

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Ambiental

Tesis

Análisis de la eficiencia de fitorremediación con la especie Myriophyllum aquaticum en la concentración de cobre en aguas para riego del centro poblado de Huaranguillo - Sachaca, Arequipa - 2022

Javier Alexander Campana Chavez

Para optar el Título Profesional de Ingeniero Ambiental

Arequipa, 2023

Repositorio Institucional Continental Tesis digital

Esta obra está bajo una Licencia "Creative Commons Atribución 4.0 Internacional".

ANÁLISIS DE LA EFICIENCIA DE FITORREMEDIACIÓN CON LA ESPECIE Myriophyllum aquaticum EN LA CONCENTRACIÓN DE COBRE EN AGUAS PARA RIEGO DEL CENTRO POBLADO DE HUARANGUILLO - SACHACA, AREQUIPA – 2022

ORIGINA	ALITY REPORT			
2 SIMILA		25% INTERNET SOURCES	10% PUBLICATIONS	12% STUDENT PAPERS
PRIMAR	Y SOURCES			
1	1library.co Internet Source			2%
2	hdl.handle Internet Source	.net		2%
3	Submitted Indoameri Student Paper		ad Tecnológica	1 %
4	www.alear	ningcenter.co	om	1 %
5	ceaa.espo	ch.edu.ec		1 %
6	dspace.ucl	lv.edu.cu		1 %
7	issuu.com Internet Source			1 %
8	Submitted	to Universida	ad Cientifica de	el Sur 1 04

Student Paper

9	Submitted to Gitam University Student Paper	1 %
10	repositorio.uap.edu.pe Internet Source	1 %
11	www.scribd.com Internet Source	1 %
12	www.slideshare.net Internet Source	1 %
13	www.coursehero.com Internet Source	1 %
14	www.scielo.org.mx Internet Source	1 %
15	bibliotecas.unsa.edu.pe Internet Source	<1%
16	repositorio.uns.edu.pe Internet Source	<1%
17	repositorio.unh.edu.pe Internet Source	<1%
18	cybertesis.unmsm.edu.pe Internet Source	<1%
19	repositorio.cientifica.edu.pe Internet Source	<1%
20	repositorio.unsaac.edu.pe Internet Source	<1%

21	visorsig.oefa.gob.pe Internet Source	<1%
22	repositorio.undac.edu.pe Internet Source	<1%
23	repositorio.unsch.edu.pe Internet Source	<1%
24	repositorio.unasam.edu.pe Internet Source	<1%
25	ciencia.lasalle.edu.co Internet Source	<1%
26	repositorio.unc.edu.pe Internet Source	<1%
27	repositorio.upn.edu.pe Internet Source	<1%
28	es.scribd.com Internet Source	<1%
29	www.researchgate.net Internet Source	<1%
30	repositorio.upeu.edu.pe:8080 Internet Source	<1%
31	Submitted to Universidad Católica de Santa María Student Paper	<1%
32	Submitted to Universidad Cesar Vallejo	

Student Paper

	<1%
worldwidescience.org Internet Source	<1 %
repositorio.uasb.edu.bo:8080 Internet Source	<1 %
35 www.mincit.gov.co Internet Source	<1%
ctscafe.pe Internet Source	<1%
repositorio.udh.edu.pe Internet Source	<1%
repositorio.unfv.edu.pe Internet Source	<1%
repositorio.unsa.edu.pe Internet Source	<1 %
repositorio.ug.edu.ec Internet Source	<1%
dspace.ucuenca.edu.ec Internet Source	<1 %
ejemplos.net Internet Source	<1%
repositorio.unac.edu.pe Internet Source	<1%

_	44	Submitted to Universidad Andina Nestor Caceres Velasquez Student Paper	<1%
	45	Submitted to FUNIBER Student Paper	<1%
	46	cybertesis.uni.edu.pe Internet Source	<1%
	47	docplayer.es Internet Source	<1%
	48	virtual.urbe.edu Internet Source	<1%
	49	Velázquez González Laura Angélica. "Evaluación de la calidad y satisfacción del servicio público en México", TESIUNAM, 2020 Publication	<1%
	50	repositorio.oefa.gob.pe Internet Source	<1 %
_	51	repositorio.unapiquitos.edu.pe Internet Source	<1%
	52	repositorio.upeu.edu.pe Internet Source	<1 %
	53	repositorio.utea.edu.pe Internet Source	<1 %
	54	Submitted to Universidad Nacional de San Cristóbal de Huamanga	<1%

55	Submitted to Universidad de Oviedo Student Paper	<1%
56	prezi.com Internet Source	<1%
57	Submitted to Abraham Baldwin Agriculture College Student Paper	<1%
58	repositorio.uaustral.edu.pe Internet Source	<1%
59	www.ecoavant.com Internet Source	<1%
60	www.thefreelibrary.com Internet Source	<1%
61	pt.scribd.com Internet Source	<1%
62	tesis.ucsm.edu.pe Internet Source	<1%
63	repositorio.uncp.edu.pe Internet Source	<1%
64	www.cleanical.de Internet Source	<1%
65	Zamora González Ilse Gabriela. "Acumulación de metales pesados en el sistema agua-suelo-	<1%

organismo del Valle del Mezquital Ixmiquilpan, Hidalgo", TESIUNAM, 2019

Publication

66	larepublica.pe Internet Source	<1%
67	patents.google.com Internet Source	<1 %
68	repositorio.uladech.edu.pe Internet Source	<1%
69	upc.aws.openrepository.com Internet Source	<1%
70	www.clubensayos.com Internet Source	<1%
71	www.eea.europa.eu Internet Source	<1%
72	INSTITUTO COMERCIO Y PRODUCCION. "PAMA de la Planta Industrial de Procesamiento y Comercialización de Cueros de Clase Vacuna-IGA0004623", R.D. N° 272- 2016-PRODUCE/DVMYPE-I/DIGGAM, 2020 Publication	<1%
73	Jhony Miguel Lezama Oribe, Dante Orlando Saldaña Vega, Magda Rosa Velásquez Marin, Marco Alfredo Sánchez Peña. "Chapter 17 Identification of Herbaceous Flora with a Greater Value of Importance and Evaluation	<1%

of Its Phytoremediator Capacity in Contaminated Soils, Tumbacucho – Peru", Springer Science and Business Media LLC, 2021

Publication

74	Mendoza Torres Isabel. "Efectos de las cenizas volcánicas en frutos y hortalizas", TESIUNAM, 2014 Publication	<1%
75	OSCAR YANGALI INGENIERIA E.I.R.LTDA "DIA del Proyecto Línea de Transmisión 60 kV S.E. Potrero - S.E. Aguas Calientes 4.97 km-IGA0002139", R.D. N° 130-2014-MEM/DGAAE, 2020 Publication	<1%
76	Submitted to Universidad Catolica de Trujillo Student Paper	<1%
77	buscador.infoguia.net Internet Source	<1%
78	colposdigital.colpos.mx:8080 Internet Source	<1%
79	core.ac.uk Internet Source	<1%
80	doczz.biz.tr Internet Source	<1%

81 edoc.pub
Internet Source

		<1%
82	repositorio.upagu.edu.pe Internet Source	<1%
83	www.alconlabs.com Internet Source	<1%
84	www.clarin.com Internet Source	<1%
85	www.ousdeponent.com Internet Source	<1%
86	Bernardo Sepúlveda, Sebastián Rojos, Washington Silva, Bruno Sepúlveda, Pedro Tume, Osvaldo Pavez. "Uptake of Cu, Hg, and As in wild vegetation, associated to surface water in the Copiapó valley, before the 2015 alluvium", Environmental Geochemistry and Health, 2022 Publication	<1%
87	Lira Silva Elizabeth. "Mecanismos de resistencia a cromo en Euglena gracilis heterotrófica", TESIUNAM, 2011	<1%
88	Osnaya Ruiz Patricia. "Evaluación de la calidad delagua enseis delegaciones del Distrito Federal en un contexto decambio climático y propuesta de adaptación", TESIUNAM, 2013 Publication	<1%

89	Rico Nava J. Reyes Guillermo. "La escasez del agua y sus repercusiones en el ambito rural : caso Queretaro : 1995-2000", TESIUNAM, 2006 Publication	<1%
90	WALSH PERU S.A. INGENIEROS Y CIENTIFICOS CONSULTORES. "PAMA de la UP Toquepala, la UP Cuajone, la UP Ilo y la Fundición de Ilo-IGA0000006", R.D. N° 042-97-EM/DGM, 2020 Publication	<1%
91	cybertesis.uni.pe Internet Source	<1%
92	renati.sunedu.gob.pe Internet Source	<1%
93	repositorio.ana.gob.pe Internet Source	<1%
94	repositorio.lamolina.edu.pe Internet Source	<1%
95	repositorio.unap.edu.pe Internet Source	<1%
96	repositorio.unheval.edu.pe Internet Source	<1%
97	repositorio.upao.edu.pe Internet Source	<1%
98	repositorioinstitucional.uaslp.mx	

Exclude quotes On Exclude bibliography On

Exclude matches

< 5 words

AGRADECIMIENTOS

A la Universidad Continental, por abrir sus puertas tanto a mí como a muchos otros colegas y así brindarnos la oportunidad de seguir formándonos como profesionales; a su vez, a mi asesor, Mg. Ing. Steve Dann Camargo Hinostroza, por sus conocimientos transferidos, su dedicación, entusiasmo e ímpetu de acompañarme en esta etapa académica.

También, agradecer a todos los docentes que gracias a ellos me formé como el profesional que soy; asimismo, a agradecer a mis padres que fueron un apoyo fundamental desde el inicio de mi carrera también agradecer a amigos que siempre me apoyaron y motivaron para poder culminar este proyecto para así seguir creciendo profesionalmente.

DEDICATORIA

En primer lugar, a mi familia por su constante motivación para mi crecimiento personal y profesional, que me instan a no conformarme y seguir nuevas metas, tanto en lo intelectual como en lo personal.

De igual forma, a esos docentes que te aconsejan como amigos para que sigas siendo mejor día a día.

ÍNDICE

AGRADE	CIMI	ENTOS	2
DEDICAT	ΓORI <i>A</i>	١	3
RESUME	N		9
ABSTRA	CT		10
INTROD	UCCIO	ÓΝ	11
CAPÍTUL	.O I: F	PLANTEAMIENTO DEL ESTUDIO	12
1.1.	Plai	nteamiento y formulación del problema	12
1.1	.1.	Problema General	13
1.1	.2.	Problemas Específicos	13
1.2.	Obj	etivos	14
1.2	.1.	Objetivo general	14
1.2	.2.	Objetivos específicos	14
1.3.	Just	tificación e importancia	14
1.4.	Hip	ótesis	15
1.4	.1.	Hipótesis general	15
1.4	.2.	Hipótesis especificas	15
1.4	.3.	Operacionalización de variables	16
CAPÍTUL	.O II:	MARCO TEÓRICO	17
2.1.	Ant	ecedentes de la investigación	17
2.1	.1.	Antecedentes internacionales	17
2.1	.2.	Antecedentes nacionales	19
2.1	.3.	Antecedentes regionales	22
2.2.	Bas	es teóricas	23
2.2	.1.	Contaminación	23
2.2	.2.	Contaminación del agua	24
2.2	.3.	Tratamiento de agua	25
2.2	.4.	Fitorremediación	25
2.2	.5.	Categorización de los cuerpos de agua	26
2.3.	Def	inición de términos básicos	27

CAPÍTULO III:	METODOLOGÍA	29
3.1. Mé	todo y alcance de la investigación	29
3.1.1.	Método General	29
3.1.2.	Método Específico	29
3.1.3.	Tipo de investigación	29
3.1.4.	Nivel de investigación	30
3.2. Dise	eño de la investigación	30
3.3. Pob	plación y muestra	30
3.3.1.	Muestra	30
3.3.2.	Población	30
3.4. Téc	nicas e instrumentos de recolección de datos	31
3.4.1.	Técnicas e instrumentos	31
3.4.2.	Materiales	33
3.4.3.	Procedimientos	35
3.4.3.	1. Etapa de Pre – campo	35
3.4.3.2	2. Etapa de Campo	37
3.4.3.	3. Etapa de Experimentación	38
3.4.3.	4. Etapa de laboratorio	39
3.4.3.	5. Etapa de Gabinete	39
CAPÍTULO IV:	RESULTADOS Y DISCUSIÓN	41
4.1. Pre	sentación de resultados	41
4.2. Con	nprobación de hipótesis	45
4.2.1.	Prueba de normalidad	45
4.2.2.	Comprobación de hipótesis general	45
4.2.3.	Comprobación de hipótesis específicas	47
4.3. Disc	cusión de resultados	49
4.3.1.	Contrastación de los resultados con los antecedentes	50
CONCLUSION	IES	52
RECOMENDA	.CIONES	54
REFERENCIAS		55
REFERENCIAS	5	5

ÍNDICE DE TABLAS

Tabla 1. Operacionalización de variables	16
Tabla 2. Coordenadas y codificación de los puntos	32
Tabla 3. Materiales e imágenes referenciales	33
Tabla 4. Esquema del diseño de la experimentación	40
Tabla 5. Formulas e interpretación	44
Tabla 6. Pruebas de normalidad	45
Tabla 7. Descriptivos analizados	46
Tabla 8. Análisis de varianzas - ANOVA	47
Tabla 9. Comparación múltiple – prueba Post Hoc	48
Tabla 10. prueba de Tukey	49
Análisis de varianzas - ANOVA	52

ANEXOS

Anexo 1: Resultados de las muestras In situ (directo de los estanques)	59
Anexo 2: Resultados de la primera toma de muestras ex situ	63
Anexo 3: Resultados de la segunda toma de muestras ex situ	67
Anexo 4: Cadenas de custodia de entrega de la muestra al laboratorio	71
Anexo 5: Imágenes del procedimiento de toma de muestras	74
Anexo 6: Agrupación de los resultados obtenidos en los tres análisis	79
Anexo 7: Descriptivos	81
Anexo 8: ECA, categoría 3: Riego de vegetales y bebida de animales	82

ÍNDICE DE FIGURAS

figura 1 Puntos ubicados satelitalmente		
Figura 2 Imagen del punto CA-H-1	33	
Figura 3 Imagen del punto CA-H-2	33	
Figura 4 Toma de muestras del primer punto	74	
Figura 5 Llenada de frasco de muestra y preservación	74	
Figura 6 Cadena de frío del primer punto	74	
Figura 7 Toma de muestras del segundo punto	74	
Figura 8 Llenado de frasco y preservación de muestra	75	
Figura 9 Cadena de frío del segundo punto	75	
Figura 10 Recolección de agua Punto CA-H-1	75	
Figura 11 Recolección de agua punto CA-H-2	76	
Figura 12 Toma de muestras del primer punto tras el experimento	76	
Figura 13 Toma de muestras del segundo punto tras el experimento	76	
Figura 14 Preservación de muestras	77	
Figura 15 Rotulado de las muestras	77	
Figura 16 Cadena de frío de ambos puntos tras la primera remediación	77	
Figura 17 Segunda toma de muestras de los puntos CA-H-1 y CA-H-2	78	

RESUMEN

El agua es el recurso natural más abundante e importante del planeta; no obstante, aunque sea el más abundante solo el 2.5 % del total es agua dulce y solo una parte de este porcentaje es agua que se encuentra en ríos, lagos, aguas subterráneas y glaciales. Es agua que está a nuestra disposición; sin embargo, el ser humano contamina este pequeño porcentaje que agua dulce disponible. Aunque actualmente existen diferentes métodos para su tratamiento, la mayoría genera un impacto secundario negativo al momento de tratarla; a su vez, también existen otras técnicas menos empleadas para el tratamiento de agua dulce, entre las cuales tenemos a la fitorremediación. A pesar de que, aún no se ha estudiado en profundidad el efecto de ciertas plantas con propiedades depurativas sobre contaminantes específicos en lugares con diferentes condiciones climáticas, su potencial es ampliamente reconocido y ha sido objeto de investigación en varios estudios; por ello, la presente investigación se encargará de demostrar la eficacia de la fitorremediación con Myriophyllum aquaticum, también conocida como cola de zorro. Para comprobar su nivel de eficacia se tomaron muestras de agua de dos puntos distintos de fuentes de agua del centro poblado de Huaranguillo, distrito de Sachaca; las mismas fueron analizadas en un laboratorio acreditado con el fin de tener las concentraciones iniciales de cobre antes de la fitorremediación. Posteriormente, se extrajo dos muestras de agua de cada punto a fin de ser puesta en presencia de Myriophyllum aquaticum para comprobar la eficacia de esta, tanto en supervivencia de la planta frente al cobre como el potencial de fitorremediación al momento de reducir la concentración de cobre. Luego de 13 días de espera se tomó muestras de los recipientes de agua con concentraciones de cobre, para ser llevadas al laboratorio para su análisis, teniendo como resultado una reducción de las concentraciones de cobre en el agua. Por ello, se concluye la influencia positiva de Myriophyllum aquaticum frente a aguas contaminadas con cobre. Los resultados fueron validados por el laboratorio acreditado.

ABSTRACT

Water is the most abundant and important natural resource on the planet; However, even though it is the most abundant, only 2.5 % of the total is fresh water and only a part of this percentage is water found in rivers, lakes, groundwater and glaciers. It is water that is at our disposal; however, humans contaminate this small percentage of available fresh water. Although there are currently different methods for its treatment, most generate a negative secondary impact when treating it; In turn, there are also other less used techniques for the treatment of fresh water, among which we have phytoremediation. Although the effect of certain plants with purifying properties on specific pollutants in places with different climatic conditions has not yet been studied in depth, their potential is widely recognized and has been the subject of investigation in several studies; For this reason, the present investigation will be in charge of demonstrating the efficacy of phytoremediation with Myriophyllum aquaticum, also known as foxtail. To verify its level of effectiveness, water samples were taken from two different points of water sources in the town center of Huaranguillo, district of Sachaca; they were analyzed in an accredited laboratory in order to have the initial concentrations of copper before phytoremediation. Subsequently, two water samples were extracted from each point in order to be placed in the presence of Myriophyllum aquaticum to verify its effectiveness, both in terms of plant survival against copper and the potential for phytoremediation when reducing the copper concentration. After 13 days of waiting, samples were taken from the water containers with copper concentrations, to be taken to the laboratory for analysis, resulting in a reduction of copper concentrations in the water. Therefore, the positive influence of Myriophyllum aquaticum against copper-contaminated waters is concluded. The results were validated by the accredited laboratory.

INTRODUCCIÓN

Desde la aparición del ser humano en la tierra, este ha generado contaminación con cada actividad que realiza, ya sea en actividades cotidianas y aún más en actividades industriales. Pero cabe resaltar que, así como hay contaminación antropogénica, también existe contaminación natural, que no causaría preocupación si fueran en concentraciones menores o en lapsos de tiempo prolongado. El problema radica en que cada vez se da en concentraciones mayores.

Así pues, una de las grandes problemáticas del crecimiento de la población es la contaminación de los cuerpos de agua con los cuales se riegan nuestros campos de cultivo, siendo cada vez más necesario dar un tratamiento a estas aguas o en su efecto una remediación. Si bien pueden existir varios métodos para mejorar la calidad del agua, la mayoría suelen ser muy costos, siendo una de las mejores alternativas la fitorremediación, la cual resulta más económica y amigable con el medio ambiente.

Este método se sustenta en el hecho de que algunas plantas tienen la capacidad de absorber determinados tipos de contaminantes a través de sus raíces, tallos o hasta hojas, dependiendo del tipo de planta. Por ello, en esta investigación se verá el comportamiento de la *Myriophyllum aquaticum* en aguas con presencia de cobre, con el fin de poder descubrir si puede reducir la concentración de cobre en el agua y en qué cantidades, según el tiempo de exposición.

CAPÍTULO I: PLANTEAMIENTO DEL ESTUDIO

1.1. Planteamiento y formulación del problema

Por todo el trayecto que recorre el río Chili en la ciudad de Arequipa se encuentra con diferentes fuentes de contaminación como son el alcantarillado público sin tratamiento previo; en el mejor de los casos se le da un tratamiento poco eficiente antes del vertimiento que ayuda levemente a minimizar el impacto. Asimismo, los fertilizantes que se bioacumulan en el agua debido al riego por gravedad y los contaminantes naturales propios de la geografía del Perú, que arrastran metales por efecto de escorrentía antes y después de que el agua llegue al río. Estas son algunas de las fuentes de contaminación de la cuenca hídrica; por consiguiente, los cultivos que se riegan con esta agua también se ven afectados.

Como es conocido, la agricultura es una de las principales actividades económicas del distrito de Sachaca. Para ello, el agua empleada se capta del río Chili, la cual se utiliza para regar los cultivos. Por esta razón, es esencial contar con una evaluación actualizada de la calidad de estas aguas, ya que los cultivos que se riegan con ellas finalmente llegan a las mesas de la población de la ciudad de Arequipa. (1)

Entre los metales pesados más peligrosos para la vida acuática se encuentran el Pb, Cu, Zn y Cd, ya que son muy tóxicos, aún en concentraciones relativamente bajas, no son biodegradables y por el contrario se acumulan a lo largo de la cadena trófica (2). Por lo tanto, debido a que el cobre (Cu) es uno de los metales pesados que, incluso en bajas concentraciones, puede ser perjudicial para la salud, es de vital importancia darle un tratamiento antes de que este pueda llegar a los campos de cultivo a través del agua, ya que puede acumularse y posteriormente ser consumido por la población a través de los alimentos. Además, los sedimentos son una parte importante en la concentración de metales en los cuerpos de agua. La disolución de estos metales por el agua puede generar cambios significativos en las propiedades físicas y químicas de los ríos. (2)

El cobre es uno de los metales pesados más importantes que se puede encontrar en el medio ambiente acuático; a su vez, es esencial para el ser humano. Sin embargo, en concentraciones altas puede ser perjudicial para el mismo. Como señalan Sancha y Lira, por su carácter dual, el cobre puede ser esencial para el ser

humano por su propiedad de incorporar nutrientes y proteínas a nuestro organismo; por el contrario, puede ser perjudicial por su toxicidad bioquímica cuando se encuentra en concentraciones elevadas en nuestro sistema. (3)

El cobre se puede encontrar de manera natural en los cuerpos de agua debido a la escorrentía; es decir, al arrastre de minerales por efecto del recorrido que hace el agua hasta llegar a un cuerpo receptor. A su vez, metales como el cobre pueden llegar a los cuerpos de agua de forma antrópica debido a sus propiedades como durabilidad, ductilidad, maleabilidad, conductividad eléctrica y térmica. De otro lado, en diversas formas se usan en el sistema de distribución de agua como tuberías y griferías, ya sea como elemento principal o aleaciones de este. (3) Es así que, aunque estas aleaciones pueden ser duraderas, poco a poco se van desgastando y desprendiendo partículas de cobre, que a través del drenaje llegan nuevamente a los cuerpos receptores, los cuales son usados para el riego de cultivos. Posteriormente, llega a las personas y poco a poco se acumulan en el organismo, ocasionando daños a la salud en el mediano o largo plazo, sin que lo percibamos hasta que las concentraciones en el organismo son elevadas y se evidencian sus efectos nocivos.

Según la Agencia de sustancias toxicas y el registro de enfermedades:

"Es fundamental que las personas ingieran pequeñas cantidades de cobre todos los días en el agua y los alimentos. Ingerir demasiado cobre o no ingerir lo suficiente puede causar enfermedades. Ingerir una gran cantidad de cobre, generalmente en el agua potable, puede causar vómitos, náuseas, dolor abdominal o diarrea. Ingerir cantidades de cobre mayores de las recomendadas todos los días con el paso del tiempo, como en el agua o en los suplementos de cobre, puede causar una enfermedad grave, como daño en los riñones o el hígado." (4)

1.1.1. Problema General

¿Cuál es la eficiencia de fitorremediación de *Myriophyllum aquaticum* en la reducción de los niveles de cobre en el agua para riego proveniente del río Chili en el centro poblado de Huaranguillo - Sachaca?

1.1.2. Problemas Específicos

• Cuál es la concentración de cobre antes y después de la fitorremediación.

• Cuál es el tiempo adecuado de exposición entre *Myriophyllum aquaticum* y el cobre para una eficaz fitorremediación.

1.2. Objetivos

1.2.1. Objetivo general

Analizar la eficiencia de la fitorremediación de *Myriophyllum aquaticum* en la reducción de los niveles de cobre en el agua para riego proveniente del río Chili en el centro poblado de Huaranguillo – Sachaca.

1.2.2. Objetivos específicos

- Determinar la concentración de cobre antes y después de la fitorremediación.
- Determinar el tiempo adecuado de exposición entre *Myriophyllum* aquaticum y el cobre para una eficaz fitorremediación.

1.3. Justificación e importancia

La gran importancia de tener agua de calidad para ser empleada en los campos de cultivo es crucial; ello debido a que, los cultivos absorben tanto los nutrientes como otros elementos presentes en el agua, incluyendo metales pesados como el cobre. La presencia de estos contaminantes puede tener un impacto negativo en el medio ambiente y en las personas que consumen estos cultivos, especialmente cuando se acumulan en el cuerpo. Esto puede causar efectos adversos en la salud a mediano y largo plazo.

Es ampliamente reconocida la importancia de la calidad del agua para la vida en el planeta, tanto de personas como animales y plantas, no solo en el ámbito local sino internacional. Es necesario, por tanto, resaltar que hay 2 400 millones de personas que no tienen acceso a saneamiento y 760 millones sin acceso a agua potable, sin acceso a saneamiento o, muchas veces, sin contar con un tratamiento de las aguas usadas antes del vertimiento. En gran parte, esta es una de las mayores causas de contaminación del agua de riego, ya que el agua usada desde la toma en las partes altas puede ser usada en los campos de cultivo que, muchas veces, usan fertilizantes de una manera no controlada ni eficiente; asimismo, en zonas urbanas en las que no le hacen un tratamiento óptimo; además, industrias informales que no

cumplen con estándares ambientales. Por tanto, luego de haber arrastrado y/o bioacumulado todos estos contaminantes de cada sector se vuelve a usar esta misma agua en los campos de cultivo de las zonas más bajas de las ciudades donde suele estar la mayor parte de la zona agraria. Así pues, estos cultivos, sobre todo los de tallo corto, absorben todo lo que el agua arrastra en su recorrido, acumulando progresiva y constantemente estas sustancias, que luego son consumidas por las personas de la zona; a esta situación se agrega que a nivel nacional hay pocos análisis o nulos para la distribución de alimentos. Asimismo, se puede sumar a esto los metales que puede arrastrar el agua por escorrentía debido a las condiciones geologías del país, que está rodeado por cordilleras o cerros, muchas veces ricos en metales y minerales.

De igual modo, evaluar la calidad del agua permitirá tener una visión más clara de la situación actual y los cambios que han ocurrido en las últimas décadas por las actividades industriales, agrícolas, mineras, entre otras, desarrolladas en la zona de Sachaca y demás sectores anteriores que recorre el río chili. (5). Una de las tecnologías ecoamigables para la reducción de metales pesados es la fitorremediación, para fines de esta investigación específicamente con "Myriophyllum aquaticum". El presente trabajo de tesis tiene como finalidad determinar la eficacia de la fitorremediación de Myriophyllum aquaticum para disminuir la concentración de cobre en el agua para riego.

1.4. Hipótesis

1.4.1. Hipótesis general

Ho: La aplicación de *Myriophyllum aquaticum* como remediador no es eficiente en el tratamiento del agua con cobre para riego en Huaranguillo – Sachaca.

Ha: La aplicación de *Myriophyllum aquaticum* como remediador es eficiente en el tratamiento del agua con cobre para riego en Huaranguillo – Sachaca.

1.4.2. Hipótesis especificas

Ho: La especie *Myriophyllum aquaticum* no influye de manera significativa en el tratamiento del agua para riego en Huaranguillo – Sachaca

Ha: La especie *Myriophyllum aquaticum* influye de manera significativa en el tratamiento del agua para riego en Huaranguillo – Sachaca

1.4.3. Operacionalización de variables

Tabla 1. Operacionalización de variables

Tipo de variables		Dimensione s	Definición conceptual	Indicador	Unidad de medida	Tipos de variabl es
Variabl e indepe ndiente	Myriophyllum aquaticum como Fitorremediad or	Tiempo de remediación	Tiempo necesario de exposición entre el <i>Myriophyllum aquaticum</i> y el cobre, con la finalidad reducir la concentración de cobre. En una relación de 10 especies de <i>Myriophyllum aquaticum</i> en 20 litros de agua.	Tiempo y Concentració n	Días y mg/l	Cuantit ativa
Variabl e depend iente		Concentraci ón de Cobre	Reducción de la concentración de cobre en el agua para riego	Cantidad inicial y final de cobre mg/L	mg/l	
	fitorremediaci ón de cobre	Eficiencia de remediación	Eficiencia de remediación del contaminante que se encuentra en el agua para riego.	% Remoción= (i-f) /i*100 Donde: i=concentraci ón inicial sin tratamiento y f=concentraci ón final con tratamiento g/l	%	Cuantit ativa

Fuente: elaboración propia

CAPÍTULO II: MARCO TEÓRICO

2.1. Antecedentes de la investigación

2.1.1. Antecedentes internacionales

Según la investigación de Mancilla-Villa et al., en su trabajo titulado "Metales pesados totales y arsénico en el agua para riego de puebla y Veracruz, México": los metales pesados y As se encuentran generalmente como componentes naturales de la corteza terrestre en forma de minerales, sales u otros compuestos; pueden ser absorbidos por las plantas y así incorporarse a las cadenas tróficas, pasar a la atmósfera por volatilización y movilizarse hacia el agua superficial o subterránea. Estos metales no son degradados fácilmente de forma natural o biológica, ya que no tienen funciones metabólicas específicas para los seres vivos. En lugares donde se ha utilizado agua residual para el riego agrícola, se reporta una tendencia creciente en las concentraciones de metales pesados. Existe una amplia investigación sobre el riesgo de los metales pesados en la salud y el ambiente.

Podemos llegar a la conclusión de que los metales pesados y metaloides, en este caso haciendo referencia al As, pueden llegar a los cuerpos de agua de manera natural, ya que estos se suelen encontrar en la corteza terrestre, más aún cuando existen cordilleras en la geografía del lugar. No obstante, no es la única forma en que los metales pesados y metaloides llegan a los cuerpos de agua, sino que también puede ser por las aguas residuales urbanas e industriales. En muchos países latinoamericanos, estas aguas no reciben un tratamiento o adecuado tratamiento antes de que sean vertidas a los cuerpos de agua, lo que puede afectar la flora y la fauna que habita allí. Además, las concentraciones de contaminantes pueden aumentar aún más si son usadas para el riego de campos de cultivo, que luego serán cosechados y servidos en los hogares de las personas, ocasionando efectos negativos al medio ambiente y en la salud pública. (6)

Diversos autores han mostrado el riesgo de contaminación por metales pesados en el agua, en la acumulación de metales pesados en los suelos agrícolas y en el riesgo potencial para la salud humana debido a la acumulación de metales pesados en las plantas. En los valles agrícolas de Puebla y la zona centro norte del estado de Veracruz, desde hace más de 100 años se ha empleado agua superficial contaminada con agua residual para el riego directo. A consecuencia de esto, se han acumulado metales pesados en los suelos agrícolas irrigados con agua residual. Algunos autores reportan presencia de Cd, Ni y Pb, Cu en agua, suelo y plantas. (6)

Por lo tanto, los metales pesados en agua de riego y su acumulación en los cultivos que son regados por esta ha sido comprobada por estudios previos y así también su potencial daño a la salud humana. Además, esta situación se maximiza por el tipo de riego que se hace aún en la mayor parte del país, el cual es el riego por gravedad. Este tipo de riego, por efecto de escorrentía, acarrea todo lo que se pueda encontrar en los suelos y así sucesivamente aumentando las concentraciones de metales y fertilizantes y todo otro rastro de material que se haya usado en los campos de cultivos anteriores, hasta llegar al mar.

Según la investigación de Bustamante y González, en la zona Lacustre de Xochimilco (ZLX) — México se vierten directamente aguas del drenaje doméstico local, aguas de desecho de la industria artesanal, aguas de riego de las chinampas fertilizadas artificialmente y aguas negras provenientes de las delegaciones vecinas, originando la contaminación en los cuerpos de agua por la inadecuada disposición de contaminantes, principalmente metales pesados; Luego de poner a prueba la eficiencia de *Pistia stratiotes* y *Myriophyllum aquaticum* en estas aguas tuvieron como resultado que la: "Concentración de metales pesados. Ambas plantas demostraron tener la capacidad de remover los metales pesados del agua." (7)

En la investigación elaborada por Castro-Castillo, Universidad de La Salle, Bogotá: "Determinación del grado de acumulación de metales pesados en las plantas asociadas al Río Bogotá, transecto Villapinzón - Tocancipá con fines de biorremediación", se llevó a cabo una preselección de las especies

según la concentración de metales pesados por medio de extracto crudo, obteniendo mayor concentración de metales de la especie *Myriophyllum* aquaticum. (8)

Idrovo, Gavilanes, Veloz, Erazo y Valverde. (9), en su trabajo titulado Cuantificación de metales en aguas de riego. Estudio de caso en la provincia de Chimborazo, precisa que una de las principales causas de la contaminación del suelo con metales pesados (plomo, cadmio, cromo, zinc, cobre, níquel, mercurio, manganeso, selenio y arsénico, entre otros) es el riego con agua de cauces y aguas residuales contaminadas. En las plantas, el mayor riesgo de los metales pesados radica en que pueden acumularse en las partes comestibles de los cultivos destinados al consumo humano o para alimentación de animales. La capacidad de absorción de las plantas con respecto a metales pesados es variable, lo que abre la posibilidad de adaptar la elección de cultivos según el grado y tipo de contaminación. La absorción de metales pesados en las plantas (especialmente cadmio y plomo) también varía según el pH del suelo.

Pues, si bien sabemos que una de las formas de contaminación del agua por absorción de metales pesados puede darse de forma natural, así también hay cultivos que son más propensos a la absorción de estos contaminantes. En el presente trabajo el tema de interés es la contaminación con metales pesados, específicamente el Cobre. Aunque la capacidad de algunas plantas para absorber metales puede ser perjudicial, también se puede aprovechar esta propiedad para llevar a cabo la fitorremediación. Esto implica usar estas plantas para limpiar y descontaminar el agua contaminada por metales pesados, lo que constituye una alternativa eficiente para reducir los efectos dañinos de la contaminación.

2.1.2. Antecedentes nacionales

Según la investigación elaborada por Mendoza-Flores, Salazar-Aliaga y Bravo-Toledo, en trabajo de tesis titulado "Fitorremediación acuática con Myriophyllum aquaticum para el tratamiento de efluentes generados por pasivos ambientales mineros de Hualgayoc – Cajamarca", se llegó a la conclusión de que el Myriophyllum aquaticum tiene un potencial

de bioacumulación muy alto, llegando a describirlo como una metalofita acuática. Su alta acumulación de Fe y Zn en su tejido la hace atractiva para tratamientos de remoción de metales pesados en toda su aplicación. (10)

Por su parte, Bautista-Abanto, en la investigación denominada: "Fitorremediación utilizando Myriophyllum aquaticum para la remoción de Cromo Total de efluentes líquidos de la industria de pinturas en Chacra Cerro. Perú. 2016", trabajó con

Una población de estudio de 18000 L de efluente líquido y 80 tallos de la hidrófita. Se implementaron 4 tratamientos que contienen 10 litros del efluente líquido y 11 tallos de la hidrófita. Se observó que en el efluente líquido la concentración de cromo total en el tratamiento N.º 1 a las 20 horas de contacto con la hidrófita disminuyó de 2,75 mg/L a 1,09 mg/L; en el tratamiento N.º 2, a las 40 horas de contacto con la hidrófita disminuyó de 2,75 mg/L a 1,47 mg/L; en el tratamiento N.º 3, a las 60 horas de contacto con la hidrófita disminuyó de 2,75 mg/L a 0,88 mg/L; y en el tratamiento N.º 4, a las 80 horas de contacto con la hidrófita disminuyó de 2,75 mg/L a 0,011 mg/L. La concentración de cromo total en la hidrófita Myriophyllum aquaticum en el tratamiento N.º 1 a las 20 horas de contacto con el efluente líquido aumentó de 7,70 ppm a 46,54 ppm; en el tratamiento N.º 2, a las 40 h de contacto con el efluente líquido aumentó de 7,70 ppm a 104,44 ppm; en el tratamiento N.º 3, a las 60 h de contacto con el efluente líquido aumentó de 7,70 ppm a 250,75 ppm; en el tratamiento N.º 4, a las 80 h de contacto con el efluente líquido aumentó de 7,70 ppm a 382,43 ppm. Los resultados fueron analizados usando el software SPSS. La eficiencia de remoción de la fitorremediación utilizando Myriophyllum aquaticum fue del 99,6 %. Se concluye que, la fitorremediación utilizando la Myriophyllum aquaticum tiene la capacidad de remover cromo total de efluentes líquidos y logra cumplir con los valores máximos permisibles que es de 0,5 mg/L de cromo total (11)

En conclusión, se demostró la eficiencia de *Myriophyllum aquaticum* en aguas contaminadas con metales pesados. Por lo tanto, basado en estudios e investigaciones previas se deduce que la descontaminación de aguas con fitorremediación podría tener una eficiencia similar. Aunque, debido a las diferentes características que puede presentar cada región del país, es necesario una investigación y proceso experimental para comprobar la eficacia en condiciones físico-químicas diferentes.

Según Jara-Peña et al., en el trabajo Acumulación de metales pesados en Calamagrostis rigida (Kunth) Trin. ex Steud. (Poaceae) y Myriophyllum quitense Kunth (Haloragaceae) evaluadas en cuatro humedales altoandinos del Perú, la acumulación de cadmio, cobre, plomo y zinc en los tejidos vegetales de cada especie fueron determinadas en las muestras foliares y tallos, y en las raíces. La determinación de la concentración de los metales pesados se realizó con las siguientes metodologías: la concentración de cobre, cadmio y zinc fue realizada por digestión húmeda de acuerdo al método EPA 6010B, el contenido de plomo mediante el método EPA 200.7, 1994. La cuantificación de los metales en los tejidos vegetales de cada especie y en el agua se realizó mediante el método ICP-AES (espectrometría de emisión atómica de plasma acoplado inductivamente). Finalmente, el análisis fue realizado en el Instituto de Corrosión y Protección de la Pontificia Universidad Católica del Perú. Asimismo, el contenido de metales pesados en el suelo fue realizado por la técnica de absorción atómica, y el análisis fue realizado en el Laboratorio de Suelos y Agua de la Facultad de Agronomía de la Universidad Nacional Agraria La Molina. El mayor contenido de cadmio fue obtenido en las raíces de Calamagrostis rigida en muestras procedentes de la laguna de Yuracmayo, región Lima (7,93 mg kg-1 de materia seca); este valor encontrado está relacionado directamente con un alto contenido de cadmio total encontrado en el suelo (10,67 mg Kg-1). Por otra parte, al comparar la acumulación de cadmio entre las dos especies, la menor concentración de cadmio fue obtenida en las raíces de Myriophylum quitense (1,53 mg Kg-1), en muestras de esta especie procedente de la laguna Ticticocha (región Lima). Esta baja acumulación de cadmio obtenida en las raíces Myriophylum quitense está relacionada con una baja concentración de

cadmio en el agua y en el suelo, lo que indicaría que en el suelo y en el agua de la laguna Ticticocha hay trazas de cadmio en referencia a las otras tres lagunas evaluadas. (12)

2.1.3. Antecedentes regionales

Investigadores de la Universidad Nacional de San Agustín detectaron Metales como el plomo y arsénico en plantas como por ejemplo el ajo, porro, cilantro, hierva buena, entre otras. Según los científicos de la Casa Agustina: "desarrollaron por tres años el Estudio de la acumulación de mercurio, cromo, plomo, cadmio y arsénico en vegetales y plantas medicinales de mayor consumo en la localidad de Arequipa, Perú y su relación con las concentraciones en sangre y plasma como indicadores biológicos de contaminación". (13)

Esta investigación se llevó a cabo en las zonas de cultivo de la ciudad de Arequipa como Tiabaya y Uchumayo. Tras seis meses de alimentar al Cavia porcellus, comúnmente llamado cuy, con estos cultivos recogidos de la zona, se notó la presencia de plomo y arsénico en la sangre por la ingesta de estos alimentos. Asimismo, se llegó a la conclusión de que estos efectos pueden presenciarse de una manera más rápida y perjudicial en los niños que en adultos que ingestan los cultivos de esta zona. (13) Asimismo, se llega a la conclusión de que en Sachaca, siendo una zona de cultivo que precede a las zonas de Tiabaya y Uchumayo, es de suma urgencia tratar sus aguas en vez de dejar que se bioacumulen más en su trayectoria.

El estudio de investigación realizado por García-Flores de Nieto (14): "Contaminación del agua por metales pesados As, B, Cu, Pb, Cd y CN- en las cuencas de los Ríos Tambo, Quilca, Camaná y Ocoña de la región Arequipa", precisa que

El sistema hidrográfico de la Región de Arequipa lo conforman los lagos, lagunas, puquiales y los ríos, que se originan en las cumbres cordilleranas, se desplazan por pendientes y abruptas laderas al Oeste de la Cordillera Occidental formando fértiles valles de la costa y profundos cañones como el de Cotahuasi y el de Chivay, para desembocar sus aguas en el Océano Pacífico.

El trabajo concluye que

El río Tambo reporta: contenido de arsénico 0,2034 mg/L, boro 7,9000 mg/L. El río Quilca: boro 6,7500 mg/L, plomo 0,1070 mg/L y cadmio 0,0190 mg/L. Río Camaná: plomo 0,0500 mg/L. El río Ocoña: boro 1,0000 mg/L. Los reportes no cumplen con el Decreto Supremo N° 004-2017-MINAM 07 de junio del 2017-Estándares de Calidad Ambiental (ECA). (14)

Así comprobamos que además de la contaminación antropogénica, también existe una contaminación natural, debido a la geografía del Perú, sobre todo de las ciudades más próximas a la cordillera de los andes. Esta zona, al ser rica en diversos minerales, junto a la erosión eólica, fluvial, pluvial, entre otros, libera parte de estos metales que por escorrentía son llevados a los ríos y por consiguiente por todo el recorrido que estos hacen.

2.2. Bases teóricas

2.2.1. Contaminación

Se tiene diferentes conceptos sobre contaminación, una puede ser la presencia de agentes físicos, químicos o biológicos en lugares y concentraciones que pueden ser nocivos para las personas o fauna y flora. (15)

También se puede definir como el ingreso de sustancias nocivas a un entorno donde estas no existían, afectando el equilibro del ecosistema y convirtiéndolo en un ambiente inseguro. La contaminación puede provocar que la crisis climática gane más fuerza y avance sin control. Este fenómeno altera el equilibrio de los ecosistemas y los vuelve insostenibles e inseguros. (16)

En síntesis, podemos definir a la contaminación como el ingreso de sustancias nocivas, que pueden ser de origen físico, químico o bilógicos, a un ecosistema donde estos no existen de manera natural. En consecuencia, se produce un desbalance que no puede ser remediado de forma natural, debido a la gran cantidad de estas sustancias o, también, por la presencia de agentes

desconocidos para el medio, lo que causa un desequilibrio del ecosistema generando la contaminación.

2.2.2. Contaminación del agua

La contaminación del agua, al igual que la contaminación en términos generales, se da cuando su estado natural se ve alterado por la presencia de sustancias contaminantes (físicas, químicas o biológicas). Por lo tanto, cuando se habla de agua contaminada nos referimos a aquella que no reúne o cumple las medidas necesarias para ser consumida y que también es nociva para los ecosistemas. (16) Por su parte

La Organización Mundial de la Salud (OMS) define el agua contaminada como aquella que sufre cambios en su composición hasta quedar inservible. Es decir, es agua tóxica que no se puede ni beber ni destinar a actividades esenciales como la agricultura, además de una fuente de insalubridad que provoca más de 500.000 muertes anuales a nivel global por diarrea y transmite enfermedades como el cólera, la disentería, la fiebre tifoidea y la poliomielitis. Los principales contaminantes del agua incluyen bacterias, virus, parásitos, fertilizantes, pesticidas, fármacos, nitratos, fosfatos, plásticos, desechos fecales y hasta sustancias radiactivas. Estos elementos no siempre tiñen el agua, haciendo que la contaminación hídrica resulte invisible en muchas ocasiones. Por esta razón, se suele recurrir al análisis químico de pequeñas muestras y organismos acuáticos para conocer el estado de la calidad del agua. (17)

Por lo tanto, podemos decir que la contaminación del agua puede darse de forma natural o antropogénica. Es natural cuando ocurre por eventos propios de la naturaleza, ya sean desastres naturales como tornados, erupciones volcánicas, por erosión de rocas o montañas, por causa de los vientos o agua, acarreando los minerales de estos a las fuentes de agua. Mientras que, es antropogénica cuando se da por causa de la actividad del ser humano; la más grave en magnitud suele ser la industrialización, aunque cabe recalcar que toda actividad humana genera contaminación de una u otra forma. Además, otro de los principales contaminantes es los fertilizantes, que

en el país no tienen un control en aplicación a los campos de cultivo, siendo por ello muy ineficiente y por ende aumentar la contaminación si estos no cumplen con los requisitos mínimos según la normativa vigente.

2.2.3. Tratamiento de agua

El tratamiento de agua se puede entender como un proceso en el que se emplean diversas operaciones, ya sea físicas, químicas, físico-químicas o biológicas, con el propósito de eliminar o reducir la concentración de contaminantes en el agua a un nivel aceptable. El tipo de tratamiento dependerá del uso que se le quiera dar al agua tratada. (18)

Por su parte Ramírez (19) señala lo siguiente:

La eliminación de materias en suspensión y en disolución que deterioran las características físico-químicas y organolépticas, así como la eliminación de bacterias y otros microorganismos que pueden alterar gravemente nuestra salud son los objetivos perseguidos y conseguidos en las estaciones de tratamiento a lo largo de todo un proceso que al final logra suministrar un agua transparente y de una calidad sanitaria garantizada. El tratamiento del agua es el proceso de naturaleza fisicoquímica y biológica, mediante el cual se eliminan una serie de sustancias y microorganismos que implican riesgo para el consumo o le comunican un aspecto o cualidad organoléptica indeseable y la transforma en un agua apta para consumir.

Actualmente, existen diversas formas de tratar el agua para reducir la concentración de contaminantes que esta pueda tener, algunos más tecnificados que otros, y algunos más validados y costosos que otros. Un método que suele ser eficaz, dependiendo del tipo de contaminante a tratar y la especie a emplear, es la fitorremediación, que es barato, eco amigable y sustentable; el inconveniente de este método es que, dependiendo del contaminante, la especie y la zona, requiere que se cuantifique su eficacia.

2.2.4. Fitorremediación

En palabras de Delgadillo-López et al., (20) la fitorremediación se puede definir como el conjunto de tecnologías que minimizan la concentración de elementos externos en un cuerpo receptor, pueden ser in situ o ex situ, a través de procesos bioquímicos de ciertas plantas y microorganismos relacionados entre sí. Por su parte, para Garbisu, Epelde y Becerril, (21) la fitorremediación es una tecnología amigable denominada ecotecnología, basado en las propiedades de ciertas plantas para tolerar, absorber, acumular y biodegradar elementos contaminantes ya sean compuestos orgánicos o inorgánicos.

En ese sentido, podemos definir la fitorremediación como un proceso en el que se dan reacciones bioquímicas debido a las propiedades de ciertas plantas para acumular, biodegradar y tolerar ciertos elementos que contaminan los cuerpos receptores. Esta técnica de remediar se puede emplear en el mismo lugar donde se origina la contaminación (in situ) o en otro lugar que no sea donde se origina la contaminación (ex situ). A diferencia de otros tipos de remediaciones es ecoamigable con el medio ambiente. Con el paso de los años el empleo de esta ecotecnología ha aumentado en diferentes medios, como agua, suelo y aire; su uso en proporciones más grandes es aún bajo a comparación de otras tecnologías, ello muchas veces por el desconocimiento de las propiedades de las plantas nativas del país.

2.2.5. Categorización de los cuerpos de agua

El agua superficial, se categoriza en grupos según el uso que se le dará; estos tienen sus propios estándares de calidad ambiental y límites máximos permisibles. Mediante Decreto Supremo N° 004-2017-MINAM (22), el Gobierno aprobó los Estándares de Calidad Ambiental (ECA) para Agua, los mismos que se clasifican en:

Categoría 1: Poblacional y recreacional

Categoría 2: Extracción, cultivo y otras actividades marino costeras y continentales

Categoría 3: Riego de vegetales y bebida de animales

Categoría 4: Conservación del ambiente acuático

2.3. Definición de términos básicos

- a) Agua: "El agua es un recurso natural renovable, indispensable para la vida, vulnerable y estratégico para el desarrollo sostenible, el mantenimiento de los sistemas y ciclos naturales que la sustentan, y la seguridad de la Nación." (23).
- b) Ambiente: "Es el conjunto de elementos físicos, químicos y biológicos, de origen natural o antropogénico, que rodean a los seres vivos y determinan sus condiciones de existencia." (23).
- c) Agua para riego de vegetales: "entiéndase como aquellas aguas utilizadas para el riego de los cultivos vegetales, las cuales, dependiendo de factores como el tipo de riego empleado en los cultivos, la clase de consumo utilizado (crudo o cocido) y los posibles procesos industriales o de transformación a los que puedan ser sometidos los productos agrícolas" (22).
- d) Metales pesados: las características que diferencian a los metales pesados son su alta densidad (mayor a 4 g/cm3), su masa y peso atómico por encima de 20 y son tóxicos en concentraciones bajas. Pueden encontrar de manera naturales en el ambiente. Los metales pesados no pueden ser degradados, pero si pueden ser disueltos por agentes físicos y químicos. Algunos pueden ser transportados y distribuidos a la cadena trófica ya sea al suelo, agua, plantas, entre otros. (24)
- e) Metaloides: son elementos químicos con propiedades intermedias entre los metales y no metales. Tienden a poseer dos propiedades generales: 1) son semiconductores de la electricidad y 2) forman óxidos anfóteros. Dentro de los cuales están: boro, silicio, germanio, arsénico, antimonio, telurio y polonio; el arsénico es el metaloide más importante desde el punto de vista clínico. (25)
- f) Bioacumulación: "Acumulación de determinadas sustancias químicas en tejidos de organismos vivos de manera directa o a través de la cadena alimenticia, alcanzando concentraciones mayores que en el ambiente al que está expuesto. Usualmente se refiere a la acumulación de metales" (23).
- g) Contaminación Ambiental: "Acción y estado que resulta de la introducción por el hombre de contaminantes al ambiente por encima de las cantidades y/o concentraciones máximas permitidas tomando en consideración el carácter acumulativo o sinérgico de los contaminantes en el ambiente." (23)
- h) Límites máximos permisibles (LMP): se considera así al Instrumento de gestión ambiental "que regula la concentración o el grado de elementos, sustancias o

- parámetros físicos, químicos y biológicos, que caracterizan a un efluente o una emisión, que al ser excedida causa o puede causar daños a la salud, al bienestar humano y al ambiente." (23).
- i) Monitoreo Ambiental: "Comprende la recolección, el análisis, y la evaluación sistemática y comparable de muestras ambientales en un determinado espacio y tiempo; la misma que se realiza a efectos de medir la presencia y concentración de contaminantes en el ambiente." (23)

CAPÍTULO III: METODOLOGÍA

3.1. Método y alcance de la investigación

3.1.1. Método General

Según Hernández-Sampieri (26), el método general a emplearse es el científico por seguir procedimientos y metodologías preestablecidas planteadas en la investigación; esto representa y permite organizar los procesos y tener un mejor control de los resultados. Además, se espera originar nuevo conocimiento en base a resultados y conclusiones de fuentes secundarias. Por lo cual, el presente método nos facilitará la elaboración de la estructura, desde la concepción de la idea de investigación hasta la experimentación, teniendo un mejor y claro control de las variables.

3.1.2. Método Específico

Según Ramírez-González (27), el método especifico es el inductivo porque se parte de las hipótesis especificas o particulares hacia la hipótesis general con el propósito de la verificación de estas. Este método lleva a la construcción de conocimientos temporales que son aceptados como verdad hasta la aparición de nuevas técnicas o razonamientos que permitan una formulación más amplia y coherente sobre un fenómeno, o hasta el reconocimiento de un caso singular que no cumpla cierta regla. Por eso, el método a aplicar en el presente trabajo es el inductivo, ya que se evalúa los parámetros del agua para regadío del centro poblado de Huaranguillo.

3.1.3. Tipo de investigación

Para la presente tesis también es de tipo aplicado, porque se puso en intervención a la especie *Myriophyllum aquaticum*. "La investigación aplicada, guarda íntima relación con la básica, pues depende de los descubrimientos y avances de la investigación básica y se enriquece con ellos, pero se caracteriza por su interés en la aplicación, utilización y consecuencias prácticas de los

conocimientos. La investigación aplicada busca el conocer para hacer, para actuar, para construir, para modificar." (28)

3.1.4. Nivel de investigación

Arias (29), refiere que el nivel de investigación correlacional y descriptivo determina el grado de relación significativa que existe entre dos o más variables. Por ello, la presente investigación es correlacional y descriptivo porque se determinará el grado de interacciones entre nuestras variables, comprobando la relación entre ambos.

3.2. Diseño de la investigación

La presente investigación se basa en un diseño experimental "puro" ya que estos deben de reunir al menos dos requisitos para que se tenga un control y validez interna de la investigación:

- 1. Grupos de comparación y manipulación de la variable independiente.
- 2. Equivalencia de los grupos.

Este tipo de diseño incluye una a más variables independientes y una a más dependientes. Asimismo, pueden utilizar prepruebas y pospruebas para analizar la evolución de los grupos antes y después del tratamiento experimental. (26)

3.3. Población y muestra

3.3.1. Muestra

La muestra son las aguas almacenadas temporalmente en los estanques del centro poblado de Huaranguillo – Sachaca. Se determinaron estos puntos porque las aguas a utilizar en el riego de campos de cultivo provienen de estos lugares. Se empleó la toma de muestras de agua, según el procedimiento del laboratorio acreditado donde se analizaron las muestras.

Así, para fines del experimento, se recogió 40 litros de muestra de cada punto siendo un total de 80 litros.

3.3.2. Población

La población es el agua de riego proveniente de una derivación del río Chili que pasa por el centro poblado de Huaranguillo – Sachaca.

3.4. Técnicas e instrumentos de recolección de datos

3.4.1. Técnicas e instrumentos

La técnica empleada en la presente investigación fue la observación y la metodología establecida en el protocolo de monitoreo de agua establecido por la Autoridad Nacional del Agua (ANA). En estas se establece el procedimiento de toma de muestra de agua, roturación y preservación de la muestra. Posteriormente, la muestra es llevada al laboratorio para su análisis; también, se consideró el procedimiento de toma de muestras, roturado y preservación del laboratorio acreditado por INACAL donde se entregaron las muestras para su análisis.

Se usó la técnica de observación, ya que, por tratarse de unas aguas en movimiento, que prácticamente pasan a través de todo el pueblo de Huaranguillo – Sachaca, se debía establecer puntos que posean la mayor cantidad de características para que pueda ser representativa la toma de muestra. También se tomó en cuenta dos puntos de donde se juntaban y almacenaban temporalmente las aguas provenientes de los diferentes campos de cultivos, para luego ser nuevamente distribuidos a los campos de cultivo restantes.

Para establecer los puntos de monitoreo, se hizo un recorrido por los campos de cultivo del pueblo de Huaranguillo – Sachaca, a fin de poder determinar la zona de afluencia de las aguas de los campos de cultivos. De este modo, se tomó dos puntos en los cuales las aguas se juntaban en estanques que retenían las aguas temporalmente para luego volver a ser distribuidas por un mecanismo de compuertas, en los cuales se tomó coordenadas UTM, que son las siguientes:

Puntos:

1. Primer punto

Se le colocó al primer punto con codificación de CA-H-1, el cual se ubica al inicio del pueblo de Huaranguillo, teniendo las coordenadas E: 0 225 301 – N: 8 183 829.

2. Segundo punto.

Se colocó al primer punto con codificación de CA-H-2, el cual se ubica aproximadamente a la mitad del pueblo de Huaranguillo, teniendo las coordenadas E: 0 22 4868 – N: 8 183 707.

Cabe aclarar que las aguas que llegan a los estanques son constantes; por lo cual, estos estanques solo almacenan temporalmente las aguas. Además, que las muestras son tomadas de dos estanques ya que en estos se almacena el agua proveniente del río Chili, y de estos dos estanques se distribuye a todos los campos de regadío del sector.

Tabla 2. Coordenadas y codificación de los puntos

N°	Código de la muestra	Coordenadas	Fecha	Hora
1	CA-H-1	N:8 183 829	22-10-2021	10:30
		E:0 225 301		
2	CA-H-2	N: 8 183 707	22-10-2021	10:50
		E:0 224 868		

Fuente: elaboración propia

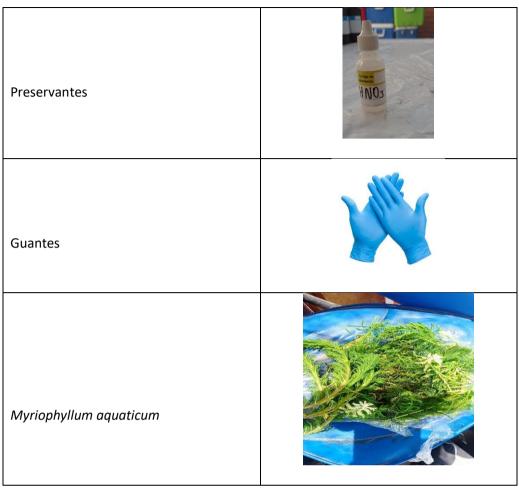
Figura 1 Puntos ubicados satelitalmente

Fuente: elaboración propia

Figura 2 Imagen del punto CA-H-1

Fuente: elaboración propia

Figura 3 Imagen del punto CA-H-2


Fuente: elaboración propia

3.4.2. Materiales

Tabla 3. Materiales e imágenes referenciales

MATERIALES	IMAGEN REFERENCIAL
Brazo extensor	

Fuente: elaboración propia

3.4.3. Procedimientos

3.4.3.1. Etapa de Pre – campo

a) Coordinación con la institución

En esta etapa de la investigación se realizó las coordinaciones con la Universidad para definir el método para optar el grado de titulación, siendo este el de sustentación de tesis. Luego, se procedió a definir el tema de investigación, para empezar con la recopilación de información.

b) Coordinación con autoridades

Se realizaron las coordinaciones con la Municipalidad Distrital de Sachaca, que tiene jurisprudicción en el poblado de Huaranguillo. En la municipalidad se solicitaron los permisos para realizar el estudio en los estanques y la toma de muestras.

c) Revisar la bibliografía

Una vez definido el tema de tesis, se procedió a buscar referencias bibliográficas de estudios similares, ya sean artículos, investigaciones internacionales y nacionales. En dichas fuentes se investigó las propiedades de diferentes tipos de plantas para Fitorremediar, haciendo un contraste de la eficacia de estos en ciertas condiciones climáticas propias del lugar de donde se efectúa la investigación para luego, en una etapa experimental verificar, la eficacia de estas plantas en condiciones propias del lugar de procedencia de la investigación.

Luego de elegir la especie con la cual trabajar, se buscó referencias locales de estudios realizados que demostraran la existencia de metales totales en el agua de riego en Huaranguillo – Sachaca o a sus alrededores. A partir de esto, se pudo establecer la toma muestras de los lugares específicos a remediar, para tener una cantidad concreta de la concentración de metales totales, antes de la remediación.

Una vez obtenida la especie con la que se trabajaría y referencias locales que evidencien la concentración elevada de metales totales en la zona, se procedió a buscar referencias sobre los peligros de la exposición o consumo de metales totales por medio de cultivos regados con agua que superen los ECA's. Con ello se pudo demostrar la importancia de dar tratamiento a estas fuentes de agua antes de su uso para riego de cultivos, sobre todo para cultivos de tallo corto; asimismo, confirmar la importancia de usar tecnologías amigables con el medio ambiente para no generar contaminación residual al emplear tecnología para solucionar un problema.

d) Planificación

Identificación de los puntos de toma de muestra en coordenadas UTM, para luego establecer los pasos a seguir para la toma de muestras, así como su traslado al laboratorio.

 e) Compra de instrumentos para el manejo de las variables recipientes, guantes, frascos, etiquetas y elementos para la toma de muestras según dicta el laboratorio acreditado. f) A continuación, se hizo una búsqueda de la especie elegida para luego ser llevada y colocada en los recipientes elegidos a fin observar su comportamiento frente a estas aguas. Posteriormente, se realizó la toma de muestras en periodos de tiempo ya determinados para evaluar la eficiencia según el tiempo.

3.4.3.2. Etapa de Campo

a) Toma de coordenadas en campo:

Se realizó la visita al lugar donde se realizaría las tomas de muestras y se tomaron coordenadas, lo cual se hizo en ambos puntos.

b) Toma de muestra de agua *in situ*, para ser llevada a analizar:

Se tomaron muestras de agua en el lugar, las cuales se llevaron a analizar en el laboratorio acreditado, siguiendo los siguientes pasos:

- 1. Toma de muestra con brazo extensor u otro objeto que permite recolectar la muestra por lo menos a 1.5 m de la orilla del estanque, con la finalidad de evitar posibles perturbaciones de la muestra por agentes que pueden haberse quedado en las orillas del estanque.
- 2. Se empezó con la colocación de los guantes para evitar alterar la muestra y por protección de los preservantes; a continuación, se procedió con el llenado de los recipientes otorgados por el laboratorio, los cuales son recipientes de plástico de 250 ml, libres de cualquier contaminante que pueda alterar las muestras. Posteriormente, se procedió a echar al envase 10 gotas de HNO3 (ácido nítrico), esto ayuda a su preservación y conservación en un PH menor a 2°C, Por último, se colocó el envase en el Cooler con gel pack, el cual mantenía las muestras lo más cercano a igual o menor a 6° C. (Anexo 5)
- c) Recolección de agua para la etapa de Fitorremediación (ex situ)

Con los puntos ya establecidos en la etapa anterior, se procedió a realizar la segunda etapa del experimento, el cual consta de llevar muestras de agua, aproximadamente 40 litros de cada punto, a un ambiente controlado para así llevar un mejor control y seguimiento a la interacción

de la *Myriophyllum aquaticum*, en presencia de la muestra de agua recolectada. Se hizo dos tomas. (Anexo 5)

d) Toma de muestra para laboratorio luego de la Fitorremediación

Se tomó una muestra de cada recipiente por toma; es decir, el día 04-11-2021 se tomó una muestra del punto CA-H-1 y también del punto CA-H-2, siendo la muestra de cada estanque respectivamente. Luego de un plazo de 11 días entre toma, por criterio propio, esto tras haber leído otros procedimientos, la toma fue igual para ambos días, así como se evidencia en las imágenes. (Anexo 5)

Día de la toma		
04-11-2021	CA-H-1	CA-H-2
15-11-2021	CA-H-1	CA-H-2

3.4.3.3. Etapa de Experimentación

a) Manipulación de las variables, según tiempo y número de especies en agua con presencia de cobre:

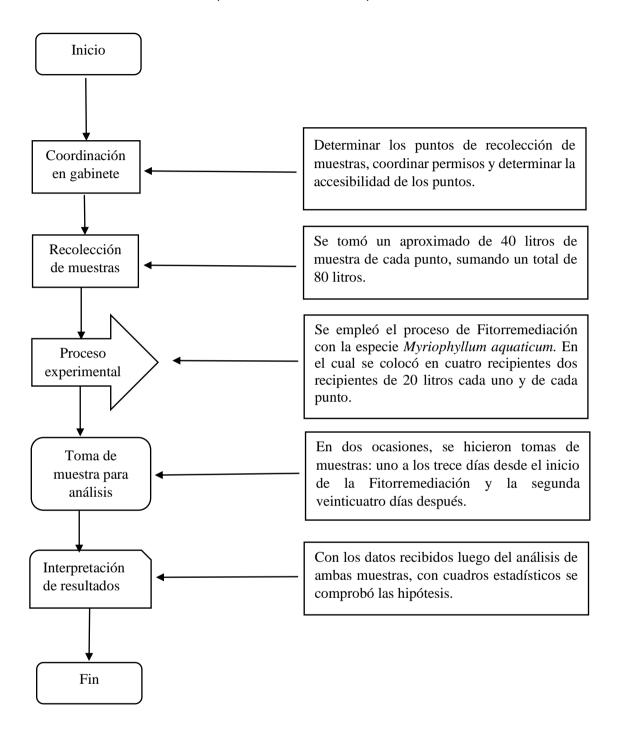
Después de haber transcurrido 13 días desde que se trasladó el agua a un ambiente controlado y haberse agregado la *Myriophyllum* aquaticum, se procedió a tomar la primera muestra de agua a fin de ser llevada al laboratorio para su análisis.

Por cada punto se hizo dos tomas de muestras con una diferencia de 11 días entre cada toma de muestras. En cada recipiente de unos 15 a 20 litros se colocaron un aproximado de 10 especies por punto. A continuación, se procedió a anotar los cambios que se pudiera visualizar tanto en las plantas como en el agua.

b) Analizar la supervivencia de la especie en agua con presencia de cobre, mediante las características morfológicas de la especie.

Durante el tiempo que duró la experimentación se vio el comportamiento de *Myriophyllum aquaticum*, desde su coloración hasta si era capaz de sobrevivir en el medio establecido.

3.4.3.4. Etapa de laboratorio


El método empleado por el laboratorio acreditado es por IAS (International Accreditation Service). El marco referencial es EPA Method 200.8 Rev. 5.4.1994.

Como uno de los principales organismos de acreditación en Estados Unidos, IAS es signatario de las tres principales organizaciones internacionales que forman un sistema unificado para evaluar y reconocer a los organismos de acreditación competentes en todo el mundo. Estas organizaciones se identifican como "cooperaciones" puesto que acordaron cooperar entre sí mediante un conjunto común de criterios de aceptación y someterse a una evaluación periódica in situ para determinar el constante cumplimiento con la Norma ISO/IEC 17011, requisitos generales para organismos de acreditación que realizan la acreditación de organismos de evaluación de la conformidad (OEC). Ser un "signatario" significa que un organismo de acreditación ha sido evaluado in situ en sus oficinas, una muestra de las evaluaciones de sus entidades acreditadas ha sido observadas por pares expertos, y se ha encontrado que cumple con los requisitos internacionales. (30)

3.4.3.5. Etapa de Gabinete

- a) Contrastar los resultados de concentración de cobre en el agua de riego antes y después de la remediación.
- b) Evaluar la eficacia de la planta para remediar cobre, si es que los resultados fueran positivos.
- c) Elaboración de cuadros estadísticos que refuten las hipótesis planteadas.

Tabla 4. Esquema del diseño de la experimentación

CAPÍTULO IV: RESULTADOS Y DISCUSIÓN

4.1. Presentación de resultados

Eficiencia de la fitorremediación de *Myriophyllum aquaticum* en los niveles de cobre en el agua para agua de riego en Huaranguillo – Sachaca.

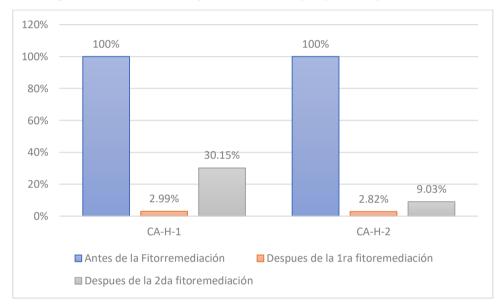


Figura 1 Resultados de la fitorremediación por porcentajes "Anexo 6"

Fuente: elaboración propia

Teniendo los resultados del laboratorio de todos los análisis en el anexo 6 se puede proceder a representar la eficiencia en una escala de 100 %, considerando que antes de la fitorremediación se considera el 100 %, y luego se observa una reducción de la concentración del cobre en un 97.01 % y 97.18 % como se observa en la gráfica luego de la primera fitorremediación.

Para la segunda fitorremediación se evidencia una reducción de 69.85 % y 90.96 %, respectivamente. Así, se obtienen resultados positivos tras la fitorremediación. Las fórmulas para calcular los porcentajes que se describen en la explicación de la gráfica se encuentra en tabla 4.

Concentración de cobre antes y después de la fitorremediación

0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.02 0.0064

CA-H-1

■ Despues de 2da fitorremediación

Antes de fitorremediación

0

Figura 2 Concentración de cobre antes y después de la fitorremediación "Anexo 6"

Fuente: elaboración propia

CA-H-2

Despues de 1ra fitorremediación

En la gráfica se puede observar las concentraciones de cobre luego de la primera y segunda fitorremediación, en la que se aprecia una reducción significativa luego de ambos procedimientos.

Según el ECA de agua DS-004-2017 MINAM, categoría 3: Riego de vegetales y bebida de animales (Anexo 8), el límite máximo del Cobre es de 0.2 mg/l para riego de vegetales y 0.5 mg/l para bebida de animales. Comparando con los 0.067 y 0.0708, está por debajo del ECA; sin embargo, cabe resaltar que estos datos corresponden a aguas en movimiento. No obstante, hay que considerar el factor de la bioacumulación que aumenta las concentraciones de los contaminantes en los cultivos; además, que el tema de la investigación es la eficiencia de *Myriophyllum aquaticum* reduciendo las concentraciones de cobre en el agua, lo cual según los resultados se demuestra que efectivamente hubo una reducción del Cobre.

Tiempo adecuado de exposición entre *Myriophyllum aquaticum* y el cobre, para una eficaz fitorremediación.

CA-H-1

13 días
24 días

Gráfico de exposición de la Myriophyllum aquaticum

Fuente: elaboración propia

Como se puede observar en la gráfica, luego de los primeros 13 días de exposición de la *Myriophyllum aquaticum* en agua con presencia de cobre se evidencia una menor concentración de cobre en el agua. Asimismo, luego de transcurrir 24 días se ve que la eficacia de absorción de cobre por parte de *Myriophyllum aquaticum* se ve reducida drásticamente. Por lo cual, podemos llegar a la conclusión de que el tiempo en el que la *Myriophyllum aquaticum* alcanza su máxima capacidad de absorción es dentro de los primeros 13 días.

Durante el tiempo que se desarrolló la experimentación se observó una pequeña evaporación del agua como se puede ver en el Anexo 5; no obstante, esto no tiene un gran impacto en la experimentación, debido a que la temperatura ambiente no tiene un efecto de vaporación en el Cobre.

Tabla 5. Formulas e interpretación

CA-H-1 0.0670 Fecha: 0.0002 04-11-2021 X= 2.99		Luego de obtener los resultados del laboratorio, después de 13 días de fitorremediación, se obtuvo el resultado de <0.002 mg/l, y haciendo una fórmula simple se concluye que
04-11-2021	%	fitorremediación, se obtuvo el resultado de <0.002 mg/l, y haciendo
		resultado de <0.002 mg/l, y haciendo
X= 2.99		
	100% - 2.99% = 97.01%	una fórmula simple se concluve que
		la concentración de cobre en el agua
		se redujo en 97.01 %.
CA-H-2 0.0780	-100%	De los resultados del laboratorio,
Fecha: 0.0002	– x %	después de 13 días de
04-11-2021		fitorremediación, se obtuvo el
X= 2.82	. %	resultado de <0.002 mg/l, y haciendo
	100% - 2.82% = 97.18%	una formula simple se obtiene que la
		concentración de cobre en el agua se
		redujo en 97.18 %.
CA-H-1 0.0670	-100%	Después de recibir los resultados del
Fecha: 0.0202	–X%	laboratorio, después de 11 días de
15-11-2021		fitorremediación en el punto CA-H-1,
X=30.1	5 %	se alcanza una concentración de
	100% -30.15% =69.85%	0.0202 mg/l, y haciendo una formula
		simple se obtiene que la
		concentración de cobre en el agua se
		redujo en 69.85 %.
CA-H-2 0.0708	-100%	De los resultados del laboratorio
Fecha: 0.0064	-X%	después de 11 días de
15-11-2021		fitorremediación en el punto CA-H-2,
X=9.03	%	se obtuvo una concentración de
	100% - 9.03% =90.97%	0.0064 mg/l, y haciendo una formula
		simple se obtiene que la
		concentración de cobre en el agua se
		redujo en 90.97 %.

Fuente: elaboración propia

4.2. Comprobación de hipótesis

La presente investigación realizó la inferencia estadística con la ayuda del software SPSS, a través de los métodos de Shapiro – Wilk y la correlación de Pearson.

4.2.1. Prueba de normalidad

Tabla 6. Pruebas de normalidad

		Shapiro-Wilk	
	Estadístico	gl	Sig.
Concentración de cobre CA-H-1 (primer punto)	,949	3	,565
Concentración de cobre CA-H-2 (segundo punto)	,815	3	,152

Si sig. > 0.05 es normal

Si sig. < 0.05 no es normal

Obteniendo un nivel de significancia mayor a 0.05 y una cantidad de muestras menos que 30 en los grupos de estudio, corresponde usar para la prueba de normalidad Shapiro-Wilk, en ambas muestras al tener una significancia mayor de 0.05 presentan una distribución normal, por lo tanto, se usara prueba de ANOVA.

4.2.2. Comprobación de hipótesis general

Se debe tener presente que para saber si el método y la planta usada es eficiente, debe de cumplirse con algunos requisitos, según Roberto Aurelio Núñez López, Yunny Meas Vong, Raúl Ortega Borges y Eugenia J. Olguín en Fitorremediación fundamentos y aplicaciones:

La eficiencia de remoción de contaminantes durante el proceso de fitorremediación dependerá principalmente de la especie de planta utilizada, el estado de crecimiento de las plantas, su estacionalidad y el tipo de metal a remover. Por lo mismo, para lograr buenos resultados, las plantas a utilizar deben tener las siguientes características:

• Ser tolerantes a altas concentraciones de metales.

- Ser acumuladoras de metales.
- Tener una rápida tasa de crecimiento y alta productividad.
- Ser especies locales, representativas de la comunidad natural.
- Ser fácilmente cosechables. (31)

Por lo tanto, con los resultados podemos decir que *Myriophyllum aquaticum* es tolerante a concentraciones de metales pesados, como se observa en el Anexo 5, absorben y concentran los metales, son capaces de seguir con su crecimiento en aguas con concentraciones de metales, y es una especie que se encuentra en todo Sur América.

Ho: La aplicación de *Myriophyllum aquaticum* como remediador no es eficiente en el tratamiento del agua con cobre para riego en Huaranguillo – Sachaca.

Ha: La aplicación de *Myriophyllum aquaticum* como remediador es eficiente en el tratamiento del agua con cobre para riego en Huaranguillo – Sachaca.

Para la corroboración se utilizó la prueba estadística ANOVA debido a que se realizaron 3 grupos de estudio, el primero al cual no se le aplicó la fitorremediación, el segundo al cual se le aplicó fitorremediación y el tercero que se le aplicó una segunda fitorremediación.

Tabla 7. Descriptivos analizados

					95% del in confianza pa			
	N	Medi a	Desv. Desviación	Desv. Error	Límite inferior	Límite superior	Mínimo	Máximo
Antes de fitorremediación	2	,0689	,00269	,00190	,0448	,0930	,07	,07
Después de 1ra fitorremediación	2	,0020	,00000	,00000	,0020	,0020	,00,	,00
Después de 2da fitorremediación	2	,0133	,00976	,00690	-,0744	,1010	,01	,02
Total	6	,0281	,03235	,01321	-,0059	,0620	,00	,07

En cuanto al análisis se obtuvo:

Tabla 8. Análisis de varianzas - ANOVA

	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	,005	2	,003	75,114	,003
Dentro de grupos	,000	3	,000		
Total	,005	5			

De la tabla anterior se aprecia que el valor de significancia es 0.003, el cual es menor al valor p (0.005), además se observa un f de Fisher de 75.114 es decir existe significancia entre la diferencia de las medias de los tres grupos, por lo tanto, la hipótesis nula se rechaza y se acepta la hipótesis alterna la cual indica que "La aplicación de *Myriophyllum aquaticum* como remediador es eficiente en el tratamiento del agua con cobre para riego en Huaranguillo – Sachaca"

4.2.3. Comprobación de hipótesis específicas

Ho: La especie *Myriophyllum aquaticum* no influye de manera significativa en el tratamiento del agua para riego en Huaranguillo – Sachaca

Ha: La especie *Myriophyllum aquaticum* influye de manera significativa en el tratamiento del agua para riego en Huaranguillo – Sachaca

Como se indicó anteriormente se comparó tres tomas de muestras, la primera a la cual no se le aplicó la fitorremediación, la segunda a la cual se le aplicó fitorremediación y la tercera que se le aplicó una segunda fitorremediación, obteniendo comparaciones múltiples mediante la prueba Post Hoc que se muestran en la siguiente tabla:

Tabla 9. Comparación múltiple – prueba Post Hoc

		Diferencia			Intervalo de al 9	
		de medias	Desv.		Límite	Límite
		(I-J)	Error	Sig.	inferior	superior
Antes de fitorremediación	Después de 1ra fitorremediación	,06690*	,00584	,003	,0425	,0913
	Después de 2da fitorremediación	,05560*	,00584	,004	,0312	,0800
Después de 1ra fitorremediación	Antes de fitorremediación	-,06690*	,00584	,003	-,0913	-,0425
	Después de 2da fitorremediación	-,01130	,00584	,275	-,0357	,0131
Después de 2da fitorremediación	Antes de fitorremediación	-,05560*	,00584	,004	-,0800	-,0312
	Después de 1ra fitorremediación	,01130	,00584	,275	-,0131	,0357

^{*.} La diferencia de medias es significativa en el nivel 0.05.

En la tabla anterior se observa la comparación entre los tres grupos de estudio, donde se obtuvo que existe diferencia significativa entre el antes de la fitorremediación y el después tanto en la primera como la segunda fitorremediación donde se obtuvo un valor de significancia de 0.003 y 0.004 respectivamente, siendo ambos valores menores a 0.005; además, al comparar la 1ra y la 2da fitorremediación, el valor de significancia obtenido fue 0.275 el cual es mayor a p (0.005). Por lo que se infiere que no hay una diferencia significativa.

Además, con la prueba de Tukey, se obtuvo el siguiente resultado:

Tabla 10. prueba de Tukey

		Subconjunto p	ara alfa = 0.05
	N	1	2
Después de 1ra fitorremediación	2	,0020	
Después de 2da fitorremediación	2	,0133	
Antes de fitorremediación	2		,0689
Sig.		,275	1,000

Se visualizan las medias para los grupos en los subconjuntos homogéneos.

La tabla anterior corrobora los resultados obtenidos anteriormente, donde se observa que no hay diferencia significativa entre la primera y segunda fitorremediación; mientras que, los datos obtenidos antes de la fitorremediación sí difieren significativamente de los obtenidos después. Por lo tanto, la hipótesis nula se rechaza, aceptando la hipótesis alterna que indica que "La especie *Myriophyllum aquaticum* influye de manera significativa en el tratamiento del agua para riego en Huaranguillo – Sachaca"; sin embargo, no influye significativamente entre la primera y segunda fitorremediación.

4.3. Discusión de resultados

Los resultados obtenidos demuestran que existe una reducción en la concentración de cobre (Anexo 6). Se puede apreciar un mayor descenso de concentración de cobre en el agua en la primera muestra que fue después de 13 días, teniendo una reducción en el primer punto CA-H-1 de hasta el 97.01 % y en el segundo punto CA-H-2 de 97.18 %; en cambio, en la segunda toma de muestras 11 días después de la primera toma, solo hubo una reducción del 69.85 % CA-H-1 y de 90.97 % CA-H-2.

Esta reducción en la capacidad de absorción del cobre puede ser por dos causas: la primera, que la *Myriophyllum aquaticum* llegó a su máxima capacidad de

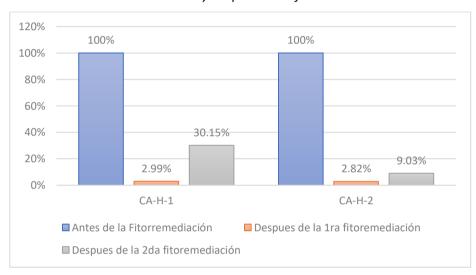
a. Utiliza el tamaño de la muestra de la media armónica = 2,000.

absorción de cobre, por ende, ya no se reducirá más la concentración de este último; otra causa puede ser por agentes externos, ya sea por metales incluido el cobre, algunos agentes pueden ser transportados en el aire como material particulado y esto incidir en las muestras debido a que estas se encontraban en un techo descubierto.

4.3.1. Contrastación de los resultados con los antecedentes

En la investigación de Óscar Raúl Mancilla-Villa, Héctor Manuel Ortega-Escobar, Carlos Ramírez-Ayala, Ebandro Uscanga-Mortera, Rosalía Ramos-Bello y Amada Laura Reyes-Ortigoza (6) en su trabajo "Metales pesados totales y arsénico en el agua para riego de puebla y Veracruz, México", dicen que los metales pesados, así como el arsénico que es un metaloide, pueden ser absorbidos por algunas plantas e incorporados en la cadena trófica. Según nuestros resultados podemos confirmar que la *Myriophyllum aquaticum* es una de las plantas con estas propiedades de absorción de metales pesados permitiendo remediar el agua.

En la investigación de, J. D. Bustamante González y M. González Renteria (7), en la zona de Lacustre de Xochimilco (ZLX), detalla que se vierten directamente a los cuerpos de agua las aguas residuales domésticas como industriales de una ciudad, con esto aumentando entre otros la concentración de metales pesados, así tras el uso de la *Myriophyllum aquaticum*, lograron remover los metales pesados en el agua. Estos resultados concuerdan con los datos de nuestra investigación los cuales nos afirman que el uso de *Myriophyllum aquaticum* en aguas con metales pesados, en el presente caso el Cobre, efectivamente reduce la concentración de este tras la exposición de la *Myriophyllum aquaticum*.


En la investigación desarrollada por Jara-Peña et al. (12), en la acumulación de los metales pesados se llegó a la conclusión de que la especie *Myriophyllum* en comparación con otras especies de macrófitas acuáticas, ha desarrollado mecanismos de protección particulares al estrés por metales, la reducción de pérdida de agua, la eliminación de metales pesados.

Así tras nuestra investigación se puede llegar a la misma conclusión de que la especie *Myriophyllum* tiene afinidad en la remediación de aguas con presencia de Cobre, haciéndola ideal para descontaminar estas aguas.

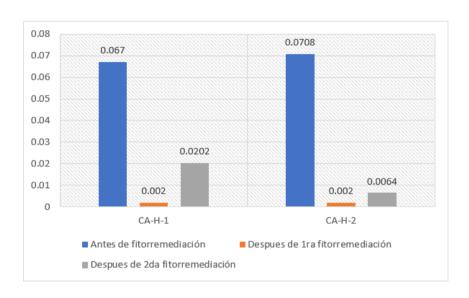
En el estudio realizado por científicos de la Casa Agustina (13) se demostró la existencia de metales pesados en las aguas que se usan para los cultivos del distrito de Tiabaya. Tras la toma de muestras en el distrito de Sachaca, siendo específicos en Huaranguillo, se demostró también la presencia de metales pesados en las aguas que son destinadas para el riego de cultivos de la zona.

CONCLUSIONES

1. Se concluye, tras analizar la eficiencia de la Myriophyllum aquaticum, que presenta una eficiencia del 88.8 % en las aguas características del centro poblado de Huaranguillo, teniendo en cuenta la concentración de cobre de las aguas de la zona y las características ambientales como la temperatura. Cabe indicar que existe la posibilidad de que en otras zonas o regiones con diferentes características podría variar los resultados.

Concentración de cobre antes y después de la fitorremediación "Anexo 6"

"Al promediar los resultados se obtiene que se redujo un 88.8 %"


2. La *Myriophyllum aquaticum*, demuestra una respuesta positiva al remediar agua con presencia de cobre, sin afectar su crecimiento y teniendo una mayor capacidad de absorción dentro de los primeros trece a quince días tras el primer contacto con el agua con concentraciones de cobre; luego de este periodo su eficacia de absorción se ve reducida, la cual permite aceptar la hipótesis alterna, a través de realizar la estadística con un análisis de varianzas – ANOVA

Media Suma de F cuadrados gΙ cuadrática Sig. Entre grupos ,005 2 ,003 75,114 ,003 Dentro de grupos ,000 ,000 3 Total ,005 5

Análisis de varianzas - ANOVA

De la tabla anterior se aprecia que el valor de significancia es 0.003, el cual es menor al valor p (0.005). Además, se observa un f de Fisher de 75.114; es decir, existe significancia entre la diferencia de las medias de los tres grupos; por lo tanto, la hipótesis nula se rechaza y se acepta la hipótesis alterna.

3. En la determinación de concentración de cobre antes y después de la fitorremediación se vio reducida en un 83.43 % en el primer punto y un 94.08 % en el segundo punto.

Concentración antes y después de la fitorremediación "Anexo 6"

4. El tiempo adecuado de exposición de diez especies de *Myriophyllum aquaticum* en veinte litros de agua con concentraciones de cobre es de diez a quince días; luego de ese plazo se recomienda remplazar la *Myriophyllum aquaticum* para obtener la máxima capacidad de remediación.

RECOMENDACIONES

Teniendo como respaldo los resultados de la investigación, se puede hacer algunas recomendaciones como: usar la *Myriophyllum aquaticum* en los estanques (Figura 1), ya que, de estos procede el mayor porcentaje del agua que será usada en los campos de cultivos de la zona de Huaranguillo, lo cual le dará una mayor calidad tanto al agua como a los cultivos regados por estos, beneficiando así la salud de las personas que los consuman.

Asimismo, en vista de que la *Myriophyllum aquaticum* tiene un límite de absorción de cobre, luego del cual la eficiencia baja, se recomienda que después de quince días se cambie la *Myriophyllum aquaticum* por otras, para maximizar tu eficiencia de fitorremediación.

REFERENCIAS

- 1. PINTO PAREDES, Melanny A. CALIDAD DE AGUA SUPERFICIAL EN EL RIO CHILI EN LOS SECTORES DE SACHACA, JACOBO HUNTER, TIABAYA Y UCHUMAYO PARA USO DE RIEGO DE VEGETALES Y BEBIDA DE ANIMALES EN LA PROVINCIA DE AREQUIPA. Arequipa, Universidad Nacional de San Agustín de Arequipa. Arequipa: Universidad Nacional de San Agustín de Arequipa, 2008. pág. 145.
- 2. LIMA CAZORLA, Lázaro; OLIVARES-RIEUMONT, Susana; COLUMBIE, Susana; DE LA ROSA MEDEROS, Daniel; GIL CASTILLO, Reinaldo. NIVELES DE PLOMO, ZINC, CADMIO Y COBRE EN EL RIO ALMENDARES, CIUDAD HABANA, CUBA. *Revista Internacional de Contaminación Ambiental*. núm. 3, México: s.n., 2005, , Vol. 21, págs. 115-124. ISSN 0188-4999.
- 3. **SANCHA, Ana María; LIRA, Leslie.** *Presencia de Cobre en Aguas de Consumo Humano: causas, efectos y soluciones*. Santiago, Chile: Universidad de Chile.
- 4. AGENCIA PARA SUSTANCIAS TÓXICAS Y EL REGISTRO DE ENFERMEDADES. OFICINA DE INNOVACIÓN Y ANÁLISIS, SECCIÓN DE TOXICOLOGÍA. ToxFAQs™ Cobre. *ATSDR español*. [En línea] Marzo de 2022. https://www.atsdr.cdc.gov/es/toxfaqs/es_tfacts132.html.
- INDUANALISIS LABORATORIO AMBIENTAL. INDUANALISIS LABORATORIO AMBIENTAL.
 Importancia de la calidad del agua. [En línea] INDUANALISIS, 08 de 02 de 2019. [Citado el: 03 de
 de
 2022.]
 https://www.induanalisis.com/publicacion/detalle/importancia de la calidad del agua 15.
- 6. MANCILLA-VILLA, Óscar Raúl; Héctor Manuel ORTEGA-ESCOBAR, Carlos RAMÍREZ-AYALA, Ebandro USCANGA-MORTERA, Rosalía RAMOS-BELLO y Amada Laura REYES-ORTIGOZA METALES PESADOS TOTALES Y ARSÉNICO EN EL AGUA PARA RIEGO DE PUEBLA Y VERACRUZ, MÉXICO. 1, PUEBLA Y VERACRUZ, MÉXICO: Revista Internacional de Contaminación Ambiental, [en línea]. 2012, vol. 28, no. 1, p. 39-48. ISSN 0188-4999. Disponible en: http://www.scielo.org.mx/pdf/rica/v28n1/v28n1a4.pdf.
- 7. **BUSTAMANTE GONZALEZ, J. y GONZÁLEZ RENTERIA, M.** *Eficiencia de las plantas acuáticas Pistia stratiotes L. y Myriophyllum aquaticum L. en la depuración de metales pesados Ni, Cr (VI) y Cu en agua de los canales de Xochimilco.* Número especial, México : s.n., 2013, Revista Digital E-bios, Vol. 2, págs. 56-61. ISSN 2007 5782. Disponible en: https://www.revistae-bios.org/index.php/e-bios/article/view/29.

- 8. CASTRO-CASTILLO, Laura Tatiana. Determinación del grado de acumulación de metales pesados en las plantas asociadas al Río Bogotá, transecto Villapinzón Tocancipá con fines de biorremediación. Bogotá, Colombia: Universidad de la Salle, 2017.
- 9. **IDROVO**, **J.**; **GAVILANES**, **I.**; **VELOZ**, **N.**; **ERAZO**, **R.**; **VALVERDE**, **H**. *Cuantificación de metales en aguas de riego*. *Estudio de caso en la provincia de Chimborazo*. 19, Ecuador : Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, 2018, Perfiles, Vol. 1, no. 19, págs. 21-29. ISSN 2477-9105. Disponible en: https://dspace.espoch.edu.ec/handle/123456789/8964.
- 10. MENDOZA FLORES, Diego Moizes, SALAZAR ALIAGA, Kevin Peter y BRAVO TOLEDO, Luigi Alfonso. Fitorremediación acuática con Myriophyllum aquaticum para el tratamiento de efluentes generados por pasivos ambientales mineros de Hualgayoc Cajamarca. [Documento] Callao Perú : Repositorio Institucional Digital Universidad Nacional del Callao, 2016.
- 11. **BAUTISTA ABANTO, Julio César.** Fitorremediación utilizando Myriophyllum aquaticum para la remoción de Cromo Total de efluentes líquidos de la industria de pinturas en Chacra Cerro. *Perú. 2016.* [Documento] Lima Perú : Universidad Cesar Vallejo, 2016.
- 12. JARA-PEÑA, Enoc; GÓMEZ, José; MONTOYA, Haydeé; SÁNCHEZ, Tito; TAPIA, Liliana; CANO, Noema; DEXTRE, Abigail. Acumulación de metales pesados en Calamagrostis rigida (Kunth) Trin. ex Steud. (Poaceae) y Myriophyllum quitense Kunth (Haloragaceae) evaluadas en cuatro humedales altoandinos del Perú. 2, Lima Peru : Arnaldoa, [en línea] 2017, Vol. 24, no. 2, págs. 583-598. 1815-8242/2413-3299. Disponible en: http://revistasinvestigacion.unmsm.edu.pe/index.php/arnaldoa/article/view/14725.
- 13. **OFICINA UNIVERSITARIA DE IMAGEN INSTITUCIONAL DE LA UNIVERSIDAD NACIONAL DE SAN AGUSTÍN.** *INVESTIGADORES DE LA UNSA DETECTAN PLOMO Y ARSÉNICO EN VEGETALES Y PLANTAS MEDICINALES.* Arequipa Perú: Oficina Universitaria de Imagen Institucional, UNIVERSIDAD NACIONAL DE SAN AGUSTÍN, 16 de marzo de 2020.
- 14. **GARCIA FLORES DE NIETO, Basilia Vilma.** Contaminación del agua por metales pesados As, B, Cu, Pb, Cd y CN- en las cuencas de los Ríos Tambo, Quilca, Camaná y Ocoña de la región Arequipa. Arequipa, Perú: s.n., 2019.
- 15. MINISTERIO DEL AMBIENTE. DIRECCIÓN GENERAL DE EDUCACIÓN, CULTURA Y CIUDADANÍA AMBIENTAL. Aprende a prevenir los efectos del mercurio. Módulo 1: Salud y ambiente. Repositorio Digital del Ministerio del Ambiente. [En línea] 2016. http://localhost:8080/xmlui/handle/123456789/93.

- 16. **FUNDACIÓN AQUAE.** ¿Que es la contaminación ambiental? [En línea] 22 de Septiembre de 2021. https://www.fundacionaquae.org/wiki/causas-contaminacion-ambiental/.
- 17. **IBERDROLA.** IBERDROLA. *La contaminación del agua: cómo no poner en peligro nuestra fuente de vida.* [En línea] 22 de abril de 2021. [Citado el: 10 de 07 de 2022.] https://www.iberdrola.com/sostenibilidad/contaminacion-del-agua#:~:text=La%20Organizaci%C3%B3n%20Mundial%20de%20la,su%20composici%C3%B3n%20Masta%20quedar%20inservible..
- 18. **ACCIONA.** ACCIONA BUSINESS AS UNUSUAL. *Tratamiento de agua. La solución al problema del agua en el mundo.* [En línea] ACCIONA. [Citado el: 07 de 07 de 2022.] https://www.acciona.com/es/tratamiento-de-agua/?gclid=Cj0KCQjwm9yJBhDTARIsABKIcGaTfxQYDNabTm5Sj9fdZhAAIJfMdH_C4QI1oWhSDs VaJiEM1p7umAcaAiznEALw_wcB&_adin=02021864894.
- 19. **RAMÍREZ, F.** El agua potable. [En línea] 22 de 06 de 2022. [Citado el: 10 de 07 de 2022.] http://www.elaguapotable.com/tratamiento del agua.htm.
- 20. DELGADILLO-LOPEZ, Angelica; GONZALEZ-RAMIREZ, César Abelardo; PRIETO-GARCÍA, Francisco; VILLAGÓMEZ-IBARRA, José Roberto; ACEVEDO-SANDOVAL, Otilio. Fitorremediacion: una alternativa para eliminar la contaminación. Hidalgo, Mexico: *Tropical and Subtropical Agroecosystems*, [en línea], 2011, Vol. 14, no. 2, págs. 597-612. ISSN 1870-0462. Disponible en: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/114/75.
- 21. **GARBISU, Carlos, EPELDE, Lur y BECERRIL, José M.** Ecologistas en Acción. [En línea] 01 de 06 de 2008. https://www.ecologistasenaccion.org/17857/fitorremediacion/.
- 22. **Ministerio del Ambiente.** Decreto Supremo N° 004-2017-MINAM. Aprueban Estándares de Calidad Ambiental (ECA) para Agua y establecen Disposiciones Complementarias. *Normas Legales*. Perú : Editora Perú, 06 de Junio de 2017. págs. 10-13.
- 23. Dirección General de Políticas, Normas e Instrumentos de Gestión Ambiental Ministerio del Ambiente. Glosario de términos para la gestión ambiental peruana. [En línea] 28 de 06 de 2019. Disponible en: https://www2.congreso.gob.pe/Sicr/CenDocBib/con5_uibd.nsf/\$\$ViewTemplate%20for%20D ocumentos?OpenForm&Db=BB42DACOA6E78FB6052584270073E78D&View=yyy.
- 24. **LONDOÑO, LUIS, LONDOÑO, Paula y MUÑOZ, Fabian.** Los riegos de los metales pesados en la salud humana y animal. 2, Popayán : *Revista Biotecnología en el Sector Agropecuario y*

- Agroindustrial, 2016, Revista Biotecnología en el Sector Agropecuario y Agroindustrial, Vol. 14, págs. 145-153. ISSN 1692-3561.
- 25. **Tintinalli. Medicina de urgencias.** *Medicina de urgencias.* [Documento] s.l.: McGRAW-HILL INTERAMERICANA EDITORES, S.A. de C. V., 2013. ISBN 978-607-15-0880-5. Disponible en: https://accessmedicina.mhmedical.com/book.aspx?bookID=2301.
- 26. HERNÁNDEZ-SAMPIERI, Roberto, FERNÁNDEZ-COLLADO, Carlos y BAPTISTA-LUCIO, María Del Pilar. *METODOLOGÍA DE LA INVESTIGACIÓN*. 6ta. Mexico: McGRAW-HILL /INTERAMERICANA EDITORES, S.A., 2014. 978-1-4562-2396-0.
- 27. **RAMÍREZ-GONZÁLEZ, Alberto.** *Metodología de la Investigación Científica.* Cali : Pontifica Universidad Javeriana, 2010.
- 28. **GRAJALES, Tevni.** TIPOS DE INVESTIGACION. *studylib.es*. [En línea] 28 de Febrero de 2017. https://studylib.es/doc/5564907/tipos-de-investigacion.
- 29. **ARIAS, Fidias.** *El Proyecto de Investigación. Introducción a la Metodología Científica.* Sexta. Caracas : Editores Episteme, 2012. ISBN 978-980-07-8529-4.
- 30. **International Accreditation Service.** International Accreditation Service. *Acerca de IAS*. [En línea] [Citado el: 2022 de Julio de 18.] https://www.iasonline.org/acerca-de-ias/.
- 31. Roberto Aurelio Núñez López, Yunny Meas Vong, Raúl Ortega Borges y Eugenia J. Olguín. *Fitoremediación fundamentos y aplicaciones.* [Documento] Ciudad de México: Academia Accelerating the world's research., 2004.
- 32. **Alvarez, Dianelys Ondarse.** Agua. [En línea] Concepto, 15 de Julio de 2021. [Citado el: 2021 de Octubre de 2021.] https://concepto.de/agua/.
- 33. **Spinelli, MONICA.** CONICET MENDOZA. *CONICET MENDOZA*. [En línea] CONICET MENDOZA. [Citado el: 28 de Octubre de 2021.] https://www.mendoza.conicet.gov.ar/portal/enciclopedia/terminos/Amb.htm.
- 34. **SAMPIERI, HERNÁNDEZ.** *Metodología de la investigación.* Mexico: INTERAMERICANA EDITORES, S.A., 2014. 978-1-4562-2396-0.
- 35. **Esteban Nieto, NICOMEDES TEODORO.** *Tipos de Investigacion.* [Documento]

ANEXOS

Anexo 1: Resultados de las muestras *In situ* (directo de los estanques)

INFORME DE ENSAYO Nº: IE-21-13584

I. DATOS DEL SERVICIO

1.-RAZON SOCIAL : JAVIER ALEXANDER CAMPANA CHAVEZ

2-DIRECCIÓN : CALLE BOLOGNESI 110 HUARANGUILLO, SACHACA, AREQUIPA

S.-PROYECTO : MONITOREO DE CALIDAD DE AGUA
 HUARANGUILLO - SACHACA - AREQUIPA
 S-SOLICITANTE : JAVIER ALEXANDER CAMPANA CHAVEZ

6.-ORDEN DE SERVICIO N° : OS-21-5276
7.-PROCEDIMIENTO DE MUESTREO : NO APLICA
B.-MUESTREADO POR : EL CLIENTE
9.-FECHA DE EMISIÓN DE INFORME : 2021-10-28

II. DATOS DE ÍTEMS DE ENSAYO

 1.-PRODUCTO
 : Agua

 2.-NÚMERO DE MUESTRAS
 : 2

 3.-FECHA DE RECEP. DE MUESTRA
 : 2021-10-22

4.-PERÍODO DE ENSAYO : 2021-10-22 al 2021-10-28

Liz Y. Quispe Quispe Jefe de Laboratorio CIP N° 211662

Los resultados contenidos en el presente documento sólo estan relacionados con los items ensayados.

No se debe reproducir el informe de ensayo, excepto en su totalidad, sin la aprobación escrita de Analytical Laboratory E.I.R. L.

Los resultados de los ensayos, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

INFORME DE ENSAYO Nº: IE-21-13584

III. MÉTODOS Y REFERENCIAS

TIPO DE ENSAYO	NORMA DE REFERENCIA	TÍTULO	
Metales Totales ICP-MS ²	EPA Method 200.8 Rev. 5.4 1994	Determination of Trace Elements in Waters and Wastes by	
	Control of the contro	Inductively Coupled Plasma-Mass Spectrometry	

[&]quot;EPA": U. S. Environmental Protection Agency. Methods for Chemicals Analysis

⁸ Ensayo acreditado por el IAS

IV. RESULTADOS

	ITEM			1	2		
	có	DIGO DE LAB	ORATORIO:	M-21-47567	M-21-47568		
		CÓDIGO DE	L CLIENTE:	CA-H-1	CA-H-2		
		COOF	DENADAS:	E:0225301	E:0224868		
		UTM WGS 84: N:8183829 N:8183707					
		P	RODUCTO:	Agua Natural	Agua Natural		
		SUB P	Superficial (Rio)	Superficial (Rio)			
	INSTR	RUCTIVO DE N	/UESTREO:	NO A	PLICA		
	EECHA	y HORA DE M	HESTREO :	22-10-2021	22-10-2021		
	FECHA	y HOHA DE M	UESTREO:	10:30	10:50		
ENSAYO	UNIDAD	L.D.M.	L.C.M.	RESUL	TADOS		
letales Totales ICP-M3 2							
Aluminio	mg/L	0,001	0,003	<0,003	<0,003		
Antimonio	mg/L	0,001	0,002	<0,002	<0,002		
Arsénico	mg/L	0,0002	0,0010	<0,0010	<0,0010		
Barlo	mg/L	0,0001	0,0001 0,0003	0,0356	0,0531		
Berilio	mg/L	0,0001	0,0003	<0,0003	<0,0003		
Bismuto	mg/L	0,003	0,010	<0,010	<0,010		
Boro	mg/L 0,0	mg/L 0,0003 0,0010 0,4930	0,4930	0,5634			
Cadmio	mg/L	0,0001	0,0002	<0,0002	<0,0002		
Calcio	mg/L	0,001	0,004	49,395	64,201		
Cerio	mg/L	0,003	0,010	<0,010	<0.010		
Cobalto	mg/L	0,0005	0,0020	<0,0020	<0,0020		
Cobre	mg/L	0,0001	0,0002	0,0670	0,0708		
Cromo	mg/L	0,0001	0,0003	<0,0003	<0,0003		
Estaño	mg/L	0,0003	0,0010	<0,0010	<0,0010		
Estroncio	mg/L	0,00002	0,00005	0,34890	0,41740		
Fostoro	mg/L	0,002	0,006	1,785	2,466		
Hierro	mg/L	0,001	0,002	<0,002	<0,002		
Litio	mg/L	0,00003	0,00010	<0,00010	<0,00010		

² Ensayo acreditado por el IAS

L.C.M.: Limite de cuantificación del método, "<"= Menor que el L.C.M. L.D.M.: Limite de detección del método, "<"= Menor que el L.D.M. "": No ensayado NA: No Aplica

	ITEM			1	2
	có	DIGO DE LAB	ORATORIO:	M-21-47567	M-21-47568
		CÓDIGO DE	L CLIENTE:	CA-H-1	CA-H-2
COORDENADAS:				E:0225301	E:0224868
		UT	TM WGS 84:	N:8183829	N:8183707
		P	RODUCTO:	Agua Natural	Agua Natural
		SUB P	RODUCTO:	Superficial (Rio)	Superficial (Rio)
	INSTE	UCTIVO DE N	MUESTREO:		PLICA
	FECHA	y HORA DE N	ALIESTREO:	22-10-2021	22-10-2021
			DED INEO.	10:30	10:50
ENSAYO	UNIDAD	L.D.M.	L.C.M.	RESUL	TADOS
Magnesio	mg/L	0,0006	0,0020	16,3221	17,9945
Manganeso	mg/L	0,00002	0,00005	0,02360	0,10230
Mercurio	mg/L	0,000033	0,000100	<0,000100	<0,000100
Molibdeno	mg/L	0,0003	0,0010	<0,0010	<0,0010
Niquel	mg/L	0,0001	0,0004	<0,0004	<0,0004
Plata	mg/L	0,0003	0,0010	<0,0010	<0,0010
Plomo	mg/L	0,0008	0,0025	<0,0025	<0,0025
Potasio	mg/L	0,003	0,010	6,878	11,259
Selenio	mg/L	0,001	0,002	<0,002	<0,002
Silice	mg/L	0,0010	0,0020	58,9812	50,2005
Silido	mg/L	0,0002	0,0007	27,5246	23,4269
Sodio	mg/L	0,0003	0,0010	54,8989	64,0790
Tallo	mg/L	0,0001	0,0004	<0,0004	<0,0004
Titanio	mg/L	0,0003	0,0010	<0,0010	<0,0010
Torio	mg/L	0,0001	0,0003	<0,0003	<0,0003
Uranio	mg/L	0,0001	0,0003	<0,0003	<0,0003
Vanadio	mg/L	0,0001	0,0003	<0,0003	<0,0003
Zinc	mg/L	0,0001	0,0002	0,7674	0,0113

² Ensayo acreditado por el IAS

L.C.M.: Limite de cuantificación del método, "<" - Menor que el L.C.M.

L.D.M.: Limite de detección del método, "<"= Menor que el L.D.M.

V. OBSERVACIONES

Los resultados se aplican a la muestra cómo se recibió.

"FIN DE DOCUMENTO"

[&]quot;-": No ensayado NA: No Aplica

Anexo 2: Resultados de la primera toma de muestras ex situ

INFORME DE ENSAYO Nº: IE-21-14210

I. DATOS DEL SERVICIO

1.-RAZON SOCIAL : Javier Alexander Campana Chavez

2 - DIRECCIÓN : Calle Bolognesi 110 huaranguillo, sachaca , Arequipa

S.-PROYECTO : MONITOREO DE CALIDAD DE AGUA
 S.-PROCEDENCIA : HUARANGUILLO - SACHACA - AREQUIPA
 S.-SOLICITANTE : JAVIER ALEXANDER CAMPANA CHAVEZ

6.-ORDEN DE SERVICIO Nº : 0000005482-2021-0000

7.-PROCEDIMIENTO DE MUESTREO : NO APLICA B.-MUESTREADO POR : EL CLIENTE 9.-FECHA DE EMISIÓN DE INFORME : 2021-11-16

II. DATOS DE ÍTEMS DE ENSAYO

 1.-PRODUCTO
 : Agua

 2.-NÚMERO DE MUESTRAS
 : 2

 3.-FECHA DE RECEP. DE MUESTRA
 : 2021-11-04

4.-PERIODO DE ENSAYO : 2021-11-04 al 2021-11-16

Liz Y. Quilipe Quispe Jefe de Laboratorio CIP N° 211662

Los resultados contenidos en el presente documento sólo estan relacionados con los items ensayados.

No se debe reproducir el informe de ensayo, excepto en su totalidad, sin la aprobación escrita de Analytical Laboratory E.I.R. L.

Los resultados de los ensayos, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

III. MÉTODOS Y REFERENCIAS

TIPO DE ENSAYO	NORMA DE REFERENCIA	TÍTULO
Metales Totales ICP-MS ²	EPA Method 200.8 Rev. 5.4 1994	Determination of Trace Elements in Waters and Wastes by
	Control of the contro	Inductively Coupled Plasma-Mass Spectrometry

[&]quot;EPA": U. S. Environmental Protection Agency. Methods for Chemicals Analysis

⁸ Ensayo acreditado por el IAS

IV. RESULTADOS

	ITEM	uee pe i i i		1	2	
	COI	DIGO DE LAB		M-21-51838	M-21-51839	
		CÓDIGO DE		CA-H-1	CA-H-2	
			RDENADAS:	E:0225301	E:0224868	
			TM WGS 84:	N:8183829	N:8183707	
			RODUCTO:	Agua Natural	Agua Natural	
		SUB F	RODUCTO:	Superficial (Rio)	Superficial (Rio)	
	INSTR	UCTIVO DE N	MUESTREO:	NO A	PLICA	
	EECHA	y HORA DE M	HESTREO -	04-11-2021	04-11-2021	
	FEUNA	y HUHA DE N	OCOTHEU.	11:20	11:30	
ENSAYO	UNIDAD	L.D.M.	L.C.M.	RESUL	TADOS	
Metales Totales ICP-MS						
Aluminio ²	mg/L	0,001	0,003	0,013	0,193	
Antimonio ²	mg/L	0,001	0,002	<0,002	<0,002	
Arsénico ²	mg/L	0,0002	0,0010	<0,0010	<0,0010	
Bario ²	mg/L	0,0001	0,0003	0,0429	0,0708	
Berillo ²	mg/L	0,0001	0,0003	<0,0003	< 0,0003	
Bismuto ²	mg/L	0,003	0,010	<0,010	<0,010	
Boro ²	mg/L	0,0003	0,0010	0,4680	0,5275	
Cadmio ²	mg/L	0,0001	0,0002	<0,0002	<0,0002	
Calcio ²	mg/L	0,001	0,004	47,456	60,512	
Cerlo ²	mg/L	0,003	0,010	<0,010	<0,010	
Cobalto 2	mg/L	0,0005	0,0020	<0,0020	<0,0020	
Cobre ²	mg/L	0,0001	0,0002	<0,0002	<0,0002	
Cromo ²	mg/L	0,0001	0,0003	<0,0003	< 0,0003	
Estaño ²	mg/L	0,0003	0,0010	<0,0010	<0,0010	
Estroncio ²	mg/L	0,00002	0,00005	0,42055	0,45787	
Fostoro 2	mg/L	0,002	0,006	1,448	1,918	
Hierro ²	mg/L	0,001	0,002	0,019	0,169	
Litio ²	mg/L	0,00003	0,00010	0,03153	0,03911	

² Ensayo acreditado por el IAS

L.C.M.: Limite de cuantificación del método, "<"= Menor que el L.C.M. L.D.M.: Limite de detección del método, "<"= Menor que el L.D.M. "": No ensayado NA: No Aplica

	ITEM			1	2
	có	DIGO DE LAB	ORATORIO:	M-21-51838	M-21-51839
		CÓDIGO DE	L CLIENTE:	CA-H-1	CA-H-2
		COOF	RDENADAS:	E:0225301	E:0224868
		UT	TM WGS 84:	N:8183829	N:8183707
		P	RODUCTO:	Agua Natural	Agua Natural
		SUB P	RODUCTO:	Superficial (Rio)	Superficial (Rio)
	INSTR	RUCTIVO DE N	MUESTREO:	NO A	PLICA
	EECHA	y HORA DE N	ALIESTREO-	04-11-2021	04-11-2021
			DED THEO.	1120	11:30
ENSAYO	UNIDAD	L.D.M.	L.C.M.	RESUL	TADOS
Magnesio ²	mg/L	0,0006	0,0020	18,0562	20,0037
Manganeso ²	mg/L	0,00002	0,00005	0,05028	0,56092
Mercurio ²	mg/L	0,000033	0,000100	<0,000100	<0,000100
Molibdeno ²	mg/L	0,0003	0,0010	<0,0010	<0,0010
Niquel ²	mg/L	0,0001	0,0004	<0,0004	<0,0004
Plata ²	mg/L	0,0003	0,0010	<0,0010	<0,0010
Plomo ²	mg/L	0,0008	0,0025	<0,0025	<0,0025
Potasio ²	mg/L	0,003	0,010	8,438	11,880
Selenio ²	mg/L	0,001	0,002	<0,002	<0,002
Silice "	mg/L	0,0010	0,0020	63,2676	54,4674
Silicio ²	mg/L	0,0002	0,0007	29,5249	25,4181
Sodio ²	mg/L	0,0003	0,0010	62,6783	73,7122
Tallo ²	mg/L	0,0001	0,0004	<0,0004	<0,0004
Titanio ²	mg/L	0,0003	0,0010	<0,0010	<0,0010
Torio ²	mg/L	0,0001	0,0003	<0,0003	<0,0003
Uranio ²	mg/L	0,0001	0,0003	<0,0003	<0,0003
Vanadio ^a	mg/L	0,0001	0,0003	<0,0003	< 0,0003
Zino ²	mg/L	0,0001	0,0002	0,0046	<0,0002

² Ensayo acreditado por el IAS

L.C.M.: Limite de cuantificación del método, "<" = Menor que el L.C.M. L.D.M.: Limite de detección del método, "<" = Menor que el L.D.M.

"-": No ensayado

NA: No Aplica

(**) El ensayo indicado no ha sido acreditado por el IAS

V. OBSERVACIONES

Los resultados se aplican a la muestra cómo se recibió.

"FIN DE DOCUMENTO"

Prolongación Zarumilla Mz 2D lote 3 Bellavista - Callao Telf. +51 7130636 / 453 1389 / 940 598 588 Email. ventas@alab.com.pe www.alab.com.pe

Página 4 de 4

I. DATOS DEL SERVICIO

1.-RAZON SOCIAL ; Javier Alexander Campana Chavez
 2.-DIRECCIÓN ; Calle Bolognesi 110 huaranguillo, sachaca , Arequipa

S.-PROYECTO : MONITOREO DE CALIDAD DE AGUA
4.-PROCEDENCIA : HUARANGUILLO - SACHACA - AREQUIPA
5.-SOLICITANTE : JAVIER ALEXANDER CAMPANA CHAVEZ

6.-ORDEN DE SERVICIÓ Nº : 0000005684-2021-0000

7.-PROCEDIMIENTO DE MUESTREO : NO APLICA 8.-MUESTREADO POR : EL CLIENTE 9.-FECHA DE EMISIÓN DE INFORME : 2021-11-23

II. DATOS DE ÍTEMS DE ENSAYO

 1.-PRODUCTO
 : Agua

 2.-NÚMERO DE MUESTRAS
 : 2

 3.-FECHA DE RECEP. DE MUESTRA
 : 2021-11-15

4.-PERÍODO DE ENSAYO : 2021-11-15 al 2021-11-23

Liz Y. Zuitpe Quispe Jefé de Laboratorio CIP N° 211662

Los resultados contenidos en el presente documento sóto estan relacionados con los items ensayados.

No se debe reproducir el informe de ensayo, excepto en su totalidad, sin la aprobación escrita de Analytical Laboratory E.I.R. L.

Los resultados de los ensayos, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

Prolongación Zarumilla Mz 2D lote 3 Bellavista - Callao Telf. +51 7130636 / 453 1389 / 940 598 588 Email. ventas@alab.com.pe www.alab.com.pe Página 1 de 4

III. MÉTODOS Y REFERENCIAS

TIPO DE ENSAYO	NORMA DE REFERENCIA	TÍTULO
Metales Totales ICP-MS ²	EPA Method 200.8 Rev. 5.4 1994	Determination of Trace Elements in Waters and Wastes by
	Control of the contro	Inductively Coupled Plasma-Mass Spectrometry

[&]quot;EPA": U. S. Environmental Protection Agency. Methods for Chemicals Analysis

⁸ Ensayo acreditado por el IAS

^[1] El Ensayo indicado no ha sido acreditado

IV. RESULTADOS

	ITEM			1	2
		DIGO DE LAB	OBATORIO:	M-21-56224	M-21-56225
	60	CÓDIGO DE		M-21-30224 CA-H-1	
					CA-H-2
			DENADAS:	E:0225301	E:0224868
			M WGS 84:	N:8183829	N:8183707
			RODUCTO:	Agua Natural	Agua Natural
		SUB P	RODUCTO:	Superficial (Rio)	Superficial (Rio)
	INSTR	UCTIVO DE M	MUESTREO:	NO A	PLICA
	EEGHA	y HORA DE M	HESTBEO -	15-11-2021	15-11-2021
	FECHA	y nuna de M	UEDIMEU:	03:34	03:41
ENSAYO	UNIDAD	L.D.M.	L.C.M.	RESUL	TADOS
Metales Totales ICP-MS					
Aluminio ²	mg/L	0,001	0,003	<0,003	<0,003
Antimonio ²	mg/L	0,001	0,002	<0,002	<0,002
Arsénico ²	mg/L	0,0002	0,0010	<0,0010	<0,0010
Barlo ^a	mg/L	0,0001	0,0003	0,0508	0,0732
Berillo ²	mg/L	0,0001	0,0003	<0,0003	<0,0003
Bismuto ²	mg/L	0,003	0,010	<0,010	<0,010
Boro ²	mg/L	0,0003	0,0010	0,7360	0,7579
Cadmio ²	mg/L	0,0001	0,0002	<0,0002	<0,0002
Calcio ²	mg/L	0,001	0,004	63,567	78,506
Cerio ²	mg/L	0,003	0,010	<0,010	<0,010
Cobalto 2	mg/L	0,0005	0,0020	<0,0020	<0,0020
Cobre ²	mg/L	0,0001	0,0002	0,0202	0,0064
Cromo ²	mg/L	0,0001	0,0003	<0,0003	< 0,0003
Estaño ²	mg/L	0,0003	0,0010	<0,0010	<0,0010
Estroncio ²	mg/L	0,00002	0,00005	0,48479	0,56468
Fosforo ²	mg/L	0,002	0,006	<0,006	<0,006
Hierro ²	mg/L	0.001	0.002	0.337	0.030
Hellu-					

^(**) El Ensayo indicado no ha sido acreditado

L.C.M.: Limite de cuantificación del método, "<"= Menor que el L.C.M.
L.D.M.: Limite de detección del método, "<"= Menor que el L.D.M.
"": No ensayado
NA: No Agrica

² Ensayo acreditado por el IAS

	ITEM			1	2	
	có	DIGO DE LAB	ORATORIO:	M-21-56224	M-21-56225	
	CÓDIGO DEL CLIENTE: CA-H-1 CA-H-2					
		COOF	DENADAS:	E:0225301	E:0224868	
		UT	M WGS 84:	N:8183829	N:8183707	
		P	RODUCTO:	Agua Natural	Agua Natural	
		SUB P	RODUCTO:	Superficial (Rio)	Superficial (Rio)	
	INSTR	UCTIVO DE N	/UESTREO:	NO A	PLICA	
	EECHA	y HORA DE N	HIESTREO:	15-11-2021	15-11-2021	
	FEUNA	y HUHA DE N	MUESTREU:	03:34	03:41	
ENSAYO	UNIDAD	L.D.M.	L.C.M.	RESUL	TADOS	
Magnesio ²	mg/L	0,0006	0,0020	22,5137	24,0958	
Manganeso ²	mg/L	0,00002	0,00005	<0,0005	<0,0005	
Mercurio ²	mg/L	0,000033	0,000100	<0,000100	<0,000100	
Molibdeno ²	mg/L	0,0003	0,0010	<0,0010	<0,0010	
Niquel ²	mg/L	0,0001	0001 0,0004	<0,0004	<0,0004	
Plata ²	mg/L	0,0003	0,0010	<0,0010	<0,0010	
Plomo ²	mg/L	0,0008	0,0025	<0,0025	<0,0025	
Potasio ²	mg/L	0,003	0,010	7,446	11,931	
Selenio ²	mg/L	0,001	0,002	<0,002	<0,002	
Silice (**)	mg/L	0,0010	0,0020	76,3691	57,7527	
Silicio ²	mg/L	0,0002	0,0007	35,6389	26,9513	
Sodio ²	mg/L	mg/L 0,0003 0,0010 74,5713	0,0003 0,0010 74,5713	0,0003 0,0010 74,5713	89,7974	
Tallo ²	mg/L	0,0001	0,0004	<0,0004	<0,0004	
Titanio ²	mg/L	0,0003	0,0010	<0,0010	<0,0010	
Torio ²	mg/L	0,0001	0,0003	<0,0003	<0,0003	
Uranio ²	mg/L	0,0001	0,0003	<0,0003	<0,0003	
Vanadio ^a	mg/L	0,0001	0,0003	<0,0003	<0,0003	
Zinc ²	mg/L	0,0001	0.0002	0,0056	0.0067	

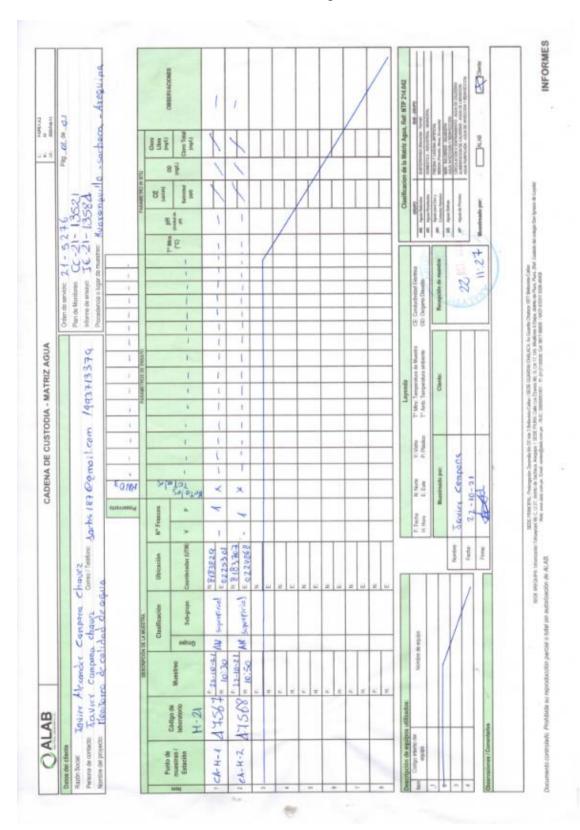
^(**) El Ensayo indicado no ha sido acreditado

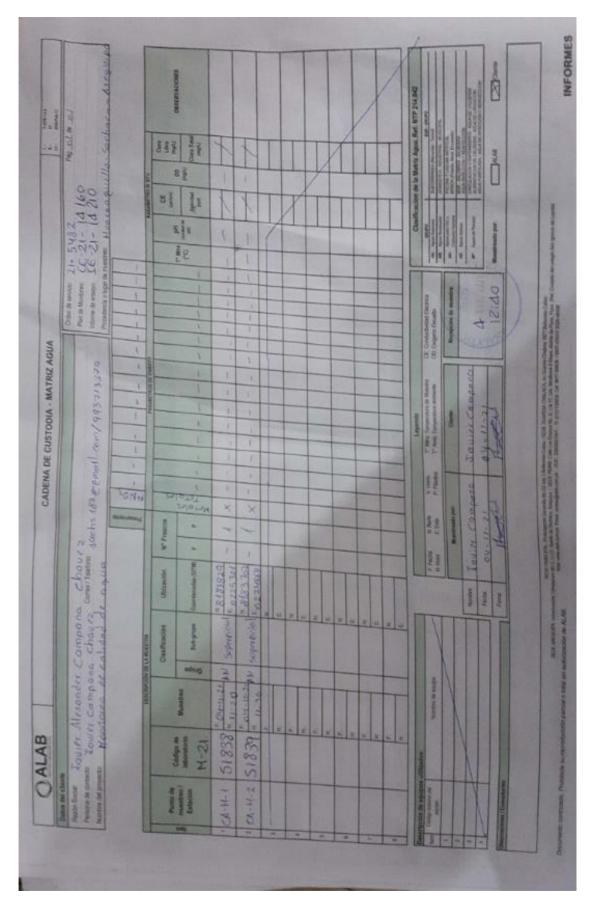
L.C.M.: Limite de cuantificación del método, "<" = Menor que el L.C.M. L.D.M.: Limite de detección del método, "<" = Menor que el L.D.M.

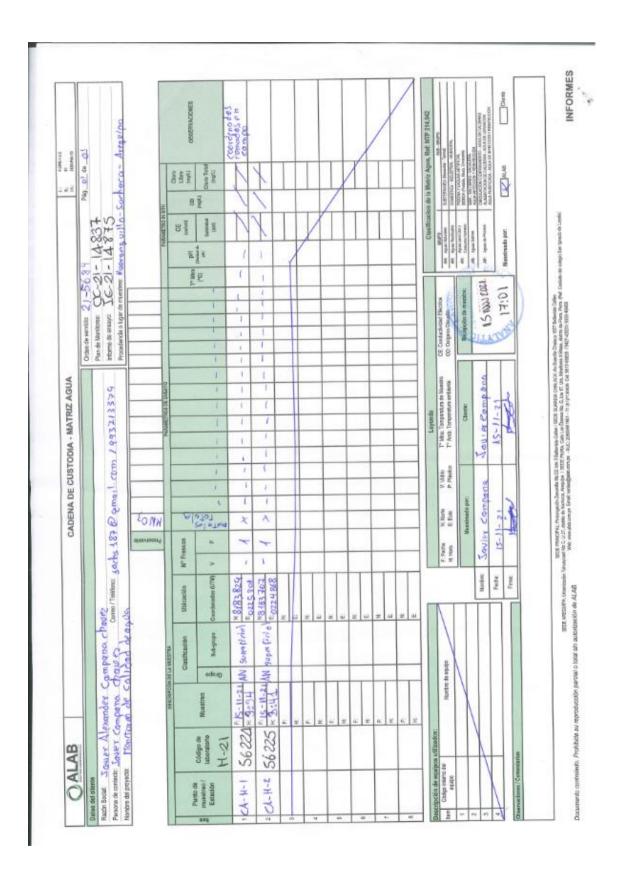
V. OBSERVACIONES

NA: No Aplica

Los resultados se aplican a la muestra cómo se recibió.


"FIN DE DOCUMENTO"


Prolongación Zarumilla Mz 2D lote 3 Bellavista - Callao Telf. +51 7130636 / 453 1389 / 940 598 588 Email. ventas@alab.com.pe www.alab.com.pe Página 4 de 4


² Ensayo acreditado por el IAS

[&]quot;-": No ensayado

Anexo 4: Cadenas de custodia de entrega de la muestra al laboratorio

Anexo 5: Imágenes del procedimiento de toma de muestras

Figura 4 Toma de muestras del primer punto

Fuente: elaboración propia

Figura 5 Llenada de frasco de muestra y preservación

Fuente: elaboración propia

Figura 6 Cadena de frío del primer punto

Fuente: elaboración propia

Figura 7 Toma de muestras del segundo punto

Figura 8 Llenado de frasco y preservación de muestra

Figura 9 Cadena de frío del segundo punto

Fuente: elaboración propia

Figura 10 Recolección de agua Punto CA-H-1

Figura 11 Recolección de agua punto CA-H-2

Figura 12 Toma de muestras del primer punto tras el experimento

Fuente: elaboración propia

Figura 13 Toma de muestras del segundo punto tras el experimento

Figura 14 Preservación de muestras

Figura 15 Rotulado de las muestras

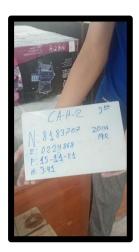

Fuente: elaboración propia

Figura 16 Cadena de frío de ambos puntos tras la primera remediación

Figura 17 Segunda toma de muestras de los puntos CA-H-1 y CA-H-2

Anexo 6: Agrupación de los resultados obtenidos en los tres análisis

		IV. RESU	LTADOS						
	Γ	TEM		1	2	1	2	1	2
		CÓDIGO D	E LABORATORIO:	M-21-47567	M-21-47568	M-21-51838	M-21-51839	M-21-56224	M-21-56225
		CÓDI	GO DEL CLIENTE:	CA-H-1	CA-H-2	CA-H-1	CA-H-2	CA-H-1	CA-H-2
	COORDENADAS:			E:0225301	E:0224868	E:0225301	E:0224868	E:0225301	E:0224868
			UTM WGS 84:	N:8183829	N:8183707	N:8183829	N:8183707	N:8183829	N:8183707
			PRODUCTO:	Agua Natural					
			SUB PRODUCTO:	Superficial (Río)					
		INSTRUCTIV	O DE	NO A	PLICA	NO A	PLICA	NO A	PLICA
		FECHA y HORA	DE MUESTREO :	22-10-2021 10:30	22-10-2021 10:50	04-11-2021 11:20	04-11-2021 11:30	15-11-2021 03:34	15-11-2021 03:41
ENSAYO)	UNIDAD L.D	.M. L.C.M.	RESULTADOS			TADOS		03:41 TADOS
Metales Totales						1ra toma tras	el experimento	2da toma tras	el experimento
Aluminio	mg/L	0.001	0.003	<0,003	<0,003	0.013	0.193	<0,003	<0,003
Antimonio	mg/L	0.001	0.002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002
Arsénico	mg/L	0.0002	0.0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
Bario	mg/L	0.0001	0.0003	0.0356	0.0531	0.0429	0.0708	0.0508	0.0732
Berilio	mg/L	0.0001	0.0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003
Bismuto	mg/L	0.003	0.010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Boro	mg/L	0.0003	0.0010	0.4930	0.5634	0.4680	0.5275	0.7360	0.7579
Cadmio	mg/L	0.0001	0.0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002
Calcio	mg/L	0.001	0.004	49.395	64.201	47.456	60.512	63.567	78.506
Cerio	mg/L	0.003	0.010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Cobalto	mg/L	0.0005	0.0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020	<0,0020
Cobre	mg/L	0.0001	0.0002	0.0670	0.0708	<0,0002	<0,0002	0.0202	0.0064
Cromo	mg/L	0.0001	0.0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003
Estaño	mg/L	0.0003	0.0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
Estroncio	mg/L	0.00002	0.00005	0.34890	0.41740	0.42055	0.45787	0.48479	0.56468
Fosforo	mg/L	0.002	0.006	1.785	2.466	1.448	1.918	<0,006	<0,006
Hierro	mg/L	0.001	0.002	<0,002	<0,002	0.019	0.169	0.337	0.030
Litio	mg/L	0.00003	0.00010	<0,00010	<0,00010	0.03153	0.03911	<0,00010	<0,00010
Magnesio	mg/L	0.0006	0.0020	16.3221	17.9945	18.0562	20.0037	22.5137	24.0958
Manganeso	mg/L	0.00002	0.00005	0.02360	0.10230	0.05028	0.56092	<0,00005	<0,00005
Mercurio	mg/L	0.000033	0.000100	<0,000100	<0,000100	<0,000100	<0,000100	<0,000100	<0,000100
Molibdeno	mg/L	0.0003	0.0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
Niquel	mg/L	0.0001	0.0004	<0,0004	<0,0004	<0,0004	<0,0004	<0,0004	<0,0004
Plata	mg/L	0.0003	0.0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
Plomo	mg/L	0.0008	0.0025	<0,0025	<0,0025	<0,0025	<0,0025	<0,0025	<0,0025
Potasio	mg/L	0.003	0.010	6.878	11.259	8.438	11.880	7.446	11.931
Selenio	mg/L	0.001	0.002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002
Sílice	mg/L	0.0010	0.0020	58.9812	50.2005	63.2676	54.4674	76.3691	57.7527
Silicio	mg/L	0.0002	0.0007	27.5246	23.4269	29.5249	25.4181	35.6389	26.9513
Sodio	mg/L	0.0003	0.0010	54.8989	64.0790	62.6783	73.7122	74.5713	89.7974
Talio	mg/L	0.0001	0.0004	<0,0004	<0,0004	<0,0004	<0,0004	<0,0004	<0,0004
Titanio	mg/L	0.0003	0.0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010	<0,0010
Torio	mg/L	0.0001	0.0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003
Uranio	mg/L	0.0001	0.0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003
Vanadio	mg/L	0.0001	0.0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003	<0,0003
Zinc	mg/L	0.0001	0.0002	0.7674	0.0113	0.0046	<0,0002	0.0056	0.0067

Fuente: elaboración propia: Resultados generales de todos los parámetros obtenidos.

	I	ITEM		1	2	1	2	1	2
	CÓDIGO DE LABORATORIO:				M-21-47568	M-21-51838	M-21-51839	M-21-56224	M-21-56225
		CÓD	IGO DEL CLIENTE:	CA-H-1	CA-H-2	CA-H-1	CA-H-2	CA-H-1	CA-H-2
	COORDENADAS:			E:0225301	E:0224868	E:0225301	E:0224868	E:0225301	E:0224868
	UTM WGS 84:			N:8183829	N:8183707	N:8183829	N:8183707	N:8183829	N:8183707
	PRODUCTO:			Agua Natural					
	SUB PRODUCTO:			Superficial (Río)					
		INSTRUCTIV MUESTREO	-	NO A	PLICA	NO A	PLICA	NO A	PLICA
		FECHA y HOR.	A DE MUESTREO :	22-10-2021	22-10-2021	04-11-2021	04-11-2021	15-11-2021	15-11-2021
				10:30	10:50	11:20	11:30	03:34	03:41
ENSAYO	0	UNIDAD L.D	.M. L.C.M.	RESUL	TADOS	RESUL	TADOS	RESUL	TADOS
Metales Totales ICP-MS ²					1ra toma tras e	el experimento	2da toma tras	el experimento	
Cobre	mg/L	0.0001	0.0002	0.0670	0.0708	<0,0002	<0,0002	0.0202	0.0064

Fuente: elaboración propia: Resultados del cobre.

Anexo 7: Descriptivos

Descriptivos

			Estadístico	Error típ.
	Media		291,3333	197,94051
	Intervalo de confianza para	Límite inferior	-560,3359	
	la media al 95%	Límite superior	1143,0026	
	Media recortada al 5%			
	Mediana		202,0000	
	Varianza		117541,333	
Concentración de cobre CAH1	Desv. típ.		342,84302	
	Mínimo		2,00	
	Máximo	670,00		
	Rango	668,00		
	Amplitud intercuartil			
	Asimetría		1,093	1,225
	Curtosis			
	Media	I facility in facility	258,0000 -713,1549	225,71073
	Intervalo de confianza para la media al 95%	Límite inferior	1229,1549	
		Límite superior	1223,1343	
	Media recortada al 5%			
	Mediana		64,0000	
Concentración de cobre	Varianza		152836,000	
CAH2	Desv. típ.		390,94245	
	Mínimo		2,00	
	Máximo		708,00	
	Rango		706,00	
	Amplitud intercuartil			
	Asimetría		1,683	1,225
	Curtosis			

Anexo 8: ECA, categoría 3: Riego de vegetales y bebida de animales

		D1: Riego de vegetales		D2: Bebida de animales			D1: Riego d	le vegetales	D2: Bebida de animales	
Parametres	Unidad de medida	Agua para riego no restringido (c)	Agua para riego restringido	Bebida de animales	Parametros	Unidad de medida	Agua para riego no restringido (c)	Agua para riego restringido	Bebida de animales	
FISICOS- QUÍMICO	os	-			Arsénico	mg/L	0	,1	0,2	
Aceites y Grasas	mg/L		5	10	Bario	mg/L	0	,7	**	
Bicarbonatos	mg/L	5	18		Berilio	mg/L	0	,1	0,1	
Sianuro Wad	mg/L	0	.1	0,1	Boro	mg/L	. 59	t	5	
Cloruros	mg/L	5	00		Cadmio	mg/L	0,	01	0,05	
	Color				Cobre	mg/L	0	,2	0,5	
Color (b)	verdadero Escala PV	100) (a)	100 (a)	Cobalto Cromo Total	mg/L mg/L		.1	1	
	Co				Hierro	mg/L	5			
Conductividad	(µS/cm)	2.5	500	5 000	Litio	mg/L	-	.5	2.5	
Demanda			5	15	Magnesio	mg/L			250	
Bioquimica de Oxigeno (DBO,)	mg/L	'	5	-15	Manganeso	mg/L	0	.2	0.2	
Demanda Química					Mercurio	mg/L		001	0.01	
de Oxigeno (DQO)	mg/L	4	10	40	Niquel	mg/L	-	.2	1	
Detergentes	mg/L		.2	0.5	Plomo	mg/L	-	05	0,05	
SAAM)	mg/L		,2	0,0	Selenio	mg/L		02	0.05	
enoles	mg/L		102	0,01	Zinc	mg/L	2		24	
Fluoruros	mg/L		1		ORGÁNICO				3777	
Nitratos (NO, -N) + Nitritos (NO, -N)	mg/L	1	00	100	Bifenilos Policlora	dos	22	93		
Vitritos (NO, -N)	mg/L	1	0	10	Bifenilos Policlorados (PCB)	µg/L	0,	0.04		
Oxigeno Disuelto (valor minimo)	mg/L	2	4	≥ 5	PLAGUICIDAS					
Potencial de Hidrógeno (pH)	Unidad de pH	6,5	- 8,5	6,5 - 8,4	Paratión	µg/L	3	15	35	
Sulfatos	mg/L	10	100	1 000	Organoclorados	100.240		n. 1	0.7	
Temperatura	°C	Δ	3	Δ3	Aldrin	µg/L		004	0,7	
NORGÁNICOS	100	- 100			Clordano	µg/L	0,0	006	7	
Auminio	mg/L		5	5	Dicloro Difenil Tricloroetano (DDT)	μg/L	0,0	001	30	
					Dieldrin	µg/L	0	.5	0.5	
					Endosulfán	µg/L	-	01	0.01	
					Endrin	µg/L	0.0	004	0.2	
					Heptacloro y Heptacloro Epóxido	µg/L	0,	01	0,03	
					Lindano	µg/L	. 13	4	4	
					Carbamato	1 LUSS				
					Aldicarb	µg/L	183	1 1	11	
					MICROBIOLÓGICO		ITOLÓGICO			
					Coliformes Termotolerantes	NMP/100	1 000	2 000	1 000	
					Escherichia coli	NMP/100 ml	1 000			
					Huevos de Helmintos	Huevo/L	1	1		