE P	E UTILIZAND	O CEMENTO	S WP- WANG	PENG Y PAT	RON, CAJAMARC
bicación:	CAJAMARCA- CAJAMARC	CA- CAJAMARCA			WP- WANG PEN	G				*****		
linte:	BACH.DENNIS XAMIER V	LLAR SALDAÑA			CON ADITIVO AL	2.5%						
Nº	DESCRIPCIÓN	FECHA DE MOLDEO	EDAD (DÍAS)	FECHA DE ROTURA	CARGA (KG)	DIAMETRO (CM)	RESISTENCIA (Kg/cm2)	RESIST. PROM. (Kg/cm2)	RESIST. DISEÑO (Kg/cm2)	% RESIS- TENCIA	TIPO DE ROTURA	OBSERVACIONES
1	MUESTRA № 01-2.5%	12/02/2022	7	19/02/2022	29831	14.90	171		210	81	В	
2	MUESTRA № 02-2.5%	12/02/2022	7	19/02/2022	30003	14.95	171	170	210	81	А	
3	MUESTRA № 03-2.5%	12/02/2022	7	19/02/2022	29394	14.95	168	170	210	80	С	
4	MUESTRA Nº 04-2.5%	12/02/2022	7	19/02/2022	29484	14.90	169		210	81	Α	

OBSERVACIONES: Los testigos han sido ingresados al Laboratorio de KAOLYN INGENIEROS SAC, por el solicitante.

KAOLYN INGENIEROS SAC

TIPOS DE FALLA DE LOS CILINDROS DE CONCRETO (MTC E 704)

RESISTENCIA EN FUNCIÓN DE LA EDAD DEL CONCRETO

EDAD	PARAMETRO
1 DÍA	25% - 35%
3 DÍAS	42% - 53%
7 DÍAS	70% - 85%
14 DÍAS	85% - 95%
28 DÍAS	100% - 120%

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FISICOS, QUÍMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION: 018207-2015/DSD

Jr. PARAISO Nro. 120 Urb. COLUMNBO. CAJAMARCA - CAJAMARCA - CAJAMARCA Contacto: 970909450 / 984336450 - Correo: kisac@hotmail.es

Título:	PRUEBA DE RE NORMA ASTM C -	SISTENCIA A LA COMPRESI - 39	IÓN DE LOS ESPECÍN	MENES CILÍNDRICOS DE	CONCRETO	
Nro de Revisión:	A	Fecha de Revisión del Formato:	ENERO, 2022	Código de Control Nro.:	KISAC-RP-ASLL-55-2022	Página 1 de 1
Proyecto:	EVALUACION DE L	A RESISTENCIA A LA COMPRESION	DEL CONCRETO CON ADIT	IVO SIKACEM ACELERANTE PE 2021	E UTILIZANDO CEMENTOS WP- WANG	PENG Y PATRON, CAJAMARCA
Ubicación:	CAJAMARCA- CAJAMAR	RCA- CAJAMARCA	WP- WANG PEN	IG .		

Clinte: BACH.DENNIS XAMIER VILLAR SALDAÑA CON ADITIVO AL 2.5%

Nº	DESCRIPCIÓN	FECHA DE MOLDEO	EDAD (DÍAS)	FECHA DE ROTURA	CARGA (KG)	DIAMETRO (CM)	RESISTENCIA (Kg/cm2)	RESIST. PROM. (Kg/cm2)	RESIST. DISEÑO (Kg/cm2)	% RESIS- TENCIA	TIPO DE ROTURA	OBSERVACIONES
5	MUESTRA № 05-2.5%	12/02/2022	14	26/02/2022	35841	15.00	203		210	97	Α	
6	MUESTRA № 06-2.5%	12/02/2022	14	26/02/2022	34773	14.95	198		210	94	В	
7	MUESTRA № 07-2.5%	12/02/2022	14	26/02/2022	35367	14.90	203	202	210	97	А	
8	MUESTRA № 08-2.5%	12/02/2022	14	26/02/2022	35610	14.90	204		210	97	Α	
	_											

OBSERVACIONES: Los testigos han sido ingresados al Laboratorio de KAOLYN INGENIEROS SAC, por el solicitante.

KAOLYN INGENIEROS SAC

INGENIERO ESPECIALISTA

RESISTENCIA EN FUNCIÓN DE LA EDAD DEL CONCRETO

	J
EDAD	PARAMETRO
1 DÍA	25% - 35%
3 DIAS	42% - 53%
7 DIAS	70% - 85%
14 DÍAS	85% - 95%
28 DÍAS	100% - 120%

KAOLYN INGENIEROS SAC
LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FISICOS, QUÍMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION:
018207-2015/DSD

Título:	PRUEBA DE RES NORMA ASTM C -		COMPRI	ESIÓN DE L	OS ESPECÍN	IENES CIL	INDRICOS DI	E CONCR	ETO			
Nro de Revisión:	A	Fecha de Revisión	del Formato:	ENER	O, 2022	Código de	Control Nro.:	KISA	C-RP-ASLL-55	5-2022	P	ágina 1 de 1
royecto:	EVALUACION DE LA	RESISTENCIA A LA	COMPRESI	ON DEL CONCE	RETO CON ADITI	VO SIKACEM 2021	ACELERANTE P	E UTILIZAND	O CEMENTO	S WP- WANG	PENG Y PAT	RON, CAJAMARC
Jbicación:	CAJAMARCA- CAJAMAR	CA-CAJAMARCA			WP- WANG PEN	G						
Clinte:	BACH.DENNIS XAMIER V	/ILLAR SALDAÑA			CON ADITIVO AL	2.5%						
Nº	DESCRIPCIÓN	FECHA DE MOLDEO	EDAD (DÍAS)	FECHA DE ROTURA	CARGA (KG)	DIAMETRO (CM)	RESISTENCIA (Kg/cm2)	RESIST. PROM. (Kg/cm2)	RESIST. DISEÑO (Kg/cm2)	% RESIS- TENCIA	TIPO DE ROTURA	OBSERVACIONES
9	MUESTRA Nº 09-2.5%	12/02/2022	28	12/03/2022	41508	15.00	235		210	112	A	
10	MUESTRA № 10-2.5%	12/02/2022	28	12/03/2022	41170	15.00	233	235	210	111	В	
11	MUESTRA № 11-2.5%	12/02/2022	28	12/03/2022	41430	15.00	234	230	210	112	В	
12	MUESTRA № 12-2.5%	12/02/2022	28	12/03/2022	41706	15.00	236		210	112	А	

INGENIERO ESPECIALISTA

RESISTENCIA EN FUNCIÓN DE LA EDAD DEL CONCRETO

EDAD	PARAMETRO
1 DÍA	25% - 35%
3 DÍAS	42% - 53%
7 DIAS	70% - 85%
14 DÍAS	85% - 95%
28 DÍAS	100% - 120%

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FISICOS, QUÍMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION: 018207-2015/DSD

Jr. PARAISO Nro. 120 Urb. COLUMNBO. CAJAMARCA - CAJAMARCA - CAJAMARCA

Contacto: 970909450 / 984336450 - Correo: kisac@hotmail.es

ROTURA DE ESPECIMENES DE CONCRETO

TESIS:

EVALUACION DE LA RESISTENCIA A LA COMPRESION DEL CONCRETO CON ADITIVO SIKACEM ACELERANTE PE UTILIZANDO CEMENTOS WP- WANG PENG Y PATRON, CAJAMARCA 2021

Solicitante:

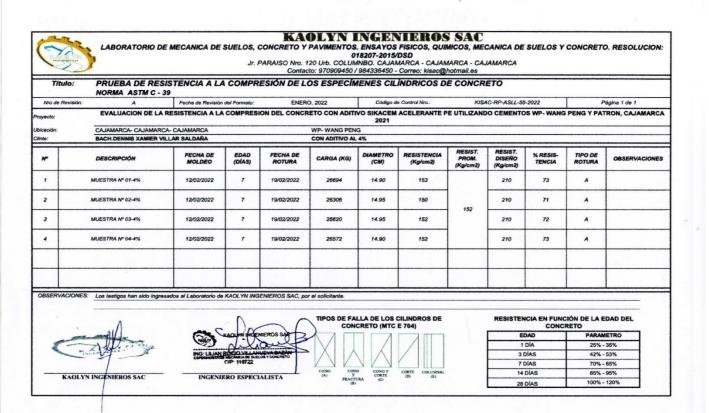
DENNIS XAMIER VILLAR SALDAÑA

Ubicación:

Departamento

: CAJAMARCA

Provincia


: CAJAMARCA

Distrito

: CAJAMARCA

Cajamarca, marzo del 2022

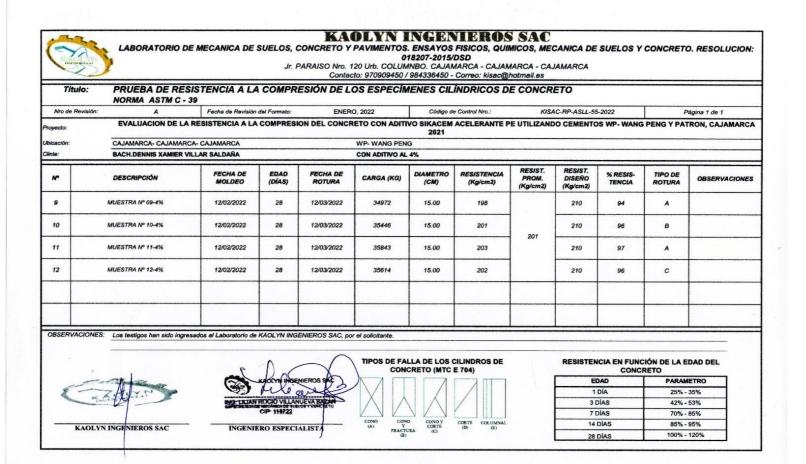
Título:	PRUEBA DE RESI		COMPRE				NDRICOS DE		то			
Nro de Revisión:	A A	Fecha de Revisión	dei Formato:	ENER	O, 2022	Código d	e Control Nro.:	KISA	C-RP-ASLL-52	2-2022	F	Página 1 de 1
royecto:	EVALUACION DE LA R	ESISTENCIA A LA CO	MPRESION	DEL CONCRETO	CON ADITIVO	SIKACEM ACE	LERANTE PE UT	ILIZANDO CI	EMENTOS W	P- WANG PER	G Y PATRO	, CAJAMARCA 202
bicación:	CAJAMARCA- CAJAMARC	A- CAJAMARCA		CEMENTO PATR	ON							
liente:	BACH.DENNIS XAMIER VIL	LAR SALDAÑA		CON ADITIVO AL	.4%							
N-	DESCRIPCIÓN	FECHA DE MOLDEO	EDAD (DÍAS)	FECHA DE ROTURA	CARGA (KG)	DIAMETRO (CM)	RESISTENCIA (Kg/cm2)	RESIST. PROM. (Kg/cm2)	RESIST. DISEÑO (Kg/cm2)	% RESIS- TENCIA	TIPO DE ROTURA	OBSERVACIONES
1	MUESTRA Nº 01-4%	12/02/2022	7	19/02/2022	27803	14.95	158		210	75	A	
2	MUESTRA № 02-4%	12/02/2022	7	19/02/2022	28001	15.00	159		210	75	Α	
3	MUESTRA Nº 03-4%	12/02/2022	7	19/02/2022	28189	15.00	160	159	210	76	A	
	MUESTRA Nº 04-4%	12/02/2022	7	19/02/2022	28165	14.95	161		210	76	A	
OBSERVACIONES	Los testigos han sido Ingres	ados al Laboratorio de Ki	AOLYN INGEN	IEROS SAC, por e	ol solicitante.							
	1		0	06		CRETO (MTC	CILINDROS DE E 704)		RESISTEN	ICIA EN FUNC		DAD DEL
St. Inn		Carre	KAGLYMINGE	INTEROS SAC	2/1	1	7			DIA	PARAN 25% -	
-	144	INC: I NAN	TOO VILLA	NUEVA BAZAN	IXII				-	DIA	25% - 42% -	
		ESPECIAL STATE	CIP 116722	LOS Y CONCRETO	VVV	VVV				olas	70% -	
- VAOL	N INGENIEROS SAC	- INCRNIE	DO PERPET		CONO CON	CORTE	CORTE COLUMNAL		14	DIAS	85% -	95%
	IN INGENIERUS SAC	INGENIE	RO ESPECIA	LISTA	FRACTI	JRA (C)	(6)			DIAS	100% -	

KAOLYN INGENIEROS SAC

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS. ENSAYOS FISICOS, QUIMICOS, MECANICA DE SUELOS Y CONCRETO. RESOLUCION:
018207-2015/DSD

Jr. PARAISO Nro. 120 Urb. COLUMNBO. CAJAMARCA - CAJAMARCA

	NORMA ASTM C -	39										
Nro de Revisión:	A	Feche de Revisión	del Formato:	ENERG	O, 2022	Código de	e Control Nro.:	KISA	C-RP-ASLL-55	-2022	P	ágina 1 de 1
Proyecto:	EVALUACION DE LA	RESISTENCIA A LA	COMPRESI	ON DEL CONCR	RETO CON ADITI	VO SIKACEM 2021	ACELERANTE P	E UTILIZAND	O CEMENTO	S WP- WANG	PENG Y PAT	RON, CAJAMARCA
Ubicación:	CAJAMARCA- CAJAMAR	CA- CAJAMARCA			WP- WANG PEN	G						
Clinte:	BACH.DENNIS XAMIER	VILLAR SALDAÑA			CON ADITIVO AL	.4%						
~	DESCRIPCIÓN	FECHA DE MOLDEO	EDAD (DÍAS)	FECHA DE ROTURA	CARGA (KG)	DIAMETRO (CM)	RESISTENCIA (Kg/cm2)	RESIST. PROM. (Kg/cm2)	RESIST. DISEÑO (Kg/cm2)	% RESIS- TENCIA	TIPO DE ROTURA	OBSERVACIONES
5	MUESTRA № 05-4%	12/02/2022	14	26/02/2022	30777	15.00	174		210	83	A	
6	MUESTRA Nº 06-4%	12/02/2022	14	26/02/2022	30416	14.95	173	174	210	83	В	
7	MUESTRA № 07-4%	12/02/2022	14	26/02/2022	30124	14.90	173	1/4	210	82	Α	
8	MUESTRA Nº 08-4%	12/02/2022	14	26/02/2022	30873	14.90	177		210	84	А	


KAOLYN INGENIEROS SAC

RESISTENCIA EN FUNCIÓN DE LA EDAD DEL CONCRETO

CON	CILLIO
EDAD	PARAMETRO
1 DÍA	25% - 35%
3 DÍAS	42% - 53%
7 DIAS	70% - 85%
14 DÍAS	85% - 95%
28 DÍAS	100% - 120%

ANEXO E. CÁLCULO DEL PERIODO DE CALIBRACIÓN

CÁLCULO DEL PERIODO DE CALIBRACIÓN

 Código:
 LH-FOR- 026

 Versión:
 02

 Fecha:
 10/11/2020

 Aprobación:
 GG

 Página:
 01 de 01

Instrumento:	Balanza	Marca:	OHAUS	Serie:	8034293319
Código:	LH-EQ-BAL-001	Modelo:	EB30	Ubicación:	Av. El Porongo No.118 - Baños del Inca

01. RESULTADOS DE LOS CERTIFICADOS DE CALIBRACIÓN

PRIMERA CALIBRACIÓN				
FECHA:	27/02/2016	CERTIFICADO Nº:	MC-0313-2016	
VALOR NOMINAL	R CORREGIDA	CORRECCIÓN	EMP (t)	
g	g	g	9	
3000	3000,135	0,135	1	
6000	6000,270	0,270	2	
8000	8000,380	0,360	2	
10000	10000,450	0,450	2	
12000	12000,540	0,540	2	
15000	15000,675	0,675	2	
20000	20000,900	0,900	2	
25000	25001,125	1,125	3	
30000	30001,350	1,350	3	

SEGUNDA CALIBRACIÓN				
FECHA:	13/04/2018	CERTIFICADO Nº:	MC-0497-2018	
VALOR NOMINAL	R CORREGIDA	CORRECCIÓN	EMP (±)	
g	g	9	g	
3000	2999,934	-0,066	1	
6000	5999,868	-0,132	2	
8000	7999,824	-0,176	2	
10000	9999,780	-0,220	2	
12000	11999,736	-0,264	2	
15000	14999,670	-0,330	2	
20000	19999,560	-0,440	2	
25000	24999,450	-0,550	3	
30000	29999,340	-0.680	3	

TERCERA CALIBRACIÓN				
FECHA:	23/10/2020	CERTIFICADO Nº:	LMB20-0469	
VALOR NOMINAL	R C ORREGIDA	CORRECCIÓN	EMP (±)	
9	g	g	g	
1000	999,997	-0,003	1	
2000	1999,994	-0,008	1	
5000	4999,984	-0,016	1	
10000	9999,969	-0,031	2	
15000	14999,953	-0,047	2	
20000	19999,937	-0,063	2	
25000	24999,922	-0,078	3	
27000	26999,916	-0,084	3	
30000	29999.908	-0.094	3	

CUARTA CALIBRACIÓN			
FECHA:		CERTIFICADO Nº:	
VALOR NOMINAL	R CORREGIDA	CORRECCIÓN	EMP (±)
g	g	g	g

02. CÁLCULO DE DERIVA Y PERIODO DE CALIBRACIÓN

 $Periodo \ de \ calibración = \frac{\pm \ Clase \ de \ exactitud \ o \ Tolerancia}{Deriva}$

Periodo de calibración = "X"[años]

 $Deriva = \frac{Diferencia}{T - T_0}$

Puntos de Calibracion	Error Año 2018	Error Año 2020	EMP	(+/-)	Diferencia (u)	Periodo (Años)	Deriva	Periodo de Calibracion (años)
10000	-0,220	-0,031	-2	2	0,189	2,53	0,0745	26,8
15000	-0,330	-0,047	-2	2	0,283	2,53	0,1118	17.9
20000	-0,440	-0,063	-2	2	0,377	2,53	0,1491	13,4
25000	-0,550	-0,078	-3	3	0,472	2,53	0,1864	16,1
30000	-0,660	-0,094	-3	3	0,566	2,53	0,2236	13,4

03. GRÁFICA - PUNTOS DE CALIBRACIÓN VS ERROR

Método Utilizado: Tiempo Calendario. Fuente: Organización Internacional de Metrología Legal, "Determinación de Internacios de Calibración", Simpósio de metrología, 2004

CÁLCULO DEL PERIODO DE CALIBRACIÓN

 Código:
 LH-FOR- 026

 Versión:
 02

 Fecha:
 10/11/2020

 Aprobación:
 GG

 Página:
 01 de 01

Instrumento:	Balanza	Marca:	OHAUS	Serie:	B203628139
Código:	LH-EQ-BAL-003	Modelo:	PAJ4102	Ubicación:	Av. El Porongo No.118 - Baños del Inca

01. RESULTADOS DE LOS CERTIFICADOS DE CALIBRACIÓN

PRIMERA CALIBRACIÓN					
FECHA:	25/02/2016	CERTIFICADO Nº:	MC-0313-2016		
VALOR NOMINAL	R CORREGIDA	CORRECCIÓN	EMP (±)		
9	g	g	9		
400	400,001	0,001	0,03		
800	800,001	0,001	0,03		
1000	1000,001	0,001	0,03		
1500	1500,002	0,002	0,03		
1800	1800,003	0,003	0,03		
2000	2000,003	0,003	0,03		
2500	2500,004	0,003	0,03		
3500	3500,005	0,005	0,03		
4100	4100,006	0,008	0,03		

SEGUNDA CALIBRACIÓN				
FECHA:	13/04/2018	CERTIFICADO N°:	MC-0486-2018	
VALOR NOMINAL	R CORREGIDA	CORRECCIÓN	EMP (±)	
g	g	g	g	
400	400,004	0,004	0,1	
800	800,008	0,008	0,2	
1000	1000,010	0,010	0,2	
1500	1500,015	0,015	0,2	
1800	1800,017	0,017	0,2	
2000	2000,019	0,019	0,2	
2500	2500,024	0,024	0,3	
3500	3500,034	0,034	0,3	
4100	4100.040	0.040	0.3	

TERCERA CALIBRACIÓN				
FECHA:	23/10/2020	CERTIFICADO Nº:	LMB20-0469	
VALOR NOMINAL	R CORREGIDA	CORRECCIÓN	EMP (±)	
g	g	g	g	
100	100,000	0,000	0,1	
200	200,001	0,001	0,1	
500	500,002	0,002	0,1	
1000	1000,004	0,004	0,2	
1500	1500,006	0,006	0,2	
2000	2000,008	0,008	0,2	
3000	3000,013	0,013	0,3	
3500	3500,015	0,015	0,3	
4100	4100,017	0,017	0,3	

		CUARTA CALIBRACIÓN				
	CERTIFICADO Nº:					
R CORREGIDA	CORRECCIÓN	EMP (±)				
g	g	g				
	100	R CORREGIDA CORRECCIÓN				

02. CÁLCULO DE DERIVA Y PERIODO DE CALIBRACIÓN


 $\textit{Periodo de calibración} = \frac{\pm \textit{Clase de exactitud o Tolerancia}}{\textit{Deriva}}$

Periodo de calibración = "X"[años]

 $Deriva = \frac{Diferencia}{T - T_0}$

Puntos de Calibracion 1000	Error Año 2018 0,010	Error Año 2020 0,004	EMP (+/-)		Diferencia (u)	Periodo (Años)	Deriva	Periodo de Calibracion (años)
			-0.2	0,2	0,005	2,53	0,0022	92,8
1500	0,015	0,008	-0,2	0,2	800,0	2,53	0,0032	61,9
2000	0,019	800,0	-0.2	0,2	0,011	2,53	0,0043	46,4
3500	0,034	0,015	-0,3	0,3	0,019	2,53	0,0075	39,8
4100	0,040	0,017	-0,3	0,3	0,022	2,53	0,0088	34,0

03. GRÁFICA - PUNTOS DE CALIBRACIÓN VS ERROR

Método Utilizado: Tiempo Calendario. Fuente: Organización Internacional de Metrología Legal, "Determinación de Interna los de Calibración", Simpósio de metrología, 2004.

CÁLCULO DEL PERIODO DE CALIBRACIÓN

 Código:
 LH-FOR- 026

 Versión:
 02

 Fecha:
 10/11/2020

 Aprobación:
 GG

 Página:
 01 de 01

Instrumento:	Estufa	Marca:	MMM VENTICELL	Serie:	D152018
Código:	LH-EQ-EST-001	Modelo:	VC 222	Ubicación:	Av. El Porongo No.118 - Baños del Inca

01. RESULTADOS DE LOS CERTIFICADOS DE CALIBRACIÓN

PRIMERA CALIBRACIÓN						
FECHA:	23/05/2016	CERTIFICADO Nº:	TC-0501-2016			
VALOR NOMINAL	R CORREGIDA	CORRECCIÓN	EMP (±)			
9	g	9	9			
55	53,40	-1,60	5			
110	111.50	1.50	5			

SEGUNDA CALIBRACIÓN						
FECHA:	14/04/2018 CERTIFICADO N°:		TC-0233-2018			
VALOR NOMINAL	R CORREGIDA	CORRECCIÓN	EMP (±)			
g	g	g	g			
55	54,80	-0,20	5			
110	110,10	0,10	5			

PRIMERA CALIBRACIÓN						
FECHA:	23/10/2020 CERTIFICADO N*:		237-CT-T-2020			
VALOR NOMINAL	R CORREGIDA	CORRECCIÓN	EMP (±)			
9	g	9				
55	55,12	0,12	5			
110	109,54	-0,48	5			

	SEGUNDA (CALIBRACIÓN	
FECHA:		CERTIFICADO Nº:	
VALOR NOMINAL	R CORREGIDA	CORRECCIÓN	EMP (±)
g	g	g	g

02. CÁLCULO DE DERIVA Y PERIODO DE CALIBRACIÓN

 $\textit{Periodo de calibración} = \frac{\pm \; \textit{Clase de exactitud o Tolerancia}}{\textit{Deriva}}$

Periodo de calibración = "X"[años]

 $Deriva = \frac{Diferencia}{T - T_0}$

Puntos de Calibracion	Error Año 2018	Error Año 2020	EMF	° (+/-)	Diferencia (u)	Periodo (Años)	Deriva	Periodo de Calibracion (años)
55	-0,200	0,120	-5	5	0,320	2,53	0,1265	39,5
110	0,100	-0,460	-5	5	0,560	2,53	0,2215	22,6

03. GRÁFICA - PUNTOS DE CALIBRACIÓN VS ERROR

Método Utilizado: Tiempo Calendario. Fuente: Organización Internacional de Metrología Legal, "Determinación de Internabs de Calbración", Simpósio de metrología, 2004.

CÁLCULO DEL PERIODO DE CALIBRACIÓN

 Código:
 LH-FOR- 026

 Versión:
 02

 Fecha:
 10/11/2020

 Aprobación:
 GG

 Página:
 01 de 01

Instrumento:	Estufa	Marca:	MMM VENTICELL	Serie:	D152019
Código:	LH-EQ-EST-002	Modelo:	VC 222	Ubicación:	Av. El Porongo No.118 - Baños del Inca

01. RESULTADOS DE LOS CERTIFICADOS DE CALIBRACIÓN

PRIMERA CALIBRACIÓN						
FECHA:	23/05/2016	CERTIFICADO Nº:	TC-0501-2016			
VALOR NOMINAL	RCORREGIDA	CORRECCIÓN	EMP (±)			
g	g	g	9			
55	53,20	-1,80	5			
110	111,10	1,10	5			

SEGUNDA CALIBRACIÓN						
FECHA:	14/04/2018	CERTIFICADO Nº:	TC-0233-2018			
VALOR NOMINAL	R CORREGIDA	CORRECCIÓN	EMP (±)			
g	9	g	g			
55	52,50	-2,50	5			
110	111,80	1,80	5			

PRIMERA CALIBRACIÓN						
FECHA:	23/10/2020	CERTIFICADO Nº:	238-CT-T-2020			
VALOR NOMINAL	R CORREGIDA	CORRECCIÓN	EMP (±)			
9	g	g	g			
55	55,03	0,03	5			
110	109.23	-0.77	5			

SEGUNDA CALIBRACIÓN					
FECHA:		CERTIFICADO Nº:			
VALOR NOMINAL	R CORREGIDA	CORRECCIÓN	EMP (±)		
g	g	g	g		

02. CÁLCULO DE DERIVA Y PERIODO DE CALIBRACIÓN

 $Periodo \ de \ calibración = \frac{\pm \ Clase \ de \ exactitud \ o \ Tolerancia}{Deriva}$

Periodo de calibración = "X"[años]

 $Deriva = \frac{Diferencia}{T - T_0}$

Puntos de Calibracion	Error Año 2018	Error Año 2020	EMF) (+ <i>f-</i>)	Diferencia (u)	Periodo (Años)	Deriva	Periodo de Calibracion (años)
55	55 -2,50 0,03	0,03	-5	5	2,530	2,530 2,53	1,0005	5,0
110	1,80	-0,77	-5	5	2,570	2,53	1,0163	4,9

03. GRÁFICA - PUNTOS DE CALIBRACIÓN VS ERROR

Método Utilizado: Tiempo Calendario. Fuente: Organización Internacional de Metrología Legal, "Determinación de Intervalos de Calibración", Simpósio de metrología, 2004.

ANEXO F. CERTIFICADOS DE CALIBRACIÓN

LL-044-2020 Pág. 1 de 1

patrones

Laboratorio de Longitud

No indica

um

Jr. Proceres 26.

Expediente Solicitante Dirección

KAOLYN INGENIEROS S.A.C JR. CHANCHAMAYO NRO. 108 BR LA MERCED

CAJAMARCA- CAJAMARCA- CAJAMARCA.

Egulpo Designación del Tamiz

150 um No. 100 LVA

Alternativa Marca (o Fabricante) Modelo

No indica Número de Serie No indica Procedencia

Código 018 Toleranda ± 8 Instalaciones del cliente.

Ubicación del equipo Lugar de Calibración

internacionales, que realizan las unidades de la medición de acuerdo con el Sistema TAMIZ DE ENSAYO ESTANDAR

Internacional de Unidades (SI). Los resultados son validos en el

Este certificado de calibración

documenta la trazabilidad a los

nacionales

momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por

Los certificados de calibración sin firma v sello no son válidos.

Fecha de Calibración Método de Calibración 2020-02-20

La calibración se realizó por comparación directa tomando como referencia los procedimientos descritos en la norma ASTM E11, "Standard Specification for Wire Cloth and Sieves for Testing Purposes".

Trazabilidad

Se utilizaron patrones con trazabilidad al SI, calibrados en el SNM-INDECOPI, con certificados de calibración: LLA-035-2020.

Condiciones Ambientales

Temperatura promedio:

21.6 °C; Humedad relativa prom. 44 HR%

Abertura promed	lo Incertidumbre de medición
(um)	(um)
148.0	5

Observación:

- · Se colocó una etiqueta autoadhesiva con la indicación de "CALIBRADO"
- · La incertidumbre de medición se ha obtenido multiplicando la incertidumbre estandar de la medición por el factor de cobertura k=2 para una distribución normal de aproximadamente 95 %.

Fecha de emisión

2020-02-20

Jefe del laboratorio de calibración

CEM INDUSTRIAL

JESUS QUINTO C.
JEFE DE LABORATORIO

Centro Especializado en Metrología Industrial
Coop. César Vallejo Mz. V Lt. 01 Urb. Condevila S M.P. - Lima
*Bit: 6717346 * RPM: #958009777 * RPM: #95800976
@Cemind.com • jesus quinto@cemind.com • www.cemind.com

CERTIFICADO DE CALIBRACIÓN

LL-040-2020

Laboratorio de Longitud

Pág. 1 de 1

Expediente
Solicitante
Dirección

Equipo

140083 KAOLYN INGENIEROS S.A.C

JR. CHANCHAMAYO NRO. 108 BR LA MERCED

CAJAMARCA- CAJAMARCA- CAJAMARCA. TAMIZ DE ENSAYO ESTANDAR

Designación del Tamiz Alternativa Marca (o Fabricante) Modelo

No. 10 LVA NO INDICA

Número de Serie Procedencia Código

NO INDICA NO INDICA

Tolerancia Ubicación del equipo Lugar de Calibración

014 ± 0.07 mm Instalaciones del cliente.

Jr. Proceres 26.

Este certificado de calibración documenta la trazabilidad a los documenta la trazaunicau a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio emisor.

Los certificados de calibración sin

Fecha de Calibración Método de Calibración 2020-02-20

firma y sello no son válidos.

La calibración se realizó por comparación directa tomando como referencia los procedimientos descritos en la norma ASTM E11, "Standard Specification for Wire Cloth and Sieves for Testing Purposes".

Trazabilidad

Se utilizaron patrones con trazabilidad al SI, calibrados en el SNM-INDECOPI, con certificados de calibración: LLA-035-2020, LL-0015-2020.

Condiciones Ambientales

Temperatura promedio:

21.6 °C ; Humedad relativa prom.

Resultado de Medición

Abertura promedio	Incertidumbre de medición				
(mm)	(mm)				
2.03	0.03				

Observaciones:

- Se colocó una etiqueta autoadhesiva con la indicación de "CALIBRADO"

· la incertidumbre de medición se ha obtenido multiplicando la incertidumbre estandar de la medición nor el factor de cobertura k=2 para una distribución normal de aproximadamente 95 %.

OEN METAD CEM

2020-02-20

Jefe del laboratorio de calibración

CEM INDUSTRIAL JESUS QUINTO C.
JEFE DE LABORATORIO

Centro Especializado en Metrología Industrial
Coop. César Valleje Mz. V.L. D.1 Urb. Condeville S.M.P. - Lima
• Telf.: 9717346 • RPM: #956009777 • APM: #958009778
• ventas@cemind.com • jisus.quirto@cemind.com • www.cemind.com

LL-042-2020 Pág. 1 de 1

Este certificado de calibración

documenta la trazabilidad a los

Los resultados son validos en el

momento de la calibración. Al solicitante le corresponde disponer en su momento la

ejecución de una recalibración.

Este certificado de calibración no

podrá ser reproducido parcialmente sin la aprobación por

nacionales patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

patrones

Laboratorio de Longitud

140083

KAOLYN INGENIEROS S.A.C

Expediente Solicitante Dirección

JR. CHANCHAMAYO NRO. 108 BR LA MERCED CAJAMARCA- CAJAMARCA- CAJAMARCA.

Equipo

Código

TAMIZ DE ENSAYO ESTANDAR

Designación del Tamiz Alternativa Marca (o Fabricante)

No. 30 LVA No indica

600 um

Modelo Número de Serie Procedencia

No indica No indica 016

Tolerancia Ubicación del equipo ± 25 um Instalaciones del cliente. Jr. Proceres 26.

Lugar de Calibración

escrito del laboratorio emisor Los certificados de calibración sin

Fecha de Calibración Método de Calibración 2020-02-20

La calibración se realizó por comparación directa tomando como referencia los procedimientos descritos en la norma ASTM E11, "Standard Specification for Wire Cloth and Sieves for Testing Purposes".

Se utilizaron patrones con trazabilidad al SI, calibrados en el SNM-INDECOPI, con certificados de calibración: LLA-035-2020.

Condiciones Ambientales

Temperatura promedio:

21.5 °C ; Humedad relativa prom. 44 HR%

Resultado de Medición

Abertura promedio (um)	Incertidumbre de medición (um)				
578.0	5				

Observación:

- · Se colocó una etiqueta autoadhesiva con la indicación de "CALIBRADO"
- · La incertidumbre de medición se ha obtenido multiplicando la incertidumbre estandar de la medición por

el factor de cobertura k=2 para una distribución normal de aproximadamente 95 %.

Sello

Fecha de emisión

Jefe del laboratorio de calibración

CEM INDUSTRIAL

2020-02-20

JESUS QUINTO C.
JEFE DE LABORATORIO

Centro Especializado en Metrologia Industrial
Coop. César Vellejo Mz. Y Lt. 01 Urb. Condevilla S. M. P. - Lima
Falf:: 6717346 * RPM: #888008777 * RPM: #958009776
s@cenind.com • jesus.quinto@cenind.com • www.cenin www.cemind.com

CERTIFICADO DE CALIBRACIÓN

LL-039-2020 Pág. 1 de 1

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o

patrones nacionales o Internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el

momento de la calibración. Al solicitante le corresponde disponer en su momento la

Este certificado de calibración no

podrá ser reproducido parcialmente sin la aprobación por

ejecución de una recalibración.

Laboratorio de Longitud

140083

KAOLYN INGENIEROS S.A.C

Expediente Solicitante Dirección

JR. CHANCHAMAYO NRO. 108 BR LA MERCED

CAJAMARCA- CAJAMARCA- CAJAMARCA.

Equipo

TAMIZ DE ENSAYO ESTANDAR 6.3 mm

Designación del Tamiz Alternativa

No. 1/4"

Marca (o Fabricante)

LVA

Modelo

STANDARD

Número de Serie

NO INDICA

Procedencia

NO INDICA

Código

013

Tolerancia

± 0.2 mm

Ubicación del equipo

Instalaciones del cliente

Lugar de Calibración

Jr. Proceres 126.

escrito del laboratorio emisor. firma y sello no son válidos.

Fecha de Calibración Método de Calibración 2020-02-20

La calibración se realizó por comparación directa tomando como referencia los procedimientos descritos en la norma ASTM E11, "Standard Specification for Wire Cloth and Sieves for Testing Purposes".

Trazabilidad

Se utilizaron patrones con trazabilidad al SI, calibrados en el SNM-INDECOPI, con certificados de calibración: LLA-035-2020, L-0015-2020.

Condiciones Ambientales

Temperatura promedio:

21.4 °C; Humedad relativa prom.

45 HR%

Resultado de Medición

Abertura promedio	Incertidumbre de medición
(mm)	(mm)
6.27	0.05

Se colocó una etiqueta autoadhesiva con la indicación de "CALIBRADO"

La incertidumbre de medición se ha obtenido multiplicando la incertidumbre estandar de la medición por el factor de cobertura k=2 para una distribución normal de aproximadamente 95 %,

Fecha de emisión

Jefe del laboratorio de calibración

2020-02-20

CEM INDUSTRIAL JESUS QUINTO C.
JEFE DE LABORATORIO

Centro Especializado en Metrología Industrial Dop, César Vallejo Mz. V Lt. 01 Urb. Condevilla S.M.R. - Lima Indi: £977.248 + PRM: #958009777 - PRM: #958009778 s⊚cemind.com • jesus quinto⊚cemind.com • www.cemin

LL-043-2020 Pág. 1 de 1

Este certificado de calibración

documenta la trazabilidad a los

patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema

Los resultados son validos en el

Internacional de Unidades (SI).

Laboratorio de Longitud

Expediente Solicitante

140083

KAOLYN INGENIEROS S.A.C

Dirección

JR. CHANCHAMAYO NRO. 108 BR LA MERCED CAJAMARCA- CAJAMARCA- CAJAMARCA

Equipo

TAMIZ DE ENSAYO ESTANDAR

Designación del Tamiz Alternativa Marca (o Fabricante) Modelo

425 um No. 40 IVA No indica

Número de Serie Procedencia Código

No indica No indica 017

Tolerancia Ubicación del equipo ± 19

Lugar de Calibración

Instalaciones del cliente.

Jr. Proceres 26.

momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración. Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por

escrito del laboratorio emisor. Los certificados de calibración sin firma y sello no son válidos.

Fecha de Calibración

Método de Calibración

La calibración se realizó por comparación directa tomando como referencia los procedimientos descritos en la norma ASTM E11, "Standard Specification for Wire Cloth and Sieves for Testing Purposes".

Trazabilidad

Se utilizaron patrones con trazabilidad al SI, calibrados en el SNM-INDECOPI, con certificados de calibración: IIA-035-2020.

Condiciones Ambientales

Temperatura promedio: Resultado de Medición

21.6 °C ; Humedad relativa prom.

44 HR%

Abertura promedio Incertidumbre de medición (um)

Observaciones:

· Se colocó una etiqueta autoadhesiva con la indicación de "CALIBRADO"

· La incertidumbre de medición se ha obtenido multiplicando la incertidumbre estandar de la medición por el factor de cobertura k=2 para una distribución normal de aproximadamente 95 %.

Fecha de emisión

Jefe del laboratorio de calibración

CEM INDUSTRIAL

2020-02-20

JESUS QUINTO C.
JEFE DE LABORATORIO Centro Especializado en Metrología Industrial
Coop. Ceser Vallejo Mz. V Lt. 01 Urb. Condevála S.M.P. - Lims
*16tf.: 6717346 - RPM: #638609777 - RPM: #588009776
*ventas@cemind.com *jesus.quinto@cemind.com *vww.cemind.com

CERTIFICADO DE CALIBRACIÓN

LL-038-2020 Pág. 1 de 1

Laboratorio de Longitud

KAOLYN INGENIEROS S.A.C

Solicitante Dirección

JR. CHANCHAMAYO NRO. 108 BR LA MERCED CAJAMARCA- CAJAMARCA- CAJAMARCA.

Equipo

Expediente

TAMIZ DE ENSAYO ESTANDAR 9.5 mm

Jr. Proceres 126.

2020-02-20

Designación del Tamiz

Alternativa No. 3/8" Marca (o Fabricante) LVA

Modelo STANDARD

Número de Serie NO INDICA Procedencia NO INDICA 012

Código

Tolerancia ± 0.3 mm Ubicación del equipo Instalaciones del cliente.

Lugar de Calibración

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio emisor.

Los certificados de calibración sin firma y sello no son válidos.

Fecha de Calibración

Método de Calibración

La calibración se realizó por comparación directa tomando como referencia los procedimientos descritos en la norma ASTM E11, "Standard Specification for Wire Cloth and Sieves for Testing Purposes".

Se utilizaron patrones con trazabilidad al SI, calibrados en el SNM-INDECOPI, con certificados de calibración: LLA-035-2020, LL-0015-2020.

Condiciones Ambientales

Temperatura promedio:

21 °C; Humedad relativa prom.

Resultado de Medición

Abertura promedio (mm)	Incertidumbre de medición (mm)		
9.50	0.05		

Observaciones:

- Se colocó una etiqueta autoadhesiva con la indicación de "CALIRRADO"

La incertidumbre de medición se ha obtenido multiplicando la incertidumbre estandar de la medición por

el factor de cobertura k=2 para una distribución normal de aproximadamente 95 %.

Fecha de emisión

Jefe del laboratorio de calibración

CEM INDUSTRIAL

45 HR%

2020-02-20

JESUS QUENTO C.
JEFE DE LABORATORIO

Centro Especializado en Metrología Industrial
Coop. César Vellejo Mz. V Lt. 01 Urb. Condevilla S.M.P. - Lime
* Telf: 8717345 * RPM: #958008777 * RPM: #958009776
s@cemind.com * ,esus quirpt@cemind.com * ,www.cemind.com

LL-041-2020

Este certificado de calibración

documenta la trazabilidad a los

Internacionales, que realizan las unidades de la medición de acuerdo con el Sistema

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la

Internacional de Unidades (SI).

ejecución de una recalibración.

Este certificado de calibración no

patrones

nacionales

Laboratorio de Longitud

Pág. 1 de 1

Expediente Solicitante

140083

KAOLYN INGENIEROS S.A.C

JR. CHANCHAMAYO NRO. 108 BR LA MERCED CAJAMARCA- CAJAMARCA- CAJAMARCA.

Dirección Equipo

TAMIZ DE ENSAYO ESTANDAR

Designación del Tamiz Alternativa Marca (o Fabricante)

850 um No. 20 IVA

Modelo Número de Serie Procedencia

No indica No indica No indica 015

Código Tolerancia

± 35 um

Ubicación del equipo Lugar de Calibración

Instalaciones del cliente. Jr. Proceres 26.

podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio emisor. Los certificados de calibración sin

firma y sello no son válidos.

Fecha de Calibración Método de Calibración

2020-02-20

La calibración se realizó por comparación directa tomando como referencia los procedimientos descritos en la norma ASTM E11, "Standard Specification for Wire Cloth and Sieves for Testing Purposes". Trazabilidad

Se utilizaron patrones con trazabilidad al SI, calibrados en el SNM-INDECOPI, con certificados de calibración: LLA-035-2020.

Condiciones Ambientales

Temperatura promedio:

21.5 °C; Humedad relativa prom.

Resultado de Medición

Abertura promedio	Incertidumbre de medición
(um)	(um)
817.0	5

Observaciones:

- Se colocó una etiqueta autoadhesiva con la indicación de "CALIBRADO"

La incertidumbre de medición se ha obtenido multiplicando la incertidumbre estandar de la medición por el factor de cobertura k=2 para una distribución normal de aproximadamente 95 %.

Fecha de emisión

Jefe del laboratorio de calibración

CEM INDUSTRIAL

2020-02-20

JESUS QUINTO C.
JEFE DE LABORATORIO

· ventas@cemind.com

LL-037-2020 Pág. 1 de 1

Laboratorio de Longitud

Expediente Solicitante

140083

Dirección

KAOLYN INGENIEROS S.A.C

JR. CHANCHAMAYO NRO. 108 BR LA MERCED
CAJAMARCA- CAJAMARCA- CAJAMARCA.

Equipo Designación del Tamiz TAMIZ DE ENSAYO ESTANDAR 12.5 mm

Alternativa Marca (o Fabricante) No. 1/2 " LVA

Modelo Número de Serie

NO INDICA NO INDICA NO INDICA

Procedencia 011 Código Tolerancia

± 0.39 mm

Ubicación del equipo Lugar de Calibración

Instalaciones del cliente

Jr. Peoceres 126.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales internacionales, que realizan las unidades de la medición de acuerdo con el Sistema

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio emisor.

Fecha de Calibración

2020-02-20

Los certificados de calibración sin firma y sello no son válidos.

Método de Calibración

La calibración se realizó por comparación directa tomando como referencia los procedimientos descritos en la norma ASTM E11, "Standard Specification for Wire Cloth and Sieves for Testing Purposes".

Trazabilidad

Se utilizaron patrones con trazabilidad al SI, calibrados en el SNM-INDECOPI, con certificados de calibración: LLA-035-2020, L-0015-2020

Condiciones Ambientales

Temperatura promedio:

21.2 °C ; Humedad relativa prom.

45 HR%

Resultado de Medición

Abertura promedio	Incertidumbre de medición				
(mm)	(mm)				
12.13	0.05				

- Se colocó una etiqueta autoadhesiva con la indicación de "CALIBRADO"

· La incertidumbre de medición se ha obtenido multiplicando la incertidumbre estandar de la medición por

el factor de cobertura k=2 para una distribución normal de aproximadamente 95 %.

Jefe del laboratorio de calibración

CEM INDUSTRIAL JESUS QUINTO C.
JEFE DE LABORATORIO

2020-02-20

Centro Especializado en Metrología Industrial Coop. César Vallejo Mz. V Lt. 01 Urb. Condevilla S.M.R - Lima • Telf.: 6717346 • RPM: #958009777 • RPM: #958009776

CERTIFICADO DE CALIBRACIÓN

LT-010-2020

Este certificado de calibración

unidades de la medición de

acuerdo con el Sistema

Los resultados son validos en el

momento de la calibración. Al

solicitante le corresponde disponer

en su momento la ejecución de una

Este certificado de calibración no

parcialmente sin la aprobación por

escrito del laboratorio emisor.

reproducido

Internacional de Unidades (SI).

nacionales internacionales, que realizan las

patrones

recalibración.

Laboratorio de Temperatura

Pág. 1 de 4

Expediente

Solicitante Dirección

KAOLYN INGENIEROS S.A.C

HORNO- ESTUFA

THOLZ

JR. CHANCHAMAYO NRO. 108 BR LA MERCED documenta la trazabilidad a los

CAJAMARCA- CAJAMARCA- CAJAMARCA.

Marca (o Fabricante) Modelo

MDH NO INDICA Número de Serie Procedencia NO INDICA

Identificación Instrumento de Medición

019 Termómetro con Indicación Digital

Marca / Modelo THOLZ

-50 °C a 200 °C Alcande de Indicación 1 °C

Div. de escala (Resoluc.)

Identificación NO INDICA Selector Controlador digital Marca / Modelo NO INDICA -50 °C a 200 °C

Alcande de Indicación Div. de escala (Resoluc.)

1 °C Ubicación Instalaiones del cliente Lugar de Calibración Jr. Proceres 126.

2020-02-20

Los certificados de calibración sin firma y sello no son válidos.

Fecha de Calibración

Método de Calibración

La calibración se realizó por comparación directa según el PC-18, 2da. Ed., "Procedimiento Para la Calibración o Caracterización de Medios Isotermos con Aire como medio Termostático".

Se utilizaron patrones calibrados en el SNM-INDECOPI, con certificados de calibración:

LT-529-2020

Condiciones Ambientales

Temperatura ambiental : Humedad Relativa ambiental: Inicial: 21.8 °C

; Final : 21.2 °C

42 HR% ; Final : 40 HR%

Inicial: Fecha de emisión

Jefe del laboratorio de calibración

CEM INDUSTRIAL JESUS QUINTO C.
JEFE DE LABORATORIO

2020-02-20

Centro Especializado en Metrología Industrial
Coop. César Vallejo Mz. V Lt. 01 Urb. Condevilla S.M.R. - Lime
• Teit.: 5717346 • RPM: #958009777 • RPM: #958009778
• ventas@cemind.com • jesus.quinto@cemind.com • www.cemind.com

LL-045-2020

Pág. 1 de 1

Laboratorio de Longitud

Solicitante Dirección

Equipo

KAOLYN INGENIEROS S.A.C

JR. CHANCHAMAYO NRO. 108 BR LA MERCED CAJAMARCA- CAJAMARCA- CAJAMARCA.

COPA CASA GRANDE NO INDICA

Marca (o Fabricante) Modelo Número de Serie

Procedencia Código

Ubicación del Equipo Lugar de Calibración

Instalaciones del cliente.

Jr. Proceres 126.

010

NO INDICA

NO INDICA

NO INDICA

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio emisor.

Fecha de Calibración 2020-02-20

Método de Calibración

Los certificados de calibración sin firma y sello no son válidos.

La calibración se realizó por comparación directa utilizando como referencia la norma ASTM D4318

Trazabilidad

Se utilizaron patrones con trazabilidad al SI, calibrados en el SNM-INDECOPI, con certificados de calibración: LLA-035-2020

Condiciones Ambientales

Temperatura promedio: Resultado de Medición

20.4 °C; Humedad relativa prom.

47 HR%

Distancia de calda según ASTM D4318 mm	Promedio de Mediciones mm	Incertidumbre de Medición mm		
10 ± 1	10.2	0.1		

Observación:

· Se colocó una etiqueta autoadhesiva con la indicación de "CALIBRADO"

· La incertidumbre de medición se ha obtenido multiplicando la incertidumbre estandar de la medición por el factor de cobertura k=2 para una distribución normal de aproximadamente 95 %.

Fecha de emisión

2020-02-20

Jefe del laboratorio de calibración

CEM INDUSTRIAL JESUS QUINTO C.
JEFE DE LABORATORIO

Centro Especializado en Metrología Industrial
Ceop. Céser Velleje Mz. V Lc. 01 · Lirb. Condexilla S M.P. · Lirba
• Telt. : \$717346 • R9M. #958003775 • R9M. #95800376
• ventas@cemind.com • Jesus.quinto@cemind.com • www.cemind.com

211

LM-046-2020

Laboratorio	de Masa
-------------	---------

Pág. 1 de 3

Los certificados de calibración sin firma y sello no son válidos.

E	xpediente	14008	3					
S	olicitante	KAOLYN INGENIEROS S.A.C JR. CHANCHAMAYO NRO. 108 BR LA MERCED CAJAMARCA- CAJAMARCA- CAJAMARCA.						Este certificado de calibración
D	irección							documenta la trazabilidad a los
	nstrumento de Medición Marca (o Fabricante) Modelo Número de Serie Procedencia Tipo Identificación Alcance de Indicación División de escala (d)	KAZO KMCB-I NO IND	KMCB-6 NO INDICA NO INDICA ELECTRÓNICO 022 0 g a 30000 g				Internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI). Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer	
	o resolución Div. verifc. de escala (e) Capacidad Mínima Clase de exactitud Ubic. Del Instrumento Lugar de Calibración	5 100 III Instalaci	g g ones de		(*) (**) (***)			en su momento la ejecución de una recalibración. Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio emisor.

Fecha de Calibración 2020-02-20

Método de Calibración

La calibración se realizó según el método descrito en el PC-001, "Procedimiento de calibración de Balanzas de Funcionamiento no Automático Clase III)" del SNM-INDECOPI. Edición tercera. Trazabilidad

Se utilizaron patrones calibrados en el SNM-INDECOPI, con Certificados de Calibración: LM-772-2020; LM -054-2020; LM-780-2020, LM-063-2020.

Sello

Fecha de emisión

Jefe del laboratorio de calibración

CEM INDUSTRIAL

2020-02-20

JESUS QUINTO C.
JEFE DE LABORATORIO

Centro Especializado en Metrología Industrial
Coop. César Vallejo Mz. V Lt. C1 Urb. Condevilla S.M.R. - Lima
* Teff.: 6717346 * RPM: #958009777 * RPM: #958009778.
* ventae@cemind.com * www.cemind.com

LM-045-2020

Laboratorio de Masa				ontow S		Pág. 1 de 3
Expediente	140083	3				
Solicitante	KAOLY	YN IN	GEN	IEROS S	.A.C	Este certificado de calibración
Dirección					108 BR LA MERCED A- CAJAMARCA.	documenta la trazabilidad a los patrones nacionales o Internacionales, que realizan las
Instrumento de Medición	BALAN	ZA N	UA C	TOMATI	CA	unidades de la medición de acuerdo
Marca (o Fabricante)	NO IN	DICA				con el Sistema Internacional de
Modelo	KFS-10	00				Unidades (SI).
Número de Serie	NO IN	DICA				
Procedencia	NO IN	DICA				Los resultados son validos en el
Tipo	ELECTE	RÓNIC	0			momento de la calibración. Al
Identificación	021					solicitante le corresponde disponer
Alcance de Indicación	0	g	a	500	g	en su momento la ejecución de una
División de escala (d)	0.1	g				recalibración.
o resolución						
Div. verifc. de escala (e)	0.1	g		(*)		Este certificado de calibración no
Capacidad Mínima	2	g		(**)		podrá ser reproducido parcialmente
Clase de exactitud	III			(***)		sin la aprobación por escrito del
Ubic. Del Instrumento	Instala	cione	s del	cliente.		laboratorio emisor.
Lugar de Calibración	Jr. Prod	ceres	126.			Los certificados de calibración sin

Fecha de Calibración Método de Calibración 2020-02-20

firma y sello no son válidos.

La calibración se realizó según el método descrito en el PC-001, "Procedimiento de calibración de Balanzas de Funcionamiento no Automático Clase III y Clase IIII" del SNM-INDECOPI. Edición tercera.

Se utilizaron patrones calibrados en el SNM-INDECOPI, con Certificados de Calibración: LM-780-2020.

Fecha de emisión

Jefe del laboratorio de calibración

CEM INDUSTRIAL

2020-02-20

JESUS QU'NTO C.
JEFE DE LABORATORIO

Centro Especializado en Metrologia Industrial
Coop. César Vallejo Mz. V Lt. 01 Urb. Condevilla S.M.R. - Lima
- Tali: 8717348 + RPM: #958001777 + RPM: #95800108778
- ventas@cemind.com - jesus.quinto@cemind.com - www.cemind.com

METROLOGIA & TÉCNICAS S.A.C. **METROTEC**

CERTIFICADO DE CALIBRACIÓN MT - LF - 248 - 2020

Área de Metrología

Laboratorio de Fuerza

Página 1 de 3

Fecha de Emisión	Jefe del Laboratorio de Metrología	Sello
5. Fecha de Calibración	2020-12-03	
Ubicación	LABORATORIO DE SUELOS Y CONCRETO.	
	-1	El certificado de calibración sin firma y
Resolución	0,01 / 0,1 kN (*)	laboratorio que lo effilte.
Número de Serie	NO INDICA	laboratorio que lo emite.
Modelo	LM-02	podrá ser reproducido parcialmente sin la aprobación por escrito de
Marca	MC	Este certificado de calibración no
Indicación	DIGITAL	
Identificación	NO INDICA	resultados de la calibración aqui declarados.
Procedencia	CHINA	inadecuado de este instrumento, ni de una incorrecta interpretación de los
Número de Serie	180359	no se responsabiliza de los perjuicios que pueda ocasionar el uso
Modelo	STYE-2000	METROLOGÍA & TÉCNICAS S.A.C.
Marca	KAIZACORP	mantenimiento del instrumento de medición o a reglamento vigente.
Capacidad	2000 kN	recalibración, la cual está en función del uso, conservación y
4. Equipo	PRENSA DE CONCRETO	solicitante le corresponde disponer en su momento la ejecución de una
3. Dirección	Jr. Paraiso Nº 120 Urb. Columbo, Cajamarca - Cajamarca - CAJAMARCA	Los resultados son validos en el momento de la calibración. Al
2. Solicitante	KAOLYN INGENIEROS S.A.C.	patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).
1. Expediente	200626	Este certificado de calibración documenta la trazabilidad a los

Fecha de Emisión

LABORATORIO

2020-12-23

Firmado digitalmente por Eleazar Cesar Chavez Raraz Fecha: 2020.12.23 13:55:23

-05'00'

Metrologia & Técnicas S.A.C. Av. San Diego de Alcalá Mz. F1 lote 24 Urb. San Diego , SMP , LIMA Telf: (511) 540-0642 Cel.: (511) 971 439 272 / 971 439 282

CERTIFICADO DE CALIBRACIÓN MT - LF - 248 - 2020

Área de Metrología

Laboratorio de Fuerza

Página 2 de 3

6. Método de Calibración

La calibración se realizó por el método de comparación directa utilizando patrones trazables al SI calibrados en las instalaciones del LEDI-PUCP tomado como referencia el método descrito en la norma UNE-EN ISO 7500-1 "Verificación de Máquinas de Ensayo Uniaxiales Estáticos. Parte 1: Máquinas de ensayo de tracción/compresión. Verificación y calibración del sistema de medida de fuerza." - Julio 2006.

7. Lugar de calibración

LABORATORIO DE SUELOS Y CONCRETO.

Jr. Paraiso Nº 120 Urb. Columbo, Cajamarca - Cajamarca - CAJAMARCA

8. Condiciones Ambientales

	Inicial	Final
Temperatura	17,9 °C	18,1 °C
Humedad Relativa	53 % HR	53 % HR

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Informe/Certificado de calibración
Celdas patrones calibradas en HOTTINGER BALDWIN MESSTECHNIK GmbH - Alemania	Celda de carga calibrado a 1500 kN con incertidumbre del orden de 0,6 %	LEDI-PUCP INF-LE-012-20A

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- Durante la realización de cada secuencia de calibración la temperatura del equipo de medida de fuerza permanece estable dentro de un intervalo de ± 2,0 °C.
- El equipo no indica clase sin embargo cumple con el criterio para máquinas de ensayo uniaxiales de clase de 1,0 según la norma UNE-EN ISO 7500-1.

Metrologia & Técnicas S.A.C. Av. San Diego de Alcalá Mz. F1 lote 24 Urb. San Diego , SMP , LIMA Telf: (511) 540-0642 Cel.: (511) 971 439 272 / 971 439 282

CERTIFICADO DE CALIBRACIÓN MT - LF - 248 - 2020

Área de Metrología

Laboratorio de Fuerza

Página 3 de 3

11. Resultados de Medición

172775130000	ación quipo	Indicación de Fuerza (Ascenso) Patrón de Referencia					
%	F_i (kN)	F_1 (kN)	F_1 (kN) F_2 (kN) F_3 (kN) F_{Prom}				
10	100,0	100,7	100,5	100,4	100,6		
20	200,0	201,1	201,0	200,9	201,0		
30	300,0	301,4	301,5	301,3	301,4		
40	400,0	401,8	401,9	401,7	401,8		
50	500,0	502,4	502,6	502,2	502,4		
60	600,0	603,0	603,1	603,0	603,0		
70	700,0	703,4	703,6	703,3	703,4		
80	800,0	803,4	803,7	803,3	803,5		
90	900,0	903,8	904,0	903,7	903,8		
100	1000,0	1003,8	1004,1	1003,5	1003,8		
Retorno	a Cero	0,0	0,0	0,0			

Indicación	Errore	Errores Encontrados en el Sistema de Medición				
del Equipo	Exactitud	Repetibilidad	Reversibilidad	Resol. Relativa	U (k=2)	
F (kN)	q (%)	b (%)	v (%)	a (%)	(%)	
100,0	-0,56	0,34		0,01	0,45	
200,0	-0,50	0,12		0,01	0,45	
300,0	-0,47	0,10	()	0,00	0,45	
400,0	-0,45	0,06)	0,00	0,45	
500,0	-0,47	0,08		0,00	0,45	
600,0	-0,50	0,02		0,00	0,45	
700,0	-0,49	0,05	(1000)	0,00	0,45	
800,0	-0,44	0,05) 	0,00	0,45	
900,0	-0,42	0,04		0,00	0,45	
1000,0	-0,38	0,05	11	0,00	0,45	

-	_
MÁXIMO ERROR RELATIVO DE CERO (f ₀)	0.00 %

12. Incertidumbre

La incertidumbre expandida de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%. La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Metrologia & Técnicas S.A.C.

Av. San Diego de Alcalá Mz. F1 lote 24 Urb. San Diego , SMP , LIMA Telf: (511) 540-0642 Cel.: (511) 971 439 272 / 971 439 282

METROLOGIA & TÉCNICAS S.A.C.

CERTIFICADO DE CALIBRACIÓN MT - LM - 439 - 2020

Área de Metrología

Laboratorio de Masa

Página 1 de 4

1. Expediente	200626	Este certificado
2. Solicitante		documenta la tra
	KAOLYN INGENIEROS S.A.C.	patrones nacionales
		que realizan las
		medición de acuero

Jr. Paraiso N° 120 Urb. Columbo, Cajamarca - Internacional de Unidades (SI). 3. Dirección Cajamarca - CAJAMARCA

BALANZA ELECTRÓNICA 4. Equipo de medición

Capacidad Máxima 30 000 g

División de escala (d) 1 g

Div. de verificación (e) 10 g

Clase de exactitud Ш

OHAUS Marca

Modelo R31P30

8339530323 Número de Serie

Capacidad mínima 20 g Procedencia U.S.A.

NO INDICA Identificación

LABORATORIO DE SUELOS Y Ubicación

CONCRETO.

5. Fecha de Calibración 2020-12-04

de calibración razabilidad a los s o internacionales erdo con el Sistema

Los resultados son válidos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

METROLOGÍA & TÉCNICAS S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y

sello carece de validez.

Jefe del Laboratorio de Metrología Sello

2020-12-23

Fecha de Emisión

Firmado digitalmente por Eleazar Cesar Chavez Raraz Fecha: 2020.12.23 13:58:05

-05'00'

LABORATORIO &

Metrologia & Técnicas S.A.C. Av. San Diego de Alcalá Mz. F1 lote 24 Urb. San Diego , SMP , LIMA Telf: (511) 540-0642 Cel.: (511) 971 439 272 / 971 439 282

CERTIFICADO DE CALIBRACIÓN MT - LM - 439 - 2020

Área de Metrología

Laboratorio de Masa

Página 2 de 4

6. Método de Calibración

La calibración se realizó mediante el método de comparación según el PC-001 1ra Edición, 2019: "Procedimiento para la calibración de balanzas de funcionamiento no automático clase III y clase IIII" del INACAL-DM.

7. Lugar de calibración

LABORATORIO DE SUELOS Y CONCRETO.

Jr. Paraiso N° 120 Urb. Columbo, Cajamarca - Cajamarca - CAJAMARCA

8. Condiciones Ambientales

30	Inicial	Final
Temperatura (°C)	18,6	18,7
Humedad Relativa (%)	55	55

9. Patrones de referencia

Los resultados de la calibración son trazables a la Unidad de Medida de los Patrones Nacionales de Masa de la Dirección de Metrología - INACAL en concordancia con el Sistema Internacional de Unidades de Medidas (SI) y el Sistema Legal de Unidades del Perú (SLUMP).

Trazabilidad	Patrón utilizado	Certificado de calibración	
PESAS (Clase de exactitud F1) KOSSOMET PE19-C-0263	Pesa (exactitud M1)	PE19-C-1748	
PESA (Clase de exactitud F1) DM- INACAL LM-233-2018.	Pesa (exactitud MT)		
PESAS (Clase de exactitud M1) DM- INACAL: MC-0426-2019	Pesa (exactitud M2)	CM-2538-2019	
PESA (Clase de exactitud E1) HAFNER: 101873-D-K-15192-01-00	Pesa (exactitud F1)	M-0757-2020	
PESA (Clase de exactitud E1) HAFNER: 101873-D-K-15192-01-00	Pesa (exactitud F1)	M-0758-2020	
PESA (Clase de exactitud E1) HAFNER: 101876-D-K-15192-01-00	Pesa (exactitud F1)	M-0759-2020	

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación de CALIBRADO.

Metrologia & Técnicas S.A.C. Av. San Diego de Alcalá Mz. F1 lote 24 Urb. San Diego , SMP , LIMA Telf: (511) 540-0642 Cel.: (511) 971 439 272 / 971 439 282

CERTIFICADO DE CALIBRACIÓN MT - LM - 439 - 2020

Área de Metrología

Laboratorio de Masa

Página 3 de 4

11. Resultados de Medición

INSPECCIÓN VISUAL

AJUSTE DE CERO	TIENE	PLATAFORMA	TIENE	ESCALA	NO TIENE
OSCILACIÓN LIBRE	TIENE	SISTEMA DE TRABA	TIENE	CURSOR	NO TIENE
		NIVEL ACIÓN	TIENE		

ENSAYO DE REPETIBILIDAD

	Inicial	Final	
Temperatura	18,6 °C	18,7 °C	

Medición	Carga L1 =	15 000	0 g	Carga L2 :	30 000,	,0 g
N°	l (g)	ΔL (g)	E (g)	l (g)	ΔL (g)	E (g)
1	14 999	0,3	-0,8	29 999	0,3	-0,8
2	14 999	0,3	-0,8	29 999	0,4	-0,9
3	15 000	0,9	-0,4	30 000	0,9	-0,4
4	15 000	0,8	-0,3	30 000	0,8	-0,3
5	15 000	0,8	-0,3	29 999	0,3	-0,8
6	14 999	0,4	-0,9	29 999	0,2	-0,7
7	14 999	0,3	-0,8	30 000	0,9	-0,4
8	15 000	0,8	-0,3	30 000	0,9	-0,4
9	15 000	0,9	-0,4	29 999	0,2	-0,7
10	15 000	0,9	-0,4	30 000	0,8	-0,3
	Diferencia Máxima		0,6	Diferenci	a Máxima	0,6
	Error Máximo Permisible		± 20,0	Error Máxim	o Permisible	± 30,0

ENSAYO DE EXCENTRICIDAD

Posición	Determinación del Error en Cero Eo				Determinación del Error Corregido Ec				
de la Carga	Carga Mínima*	l (g)	ΔL (g)	Eo (g)	Carga (L)	l (g)	ΔL (g)	E (g)	Ec (g)
1		10	0,6	-0,1		10 000	0,5	0,0	0,1
2		10	0,6	-0,1		10 000	0,7	-0,2	-0,1
3	10,0 g	10	0,6	-0,1	10 000,0 g	9 999	0,2	-0,7	-0,6
4	10 80.0	10	0,6	-0,1	0 000	10 000	0,8	-0,3	-0,2
5		10	0,6	-0,1		10 000	0,6	-0,1	0,0
* Valor entre 0 y 10e						Error máxir	no permisible		± 20,0

Metrologia & Técnicas S.A.C. Av. San Diego de Alcalá Mz. F1 lote 24 Urb. San Diego , SMP , LIMA Telf: (511) 540-0642 Cel.: (511) 971 439 272 / 971 439 282

CERTIFICADO DE CALIBRACIÓN MT - LM - 439 - 2020

Área de Metrología

Laboratorio de Masa

Página 4 de 4

ENSAYO DE PESAJE

Inicial Final 18,7 °C 18,6 °C Temperatura

Carga L		CARGA C	RECIENTE	CIENTE		CARGA DE			
(g)	l (g)	ΔL (g)	E (g)	Fo (a)	1/a)	ΛΙ (α)	E (a)	Eo (a)	± e.m.p (g)**
10,0	10	0,8	-0,3	Ec (g)	l (g)	ΔL (g)	E (g)	Ec (g)	(9)
20,0	20	0,8	-0,3	0,0	20	0,6	-0,1	0,2	10,0
100,0	100	0,7	-0,2	0,1	100	0,6	-0,1	0,2	10,0
500,0	500	0,7	-0,2	0,1	500	0,6	-0,1	0,2	10,0
1 000,0	1 000	0,6	-0,1	0,2	1 000	0,5	0,0	0,3	10,0
5 000,0	5 000	0,6	-0,1	0,2	5 000	0,8	-0,3	0,0	10,0
10 000,0	10 000	0,6	-0,1	0,2	9 999	0,2	-0,7	-0,4	20,0
15 000,0	15 000	0,7	-0,2	0,1	15 000	0,6	-0,1	0,2	20,0
20 000,5	20 000	0,7	-0,7	-0,4	20 000	0,7	-0,7	-0,4	20,0
25 000,5	25 000	0,8	-0,8	-0,5	25 000	0,6	-0,6	-0,3	30,0
30 000.5	29 999	0,3	-1,3	-1,0	29 999	0,3	-1,3	-1,0	30,0

^{**} error máximo permisible

Leyenda: L: Carga aplicada a la balanza.

ΔL: Carga adicional.

E o: Error en cero.

I: Indicación de la balanza.

E: Error encontrado

E c: Error corregido.

LECTURA CORREGIDA $R_{CORREGIDA} = R + 6,55x10^{-6} x R$

: **U** = 2 x $\sqrt{2,59 \times 10^{-1} \text{ g}^2 + 6,74 \times 10^{-10} \times \text{R}^2}$ INCERTIDUMBRE

12. Incertidumbre

La incertidumbre U reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

Metrologia & Técnicas S.A.C. Av. San Diego de Alcalá Mz. F1 lote 24 Urb. San Diego , SMP , LIMA

Telf: (511) 540-0642 Cel.: (511) 971 439 272 / 971 439 282

CERTIFICADO DE CALIBRACIÓN MT - LTF - 0402020

Área de Metrología

Laboratorio de Tiempo y Frecuencia

Página 1 de 3

		T dgilla 1 dc 3
1. Expediente	200626	Este certificado de calibración documenta
		la trazabilidad a los patrones nacionales o
2. Solicitante	KAOLYN INGENIEROS S.A.C.	internacionales, que realizan las unidades
		de la medición de acuerdo con el Sistema
3. Dirección	Jr. Paraiso N° 120 Urb. Columbo, Cajamarca - Cajamarca - CAJAMARCA	Internacional de Unidades (SI).
		Los resultados son validos en el momento
4. Instrumento de medición	MÁQUINA PARA PRUEBAS DE ABRASIÓN	de la calibración. Al solicitante le
	TIPO LOS ÁNGELES	corresponde disponer en su momento la
		ejecución de una recalibración, la cual
Fabricante	A&A INSTRUMENTS	está en función del uso, conservación y
		mantenimiento del instrumento de
Número de Serie	1303002	medición o a reglamento vigente.
Modelo	STMH-3	METROLOGÍA & TÉCNICAS S.A.C. no se
		responsabiliza de los perjuicios que
Alcance de Indicación	0 a 9999 Vueltas	pueda ocasionar el uso inadecuado de
	450040	este instrumento, ni de una incorrecta
Div. de escala / Resolución	1 Vuelta	interpretación de los resultados de la
		calibración aqui declarados.
Identificación	NO INDICA	canbi acion aqui deciai ados.
	and the second	Este certificado de calibración no podrá
Procedencia	CHINA	ser reproducido parcialmente sin la
	5.6.7.1	aprobación por escrito del laboratorio
Tipo de indicación	DIGITAL	William Sweet States Transfer States Control C
5 5 1 1 6 11 14	2022 42 24	que lo emite.
5. Fecha de Calibración	2020-12-04	el
C. L.,	LABORATORIO DE CUELOS V CONCRETO	El certificado de calibración sin firma y
6. Lugar de calibración	LABORATORIO DE SUELOS Y CONCRETO.	sello carece de validez.
	Jr. Paraiso N° 120 Urb. Columbo, Cajamarca	•
	Cajamarca - CAJAMARCA	

Fecha de Emisión

Jefe del Laboratorio de Metrología

Sello

2020-12-23

Mulh. se/

Firmado digitalmente por Eleazar Cesar Chavez Raraz Fecha: 2020.12.23 13:58:53 -05'00'

Metrologia & Técnicas S.A.C. Av. San Diego de Alcalá Mz. F1 lote 24 Urb. San Diego , SMP , LIMA Telf: (511) 540-0642 Cel.: (511) 971 439 272 / 971 439 282

CERTIFICADO DE CALIBRACIÓN MT - LTF - 0402020

Área de Metrología

Laboratorio de Tiempo y Frecuencia

Página 2 de 3

7. Método de Calibración

La calibración se realizó por el método de comparación directa utilizando patrones trazables al DM / INACAL tomado como referencia la norma internacional ASTM C131 "Resistance to Degradation of Small Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine".

8. Condiciones Ambientales

	Inicial	Final
Temperatura	17,2 °C	17,3 °C
Presión Atmosférica	59 %	60 %

9. Patrones de referencia

Se utilizaron patrones trazables al SNM-INDECOPI, con los siguientes certificados de calibración:

Trazabilidad	Patrón utilizado	Certificado de calibración	
Generador de Funciones	TACÓMETRO ÓPTICO	C IN 000E 10	
LTF-C-096-2019	Incertidumbre del orden de 0,4 rpm	C-IN-0005-19	
Anillo Patrón			
INACAL DM / LLA-005-2020			
Cilindro Patrón		F-1039-2020	
INACAL DM / LLA-037-2020	Pie de rey 300 mm		
Bloques Patrón (grado 0)	con incertidumbre de 11 um		
INACAL DM / LLA-275-2018			
Bloques Patrón (grado 1)			
INACAL DM / LLA-C-035-2019			
Cinta Métrica clase I	CINTA MÉTRICA		
LLA-256-2019	con incertidumbre de medición de 0.9	L-0930-2019	
Magnificador Óptico	mm.		
LLA-080-2018	min.		
PATRONES DE REFERENCIA DE	BALANZA - OHAUS	MT-LM-065-2019	
Dirección de Metrologia - INACAL	Con clase de exactitud II	WIT-LIVI-063-2019	

10. Resultados

Características de las esferas

	MEDICIÓN DE LAS ESFERAS				
Nº	Diámetro	Peso			
	(mm)	(g)			
1	46,51	411,3			
2	46,53	411,7			
3	46,52	411,3			
4	46,54	411,7			
5	46,52	411,6			
6	46,53	411,5			

	MEDICIÓN DE LAS ESFERAS				
Nº	Diámetro	Peso			
	(mm)	(g)			
7	46,51	411,3			
8	46,55	411,9			
9	46,49	410,5			
10	46,50	411,1			
11	46,55	412,0			
12	46,53	411,3			

Metrologia & Técnicas S.A.C. Av. San Diego de Alcalá Mz. F1 lote 24 Urb. San Diego , SMP , LIMA Telf: (511) 540-0642 Cel.: (511) 971 439 272 / 971 439 282

CERTIFICADO DE CALIBRACIÓN MT - LTF - 0402020

Área de Metrología

Laboratorio de Tiempo y Frecuencia

Página 3 de 3

Determinación del vuelta/tiempo

Tiempo		CACIÓN DEL PATR		Giro de la
(seg)	NÚMERO DE VUELTAS	NÚMERO DE VUELTAS	NÚMERO DE VUELTAS	Máquina (rpm)
60	31	31	31	31,0
120	62	62	62	31,0
180	94	94	94	32,0
240	125	125	125	31,0
300	156	156	156	31,0
360	188	188	188	32,0
420	219	219	219	31,0
480	250	250	250	31,0
540	282	282	282	32,0
600	313	313	313	31,0
660	344	344	344	31,0
720	376	376	376	32,0
780	407	407	407	31,0
840	438	438	438	31,0
900	470	470	470	32,0

- Nota 1.- El peso adecuado para las esferas debe ser de entre 390 g y 445 g. el diámetro debe estar entre 46,38 mm y 47,63 mm.
- Nota 2.- El cilindro del equipo debe girar a una velocidad comprendida entre 30 y 33 rpm.
- Nota 3.- El rango admisible para el diámetro interior del tambor del equipo es de 711 ± 5 mm.
- Nota 4.- El rango admisible para la longitud interior del tambor del equipo es de 508 \pm 5 mm.

11. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.

Fin del documento

Metrologia & Técnicas S.A.C. Av. San Diego de Alcalá Mz. F1 lote 24 Urb. San Diego , SMP , LIMA Telf: (511) 540-0642 Cel.: (511) 971 439 272 / 971 439 282

ANEXO G. FOTOGRAFÍAS

Figura 37: Ubicación de la cantera

Figura 38. Muestreo del agregado grueso

Figura 39. Cemento Patrón, Wp-Wang Peng y Aditivo Sika Acelerante pe

Figura 40. Cemento Patrón, Wp-Wang Peng y Aditivo Sika Acelerante pe

Figura 41. Elaboración de probetas de concreto

Figura 42. Ensayo de Resistencia a la compresión de las probetas

ANEXO H. MATRIZ DE CONSISTENCIA

ANEXO H: MATRIZ DE CONSISTENCIA INTERNA DE LA INVESTIGACIÓN

Título: Evaluación de la resistencia a la compresión del concreto con aditivo Sikacem Acelerante Pe utilizando cementos Wp - Wang Peng Y Patrón, Cajamarca 2021

Autor/a: Dennis Xamier Villar Saldaña

PROBLEMA	OBJETIVOS	HIPÓTESIS		METODOLOGÍ	A
¿Cómo influye el uso del aditivo	Determinar el efecto de la	El uso del aditivo Sikacem	Variable	Dimensión	Instrumentos
Sikacem Acelerante pe	incorporación del aditivo Sikacem	Acelerante pe utilizando cementos	VI: Aplicación	Dosificación del	Especificación
utilizando cementos Wp- Wang	Acelerante pe utilizando cementos	Wp- Wang Peng y Patrón influye	del aditivo en	aditivo	técnica
	•		agua	acelerante	de
Peng y Patron en la resistencia a	Wp- Wang Peng y Patrón en la	significativamente en la			l fabricante
la compresión, Cajamarca 2021?	resistencia a la compresión,	resistencia a la compresión,	VD: Tiempo	Ficha técnica del	NTP 339.082 –
	Cajamarca 2021	Cajamarca 2021	de fraguado	aditivo	ASTM C403

•	¿Cuál es la influencia del
	aditivo Sikacem Acelerante
	pe en el desarrollo de la
	resistencia a la compresión
	del concreto utilizando
	cementos Wp- Wang Peng y
	Patrón, Cajamarca 2021?

- Ver la influencia de la
 resistencia con la
 incorporación del aditivo
 Sikacem Acelerante pe con el
 cemento Patrón, Cajamarca
 2021.
- Sikacem Acelerante pe
 influye significativamente en
 la resistencia a la compresión
 con el cemento Patrón,
 Cajamarca 2021.

• La utilización del aditivo

La utilización del aditivo
 Sikacem Acelerante pe
 influye significativamente en
 la resistencia a la compresión
 con el cemento Wp- Wang

Peng, Cajamarca 2021.

Enfoque: cuantitativo

Tipo: aplicada

Método: explicativo - correlacional

Diseño: Pre experimental longitudinal

M: O1 \rightarrow X \rightarrow O2

M (Muestra):

O1 (Pre Test):

X (Variable Independiente):

Acelerante. O2 (Post test):

$$n = \frac{96 * 2.580^2 * 50 * 50}{1^2 * (96 - 1) + 2.580^2 * 50 * 50}$$

$$n_0 = 95.56 \approx 96$$

 ¿De qué manera influye el uso del aditivo Sikacem
 Acelerante pe con el cemento
 Patrón en la resistencia a la comprensión, Cajamarca

2021?

resistencia con la
incorporación del aditivo
Sikacem Acelerante pe con el
cemento Wp - Wan Peng,
Cajamarca 2021.

Ver la influencia de la

•	¿De qué manera influye el	Ver la influencia de la	
	•	resistencia del cemento Wp -	La utilización del cemento
	aditivo Sikacem Acelerante	Wan Peng y Patrón.	Wp - Wan Peng y Patrón
	pe con el cemento Wp- Wang		sin aditivo influye
	Peng Patrón en la resistencia		
	a la comprensión, Cajamarca		significativamente en la
	2021?		resistencia a la
			compresión, Cajamarca
			2021.