

FACULTAD DE CIENCIAS DE LA SALUD

Escuela Académico Profesional de Odontología

Tesis

Diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro*, Arequipa 2022

Lourdes Almiron Enriquez Melisa Rosa Centeno Pari Ruth Roxana Velasquez Rios

Para optar el Título Profesional de Cirujano Dentista

Repositorio Institucional Continental Tesis digital

Esta obra está bajo una Licencia "Creative Commons Atribución 4.0 Internacional".

INFORME DE CONFORMIDAD DE ORIGINALIDAD DE TESIS

A : Claudia Teresa Ugarte

Decano de la Facultad de Ciencias de la Salud

DE : JANET ERIKA VARGAS MOTTA

Asesor de tesis

ASUNTO : Remito resultado de evaluación de originalidad de tesis

FECHA: 25 de noviembre de 2023

Con sumo agrado me dirijo a vuestro despacho para saludarlo y en vista de haber sido designado asesor de la tesis titulada: "DIFERENCIA CROMÁTICA DE TRES RESINAS COMPUESTAS SUMERGIDAS EN BEBIDAS PIGMENTANTES ESTUDIO IN VITRO, AREQUIPA 2022", perteneciente a las estudiantes LOURDES ALMIRON ENRIQUEZ, MELISA ROSA CENTENO PARI Y RUTH ROXANA VELASQUEZ RIOS, de la E. A. P. de Odontología; se procedió con la carga del documento a la plataforma "Turnitin" y se realizó la verificación completa de las coincidencias resaltadas por el software dando por resultado 0 % de similitud (informe adjunto) sin encontrarse hallazgos relacionados a plagio. Se utilizaron los siguientes filtros:

• Filtro de exclusión de bibliografía	SI X	NO
 Filtro de exclusión de grupos de palabras menores (N.º de palabras excluidas: 5) 	SI X	NO
• Exclusión de fuente por trabajo anterior del mismo estudiante	SI	NO X

En consecuencia, se determina que la tesis constituye un documento original al presentar similitud de otros autores (citas) por debajo del porcentaje establecido por la Universidad.

Recae toda responsabilidad del contenido de la tesis sobre el autor y asesor, en concordancia a los principios de legalidad, presunción de veracidad y simplicidad, expresados en el Reglamento del Registro Nacional de Trabajos de Investigación para optar grados académicos y títulos profesionales - RENATI y en la Directiva 003-2016-R/UC.

Esperando la atención a la presente, me despido sin otro particular y sea propicia la ocasión para renovar las muestras de mi especial consideración.

Atentamente,

La firma del asesor obra en el archivo original (No se muestra en este documento por estar expuesto a publicación)

DECLARACIÓN JURADA DE AUTENTICIDAD

Yo, **Lourdes Almiron Enriquez**, identificada con Documento Nacional de Identidad N.º 41175988, de la E. A. P. de Odontología de la Facultad de Ciencias de la Salud la Universidad Continental, declaro bajo juramento lo siguiente:

- La tesis titulada: "DIFERENCIA CROMÁTICA DE TRES RESINAS COMPUESTAS SUMERGIDAS EN BEBIDAS PIGMENTANTES ESTUDIO IN VITRO, AREQUIPA 2022", es de mi autoría, la misma que presento para optar el Título Profesional de Cirujano Dentista.
- 2. La tesis no ha sido plagiada ni total ni parcialmente, para la cual se han respetado las normas internacionales de citas y referencias para las fuentes consultadas, por lo que no atenta contra derechos de terceros.
- 3. La tesis es original e inédita, y no ha sido realizada, desarrollada o publicada, parcial ni totalmente, por terceras personas naturales o jurídicas. No incurre en autoplagio; es decir, no fue publicado ni presentado de manera previa para conseguir algún grado académico o título profesional.
- 4. Los datos presentados en los resultados son reales, pues no son falsos, duplicados, ni copiados, por consiguiente, constituyen un aporte significativo para la realidad estudiada.

De identificarse fraude, falsificación de datos, plagio, información sin cita de autores, uso ilegal de información ajena, asumo las consecuencias y sanciones que de mi acción se deriven, sometiéndome a las acciones legales pertinentes.

25 de noviembre de 2023

LOURDES ALMIRON ENRIQUEZ

DECLARACIÓN JURADA DE AUTENTICIDAD

Yo, **Melisa Rosa Centeno Pari**, identificada con Documento Nacional de Identidad N.º 72376281, de la E. A. P. de Odontología de la Facultad de Ciencias de la Salud la Universidad Continental, declaro bajo juramento lo siguiente:

- La tesis titulada: "DIFERENCIA CROMÁTICA DE TRES RESINAS COMPUESTAS SUMERGIDAS EN BEBIDAS PIGMENTANTES ESTUDIO IN VITRO, AREQUIPA 2022", es de mi autoría, la misma que presento para optar el Título Profesional de Cirujano Dentista.
- 2. La tesis no ha sido plagiada ni total ni parcialmente, para la cual se han respetado las normas internacionales de citas y referencias para las fuentes consultadas, por lo que no atenta contra derechos de terceros.
- 3. La tesis es original e inédita, y no ha sido realizada, desarrollada o publicada, parcial ni totalmente, por terceras personas naturales o jurídicas. No incurre en autoplagio; es decir, no fue publicado ni presentado de manera previa para conseguir algún grado académico o título profesional.
- 4. Los datos presentados en los resultados son reales, pues no son falsos, duplicados, ni copiados, por consiguiente, constituyen un aporte significativo para la realidad estudiada.

De identificarse fraude, falsificación de datos, plagio, información sin cita de autores, uso ilegal de información ajena, asumo las consecuencias y sanciones que de mi acción se deriven, sometiéndome a las acciones legales pertinentes.

25 de noviembre de 2023.

MELISA ROSA CENTENO PARI

DECLARACIÓN JURADA DE AUTENTICIDAD

Yo, **Ruth Roxana Velasquez Rios**, identificada con Documento Nacional de Identidad N.º 77081864, de la E. A. P. de Odontología de la Facultad de Ciencias de la Salud la Universidad Continental, declaro bajo juramento lo siguiente:

- La tesis titulada: "DIFERENCIA CROMÁTICA DE TRES RESINAS COMPUESTAS SUMERGIDAS EN BEBIDAS PIGMENTANTES ESTUDIO IN VITRO, AREQUIPA 2022", es de mi autoría, la misma que presento para optar el Título Profesional de Cirujano Dentista.
- 2. La tesis no ha sido plagiada ni total ni parcialmente, para la cual se han respetado las normas internacionales de citas y referencias para las fuentes consultadas, por lo que no atenta contra derechos de terceros.
- 3. La tesis es original e inédita, y no ha sido realizada, desarrollada o publicada, parcial ni totalmente, por terceras personas naturales o jurídicas. No incurre en autoplagio; es decir, no fue publicado ni presentado de manera previa para conseguir algún grado académico o título profesional.
- 4. Los datos presentados en los resultados son reales, pues no son falsos, duplicados, ni copiados, por consiguiente, constituyen un aporte significativo para la realidad estudiada.

De identificarse fraude, falsificación de datos, plagio, información sin cita de autores, uso ilegal de información ajena, asumo las consecuencias y sanciones que de mi acción se deriven, sometiéndome a las acciones legales pertinentes.

25 de noviembre de 2023.

RUTH ROXANA VELASQUEZ RIOS

Tesis

INFORME DE ORIGINALIDAD

INDICE DE SIMILITUD

FUENTES DE INTERNET PUBLICACIONES

TRABAJOS DEL ESTUDIANTE

FUENTES PRIMARIAS

Excluir citas Excluir bibliografía

Activo Activo Excluir coincidencias < 4%

Asesora Mag. C. D. JANET ERIKA VARGAS MOTTA

Dedicatoria

A mi padre Ernesto, por mostrarme el camino hacia la superación, a mis hermanos, por haberme apoyado incondicionalmente y dado ánimos para seguir con fuerzas y lograr mis metas trazadas; a mi esposo Wilber, por su paciencia, por brindarme su comprensión pese a las adversidades e inconvenientes que se presentaron; a mis hijas, Lucero y Alelí, quienes han sido mi mayor fuente de motivación e inspiración para nunca rendirme en los estudios y poder superarme cada día más y llegar a ser un ejemplo para ellas.

Lourdes Almirón Enríquez

A Dios, que gracias a él he logrado acabar mi carrera; a mis padres, que me apoyaron y estuvieron conmigo siempre. Gracias por enseñarme a afrontar las dificultades sin perder nunca la cabeza ni morir en el intento. A mi esposo Diego, por su paciencia, comprensión, empeño, fuerza y amor. A mi hija Gianella, su nacimiento ha coincidido con la finalización de esta tesis. Sin duda ella es lo mejor que me ha pasado, y ha llegado en el momento justo para darme el último empujón que me faltaba para terminar el proyecto.

Melisa Rosa Centeno Parí

A Dios, por ser el inspirador y darnos fuerza para continuar en este proceso de obtener uno de los anhelos más deseados. A toda mi familia, a mis padres, que me apoyaron y contuvieron en los momentos malos y en los menos malos. Gracias por enseñarme a afrontar las dificultades sin perder nunca la cabeza ni morir en el intento.

Ruth Roxana Velásquez Ríos

Agradecimientos

A la Universidad Continental y a los docentes, donde supieron impartir sus conocimientos con mucho esfuerzo, para hacer posible la preparación profesional. A nuestra asesora de tesis, Mag. C. D. Janet Erika Vargas Motta, por habernos brindado la oportunidad de recurrir a su capacidad, conocimiento científico, su disponibilidad y apoyo durante todo el desarrollo de este trabajo de investigación.

A nuestras familias y amigos, por estar presentes apoyándonos durante todo este proceso.

Índice

Asesora	vii
Dedicatoria	viii
Agradecimientos	ix
Índice	X
Índice de Tablas	xiii
Índice de Figuras	xiv
Resumen	xvi
Abstract	xvii
Introducción	xviii
Capítulo I	19
Planteamiento del Estudio	19
1.1. Delimitación de la Investigación	19
1.1.1. Delimitación Territorial.	19
1.1.2. Delimitación Temporal	19
1.1.3. Delimitación Conceptual.	19
1.2. Planteamiento del Problema	19
1.3. Formulación del Problema.	20
1.3.1. Problema General.	20
1.3.2. Problemas Específicos.	20
1.4. Objetivos	20
1.4.1. Objetivo General.	20
1.4.2. Objetivos Específicos.	21
1.5. Justificación	21
1.5.1. Justificación Teórica.	21
1.5.2. Justificación Práctica.	21
1.5.3. Justificación Metodológica	21
1.5.4. Justificación Económica.	21
1.5.5. Justificación Social.	22
Capítulo II	23
Marco Teórico	23
2.1. Antecedentes del Problema	23
2.1.1. Antecedentes Internacionales.	23
2.1.2. Antecedentes Nacionales.	25
2.1.3. Antecedentes Locales.	28
2.2. Bases Teóricas	29

	2.2.1. Color en Odontología.	29
	2.2.2. Selección de Color	30
	2.2.3. Métodos para la Selección del Color.	.30
	2.2.4. Chromascop	.30
	2.2.5. Elección del Color del Diente.	.31
	2.2.6. Métodos para la Evaluación del Color	.32
	2.2.7. Factores Intrínsecos.	32
	2.2.8. Factores Extrínsecos.	.32
	2.2.9. Generalidades de Resinas Compuestas.	32
	2.2.10. Composición.	.34
	2.2.11. Inhibidores o Estabilizadores.	.34
	2.2.12. Modificadores Ópticos.	.35
	2.2.13. Bebidas Carbonatadas	.35
Cap	oítulo III	.36
Hip	ótesis y Variables	36
3.1.	Hipótesis	36
	3.3.1. Hipótesis General.	36
	3.3.2. Hipótesis Específicas.	36
3.2.	Identificación de Variables	36
3.3.	Operacionalización de Variables	38
Cap	oítulo IV	39
Met	todología	39
4.1.	Métodos, Tipo y Nivel de la Investigación	39
	4.1.1. Método de la Investigación.	39
	4.1.2. Tipo de la Investigación.	39
	4.1.3. Alcance de la Investigación.	39
4.2.	Diseño de la Investigación	39
4.3.	Población y Muestra	.40
	4.3.1. Población	.40
	4.3.2. Muestra	.40
4.4.	Técnicas e Instrumentos de Recolección y Análisis de Datos	.41
	4.4.1. Técnicas.	.41
	4.4.2. Instrumento de Recolección de Datos.	.42
	4.4.3. Procedimiento de la Investigación.	.42
4.5.	Consideraciones Éticas	.45
Cap	oítulo V	.46
Res	ultados y Discusión	.46

5.1. Presentación de Resultados	46
5.2. Discusión	62
Conclusiones	64
Lista de Referencias	66
Anexos	70

Índice de Tablas

Tabla 1. Clasificación de resinas compuestas	35
Tabla 2. Operacionalización de variables	38
Tabla 3. Bebidas pigmentantes	45
Tabla 4. Evaluación de la diferencia cromática de la resina compuesta Llis an	te la sumersión
en bebida pigmentante (vino) a los 7, 15 y 30 días	46
Tabla 5. Evaluación de la diferencia cromática de la resina compuesta Br	rilliants ante la
sumersión en bebida pigmentante (vino) a los 7, 15 y 30 días	47
Tabla 6. Evaluación de la diferencia cromática de la resina compuesta o	Opallis ante la
sumersión en bebida pigmentante (vino) a los 7, 15 y 30 días	48
Tabla 7. Evaluación de la diferencia cromática de la resina compuesta Llis an	te la sumersión
en bebida pigmentante (café) a los 7, 15 y 30 días	49
Tabla 8. Evaluación de la diferencia cromática de la resina compuesta Br	rilliants ante la
sumersión en bebida pigmentante (café) a los 7, 15 y 30 días	50
Tabla 9. Evaluación de la diferencia cromática de la resina compuesta o	Opallis ante la
sumersión en bebida pigmentante (café) a los 7, 15 y 30 días	51
Tabla 10. Evaluación de la diferencia cromática de la resina compuesta Llis an	te la sumersión
en bebida pigmentante (gaseosa) a los 7, 15 y 30 días	52
Tabla 11. Evaluación de la diferencia cromática de la resina compuesta Br	rilliants ante la
sumersión en bebida pigmentante (gaseosa) a los 7, 15 y 30 días	53
Tabla 12. Evaluación de la diferencia cromática de la resina compuesta o	Opallis ante la
sumersión en bebida pigmentante (gaseosa) a los 7, 15 y 30 días	54
Tabla 13. Evaluación de la diferencia cromática de los tres tipos de resina con	mpuesta ante la
sumersión en bebidas pigmentantes a los 7, 15 y 30 días	55
Tabla 14. Evaluación de la diferencia cromática de los tres tipos de resina con	mpuesta ante la
sumersión en bebidas pigmentantes al control de 7 días	57
Tabla 15. Evaluación de la diferencia cromática de los tres tipos de resina con	mpuesta ante la
sumersión en bebidas pigmentantes al control de 15 días	59
Tabla 16. Evaluación de la diferencia cromática de los tres tipos de resina con	mpuesta ante la
sumersión en bebidas pigmentantes al control de 30 días	61
Tabla 17. Evaluación de la diferencia cromática de los tres tipos de resina con	mpuesta ante la
sumersión en bebidas pigmentantes al control de 72 horas	89
Tabla 18. Evaluación de la diferencia cromática de los tres tipos de resina con	mpuesta ante la
sumersión en bebidas pigmentantes al control de 120 horas	90

Índice de Figuras

Figura 1. Carillas	41
Figura 2. Se procede a seleccionar las resinas y las bebidas para la elaborac	ión de la
investigación	93
Figura 3. Se sacaron los moldes de las carillas del colorímetro de chromascop con la	impresión
en silicona de impresión	93
Figura 4. Se elaboraron las carillas para la muestra de investigación emp	leando el
procedimiento de empaquetamiento y foto curado de las resinas	94
Figura 5. Las carillas ya elaboradas fueron separadas en grupos de las marcas selec	ccionadas,
el color de selección en el colorímetro fue 120	94
Figura 6. Dosificación de las bebidas pigmentantes en 4 onzas	95
Figura 7. Control de las muestras de 7,15 y 30 días en la estufa a temperatura de s	imulación
corporal humana 36 °C	95
Figura 8. Control de vino 1A (120) –1E (230) 2C (240)	96
Figura 9. Control de café 1A (120) – 2A (140)	96
Figura 10. Control de gaseosa 1A (120) – 2A (130)	96
Figura 11. Control de vino 1A (120) –1C (140)	97
Figura 12. Control de café 1A (120) – 2C (240)	97
Figura 13. Control de gaseosa 1A (120) – 1A (120)	97
Figura 14. Control de vino 1A (120) –2 A (130)	98
Figura 15. Control de café 1A (120) – 2C (240)	98
Figura 16. Control de vino 1A (120) –5B (320) 3A (310)	99
Figura 17. Control de café 1A (120) – 2C (240)	99
Figura 18. Control de gaseosa 1A (120) – 1C (140)	99
Figura 19. Control de vino 1A (120) –1D (220)	100
Figura 20. Control de café 1A (120) – 1C (140)	100
Figura 21. Control de gaseosa 1A (120) – 2A (130)	100
Figura 22. Control de vino 1A (120) –1C (140)	101
Figura 23. Control de café 1A (120) – 2 A (130)	101
Figura 24. Control de gaseosa 1A (120) – 1A (120)	101
Figura 25. Control de vino 1A (120) – 4A (410) 3E (340)	102
Figura 26. Control de café 1A (120) – 2E (330)	102
Figura 27. Control de gaseosa 1A (120) – 1D (220)	102
Figura 28. Control de vino 1A (120) – 5B (320)	103
Figura 29. Control de café 1A (120) – 1E (230)	103
Figura 30. Control de gaseosa 1A (120) – 1C (140)	103

Figura 31. Control de vino 1A (120) – 1D (220)	104
Figura 32. Control de café 1A (120) – 2B (210)	104
Figura 33. Control de gaseosa 1A (120) – 2A (130)	104

Resumen

Objetivo: Comparar la diferencia cromática de tres resinas compuestas sumergidas en

bebidas pigmentantes estudio in vitro, Arequipa 2022.

Materiales y métodos: Empleando el método científico, con un tipo de investigación

aplicada se realizó un estudio de diseño cuasiexperimental de corte longitudinal con

evaluaciones de 3 periodos de la exposición a bebidas pigmentantes de tres tipos de resinas

comerciales, donde se elaboraron carillas de resina contando con una población de 60

muestras, las cuales se subdividen en 5 repeticiones por tipo de resina.

Resultados: Las resinas Llis, Brilliant NG y Opallis expuestas a bebida pigmentante

(vino) con una variación cromática promedio desde 120 ± 293 con una desviación de 64.29,

seguido de la bebida pigmentante (café) con una variación cromática promedio desde 120 ±

256 con una desviación de 64.29, seguido de la bebida pigmentante (gaseosa) con una

variación cromática promedio desde 120 ± 160 con una desviación de 51.96.

Conclusión: Se ha podido determinar que existe diferencia significativa en la

variación cromática de los tres tipos de resina ante la exposición de bebidas pigmentantes

(vino, café, gaseosa) evidenciándose como la bebida pigmentante más fuerte al vino.

Palabras clave: bebidas pigmentantes, diferencia cromática, resinas

xvi

Abstract

Objective: To compare the chromatic difference of three composite resins submerged

in pigmented drinks, an in vitro study, Arequipa 2022.

Materials and methods: using the scientific method, with a type of applied research,

a longitudinal cut experimental design study was carried out with evaluations of 3 periods of

exposure to pigmenting drinks of three types of commercial resins, where resin veneers were

made with a population of 60 samples which are subdivided into 5 repetitions per type of resin.

Results: Llis, Brilliants and Opallis resins exposed to pigment drink (wine) with an

average chromatic variation from 120 ± 293 with a deviation of 64.29, followed by the pigment

drink (coffee) with an average chromatic variation from 120 ± 256 with a deviation of 64.29,

followed by the pigment drink (soda) with an average chromatic variation from 120 ± 160 with

a deviation of 51.96.

Conclusion: It has been possible to determine that there is a significant difference in

the chromatic variation of the three types of resin when exposed to pigmenting drinks (wine,

coffee, soda) the strongest pigmenting beverage is wine.

Keywords: chromatic difference, pigmenting beverage, resins

xvii

Introducción

El órgano dentario es sensible a la pigmentación y coloración, el cual puede darse por diversos factores, los cuales se enfocan al consumo tanto de alimentos como también bebidas, que son altamente de contenido pigmentante cromógeno como "el café, vino, bebidas carbonatadas, etc.". Estos agentes también afectan a los materiales restauradores como lo son las resinas dentales. Hoy en día los materiales restauradores estéticos son los más empleados en la práctica odontológica, los cuales han ido evolucionando con el pasar del tiempo, siendo la resina el material más empleado en el área de restauraciones estéticas, el que se encuentra en diversas presentaciones como marcas comerciales en el mercado para el uso de los profesionales de salud en el área odontológica y, recientemente, se ha llevado al mercado un tipo de resinas con nanocompuestos siendo más compactas a las microhíbridas.

Las causas más esenciales en la alteración en la coloración de los materiales restauradores estéticos presentan factores intrínsecos, extrínsecos, los cuales llegan a tener gran adherencia a la superficie de la estructura dental, así como lo es la placa bacteriana y llegan a tener gran impacto en la pigmentación en estos materiales de resina.

Cuando los materiales estéticos restauradores como las resinas son expuestas a bebidas pigmentantes llegan a tener como respuesta un cambio de color el cual lleva una alteración estética el cual no es de agrado para el paciente siendo este inconveniente las visitas muy repetidas a consulta odontológica por la solución del inconveniente estético.

Capítulo I

Planteamiento del Estudio

1.1. Delimitación de la Investigación

1.1.1. Delimitación Territorial.

La presente investigación fue llevada a cabo en la ciudad de Arequipa, provincia y departamento de Arequipa, en la clínica odontológica Biodens, ubicada en la calle Octavio Muñoz Najar 238, oficina 202, segundo piso, ubicado en el cercado de la ciudad.

1.1.2. Delimitación Temporal.

La investigación comprende desde enero hasta marzo del 2023.

1.1.3. Delimitación Conceptual.

La investigación aborda temas de materiales dentales en cuanto a resinas de uso comercial y bebidas pigmentantes presentes en el consumo diario de la población.

1.2. Planteamiento del Problema

El matiz de los dientes está predispuesto por el estado del esmalte, que se ve alterado por los alimentos de consumo diario, ya sea una dieta saludable o una dieta con alto contenido cariogénico, así como el vino, el café, las bebidas carbonatadas y otros colorantes (1).

Por ello, se analizó la cantidad y frecuencia de los alimentos más pigmentados en las restauraciones de resina. Considerando que las bebidas más consumidas en el medio social son

las bebidas pigmentadas, se ha demostrado, según precedentes, que tienen efectos antioxidantes o antimutagénicos afectando cambios en el color de los dientes y por supuesto materiales restauradores (2).

Las resinas compuestas se han convertido en un material del área odontológica que es más empleado en la restauración de piezas dentales, ya sea que estén cariadas o estructuralmente destruidas, debido a que son estéticamente aceptables y lo suficientemente maleables para su técnica (1).

Las resinas dentales en su propiedades de restauración estética pueden verse afectadas por la apariencia en cuanto al color que poseen o la susceptibilidad cromática que puede adaptarse; hoy en día, las restauraciones dentales a base de resinas son las más utilizadas en la odontología, tanto pública como privada, y además se acompañan del hábito de ingerir bebidas con alto contenido de pigmentos, lo que sugiere que las resinas restauradoras pueden presentar cambios estructurales o de color como tema de investigación, por lo que, se puede determinar qué tipo de resina comercial es más resistente a la pigmentación, y cuál es el material restaurador más dominante.

1.3. Formulación del Problema

1.3.1. Problema General.

¿Cuál es la diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro*, Arequipa, 2022?

1.3.2. Problemas Específicos.

¿Cuál es la diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro* durante 7 días, Arequipa, 2022?

¿Cuál es la diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro* durante 15 días, Arequipa, 2022?

¿Cuál es la diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro* durante 30 días, Arequipa, 2022?

1.4. Objetivos

1.4.1. Objetivo General.

Comparar la diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro*, Arequipa, 2022.

1.4.2. Objetivos Específicos.

Comparar la diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro* durante 7 días, Arequipa, 2022.

Comparar la diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro* durante 15 días, Arequipa, 2022.

Comparar la diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro* durante 30 días, Arequipa, 2022.

1.5. Justificación

1.5.1. Justificación Teórica.

La investigación indica que el clima frío es fundamental porque el consumo de bebidas pigmentantes puede provocar una hiperpigmentación severa, lo que puede conducir a múltiples sesiones de blanqueamiento, lo que puede provocar sensibilidad o hipersensibilidad dental.

1.5.2. Justificación Práctica.

La investigación ayudará al ámbito laboral para poder dar una opción más al entorno odontológico a elegir una resina en una de sus diversas propiedades de estética, y mejorar la calidad de los tratamientos de restauración dental.

1.5.3. Justificación Metodológica.

La presente investigación desarrolló la comparación de los tipos de resina y las bebidas pigmentantes donde se pudo determinar en su cambio de coloración y así dar un aporte en cuanto a la resina más resistente a pigmentación donde se podrá medir con el colorímetro y así poder evaluar ambas variables.

1.5.4. Justificación Económica.

La presente investigación es posible debido a que el presupuesto está disponible para las investigadoras y el material de evaluación tanto resinas y bebidas pigmentantes son adquiribles, ya que las bebidas pigmentadas son un producto que se expende en la localidad y las resinas seleccionadas son las más empleadas en el área odontológica.

1.5.5. Justificación Social.

Muchos pretenden tener la proverbial sonrisa perfecta que no solo muestre una dentición recta sino también una tonalidad aceptable, los pacientes siempre buscan una opinión o un antecedente sobre la elección del tipo de restauración y el tipo de material que va a recibir, esta investigación también servirá para darle una alternativa al paciente para que pueda tener una mejor perspectiva en la elección del material de restauración.

Capítulo II

Marco Teórico

2.1. Antecedentes del Problema

2.1.1. Antecedentes Internacionales.

Según Parra (3), buscó determinar factores que modifican la persistencia del color de las resinas. Donde los resultados del análisis científico muestran que la estabilidad del color depende de diversos elementos, como el tipo de lámpara utilizada en el fotocurado, el tipo de foto iniciador presente en el compuesto, el tamaño de las partículas de relleno, la matriz de resina, etc., así como, el consumo de bebidas coloreadas, el consumo de cigarrillos y el proceso de acabado y pulido de restauraciones de *composite*. Se concluyó que para obtener restauraciones de resina compuesta con estabilidad de color sostenido en el tiempo, es necesario considerar todos los factores extrínsecos e intrínsecos que trabajarán en conjunto para lograr el objetivo deseado.

Según Guevara et al. (4), buscaron determinar la pigmentación y variación de resinas Empress Direct® y Forma® tras la exposición a gaseosa y café, medido con un espectrofotómetro, como parte de la metodología se empleó 6 discos de resina (diámetro 20 mm, espesor 2,8 mm) de las marcas mencionadas, 2 muestras cada uno, remojados en café a una temperatura promedio de 33 °C con una media de 27 °C para gaseosa y utilizando saliva artificial como control. Resultados: cuando los discos compuestos se sumergieron en bebidas oscuras, su estabilidad de color cambió gradualmente con el tiempo. Conclusión: en comparación con Empress Direct, el disco

hecho de resina Forma tiene una diferencia de color más pequeña y un color más estable, y la sustancia pigmentaria con el mayor grado de coloración es el café.

Según Jucht et al. (5), el objetivo fue determinar la estabilidad de color de tres resinas compuestas al aplicar una técnica de bloqueo para la pigmentación del café. Método: 10 muestras de resina Tetric EvoCeramTM Bulk-fill (BF), el grupo experimental se revistió con una capa de adhesivo Adper Single Bond PlusTM como sellador, y los círculos fueron redondeados. Los discos fueron remojados en café durante 28 días. Se observó que los valores delta E (Δ E) de las resinas FZ fueron consistentemente más altos en comparación con las otras resinas y es claro que la aplicación del sello no mejoró la permanencia del color de resinas de manera estadísticamente significativa, obteniendo p = 000.

Según Guevara (6), quien analizó los factores asociados con las diferencias de color en resinas compuestas cuando se exponen a bebidas de consumo frecuente. Encontró que Coca-Cola es de mayor cambio de color, con un tono promedio (H) de 84 % y un brillo (B) de 65 %. Las muestras remojadas en café presentaron un cambio de color con una tonalidad promedio (H) de 79 % y una luminosidad promedio de 55 %, mientras que el agua, la sustancia que causa menos pigmentación, tuvo una tonalidad promedio (H) de 65 % y una luminosidad promedio de 55 %. croma 55 %. Brillo 55 %. 51 % brillo (B). Como se puede observar en este estudio, Coca-Cola fue la bebida que causó el mayor impacto visible, seguida del café y el agua, considerando que el tipo de resina utilizada en el estudio fue de la empresa comercial Dentsply Sirona. Conclusiones: El estudio mostró que las bebidas de consumo común como gaseosas y café producen pigmentación.

Ramos (7) buscó establecer las reconstrucciones expuestas a 3 soluciones pigmentadas, vino, jugo de frutas artificiales y té verde, que fueron propensas a la hiperpigmentación. Se encontró que la resina *Opallis* era la que menos se manchaba con un promedio de 4,24, mientras que las otras dos resinas, Z350 y *Brilliant*, tenían un promedio de 7,7 y 7,2 respectivamente. También se demostró que todas las sustancias de prueba podían inducir cambios de color muy significativos más allá del límite establecido de 3,5 Delta E, lo que indica que estos cambios son perceptibles para los humanos. Se ha establecido que los vinos más pigmentados y los vinos menos pigmentados son los jugos artificiales utilizados en su elaboración.

Guzmán et al. (8) tuvieron como finalidad el análisis del efecto de la exposición a bebidas coloreadas sobre la estabilidad del color de las resinas compuestas. Todas las pruebas encontraron k = 0.00, especialmente para las sustancias vino y café, pero para Coca-Cola las variables constantes no permiten calcular el mismo índice de color antes y después de la exposición. Por lo tanto, se puede concluir que la resina Filtek P60 es la resina con mayor cambio de color, especialmente en comparación con el vino, mientras que Filtek logró el mismo efecto en el café y el vino, la gaseosa no dio ningún tipo de colorante de resina.

Torres (9) realizó un estudio cualitativo-cuantitativo *in vitro* en 42 restauraciones cervicales (21 de resina compuesta) para determinar la sensibilidad pigmentaria de las restauraciones por exposición a tres sustancias coloreadas: vino, café y soda. En los resultados, hubo una diferencia estadísticamente significativa entre la resina 3M y la resina compuesta Z250 en términos de pigmentación y distancia de la restauración cervical. En la prueba de comparación de Tukey, el Z250 fue el más eficaz para la pigmentación de las tres sustancias, con un promedio de 13,89 en comparación con los 14,27 de 3M. También se han demostrado sustancias hiperpigmentadoras: el vino, el café y las colas provocan cambios de hiperpigmentación muy notorios y detectables por el ojo humano; asimismo, una sustancia que se ha demostrado que provoca hiperpigmentación en las restauraciones es el vino.

Gadonski et al. (10) tuvieron como objetivo comparar dos marcas de composites dentales de nanopartículas Bulk Fill y Z350 (3M ESPE) y dos sistemas de pulido SofLex Disc y SofLex Rubberized Spiral Disc (3M ESPE) se probaron para el cambio de color y se subdividieron en un grupo de control y experimento (café), durante 21 días. Se observó que el color de ambas resinas cambió en presencia de café, sin embargo, la resina Z350 mostró un cambio mayor en comparación con el bulk fill. Conclusiones: Si bien la solución de tinción de café logró promover el cambio de color de las resinas estudiadas, el sistema de pulido en sí no tuvo un efecto determinante en el cambio de color de estos materiales de restauración.

2.1.2. Antecedentes Nacionales.

Amador et al. (11) buscaron comparar diferencias en la estabilidad del color de los *composites* Palfique y Vittra APS después de remojarlos en café. La muestra estuvo compuesta por 30 discos de resina. Para la recolección de datos, utilizaron la

observación como técnica de recolección y como herramienta a los formularios. Los resultados mostraron que el 80 % de las resinas Palfique tenían 5 tonos y el 20 % de las resinas Palfique tenían 8 tonos; las resinas Solare X tenían el 100 % de 3 tonos, mientras que las resinas Vittra APS tenían el 10 % de 3 tonos y el 90 % de las 5 variaciones de tono; concluyendo que la resina Solare X era la más estable en cuanto al color, seguida de la resina Vittra y la marca Palfique, la menos estable.

Sarmiento et al. (12) evaluaron el efecto de la chicha de jora, chicha morada y bebidas de café sobre resina dental Filtek 3M y color Palfique LX5. Resultados: Teniendo en cuenta el color, la tonalidad y la saturación, cabe señalar que la resina Palfique empapada en chicha de jora no mostró ningún cambio de color, mientras que la resina Filtek empapada en la misma bebida mostró un cambio de color de A1-A2. El color del café es C4 y el color de la chicha morada es A3. Conclusión: La resina que produjo baja coloración fue Palfique LX5, el café produjo mayor valor de color y la chicha de jora no produjo mucha diferencia de color.

Atencio et al. (13), buscaron comparar los efectos de 3 bebidas sobre la persistencia del color de las nanorresinas. Entre ellos, los 30 discos de resina, el color inicial observado fue A2 (5), y luego de 30 días, el color final promedio de los discos empapados en Coca-Cola fue 2 (A1), y el coeficiente de variación fue del 60 %. El color final de los discos promedió 14 (C3) con variación del 18 %, y el color final de los discos empapados de cerveza promedió 8 (D4) con variación del 10 %. Estabilidad del color de A2-A1, vino de A2 a C3, cerveza de A2- D4. Conclusión: Se hallan diferencias en los efectos de las tres bebidas sobre la estabilidad del color de nanorresina urbana Tacna 2021. valor p = 0.000 en prueba de efecto y comparaciones múltiples.

Machaca (14) evaluó el efecto del vino en la diferencia de color de las resinas nanohídridas. Materiales y métodos: Este es un estudio experimental, correlativo y longitudinal que consta de 120 discos de resina de 8 mm de diámetro por 2 mm de espesor, divididos en cuatro grupos dulce, seco, semiseco y control; en esta investigación tanto en el Z250 como en el Kerr, las resinas mostraron un cambio de color al final del estudio, y ambas resinas cambiaron a un tono C4, respectivamente. Conclusiones: Los vinos generalmente desarrollan diferencias de color, siendo el vino seco la mayor diferencia de las dos resinas, lo que provoca que ambas resinas cambien de un tono A2 inicial a un tono C4.

Zapata et al. (15) evaluaron cómo el color de las resinas puede cambiar debido a la exposición a sustancias coloreadas. El tipo de estudio es un diseño descriptivo básico. Según el informe, el 31,9 % de los artículos de revisión dijeron que el vino se consideraba una de las sustancias que más manchan. El 56,9 % de los artículos indicaron que las nanorresinas fueron las más utilizadas. El 50,2 % de los autores utilizó un tiempo de exposición de 8 a 30 días. El 31,9 % de los artículos fueron extraídos de la base de datos Scopus, y el 30,6 % de los artículos catalogaron el 2019 como el año con mayor número de publicaciones. La recopilación y el análisis produjeron 72 artículos científicos que mostraban la decoloración de resinas expuestas a soluciones pigmentantes.

Huarcaya (16) evaluó el efecto de las bebidas coloreadas sobre la estabilidad del color de las resinas. Para ello, utilizó tres bebidas de diferentes colores (Coca-Cola, vino y Red Bull) para crear diferencias de color en la resina. Los resultados mostraron una diferencia de color de 3,3 \pm 1,83 para el compuesto Tetric N-Flow en comparación con Coca-Cola, 5 \pm 0,0 en comparación con Red Bull y 10,7 \pm 2,5 en comparación con Red Wine. El compuesto Tetric N-Ceram de Coca-Cola tuvo una variación de 0,7 \pm 1,83, el de Red Bull tuvo una variación de 1,4 \pm 0,84 y el vino tuvo una variación de 10,4 \pm 2,8. Finalmente, los compuestos Filtek Bulk Fill diferían en 1,0 \pm 0,0 para Coca-Cola, 0,7 \pm 0,48 para Red Bull y 7,8 \pm 3,22 para Vino. Por lo tanto, se puede concluir que el vino tiene una mayor diferencia de color que otras bebidas coloreadas.

Reyes et al. (17) compararon el efecto de diferentes bebidas (café instantáneo, vino , té verde, agua salada) sobre la estabilidad del color después de 10 días de inmersión en las resinas FiltekZ350, Filtek, Bulk Fill y Tetric Bulk Fill. Grupo 1 Filtek Resina, Grupo 2 3MTM FiltekTM Bulk Fill Resina y Grupo 3 Tetric Bulk Fill Resina. Estos se subdividen en 4 subgrupos (4 muestras). Un grupo fue sumergido en café instantáneo, otro en té verde y vino, y finalmente en agua salada, cambiando la bebida coloreada y la salina cada 24 horas. Se utilizó una guía de color *Chromascop* durante 10 días de selección de color. Una prueba de inmersión en bebidas coloreadas de 10 días arrojó resultados que mostraron diferencias de color entre las tres resinas, concluyendo que la resina FiltekTM Z350 tenía la estabilidad de color más baja, seguida por la resina Tetric N-Ceram Bulk Fill. Llenado a granel FiltekTM.

Roncal et al. (18) tuvieron por objetivo la comparación de la estabilidad del color de las tabletas de resina 350, PalfiqueLX5 y TetricCeram después de la infusión

de café *in vitro*. Este estudio es de tipo experimental aplicado porque la duración de la serie es longitudinal, prospectiva y sensible al nivel de interpretación. Para recopilar información, se fabricaron 30 muestras en forma de disco con un diámetro de 6 mm y un espesor de 2 mm. Las muestras se dividieron en tres grupos experimentales de 10 unidades cada uno. El primer juego consistió en resina FiltekZ350, el segundo juego consistió en resina PalfiqueLX5 y el tercer juego consistió en Tetric Ceram. Asimismo, se utilizaron discos Soflex con diferentes tamaños de grano para el acabado y pulido de muestras de resina compuesta.

Chambilla (19) comparó los efectos del vino y el café en la adsorción y solubilidad de las resinas de nanopartículas. Bajo la influencia del café, la adsorción primero aumentó y luego disminuyó y, a la inversa, la solubilidad primero disminuyó y luego aumentó. A juzgar por el efecto del vino, hay una diferencia en la cantidad de adsorción, que inicialmente aumenta y luego disminuye, mientras que el valor de la solubilidad se mantiene durante 15 días y luego disminuye. De los resultados obtenidos se puede inferir que el vino es más adsorbente y menos soluble que el café. Conclusiones: En contraste, el efecto del café sobre la adsorción y solubilidad de la resina de nanopartículas no fue significativamente diferente al del vino (p > 0.05).

Llerena (20) buscó determinar cuál es el efecto del café en la diferencia de color de resinas híbridas y nanohíbridas. Las evaluaciones se realizan utilizando un espectrofotómetro y los cambios observados se registran en una tabla para permitir la comparación de las diferencias de color exhibidas por las resinas híbridas y nanohíbridas en comparación con el pigmento expuesto. Finalmente, se concluyó que hubo una diferencia significativa en la diferencia de color inducida por el café entre las resinas híbridas y nanohíbridas. El grupo de resina híbrida y el grupo de resina nanohíbrida tendieron a mostrar una gran diferencia según el tiempo de exposición.

2.1.3. Antecedentes Locales.

Laura (21) buscó analizar el cambio de color de las resinas después de ser sometidas a diferentes soluciones líquidas y determinar el período de tiempo durante el cual se ven afectadas las propiedades estéticas de estos materiales. Utilizó un espectrofotómetro (comparador de color de dientes) para obtener lecturas de color. Sobre los resultados obtenidos se realizó la prueba x^2 . En la comparación de Fuji Resina y 3M, con respecto a la bebida (S2), la diferencia es significativa porque Fuji Resina sufre un mayor cambio de color, es decir, Fuji Resina sufre un mayor cambio

de color. Por otro lado, se puede concluir que para la bebida (S1) el color es diferente, lo que indica que el tono final es el mismo. Comparando las dos bebidas y resinas, se puede ver que para la marca Fuji, la bebida (S2) produjo un mayor cambio de color que (S1). Al mismo tiempo, la bebida (S1) determina el mayor cambio de color, por lo que ocurre lo contrario para 3M. Por lo tanto, se puede concluir que las propiedades estéticas de las resinas fotopolimerizables investigadas se ven afectadas después de un período de tiempo. La evidencia de la resina 3M es el color de la bebida (S1), el cambio de color de la bebida (S2) es pequeño.

2.2. Bases Teóricas

2.2.1. Color en Odontología.

La coloración del órgano dentario se da por la tecidues de la luz, en cuanto a la superficie, esta se percibe desde el interior de la dentina el cual establece el color y para dar matiz está el esmalte haciendo un trabajo de filtro para visualizar la dentina, que con una característica transparente da una saturación básica al diente (22).

El concepto de luz y color del diente es la opalescencia, que produce un efecto de brillo cuando la luz se dispersa sobre los cristales de hidroxiapatita hallados en la zona superficial del esmalte, disponibles en longitudes de onda de 0.02 y 0.0.04 μm , en diferentes tamaños. Para compensar la luz visible, se produce un tinte azul grisáceo en borde incisal y naranja en la zona del cuello (23).

Definitivamente, se debe considerar la fluorescencia dental natural presente en el esmalte y la dentina, que absorbe la energía de la luz ultravioleta y emitirla seguidamente en forma de luz visible, razón por la que los dientes presentan fluorescencia cuando se exponen de forma natural. Bajo luz ultravioleta, la luz crea un aspecto más blanco y brillante.

Tercio cervical: Al presentar capas muy finas, mientras que la dentina presenta un gran espesor, el desempeño del color se ve mínimamente afectado por el esmalte, resultando en tonalidades y valores promedio más altos en los tercios medio e incisal.

El tercio medio: Se caracteriza por una baja translucidez debido a la espesa dentina, mientras que una gruesa capa de esmalte consigue desaturar la dentina y aumentar el brillo final.

Margen incisal: El rendimiento del color está determinado por las características del esmalte, que es muy espeso y transparente. Cerca de los márgenes incisales, hay una dentina muy fina, dispuesta en protuberancias parecidas a números llamados esmalte.

2.2.2. Selección de Color.

La selección de colores es tanto un proceso cerebral como visual. La tonalidad debe seleccionarse antes de que el reflector del sillón dental esté completamente aislado y sin luz. Porque la separación absoluta deshidrata la estructura del diente, refleja selectivamente la luz y cambia la iluminación (24).

2.2.3. Métodos para la Selección del Color.

Para seleccionar el color de las piezas dentarias se orienta más en un análisis focal visual que se obtiene desde una perspectiva de distancia en cuanto a la posición del sillón odontológico y debe encontrarse distanciado de la luz para que no haya una variación del color por la iluminación en donde se emplea colorímetros de ayuda.

Otro método de selección de color es a través de un colorímetro digital, que captura tridimensional el color independientemente de iluminación, sin embargo, no hay suficiente evidencia de su confiabilidad, y con *Spectroshade* se tiene (mht internacional) una diferencia significativa con los métodos de visión tradicionales Yisha (vita) (25).

2.2.4. Chromascop.

Esta guía contiene 20 modelos particionados en grupos de color de 5: 100 (blanco), 200 (amarillo), 300 (marrón claro), 400 (gris) y 500 (marrón oscuro). Cada grupo contiene 4 muestras en orden ascendente de tono. Los valores mínimos son 25 y 10, el máximo es 40, usando primero el tono y segundo el croma.

2.2.5. Elección del Color del Diente.

Para elegir el color adecuado, se debe distinguir el valor y el tono de la luz reflejada por los dientes. Las variaciones y características especiales deben ser mapeadas en superficie y profundidad, translucidez y análisis anatómico de superficies. Los siguientes parámetros son las consideraciones más importantes para la correcta elección del color.

Se recomienda sombrear al comienzo de su cita para evitar la tensión visual, antes de la anestesia, ya que los vasoconstrictores pueden causar el blanqueamiento de las encías, y para evitar la deshidratación y el embotamiento de los dientes antes de la preparación de la cavidad (26).

Se elige el color en el que se sienta el paciente, a ras de la cara del observador, y a una distancia normal de conversación.

La iluminación más adecuada es una fuente de luz natural, orientada al norte, preferiblemente por la mañana, para que se pueda obtener colores más precisos. De lo contrario, se recomienda utilizar luz calibrada a una temperatura de 5000 °K, de acuerdo con la intensidad de luz, incluidos los tonos azul y amarillo-amarillo cálido del neón o lámpara incandescente de filamento.

Es necesario humedecer esta pieza testimonial para que brille su color y brillo natural.

Se toma la guía de colores que maneja el odontólogo, acercando al diente de control, seleccionando el grupo de dientes y el color más parecido, haciéndolo lo más rápido posible para evitar la saturación de la vista.

Se debe separar la película seleccionada cerca del lugar de interés y observar su similitud durante no más de 10 segundos. Si el color es incorrecto, tome otra muestra y solicite al paciente u otras personas que ayuden a garantizar la percepción correcta (27).

2.2.6. Métodos para la Evaluación del Color.

Es el balance visual del color de los dientes utilizando diferentes tipos de escalas, observando los dientes y las escamas bajo las mismas condiciones de iluminación. El uso de estas guías de colores es una forma rápida de obtener buenos resultados en muchas encuestas. Las escalas de color más utilizadas hoy en día son: vita lumen, vita 3d Master e ivoclar vivadent chromascop (28).

Existen otros métodos, como los sistemas instrumentales de selección de colores, que reemplazan la percepción subjetiva del ojo humano. Actualmente, existen en el mercado aparatos que miden el color, la luminiscencia y miden su reflejo, dura un segundo y no es percibido por el paciente. También se emplean aparatos o artefactos como espectrofotómetros.

2.2.7. Factores Intrínsecos.

Ocurren dentro del diente o en la zona interna del tejido dental y pueden dañarse por enfermedades sistémicas como enfermedad hepática, hemólisis, enfermedades metabólicas o endocrinas y malformaciones que afectan el cuerpo del diente durante la formación de un solo diente. El grupo completo, la hipoplasia del esmalte, la hipoplasia de la dentina y otras hipoplasias del tejido dentario, en última instancia es provocada por el consumo de fármacos como la tetraciclina y el declive natural de los dientes (29).

2.2.8. Factores Extrínsecos.

Las sustancias pigmentadas también pueden acumularse como resultado de alimentos como el café, el té, el alcohol, los refrescos de cola u otras rutinas como el tabaquismo y el exceso de clorhexidina en los dientes, que aparecen en las superficies de estos (30).

2.2.9. Generalidades de Resinas Compuestas.

Son materiales sintéticos formados por moléculas de diversos compuestos. Estos elementos conforman estructuras muy fuertes y ligeras. Se han utilizado en diversos campos desde mediados del siglo XX: aviación, ingeniería civil, ingeniería naval, odontología y prótesis. Se utilizan en odontología para restaurar los dientes, unidos micromecánicamente a las superficies dentales. Consisten en un componente orgánico polimérico llamado matriz y un componente inorgánico o relleno (31).

Las resinas compuestas son materiales con una alta densidad de reticulaciones poliméricas combinadas con partículas de relleno inorgánicas. Para unir las partículas de relleno a la matriz, el relleno se recubre con un aglutinante como el silano. Con varios aditivos para acelerar el curado, ajustar la viscosidad y mejorar, además, la radiopacidad (32).

Matriz de resina: los monómeros utilizados en la mayoría de los compuestos son diacrilatos aromáticos y dimetacrilatos de uretano (UEDMA), que se utilizan con mayor frecuencia en los dimetacrilatos de compuestos dentales. Estos monómeros, especialmente Bi-GMA, Son muy viscosos a temperatura ambiente. Por lo tanto, usando monómero diluido es esencial no solo para obtener altos niveles de partículas de relleno en aglomerados, sino también para producir pastas con una consistencia clínicamente controlable. Aunque se pueden utilizar monómeros de ácido metacrílico como diluyentes, el más utilizado es también el monómero de ácido dimetacrílico, aunque tiene un peso molecular más bajo que los otros dos (Bis-GMA y DMU) y es el más utilizado de ellos, -EMA-6 y doble EMA-10 (33).

Los monómeros de dimetacrilato permiten la reticulación entre cadenas y aumentan la resistencia de la matriz a la degradación por solventes (33).

Partículas de relleno: Agregar elementos de relleno a la matriz puede mejorar significativamente sus propiedades físicas y mecánicas (34).

Agente de acoplamiento: Es importante que los elementos de relleno se unan químicamente a la matriz de resina. Esto consiente que la matriz polimérica más blanda transfiera la tensión a las partículas de relleno más rígidas. El uso apropiado de agentes de acoplamiento puede mejorar las propiedades físicas y mecánicas y proveer estabilidad hidrolítica contra la penetración de agua a través de la interfaz resinarelleno (35).

Además de las tres primeras etapas, las resinas compuestas tienen otros componentes como:

Sistema activador: Los monómeros de metacrilato de metilo y metacrilato de dimetilo se polimerizan mediante polimerización iniciada por radicales libres. Los

radicales libres se producen por activación química o física. Los compuestos fotoactivados se usan más ampliamente que los materiales químicamente activados. *Composite* dental activado por luz suministrada como una pasta simple en una simple jeringa (36).

Inhibidores: Los inhibidores se agregan a los sistemas de resina para minimizar o prevenir la polimerización espontánea. Estos inhibidores tienen un fuerte potencial. Si ya se han formado radicales libres (por ejemplo, cuando el material se dosifica y se expone brevemente a la luz), el inhibidor reacciona con los radicales libres y evita que la reacción en cadena se propague, por lo que detiene la capacidad de iniciar proceso. Una vez que se consume todo el inhibidor, la reacción se propaga a medida que se produce la escisión por radicales (37).

2.2.10. Composición.

Los materiales dentales se componen de cuatro elementos diferentes: matriz orgánica, inorgánica, relleno; organosilano o el aglutinante entre la matriz orgánica y el relleno, que contiene un grupo silano en un extremo de la molécula (con SiO₂ enlace iónico) y el otro extremo contiene un grupo metacrilato (unido covalentemente a la resina) (38).

Se utilizan dos tipos de iniciadores en resinas curables por luz: benjuíes y cetonas para resinas curables por UV y dicetonas para resinas curables por luz visible.

Un activador de polimerización por radicales libres dicetona (canforquinona) en una resina compuesta fotocurable; su espectro de absorción está en la longitud de onda entre 450-500 nm, y su máxima absorción o sensibilidad es 470 nm.

2.2.11. Inhibidores o Estabilizadores.

Son sustancias que prolongan el tiempo de trabajo de la resina, imposibilitando la polimerización espontánea durante el trabajo o la acción clínica, especialmente con la ayuda de las quinonas: como la hidroquinona con los radicales libres, este inhibidor activa y detiene temporalmente la reacción en cadena, ya que es responsable de neutralizar los radicales libres, ya que esta es responsable de la agregación (39).

2.2.12. Modificadores Ópticos.

Para lograr la apariencia de una estructura dental, el compuesto debe tener una coloración visual (sombreado) y una translucidez que imite la estructura dental. El sombreado se consigue añadiendo diferentes pigmentos. Estos pigmentos suelen consistir en diferentes óxidos metálicos añadidos en pequeñas cantidades. Estos se conocen como pequeñas cantidades de óxidos inorgánicos y producen una variedad de colores de dientes desde amarillo hasta gris. Para la obtención de las diferentes tonalidades se utilizan *composites* altamente pigmentados con colores universales y una vez mezclados se obtienen varias tonalidades diferentes a la gama normal (40).

Tabla 1. Clasificación de resinas compuestas

Resinas de macrorrelleno o convencionales	Propiedades de las resinas compuestas
Resinas de microrrelleno	Resistencia al desgaste
Resinas híbridas	Textura superficial
	Coeficiente de expansión térmica Sorción acuosa y expansión higroscópica Resistencia a la fractura Resistencia a la compresión y a la tracción
Resinas de nanorrelleno	Módulo de elasticidad
	Estabilidad del color
	Radiopacidad
	Contracción por polimerización

2.2.13. Bebidas Carbonatadas.

Las bebidas carbonatadas contienen sustancias que afectan a las estructuras dentales. Además, el pH de las bebidas carbonatadas es de aproximadamente 3,11, un valor relativamente bajo en comparación con el valor típico del esmalte, que es de 5,5. Tienen grandes concentraciones de azúcar, además de ácido fosfórico, ácido carbónico, ácido málico y ácido cítrico. Según el tipo de sosa, se pueden encontrar los siguientes ácidos: carbónico, málico, cítrico y tartárico. Todos estos ácidos son corrosivos para los dientes. componentes corrosivos para las piezas dentales, que provocan la desmineralización y la pérdida de calcio, favoreciendo el desarrollo de la caries dental.

La acidez de las bebidas carbonatadas provoca la desmineralización, que se traduce en la liberación de iones de fosfato y calcio del esmalte a los tejidos adyacentes. Esta acción actúa exponiendo y degradando la capa de esmalte, provocando así la erosión dental, que puede identificarse por la presencia de grietas y poros en la capa de dentina, que es la capa que sigue al esmalte.

Capítulo III

Hipótesis y Variables

3.1. Hipótesis

3.3.1. Hipótesis General.

Hipótesis Alterna

Hi. Existe diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro*, Arequipa, 2022.

Hipótesis Nula

Ho. No existe diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentasteis estudio *in vitro*, Arequipa, 2022.

3.3.2. Hipótesis Específicas.

Existe diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro* durante 7 días, Arequipa, 2022.

Existe diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro* durante 15 días, Arequipa, 2022.

Existe diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro* durante 30 días, Arequipa, 2022.

3.2. Identificación de Variables

- **Variable independiente:** Bebidas pigmentantes (vino, café y gaseosa) 4 onzas Concepto: Bebidas de alto contenido de coloración oscura.

- Variable dependiente: Diferencia cromática del color

Concepto: comparación del color de las resinas expuestas ante las bebidas pigmentantes.

- Variable interviniente 1: Tiempo

Concepto: Período de tiempo en la exposición de las resinas en controles de 7, 15 y 30 días.

- Variable interviniente 2: Cantidad de bebida pigmentante

Concepto: concentración o cantidad de la bebida para el proceso de ejecución.

3.3. Operacionalización de Variables

Tabla 2. Operacionalización de variables

Variable	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Escala de medición	Tipo de variable
Diferencia cromática	Es el grado de saturación, la intensidad del matiz o el conjunto de pigmentos que tiene. En nuestros dientes lo podemos observar de tonos	Se tomará como color inicial a las muestras empleado un colorímetro	Estabilidad cromática	Colores blancos Colores amarillos Colores rojos Colores celestes Colores negros	DE 120 A 540	Ordinal
	de amarillo y azul, entre de la marca <i>Ivoclar</i> dientes de una sola persona e incluso entre diferentes partes del diente	Variación de la tonalidad del brillo	A, B, C, D	1A – 4D	Ordinal	
Sumersión a bebidas pigmentantes	Es el tiempo seleccionado para realizar el control y efectividad de las bebidas sobre las muestras designadas	Se realizarán evaluaciones de control de 7, 15 y 30 días	Tiempo de pigmentación	- 7 días - 15 días - 30 días	T1: 7 días después de la confección T2: 15 días después de la tinción. T3: 30 días después de la tinción	Ordinal

Capítulo IV

Metodología

4.1. Métodos, Tipo y Nivel de la Investigación

4.1.1. Método de la Investigación.

EL método científico permitió generar conocimiento objetivo al resolver la veracidad o falsedad de la investigación por medio de la aplicación de una serie de etapas o pasos (41).

4.1.2. Tipo de la Investigación.

Aplicada: Describe el proceso donde los resultados de una investigación se dan en el laboratorio (41), ya que se emplearon varias evaluaciones periódicas de las carillas de resinas en la exposición de bebidas pigmentantes en un ambiente donde se realiza trabajo *in vitro*.

4.1.3. Alcance de la Investigación.

Explicativo, ya que busca la relación causal y, además, resolver qué causa el problema (41).

4.2. Diseño de la Investigación

Cuasiexperimental: Por el tipo de medición y estructura de las variables.

Longitudinal: De acuerdo con el número de veces en que se ha realizado las mediciones, en este caso se hicieron controles en tres periodos de tiempo 7, 15 y 30 días.

Prospectivo: Por el periodo de planificación de datos de la presente investigación son primarios (41).

M = muestra

O1 = variable en la primera revisión de confección de carillas de resina

EX = exposición a bebidas pigmentantes

C1 = variable de evaluación a los 7 días después de la confección de carillas de resina

EX = exposición a bebidas pigmentantes

C2 =variable de evaluación a los 15 días después de la confección de carillas de resina

EX = exposición a bebidas pigmentantes

C3 = variable evaluación a los 30 días después de la confección de carillas de resina

4.3. Población y Muestra

4.3.1. Población.

Estuvo constituida por 80 muestras que fueron confeccionadas como carillas de resina y fueron seleccionadas de los tres diferentes tipos de resina, (*Llis*, *Brilliant* NG, *Opallis*).

4.3.2. Muestra.

Al ser un estudio cuasiexperimental se considera como un muestreo por conveniencia no probabilístico, ya que se está realizando un estudio para comparar y se puede manipular deliberadamente la cantidad de muestras evaluadas (22), la muestra fue constituida por 60 carillas de resina confeccionadas de los tres diferentes tipos de resina para evaluación.

Para poder obtener carillas con los cuales poder realizar la investigación, sometiéndolos a bebidas pigmentantes, se utilizó como molde las carillas del colorímetro Chromascop Ivoclar, con los cuales se tomó molde con silicona de impresión dental Z plus, y cubetas para impresión. para realización de guías, se confeccionó con resinas compuestas marca, color, nanohíbridas.

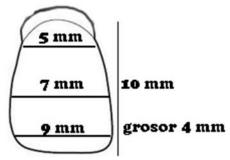


Figura 1. Carillas

A. Criterios de Inclusión.

- 60 carillas de resinas confeccionadas que pertenezcan a las marcas Llis, Brilliant NG y Opallis.
- 60 carillas de resinas que se encuentren con la fecha de caducidad vigente.
- 60 carillas de resinas seleccionadas de color A1.
- 60 carillas de resinas confeccionadas en exposición de bebidas pigmentantes.
- El tamaño o dimensiones establecidas.

B. Criterios de Exclusión.

- Muestras elaboradas de resinas que se encuentren en mal estado de confección.
- Muestras elaboradas de resinas que no sean de las marcas seleccionadas para la investigación.
- Resinas que presenten fecha de caducidad vencida.
- Carillas que no corresponda al tamaño o dimensiones establecidas.
- Muestras elaboradas de resinas que hayan salido defectuosas.
- Muestras elaboradas de resinas que no cumplan características estéticas.

4.4. Técnicas e Instrumentos de Recolección y Análisis de Datos

4.4.1. Técnicas.

- Observación: es una técnica que se avoca a evaluar un fenómeno, grupo o individuo recopilando información sobre el comportamiento de la variable en estudio (21).
- Luego de elegir las muestras (carillas de resina), que efectuaron con los criterios de inclusión.
- El procedimiento consistió en observar, y comparar el color de la resina sumergidas en bebidas pigmentantes.

4.4.2. Instrumento de Recolección de Datos.

El instrumento que se empleó fue una ficha de recolección de datos de seguimiento periódico de 7, 15 y 30 días con el colorímetro *Chromascop*, que fue creado por la empresa *Chromascop*® (CHRIvoclar Vivadent, Amherst, New York, USA).

A. Diseño.

El instrumento está estructurado para registrar los datos que se reconocieron en las diferentes etapas en las que se evaluaron las muestras expuestas por 3 diferentes periodos de tiempo, la estructuración del instrumento fue por parte de las investigadoras que fue evaluado y aprobado mediante el juicio de tres expertos para luego ser validado para su uso en la presente investigación.

B. Confiabilidad.

El instrumento tiene una confiabilidad y un margen de error de 0.05 que es el α , ya que fue evaluado, validado por prueba piloto y por juicio de expertos.

C. Validez.

Se realizó una prueba piloto enfocada a evaluar las resinas a exposición de bebidas pigmentantes en periodos de 72 y 120 horas, así mismo, tuvo la evaluación y validación de 3 jueces expertos. Anexo 5.

4.4.3. Procedimiento de la Investigación.

Para poder obtener carillas de resina dado que estas son las muestras para realizar la investigación, sometiéndolos a bebidas pigmentantes, se utilizó como molde las carillas del colorímetro Chromascop Ivoclar, con los cuales se tomó molde con silicona de impresión dental Z plus, y cubetas para impresión. Para la realización de guías, se elaboró con resinas compuestas marca, color, nanohíbridas.

En los moldes que se obtuvieron, se colocó la resina de las marcas utilizadas en la investigación, una vez condensados, se procedió a fotocurar la resina el tiempo adecuado para la fotopolimerización.

Se realizó este mismo procedimiento para obtener todas las carillas de las resinas en el estudio, tanto para la resina *Opallis*, como para la resina *Brilliant* NG y la resina *Llis*.

Llegando a obtener así la cantidad de 60 carillas de los tipos de resinas compuestas para evaluación de cada bebida pigmentante (vino, café y gaseosa).

Se distribuyeron 5 carillas de cada resina para la exposición de cada tipo de bebida pigmentante. Con el grupo control obteniendo así la cantidad de 60 carillas.

Las bebidas pigmentantes fueron contenidas en frascos de vidrio los cuales contuvieron la cantidad de 4 onzas de bebidas y se cambiaron en cada periodo de evaluación.

Se elaboraron 3 grupos de resinas, donde participaron 3 tipos de bebidas pígmentantes de marcas comerciales y un grupo de control contenido por suero fisiológico.

Se empleó una estufa para mantener los frascos contenidos del experimento a temperatura de 36 °C con el fin de simular la temperatura corporal humana por el periodo de exposición de los días en que se evaluaron las muestras.

20 carillas de resinas del grupo *Opallis* que se sometieron a 4 onzas de vino, café, gaseosa y suero fisiológico, 5 carillas para cada bebida.

20 carillas de resinas del grupo *Brilliant* NG que se sometieron a 4 onzas de vino, café, gaseosa y suero fisiológico, 5 carillas para cada bebida.

20 carillas de resinas del grupo *Llis* que se sometieron a 4 onzas de vino, café, gaseosa y suero fisiológico, 5 carillas para cada bebida.

Las evaluaciones a comparación de color con el colorímetro Chromascop Ivoclar se realizaron a los 7, 15 y 30 días de exposición a las bebidas pigmentantes.

Análisis de datos: Los datos obtenidos fueron tabulados para ser evaluados en tablas estadísticas en donde se utilizó la prueba estadística de Anova para evaluar las comparaciones a los tres grupos de resina en la exposición de bebidas pigmentantes en los diferentes periodos de tiempo.

Tabla 3. Bebidas pigmentantes

						Bebidas pig	mentante	es					
Resinas compuestas	Vino 8 onzas		Café 8 onzas		Gaseosa 8 onzas		Grupo control Suero 8 onzas		Total de carillas				
	7 días	15 días	30 días	7 días	15 días	30 días	7 días	15 días	30 días	7 días	15 días	30 días	
Grupo Opallis	5	5	5	5	5	5	5	5	5	5	5	5	20
Grupo resina <i>Brilliant</i> NG	5	5	5	5	5	5	5	5	5	5	5	5	20
Grupo de resina Llis	5	5	5	5	5	5	5	5	5	5	5	5	20
Total de repeticiones	15	15	15	15	15	15	15	15	15	15	15	15	60

4.5. Consideraciones Éticas

La investigación tuvo la revisión y autorización por parte del Comité de Ética de la Universidad Continental. Anexo 2, Así mismo, se contó con herramientas de investigación bibliográficas como revistas, artículos, libros, tesis de pregrado, posgrado y doctorado. Con recursos viables como materiales de uso odontológico.

Capítulo V

Resultados y Discusión

5.1. Presentación de Resultados

Tabla 4. Evaluación de la diferencia cromática de la resina compuesta Llis ante la sumersión en bebida pigmentante (vino) a los 7, 15 y 30 días

		1 0						
Grupo de		Exposición en vino						
resina <i>Llis</i>	Día 1	Día 7	Día 15	Día 30				
Muestra 1	120	230	320	410				
Muestra 2	120	230	320	410				
Muestra 3	120	240	310	340				
Muestra 4	120	240	310	340				
Muestra 5	120	240	310	340				
Media	120.00	236.00	314.00	368.00				
Desviación	0.00	5.77	5.77	40.41				
Valor crítico para F	151.437908							
valor p	0.00							

Origen de las variaciones	Suma de cuadrados	G. L.	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos	173775	3	57925	151.4379085	0.00	3.238871517
Dentro de los grupos	6120	16	382.5			
Total	179895	19				

Prueba Tukey						
Diferencia poblacional	Diferencia muestral	Decisión				
μΑ - μΒ	116	diferencia significativa				
μΑ - μC	194	diferencia significativa				
μΑ - μD	248	diferencia significativa				
μВ - μС	78	diferencia significativa				
μΒ - μD	132	diferencia significativa				
μC - μD	54	diferencia significativa				

 $t = 35.423033 \ p = 0.000$

Interpretación

Evaluación de la diferencia cromática de la resina compuesta *Llis* ante la sumersión en bebida pigmentante (vino) a los 7, 15 y 30 días, se observa lo siguiente:

Las muestras de carillas de resina compuesta *Llis* expuestas a bebida pigmentante (vino) presentaron una diferencia cromática promedio desde día 1 al día 7 de 120 ± 236 con una desviación de 5.77, seguido del día 15 de 120 ± 314 con una desviación de 5.77, seguido del día 30 de 120 ± 368 con una desviación de 40.41.

Tabla 5. Evaluación de la diferencia cromática de la resina compuesta Brilliants ante la sumersión en bebida pigmentante (vino) a los 7, 15 y 30 días

C	n veviuu pigmeni	unie (vino) u io	3 7, 13 y 30 uius			
Grupo de resina	Exposición en vino					
compuesta Brilliants	Día 1	Día 7	Día 15	Día 30		
Muestra 1	120	140	210	320		
Muestra 2	120	140	220	320		
Muestra 3	120	140	220	320		
Muestra 4	120	130	220	320		
Muestra 5	120	130	220	320		
Media	120.00	136.00	218.00	320.00		
Desviación	0.00	5.48	4.47	0.00		
Valor crítico para F	4160.66667					
valor p	0.00					

Análisis de varianza							
Origen de las variaciones	Suma de cuadrados	G. L.	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F	
Entre grupos	124820	3	41606.6667	4160.666667	0.00	3.238871517	
Dentro de los grupos	160	16	10				
Total	124980	19					

Prueba Tukey						
Diferencia poblacional	Diferencia muestral	Decisión				
μΑ - μΒ	18	diferencia significativa				
μΑ - μC	98	diferencia significativa				
μΑ - μD	200	diferencia significativa				
μΒ - μC	80	diferencia significativa				
μB - μD	182	diferencia significativa				
μC - μD	102	diferencia significativa				

t = 5.72756493 p = 0.000

Interpretación

Evaluación de la diferencia cromática de la resina compuesta *Brilliant*s ante la sumersión en bebida pigmentante (vino) a los 7, 15 y 30 días, se observa lo siguiente:

Las muestras de carillas de resina compuesta *Brilliant*s expuestas a bebida pigmentante (vino) presentaron una diferencia cromática promedio desde día 1 al día 7 de 120

 \pm 136 con una desviación de 5.48, seguido del día 15 de 120 \pm 218 con una desviación de 4.47, seguido del día 30 de 320 \pm 368 con una desviación de 0.00.

Tabla 6. Evaluación de la diferencia cromática de la resina compuesta Opallis ante la sumersión en bebida pigmentante (vino) a los 7, 15 y 30 días

	1 0	` '		
Grupo de resina		Expo	sición en vino	
compuesta Opallis	Día 1	Día 7	Día 15	Día 30
Muestra 1	120	130	140	220
Muestra 2	120	130	140	220
Muestra 3	120	130	140	220
Muestra 4	120	120	140	220
Muestra 5	120	130	140	220
Media	120.00	128.00	140.00	220.00
Desviación	0.00	4.47	0.00	0.00
Valor crítico para F	2122.66667			
valor p	0.00			

Análisis de varianza Promedio Origen de las Suma de Valor crítico Probabilidad G. L. de los F variaciones cuadrados para F cuadrados Entre grupos 31840 3 10613.3333 2122.666667 0.00 3.238871517 Dentro de los 80 5 16 grupos 19 Total 31920

Prueba Tukey						
Diferencia poblacional	Diferencia muestral	Decisión				
μΑ - μΒ	8	diferencia significativa				
μΑ - μC	20	diferencia significativa				
μA - μD	100	diferencia significativa				
μΒ - μC	12	diferencia significativa				
μΒ - μD	92	diferencia significativa				
μC - μD	80	diferencia significativa				

t = 4.05 p = 0.000

Interpretación

Evaluación de la diferencia cromática de la resina compuesta *Opallis* ante la sumersión en bebida pigmentante (vino) a los 7, 15 y 30 días, se observa lo siguiente:

Las muestras de carillas de resina compuesta *Opallis* expuestas a bebida pigmentante (vino) presentaron una diferencia cromática promedio desde día 1 al día 7 de 120 ± 128 con una desviación de 4.47, seguido del día 15 de 120 ± 140 con una desviación de 0.00, seguido del día 30 de 120 ± 220 con una desviación de 0.00.

Tabla 7. Evaluación de la diferencia cromática de la resina compuesta Llis ante la sumersión en bebida pigmentante (café) a los 7, 15 y 30 días

Grupo de resina compuesta Llis			Expo	sición (en café		
		Día 1	Dí	a 7	Día 1	5 Día 30	
Muestra 1		120	14	40	230	330	
Muestra 2		120	13	30	230	330	
Muestra 3		120	14	40	230	330	
Muestra 4		120	14	40	220	330	
Muestra 5		120	14	40	230	330	
Media		120.00	138	3.00	228.0	0 330.00	
Desviación		0.00	4.	47	4.47	0.00	
Valor crítico para F	•	4644					
valor p		0.00					
		Análisis (de varianza				
Origen de las variaciones	Suma de cuadrados	G. L.	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F	
Entre grupos	139320	3	46440	4644	0.00	3.238871517	
Dentro de los grupos	160	16	10				
Total	139480	19					
		Prueb	a Tukey				
Diferencia po	blacional		Diferencia	muestr	al De	cisión	
μΑ - μ	В		18		diferencia	diferencia significativa	
μΑ - μ	C		108		diferencia	diferencia significativa	

μΑ - μC	108	diferencia significativa
μA - μD	210	diferencia significativa
μВ - μС	90	diferencia significativa
μB - μD	192	diferencia significativa
uC - uD	102	diferencia significativa

t = 5.727564928 p = 0.000

Interpretación

Evaluación de la diferencia cromática de la resina compuesta *Llis* ante la sumersión en bebida pigmentante (café) a los 7, 15 y 30 días, se observa lo siguiente:

Las muestras de carillas de resina compuesta Llis expuestas a bebida pigmentante (café) presentaron una diferencia cromática promedio desde día 1 al día 7 de 120 \pm 138 con una desviación de 4.47, seguido del día 15 de 120 \pm 228 con una desviación de 4.47, seguido del día 30 de 120 \pm 330 con una desviación de 0.00.

Tabla 8. Evaluación de la diferencia cromática de la resina compuesta Brilliants ante la sumersión en bebida pigmentante (café) a los 7, 15 y 30 días

Grupo de resina compuesta	Exposición en café			
Brilliants	Día 1	Día 7	Día 15	Día 30
Muestra 1	120	130	130	230
Muestra 2	120	130	140	230
Muestra 3	120	130	140	230
Muestra 4	120	130	130	230
Muestra 5	120	120	140	230
Media	120.00	128.00	136.00	230.00
Desviación	0.00	4.47	5.48	0.00
Valor crítico para F	1057.466667			
valor p	0.00			

Análisis de varianza Promedio de Origen de las Suma de Valor crítico F Probabilidad G. L. los variaciones cuadrados para F cuadrados Entre grupos 39655 3 13218.33333 1057.466667 0.00 3.238871517 Dentro de los 200 16 12.5 grupos Total 39855 19

	Prueba Tukey	
Diferencia poblacional	Diferencia muestral	Decisión
μΑ - μΒ	8	diferencia significativa
μΑ - μC	16	diferencia significativa
μΑ - μD	110	diferencia significativa
μΒ - μC	8	diferencia significativa
μB - μD	102	diferencia significativa
μC - μD	94	diferencia significativa

t = 6.403612262 p = 0.000

Interpretación

Evaluación de la diferencia cromática de la resina compuesta *Brilliant*s ante la sumersión en bebida pigmentante (café) a los 7, 15 y 30 días, se observa lo siguiente:

Las muestras de carillas de resina compuesta *Brilliant*s expuestas a bebida pigmentante (café) presentaron una diferencia cromática promedio desde día 1 al día 7 de 120 \pm 128 con una desviación de 4.47, seguido del día 15 de 120 \pm 136 con una desviación de 5.48, seguido del día 30 de 120 \pm 230 con una desviación de 0.00.

Tabla 9. Evaluación de la diferencia cromática de la resina compuesta Opallis ante la sumersión en bebida pigmentante (café) a los 7, 15 y 30 días

Grupo de resina compuesta		Exposición en café		
<i>Opallis</i>	Día 1	Día 7	Día 15	Día 30
Muestra 1	120	130	130	210
Muestra 2	120	120	130	210
Muestra 3	120	120	130	210
Muestra 4	120	120	120	210
Muestra 5	120	120	130	210
Media	120.00	122.00	128.00	210.00
Desviación	0.00	4.47	4.47	0.00
Valor crítico para F	944.6666667			
valor p	0.00			

Análisis de varianza Promedio de Origen de las Suma de Valor crítico G. L. los F Probabilidad variaciones cuadrados para F cuadrados Entre grupos 28340 3 9446.666667 944.6666667 0.00 3.238871517 Dentro de los 160 16 10 grupos Total 28500 19

Prueba Tukey					
Diferencia poblacional	Diferencia muestral	Decisión			
μΑ - μΒ	2	No hay diferencia			
μΑ - μC	8	diferencia significativa			
μA - μD	90	diferencia significativa			
μ B - μC	6	diferencia significativa			
μB - μD	88	diferencia significativa			
μC - μD	82	diferencia significativa			

t = 5.727564928 p = 0.000

Interpretación

Evaluación de la diferencia cromática de la resina compuesta *Opallis* ante la sumersión en bebida pigmentante (café) a los 7, 15 y 30 días, se observa lo siguiente:

Las muestras de carillas de resina compuesta Opallis expuestas a bebida pigmentante (café) presentaron una diferencia cromática promedio desde día 1 al día 7 de 120 \pm 122 con una desviación de 4.47, seguido del día 15 de 120 \pm 128 con una desviación de 4.47, seguido del día 30 de 120 \pm 210 con una desviación de 0.00.

Tabla 10. Evaluación de la diferencia cromática de la resina compuesta Llis ante la sumersión en bebida pigmentante (gaseosa) a los 7, 15 y 30 días

Common de montes e common de Tito	Exposición en gaseosa			
Grupo de resina compuesta <i>Llis</i> –	Día 1	Día 7	Día 15	Día 30
Muestra 1	120	130	130	210
Muestra 2	120	130	140	210
Muestra 3	120	130	130	220
Muestra 4	120	130	140	220
Muestra 5	120	130	140	220
Media	120.00	130.00	136.00	216.00
Desviación	0.00	0.00	5.48	5.48
Valor crítico para F	650.1111111			
valor p	0.00			
	Análisis de varian	ıza		

			rinarioro de ve	· · · · · · · · · · · · · · · · · · ·		
Origen de las variaciones	Suma de cuadrados	G. L.	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos	29255	3	9751.666667	650.1111111	0.00	3.238871517
Dentro de los grupos	240	16	15			
Total	29495	19				

	Prueba Tukey	
Diferencia poblacional	Diferencia muestral	Decisión
μΑ - μΒ	10	diferencia significativa
μΑ - μC	16	diferencia significativa
μΑ - μD	96	diferencia significativa
μВ - μС	6	no hay diferencia
μB - μD	86	diferencia significativa
μC - μD	80	diferencia significativa

t = 7.014805771 p = 0.000

Interpretación

Evaluación de la diferencia cromática de la resina compuesta *Llis* ante la sumersión en bebida pigmentante (gaseosa) a los 7, 15 y 30 días, se observa lo siguiente:

Las muestras de carillas de resina compuesta Llis expuestas a bebida pigmentante (gaseosa) presentaron una diferencia cromática promedio desde día 1 al día 7 de 120 \pm 130 con una desviación de 0.00, seguido del día 15 de 120 \pm 136 con una desviación de 5.48, seguido del día 30 de 120 \pm 216 con una desviación de 5.48.

Tabla 11. Evaluación de la diferencia cromática de la resina compuesta Brilliants ante la sumersión en bebida pigmentante (gaseosa) a los 7, 15 y 30 días

Grupo de resina compuesta		Exposición en gaseosa		
Brilliants	Día 1	Día 7	Día 15	Día 30
Muestra 1	120	120	120	140
Muestra 2	120	120	120	130
Muestra 3	120	120	130	140
Muestra 4	120	120	120	130
Muestra 5	120	120	120	130
Media	120.00	120.00	122.00	134.00
Desviación	0.00	0.00	4.47	5.48
Valor crítico para F	18.13333333			
valor p	0.00			

Análisis de varianza						
Origen de las variaciones	Suma de cuadrados	G. L.	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos	680	3	226.6666667	18.13333333	0.00	3.238871517
Dentro de los grupos	200	16	12.5			
Total	880	19				

Prueba Tukey					
Diferencia poblacional	Diferencia muestral	Decisión			
μΑ - μΒ	0	no hay diferencia			
μΑ - μC	2	no hay diferencia			
μΑ - μD	14	diferencia significativa			
μВ - μС	2	no hay diferencia			
μB - μD	14	diferencia significativa			
μC - μD	12	diferencia significativa			

t = 6.403612262 p = 0.000

Interpretación

Evaluación de la diferencia cromática de la resina compuesta *Brilliant*s ante la sumersión en bebida pigmentante (gaseosa) a los 7, 15 y 30 días, se observa lo siguiente:

Las muestras de carillas de resina compuesta *Brilliant*s expuestas a bebida pigmentante (gaseosa) presentaron una diferencia cromática promedio desde día 1 al día 7 de 120 ± 120 con una desviación de 0.00, seguido del día 15 de 120 ± 122 con una desviación de 4.47, seguido del día 30 de 120 ± 134 con una desviación de 5.48.

Tabla 12. Evaluación de la diferencia cromática de la resina compuesta Opallis ante la sumersión en bebida pigmentante (gaseosa) a los 7, 15 y 30 días

Grupo de resina compuesta		Exposición en gas	eosa	
Opallis	Día 1	Día 7	Día 15	Día 30
Muestra 1	120	120	130	130
Muestra 2	120	120	120	130
Muestra 3	120	120	120	130
Muestra 4	120	120	120	130
Muestra 5	120	120	130	130
Media	120.00	120.00	124.00	130.00
Desviación	0.00	0.00	5.48	0.00
Valor crítico para F	14.88888889			
valor p	0.00			

Análisis de varianza Origen de Suma de Promedio de Valor crítico las G. L. \mathbf{F} Probabilidad cuadrados los cuadrados para F variaciones Entre 111.6666667 335 3 14.88888889 0.00 3.238871517 grupos Dentro de 120 16 7.5 los grupos Total 455 19

	Prueba Tukey	
Diferencia poblacional	Diferencia muestral	Decisión
μΑ - μΒ	0	no hay diferencia
μΑ - μC	4	no hay diferencia
μA - μD	10	diferencia significativa
μВ - μС	4	no hay diferencia
μB - μD	10	diferencia significativa
μC - μD	6	diferencia significativa

D.... . b . T...l. . . .

 $t = 4.960216729 \ p = 0.000$

Interpretación

Evaluación de la diferencia cromática de la resina compuesta *Opallis* ante la sumersión en bebida pigmentante (gaseosa) a los 7, 15 y 30 días, se observa lo siguiente:

Las muestras de carillas de resina compuesta *Opallis* expuestas a bebida pigmentante (gaseosa) presentaron una diferencia cromática promedio desde día 1 al día 7 de 120 \pm 120 con una desviación de 0.00, seguido del día 15 de 120 \pm 124 con una desviación de 5.48, seguido del día 30 de 120 \pm 130 con una desviación de 0.00.

Tabla 13. Evaluación de la diferencia cromática de los tres tipos de resina compuesta ante la sumersión en bebidas pigmentantes a los 7, 15 y 30 días

	Daniman		Exposición en vino						
Resinas			Día 1	Día '	7 Día 15	Día 30			
Resina <i>Llis</i>			120	240	310	340			
Resina	a <i>Brilliants</i> NC	÷	120	140	220	320			
Resina Opallis			120	130	140	220			
Media			120.00	170.0	00 223.33	293.33			
Desviación			0.00	60.83	3 85.05	64.29			
Valor crítico para F			4.066180551						
valor p			0.04						
			Análisis de v	arianza					
Origen de las variaciones	Suma de cuadrados	G. L.	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F			
Entre grupos	49633.3333	3	16544.4444	4.39233038	0.04182695	4.06618055			
Dentro de los grupos	30133.3333	8	3766.66667						
Total 79766.6667 11									

Interpretación

Evaluación de la diferencia cromática de los tres tipos de resina compuesta ante la sumersión en bebidas pigmentantes a los 7, 15 y 30 días, se observa lo siguiente:

Las evaluaciones realizadas en la resina compuesta *Llis* presentan una diferencia de color de 120 a 240 siendo 6 tonalidades su diferencia, a los 15 días presentó una diferencia a 310 siendo 1 tonalidad la diferencia, a los 30 días presentó una diferencia a 340 siendo 3 tonalidades la diferencia.

Las evaluaciones realizadas en la resina compuesta *Brilliant* NG presentan una diferencia de color de 120 a 140 siendo 2 tonalidades su diferencia, a los 15 días presentó una diferencia a 220 siendo 2 tonalidades la diferencia, a los 30 días presentó una diferencia a 320 siendo 4 tonalidades la diferencia.

Las evaluaciones realizadas en la resina compuesta *Opallis* presentan una diferencia de color de 120 a 130 siendo 2 tonalidades su diferencia, a los 15 días presentó una diferencia a 140 siendo 1 tonalidad la diferencia, a los 30 días presentó una diferencia a 220 siendo 2 tonalidades la diferencia.

Las muestras de carillas de las resinas compuestas *Llis*, *Brilliant* NG y *Opallis* expuestas a bebidas pigmentantes presentaron una diferencia cromática promedio desde día 1 al día 7 de 120 ± 170 con una desviación de 170, seguido del día 15 de 120 ± 223 con una desviación de 85.05, seguido del día 30 de 120 ± 293 con una desviación de 64.29.

Prueba estadística Anova

De acuerdo con la prueba estadística realizada de Anova se logró obtener un nivel p=0.04 que resulta ser menor al α de 0.05 donde se ha podido determinar que existe diferencia significativa en la diferencia cromática de los tres tipos de resina compuesta ante la sumersión en bebidas pigmentantes a los 7, 15 y 30 días.

Prueba de hipótesis

Según la prueba *t*, se encontró mayor diferencia cromática de 4 tonalidades en la resina compuesta *Llis* en la primera evaluación de 7 días ante la sumersión en bebidas pigmentantes (vino).

Y con menor diferencia cromática a la resina compuesta *Opallis* demostrando ser una resina compuesta resistente a la bebida pigmentante.

Hi: Existe diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro*, Arequipa, 2022.

Ho: No existe diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro*, Arequipa, 2022.

Se acepta la hipótesis alterna y se rechaza la hipótesis nula.

Tabla 14. Evaluación de la diferencia cromática de los tres tipos de resina compuesta ante la sumersión en bebidas pigmentantes al control de 7 días

	sumers	ion en b	ediaas pigmei	ntantes ai cont	roi ae / aias					
		Día 7								
Resina coi	mpuestas	Grupo control		Vino		Café	Gaseosa			
resina comp	ouesta <i>Llis</i>	120)	240		140	130			
resina compue No		120)	140		130	120			
resina compu	esta <i>Opallis</i>	120)	130		120	120			
Med	Media		00	170.00		130.00	123.33			
Desviación		0.00		60.83		10.00	5.77			
Valor crítico para F		1.67826	5087							
valo	or p	0.02	2							
			Análisis de	varianza						
Origen de las variaciones	Suma de cuadrados	G. L.	Promedio de los cuadrados	F	Probabilidad		r crítico ara F			
Entre grupos	4825	3	1608.33333	1.67826087	0.25	4.06	618055			
Dentro de los grupos	7666.66667	8	958.333333							
Total	12491.6667	11								

Interpretación

Evaluación de la diferencia cromática de los tres tipos de resina compuesta ante la sumersión en bebidas pigmentantes al control de 7 días, se observa lo siguiente:

Las evaluaciones realizadas con la resina compuesta *Llis* presentan una diferencia de color, partiendo del grupo control de 120 a 240 siendo 6 tonalidades de diferencia ante la sumersión de bebida pigmentante (vino), ante la sumersión de bebida pigmentante (café) tuvo una diferencia de 120 a 140 siendo 2 tonalidades de diferencia, ante la sumersión de bebida pigmentante (gaseosa) tuvo una diferencia de 120 a 130 siendo 1 tonalidad de diferencia.

Las evaluaciones realizadas con la resina compuesta *Brilliant* NG presentan una diferencia de color, partiendo del grupo control de 120 a 140 siendo 2 tonalidades de diferencia ante la sumersión de bebida pigmentante (vino), ante la sumersión de bebida pigmentante (café) tuvo una diferencia de 120 a 130 siendo 1 tonalidad de diferencia, ante la sumersión de bebida pigmentante (gaseosa) no tuvo diferencia de 120 de tonalidad.

Las evaluaciones realizadas con la resina compuesta *Opallis* presentan una diferencia de color, partiendo del grupo control de 120 a 130 siendo 1 tonalidad de diferencia ante la sumersión de bebida pigmentante (vino), ante la sumersión de bebida pigmentante (café) no

tuvo diferencia de 120 de tonalidad, ante la sumersión de bebida pigmentante (gaseosa) no tuvo diferencia de 120 de tonalidad.

Las muestras de carillas de las resinas compuestas *Llis*, *Brilliant* NG y *Opallis* fueron expuestas a bebida pigmentante (vino) con una diferencia cromática promedio desde 120 ± 170 con una desviación de 60.83, seguido de la bebida pigmentante (café) con una diferencia cromática promedio desde 120 ± 130 con una desviación de 10.00, seguido de la bebida pigmentante (gaseosa) con una diferencia cromática promedio desde 120 ± 123 con una desviación de 5.77.

Prueba estadística Anova

De acuerdo con la prueba estadística realizada de Anova se logró obtener un nivel p = 0.02 que resulta ser menor al α de 0.05 donde se ha podido determinar que existe diferencia significativa en la diferencia cromática de los tres tipos de resina compuesta ante la sumersión de bebidas pigmentantes (vino, café, gaseosa) a los 7 días.

Prueba de hipótesis

Según la prueba *t*, se encontró mayor diferencia cromática en la resina compuesta *Llis* en la bebida pigmentante (vino).

Hi: Existe diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro* durante 7 días, Arequipa, 2022.

Ho: No existe diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro* durante 7 días, Arequipa, 2022.

Se acepta la hipótesis alterna y se rechaza la hipótesis nula.

Tabla 15. Evaluación de la diferencia cromática de los tres tipos de resina compuesta ante la sumersión en bebidas pigmentantes al control de 15 días

Día 15					
Grupo control		Café	Gaseosa		
120	310	230	140		
120	220	140	120		
120	140	130	120		
120.00	223.33	166.67	126.67		
0.00	85.05	55.08	11.55		
2.60149573					
0.01					
Análisis	de varianza				
	control 120 120 120 120 120 120.00 0.00 2.60149573 0.01 Análisis	Grupo control Vino 120 310 120 220 120 140 120.00 223.33 0.00 85.05 2.60149573 0.01 Análisis de varianza	Grupo control Vino Café 120 310 230 120 220 140 120 140 130 120.00 223.33 166.67 0.00 85.05 55.08 2.60149573 0.01		

Análisis de varianza										
Origen de las variaciones	Suma de cuadrados	G. L.	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F				
Entre grupos	20291.6667	3	6763.88889	2.60149573	0.12434397	4.06618055				
Dentro de los grupos	20800	8	2600							
Total	41091.6667	11								

Interpretación

Evaluación de la diferencia cromática de los tres tipos de resina compuesta ante la sumersión en bebidas pigmentantes al control de 15 días, se observa lo siguiente:

Las evaluaciones realizadas con la resina compuesta *Llis* presentan una diferencia de color, partiendo del grupo control de 120 a 310 siendo 7 tonalidades de diferencia ante la sumersión de bebida pigmentante (vino), ante la sumersión de bebida pigmentante (café) tuvo una diferencia de 120 a 230 siendo 5 tonalidades de diferencia, ante la sumersión de bebida pigmentante (gaseosa) tuvo una diferencia de 120 a 140 siendo 2 tonalidades de diferencia.

Las evaluaciones realizadas con la resina compuesta *Brilliant* NG presentan una diferencia de color, partiendo del grupo control de 120 a 220 siendo 4 tonalidades de diferencia ante la sumersión de bebida pigmentante (vino), ante la sumersión de bebida pigmentante (café) tuvo una diferencia de 120 a 140 siendo 2 tonalidades de diferencia, ante la sumersión de bebida pigmentante (gaseosa) no tuvo diferencia de 120 de tonalidad.

Las evaluaciones realizadas con la resina compuesta *Opallis* presentan una diferencia de color, partiendo del grupo control de 120 a 140 siendo 2 tonalidades de diferencia ante la sumersión de bebida pigmentante (vino), ante la sumersión de bebida pigmentante (café) tuvo

una diferencia de 120 a 130 siendo 1 tonalidad de diferencia, ante la sumersión de bebida pigmentante (gaseosa) no tuvo diferencia de 120 de tonalidad.

Las muestras de carillas de las resinas compuestas *Llis*, *Brilliant* NG y *Opallis* fueron expuestas a bebida pigmentante (vino) con una diferencia cromática promedio desde 120 ± 223 con una desviación de 85.05, seguido de la bebida pigmentante (café) con una diferencia cromática promedio desde 120 ± 166 con una desviación de 55.08, seguido de la bebida pigmentante (gaseosa) con una diferencia cromática promedio desde 120 ± 126 con una desviación de 11.55.

Prueba estadística Anova

De acuerdo con la prueba estadística realizada de Anova se logró obtener un nivel p=0.01 que resulta ser menor al α de 0.05 donde se ha podido determinar que existe diferencia significativa en la diferencia cromática de los tres tipos de resina compuesta ante la sumersión de bebidas pigmentantes (vino, café, gaseosa) a los 15 días.

Prueba de hipótesis

Según la prueba *t*, se encontró mayor diferencia cromática en la resina compuesta *Llis* en la bebida pigmentante (vino).

Hi: Existe diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro* durante 15 días, Arequipa, 2022.

Ho: No existe diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro* durante 15 días, Arequipa, 2022.

Se acepta la hipótesis alterna y se rechaza la hipótesis nula.

Tabla 16. Evaluación de la diferencia cromática de los tres tipos de resina compuesta ante la sumersión en bebidas pigmentantes al control de 30 días

	sumers	ion en i	veviaus pigme	niunies ai con	iroi ae 50 aias		
				Dí	a 30		
Resina c	ompuestas		rupo ntrol	Vinc)	Café	Gaseosa
Resina co	mpuesta <i>Llis</i>		120	340		330	220
-	ouesta <i>Brilliant</i> NG		120	320		230	130
Resina com	puesta <i>Opallis</i>		120	220		210	130
M	[edia	12	20.00	293.3	3	256.67	160.00
Des	Desviación		0.00	64.29	64.29	51.96	
Valor crítico para F		7.18439716					
	valor p		0.01				
	-		Análisis d	e varianza			
Origen de las variaciones	Suma de cuadrados	G. L.	Promedio de los cuadrados	F	Probabilidad		r crítico ara F
Entre grupos	59091.6667	3	19697.2222	7.18439716	0.01169171	4.06	618055
Dentro de los grupos	21933.3333	8	2741.66667				
Total	81025	11					

Interpretación

Evaluación de la diferencia cromática de los tres tipos de resina compuesta ante la sumersión en bebidas pigmentantes al control de 15 días, se observa lo siguiente:

Las evaluaciones realizadas con la resina compuesta *Llis* presentan una diferencia de color, partiendo del grupo control de 120 a 340 siendo 10 tonalidades de diferencia ante la sumersión de bebida pigmentante (vino), ante la sumersión de bebida pigmentante (café) tuvo una diferencia de 120 a 330 siendo 9 tonalidades de diferencia, ante la sumersión de bebida pigmentante (gaseosa) tuvo una diferencia de 120 a 220 siendo 4 tonalidades de diferencia.

Las evaluaciones realizadas con la resina compuesta *Brilliant*s presentan una diferencia de color, partiendo del grupo control de 120 a 320 siendo 8 tonalidades de diferencia ante la sumersión de bebida pigmentante (vino), ante la sumersión de bebida pigmentante (café) tuvo una diferencia de 120 a 230 siendo 5 tonalidades de diferencia, ante la sumersión de bebida pigmentante (gaseosa) tuvo una diferencia de 120 a 130 siendo 1 tonalidad de diferencia.

Las evaluaciones realizadas con la resina compuesta *Opallis* presentan una diferencia de color, partiendo del grupo control de 120 a 220 siendo 4 tonalidades de diferencia ante la

sumersión de bebida pigmentante (vino), ante la sumersión de bebida pigmentante (café) tuvo una diferencia de 120 a 210 siendo 3 tonalidades de diferencia, ante la sumersión de bebida pigmentante (gaseosa) tuvo una diferencia de 120 a 130 siendo 1 tonalidad de diferencia.

Las muestras de carillas de las resinas compuestas *Llis*, *Brilliant* NG y *Opallis* fueron expuestas a bebida pigmentante (vino) con una diferencia cromática promedio desde 120 ± 293 con una desviación de 64.29, seguido de la bebida pigmentante (café) con una diferencia cromática promedio desde 120 ± 256 con una desviación de 64.29, seguido de la bebida pigmentante (gaseosa) con una diferencia cromática promedio desde 120 ± 160 con una desviación de 51.96.

Prueba estadística Anova

De acuerdo con la prueba estadística realizada de Anova se logró obtener un nivel p = 0.01 que resulta ser menor al α de 0.05 donde se ha podido determinar que existe diferencia significativa en la diferencia cromática de los tres tipos de resina compuesta ante la sumersión de bebidas pigmentantes (vino, café, gaseosa) a los 30 días.

Prueba de hipótesis

Según la prueba *t*, se encontró mayor diferencia cromática en la resina compuesta *Llis* en la bebida pigmentante (vino).

Hi: Existe diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro* durante 30 días, Arequipa, 2022.

Ho: No existe diferencia cromática de tres resinas compuestas sumergidas en bebidas pigmentantes estudio *in vitro* durante 30 días, Arequipa, 2022.

5.2. Discusión

Ramos (7), encontró que la resina *Opallis* era la que menos se manchaba con un promedio de 4,24, mientras que las otras dos resinas, Z350 y *Brilliant* Everglow, tenían un promedio de 7,7 y 7,2, encontrando discrepancia con esta investigación donde las evaluaciones realizadas con la resina compuesta *Opallis* presentan una diferencia de color, partiendo del grupo control de 120 a 130 siendo 1 tonalidad de diferencia ante la sumersión de bebida pigmentante (vino), ante la sumersión de bebida pigmentante (café) no tuvo diferencia de 120

de tonalidad, ante la sumersión de bebida pigmentante (gaseosa) no tuvo diferencia de 120 de tonalidad.

Guzmán et al. (8), concluyeron que la resina Filtek es la resina con mayor cambio de color, especialmente en comparación con el vino, encontrando similitud con esta investigación donde las muestras de carillas de las resina compuestas *Llis*, *Brilliant* NG y *Opallis* expuestas a bebida pigmentante (vino) con una diferencia cromática promedio desde 120 ± 293 con una desviación de 64.29.

Gadonski et al. (10), observaron que el color de las resinas cambió en presencia de café, sin embargo, la resina Z350 mostró un cambio mayor en comparación con el *bulk fill*. Encontrando similitud con esta investigación donde las muestras de carillas de las resinas compuestas *Llis*, *Brilliant* NG y *Opallis* expuestas a bebida pigmentante (café) presentaron una diferencia cromática promedio desde día 1 al día 7 de 120 ± 130 con una desviación de 10, seguido del día 15 de 120 ± 166 con una desviación de 55.08, seguido del día 30 de 120 ± 256 con una desviación de 64.29.

Conclusiones

- 1. Se obtuvo un nivel p = 0.04 que resulta ser menor al α de 0.05 donde se ha podido determinar que existe diferencia significativa en la diferencia cromática de las resinas compuestas Llis, Brilliant NG y Opallis ante la sumersión de bebidas pigmentantes (vino, café, gaseosa) en evaluación en grupo, encontrando mayor diferencia cromática en la resina compuesta Llis en la bebida pigmentante (vino) a los 15 días.
- 2. Se obtuvo un nivel p = 0.02 que resulta ser menor al α de 0.05 donde se ha podido determinar que existe diferencia significativa en la diferencia cromática de las resinas compuestas *Llis*, *Brilliant* NG y *Opallis* ante la sumersión de bebidas pigmentantes con un control de 7 días (vino, café, gaseosa) en evaluación en grupo, encontrando mayor diferencia cromática en la resina compuesta *Llis* en la bebida pigmentante (vino).
- 3. Se obtuvo un nivel p = 0.01 que resulta ser menor al α de 0.05 donde se ha podido determinar que existe diferencia significativa en la diferencia cromática de las resinas compuestas Llis, Brilliant NG y Opallis ante la sumersión de bebidas pigmentantes con un control de 15 días en vino, café, gaseosa, en evaluación en grupo, encontrando mayor diferencia cromática en la resina compuesta Llis en la bebida pigmentante (vino).
- 4. Se obtuvo un nivel p = 0.01 que resulta ser menor al α de 0.05 donde se ha podido determinar que existe diferencia significativa en la diferencia cromática de las resinas compuestas *Llis*, *Brilliant* NG y *Opallis* ante la sumersión de bebidas pigmentantes con un control de 30 días (vino, café, gaseosa) en evaluación en grupo, encontrando mayor diferencia cromática en la resina compuesta *Llis* en la bebida pigmentante (vino).

Recomendaciones

- 1. De acuerdo con los resultados y la variabilidad de la resina más recomendada es la *Opallis* porque tiene mejores resultados, se recomienda a la comunidad odontológica, ya que es una de las resinas más resistentes ante las bebidas pigmentantes.
- 2. Se recomienda hacer del conocimiento a la población sobre los efectos de diferentes bebidas pigmentantes acorde con los resultados encontrados en la presente investigación.
- 3. Se recomienda seguir las indicaciones del protocolo correctamente del fabricante al momento de realizar las restauraciones en las piezas dentarias.
- Se recomienda a futuros investigadores que realicen otras investigaciones más profundas en cuanto al consumo de otros agentes pigmentantes en los materiales restauradores estéticos.

Lista de Referencias

- Soto-monterio J, Lafuente-Marín D. Efecto de las gaseosas sobre las resinas. Rev Científica Odontológica. 2013; 9(2): p. 9–15.
- 2. Chalacán RG, Garrido PR. Análisis comparativo del grado de pigmentación de tres resinas nanohibridas: Estudio *in vitro*. Revista "Odontología". 2018; 18(1): p. 62-72.
- 3. Parra N. Estabilidad de color de resinas compuestas. Tesis pregrado. Quito: Universidad de Guayaquil, Facultad Piloto de Odontología; 2022.
- 4. Guevara A, Otalora M, Victoria M. Alteración de color de las resinas compuestas Empress Direct y Forma al ser expuestas a Coca-Cola y café mediante un estudio *in vitro*. Tesis pregrado. Huila: Universidad Antonio Nariño, Facultad de Odontología; 2019.
- 5. Jucht D, Urdaneta B. Estabilidad del color de tres resinas compuestas de baja contracción, aplicando la técnica de sellado sometidas a pigmentación por café. Tesis pregrado. Guayas: Universidad de los Andres, Facultad Piloto de Odontología; 2019.
- 6. Guevara J. Valoración del color en resinas compuestas expuestas a diferentes bebidas: un estudio in-vitro. Tesis pregrado. Ambato: Universidad Católica de Santiago de Guayaquil, Ciencias Medicas; 2019.
- 7. Ramos X. Vulnerabilidad de las resinas Z350, Brilliant Everglow, Opallis a jugos artificiales, vino tinto y té verde. Tesis pregrado. Ambato: Universidad de Guayaquil Facultad de Odontología, Facultad Ciencias Médicas; 2019.
- 8. Guzmán S, Albán C. Influencia de la exposición a bebidas pigmentantes sobre la estabilidad cromática de las resinas compuestas. Tesis pregrado. Chimborazo: Universidad Nacional de Chimborazo, Facultad de Ciencias de la Salud; 2019.
- 9. Torres L. Susceptibilidad de dos materiales restaurativos fotopolimerizables frente tres sustancias pigmentantes: café, vino tinto y cola. Tesis pregrado. Ambato: Universidad de Guayaquil, Facultad Piloto de Odontología; 2019.
- 10. Gadonski A, Feiber M, Almeida L, Naufel F, Schmitt V. Avaliação do efeito cromático em resinas compostas nanoparticuladas submetidas a solução café. Rev Odontol da UNESP. 2018; 47(3): p. 137–142.
- 11. Amador W, Lopez L. Comparación de la estabilidad del color de tres resinas compuestas sumergidas en un agente pigmentante. Tesis pregrado. Huancayo: Universidad Privada de Huancayo Franklin Roosevelt, Facultad de Ciencias de la Salud; 2021.
- 12. Sarmiento Y, Sarmiento A. Evaluación *in vitro* de color de las resinas Filtek 3m z350 xt y Palfique lx5, sumergidas en chicha de jora, chicha morada y café. Tesis pregrado.

- Abancay: Universidad Tecnológica de los Andes, Escuela Profesional de Estomatología; 2022.
- 13. Atencio S, Ayna M. Efecto de tres bebidas en la estabilidad de color de la resina nanoparticulada. Tesis pregrado. Huancayo: Universidad Continental, Escuela Académico Profesional de Odontología; 2022.
- 14. Machaca C. Estudio in vitro del efecto del vino en la variación cromática en resinas nanohíbridas. Tesis pregrado. Sullana: Universidad César Vallejo, Escuela de Estomatología; 2021.
- 15. Zapata R, Rios A. Alteración del color en resinas compuestas por exposición a sustancias pigmentantes. Tesis pregrado. Paita: Universidad César Vallejo, Escuela de Estomatología; 2021.
- 16. Huarcaya M. Efecto de bebidas pigmentantes en la estabilidad de color de las resinas compuestas. estudio *in vitro*. Tesis pregrado. Lima: Universidad Privada Norbert Wiener, Facultad de Ciencias de la Salud; 2021.
- 17. Reyes M, Salazar S. Efecto de diferentes bebidas en la estabilidad cromática de las resinas FiltekTMZ350 y dos marcas de resinas Bulk Fill. Tesis pregrado. Jaen: Universidad Privada Antonio Guillermo Urrelo;, Odontología Restauradora y Estética; 2020.
- 18. Roncal L, Solis R. Comparación de la estabilidad de color de tres resinas compuestas sumergidas en una sustancia pigmentante. Tesis pregrado. Huancayo: Universidad Privada de Huancayo Franklin Roosevelt, Ciencias de la Salud; 2020.
- 19. Chambilla J. Comparar el efecto del vino tinto y el café en la sorción y solubilidad de la resina nanoparticulada. Tesis pregrado. Tacna: Universidad Latinoamericana Cima, Facultad de Odontología; 2020.
- 20. LLerena V. Efecto del café en la variación cromática de las resinas híbridas y nanohíbridas. Tesis pregrado. Lima: Universidad Inca Garcilaso de la Vega, Maestría en Estomatología; 2019.
- 21. Laura SA. Efecto de bebidas carbonatadas y refrescantes en el color de los cementos de ionómero de vidrio. Estudio *in vitro*. Arequipa. Tesis pregrado. Castilla: Universidad Alas Peruanas, Facultad de Medicina Humana y Ciencias de la Salud; 2018.
- 22. Trejo PBR. Efectos de diferentes sustancias pigmentantes sobre el color de dos resinas nanohíbridas con y sin pulido, Tacna-2017. Tesis de pregrado. Tacna: Universidad Privada de Tacna, Facultad de Ciencias de la Salud; 2017.
- 23. Rivera KS. Factores que influyen en la apreciación cromática subjetiva en restauraciones estéticas en el sector anterior. Tesis de pregrado. Ambato: Universidad de Guayaquil, Facultad Piloto de Odontología; 2015.

- 24. León JA. Comparacion in vitro del grado de pigmentación entre resina compuesta vs. resina bulk al sumergirlas en dos bebidas energizantes. Tesis de pregrado. Pimentel: Universidad Señor de Sipan, Facultad de Ciencias de la Salud; 2018.
- 25. Higashi, Mongruel G, Garcia EJ, Mongruel OM, Gomes JC. Color y características ópticas para restauraciones estéticas de dientes anteriores. Acta Odontológica Venezolana. 2011; 49(4): p. 37-38.
- 26. Alvear DE. Cambio de color por exposición al café de dos tipos de resinas compuestas utilizadas en restauraciones dentales. estudio *in vitro*. Tesis de pregrado. Guayas: Universidad Central del Ecuador, Facultad de Odontología; 2015.
- 27. Christiani, Devecchi JR. Color: Consideración en odontología e instrumentos para el registro. Rev. RODYB. 2016 agosto; 5(2): p. 10-15.
- 28. Schmeling M. Selección de color y reproducción en odontología parte 3: Escogencia del color de forma visual e instrumental. New Perspective Article. 2017; 28(2): p. 23-32.
- 29. Gallegos PJ. Cambios De color sobre dientes, al ser sumergidos en café, té y vino tinto después de un aclaramiento dental en diferentes concentraciones. Tesis de pregrado. Ambato: Universidad San Francisco de Quito USFQ, Facultad de Odontología; 2016.
- 30. Moradas M, Álvarez. Manchas dentales extrínsecas y sus posibles relaciones con los materiales blanqueantes. Avances en Odontoestomatología. 2018; 34(2): p. 59-71.
- 31. Hervás A, Martínez MA, Cabanes J, Barjau A, Fos Galve P. Resinas compuestas. revisión de los materiales e indicaciones clínicas. Med. Oral Patol. Oral Cir.Bucal. 2006 abril; 11(2): p. 215-220.
- 32. Carrillo C, Monroy M. Materiales de resinas compuestas. Revista ADM. 2009 julio; LXV(4): p. 10-17.
- 33. Ortega R. Estudio comparativo *in vitro* de la resistencia al desgaste de 3 resinas compuestas de nanotecnología y 3 resinas compuestas convencionales. Tesis de pregrado. La Reina: Universidad de Chile, Departamento de Odontología Restauradora; 2005.
- 34. Manshadi SD. Estudio comparativo *in vitro* de la resistencia mecánica de una resina compuesta fotopolimerizada mediante dos protocolos diferentes. Tesis de pregrado. La Reeina: Universidad de Chile, Facultad de Odontología; 2008.
- 35. Catalán C. Estudio comparativo *in vitro* de la dureza superficial de cementos de resina compuesta de curado-dual activado física y químicamente. Tesis de Pregrado. Maipu: universidad de chile, Departamento de Odontología Restauradora; 2010.
- 36. Osores JE. Estudio comparativo *in vitro* del grado de microfiltración marginal de restauraciones de resina compuesta realizadas con el sistema adhesivo xp bond®

- utilizando la técnica de grabado ácido total y de grabado ácido selectivo del esmalte. Tesis De Pregrado. Maipu: Universidad de Chile, Departamento de Odontología Restauradora; 2013.
- 37. Domínguez R. Análisis comparativo *in vitro* del grado de sellado marginal de restauraciones de resina compuesta realizadas con un material monoincremental (tetric n-ceram bulk fill), y uno convencional (tetric n-ceram). Tesis de pregrado. Maipu: Universidad de Chile, Departamento de Odontología Restauradora; 2014.
- 38. Cuevas CE, D'Accorso NB, Zamarripa E. Uso en odontología de resinas polimerizadas por apertura de anillos. Instituto de Ciencias de la Salud UAEH. 2009; 2(5): p. 5-12.
- 39. Martínez JF. Estudio de biocompatibilidad de dos *composites* de baja contaracción sobre células madre de origen dental. Tesis pregrado. Cieza: Universidad de Murcia, Departamento de Dermatología, Estomatología, Radiología y Medicina Física; 2010.
- 40. Donoso J. Análisis comparativo *in vitro*, de la radiopacidad de resinas compuestas fotopolimerizables presentes en el mercado actualmente. Tesis pregrado. La Reina: Universidad de Chile, Departamento de Odontología Restauradora; 2008.
- 41. Hernández C, Baptista M. Metodología de la investigación. Sexta ed. Toledo M, editor. México: Editorial Mexicana, Reg; 2014.

Anexos

Anexo 1

Matriz de consistencia

Problemas	Objetivos	Hipótesis	Variable	Dimensiones	Indicadores	Escala de medición	Tipo de variable
Problema general	Objetivo general Comparar la diferencia	Hipótesis general Existe diferencia			Colores blancos		
cromática de tres resinas	cromática de tres resinas	cromática de tres resinas			Colores		
compuestas sumergidas en	compuestas sumergidas en	compuestas sumergidas en			amarillos		
bebidas pigmentantes	bebidas pigmentantes	bebidas pigmentantes		Estabilidad	Colores	De 120 a	
estudio in vitro, Arequipa	estudio in vitro, Arequipa	estudio in vitro, Arequipa	D.10 .	cromática	rojos	540	Ordinal
2022?	2022	2022	Diferencia		Colores		
			cromática		celestes		
Problemas específicos	Objetivos específicos	Hipótesis específicas			Colores negros		
¿Cuál es la diferencia		Existe diferencia		Variación de la			
cromática de tres resinas	Comparar la diferencia	cromática de tres resinas		tonalidad del	A, B, C, D	1A - 4D	Ordinal
compuestas sumergidas en	cromática de tres resinas	compuestas sumergidas en		brillo			
bebidas pigmentantes	compuestas sumergidas en	bebidas pigmentantes					
estudio in vitro, durante 7	bebidas pigmentantes	estudio in vitro, durante 7					
días Arequipa 2022?	estudio in vitro, durante 7	días Arequipa 2022				T1: 7 días	
¿Cuál es la diferencia	días Arequipa 2022 Comparar la diferencia	Existe diferencia					
cromática de tres resinas	cromática de tres resinas	cromática de tres resinas				después de la	
compuestas sumergidas en	compuestas sumergidas en	compuestas sumergidas en				confección	
bebidas pigmentantes	bebidas pigmentantes	bebidas pigmentantes	Sumersión a	Tiempo de	-7 días	T2: 15 días	
estudio in vitro, durante 15	estudio in vitro, durante 15	estudio in vitro, durante	bebidas	pigmentación	-15 días	después de	Ordinal
días Arequipa 2022?	días Arequipa 2022	15 días Arequipa 2022	pigmentantes	L-9	-30 días	la	
1 1	Comparar la diferencia	1 1	1 0			tinción.	
¿Cuál es la diferencia	cromática de tres resinas	. Existe diferencia				T3: 30 días	
cromática de tres resinas	compuestas sumergidas en	cromática de tres resinas				después de	
compuestas sumergidas en	bebidas pigmentantes	compuestas sumergidas en				la tinción	
bebidas pigmentantes	estudio in vitro, durante 30	bebidas pigmentantes					
estudio in vitro, durante 30	días Arequipa 2022	estudio in vitro, durante					
días Arequipa 2022?		30 días Arequipa 2022					

Documento de aprobación por el Comité de Ética

Huancayo, 14 de enero del 2023

OFICIO Nº015-2023-CIEI-UC

Investigadores: Lourdes Almirón Enriquez Melisa Rosa Centeno Pari Ruth Roxana Velasquez Ríos

Presente-

Tengo el agrado de dirigirme a ustedes para saludarles cordialmente y a la vez manifestarles que el estudio de investigación titulado: DIFERENCIA CROMÁTICA TRES RESINAS COMPUESTAS SUMERGIDAS EN BEBIDAS PIGMENTANTES ESTUDIO IN VITRO, AREQUIPA 2022.

Ha sido APROBADO por el Comité Institucional de Ética en Investigación, bajo las siguientes precisiones:

- El Comité puede en cualquier momento de la ejecución del estudio solicitar información y confirmar el cumplimiento de las normas éticas.
- El Comité puede solicitar el informe final para revisión final.

Aprovechamos la oportunidad para renovar los sentimientos de nuestra consideración y estima personal.

Atentamente,

Walter Calderón Gerstein Presidente del Comité de Ética Universidad Continental

C.c. Archivo.

Arequipa Av. Los Incas S/N, José Luis Bustamante y Rivero (054) 412 030

Calle Alfonso Ugarte 607, Yanahuara (054) 412 030

Huancayo Av. San Carlos 1980 (064) 481 430

Cusco Lift. Manuel Phado - Lote B, N°7 Av. Collaeuyo (084) 480 070

Sector Angostura KM, 10, carretora San Jorónimo - Saylla (084) 480 070

Av. Alfredo Mendola 5210, Los Olivos (01) 213 2760

Jr. Junin 355, Miraflores (01) 213 2760

Permiso institucional

"Año de la Unidad, la paz y el desarrollo"

FACULTAD DE CIENCIAS DE LA SALUD

ESCUELA ACADÉMICO PROFESIONAL DE ODONTOLOGÍA

Dr. Deivid Castillo Monroy Presente.-

De mi especial consideración:

Es grato dirigirme a Ud., para saludarlo muy cordialmente y a la vez solicitar su autorización y apoyo a las alumnas bachilleres profesional de Odontología, quienes están desarrollando el trabajo de investigación previo a obtener nuestro grado de Cirujano Dentista, con el tema de investigación "DIFERENCIA CROMÁTICA DE TRES RESINAS COMPUESTAS SUMERGIDAS EN BEBIDAS PIGMENTANTES ESTUDIO IN VITRO, AREQUIPA 2022", por lo que estaría muy agradecido de contar con el apoyo de su representada, a fin de autorizar a quien corresponda, el acceso a sus oficinas del consultorio odontológico DENTAL BIODENS para poder recolectar datos concerniente a nuestra investigación.

Esperando la aceptación, propicia la ocasión para expresar nuestra estima y deferencia.

Atentamente.

Arequipa 28 de enero del 2023

Dr. JANET ERIKA VARGAS MOTTA

Asesor Tesis

Universidad Continental

C.D. Dewid Castillo Monroy
ORTODONCISTA

RECIPIOD

Constancia de la autorización

"Año de la Unidad, la paz desarrollo "

CONSTANCIA DE CONFIABILIDAD DE LA SUPERVISIÓN

Yo, Mg.C.D.Deivid Castillo Monroy, identificado con DNI N° 40408581 ,Especialista en Ortodoncia de la CLINICA DENTAL BIODENS cop.21763 Ubicado en la Muñoz Najar del Distrito Cercado ; de la Región Arequipa ; Certifico que los bachilleres Lourdes Almirón Enríquez Identificada con el DNI N° 41175988, Melissa Rosa Centeno Parí identificada con el DNI N° 72376281 y Ruth Roxana Velásquez Ríos identificada con el DNI N°77081864, quienes están realizando el trabajo de investigación para obtener el grado de cirujano dentista , con el tema "DIFERENCIA CROMÁTICA DE TRES RESINAS COMPUESTAS SUMERGIDAS EN BEBIDAS PIGMENTANTES EN ESTUDIO IN VITRO AREQUIPA 2022" realizaron la ejecución de la Investigación bajo la supervisión de mi persona para recolectar datos concerniente .

La ejecución de la investigación se Inició el 23 de enero y se culminó el 3 marzo.

El documento no tiene valor legal, los bachilleres pueden hacer uso de este documento para fines que convengan a los interesados.

Arequipa, 03 de marzo del 2023

C.D. Dewid Castillo Monroy

Mg C.D. Deivid Castillo Monroy

DNI.40408581

Exámenes de laboratorio Clínicos especializados Hematoligía - Microbiología - Bioquímica - Dosaje de hormonas Marcadores tumorales - Anticuerpos Virales

"Año de la Unidad, la paz y el desarrollo"

CONSTANCIA DE CONFIABILIDAD DE LA SUPERVISION

Yo, Biólogo FLORENCIO CHOQUE APARICIO

Responsable del LABORATORIO "CARE MEDIC "DNI Nº 29297337

COP 6340 RNE 0164 ubicado en Av. Goyeneche 105 interior A6, Distrito cercado, de la región Arequipa certifico que los bachilleres,

LOURDES ALMIRON ENRIQUEZ identificada con DNI Nº 41175988

MELISSA ROSA CENTENO PARI identificada con DNI Nº 72376281

RUTH ROXANA VELASQUEZ RIOS identificada con DNI N° 77081864, quienes están realizando el trabajo de investigación para obtener el grado de cirujano dentista, con el tema "DIFERENCIA CROMATICA DE TRES RESINAS COMPUESTAS SUMERGIDAS EN BEBIDAS PIGMENTANTES EN ESTUDIO IN VITRO AREQUIPA 2022" realizaron la ejecución de la investigación haciendo uso de la estufa y realizando controles en el periodo de 7,15,y 30 dias bajo la supervisión de mi persona para recolectar datos concernientes

AREQUIPA, 03 DE MARZO DEL 2023

Av. Coyeneche 105 Of. A-6 Cel. 972722194 - 859005795 - 946743681 THOLOGO LABORATORISTA

Firma de los 3 jueces expertos

FACULTAD DE CIENCIAS DE LA SALUD

SOLICITUD DE VALIDACION DE INSTRUMENTO- FICHA DE DATOS JUECIO DE EXPERTOS

Estimado especialista: Dr. Deivy Castillo Monroy

Considerando su actitud ética y trayectoria profesional, permítame considerarlo como **JUEZ EXPERTO** para revisar el contenido del siguiente instrumento de recolección de datos:

Ficha de recolección de datos.

Le adjunto las matrices de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis.

Título del	"DIFERENCIA CROMÁTICA DE TRES RESINAS
proyecto de tesis	COMPUESTAS SUMERGIDAS EN BEBIDAS PIGMENTANTES
	ESTUDIO IN VITRO, AREQUIPA 2022."

El resultado de esta permitirá la **VALIDACIÓN DE CONTENIDO** de instrumento de antemano le agradezco sus aportes y sugerencias.

Huancayo 03 de marzo del 2023

Tesista: Lourdes Almirón Enriquez

DNI:41175988

Tesista: Melisa Rosa Centeno Pari

DNI: 72376281

Tesista: Ruth Roxana Velasquez Rios

DNI:77081864

VALIDACIÓN DE FICHA DE RECOLECCIÓN DE DATOS

Para validar el Instrumento debe colocar, en el casillero de los criterios: suficiencia, claridad, coherencia y relevancia, el número (entre 1-5) que según su evaluación corresponda, cada ítem tendrá un valor máximo de 20 = 100%

Nombre del Instrumento: ficha de controles Autor del Instrumento: las autoras de la investigación VARIABLE: diferencia cromática de resinas ante exposición de bebidas pigmentantes Dimensión: Observaciones o Ítems Suficiencia Claridad Coherencia Puntuación Relevancia recomendaciones Indicadores Resina 5 5 5 20 a **Estabilidad** Resina 5 5 5 5 20 b cromática Resina 5 5 5 20 C Dia 1 5 5 5 20 5 5 Dia 7 5 5 20 Tiempo de pigmentación 5 5 5 5 Dia 15 20 5 5 5 Dia 30 5 20 Total

%

140

100%

INFORMACIÓN DEL ESPECIALISTA

Nombres y Apellidos	Admed Deind Contello Honney
Profesión y Grado Académico	Ciruzeno dentesta Mozostes en Salud pillica
Especialidad	Ortodony ortopedes Married
Institución y años de experiencia	Almonde Cetto Sonte Mais Almende Anden Visto Cherr Valor
Cargo que desempeña actualmente	Genete.
untaje del Instrumento Revisado:	100%
pinión de aplicabilidad:	
APLICABLE W APLICABLE LI	JEGO DE REVISIÓN () NO APLICABLE ()

C.D. Dewid Castillo Monroy
ORTOOONCISTA

Nombres y apellidos Adam DNI: 421403781

COLEGIATURA: 7/763

RÚBRICA PARA LA EVALUACIÓN DE EXPERTOS

		Escala de v	aloración			
CRITERIOS	1) Deficiente 0-20%	2) Regular 21-40%	3) Bueno 41-60%	4) Muy bueno 61-80%	5) Eficiente 81-100%	PUNTAJE
SUFICIENCIA: Los ítems de una misma dimensión o indicador son suficientes para obtener su medición.	Los ítems no son suficientes para medir la dimensión o indicador.	Los ítems miden algún aspecto de la dimensión o indicador, pero no corresponden a la dimensión total.	Se deben incrementar ítems para evaluar completamente la dimensión o indicador.	Los ítems son relativamente suficientes.	Los ítems son suficientes.	5
2. PERTINENCIA Los ítems de una misma dimensión o indicador son adecuados para obtener su medición.	Los ítems no son adecuados para medir la dimensión o indicador.	Lo ítems miden algún aspecto de la dimensión, pero no corresponden a la dimensión total.	Se debe incrementar ítems para evaluar la dimensión o indicador completamente.	Lo ítems son relativamente suficientes.	Los ítems son suficientes.	5
3. CLARIDAD Los ítems se comprenden fácilmente, es decir, su sintaxis y semántica son adecuadas.	Los ítems no son claros.	Los ítems requieren modificaciones en el uso de palabras por su significado o por el orden de las mismas.	Se requiere una modificación muy específica de algunos ítems.	Los ítems son claros en los sintáctico.	Los ítezms son claros, tienen semántica y sintaxis adecuada.	5
4. COHERENCIA Los ítems tienen relación lógica con la dimensión o indicador que están midiendo.	Los ítems no tienen relación lógica con la dimensión o indicador.	Los ítems tienen una relación tangencial con la dimensión o indicador.	Los ítems tienen una relación regular con la dimensión o indicador que está midiendo.	Los ítems están relacionados con la dimensión o indicador.	Los ítems están muy relacionados con la dimensión o indicador.	5
5.RELEVANCIA Los ítems son esenciales o importantes y deben ser incluidos.	Los ítems deben ser eliminadas sin que se vea afectadas la medición de la dimensión o indicador.	Los ítems pueden ser eliminados sin que se vea afectada la medición de la dimensión o indicador.	Los ítems tienen alguna relevancia, pero otro ítem puede estar incluyendo lo que este mide.	Los ítems son necesarios.	Los ítems son relevantes y debe ser incluido.	5

FACULTAD DE CIENCIAS DE LA SALUD

SOLICITUD DE VALIDACION DE INSTRUMENTO- FICHA DE DATOS JUECIO DE EXPERTOS

Estimado especialista: Dr. Farly Gómez Budiel

Considerando su actitud ética y trayectoria profesional, permítame considerarlo como **JUEZ EXPERTO** para revisar el contenido del siguiente instrumento de recolección de datos:

Ficha de recolección de datos.

Le adjunto las matrices de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis.

Título del	"DIFERENCIA CROMÁTICA DE TRES RESINAS
proyecto de tesis	COMPUESTAS SUMERGIDAS EN BEBIDAS PIGMENTANTES
	ESTUDIO IN VITRO, AREQUIPA 2022."

El resultado de esta permitirá la **VALIDACIÓN DE CONTENIDO** de instrumento de antemano le agradezco sus aportes y sugerencias.

Huancayo 03 de marzo del 2023

Tesista: Lourdes Almirón Enriquez

DNI:41175988

Tesista: Melisa Rosa Centeno Pari

DNI: 72376281

Tesista: Ruth Roxana Velasquez Rios

DNI:77081864

VALIDACIÓN DE FICHA DE RECOLECCIÓN DE DATOS

Para validar el Instrumento debe colocar, en el casillero de los criterios: suficiencia, claridad, coherencia y relevancia, el número (entre 1-5) que según su evaluación corresponda, cada ítem tendrá un valor máximo de 20 = 100%

		Nombre	del Instru	ımento: fich	a de contro	les	
	,	Autor del Ir	nstrumento	e: las autoras (de la investiga	ación	
VAR	IABLE: di	ferencia crom	ática de re	sinas ante exp	oosición de be	ebidas pigme	ntantes
Dimensión: Indicadores	Ítems	Suficiencia	Claridad	Coherencia	Relevancia	Puntuación	Observaciones o recomendaciones
Estabilidad cromática	Resina a	5	5	5	5	20	
	Resina b	5	5	5-	5	30	
	Resina c	5	5	5.	5	20	
	Dia 1	5	5	5.	5-	20	
Tiempo de	Dia 7	سي	5	5	5-	20	
pigmentación	Dia 15	5	4	5	5	19	
	Dia 30	5	5	5	5	20	
*	Total					139	
3	%					99%	

FARILY O. SOMEZ BUDIEL
CIRLUANO DENTISTA
ESPECIALISTA EN GITTOCONCA
Y ORTOGONEZ

INFORMACIÓN DEL ESPECIALISTA

Nombres y Apellidos	FARLY OCTOUTO GOMEZ BUDIEL	
Profesión y Grado Académico	CIPUSANO DENI 157A - UCSM MAESIRIA - EN SCRNICIOS DE GEPENZIAS DESIXUD: UNSA	
Especialidad	OPTOBOUCIA YORTOP CO I A MADOSTAR UCSM	
Institución y años de experiencia	CACEREN UCLASONER - UNCU 10 ANDS GAPERTEUCIA	
Cargo que desempeña actualmente	CIPOJANO DEULISTO CONSUMA PRIMADA	

Puntaje del Instrumento Revisado:	998		
Opinión de aplicabilidad:			

APLICABLE (x)

APLICABLE LUEGO DE REVISIÓN ()

NO APLICABLE ()

FIRELY O (Y ROS) BUTTEL BUTTEL

ESPECIALISTA EN ORTOPONICIA
Y ORTOPEDIA MAXILAR

FIRELY O (Y ROS) B' GOMEL BUD I'CL

Nombres y apellidos DNI: 294/6321 COLEGIATURA: 11329

RÚBRICA PARA LA EVALUACION DE EXPERTOS

		Escala de vi	aloración	para la		
CRITERIOS	1) Deficiente 0-20%	2) Regular 21-40%	3) Bueno 41-60%	4) Muy bueno 61-80%	5) Eficiente 81-100%	PUNTAJE
SUFICIENCIA: Los ítems de una misma dimensión o indicador son suficientes para obtener su medición.	Los ítems no son suficientes para medir la dimensión o indicador.	Los ítems miden algún aspecto de la dimensión o indicador, pero no corresponden a la dimensión total.	Se deben incrementar items para evaluar completamente la dimensión o indicador.	Los ítems son relativamente suficientes.	Los ítems son suficientes.	4
PERTINENCIA Los ítems de una misma dimensión o indicador son adecuados para obtener su medición.	Los ítems no son adecuados para medir la dimensión o indicador.	Lo ítems miden algún aspecto de la dimensión, pero no corresponden a la dimensión total.	Se debe incrementar ítems para evaluar la dimensión o indicador completamente.	Lo ítems son relativamente suficientes.	Los ítems son suficientes.	5
3. CLARIDAD Los ítems se comprenden fácilmente, es decir, su sintaxis y semántica son adecuadas.	Los ítems no son claros.	Los ítems requieren modificaciones en el uso de palabras por su significado o por el orden de las mismas.	Se requiere una modificación muy específica de algunos ítems.	Los ítems son claros en los sintáctico.	Los ítezms son claros, tienen semántica y sintaxis adecuada.	5
4. COHERENCIA Los ítems tienen relación lógica con la dimensión o indicador que están midiendo.	Los ítems no tienen relación lógica con la dimensión o indicador.	Los ítems tienen una relación tangencial con la dimensión o indicador.	Los ítems tienen una relación regular con la dimensión o indicador que está midiendo.	Los ítems están relacionados con la dimensión o indicador.	Los ítems están muy relacionados con la dimensión o indicador.	5
5.RELEVANCIA Los ítems son esenciales o importantes y deben ser incluidos.	Los ítems deben ser eliminadas sin que se vea afectadas la medición de la dimensión o indicador.	Los ítems pueden ser eliminados sin que se vea afectada la medición de la dimensión o indicador.	Los ítems tienen alguna relevancia, pero otro ítem puede estar incluyendo lo que este mide.	Los ítems son necesarios.	Los ítems son relevantés y debe ser incluido.	5

ARLY O. GOMEZ BUDIEL CIRUJANO DENTISTA SPECIALISTA EN ORTOGONICIA Y ORTOPEDIA MASILAR RNE: 1771

FACULTAD DE CIENCIAS DE LA SALUD

SOLICITUD DE VALIDACION DE INSTRUMENTO- FICHA DE DATOS JUECIO DE EXPERTOS

Estimado especialista: Dr. Marco Antonio Fuentes Salas

Considerando su actitud ética y trayectoria profesional, permítame considerarlo como JUEZ EXPERTO para revisar el contenido del siguiente instrumento de recolección de datos:

Ficha de recolección de datos.

Le adjunto las matrices de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis.

Título del	"DIFERENCIA CROMÁTICA DE TRES RESINAS
proyecto de tesis	COMPUESTAS SUMERGIDAS EN BEBIDAS PIGMENTANTES
	ESTUDIO IN VITRO, AREQUIPA 2022."

El resultado de esta permitirá la **VALIDACIÓN DE CONTENIDO** de instrumento de antemano le agradezco sus aportes y sugerencias.

Huancayo 03 de marzo del 2023

Dr. Marco A. Fuentes Salas

CIRUJANO DENTISTA C.O.P. 8053

Tesista: Lourdes Almirón Enriquez

DNI:41175988

Tesista: Melisa Rosa Centeno Pari

DNI: 72376281

Tesista: Ruth Roxana Velasquez Rios

DNI:77081864

VALIDACIÓN DE FICHA DE RECOLECCIÓN DE DATOS

Para validar el Instrumento debe colocar, en el casillero de los criterios: suficiencia, claridad, coherencia y relevancia, el número (entre 1-5) que según su evaluación corresponda, cada ítem tendrá un valor máximo de 20 = 100%

		Nombre	del Instru	umento: fich	a de contro	oles	
		Autor del II	nstrumento	o: las autoras	de la investiga	ación	
VAR	IABLE: di	ferencia crom	atica de re	sinas ante exp	oosición de be	ebidas pigme	ntantes
Dimensión: Indicadores	Ítems	Suficiencia	Claridad	Coherencia	Relevancia	Puntuación	Observaciones o recomendaciones
Estabilidad cromática	Resina a	5	5	5	5	20	
	Resina b	5	5	5	5	20	
	Resina c	5	5	5	5	20	
	Dia 1	5	5	5	5	20	
Tiempo de pigmentación	Dia 7	5	5	5	5	210	
	Dia 15	5	5	5	5	20	
	Dia 30	5	5	5	5	20	1.5
10	Total		140			140	

100%

Dr. Marco A. Fuertes Salas CIRUJANO DENTISTA C.O.P. 8053

%

INFORMACIÓN DEL ESPECIALISTA

Nombres y Apellidos	Marco Antonio Fuentes Salas.
Profesión y Grado Académico	Cirujano Dentista Mangter in educación, doca cia y gestion.
Especialidad	-Robebiletación tral.
Institución y años de experiencia	Universidad Indina Nestor Cacres Velasquez - 20 años
Cargo que desempeña actualmente	Consulta privada

Puntaje del Instrumento Revisado:	100%

Opinión de aplicabilidad:

APLICABLE (X)

APLICABLE LUEGO DE REVISIÓN ()

NO APLICABLE ()

Nombres y apellidos DNI: 29531941

COLEGIATURA: 80

Marco A. Fuentes Salas CIRUJANO DENTISTA C.O.P. 8053

RÚBRICA PARA LA EVALUACIÓN DE EXPERTOS

		Escala de valoración	aloración			
CRITERIOS	1) Deficiente 0-20%	2) Regular 21-40%	3) Bueno 41-60%	4) Muy bueno 61-80%	5) Eficiente 81-100%	PUNTAJE
Los ítems de una misma dimensión o indicador son suficientes para obtener su medición.	Los items no son suficientes para medir la dimensión o indicador.	Los items miden algún aspecto de la dimensión o indicador, pero no corresponden a la dimensión total.	Se deben incrementar items para evaluar completamente la dimensión o indicador.	Los ítems son relativamente suficientes.	Los items son suficientes.	p
Los ítems de una misma dimensión o indicador son adecuados para obtener su medición.	Los items no son adecuados para medir la dimensión o indicador.	Lo items miden algún aspecto de la dimensión, pero no corresponden a la dimensión total.	Se debe incrementar litems para evaluar la dimensión o indicador completamente.	Lo ítems son relativamente suficientes.	Los items son suficientes.	0
Los ítems se comprenden fácilmente, es decir, su sintaxis y semántica son adecuadas.	Los items no son claros.	Los items requieren modificaciones en el uso de palabras por su significado o por el orden de las mismas.	Se requiere una modificación muy específica de algunos ítems.	Los ítems son claros en los sintáctico.	Los itezms son claros, tienen semántica y sintaxis adecuada.	6
4. COHERENCIA Los items tienen relación lógica con la dimensión o indicador que están midiendo.	Los ítems no tienen relación lógica con la dimensión o indicador.	Los ítems tienen una relación tangencial con la dimensión o indicador.	Los ftems tienen una relación regular con la dimensión o indicador que está midiendo.	Los frems están relacionados con la dimensión o indicador.	Los items están muy relacionados con la dimensión o indicador.	6
S.RELEVANCIA Los items son esenciales o importantes y deben ser incluidos.	Los items deben ser eliminadas sin que se vea afectadas la medición de la dimensión o indicador.	Los ítems pueden ser eliminados sin que se vea afectada la medición de la dimensión o indicador.	Los items tienen alguna relevancia, pero otro item puede estar incluyendo lo que este mide.	Los ítems son necesarios.	Los ítems son relevantes y debe ser incluído.	p

Anexo 6

Instrumentos de recolección de datos

GRUPO	DE RE	SINA	LLIS		GRUPO	DE RE	SINA	LLIS		GRUPO	DE RE	SINA	LLIS	;
Muestra:		VI	NO		Muestra:		CA	FE		Muestra:		GAS	EOSA	
VINO	Dia 1	Dia 7	Dia 15	Dia 30	Estabilidad cromática	Dia 1	Dia 7	Día 15	Día 30	Estabilidad cromática	Dia 1	Dia 7	Dia 15	Dia 30
Muestra 1	120	230	320	410	Muestra 1	120	140	230	330	Muestra 1	120	130	130	210
Muestra 2	120	230	320	410	Muestra 2	120	130	230	330	Muestra 2	120	130	140	210
Muestra 3	120	240	310	340	Muestra 3	120	140	230	330	Muestra 3	120	130	130	220
Muestra 4	120	240	310	340	Muestra 4	120	[40	220	330	Muestra 4	120	130	[40	220
Muestra 5	120	240	310	340	Muestra 5	120	140	230	330	Muestra 5	120	130	140	220

GRUPO DE F	RESIN	A BR	ILLIA	NTS	GRUPO DE R	ESIN	A BR	ILLIA	NTS	GRUPO DE F	RESIN	A BR	ILLIA	NTS
Muestra:		VI	NO		Muestra:		CA	FE		Muestra:		GAS	EOSA	
Estabilidad cromática	Dia 1	Dia 7	Dia 15	Dia 30	Estabilidad cromática	Dia 1	Dia 7	Dia 15	Dia 30	Estabilidad cromática	Dia 1	Dia 7	Dia 15	Dia 30
Muestra 1	120	140	210	320	Muestra 1	120	130	130	230	Muestra 1	120	120	120	140
Muestra 2	120	140	220	320	Muestra 2	120	130	140	230	Muestra 2	120	120	120	130
Muestra 3	120	140	210	320	Muestra 3	120	130	140	230	Muestra 3	120	120	130	140
Muestra 4	120	130	220	370	Muestra 4	120	130	130	230	Muestra 4	120	120	120	130
Muestra 5	120	130	220	320	Muestra 5	120	120	140	230	Muestra 5	120	120	120	130

GRUPO DE	RESI	NA O	PALI	LIS	GRUPO DE	RESI	NA C	PALI	.IS	GRUPO DE	RESI	NA O	PALL	.IS
Muestra:		VI	NO		Muestra:		CA	FE		Muestra:		GASI	EOSA	
Estabilidad cromática	Dia 1	Dia 7	Dia 15	Dia 30	Estabilidad cromática	Dia 1	Dia 7	Dia 15	Dia 30	Estabilidad cromática	Dia 1	Dia 7	Dia 15	Dia 30
Muestra 1	120	130	iнO	220	Muestra 1	120	130	130	210	Muestra 1	120	120	130	130
Muestra 2	120	130	МО	270	Muestra 2	120	120	130	210	Muestra 2	120	120	120	130
Muestra 3	120	130	luó	220	Muestra 3	120	120	130	210	Muestra 3	120	120	120	130
Muestra 4	120	120	140	२२०	Muestra 4	120	150	120	210	Muestra 4	150	120	120	130
Muestra 5	120	130	140	220	Muestra 5	120	120	130	210	Muestra 5	120	120	130	130

Validación del instrumento

Prueba Piloto

Tabla 17. Evaluación de la diferencia cromática de los tres tipos de resina compuesta ante la sumersión en bebidas pigmentantes al control de 72 horas

			s pignientanie	72 horas		
Resi	inas	Grupo	control	Vino	Café	Gaseosa
Resin	a <i>Llis</i>	1	20	140	140	130
Resina Br	illiant NG	1	20	140	130	120
Resina	Opallis	1	20	130	120	120
Me	dia	120	0.00	136.67	130.00	123.33
Desvi	ación	0.	.00.	5.77	10.00	5.77
Valor críti	ico para F	4.06	6181			
valo	or p	0.	.05			
		Análisis	de varianza d	e un factor		
			Resumen			
Grupos		Си	enta	Suma	Promedio	Varianza
Grupo control			3	360	120	0
Vino			3	410	136.6667	33.33333
Ca	Café		3	390	130	100
Gaseosa		3		370	123.3333	33.33333
		Aı	nálisis de vari	anza		
Origen de	Suma de		Promedio			Valor
las	cuadrados	G. L.	de los	F	Probabilidad	crítico
variaciones	cuaurauos		cuadrados			para F
Entre	491.6667	3	163.8889	3.933333	0.053892	4.066181
grupos	771.0007	3	103.0009	3.733333	0.033092	7.000161
Dentro de	333.3333	8	41.66667			
los grupos			71.00007			
Total	825	11				

Interpretación

Evaluación de la diferencia cromática de los tres tipos de resina compuesta ante la sumersión en bebidas pigmentantes al control de 72 horas, se observa lo siguiente:

Las evaluaciones realizadas con la resina compuesta *Llis* presentan una diferencia de color, partiendo del grupo control de 120 a 140 siendo 2 tonalidades de diferencia ante la sumersión de bebida pigmentante (vino), ante la sumersión de bebida pigmentante (café) tuvo una diferencia de 120 a 140 siendo 2 tonalidades de diferencia, ante la sumersión de bebida pigmentante (gaseosa) tuvo una diferencia de 120 a 130 siendo 1 tonalidad de diferencia.

Las evaluaciones realizadas con la resina compuesta *Brilliant* NG presentan una diferencia de color, partiendo del grupo control de 120 a 140 siendo 2 tonalidades de diferencia ante la sumersión de bebida pigmentante (vino), ante la sumersión de bebida pigmentante (café) tuvo una diferencia de 120 a 130 siendo 1 tonalidad de diferencia, ante la sumersión de bebida pigmentante (gaseosa) no tuvo diferencia de 120 de tonalidad.

Las evaluaciones realizadas con la resina compuesta *Opallis* presentan una diferencia de color, partiendo del grupo control de 120 a 130 siendo 1 tonalidad de diferencia ante la sumersión de bebida pigmentante (vino), ante la sumersión de bebida pigmentante (café) no tuvo diferencia de 120 de tonalidad, ante la sumersión de bebida pigmentante (gaseosa) no tuvo diferencia de 120 de tonalidad.

Las muestras de carillas de las resinas compuestas Llis, Brilliant NG y Opallis expuestas a bebida pigmentante (vino) con una diferencia cromática promedio desde 120 ± 136 con una desviación de 5.77, seguido de la bebida pigmentante (café) con una diferencia cromática promedio desde 120 ± 130 con una desviación de 10.00, seguido de la bebida pigmentante (gaseosa) con una diferencia cromática promedio desde 120 ± 123 con una desviación de 5.77.

De acuerdo con la prueba estadística realizada de Anova se logró obtener un nivel p = 0.20 que resulta ser menor al α de 0.05 donde se ha podido determinar que existe diferencia significativa en la diferencia cromática de los tres tipos de resina compuesta ante la sumersión de bebidas pigmentantes (vino, café, gaseosa) a las 72 horas.

Según la prueba t, se encontró mayor diferencia cromática en la resina compuesta *Llis* en la bebida pigmentante (vino).

Tabla 18. Evaluación de la diferencia cromática de los tres tipos de resina compuesta ante la sumersión en bebidas pigmentantes al control de 120 horas

	sumersió	n en bebidas p	igmentantes	al control de	120 horas	
				120		
Resi	nas	Grupo control	Vino	Café	Gas	seosa
Resina Llis		120	220	130	1	40
Resina Brillia	int NG	120	210	130	1	20
Resina Opalli	is	120	130	130	1	20
Media		120.00	186.67	130.00	120	6.67
Desviación		0.00	49.33	0.00	11	.55
Valor críti	co para F	4.066181				
valor p		0.04				
		Análisis d	e varianza de	un factor		
			Resumen			
Gru	Grupos		nta	Suma	Promedio	Varianza
Grupo control		3		360	120	0
Vi	no	3		560	560 186.6667	
Ca	fé	3		390	130	0
Gase	Gaseosa			380	380 126.6667	
		Aná	ilisis de varia	nza		
Origen de	Suma de		Promedio			Valor
las	cuadrados	G. L.	de los	F	Probabilidad	crítico
variaciones	cuaurados		cuadrados			para F
Entre grupos	8558.333	3	2852.778	4.445887	0.040648	4.066181

Dentro de los grupos	5133.333	8	641.6667		
Total					
	13691.67	11			

Interpretación

Evaluación de la diferencia cromática de los tres tipos de resina compuesta ante la sumersión en bebidas pigmentantes al control de 72 horas, se observa lo siguiente:

Las evaluaciones realizadas con la resina compuesta *Llis* presentan una diferencia de color, partiendo del grupo control de 120 a 220 siendo 4 tonalidades de diferencia ante la sumersión de bebida pigmentante (vino), ante la sumersión de bebida pigmentante (café) tuvo una diferencia de 120 a 130 siendo 1 tonalidad de diferencia, ante la sumersión de bebida pigmentante (gaseosa) tuvo una diferencia de 120 a 1440 siendo 2 tonalidades de diferencia.

Las evaluaciones realizadas con la resina compuesta *Brilliant* NG presentan una diferencia de color, partiendo del grupo control de 120 a 210 siendo 3 tonalidades de diferencia ante la sumersión de bebida pigmentante (vino), ante la sumersión de bebida pigmentante (café) tuvo una diferencia de 120 a 130 siendo 1 tonalidad de diferencia, ante la sumersión de bebida pigmentante (gaseosa) no tuvo diferencia de 120 de tonalidad.

Las evaluaciones realizadas con la resina compuesta *Opallis* presentan una diferencia de color, partiendo del grupo control de 120 a 130 siendo 1 tonalidad de diferencia ante la sumersión de bebida pigmentante (vino), ante la sumersión de bebida pigmentante (café) tuvo una diferencia de 120 a 130 siendo 1 tonalidad de diferencia, ante la sumersión de bebida pigmentante (gaseosa) no tuvo diferencia de 120 de tonalidad.

Las muestras de carillas de las resinas compuestas *Llis*, *Brilliant* NG y *Opallis* expuestas a bebida pigmentante (vino) con una diferencia cromática promedio desde 120 ± 186 con una desviación de 49.33, seguido de la bebida pigmentante (café) con una diferencia cromática promedio desde 120 ± 130 con una desviación de 0.00, seguido de la bebida pigmentante (gaseosa) con una diferencia cromática promedio desde 120 ± 126 con una desviación de 11.55.

De acuerdo con la prueba estadística realizada de Anova se logró obtener un nivel p = 0.04 que resulta ser menor al α de 0.05 donde se ha podido determinar que existe diferencia significativa en la diferencia cromática de los tres tipos de resina compuesta ante la sumersión de bebidas pigmentantes (vino, café, gaseosa) a las 120 horas.

Según la prueba t, se encontró mayor diferencia cromática en la resina compuesta *Llis* en la bebida pigmentante (vino).

Anexo 8 Evidencias fotográficas

Figura 2. Se procede a seleccionar las resinas y las bebidas para la elaboración de la investigación

Figura 3. Se sacaron los moldes de las carillas del colorímetro de chromascop con la impresión en silicona de impresión

Figura 4. Se elaboraron las carillas para la muestra de investigación empleando el procedimiento de empaquetamiento y foto curado de las resinas

Figura 5. Las carillas ya elaboradas fueron separadas en grupos de las marcas seleccionadas, el color de selección en el colorímetro fue 120

Figura 6. Dosificación de las bebidas pigmentantes en 4 onzas

Figura 7. Control de las muestras de 7,15 y 30 días en la estufa a temperatura de simulación corporal humana 36 °C

Control de 7 días Resina *Llis*

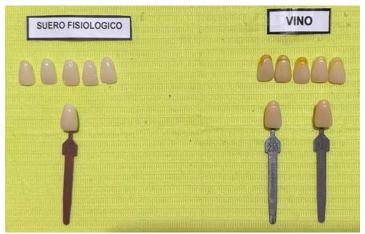


Figura 8. Control de vino 1A (120) –1E (230) 2C (240)

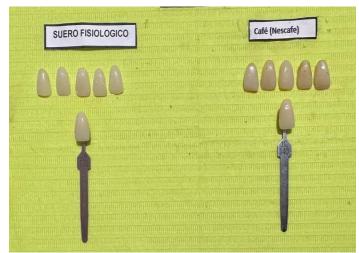


Figura 9. Control de café 1A (120) – 2A (140)

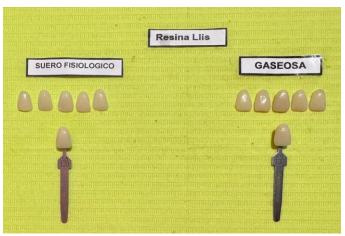


Figura 10. Control de gaseosa 1A (120) – 2A (130)

Control de 7 días Resina *Brilliant*

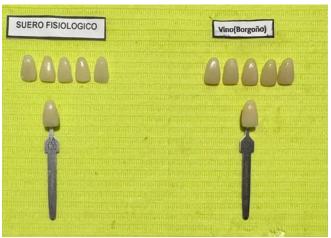


Figura 11. Control de vino 1A (120) –1C (140)

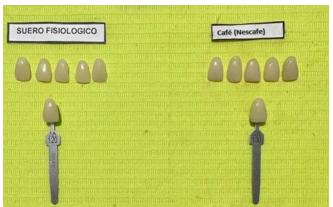


Figura 12. Control de café 1A (120) – 2C (240)

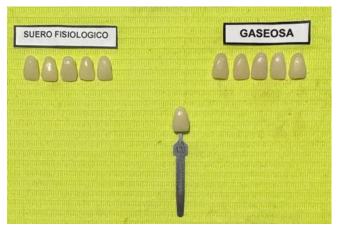


Figura 13. Control de gaseosa 1A (120) – 1A (120)

Control de 7 días Resina *Opallis*

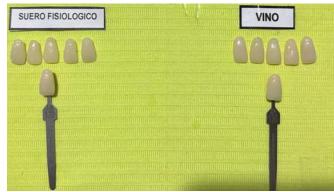


Figura 14. Control de vino 1A (120) –2 A (130)

Figura 15. Control de café 1A (120) – 2C (240)

Control de 15 días Resina *Llis*

Figura 16. Control de vino 1A (120) –5B (320) 3A (310)

Figura 17. Control de café 1A (120) – 2C (240)

Figura 18. Control de gaseosa 1A (120) – 1C (140)

Control de 15 días Resina *Brilliant*

Figura 19. Control de vino 1A (120) –1D (220)



Figura 20. Control de café 1A (120) – 1C (140)

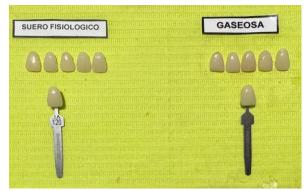


Figura 21. Control de gaseosa 1A (120) – 2A (130)

Control de 15 días Resina *Opallis*

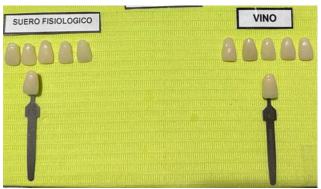


Figura 22. Control de vino 1A (120) –1C (140)

Figura 23. Control de café 1A (120) – 2 A (130)

Figura 24. Control de gaseosa 1A (120) – 1A (120)

Control de 30 días Resina *Llis*

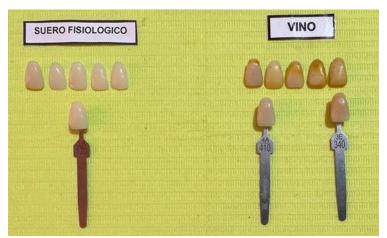


Figura 25. Control de vino 1A (120) – 4A (410) 3E (340)

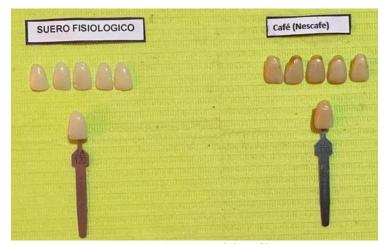


Figura 26. Control de café 1A (120) – 2E (330)

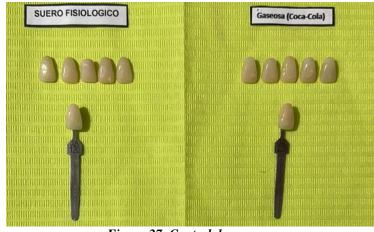


Figura 27. Control de gaseosa 1A (120) – 1D (220)

Control de 30 días Resina *Brilliant*

Figura 28. Control de vino 1A (120) – 5B (320)

Figura 29. Control de café 1A (120) – 1E (230)

Figura 30. Control de gaseosa 1A (120) – 1C (140)

Control de 30 días Resina *Opallis*

Figura 31. Control de vino 1A (120) – 1D (220)

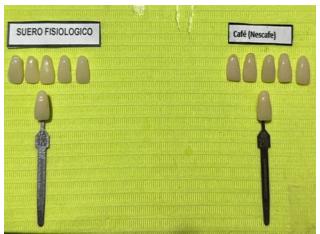


Figura 32. Control de café 1A (120) – 2B (210)

Figura 33. Control de gaseosa 1A (120) – 2A (130)