

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Ambiental

Tesis

Evaluación de calidad de agua de los ríos y quebradas del distrito de Oxapampa a través de macroinvertebrados

Marcia Elizabet Leiva Marquina Brenda Dagnid Almonacid Tello

Para optar el Título Profesional de Ingeniero Ambiental

Repositorio Institucional Continental Tesis digital

Esta obra está bajo una Licencia "Creative Commons Atribución 4.0 Internacional".

INFORME DE CONFORMIDAD DE ORIGINALIDAD DE TESIS

Felipe Gutarra Meza

Decano de la Facultad de Ingeniería

Α

Atentamente,

DE	:	Olga V. Kostenko		
		Asesor de tesis		
ASUNTO	:	Remito resultado de evaluación de originalidad de t	esis	
FECHA	:	8 de diciembre de 2024		
Con sumo agrado me dirijo a vuestro despacho para saludarlo y en vista de haber sido designado asesor de la tesis titulada: "EVALUACIÓN DE CALIDAD DE AGUA DE LOS RÍOS Y QUEBRADAS DEL DISTRITO DE OXAPAMPA A TRAVÉS DE MACROINVERTEBRADOS", perteneciente al/la/los/las estudiante(s) MARCIA ELIZABET LEIVA MARQUINA, BRENDA DAGNID ALMONACID TELLO, de la E.A.P. de Ingeniería Ambiental; se procedió con la carga del documento a la plataforma "Turnitin" y se realizó la verificación completa de las coincidencias resaltadas por el software dando por resultado 16 % de similitud (informe adjunto) sin encontrarse hallazgos relacionados a plagio. Se utilizaron los siguientes filtros:				
• Filtro de e	exclus	sión de bibliografía	SI	NO X
		sión de grupos de palabras menores excluidas:)	SI	NO X
• Exclusión	de fu	ente por trabajo anterior del mismo estudiante	SI	NO X
	imilit	cuencia, se determina que la tesis constituye un cud de otros autores (citas) por debajo del porcer		_
concordancia en el Regla	a a lo .ment	da responsabilidad del contenido de la tesis sobre is principios de legalidad, presunción de veracidad y so del Registro Nacional de Trabajos de Investiga dos profesionales – RENATI y en la Directiva 003-20	simplicidad, ción para op	expresados
=		o la atención a la presente, me despido sin otro par ovar las muestras de mi especial consideración.	ticular y sea	propicia la

La firma del asesor obra en el archivo original (No se muestra en este documento por estar expuesto a publicación)

DECLARACIÓN JURADA DE AUTENTICIDAD

Yo, MARCIA ELIZABET LEIVA MARQUINA, identificado(a) con Documento Nacional de Identidad No. 75559998, de la E.A.P. de Ingeniería Ambiental de la Facultad de Ingeniería la Universidad Continental, declaro bajo juramento lo siguiente:

- 1. La tesis titulada: "EVALUACIÓN DE CALIDAD DE AGUA DE LOS RÍOS Y QUEBRADAS DEL DISTRITO DE OXAPAMPA A TRAVÉS DE MACROINVERTEBRADOS", es de mi autoría, la misma que presento para optar el Título Profesional de Ingeniero Ambiental.
- 2. La tesis no ha sido plagiada ni total ni parcialmente, para la cual se han respetado las normas internacionales de citas y referencias para las fuentes consultadas, por lo que no atenta contra derechos de terceros.
- 3. La tesis es original e inédita, y no ha sido realizado, desarrollado o publicado, parcial ni totalmente, por terceras personas naturales o jurídicas. No incurre en autoplagio; es decir, no fue publicado ni presentado de manera previa para conseguir algún grado académico o título profesional.
- 4. Los datos presentados en los resultados son reales, pues no son falsos, duplicados, ni copiados, por consiguiente, constituyen un aporte significativo para la realidad estudiada.

De identificarse fraude, falsificación de datos, plagio, información sin cita de autores, uso ilegal de información ajena, asumo las consecuencias y sanciones que de mi acción se deriven, sometiéndome a las acciones legales pertinentes.

21 de diciembre de 2023.

La firma del autor y del asesor obra en el archivo original

(No se muestra en este documento por estar expuesto a publicación)

DECLARACIÓN JURADA DE AUTENTICIDAD

Yo, BRENDA DAGNID ALMONACID TELLO, identificado(a) con Documento Nacional de Identidad No. 75739842, de la E.A.P. de Ingeniería Ambiental de la Facultad de Ingeniería la Universidad Continental, declaro bajo juramento lo siguiente:

- 5. La tesis titulada: "EVALUACIÓN DE CALIDAD DE AGUA DE LOS RÍOS Y QUEBRADAS DEL DISTRITO DE OXAPAMPA A TRAVÉS DE MACROINVERTEBRADOS", es de mi autoría, la misma que presento para optar el Título Profesional de Ingeniero Ambiental.
- 6. La tesis no ha sido plagiada ni total ni parcialmente, para la cual se han respetado las normas internacionales de citas y referencias para las fuentes consultadas, por lo que no atenta contra derechos de terceros.
- 7. La tesis es original e inédita, y no ha sido realizado, desarrollado o publicado, parcial ni totalmente, por terceras personas naturales o jurídicas. No incurre en autoplagio; es decir, no fue publicado ni presentado de manera previa para conseguir algún grado académico o título profesional.
- 8. Los datos presentados en los resultados son reales, pues no son falsos, duplicados, ni copiados, por consiguiente, constituyen un aporte significativo para la realidad estudiada.

De identificarse fraude, falsificación de datos, plagio, información sin cita de autores, uso ilegal de información ajena, asumo las consecuencias y sanciones que de mi acción se deriven, sometiéndome a las acciones legales pertinentes.

21 de diciembre de 2023.

La firma del autor y del asesor obra en el archivo original

(No se muestra en este documento por estar expuesto a publicación)

Tesis Marcia Leiva, Brenda Almonacid

INFORME DE O	RIGINALIDAD				
16 INDICE DE S	% SIMILITUD	16% FUENTES DE INTERNET	8% PUBLICACIONES	6% TRABAJOS DEL ESTUDIANTE	
FUENTES PRIM	IARIAS				
	dl.handl ente de Inter				3%
	space.es	spoch.edu.ec			2%
	space.u	ps.edu.ec			1%
44	positor ente de Inter	io.continental.e	du.pe		1%
	positor ente de Inter	io.utc.edu.ec			1%
	positor ente de Inter	y.usta.edu.co			1%
	positor ente de Inter	io.ucv.edu.pe			1%
8 1li	ibrary.c	O net			1%
9	ubmitte el Peru	d to Universida	d Nacional de	el Centro	<1%

10	Submitted to Universidad Continental Trabajo del estudiante	<1%
11	repositorio.unc.edu.pe Fuente de Internet	<1%
12	ridum.umanizales.edu.co Fuente de Internet	<1%
13	dspace.unl.edu.ec Fuente de Internet	<1%
14	repositorio.uncp.edu.pe Fuente de Internet	<1%
15	Submitted to Escuela Politecnica Nacional Trabajo del estudiante	<1%
16	repositorio.unp.edu.pe Fuente de Internet	<1%
17	repositorio.unu.edu.pe Fuente de Internet	<1%
18	Kevin Nicolás Galvis-Arias, Luisa Daniela Hidrobo-Pedroza, María Cristina García- Muñoz, Oscar Andrés Mendieta-Menjura et al. "Effect of processing technology (traditional and ward furnace) on the physicochemical properties of non-centrifugal cane sugar (NCS)", Revista Facultad de Ingeniería Universidad de Antioquia, 2019 Publicación	<1%

19	maeloja.files.wordpress.com Fuente de Internet	<1%
20	Submitted to Universidad Rafael Landívar Trabajo del estudiante	<1%
21	www.scielo.org.co Fuente de Internet	<1%
22	Submitted to Universidad Pontificia Bolivariana Trabajo del estudiante	<1%
23	repositorio.unfv.edu.pe Fuente de Internet	<1%
24	revistas.elpoli.edu.co Fuente de Internet	<1%
25	www.cepis.org.pe Fuente de Internet	<1%
26	www.coursehero.com Fuente de Internet	<1%
27	repositorio.udl.edu.pe Fuente de Internet	<1%
28	repositorio.unsaac.edu.pe Fuente de Internet	<1%
29	Submitted to Colegio San Agustín de Chiclayo Trabajo del estudiante	<1%

30	Javier Alcocer, Martín Merino-Ibarra, Luis A. Oseguera, Óscar A. Escolero. "Anthropogenic impacts on tropical karst lakes: "Lagunas de Montebello", Chiapas", Ecohydrology, 2018 Publicación	<1%
31	es.slideshare.net Fuente de Internet	<1%
32	idoc.pub Fuente de Internet	<1%
33	repositorio.uap.edu.pe Fuente de Internet	<1%
34	repositorio.uptc.edu.co Fuente de Internet	<1%
35	Kleveer Espino, Ulises Jimenez, Euclides Deago. "Ipeti River's Water Quality Based on the Aquatic Macroinvertebrates Community", 2022 8th International Engineering, Sciences and Technology Conference (IESTEC), 2022 Publicación	<1%
36	orcid.org Fuente de Internet	<1%
37	repositorio.unas.edu.pe Fuente de Internet	<1%
38	www.dspace.uce.edu.ec:8080 Fuente de Internet	<1%

39	www.revistas.unitru.edu.pe Fuente de Internet	<1%
40	PACIFIC PROTECCION INTEGRAL DE RECURSOS (PIR) SOCIEDAD ANONIMA CERRADA. "ITS Mejora Tecnológica en el Control de Erosión Ribereña y Mejoras en el Muelle de Recepción y Despacho de Hidrocarburos (Muelle de Carga Líquida) - Locación 2A – Lote 95-IGA0014978", R.D. N° 00013-2021-SENACE-PE/DEAR, 2021 Publicación	<1%
41	Submitted to Universidad Popular del César,UPC Trabajo del estudiante	<1%
42	repositorio.chapingo.edu.mx	<1%
43	www.slideshare.net Fuente de Internet	<1%
Exclui Exclui	r citas Activo Excluir coincidencias < 15 words r bibliografía Activo	

AGRADECIMIENTOS

A la Universidad Continental - Escuela Profesional de Ingeniería Ambiental, por la formación académica con valores éticos y conocimientos teórico - práctico para tener un excelente desenvolvimiento en el campo laboral, y así encaminar nuestro camino hacia el éxito y contribuir con la solución de los problemas del entorno.

A nuestra asesora Olga Vadimovna Kostenko, a quien estamos muy agradecidas por orientarnos y compartirnos sus conocimientos, por su tiempo y su enseñanza en todos los aspectos tanto profesional como personal.

DEDICATORIA

A Dios quien nos acompañó a lo largo de nuestras carreras y nos dio fortaleza en los momentos de debilidad para que se hagan realidad nuestra meta. A nuestros padres que son nuestra fuente de inspiración, nos alentaron a seguir adelante y de pie ante cualquier adversidad para no rendirnos y cumplir este sueño. Por la infinita admiración y amor que sentimos por ellos les dedicamos nuestra investigación.

ÍNDICE

AGRADE	CCIMIENTOS	X
DEDICAT	TORIA	X
ÍNDICE		xi
ÍNDICE D	DE TABLAS	xiv
ÍNDICE E	DE FIGURAS	XV
RESUME	N	xvi
ABSTRA	CT	xvii
INTRODU	JCCIÓN	xix
CAPÍTUL	O I PLANTEAMIENTO DEL PROBLEMA	1
1.1.Plante	amiento y formulación del problema	1
1.1.1.	Problema General	2
1.1.2.	Problemas Específicos	2
1.2.Objeti	vos	2
1.2.1.	Objetivo General	2
1.2.2.	Objetivos específicos	2
1.3.Justific	cación e importancia	3
1.4.Hipóte	esis y Variables	3
1.4.1.	Hipótesis	3
1.4.2.	Variables	3
CAPÍTUL	O II MARCO TEÓRICO	
2.1.Antece	edentes de la investigación	12
2.2.Bases	teóricas	15
2.2.1.	Macroinvertebrados como Bioindicadores	15
2.2.2.	Calidad del agua	24
2.2.3.	Definición de Términos Básicos	26
CAPÍTUL	O III METODOLOGÍA	28
3.1.Métod	lo, tipo o alcance de la investigación	28
3.1.1.	Método de Investigación	28
3.1.2.	Tipo de Investigación	28
3.1.3.	Alcance de la Investigación	28
3.1.4.	Diseño de Investigación	29
3.1.5.	Técnicas e Instrumentos de Recolección de Datos	29

3.2.Materi	ales y Métodos	30
3.2.1.	Área de estudio	30
3.2.2.	Método	42
3.2.3.	Materiales	43
3.2.4.	Equipos	43
3.2.5.	Software	43
CAPÍTUL	O IV RESULTADOS Y DISCUSIÓN	44
4.1.Presen	atación de resultados	44
4.2 Discu	usión de resultados	73
Conclusion	nes	77
Recomend	laciones:	78
	NCIAS BIBLIOGRÁFICAS	
	Matriz de consistencia	
	Macroinvertebrados de los ríos obtenidos en los meses de noviembre, die	
	3	•
	Materiales y equipos utilizados en la caracterización de parámetros físico	
	ción e identificación de macroinvertebrados.	
	Medición de largo, ancho y profundidad de los ríos	
	Medición de los parámetros físicos y químicos	
	Recolección de los macroinvertebrados con la red tipo-d	
	Tamizaje de los macroinvertebrados recolectados	
	Muestras de macroinvertebrados	
	Conteo de macroinvertebrados	-
	Identificación de macroinvertebrados	
	Informe de mantenimiento del equipo multiparámetro	
	3 : Capturas de pantalla de las solicitudes de uso de laboratorio quimico.	
	4: Ficha de atencion de recursos de laboratorios y talleres	
	Datos para hallar el caudal	
	Datos del total de macroinvertebrados por orden	
	Datos del total de macroinvertebrados por familia	
	Cuadro de los parámetros físicos y químicos	
	Ficha de muestreo (registro de estereoscopio)	
	Formato de recolección de datos de parámetros físicos y químicos	

ÍNDICE DE TABLAS

Tabla 1: Tabla de operacionalización de las variables	10
Tabla 2: Puntajes de las familias de macroinvertebrados acuáticos para el índice BMWP/co	116
Tabla 3: Clasificación de las aguas, significado de acuerdo con el índice BMWP/col	17
Tabla 4: Clasificación de las aguas de acuerdo al índice EPT	18
Tabla 5: Coordenadas de los puntos de monitoreo	31
Tabla 6: Órdenes y familias de macroinvertebrados presentes en los ríos y quebradas del dis	trito de
Oxapampa	45
Tabla 7: Resumen de valores del índice BMWP/col y parámetros físicos y químicos	55
Tabla 8: Resumen de los valores del índice EPT y parámetros físicos y químicos	60
Tabla 9: Determinación de valores según el índice BMWP/col- noviembre	66
Tabla 10: Determinación de valores según el índice BMWP/col- diciembre	67
Tabla 11: Determinación de valores según el índice BMWP/col- enero	69
Tabla 12: Calidad de agua según EPT - noviembre	71
Tabla 13: Calidad del agua según EPT - diciembre	71
Tabla 14: Calidad del agua según EPT - enero	72

ÍNDICE DE FIGURAS

Figura 1: Orden Ephemeroptera	19
Figura 2: Orden Trichoptera.	20
Figura 3: Orden Plecoptera	21
Figura 4: Orden Odonata	22
Figura 5: Orden Coleoptera	23
Figura 6: Orden Dipteros	24
Figura 7: Primer punto de muestreo - CHT 1	32
Figura 8: Segundo punto de muestreo - CHT 2	33
Figura 9: Evidencia de lavado de carros - CHT 2	33
Figura 10: Tercer punto de muestreo - ESP 1	34
Figura 11: Evidencia de trabajo de asfalto - ESP 1	34
Figura 12: Cuarto punto de muestreo - ESP 2	35
Figura 13: Quinto punto de muestreo - LLQ 1	36
Figura 14: Evidencia de efluentes de aguas residuales domésticas - LLQ1	36
Figura 15: Sexto punto de muestreo - HCB 1	37
Figura 16: Evidencia de recreación de familias - HCB 1	37
Figura 17: Mapa hidrográfico de los puntos de muestreo	41
Figura 18: Cantidad en porcentajes de órdenes de los macroinvertebrados en el río	Chontabamba
	47
Figura 19: Cantidad de macroinvertebrados del río Chontabamba	48
Figura 20: Cantidad en porcentajes de órdenes de los macroinvertebrados en la Quebr	rada Esperanza
	48
Figura 21: Cantidad de macroinvertebrados en la Quebrada Esperanza	49
Figura 22: Cantidad en porcentajes de órdenes de los macroinvertebrados en el río I	Llamaquizu 49
Figura 23: Cantidad de macroinvertebrados en el río Llamaquizu	50
Figura 24: Cantidad en porcentajes de órdenes de los macroinvertebrados en el río	Huancabamba
	50
Figura 25: Cantidad de macroinvertebrados del río Huancabamba	51
Figura 26: Temperatura en los puntos de muestreo.	51
Figura 27: pH en los puntos de muestreo	52
Figura 28: Conductividad eléctrica en los puntos de muestreo	53
Figura 29: Variación de sólidos totales disueltos en los puntos de muestreo	53

Figura 30: Variación del oxígeno disuelto en los puntos de muestreo	54
Figura 31: Diagrama de dispersión y regresión cuadrática para el pH	56
Figura 32: Diagrama de dispersión y regresión lineal para la conductividad eléctrica	57
Figura 33: Diagrama de dispersión y regresión lineal para los sólidos totales	57
Figura 34: Diagrama de dispersión y regresión lineal del oxígeno disuelto	58
Figura 35: Diagrama de dispersión y regresión cuadrática de la Temperatura	59
Figura 36 : Diagrama de dispersión y regresión cuadrática para el pH	61
Figura 37: Diagrama de dispersión y regresión lineal para la conductividad eléctrica	62
Figura 38: Diagrama de dispersión y regresión lineal para los sólidos totales	63
Figura 39: Diagrama de dispersión y regresión lineal del oxígeno disuelto	64
Figura 40: Diagrama de dispersión y regresión cuadrática de la Temperatura	65

RESUMEN

El objetivo de esta investigación fue determinar la calidad del agua de los ríos Chontabamba, Huancabamba, Llamaquizu y Quebrada Esperanza del distrito de Oxapampa, a través de macroinvertebrados acuáticos como bioindicadores de la calidad del agua. El muestreo se realizó en los meses de noviembre, diciembre del 2022 y enero del 2023, se identificaron un total de 6 puntos y se evaluaron los parámetros físicos y químicos in situ: temperatura, potencial de hidrógeno, oxígeno disuelto, sólidos totales disueltos y conductividad eléctrica, así mismo, los macroinvertebrados acuáticos fueron recolectados con una red net tipo D y depositadas en alcohol al 70%, y se llevaron al laboratorio para su identificación.

Se identificaron 14 órdenes y 27 familias de macroinvertebrados en los ríos y quebrada de Oxapampa, concluyendo que la calidad del agua con el índice EPT se define, para el río Chontabamba: "buena" y "muy buena", Quebrada Esperanza y río Llamaquizu: "mala" y río Huancabamba: "regular" a "mala". Así mismo, con el índice BMWP/col la calidad del agua del río Chontabamba: "aceptable", Quebrada Esperanza: "critica", río Llamaquizu: "dudosa" y río Huancabamba: "aceptable" a "dudosa", ante ello, se recomienda promover campañas de sensibilización para los habitantes del distrito de Oxapampa acerca la importancia de la conservación de los ecosistemas, manejo de residuos sólidos y el cuidado del recurso hídrico.

Palabras clave: Calidad de agua, macroinvertebrados, bioindicadores, potencial de hidrógeno, oxígeno disuelto, sólidos disueltos totales, conductividad eléctrica, índice EPT, índice BMWP/col.

ABSTRACT

The goal of this research was to determine the water quality of the Chontabamba, Huancabamba, Llamaquizu and Quebrada Esperanza rivers in the Oxapampa district, using aquatic macroinvertebrates as bioindicators of water quality. The water sampling was conducted in November, December 2022 and January 2023, identifying a total of 6 sampling points, and the following physical and chemical parameters in-situ were evaluated: temperature, hydrogen potential, dissolved oxygen, total dissolved solids and electrical conductivity. Likewise, the samples of aquatic macroinvertebrates—were collected with D-Frame net and deposited in 70% alcohol, then they were taken to the laboratory for identification.

14 orders and 27 families of macroinvertebrates were identified in the rivers and streams of Oxapampa, concluding that the water quality according to the EPT index is defined as follows, for the Chontabamba River: "good" and "very good", Quebrada Esperanza and Llamaquizu River: "bad" and Huancabamba River: "regular" to "bad". Moreover, according to the BMWP/col index, the water quality of the Chontabamba River is defined as: "acceptable", Quebrada Esperanza: "critical", Llamaquizu River: "doubtful" and Huancabamba River: "acceptable" to "doubtful". As a result, it is recommended to promote awareness campaigns for the inhabitants of the district of Oxapampa about the importance of the conservation of ecosystems, solid waste management and the care of water resources.

Keywords: Water quality, macroinvertebrates, bioindicators, hydrogen potential, dissolved oxygen, total dissolved solids, electrical conductivity, EPT index, BMWP/col index.

INTRODUCCIÓN

La calidad del agua, según la Organización Mundial de la Salud (OMS), son condiciones en las que se encuentra el agua con relación a sus características químicas, biológicas y físicas, en estado natural o luego de ser perturbadas, además es de suma importancia para la salud (1)

Día a día se agravan los problemas relacionados con la contaminación de cuerpos de agua, por tanto, afecta el estado de los diferentes organismos acuáticos los cuales deterioran su habitad hasta llegar a desaparecer; así mismo, la consecuencia de la disminución del recurso hídrico se debe a la contaminación por la actividad humana causada por los residuos sólidos, la mala práctica en la ganadería y agricultura, el incremento de la población, minería e industrias (2).

El Perú a nivel mundial viene a ser uno de los países con reserva de agua dulce que cuenta con tres grandes vertientes hidrográficas Pacífico, Amazonas y Titicaca, sin embargo, debido a diversas actividades antropogénicas se ha determinado que los parámetros de calidad de 41 unidades hidrográficas exceden los ECA para agua, identificando que el principal motivo es el vertimiento de aguas residuales municipales, industriales y domésticas (3). Para contar con los beneficios de tener agua limpia de los ríos y océanos, es necesario realizar cambios tanto en el uso y tratamientos del agua, para así mejorar y conservar su calidad (4).

El análisis de la calidad de agua de los ríos se determina por medio de los parámetros físicos, químicos y biológicos. Sin embargo, hay métodos nuevos para evaluar la calidad de agua de los ríos, una de ellas es el uso de bioindicadores por medio de organismos acuáticos (5), ya que estos son sensibles a los factores que afectan negativamente al agua, esto ha permitido la generación y propuesta de diferentes índices de calidad usando macroinvertebrados, como el Biological Monitoring Working Party (BMWP) y el Índice EPT (Ephemeroptera, Plecoptera y Trichoptera), los cuales han sido aplicados en estudios de diversos ríos.

En esta investigación se utilizó a los macroinvertebrados como bioindicadores para la evaluación de la calidad del agua, empleando el Índice BMWP/col (Biological Monitoring Working Party) y el Índice EPT (Ephemeroptera, Plecoptera y Trichoptera) de los ríos Chontabamba, Huancabamba, Llamaquizu y Quebrada Esperanza en el distrito de Oxapampa, además esta investigación servirá como línea base en el conteo e identificación de estos macroinvertebrados en el área de estudio; así mismo, permitirá aplicar esta metodología en otros lugares.

La presente investigación está estructurado por cuatro capítulos, Capítulo 1: Se explica la situación de la calidad del agua y los macroinvertebrados en otros países, en el Perú y dentro del distrito de Oxapampa, con el que se identificó el problema general y específicos así mismo, se planteó el objetivo de determinar la calidad del agua mediante el índice BMWP/col y EPT de los ríos y quebradas del distrito de Oxapampa; Capítulo 2: Se recopiló información de investigaciones a nivel internacional, nacional y local que proporcionaron la base para realizar la investigación, definición de bases teóricas y términos básicos; Capítulo 3: Se realizó el método científico, tipo de investigación básica, alcance correlacional y diseño no experimental de tipo longitudinal ya que el periodo de muestreo se realizó en tres meses: noviembre, diciembre y enero, y se pudo detectar las variaciones de las características de las variables, la metodología se realizó en etapa de campo y etapa de gabinete detallando el uso de materiales que se utilizaron y Capítulo 4: Los resultados obtenidos en los seis puntos de monitoreo para determinar la calidad del agua de los ríos y quebradas del distrito de Oxapampa, Mediante el índice BMWP/col, se determinó que la calidad del agua del río Chontabamba: "Aceptable", Quebrada Esperanza : "Crítica", río Llamaquizu: "Dudosa" y río Huancabamba: "Dudosa" y en el mes de noviembre "Aceptable", del mismo modo, se determinó la calidad del agua del río con el índice EPT del río Chontabamba: "Buena" y "Muy buena", Quebrada esperanza: "Mala", río Llamaquizu : "Mala" y río Huancabamba: "Regular" y "Mala".

CAPÍTULO I

PLANTEAMIENTO DEL PROBLEMA

1.1. Planteamiento y formulación del problema

Uno de los problemas mundiales más preocupantes es el deterioro de la calidad del agua principalmente causado por la actividad humana (6), perjudicando a los ecosistemas y a la biodiversidad que son indispensables para el desarrollo sostenible, además provoca daños a la humanidad con enfermedades y escasez de agua potable (7). El destino final del vertimiento de efluentes domésticos e industriales, son los ríos y el mar, provocando cambios en la composición natural de los sistemas acuáticos a nivel mundial (8).

Para el desarrollo de la vida uno de los elementos más importantes es el agua porque los seres vivos dependen de su consumo y uso. Sin embargo, la cantidad en la que el agua se encuentra en nuestro planeta podría no abastecer en su totalidad; debido a que, solo el 3% del agua mundial es agua dulce y solo podemos encontrarlas en los ríos, lagos, glaciares y aguas subterráneas (9)

El Perú tiene un territorio mineralizado y posee el 16% de las reservas minerales mundiales conocidas, lo que provoca el vertimiento de relaves mineros, como también asentamientos humanos dispersos, aparte de ello se agrega la mala práctica de la agricultura por el mucho uso de fertilizantes y plaguicidas en la actividad agrícola. Además de ello los vertimientos de aguas residuales domésticas y desagües industriales que provocan daños en la salud y el ecosistema (10). El análisis de la calidad del agua no es solo para consumo humano, sino también para determinar las características que este posee tanto físico, químico y biológico.

Según (11), en la ciudad de Oxapampa, los recursos hídricos en su mayoría están contaminados a causa de la incorporación de residuos sólidos, aguas residuales domésticas y agroquímicos. Así mismo, el INEI indica que la principal fuente económica de los pobladores de la ciudad de Oxapampa son las actividades de extracción forestal, actividad agrícola y ganadera en las que emplean el agua para estos propósitos por ende es necesario contar con buenas fuentes de agua (12). En este contexto, es fundamental realizar una evaluación de la calidad y saber el estado actual de los recursos hídricos.

En la actualidad, la evaluación de calidad del agua es complementada con monitoreos biológicos, utilizando como bioindicadores a los macroinvertebrados (13) debido a que se encuentran

inalterables en un ecosistema con características establecidas, son sedentarios por la poca movilidad que poseen, tienen un periodo de vida más largo que otros microorganismos, son visibles al ojo humano y el muestreo es menos costoso y simple (14), además presentan tolerancia o sensibilidad a determinadas condiciones ambientales y realizan valiosas funciones para la transformación de materia orgánica, llegando a ser un importante componente en el funcionamiento y la dinámica de los ríos como indicadores de calidad del agua (8).

1.1.1. Problema General

¿Cuál es la calidad del agua según los índices BMWP/col y EPT en los ríos y quebradas del distrito de Oxapampa durante el 2022 y 2023?

1.1.2. Problemas Específicos

- **A.** ¿Qué macroinvertebrados acuáticos están presentes en los ríos Chontabamba, Huancabamba, Llamaquizu y Quebrada Esperanza?
- **B.** ¿Cuáles son los parámetros físicos y químicos del agua en los ríos Chontabamba, Huancabamba, Llamaquizu y Quebrada Esperanza?
- C. ¿Cuál es la relación entre los índices BMWP/col y EPT con los parámetros físicos y químicos de los ríos Chontabamba, Huancabamba, Llamaquizu y Quebrada Esperanza?

1.2. Objetivos

1.2.1. Objetivo General

Determinar la calidad del agua mediante el índice BMWP/col y EPT de los ríos y quebradas del distrito de Oxapampa durante el 2022 y 2023.

1.2.2. Objetivos específicos

- **A.** Identificar los macroinvertebrados acuáticos presentes en los ríos Chontabamba, Huancabamba, Llamaquizu y Quebrada Esperanza.
- **B.** Describir los parámetros físicos y químicos del agua en los ríos Chontabamba, Huancabamba, Llamaquizu y Quebrada Esperanza.
- C. Evaluar la relación entre los índices BMWP/col y EPT con los parámetros físicos y químicos de los ríos Chontabamba, Huancabamba, Llamaquizu y Quebrada Esperanza.

1.3. Justificación e importancia

Es importante tener información con datos actuales acerca del estado de la biodiversidad acuática y calidad de los recursos hídricos, para una gestión sostenible del agua, asegurar el suministro para los sectores demandantes de este recurso, y dependiendo el uso que se le dé, por ello es fundamental plantear estrategias y acciones en el uso sostenible del recurso hídrico y mejorar la biodiversidad y vida silvestre (15).

El distrito de Oxapampa es un lugar ideal para aplicar esta metodología, ya que se requiere información de la calidad de agua de los ríos y macroinvertebrados presentes. Esta investigación servirá para replicarlo en otros ecosistemas regionales y locales y de esta forma conocer el estado biológico actual de los macroinvertebrados a nivel de orden y familia.

Así mismo, es de interés e importancia para los pobladores, ya que permite conocer la calidad del agua de los ríos Chontabamba, Huancabamba, Llamaquizu y Quebrada Esperanza del distrito de Oxapampa, tomando en cuenta el bienestar y salud de las personas, así mismo, la fauna y flora asociada que dependen de la calidad del agua de los ríos (16).

1.4. Hipótesis y Variables

1.4.1. Hipótesis

H₀: El agua de los ríos Chontabamba, Huancabamba, Llamaquizu y Quebrada Esperanza no está contaminada.

H₁: El agua de los ríos Chontabamba, Huancabamba, Llamaquizu y Quebrada Esperanza está contaminada.

1.4.2. Variables

1.4.2.1. Identificación de Variables

- Variable Dependiente (y): Calidad del agua.
- Variable Independiente (x): Macroinvertebrados acuáticos.

1.4.2.2. Operacionalización de Variables

Tabla 1: Tabla de operacionalización de las variables

Variables.	Definición conceptual / operacional.	Dimensiones.	Indicadores.	Instrumentos
Variable Independi ente (x): Macroinve rtebrados como Bioindicad ores.	Conceptualmente se define como macroinvertebrados acuáticos, a los que se ven a simple vista, estos organismos son empleados para determinar la calidad del agua de los ríos, por su elevado número de especies ofrece una gran cantidad de respuestas a diferentes tipos de perturbaciones tanto físicas como químicas (17).	• Índices bióticos	 Número de órdenes y familias de macroinvertebrados Índice de BMWP/col Índice EPT Parámetros físicos y químicos (T°, TDS, CE, pH y OD). 	 Ficha de muestreo (Registro de estereoscopio). Rede de recolección Tabla de puntuación de las familias para el índice BMWP/col. Tabla de puntuación de las órdenes para el índice EPT.

Variable Dependien te (y): Calidad del Agua.	Conceptualmente se define como el resultado de los factores que van a determinar la calidad del agua, donde se miden los niveles de sustancias químicas y presencia de los seres vivos, esto indica que el agua está contaminada (18).	• Parámetros	 Parámetros físicos ✓ Temperatura (°C) ✓ Sólidos disueltos totales (mg/l) ✓ Conductividad eléctrica (uS/cm) Parámetros químicos ✓ pH (Unidades de pH) ✓ Oxígeno disuelto (mg/l) 	Formatos de recolección de parámetros físicos y químicos.
--	--	--------------	--	---

Fuente: Elaboración Propia

CAPÍTULO II MARCO TEÓRICO

2.1. Antecedentes de la investigación

En los estudios más recientes como en el país de Ecuador, realizaron las evaluaciones con macroinvertebrados para determinar la calidad del agua del río Jipijapa, usando la técnica Surber con una red net tipo D en un área delimitada de 50 m de longitud, identificando a los macroinvertebrados a nivel de familia en los puntos de mayor impacto por descargas de aguas residuales en el área céntrica del río, para conocer cuál tiene mayor influencia en la calidad biológica. La distribución geográfica de las estaciones de muestreo se establecieron con GPS en zonas de fácil acceso, en tanto el muestreo indica que se removió con la red para cada estación en las orillas del río sin vegetación y con vegetación, zonas de arena y piedra (19), la misma metodología la aplicaron en la microcuenca alta del río Santa Rosa (20), pero en esta investigación se tomaron las muestras en época de verano una vez por mes durante cuatro meses; estos estudios proporcionaron información para la recolección de macroinvertebrados y para el muestreo de las diferentes estaciones.

Así mismo, en el río Pachanlica de la provincia de Tungurahua (21), realizaron un análisis comparativo de los resultados obtenidos en tres puntos de muestreo escogidos por medio de la observación y estudio del trayecto del río teniendo en cuenta la actividad antropogénica y afectación hídrica del río Pachanlica (afloramiento, cauce intermedio y desembocadura) con estudios anteriores del mismo lugar. Identificó a los macroinvertebrados con los índices biológicos BMWP/col y EPT a nivel de orden y familia, obteniendo resultados similares a los estudios anteriores, en el país de Colombia en la quebrada de Santo Tomás (22), evaluaron la diversidad de los macroinvertebrados en tres meses durante el final de la temporada seca e inicio de lluvias tomando la muestra de distintos puntos como: hojarasca sumergida, sedimento fino y rocas, empleando la técnica Surber aplicando un minuto por cada tipo de sustrato y cinco repeticiones, identificando que el orden más encontrado fue el Ephemeroptera el cual es un buen indicador de calidad de agua, porque son sensibles a la contaminación.

De la misma manera, hay investigaciones que emplearon parámetros fisicoquímicos debido a que aportan datos más precisos al análisis de la calidad del agua, como es la temperatura y pH que determinan la supervivencia y reproducción de los organismos e indicadores de la calidad del agua;

de igual manera, la conductividad eléctrica que al aumentar el nivel induce a graves consecuencias sobre el ecosistema fluvial, llegando incluso a la disminución de la biodiversidad acuática. Los organismos como los macroinvertebrados requieren de oxígeno para su metabolismo, a través de la respiración, es por eso que es imprescindible en los estudios de la calidad del agua (23), y el registro de la comunidad de macroinvertebrados, en la investigación de la calidad del río Teusacá (24) y la investigación de la calidad del agua de la quebrada Andina (2), se muestrearon en tres zonas de los ríos que fueron escogidos por identificación de zonas estratégicas y recorrido previo; se midió oxígeno disuelto, turbidez, pH y temperatura y emplearon los índices BMWP/col y EPT para presentar las diferencia de los valores entre temporadas secas y de lluvia; en el país de Ecuador para determinar la calidad del agua del río Jambelí (25), se realizó la recolección de datos en los meses de noviembre a enero, se muestreó en tres zonas del río , estos fueron georreferenciados y delimitados de 20 a 40 metros, el muestreo de agua fue depositado en un recipiente de plástico y de vidrio con dos o más muestras continuas, obteniendo un resultado promedio, en la fase de laboratorio utilizaron el estereoscopio para el conteo y la identificación de macroinvertebrados.

En Ecuador para determinar la calidad del agua del río Cutuchi (26), identificaron tres puntos de muestreo en el inicio, medio y final del río con tres repeticiones por cada muestra, en cuanto a los parámetros fisicoquímicos fueron tomados in situ y ex situ en donde se hicieron un buen manejo de las muestras para que no exista inconvenientes al momento de ser medidos y obtener resultados no válidos, así mismo, para la recolección de muestras de macroinvertebrados se emplearon una red Surber para su posterior identificación y caracterización con el estereoscopio y manuales de guía, la identificación de los índices biológicos de BMWP/col y EPT se aplicó para saber la calidad del agua, esta investigación es correlacional por el análisis de los parámetros fisicoquímicos y la identificación de macroinvertebrados.

En el país de México para determinar la calidad del agua del río Cupatitzio (27), consideraron las variables abióticas y bióticas que dependen de las actividades socioeconómicas para conocer la relación del estado funcional de las comunidades bióticas del río en el cual se empleó una red Surber y el índice BMWP/col, teniendo en cuenta los parámetros fisicoquímicos para conocer las alteraciones de las comunidades de macroinvertebrados del área estudiada, ya que producen cambios en el tiempo favoreciendo a unas especies y en otras estableciendo condiciones intolerables.

La investigación para determinar la calidad del agua de las quebradas Naranjal y Córdova (28), aporta a nuestra investigación dando a conocer la importancia y la relación de los parámetros físicos y químicos y los macroinvertebrados; en donde indica que la mayoría de los organismos presentes en el agua son más sensibles a los parámetros de pH, conductividad eléctrica, temperatura y el oxígeno disuelto, por lo que se refiere que estas variables fisicoquímicas son importantes para la evaluación de la calidad de agua; dando a conocer que los valores de pH más favorables para la vida de las especies acuáticas son entre 6 y 7,2; también menciona que si los niveles de oxígeno disuelto en el agua son menores a 5.0 mg/l la vida acuática es puesta bajo presión y si los valores de oxígeno continúan debajo de 1-2 mg/l por unas pocas horas varias especies acuáticas llegarán a morir, por otro lado, indica que la temperatura es un parámetro muy importante en el agua, ya que este influye en la aceleración o el retardo de la actividad biológica, afectando las propiedades tanto como químicas y físicas del agua, es decir que tiene una gran influencia en los organismos acuáticos, alterando sus tasas metabólicas, hábitos alimenticios y reproductivos.

El procedimiento de recolección de datos para determinar la calidad del agua en las lagunas de Pucush Uclo y Ñahuimpuquio se dividió en tres etapas, la primera etapa es de pre-campo, en el cual identificó el ámbito de estudio estableciendo cuatro puntos de monitoreo registrando la posición con un GPS en las dos lagunas de estudio Ñahuimpuquio y Pucush Uclo, colocando imágenes como evidencia de cada punto donde se aprecian las actividades antropogénicas que se realizan; la segunda etapa es la de campo en la que se hizo la recolección de los macroinvertebrados con una red tipo D-net, después lo almacenaron en recipientes con alcohol al 70%; la tercera etapa fue de gabinete, llevaron las muestras a la universidad UNCP al laboratorio de Manejo forestal de la Facultad de Ciencias Forestales y del Ambiente y con un estereoscopio identificaron las órdenes, familias y especies de macroinvertebrados, posteriormente determinaron la calidad del agua con los índices bióticos"; esta investigación ayudó a determinar el procedimiento de la recolección de datos, primero identificando el ámbito de estudio, prosiguiendo con la recolección de los macroinvertebrados para finalmente identificar el orden y familia de cada uno de ellos (29).

De la misma manera, para determinar la calidad del agua del río Vilcanota (30) y de los humedales altoandinos de Chalhuanca (31), la recolección de macroinvertebrados usaron una red tipo D-net, con el cual se hicieron un barrido de dos metros de vegetación y otro en medio del cuerpo del agua, removiendo el fondo para captar los macroinvertebrados presentes, después recogieron a los organismos que estaban adheridos a las hojas, piedras, ramas; esta operación lo realizaron varias veces en cada estación de muestreo para obtener mayor cantidad de macroinvertebrados;

seguidamente las muestras se colocaron en recipientes con alcohol al 70% o con formaldehído al 5% previamente rotulados y por último las llevaron al laboratorio para identificar cada individuo encontrado; esta investigación fue una guía para el procedimiento y los materiales que se necesitan en la recolección de los macroinvertebrados.

Por otro lado, la investigación realizada para determinar la calidad el agua del río San Alberto (13), es complementaria ya que nos ayuda a conocer la situación actual de la calidad de los ríos y quebradas que abastecen a la ganadería y agricultura, además, los pobladores realizan la pesca y son lugares de recreación de las familias; este estudio se realizó en el periodo de abril a julio del 2013, dando a conocer que los macroinvertebrados bioindicadores de la calidad de agua encontrados en la microcuenca fueron Leptophlebiidae, Oligoneuriidae, Perlidae, Anomalopsychidae, Calamoceratidae, Helicopsychidae, Odontoceridae y Blepharicerida, ya que estos son sensibles a la contaminación, por otro lado los macroinvertebrados tolerantes a la contaminación encontrados fueron Chironomidae y Baetidae, ya que estos pueden vivir en lugares contaminados.

2.2. Bases teóricas

aspectos generales del área de estudio macroinvertebrados y calidad de agua.

2.2.1. Macroinvertebrados como Bioindicadores

A. BIOINDICADOR

Se denomina indicador biológico a aquel ente biológico, los cuales tienen una alta sensibilidad a las alteraciones o variaciones que se pudieran dar en su entorno, por lo que conforman el denominado "índice de diversidad", es decir que estos determinan las características ecológicas de un ecosistema: características fisicoquímicas, bacteriológicas, biológicas y funcionales que sufre el ecosistema hídrico por actividades de la naturaleza y de las actividades antropogénicas (32).

Estas especies presentan un rango de límites para adaptarse a un determinado ecosistema, por lo que se habla de un grado de "tolerancia ecológica", de modo que la evaluación de la contaminación acuática puede realizarse por especies indicadoras como: algas, bacterias, protozoos, macroinvertebrados y peces (33).

ÍNDICES BIÓTICOS

Índice de BMWP/col.- Método para determinar la calidad del agua, empleando como bioindicadores a los macroinvertebrados, en donde se ordenan a las familias de macroinvertebrados acuáticos encontrados en 10 grupos, siguiendo un gradiente de mayor a una menor tolerancia a la contaminación, correlacionando estos valores del BMWP/col con cinco grados de contaminación, dándole un significado y color respectivamente.

Tabla 2: Puntajes de las familias de macroinvertebrados acuáticos para el índice BMWP/col

MILIA	PUNTUACION
omalopsychidae, Atriplectididae, Blephariceridae, Calamoceratidae, Ptilodactylidae, Chordodidae, Gomphidae, Hidridae, Lampyridae, Lymnessiidae, Odontoceridae, Oligoneuriidae, Perlidae, Polythoridae, Psephenidae, Gripopterygi dae	10
npullariidae, Dytiscidae, Ephemeridae, Euthyplociidae, Gyrinidae, Hydrobiosidae, Leptophlebiidae, Philopotamidae, Polycentropodidae, Xiphocentronidae.	9
rridae, Hebridae, Helicopsychidae, Hydrobiidae, Leptoceridae, Lestidae Palaemonidae, Pleidae, Pseudothelpusidae, Saldidae, Simuliidae, Vellidae,	8
etidae, Caenidae, Calopterygidae, enagrionidae, Corixidae, Dixidae, Dryopidae, Glossosomatidae, Hyalellidae, Hydroptilidae, Leptohyphidae, Naucoridae, Notonectidae, Planariídae, Psychodidae, Scirtidae, Hydropsychidae.	7
shnidae, Ancylidae, Corydalidae, Elmidae, Libelulidae, Limnichidae, Lutrochidae, Megapodagrionidae, Sialidae, Sta phylinidae	6
lostomatidae, Gelastocoridae, Mesoveliidae, Nepidae, Planorbiidae, Pyralidae, Tabanidae, Thiaridae	5
lostomatidae, Gelastocoridae, Mesoveliidae, Nepidae, Planorbiidae, Pyralidae, Tabanidae,	4

Thiaridae (alba tercedor) Hydrometridae, Noteridae, Dolichopudidae, Hidracarina		
ratopogonidae, Glossiphoniidae, Cyclobdellidae, Hydrop hilidae, Physidae, Tipulidae, Ostracoda	3	
licidae, Ephidridae, Chironomidae, Muscidae, Sciomyzidae, Syrphidae	2	
bificidae, Oligochaeta	1	

Fuente: Roldan (2003)

Tabla 3: Clasificación de las aguas, significado de acuerdo con el índice BMWP/col

Clase	Calidad	BMWP/col	Significado	Color
I	Buena	101-120 >150	Aguas limpias	
II	Aceptable	61-100	Aguas ligeramente contaminadas	
III	Dudosa	36-60	Aguas moderadamente contaminadas	
IV	Critica	16-35	Aguas muy contaminadas	
V	Muy critica	< 15	Aguas fuertemente contaminadas	

Fuente: (34)

a) Índice de EPT

Hace uso de la presencia de las órdenes Ephemeroptera, Plecoptera y Trichoptera ya que se están considerados como indicadores de buena calidad de agua debido a la sensibilidad que poseen a la

contaminación. El índice EPT se halla dividendo el número de EPT entre la cantidad de macroinvertebrados encontrados en total para así ser multiplicado por 100, el índice nos da en porcentaje de calidad de agua como se observa en la siguiente tabla.

Tabla 4: Clasificación de las aguas de acuerdo con el índice EPT

ЕРТ	Significado	Color
75-100	Muy buena	
50-74	Buena	
25- 49	Regular	
0 -24	Mala	

Fuente: (17)

A. Estudio de macroinvertebrados

a. Ventajas del uso de los macroinvertebrados:

- -Amplia distribución geográfica.
- -Mayormente sedentarios.
- Reacción de huida.
- -Ciclos de vida largo.
- -Taxonomía conocida en nivel de género y familia.
- -Sensibilidad conocida a los diferentes tipos de contaminación.

b. Macroinvertebrados acuáticos.

Organismos sin espina dorsal y observable sin necesidad de microscopio, este tipo de macroinvertebrados han servido de referencia a estudiosos de los ecosistemas de aguas corrientes, por lo que se destaca por su utilidad como indicadores biológicos (34).

c. Clasificación de los macroinvertebrados. – Los han clasificado de acuerdo con su hábitat:

- Bentónicos. Macroinvertebrados que viven en el fondo de los ecosistemas.
- Nectónicos. Organismos que se trasladan a distancias y pueden nadar (peces).

 Neustónicos. - Organismos que se trasladan por la superficie del agua (insectos y microorganismos).

B. Principales órdenes de macroinvertebrados:

Las principales órdenes son las siguientes y se define así (34)

a. Ephemeroptera.

En estado de larva su desarrollo dura desde unas pocas semanas hasta un año o más, estas se alimentan de algas, su habitad suelen ser los troncos, hojas o la vegetación debajo del agua, normalmente viven en aguas de calidad limpias o ligeramente contaminadas.

Figura 1: Orden Ephemeroptera

b. Trichoptera.

En estado de larva se alimentan de algas, una de sus características es que tienen la capacidad de construir refugios o casas, en gran mayoría los trichópteros viven en aguas de corrientes y oxigenadas debajo de material vegetal, piedras y troncos, son indicadores de aguas limpias.

Figura 2: Orden Trichoptera

c. Plecoptera

El desarrollo de este orden dura entre 2 a 3 semanas o en casos extremos de 2 a 3 años, se alimentan de Ephemeropteras y Dipteras, viven en aguas con mucha oxigenación y de corriente rápida, debajo de troncos, piedras, hojas y ramas, son indicadores de aguas muy limpias.

Figura 3: Orden Plecoptera

d. Odonata

Desde el periodo larval hasta adulto dura de dos meses hasta tres años en su desarrollo, viven en pantanos y pozos, viven en aguas de corriente lenta y poco profundas, mayormente rodeados de mucha vegetación sumergida, son indicadores de aguas limpias.

Figura 4: Orden Odonata

e. Coleoptera

Mayormente los coleópteros viven en aguas con temperaturas medias y concentraciones de oxígeno alto, viven en aguas continentales lóticas y lénticas, son indicadores de aguas limpias.

Figura 5: Orden Coleoptera

f. Dípteros.

Esta orden es una de las más diversas y abundantes, muchas de ellas son indicadoras de aguas contaminadas.

Figura 6: Orden Dipteros

2.2.2. Calidad del agua

La calidad del agua básicamente se puede establecer mediante dos metodologías, la primera determinando sus características físicas y químicas, y la segunda empleando macroinvertebrados como bioindicadores. La calidad del agua en los ríos puede tener una variación significativa estando en función del espacio y tiempo y de procesos hidrológicos, biológicos, químicos y morfológicos, como podemos ver estos condicionantes van a afectar a la calidad del agua de los ríos, midiéndose de esta manera por el grado de contaminación (35).

A. Parámetros físicos y químicos

Los parámetros físicos y químicos más utilizados son los siguientes:

a) Temperatura

Parámetro que identifica la calidad del recurso hídrico, relacionándose como elemento que va a intervenir en los procesos fisiológicos de todo organismo vivo, así mismo, en el desarrollo de microorganismos, parásitos y enfermedades.

b) Conductividad eléctrica

Representado por la medida de las cargas iónicas que circulan en un cuerpo de agua, expresado en la concentración de sales y iones, si esta concentración es elevada revela una contaminación proveniente de descargas industriales o urbanas. Cuando ocurre un incremento de las cargas iónicas se incrementa la conductividad, aumentándose así la salinidad ocasionando una reducción de la biodiversidad de los ríos (mayor de 1.500mg/l).

c) Oxígeno disuelto

Representado por la cantidad de oxígeno disuelto en el agua, constituyendo una variable importante para ver la calidad del agua, debido a que el oxígeno constituye un elemento básico para los elementos bióticos aeróbicos en el medio acuático.

d) Solidos disueltos totales

El TDS es clasificado como un contaminante secundario, es materia disuelta en agua siendo más pequeñas de 2 micrones, no pueden ser filtrados de manera tradicional y es un buen indicador de la calidad del agua.

e) pH

Parámetro que representa el carácter ácido – básico del número de iones de hidrógeno de una sustancia, siendo el intermedio el carácter neutro, este pH puede variar en los cuerpos de agua dulce, el aumento de temperatura puede inducir una disminución del pH. Los medios acuáticos tienen valores fluctuantes de 6 a 9 siendo los más aptos para el desarrollo del bioma.

2.2.3. Definición de Términos Básicos

- Indicadores biológicos: es la combinación de 2 o 3 propiedades de poblaciones como: taxa, tolerancia e intolerancia a la contaminación y abundancia que dan por resultado los índices cuantitativos.
- Órdenes de macroinvertebrados: Conformada por el conjunto de familias con características comunes.
- Familias de macroinvertebrados: Conformada por todos los géneros con características similares.
- Réplicas de monitoreo: Es la réplica de cada submuestra obtenida de una unidad experimental.
- BMWP: Método sencillo y rápido para la evaluación de la calidad del agua empleando macroinvertebrados como bioindicadores.
- ETP: Índice el cual se utilizan tres grupos de macroinvertebrados los cuales son indicadores de la calidad del agua ya que son más sensibles a la contaminación.
- Calidad del agua: Son las condiciones naturales que se preserva el agua de manera íntegra para estar en equilibrio con el ecosistema.
- Contaminación: Es la presencia de componentes físicos, químicos o biológicos que alteran el entorno natural y provocan daños al ecosistema.
- Macroinvertebrados: Son organismos tales como insectos, moluscos y anélidos que pueden verse a simple vista y son usados para evaluar la calidad de agua.
- Ríos: Corriente natural de agua que va desde el nacimiento y desemboca en otro similar, mar o lago, o perdiéndose por filtración.
- Quebrada: Son valles estrechos, ubicados entre formaciones montañosas, para los pequeños ríos, los cuales son poco profundos y largos,
- Evaluación: Es un proceso para determinar el valor de un estudio para después poder tomar decisiones hasta conseguir los objetivos.
- pH: El pH indica la acidez o la alcalinidad que tiene el agua, para todos los tipos de organismos hay un intervalo adecuado para el desarrollo, algunas mínimas variaciones afectan a los organismos y pueden ser mortales.
- Temperatura: Es parámetro físico que posibilita medir las sensaciones de frio y de calor. La temperatura tiene influencia directa con otras características y componentes de la calidad del agua como el oxígeno disuelto, la demanda biológica de oxígeno o la supervivencia de especies biológicas.

- Sólidos Totales disueltos: Es el residuo después de evaporar la muestra de agua, las cuales son más pequeñas que 2 micrones, son la composición de las sales, minerales y metales, o cualquier otro compuesto orgánico o inorgánico.
- Oxígeno disuelto: Mide la cantidad de oxígeno gaseoso disuelto presente en una solución acuosa, es importante porque muchos de los organismos acuáticos necesitan oxígeno para crecer y sobrevivir.
- Conductividad eléctrica: Es la habilidad de una solución para pasar la electricidad. Pequeñas partículas cargadas eléctricamente, llamadas iones, pueden llevar una corriente eléctrica a través de soluciones de agua.
- Parámetros físicos y químicos: Son considerados condicionantes e interpretativos de los indicadores biológicos.
- Bioindicador: Es un organismo que responde a la variación de un factor abiótico y se usa para poder medir los efectos de contaminación, de tal manera que la respuesta quede reflejada en el cambio de valor en una o más variables de cualquier nivel del organismo.

CAPÍTULO III METODOLOGÍA

3.1. Método, tipo o alcance de la investigación

3.1.1. Método de Investigación

En el presente trabajo de investigación se desarrolló utilizando el MÉTODO CIENTÍFICO, puesto que este método es el conjunto de técnicas, pasos y procedimientos los cuales se emplean para resolver problemas de investigación mediante la verificación o prueba de hipótesis planteada, que se determinará acerca de la calidad del agua desde el criterio cuantitativo y cualitativa (36).

A. Método General de la investigación

El análisis fue el método general porque en la investigación se realizó un estudio detallado de las variables planteadas tales como la calidad del agua describiendo los parámetros físicos y químicos tales como: T°, TDS, CE, pH y OD, e identificando los macroinvertebrados en orden y familia, para dar a conocer sus características (37).

B. Método Específico de la Investigación

En la investigación los métodos específicos fueron: la identificación de puntos de muestreo, la recolección de macroinvertebrados, la medición in situ de los parámetros físicos y químicos, la cuantificación de macroinvertebrados en el laboratorio y por último se realizó la comparación y análisis de los resultados obtenidos con la bibliografía (38).

3.1.2. Tipo de Investigación

Según (39), el tipo de investigación es básica, porque se aportó más información y conocimiento acerca de la biodiversidad de macroinvertebrados y de la calidad del agua de los ríos y quebradas del distrito de Oxapampa.

3.1.3. Alcance de la Investigación

Según (40), el alcance de la presente investigación es correlacional ya que se dio a conocer la relación que hay entre las dos variables: Macroinvertebrados y Calidad del agua por medio de los índices biológicos.

3.1.4. Diseño de Investigación

El diseño que se utilizó en el trabajo de investigación es no experimental, ya que se basa principalmente en la observación de variables en su entorno natural y no son manipuladas premeditadamente; a su vez el diseño es longitudinal ya que el periodo de muestreo fue en tres meses de noviembre a enero, y se pudo detectar las variaciones de las características de las variables a nivel de grupo e individuo.

3.1.4.1. Población

La aplicación del trabajo de investigación se realizó con la comunidad de macroinvertebrados de los ríos (Chontabamba, Huancabamba, Llamaquizu) y Quebrada Esperanza del distrito de Oxapampa.

3.1.4.2. Muestra

Macroinvertebrados recolectados en los seis puntos de muestreo de los ríos (Chontabamba, Huancabamba, Llamaquizu) y Quebrada Esperanza del distrito de Oxapampa (Ver tabla 5).

Se tomó 1 litro de muestra de agua por cada réplica, teniendo un total de 5 litros por punto de muestreo de los ríos (Chontabamba, Huancabamba, Llamaquizu) y Quebrada Esperanza del distrito de Oxapampa.

En el río Chontabamba y Quebrada Esperanza se muestrearon dos puntos por cada río, así mismo, del río Huancabamba y Llamaquizú un punto por cada río, haciendo un total de 30 litros de muestra de agua.

3.1.5. Técnicas e Instrumentos de Recolección de Datos

 Red de recolección. – Se empleó el método de red D-net de 500 micras para recolectar los macroinvertebrados en los ríos y quebradas del distrito de Oxapampa.

- Ficha de muestreo (Registro de estereoscopio). Se empleó la ficha de muestreo para registrar el orden y familia de los macroinvertebrados observados en el estereoscopio.
- Tabla de puntuación de las familias para el índice BMWP/col.- Posterior al registro de los macroinvertebrados, se empleó la tabla de puntuación de las familias identificadas para determinar la calidad del agua de los ríos y quebradas del distrito de Oxapampa con el índice BMWP/col.
- Tabla de puntuación de las órdenes para el índice EPT. Se empleó la tabla de puntuación de las órdenes identificadas para determinar la calidad del agua de los ríos y quebradas del distrito de Oxapampa con el índice EPT.
- Formatos de recolección de parámetros físicos y químicos. Se empleó un formato elaborado para la recolección de los parámetros físicos y químicos ya mencionados medidos in situ en los ríos y quebradas del distrito de Oxapampa.

3.2. Materiales y Métodos

3.2.1. Área de estudio

El distrito de Oxapampa está ubicado en la provincia de Oxapampa - departamento de Pasco, con un área de 982.04 km², con una altitud 1814 msnm, las vías de acceso terrestre desde Lima a Tarma, de Tarma a la Merced y de la Merced se sigue por la carretera que está asfaltada hasta el distrito de Oxapampa, y desde la ciudad se conecta con los distritos de Pozuzo, Chontabamba y Huancabamba, desde Puente Paucartambo por la margen izquierda al noreste se enlaza con los distritos de Puerto Bermúdez, Villa Rica, Constitución y Palcazú.

La provincia de Oxapampa tiene como sistema hidrológico principal la cuenca del Río Pachitea, esta su vez tiene 3 subcuencas grandes: río Palcazú (10 microcuencas), Pichis (15 microcuencas) y Huancabamba-Pozuzo (5 microcuencas).

El informe del Instituto Nacional de Estadística e Informática INEI da a conocer que la actividad económica de Oxapampa es primaria, debido a que más del 70% de los pobladores está dedicada a la actividad agropecuaria y a la extracción forestal. Como segunda actividad económica está la construcción y las manufacturas, y en tercer lugar se encuentran las actividades de servicios, comercio entre otros.

La temperatura máxima de Oxapampa oscila entre 22.7°C en el mes de febrero y 24.0°C en el mes de octubre durante el año, la temperatura mínima oscila entre 10.8°C en el mes de julio y 14.0°C en el mes de febrero, así mismo, presentan lluvias en grandes cantidades durante todo el año, siendo el mayor 262.8 mm en el mes de febrero, con un acumulado de 1650 mm por año (41).

Tabla 5: Coordenadas de los puntos de monitoreo

Pto. de		Coordenadas UTM								
monitoreo	Zona	Este	Norte	Altitud (msnm)						
CHT 1	18 L	454815	8828864	1759						
CHT 2	18 L	454992	8829347	1800						
ESP 1	18 L	456928	8829986	1819						
ESP 2	18 L	456307	8829709	1819						
LLQ 1	18 L	455466	8829697	1823						
HCB 1	18 L	455413	8830747	1809						

a) CHT 1 (Río Chontabamba)

El punto de muestreo se caracterizó por tener tramos rocosos y arenosos, la dirección del río es de Sur a Noreste, con un caudal promedio de los meses de muestreo de 9.35 m³/s y se observaron aves bebiendo del río.

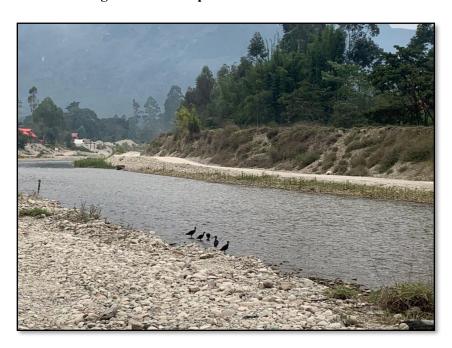


Figura 7: Primer punto de muestreo - CHT 1

b) CHT 2 (Río Chontabamba)

El punto de muestreo se caracterizó por tener tramos rocosos y arenosos, se observaron actividades humanas como el lavado de autos y mototaxis, la recreación de familias y pesca. La dirección del río es de Sur a Noreste, con un caudal promedio de los meses de muestreo de 8.80 m3/s.

Figura 8: Segundo punto de muestreo - CHT 2

Fuente: Elaboración propia

Figura 9: Evidencia de lavado de carros - CHT 2

c) ESP 1 (Quebrada Esperanza)

El punto de muestreo se caracterizó por tener tramos de vegetación, presencia de residuos sólidos ya que al lado izquierdo de la quebrada se realizaban trabajos de asfalto. La dirección de la quebrada es de Este a Oeste, con un caudal promedio de los meses de muestreo de 2.89 m3/s.

Figura 10: Tercer punto de muestreo - ESP 1

Fuente: Elaboración propia

Figura 11: Evidencia de trabajo de asfalto - ESP 1

d) ESP 2 (Quebrada Esperanza)

El punto de muestreo se caracterizó por ser pantanoso y tener vegetación, de igual manera se observó la presencia de residuos sólidos en la quebrada. La dirección de la quebrada es de Este a Oeste, con un caudal promedio de los meses de muestreo de 3.98 m3/s.

Figura 12: Cuarto punto de muestreo - ESP 2

Fuente: Elaboración propia

e) LLQ 1 (Río Llamaquizu)

El punto de muestreo se caracterizó por tener vegetación y efluentes de aguas residuales domesticas ya que en el entorno hay presencia de viviendas. La dirección del río es de Este a Noroeste y un caudal promedio de los meses de muestreo de 6.35 m3/s.

Figura 13: Quinto punto de muestreo - LLQ 1

Figura 14: Evidencia de efluentes de aguas residuales domésticas - LLQ1

f) HCB 1 (Río Huancabamba)

El punto de muestreo se caracterizó por ser lodoso, arenoso y rocoso, ya que es la unión de todos los puntos de muestreo, se evidenció la recreación de familias. La dirección del río es de Sur a Norte, con un caudal promedio de los meses de muestreo de 13.37 m3/s.

Figura 15: Sexto punto de muestreo - HCB 1

Fuente: Elaboración propia

Figura 16: Evidencia de recreación de familias - HCB 1

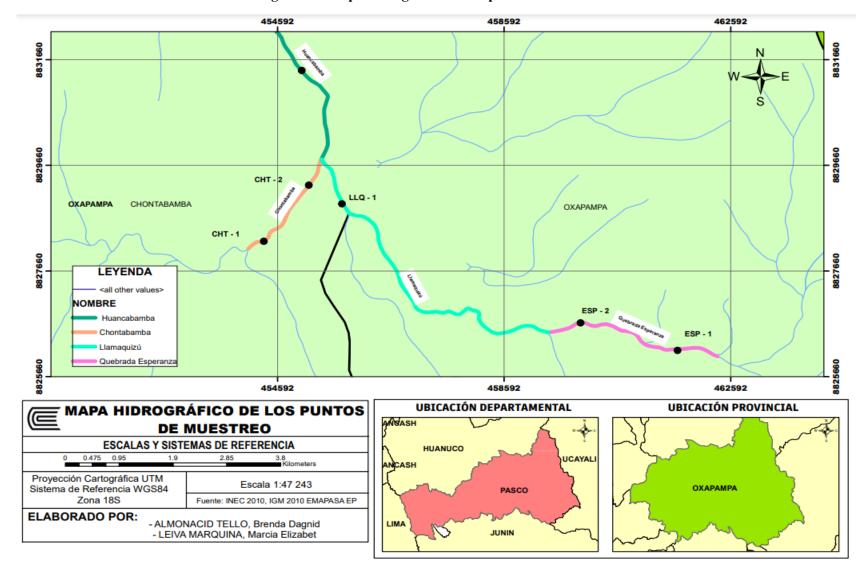


Figura 17: Mapa hidrográfico de los puntos de muestreo

3.2.2. Método

Para determinar la calidad del agua de los ríos Chontabamba, Huancabamba, Llamaquizu y Quebrada Esperanza, se aplicó el índice BMWP/col, el cual es un método para determinar la calidad del agua, empleando como bioindicadores a los macroinvertebrados, en donde se ordenan a las familias de macroinvertebrados encontrados en 10 grupos, siguiendo un gradiente de mayor a una menor tolerancia a la contaminación, correlacionando estos valores del BMWP/col con cinco grados de contaminación, dándole un significado y color respectivamente (Ver Tabla 2 y 3).

Así mismo, se aplicó el índice EPT, el cual hace uso de la presencia de las órdenes Ephemeroptera, Plecoptera y Trichoptera, ya que están considerados como indicadores de buena calidad de agua debido a la sensibilidad que poseen a la contaminación. El índice EPT se halla dividendo el número de EPT entre la cantidad de macroinvertebrados encontrados en total para así ser multiplicado por 100 (Ver Tabla 4).

La recolección de macroinvertebrados de hizo con una red tipo D-net colocándolo contracorriente para cada punto y réplica de muestreo, seguidamente la muestra se colocó en un tamiz de 500 micras, posteriormente con ayuda de un cepillo y agua destilada se retiró el exceso de arena, pequeñas piedras, vegetación y algunos residuos pequeños, y finalmente se colocó la muestra en una bolsa ziploc rotulada con alcohol al 70%, las muestras se llevaron al laboratorio de la Universidad Continental, donde se realizó el conteo e identificación de macroinvertebrados, primeramente se colocaron las muestras en bandejas blancas para facilitar su recolección, con ayuda de pinzas se colocaron uno por uno en el portaobjetos y con un estereoscopio se reconoció con mayor precisión a los macroinvertebrados y se identificaron con una guía de identificación de macroinvertebrados impreso.

La toma de datos de los parámetros físicos y químicos (T°, pH, CE, OD, TDS) se realizó de manera in situ por cada réplica, para lo cual se utilizó un equipo multiparámetro y un oxímetro, posterior a ello, los datos se subieron al programa Excel para realizar los gráficos y poder describir los valores de los parámetros físicos y químicos.

Para la confiabilidad estadística de datos entre la relación de los índices BMWP/col y EPT con los parámetros físicos y químicos de los ríos Chontabamba, Huancabamba, Llamaquizu y Quebrada Esperanza, se realizó con el programa SPSS, aplicando la regresión lineal con el índice de determinación R².

3.2.3. Materiales

Materiales de campo	Materiales de laboratorio
Cámara fotográfica, cuaderno de campo, wincha plástica con asa de 50 m, 2 bandejas transparente, bolsas ziploc, envase de plástico transparente, Red Tipo D-net, Traje waders, botas, Tamiz de 500 micras, Alcohol al 70% y agua destilada.	EPPS, 2 pinzas metálicas de punta fina, agua destilada, 2 bandejas blancas, colador, porta objeto, cubre objeto, cuaderno de apuntes y Guía de identificación de macroinvertebrados.
3.2.4. Equipos	
Equipos de campo	Equipos de laboratorio
Multiparámetro, Oxímetro y GPS	Estereoscopio y Computadora
3.2.5. Software	

CAPÍTULO IV RESULTADOS Y DISCUSIÓN

4.1. Presentación de resultados

• Macroinvertebrados acuáticos presentes en los ríos y quebradas

A continuación, se hace la presentación de los resultados con respecto a las órdenes y familias estudiadas.

Tabla 6: Órdenes y familias de macroinvertebrados presentes en los ríos y quebradas del distrito de Oxapampa

			ľ	NOVIE	EMBRI	E]	DICIE	MBRI	E		ENERO						TOT AL
ORDEN	FAMILIA	CHT1	CHT2	ESP1	ESP2	LLQ1	HCB1	CHT1	CHT2	ESP1	ESP2	LLQ1	HCB1	CHT1	CHT2	ESP1	ESP2	LLQ1	HCB1	
Amphypod a	Hyalellidae	121		703	103 7	490	227	9	18	40	17	115	100	6	9	52	17	73	59	3093
Coleoptera	Elmidae	81	28				3	7		15	2			3	3	9	6			157
	Noteridae	1																		1
Diptera	Chironomid ae	51	104	20	5	721	178	69	26	117	77	64	95	39	19	109	108	78	48	1965
	Tipulidae	33				29			2											64
	Muscidae			3						2	11			2		2	9			29
	Ephydridae										2						3			5
	Dolichopod idae							13	3					5						21
	Limoniidae	29	1					4	1					4						39
	Simulidae	15																		15

	Ceratopogo nidae							8						5						13
Hemiptera	Vellidae		9																	9
Ephemerop tera	Leptohyphi dae	11	102					17	18				9		12				12	181
	Baetidae	145	114	26		42	27	77	123		8	18	135	37	89		4	20	110	975
Lepidoptera	Crambidae				3															3
Megalopter a	Corydalidae	5	1					5	1					7	2					21
Basommato phora	Physidae	7	29	133	80	53	335		10	41	22	1	25		7	16	11		22	792
Odonata	Calopterygi dae	4							5			6			4			7		26
Veneroidea	Sphaeriidae						2													2
Plecoptera	Perlidae	23	179			13	18	68	55			3	6	64	45			5	6	485
	Gripopteryg idae	34	131				6	3	15					3	9					201
Trichoptera	Leptocerida e		26		4		43	84	120			21	4	104	126			35	3	570
	Hydropsych idae	122	28			8			7	2	2	14	7		2		2	6	15	215

	Xiphocentr onidae	43				36			20						99
	Glossosama tidae						7				5				12
Tricladida	Planariidae	3		156	48							28	15	11	261
Haplotaxia	Tubificidae		2	18	3					2		16		5	46

En noviembre en el punto CHT 1, se cuantificaron 145 macroinvertebrados del orden Ephemeroptera (familia Baetidae), estos se encuentran en ríos y quebradas no contaminadas, además viven en aguas con corrientes y estancadas (42), y 122 individuos del orden Trichoptera (familia Hydropsychidae), estos habitan normalmente en zonas de corrientes moderadas o fuertes y toleran la contaminación moderada (43).

En el punto CHT 2, se cuantificaron 179 macroinvertebrados del orden Plecoptera (familia Perlidae), estos son indicadores de agua limpia los cuales viven en aguas de corriente rápida y prefieren vivir entre arena y piedras, también se cuantificaron 131 macroinvertebrados del orden Plecoptera (familia Gripopterygidae), los cuales toleran un poco la contaminación (44).

En el punto ESP 1, se cuantificaron 703 macroinvertebrados del orden Amphypoda (familia Hyalellidae), estos habitan en aguas subterránea y profundas con presencia de materia orgánica tiene tolerancia a los ambientes contaminados, también se cuantificaron 133 macroinvertebrados del orden Basommatophora (familia Physidae), estos viven en aguas estancadas además se caracterizan por soportar altos grados de contaminación (45).

En el punto ESP 2, se cuantificaron 1037 macroinvertebrados del orden Amphypoda (familia Hyalellidae) (45) y son indicadores de aguas contaminadas, también se cuantificaron 156 macroinvertebrados del orden Tricladida (familia Planariidae), estos suelen vivir en aguas lentas y poco contaminadas(46).

En el punto LLQ 1, se cuantificaron 490 macroinvertebrados del orden Amphypoda (familia Hyalellidae) con materia orgánica en el agua (46), también se cuantificaron 721 macroinvertebrados del orden Diptera (familia Chironomidae), los cuales si hay una cantidad excesiva es signo de una evidente grave contaminación(47).

En el punto HCB 1, se cuantificaron 227 macroinvertebrados del orden Amphypoda (familia Hyalellidae), también se cuantificaron 335 macroinvertebrados del orden Basommatophora (familia Physidae) indicadores de aguas contaminadas (45).

En diciembre en los puntos CHT 1 y CHT 2 se cuantificaron 84 y 120 macroinvertebrados del orden Trichoptera (familia Leptoceridae) respectivamente, estos habitan en aguas y quebradas de agua limpia de corriente lenta y son sensibles a la contaminación (43), también se cuantificaron 77 y 123 macroinvertebrados del orden Ephemeroptera (familia Baetidae) respectivamente, estos se

encuentran en aguas rápidas, no siempre son indicadores de aguas limpias ya que se necesita saber de qué otras familia está acompañado (42).

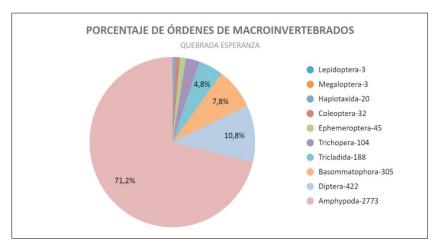
En los puntos ESP 1 y ESP 2 se cuantificaron 41 y 22 macroinvertebrados del orden Diptera (familia Chironomidae) respectivamente, los cuales si hay una cantidad excesiva c1es signo de una evidente grave contaminación (47).

En el punto LLQ 1 se cuantificaron 115 macroinvertebrados del orden Amphypoda (familia Hyalellidae) son resistentes a las condiciones ambientales alteradas por materia orgánica (45), también se cuantificaron 64 macroinvertebrados del orden Diptera (familia Chironomidae), indicadores de aguas contaminadas.

En el punto HCB 1 se cuantificaron 100 macroinvertebrados del orden Amphypoda (familia Hyalellidae), también se cuantificaron 135 macroinvertebrados del orden Ephemeroptera (familia Baetidae), los cuales no siempre son indicadores de aguas limpias (42).

PORCENTAJE DE ÓRDENES DE MACROINVERTEBRADOS RÍO CHONTABAMBA Tricladida-3 Haplotaxida-7 Emiptera-9 Odonata-13 Megaloptera-21 Basommatophora-53 Coleoptera-122 Amphypoda-163 Diptera-416 Plecoptera-640 Ephemeroptera-775 Trichopera-785 21,3% 25.8%

Figura 18: Cantidad en porcentajes de órdenes de los macroinvertebrados en el río Chontabamba


Fuente: Elaboración propia

Según la figura 18 muestra que en el río Chontabamba las órdenes con mayor porcentaje de macroinvertebrados encontrados son Trichoptera, Ephemeroptera, Plecoptera siendo indicadores de calidad de agua buena y Diptera indicador de mala calidad de agua, pero al presentar un % menor que las otras órdenes mencionadas no altera la calidad del agua.

Figura 19: Cantidad de macroinvertebrados del río Chontabamba

En el río Chontabamba la familia de macroinvertebrados que predominó fue Baetidae del orden Ephemeroptera teniendo 585 individuos y la más escaza familia fue Noteridae del orden Coleoptera con 1 individuo cuantificado.

Figura 20: Cantidad en porcentajes de órdenes de los macroinvertebrados en la Quebrada Esperanza

Fuente: Elaboración propia

Según la figura 20 muestra que en la Quebrada Esperanza las órdenes con mayor porcentaje de macroinvertebrados encontrados son Amphypoda, Diptera, Basommatophora y Tricladida, son indicadores de mala calidad de agua y tienen la capacidad de soportar niveles de contaminación.

Figura 21: Cantidad de macroinvertebrados en la Quebrada Esperanza

En la Quebrada Esperanza la familia de macroinvertebrados que predominó fue Hyalellidae del orden Amphypoda teniendo 1866 individuos y la más escaza familia fue Ephydridae del orden Diptera con 5 individuos cuantificados.

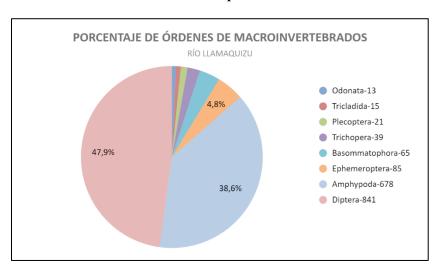


Figura 22: Cantidad en porcentajes de órdenes de los macroinvertebrados en el río Llamaquizu

Fuente: Elaboración propia

Según la figura 22 muestra que en el río Llamaquizu las órdenes con mayor porcentaje de macroinvertebrados encontrados son Diptera y Amphypoda, siendo indicadores de mala calidad de agua y Ephemeroptera es indicador de buena calidad de agua, pero al presentar un % menor que las otras órdenes mencionadas no altera la calidad del agua.

Macroinvertebrados - río Llamaquizu

| 1000 | 800 | 678 | 67

Figura 23: Cantidad de macroinvertebrados en el río Llamaquizu

En el río Llamaquizu la familia de macroinvertebrados que predominó fue Chironomidae perteneciente al orden Diptera con 863 individuos y la familia más escaza fue Calopterygidae del orden Odonata con 13 individuos cuantificados.

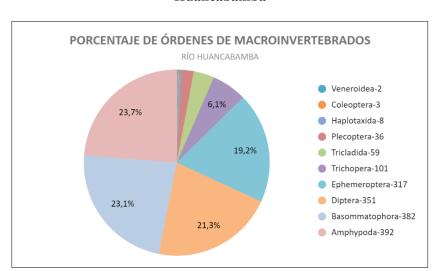


Figura 24: Cantidad en porcentajes de órdenes de los macroinvertebrados en el río Huancabamba

Fuente: Elaboración propia

Según la figura 24 se muestra que en el río Huancabamba las órdenes con mayor porcentaje de macroinvertebrados encontrados son Amphypoda, Bassommatophora y Diptera, siendo indicadores de mala calidad de agua y Ephemeroptera es un indicador de buena calidad de agua, pero al presentar un % menor que las otras órdenes mencionadas no altera la calidad del agua.

Figura 25: Cantidad de macroinvertebrados del río Huancabamba

En el río Huancabamba la familia de macroinvertebrados que predominó fue Hyalellidae del orden Amphydoda con 386 individuos y la familia más escaza fue Elmidae del orden Coleoptera con 3 individuos cuantificados.

- Parámetros físicos y parámetros químicos del agua en los ríos y quebradas
 - Temperatura T°

30.00

25.00

20.00

15.00

10.00

Nov. Dic. Ene. Dic. Ene. Nov. Dic. Ene. Dic. E

Figura 26: Temperatura en los puntos de muestreo

La temperatura mínima que se presentó en los tres meses de muestreo fue en noviembre en el punto LLQ 1 con un valor de 17.0°C, y la temperatura máxima fue en el mes de enero en el punto ESP 1 con un valor de 27.5°C.

- Potencial de hidrogeno – pH

7.8 7.7 7.6 VALORES 7.3 7.2 7.1 Nov. Dic. Ene. CHT 1 CHT 2 ESP 1 ESP 2 LLQ 1 HCB 1 PUNTOS DE MUESTREO ■pH 7.57 7.35 7.26 7.46 7.34 7.28 7.3 7.63 7.63 7.63 7.39 7.55 7.74 7.29 7.48 7.44 7.52 7.52 7.44

Figura 27: pH en los puntos de muestreo

Fuente: Elaboración propia

El pH mínimo que se presentó en los tres meses de muestreo fue en enero en el punto CHT 2 con un valor de 7.26, y el pH máximo fue en el mes de enero en el punto ESP 2 con un valor de 7.74.

- Conductividad eléctrica – CE

0.25

0.2

0.15

0.05

0.005

0.005

0.005

0.005

0.007

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.007

0.005

0.007

0.005

0.005

0.005

0.007

0.005

0.005

0.005

0.005

0.007

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.005

Figura 28: Conductividad eléctrica en los puntos de muestreo

El valor de conductividad eléctrica mínimo que se presentó en los tres meses de muestreo fue en noviembre en el punto CHT 2 con un valor de 0.05 uS/cm, y el valor de conductividad eléctrica máximo fue en el mes de enero en el punto LLQ 1 con un valor de 0.21 uS/cm.

- Solidos totales disueltos - TDS

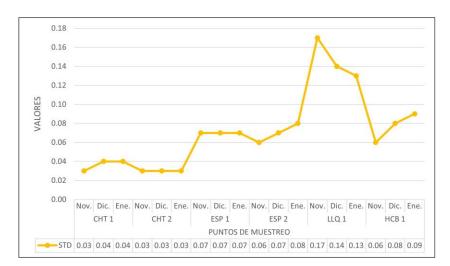
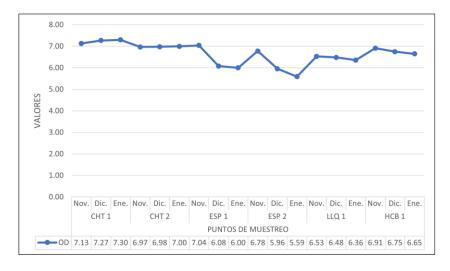



Figura 29: Variación de sólidos totales disueltos en los puntos de muestreo

El valor de sólidos totales disueltos mínimo que se presentó en los tres meses de muestreo fue de 0.03 mg/l en los puntos CHT 1 y CHT 2, y el valor de sólidos totales disueltos máximo fue en noviembre en el punto LLQ 1 con un valor de 0.17 mg/l.

Oxígeno disuelto – OD

Figura 30: Variación del oxígeno disuelto en los puntos de muestreo

Fuente: Elaboración propia

El valor de oxígeno disuelto mínimo que se presentó en los tres meses de muestreo fue en enero en el punto ESP 2 con el valor de 5.59 mg/l, y el valor de oxígeno disuelto máximo fue en el mes de enero en el punto CHT 1 con un valor de 7.30 mg/l.

- Resumen de valores de parámetros físicos y parámteros químicos e índice BMWP/col por los meses de muestreo.

En la (Tabla 9) se muestra el resumen de los valores obtenidos del índice BMWP/col y los valores de los parámetros físicos y químicos, para después evaluar su relación con el programa SPSS.

Tabla 7: Resumen de valores del índice BMWP/col y parámetros físicos y químicos

Mes	Punto Muestreo	Leyenda	Valor BMWP/c ol	pН	CE	ST	OD	T°
	1	CHT1	87	7.570	0.0640	0.030	7.130	20.156
	2	CHT2	90	7.460	0.0540	0.030	6.976	22.600
NOVIEMBRE	3	ESP1	21	7.292	0.3140	0.170	6.530	17.060
NOVIEMBRE	4	ESP2	27	7.520	0.1440	0.062	6.914	24.620
	5	LLQ1	36	7.390	0.1200	0.060	6.780	18.820
	6	HCB1	60	7.300	0.1200	0.070	7.040	19.360
	1	CHT1	81	7.350	0.0720	0.036	7.272	17.560
	2	CHT2	83	7.340	0.0650	0.036	6.984	18.720
DICIEMBRE	3	ESP1	35	7.480	0.2560	0.140	6.482	22.180
DICIEMBRE	4	ESP2	35	7.520	0.1320	0.084	6.750	25.325
	5	LLQ1	51	7.550	0.1220	0.068	5.956	23.760
	6	HCB1	52	7.630	0.1220	0.068	6.080	25.000
	1	CHT1	73	7.260	0.0800	0.040	7.300	18.032
	2	CHT2	83	7.280	0.0775	0.038	7.000	17.960
ENIEDO	3	ESP1	34	7.530	0.2160	0.134	6.368	22.980
ENERO	4	ESP2	35	7.440	0.1120	0.092	6.650	26.125
	5	LLQ1	55	7.740	0.1200	0.080	5.590	24.080
	6	HCB1	59	7.700	0.1300	0.070	6.000	27.560

- Relación entre el índice BMWP/col con los parámetros físicos y químicos.

A. Potencial hidrógeno (pH)

Según la (Figura 31), podemos observar el comportamiento de los macroinvertebrados se encuentran por debajo de 7.8, lo cual nos indica que en aguas alcalinas posiblemente no prosperarían, presentamos una regresión cuadrática con un índice de determinación R² de 0.1769, el cual indica que el potencial de hidrógeno depende en un 17.69% de la presencia de los macroinvertebrados medidos con el índice BMWP/col.

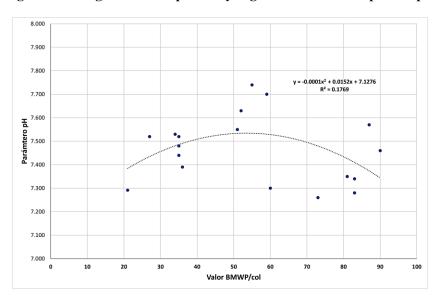


Figura 31: Diagrama de dispersión y regresión cuadrática para el pH

Fuente: Elaboración propia

B. Conductividad Eléctrica (CE)

Según la (Figura 32), este parámetro se comporta de manera inversa al número de macroinvertebrados, es decir que a mayor número de macroinvertebrados la conductividad menora o viceversa, presentamos una regresión lineal con índice de determinación R² de 0.6122, el cual indica que la conductividad eléctrica depende en un 61.22% de la presencia de los macroinvertebrados medidos con el índice BMWP/col.

0.3000 y=-0.0024x + 0.2603 R² = 0.6122 0.1500 0.1500 0 10 20 30 40 50 60 70 80 90 100 Valor BMWP/col

Figura 32: Diagrama de dispersión y regresión lineal para la conductividad eléctrica

C. Sólidos totales (TDS)

Según la (Figura 33), este parámetro se comporta de manera inversa al número de macroinvertebrados, es decir que a mayor número de macroinvertebrados los sólidos totales disminuyen, presentamos una regresión lineal con índice de determinación R² 0.6401, el cual indica que los sólidos totales dependen en un 64.01% de la presencia de los macroinvertebrados medidos con el índice BMWP/col.

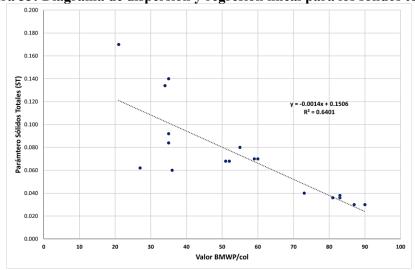


Figura 33: Diagrama de dispersión y regresión lineal para los sólidos totales

D. Oxígeno Disuelto (OD)

Según la (Figura 34), este parámetro se comporta de manera cuadrática en el cual podemos evidenciar que el número de macroinvertebrados prospera a una concentración mayor 5.5 mg/l de oxígeno disuelto, presentamos una regresión cuadrática con un índice de determinación R² de 0.4159, el cual indica que el oxígeno disuelto depende en un 41.59% de la presencia de los macroinvertebrados medidos con el índice BMWP/col.

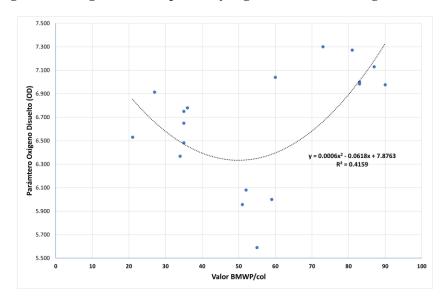


Figura 34: Diagrama de dispersión y regresión lineal del oxígeno disuelto

E. Temperatura

Según la (Figura 35), este parámetro se comporta de manera polinómica de grado 2, podemos evidenciar que la temperatura máxima es de 28 °C, superior a la fauna no prospera en cantidad, presentamos una regresión cuadrática con un índice de determinación R² de 0.266, el cual indica que la temperatura depende en un 26.6% de la presencia de los macroinvertebrados medidos con el índice BMWP/col.

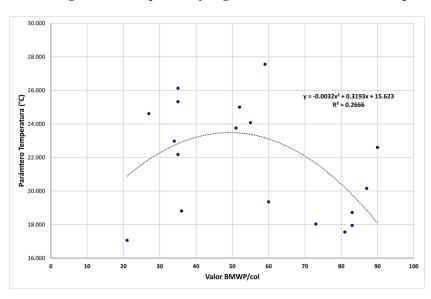


Figura 35: Diagrama de dispersión y regresión cuadrática de la Temperatura

Fuente: Elaboración propia

- Resumen entre el índice EPT con los parámetros físicos y químicos por los tres meses de muestreo.

En la (Tabla 9) se muestra el resumen de los valores obtenidos del índice EPT y valores de los parámetros físicos también químicos, para después evaluar su relación con el programa SPSS.

Tabla 8: Resumen de los valores del índice EPT y parámetros físicos y químicos

Mes	Punto Muestreo	Leyenda	Valor EPT	pН	CE	ST	OD	Т°
	1	CHT1	0.5404	7.570	0.0640	0.030	7.130	20.156
	2	CHT2	0.7844	7.460	0.0540	0.030	6.976	22.600
NOVIEMBRE	3	ESP1	0.0293	7.292	0.3140	0.170	6.530	17.060
NOVIEMBRE	4	ESP2	0.0396	7.520	0.1440	0.062	6.914	24.620
	5	LLQ1	0.0499	7.390	0.1200	0.060	6.780	18.820
	6	HCB1	0.1218	7.300	0.1200	0.070	7.040	19.360
	1	CHT1	0.7125	7.350	0.0720	0.036	7.272	17.560
	2	CHT2	0.8612	7.340	0.0650	0.036	6.984	18.720
DICIEMBRE	3	ESP1	0.0378	7.480	0.2560	0.140	6.482	22.180
DICIEWIBRE	4	ESP2	0.0613	7.520	0.1320	0.084	6.750	25.325
	5	LLQ1	0.1733	7.550	0.1220	0.068	5.956	23.760
	6	HCB1	0.4373	7.630	0.1220	0.068	6.080	25.000
	1	CHT1	0.782	7.260	0.0800	0.040	7.300	18.032
	2	CHT2	0.858	7.280	0.0775	0.038	7.000	17.960
ENEDO	3	ESP1	0.487	7.530	0.2160	0.134	6.368	22.980
ENERO	4	ESP2	0.226	7.440	0.1120	0.092	6.650	26.125
	5	LLQ1	55	7.740	0.1200	0.080	5.590	24.080
	6	HCB1	59	7.700	0.1300	0.070	6.000	27.560

⁻ Relación entre el índice EPT con los parámetros físicos y químicos.

A. Potencial hidrógeno (pH)

Según la (Figura 36), Podemos observar el comportamiento que los macroinvertebrados se encuentran por debajo de 7.8, lo cual nos indica que en aguas alcalinas posiblemente no prosperarían, presentamos una regresión cuadrática con un índice de determinación R² de 0.2819, el cual indica que el potencial de hidrógeno depende en un 28.19% de la presencia de los macroinvertebrados medidos con el índice EPT.

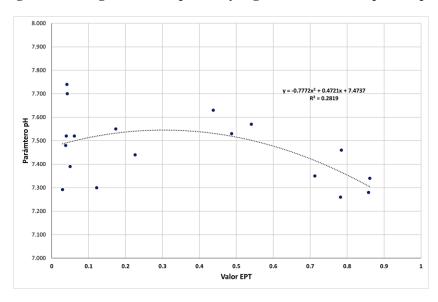


Figura 36: Diagrama de dispersión y regresión cuadrática para el pH

B. Conductividad Eléctrica (CE)

Según la (Figura 37), este parámetro se comporta de manera inversa al número de macroinvertebrados, es decir que a mayor número de macroinvertebrados la conductividad menora o viceversa, presentamos una regresión lineal con índice de determinación R² de 0.348, el cual indica que la conductividad eléctrica depende en un 34.8% de la presencia de los macroinvertebrados medidos con el índice EPT.

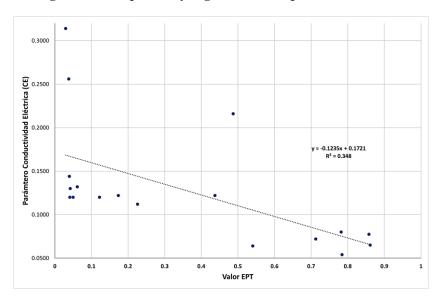


Figura 37: Diagrama de dispersión y regresión lineal para la conductividad eléctrica

C. Sólidos totales (TDS)

Según la (Figura 38), este parámetro se comporta de manera inversa al número de macroinvertebrados, es decir que a mayor número de macroinvertebrados los sólidos totales disminuyen, presentamos una regresión lineal con índice de determinación R² de 0.3524, el cual indica que los sólidos totales dependen en un 35.24% de la presencia de los macroinvertebrados medidos con el índice EPT.

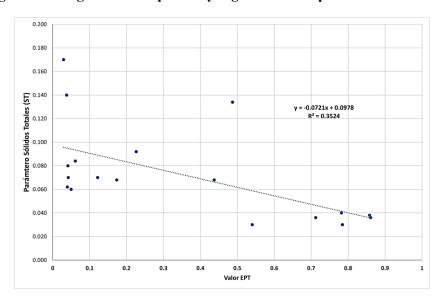


Figura 38: Diagrama de dispersión y regresión lineal para los sólidos totales

D. Oxígeno Disuelto (OD)

Según la (Figura 39), este parámetro se comporta de manera cuadrática en el cual podemos evidenciar que el número de macroinvertebrados prospera a una concentración mayor 5.5 mg/l de oxígeno disuelto, presentando una regresión cuadrática con índice de determinación R² 0.3205, el cual indica que el oxígeno disuelto depende en un 32.05% de la presencia de los macroinvertebrados medidos con el índice EPT.

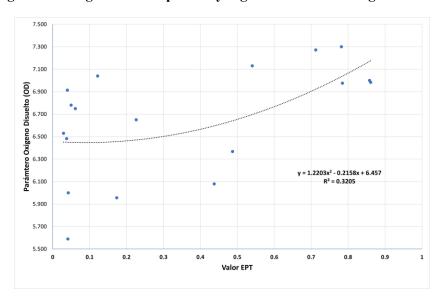


Figura 39: Diagrama de dispersión y regresión lineal del oxígeno disuelto

E. Temperatura

Según la (Figura 40), este parámetro se comporta de manera polinómica de grado 2, podemos evidenciar que la temperatura máxima es de 28 °C, superior a la fauna no prospera en cantidad, presentamos una regresión cuadrática con un índice de determinación R² de 0.2984, el cual indica que la temperatura depende en un 29.84% de la presencia de los macroinvertebrados medidos con el índice EPT.

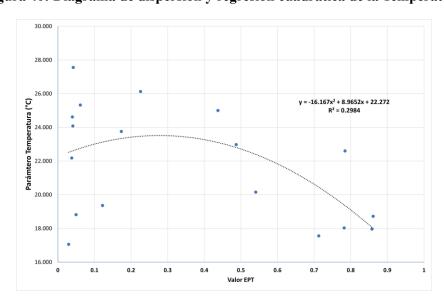


Figura 40: Diagrama de dispersión y regresión cuadrática de la Temperatura

Fuente: Elaboración propia

• Calidad del agua mediante el índice BMWP/col

Para determinar el índice BMWP/col se usó la tabla de clasificación de acuerdo con la puntuación de familias de macroinvertebrados, ver (Tabla 02).

Mediante el índice de BMWP/col los valores obtenidos del mes de noviembre del río Chontabamba fue: (87 y 90) indican que la calidad del agua es "Aceptable" es decir que tiene aguas ligeramente contaminadas, Quebrada Esperanza son: (21 y 27) "Critica" es decir que tiene aguas muy contaminadas, río Llamaquizu: (36) "Dudosa" con aguas moderadamente contaminadas y río Huancabamba: (60) "Aceptable".

Tabla 9: Determinación de valores según el índice BMWP/col- noviembre

Familias	CHT1	CHT2				
		CH12	ESP1	ESP2	LLQ1	НСВ1
Perlidae	10	10	0	0	10	10
Gripopterygidae	10	10	0	0	0	10
Xiphocentronidae	0	9	0	0	0	0
Leptoceridae	0	8	0	8	0	8
Simuliidae	8	0	0	0	0	0
Vellidae	0	8	0	0	0	0
Baetidae	7	7	7	0	7	7
Calopterygidae	7	0	0	0	0	0
Glossosomatidae	0	0	0	0	0	0
Hyalellidae	7	0	7	7	7	7
Leptohyphidae	7	7	0	0	0	0
Planariídae	0	7	0	7	0	7
Hydropsychidae	7	7	0	0	7	0
Corydalidae	6	6	0	0	0	0
Elmidae	6	6	0	0	0	6
Noteridae	4	0	0	0	0	0
Dolichopudidae	0	0	0	0	0	0
Ceratopogonidae	0	0	0	0	0	0
Physidae	3	3	3	3	3	3
Tipulidae	3	0	0	0	0	0
Ephidridae	0	0	0	0	0	0

Chironomidae	2	2	2	2	2	2
Muscidae	0	0	2	0	0	0
Tubificidae	0	0	0	0	0	0
TOTAL	87	90	21	27	36	60
Calidad del agua	Aceptable	Aceptable	Critica	Critica	Dudosa	Aceptable

Mediante el índice de BMWP/col los valores obtenidos en el mes de diciembre del río Chontabamba fue: (81 y 83) indicando que la calidad del agua es "Aceptable", Quebrada Esperanza: (35) "Critica", río Llamaquizu: (51) "Dudosa" y río Huancabamba: (52) "Aceptable" es decir que tiene aguas ligeramente contaminadas.

Tabla 10: Determinación de valores según el índice BMWP/col- diciembre

BMWP/col - Diciembre							
Familias	CHT1	CHT2	ESP1	ESP2	LLQ1	НСВ1	
Perlidae	10	10	0	0	10	10	
Gripopterygidae	10	10	0	0	0	0	
Xiphocentronidae	9	0	0	0	0	0	
Leptoceridae	8	8	0	0	8	8	
Simuliidae	0	0	0	0	0	0	
Vellidae	0	0	0	0	0	0	
Baetidae	7	7	0	7	7	7	
Calopterygidae	0	7	0	0	7	0	
Glossosomatidae	0	0	7	0	0	0	
Hyalellidae	7	7	7	7	7	7	
Leptohyphidae	7	7	0	0	0	7	

TOTAL Calidad del agua	81 Aceptable	83 Aceptable	35 Critica	35 Critica	51 Dudosa	52 Dudosa
Tubificidae	0	0	1	1	0	1
Muscidae	0	0	2	2	0	0
Chironomidae	2	2	2	2	2	2
Ephidridae	0	0	0	0	0	0
Tipulidae	0	3	0	0	0	0
Physidae	0	3	3	3	3	3
Ceratopogonidae	3	0	0	0	0	0
Dolichopudidae	6	6	0	0	0	0
Noteridae	0	0	0	0	0	0
Elmidae	6	0	6	6	0	0
Corydalidae	6	6	0	0	0	0
Hydropsychidae	0	7	7	7	7	7
Planariídae	0	0	0	0	0	0

Mediante el índice de BMWP/col los valores obtenidos en el mes de enero del río Chontabamba fue: (73 y 83) indicando una calidad del agua "Aceptable", Quebrada Esperanza: (34 y 35) "Critica", río Llamaquizu: (55) "Dudosa" y río Huancabamba: (59) "Dudosa" es decir que sus aguas son moderadamente contaminadas.

Tabla 11: Determinación de valores según el índice BMWP/col- enero

BMWP/col - Ener	0					
Familias	CHT1	CHT2	ESP1	ESP2	LLQ1	НСВ1
Perlidae	10	10	0	0	10	10
Gripopterygidae	10	10	0	0	0	0
Xiphocentronidae	9	0	0	0	0	0
Leptoceridae	8	8	0	0	8	8
Simuliidae	0	0	0	0	0	0
Vellidae	0	0	0	0	0	0
Baetidae	7	7	0	7	7	7
Calopterygidae	0	7	0	0	7	0
Glossosomatidae	0	0	7	0	0	0
Hyalellidae	7	7	7	7	7	7
Leptohyphidae	0	7	0	0	0	7
Planariídae	0	0	7	0	7	7
Hydropsychidae	0	7	0	7	7	7
Corydalidae	6	6	0	0	0	0
Elmidae	6	6	6	6	0	0
Noteridae	0	0	0	0	0	0
Dolichopudidae	6	0	0	0	0	0
Ceratopogonidae	0	3	0	0	0	0
Physidae	0	3	3	3	0	3
Tipulidae	0	0	0	0	0	0
Ephidridae	0	0	0	0	0	0
						-

Chironomidae	2	2	2	2	2	2
Muscidae	2	0	2	2	0	0
Tubificidae	0	0	0	1	0	1
TOTAL	73	83	34	35	55	59
Calidad del agua	Aceptable	Aceptable	Critica	Critica	Dudosa	Dudosa

 Determinar la calidad del agua mediante el índice EPT de los ríos y quebradas del distrito de Oxapampa 2022 y 2023.

El índice EPT se halla dividendo la cantidad de órdenes de Ephemeroptera, Plecoptera y Trichoptera entre la cantidad total de macroinvertebrados cuantificados para así ser multiplicado por 100, el índice da la calidad del agua en porcentaje, ver (Tabla 4).

Mediante el índice de EPT los valores obtenidos del mes de noviembre del río Chontabamba fue: (54.04% y 78.40%) indicando que la calidad del agua es "buena" y "muy buena", ya que se cuantificaron 156 y 237 (Ephemeroptera), 68 y 310 (Plecoptera), 184 y 97 (Trichoptera); Quebrada Esperanza fue: (2.93% y 3.96%) indicando que la calidad del agua fue "mala", ya que se cuantificaron 26 y 7 (Ephemeroptera), 0 (Plecoptera), 0 y 83 (Trichoptera); río Llamaquizu fue: (4.99%) indicando que la calidad del agua fue "mala", ya que se cuantificaron 47 (Ephemeroptera), 13 (Plecoptera) y 8 (Trichoptera) y el río Huancabamba fue: (12.18%) indicando que la calidad del agua fue "mala", ya que se cuantificaron 51 (Ephemeroptera), 24 (Plecoptera) y 35 (Trichoptera).

Tabla 12: Calidad de agua según EPT - noviembre

EPT - Noviembre						
Orden	CHT1	CHT2	ESP1	ESP2	LLQ1	НСВ1
Ephemeroptera	156	237	26	7	47	51
Plecoptera	68	310	0	0	13	24
Trichoptera	184	97	0	83	8	35
TOTAL	54.04%	78.40%	2.93%	3.96%	4.99%	12.18%
Calidad del agua	Buena	Muy buena	Mala	Mala	Mala	Mala

Mediante el índice de EPT los valores obtenidos en el mes de diciembre del río Chontabamba fue: (71.25% y 86.12%) indicando que la calidad del agua fue: "buena" y "muy buena", ya que se cuantificaron 94 y 141 (Ephemeroptera), 71 y 70 (Plecoptera), 120 y 155 (Trichoptera); Quebrada Esperanza fue: (3.78% y 6.13%) indicando que la calidad del agua fue "mala", ya que se cuantificaron 0 y 8 (Ephemeroptera), 0 (Plecoptera), 9 y 2 (Trichoptera); río Llamaquizu fue: (17.26%) indicando que la calidad del agua fue: "mala", ya que se cuantificaron 18 (Ephemeroptera), 3 (Plecoptera) y 18 (Trichoptera) y el río Huancabamba fue: (43.73%) indicando que la calidad del agua fue "regular", ya que se cuantificaron 144 (Ephemeroptera), 6 (Plecoptera) y 28 (Trichoptera).

Tabla 13: Calidad del agua según EPT - diciembre

EPT - Diciembre						
Orden	CHT1	CHT2	ESP1	ESP2	LLQ1	НСВ1
Ephemeroptera	94	141	0	8	18	144
Plecoptera	71	70	0	0	3	6
Trichoptera	120	155	9	2	18	28
TOTAL	71.25%	86.12%	3.78%	6.13%	17.26%	43.73%
Calidad del agua	Buena	Muy buena	Mala	Mala	Mala	Regular

Mediante el índice de EPT los valores obtenidos en el mes de enero del río Chontabamba fue: (78.20% y 85.80%) indicando que la calidad del agua fue: "muy buena", ya que se cuantificaron 46 y 101 (Ephemeroptera), 67 y 54 (Plecoptera), 124 y 105 (Trichoptera); Quebrada Esperanza fue: (4.10% y 4.20%) indicando que la calidad del agua fue: "mala", ya que se cuantificaron 0 y 4 (Ephemeroptera), 0 (Plecoptera),8 y 2 (Trichoptera); río Llamaquizu fue: (22.60%) indicando que la calidad del agua fue: "mala", ya que se cuantificaron 20 (Ephemeroptera), 5 (Plecoptera) y 13 (Trichoptera) y el río Huancabamba fue (48.70%) indicando que la calidad del agua fue: "regular", ya que se cuantificaron 122 (Ephemeroptera), 6 (Plecoptera) y 38 (Trichoptera).

Tabla 14: Calidad del agua según EPT - enero

EPT – Enero						
Orden	CHT1	CHT2	ESP1	ESP2	LLQ1	НСВ1
Ephemeroptera	46	101	0	4	20	122
Plecoptera	67	54	0	0	5	6
Trichoptera	124	105	8	2	13	38
TOTAL	78.20%	85.80%	4.10%	4.20%	22.60%	48.70%
Calidad del agua	Muy buena	Muy buena	Mala	Mala	Mala	Regular

4.2. Discusión de resultados

En el caso del río Jipijapa, se identificaron puntos de mayor impacto por descargas de aguas residuales en el área céntrica del río, lo que permitió determinar cuál tiene mayor influencia en la calidad biológica. Esta metodología fue crucial para establecer un paralelismo con los ríos y quebradas del distrito de Oxapampa. En nuestro estudio, los valores obtenidos del índice BMWP/col para el río Chontabamba en noviembre fueron de 87 y 90, indicando una calidad de agua "Aceptable". Estos valores son indicativos de la presencia de ciertas familias de macroinvertebrados que son sensibles a la contaminación, y su presencia o ausencia puede ser un indicador confiable de la calidad del agua. Al comparar con los estudios ecuatorianos, es evidente que la metodología de muestreo y la identificación de macroinvertebrados a nivel de familia son consistentes y comparables. Sin embargo, es importante destacar que en la investigación del río Santa Rosa, las muestras se tomaron solo una vez por cada mes durante cuatro meses en época de verano. En nuestro estudio, se realizó un muestreo durante tres meses consecutivos, lo que nos proporciona una visión más amplia y detallada de la variabilidad temporal en la calidad del agua. Los parámetros físicos y químicos, como el pH, la conductividad eléctrica, los sólidos totales, el oxígeno disuelto y la temperatura, mostraron relaciones significativas con la presencia de macroinvertebrados en nuestros lugares de muestreo. Por ejemplo, el potencial de hidrógeno (pH) mostró una dependencia del 17.69% con la presencia de macroinvertebrados medidos con el índice BMWP/col. Estos resultados son coherentes con la literatura existente, donde se ha demostrado que los macroinvertebrados son sensibles a cambios en estos parámetros.

Al comparar los hallazgos con investigaciones anteriores, como el estudio del río Pachanlica perteneciente a la provincia de Tungurahua (21), se observan similitudes notables. En dicho estudio, se realizaron análisis comparativos en tres puntos de muestreo del río Pachanlica, considerando la actividad antropogénica y la afectación hídrica. Al igual que en nuestra investigación, se emplearon los índices BMWP/col y EPT para identificar macroinvertebrados a nivel de orden y familia. Los resultados obtenidos en ambos estudios muestran coherencia en cuanto a la calidad del agua y la presencia de determinados macroinvertebrados.

Por otro lado, en la quebrada de Santo Tomás en Colombia (22), se evaluó la diversidad de macroinvertebrados durante un período de transición entre la temporada seca y el inicio de las lluvias. La técnica Surber fue empleada, similar a nuestra metodología, y se identificó que el orden Ephemeroptera fue el más prevalente. Este hallazgo es particularmente relevante, ya que, como se

mencionó en el antecedente, los Ephemeroptera son buenos indicadores de calidad de agua por la alta sensibilidad que tienen a la contaminación. En nuestra investigación, se observó una presencia significativa de este orden en varios puntos de muestreo, corroborando la calidad del agua en ciertas áreas del distrito de Oxapampa.

En cuanto a la metodología de muestreo, nuestro estudio se asemeja al realizado en el río Jambelí de Ecuador. Al igual que en esa investigación, se realizó la recolección de datos en los meses de noviembre a enero, y se muestreó en diferentes zonas de los ríos. Sin embargo, una diferencia clave es que, en nuestro estudio, los valores del índice BMWP/col variaron entre 21 y 90, mientras que el índice EPT mostró valores que oscilaban entre 0.0293 y 0.8612, dependiendo del punto y mes de muestreo. La conductividad eléctrica, otro parámetro fisicoquímico esencial, mostró una relación inversa con el número de macroinvertebrados. Este hallazgo es coherente con investigaciones previas que sugieren que un aumento en la conductividad eléctrica puede tener consecuencias adversas en el ecosistema fluvial, incluida la disminución de la biodiversidad acuática. En nuestro estudio, la conductividad eléctrica dependía en un 61.22% y 34.8% de la presencia de macroinvertebrados medidos con los índices BMWP/col y EPT, respectivamente. El oxígeno disuelto, vital para el metabolismo de los macroinvertebrados, mostró una relación cuadrática en nuestro estudio. Los macroinvertebrados prosperaron a concentraciones superiores a 5.5 mg/l, lo que respalda la importancia del oxígeno disuelto en la evaluación de la calidad del agua. Estos hallazgos son consistentes con investigaciones anteriores, como la del río Teusacá y la quebrada Andina, donde se midió el oxígeno disuelto entre otros parámetros.

En el estudio realizado en el río Cutuchi en Ecuador, se identificaron tres puntos de muestreo, similar a nuestro enfoque en Oxapampa. Los parámetros fisicoquímicos tomados in situ y ex situ en el estudio ecuatoriano reflejan la importancia de un manejo adecuado de las muestras para garantizar la validez de los resultados. En nuestro estudio, también se puso un énfasis especial en el manejo de muestras, y los valores obtenidos, como el pH que osciló entre 7.260 y 7.740 en diferentes puntos de muestreo, están dentro del rango favorable para la vida acuática, tal como se menciona en el estudio de las quebradas Naranjal y Córdova, donde se indica que los valores óptimos de pH para la vida acuática oscilan entre 6 y 7,2.

La conductividad eléctrica, que en nuestro estudio mostró valores que varían desde 0.0540 hasta 0.3140, es un parámetro que, junto con el pH, la temperatura y el oxígeno disuelto, ha demostrado ser crucial para la vida de los macroinvertebrados. Específicamente, el oxígeno disuelto, que en

nuestros puntos de muestreo varió entre 5.590 y 7.300, es esencial para la supervivencia de las especies acuáticas. Los valores inferiores a 5.0 mg/l pueden poner en peligro la vida acuática, y si estos valores se mantienen por debajo de 1-2 mg/l durante varias horas, muchas especies acuáticas podrían morir, tal como se destaca en el estudio de las quebradas Naranjal y Córdova.

En cuanto a la temperatura, que en nuestro estudio osciló entre 17.060 y 27.560, es un parámetro que influye directamente en la actividad biológica de los organismos acuáticos. Las variaciones en la temperatura pueden alterar las tasas metabólicas, hábitos alimenticios y reproductivos de los macroinvertebrados, tal como se observó en el estudio mexicano del río Cupatitzio. El uso del índice BMWP/col y EPT en nuestro estudio, al igual que en los estudios mencionados, ha demostrado ser una herramienta eficiente en la evaluación de la calidad del agua. Los valores obtenidos en nuestro estudio, como el índice BMWP/col que varió entre 21 y 90, y el índice EPT que osciló entre 0.0293 y 0.8612, reflejan la variabilidad en la calidad del agua en las estaciones de muestreo.

Es importante destacar la metodología adoptada en la presente investigación, que guarda similitud con el procedimiento de recolección de datos empleado en las lagunas de Ñahuimpuquio y Pucush Uclo (29). Al igual que en dicho estudio, se establecieron puntos de monitoreo, se hizo uso la red tipo D-net para la recolección de los macroinvertebrados y se procedió a su identificación en laboratorio. Esta metodología ha demostrado ser efectiva en estudios anteriores y, por lo tanto, se consideró adecuada para el presente estudio. Los resultados obtenidos en nuestro estudio, particularmente los valores del índice BMWP/col y EPT, reflejan la calidad del agua en sus diferentes estaciones de muestreo. Por ejemplo, en noviembre, el río Chontabamba presentó valores de 87 y 90 en el índice BMWP/col, indicando una calidad de agua "Aceptable". Estos índices, junto con los parámetros químicos y físicos, ofrecen una visión integral de la calidad del agua en la región.

Al comparar con el estudio del río Vilcanota (30) y los humedales altoandinos de Chalhuanca (31), se observa una similitud en la técnica de recolección de macroinvertebrados. La utilización de la red tipo D-net y la posterior identificación en laboratorio han sido constantes en diferentes investigaciones, lo que refuerza la validez y confiabilidad de la metodología empleada. Es relevante mencionar el estudio realizado en el río San Alberto (13), que, aunque se llevó a cabo en un periodo diferente (abril a julio del 2013), arrojó hallazgos complementarios a nuestra investigación. En dicho estudio, se identificaron macroinvertebrados bioindicadores de la calidad del agua, como

Leptophlebiidae y Perlidae, que son sensibles a la contaminación. En contraste, se encontraron macroinvertebrados como Chironomidae y Baetidae, que son tolerantes a la contaminación. Estos hallazgos son coherentes con los resultados de nuestro estudio, donde se observó la presencia de macroinvertebrados tanto sensibles como tolerantes a la contaminación en diferentes puntos de muestreo.

CONCLUSIONES

Se identificaron en los ríos y quebradas del distrito de Oxapampa los siguientes macroinvertebrados: una familia del orden Amphypoda, dos familias del orden Coleoptera, ocho familias del orden Diptera, una familia de Hemiptera, dos familias de Ephemeroptera, una familia de Lepidoptera, Megaloptera, Basommatophora, Odonata, Veneroidea, dos familias del orden Plecoptera, tres familias del orden Trichoptera y una familia de Tricalida y del orden Haplotaxia.

Se describió los parámetros físicos y químicos del agua en los ríos Chontabamba, Huancabamba, Llamaquizu y Quebrada Esperanza, dando que la temperatura mínima tuvo un valor de 17.0°C y máxima de 27.5°C, el pH mínimo tuvo un valor de 7.26 y máximo de 7.74, la conductividad eléctrica mínima presentó un valor de 0.05 uS/cm y el máximo valor de 0.21 uS/cm, los sólidos totales disueltos presentó un valor mínimo de 0.03 mg/l y máximo de 0.17 mg/l, el oxígeno disuelto presentó un valor mínimo de 5.59 mg/l y máximo de 7.30 mg/l.

Los índices BMWP/col y EPT guardan relación con el parámetro físico y químico: pH, oxígeno disuelto y temperatura, no obstante, los índices no guardan relación con la conductividad eléctrica y solidos totales disueltos.

La calidad del agua evaluado con el índice BMWP/col del río Chontabamba fue "Aceptable". La calidad del agua de la Quebrada Esperanza fue "Crítica". El río Llamaquizu fue "Dudosa" y río Huancabamba fue Dudosa" y en el mes de noviembre "Aceptable".

La calidad del agua evaluado con el índice EPT del río Chontabamba fue "Buena" y "Muy buena", la calidad del agua de la Quebrada esperanza fue "Mala", de igual manera la calidad del agua del río Llamaquizu fue "Mala" y para el río Huancabamba fue "Regular" y "Mala.

RECOMENDACIONES:

Convocar a voluntarios para realizar campañas de limpieza de los ríos y quebradas, organizadas por la Municipalidad de Oxapampa.

Realizar estudios para identificar macroinvertebrados como bioindicadores para determinar la calidad del agua de los ríos de Oxapampa, usando este estudio como línea base, para futuras investigaciones, ya que es un método confiable y económico.

Generar más conciencia ambiental en los habitantes del distrito de Oxapampa mediante la realización de campañas educativas, actividades prácticas o teóricas que faciliten a los pobladores el comprender y reflexionar acerca de los temas como la conservación de los ecosistemas, manejo adecuado de residuos sólidos y protección del recurso, incluyendo varias actividades teóricas o prácticas, para que facilite a la gente el aprender, comprender y reflexionar.

REFERENCIAS BIBLIOGRÁFICAS

- 1. BIBLIOTECA DEL CONGRESO NACIONAL DE CHILE /BCN. Calidad del Agua. Departamento de Estudios, Extensión y Publicaciones. 16 noviembre 2016. P. 1–11.
- 2. ESCOBAR, A. and MONTOYA, Y. Los macroinvertebrados acuáticos y la calidad biológica del agua en una quebrada andina, Antioquia-Colombia. *Politécnica*. 16 May 2019. Vol. 15, p. 65–81.
- 3. AQUINO, P. Calidad del Agua en el Perú. DAR. Lima, 2017.
- 4. POLO, José., MORA, Gustavo. and CASTILLO, Heraclio. Calidad del agua usando macroinvertebrados en el río temporal Llantén, Si8mbal, La Libertad Perú. *REBIOL*. June 2022. No. 2313–3171.
- 5. HERNÁN, Johan., ROMERO and CASTELLANOS, Lizet. Macroinvertebrados bioindicadores de la calidad de agua en sistemas hídricos artificiales del departamento de Boyacá, Colombia. *ResearchGate*. August 2020. Vol. 15n1a3.
- 6. BRACK, A. and MENDIOLA, C. La calidad del agua y la contaminación de las aguas superficiales. Lima, 2006.
- 7. AQUAE. Principales causas y consecuencias de la contaminación en el agua. 22 September 2021.
- 8. PURIHUAMÁN, Celso and SÁNCHEZ, Eberth. Comunidades de macroinvertebrados bentónicos como bioindicador de calidad de agua en un sector del rio Chotano, Perú. *Tecnología de Costo Rica*. September 2022.
- 9. RUIZ, Esther. Análisis fisicoquímico y microbiológico de la calidad del agua para consumo humano del Centro Poblado de Buena Vista, Distrito De Pozuzo, Provincia De Oxapampa Perú, 2021. Oxapampa: Universidad Nacional Daniel Alcides Carrión, 2022.
- 10. INEI. Estadísticas Ambientales abril 2022. Perú, 2022.
- 11. MUNICIPALIDAD OXAPAMPA. Programa Municipal de educación cultura y ciudadanía ambiental del distrito de Oxapampa 2017-2022. Oxapampa, 2017.

- 12. RUEDA, F. and ARBOLEDA, W. La calidad del agua de los acueductos de las áreas urbanas del departamento del meta, Colombia. *Investigaciones ANDINA*. 2017. Vol. 19, no. 0124–8146, p. 11–30.
- 13. SALCEDO, S. and ARTICA, L. Macroinvertebrados bentónicos como indicadores de la calidad de agua en la microcuenca San Alberto, Oxapampa, Perú. *Concytec*. 2013.
- 14. EUCEDA, M. Los Macroinvertebrados y su Importancia en los Cuerpos de Agua. *Honduras Neotropical*. 16 March 2021.
- 15. ANA. Política y estrategia Nacional de Recursos Hídricos. Perú, 2015.
- 16. LOZANO, L. La bioindicación de la calidad del agua: importancia de los macroinvertebrados en la cuenca alta del río Juan Amarillo, cerros orientales de Bogotá. *Redalyc*. diciembre 2005. No. 1692–3375, p. 5–11.
- 17. CARRERA, C. and FIERRO, K. Los macroinvertebrados acuáticos como indicadores de la calidad del agua. Quito: Ecociencia, 2001.
- 18. ALBA, J. Macroinvertebrados acuáticos y calidad de las aguas de los ríos. *ResearchGate*. 1996. Vol. 2, no: 84-7840-262-4.
- 19. OSEJOS, M. and MERINO, C. Macroinvertebrados como bioindicadores de la calidad del agua del arte céntrica del rio Jipijapa-Ecuador. 4 octubre 2020. No. 2588–073X, p. 454–467.
- 20. OLLAGUE, G. c. Cuenca: Evaluación de la calidad de agua en la reserva municipal de la microcuenca alta del río Santa Rosa mediante método de macroinvertebrados bentónicos, 2021.
- 21. ANTE, D. and PILATASIG, G. "Determinación de la calidad del agua por bioindicadores (macroinvertebrados) e índices ept, bmwp/col, abi y shannon— weaver del río pachanlica, provincia de Tungurahua, 2020.". Latacunga: Universidad Técnica de Cotopaxi, 2020.
- 22. MURILLO. S, MENDOZA. A, RESTREPO. E. and RODRÍGUEZ. M. Utilización de macroinvertebrados acuáticos como herramienta para determinar la calidad del agua en la quebrada Santo Tomás, municipio de Pensilvania, Colombia. *Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales*. Julio 2018. Vol. 42.

- 23. COMUNITAT VALENCIANA. La calidad del agua. Valeciana, 2021.
- 24. LOPEZ, S. and HUERTAS, D. Macroinvertebrados acuáticos como indicadores de calidad del agua del río Teusacá (Cundinamarca, Colombia). *Scielo*. diciembre 2019. Vol. 37, no. 2145–9371.
- 25. PILAGUANO, K. Determinación de la calidad del agua del río Jambelí, con bioindicadores (macroinvertebrados) en la parroquia el Chaupí Cantón Mejía periodo 2019-2020. Latacunga: Universidad Técnica de Cotopaxi Facultad de Ciencias Agropecuarias y Recursos Naturales, 2020.
- 26. GALLO, O. and QUINALUISA, L. Determinación de la calidad del agua mediante indicadores biológicos y fisicoquímicos en el río cutuchi, cantón Latacunga, provincia CotopaxI. Quito: Universidad Politécnica Salesiana, 2023.
- 27. GUDIÑO SOSA, Luis Fernando. https://tesis.ipn.mx/bitstream/handle/123456789/27196/Tesis%20Luis%20F.%20Gudi%c3%b1o%20Sosa%202018.pdf?sequence=1&isAllowed=y. México: Instituto Politécnico Nacional, 2018.
- 28. MINCHOLA, G. Estimación de la calidad del agua mediante variables fisicoquímicas y macroinvertebrados en las quebradas Naranjal y Córdova Tingo María. Tingo María: Universidad Nacional Agraria de la Selva, 2019.
- 29. HUAMAN, L. Diversidad de macroinvertebrados indicadores de calidad de agua en las lagunas de Pucush Uclo y Ñahuimpuquio provincia de Chupaca. Huancayo: UNCP, 2019.
- 30. QUISPE, V. and PÉREZ, J. Evaluación de la calidad de agua del rio Vilcanota utilizando macroinvertebrados Cusco. Juliaca: Universidad Peruana Unión, 2022.
- 31. QUISPE, M. and VILLASANTE, J. Diversity of aquatic macroinvertebrates and water quality of the High Andean wetlands of Chalhuanca, Arequipa-Peru. *Biodiversity Journal*. 30 June 2021. Vol. 12, p. 517–528.
- 32. GONZÁLES, C., VALLARINO, A. and PÉREZ, J. *Bioindicadores: guardianes de nuestro futuro ambiental*. 1. México, D.F.: Instituto Nacional de Ecología y Cambio Climático, 2014.
- 33. SOCIEDAD CIENTÍFICA MEXICANA DE ECOLOGÍA. *IV Congreso Mexicano de Ecología*. Villahermosa, 2013.

- 34. ROLDÁN, G. *Guía para el estudio de los macroinvertebrados acuáticos del Departamento de Antioquia*. 1000. Bogotá: Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Centro de Investigaciones, 2003.
- 35. MAUAD, M. Comparación y aplicabilidad de índices bióticos para evaluar calidad de aguas en ambientes lóticos del Parque Nacional Nahuel Huapi. Universidad Nacional de la Plata, 2013.
- 36. VARGAS, Z. La investigación aplicada: una forma de conocer las realidades con evidencia científica. *redalyc.org*. 2009. Vol. 33, no. 0379–7082.
- 37. UNIVERSIDAD POLITÉCNICA DE MADRID. *Competencias Genéricas*. Madrid, [no date].
- 38. SCRIBD. Los métodos específicos. October 2009.
- 39. SAMPIERI, H. Metodología de la Investigación. 2. México, 1997.
- 40. SAMPIERI, H. Metodología de la investigación. 6. 2014.
- 41. Mapa Climático del Perú. Perú, 2020.
- 42. SAJAMÍ, J. Distribución espaciotemporal de ephemeroptera, plecoptera, trichoptera y coleoptera (insecta) en una quebrada de primer orden, bosque montano, Junín, Perú. Lima: Universidad Nacional Mayor de San Marcos, 2015.
- 43. SPRINGER, M. Capítulo 7 Trichoptera. *SciELO*. diciembre 2010. Vol. 58, no. ISSN 0034-7744.
- 44. GUTIÉRREZ, E. Capítulo 6 Plecópteros. SciELO. diciembre 2010. Vol. 58.
- 45. HANSON, P., SPRINGER, M. and RAMÍREZ, A. Capítulo 1 Introducción a los grupos de macroinvertebrados acuáticos. *SciELO*. diciembre 2010. Vol. 58, no. ISSN 0034-7744.
- 46. YÁÑEZ, P. Principios fundamentales en torno a la calidad del agua, el uso de bioindicadores acuáticos y la restauración ecológica fluvial en Ecuador. *La Granja*. 2018. Vol. 27, no. ISSN: 1390-3799.

47. HERNÁN, J., MARTÍNEZ, L. and CASTELLANOS, L. Macroinvertebrados bioindicadores de calidad de agua en sistemas hídricos artificiales del Departamento de Boyacá, Colombia. *Revista Producción*. 2020. Vol. 15, no. 10.22507.

ANEXO 01. Matriz de consistencia

TITULO: "EVALUACIÓN DE CALIDAD DE AGUA DE LOS RÍOS Y QUEBRADAS DEL DISTRITO DE OXAPAMPA A TRAVÉS DE MACROINVERTEBRADOS"

PROBLEMA	OBJETIVO	HIPÓTESIS	VARIABLES	INDICADORES
PROBLEMA GENERAL	OBJETIVO GENERAL	HIPÓTESIS GENERAL	V. DEPENDIENTES	1. Etapa de campo
según los índices BMWP/col	mediante el índice BMWP/col		Calidad del agua	1.1. Seleccionar el sitio de muestreo
	del Distrito de Oxapampa 2022	Esperanza no está contaminada. H1: El agua de los ríos Chontabamba, Huancabamba, Llamaquizu y Quebrada Esperanza está contaminada.	V. INDEPENDIENTES Macroinvertebrados	1.2. Muestreo de macroinvertebrados acuáticos
DD ODLEMAC	OBJETIVOS ESPECÍFICOS		11441011110111400114400	13. Muestreo de agua con multiparámetro
PROBLEMAS ESPECÍFICOS	A. Identificar los macroinvertebrados			2 [4 114.
A. ¿Qué macroinvertebrados	acuáticos presentes en los ríos Chontabamba,			2. Etapa de gabinete

	acuáticos están	Huancabamba,	2.1. Identificación de
	presentes en los ríos	Llamaquizu y	macroinvertebrados
	Chontabamba,	Quebrada Esperanza.	
	Huancabamba,	B. Describir los	2.2. Análisis de datos.
	Llamaquizu y	parámetros físicos y	2.3. Interpretación de
	Quebrada	químicos del agua en	resultados
	Esperanza?	los ríos Chontabamba,	
B.	¿Cuáles son los	Huancabamba,	
	parámetros físicos y	Llamaquizu y	
	químicos del agua en	Quebrada Esperanza.	
	los ríos	C. Evaluar la relación	
	Chontabamba,	entre los índices	
	Huancabamba,	BMWP/col y EPT con	
	Llamaquizu y	los parámetros físicos	
	Quebrada	y químicos de los ríos	
	Esperanza?	Chontabamba,	
C.	¿Cuál es la relación	Huancabamba,	
	entre los índices	Llamaquizu y	
	BMWP/col y EPT	Quebrada Esperanza.	
	con los parámetros		
	físicos y químicos de		
	los Chontabamba,		

Huancabamba,

Llamaquizu

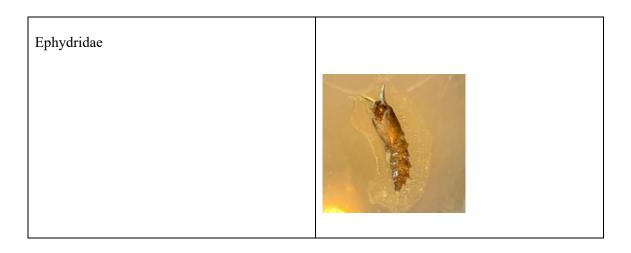
У

Quebrada

Esperanza?

ANEXO 02. Macroinvertebrados de los ríos obtenidos en los meses de noviembre, diciembre 2022 y enero 2023.

Familias	Figura
Baetidae	
Leptoceridae	
Chironomidae	
Gripopterygidae	


Hyalleidae	
Leptohyphidae	
Hydrospychidae	
Elmidae	

Xiphocentronidae	
Physidae	
Limoniidae	
	THE RESERVE TO SERVE
Tipulidae	

Corylidae	
Perlidae	
Dolichopodidae	
Simulidae	

Calopterygidae	
Ceratopogonidae	
Vellidae	
Planariidae	

Tubificidae	
Muscidae	
Noteridae	
Glossosamatidae	

ANEXO 03. Materiales y equipos utilizados en la caracterización de parámetros fisicoquímicos y en la recolección e identificación de macroinvertebrados.

Materiales	Evidencia
Multiparametro – HANNA	
Oxímetro - HANNA	B CONTROL OF THE PARTY OF THE P
GPS	

Red tipo D	
Tamiz de 500 micras	
Cinta métrica de 50 m	
Alcohol	

Agua destilada	
Bolsas ziploc	
Botas para agua	
Bandejas	

Estereoscopio	AVISO MATERIAL TABLE AND T
Cubre objetos	
Porta objetos	
Placas petri	

Pinzas de punta fina

ANEXO 04. Medición de largo, ancho y profundidad de los ríos

ANEXO 05. Medición de los parámetros físicos y químicos

ANEXO 06. Recolección de los macroinvertebrados con la red tipo-d

ANEXO 07. Tamizaje de los macroinvertebrados recolectados

ANEXO 08. Muestras de macroinvertebrados

ANEXO 09. Conteo de macroinvertebrados

ANEXO 10. Identificación de macroinvertebrados

Anexo 11. Informe de mantenimiento del equipo oxímetro

Importación, Venta, Fabricación, Mantenimiento, Calibración y Certificación de Equipos de Laboratorio

INFORME DE MANTENIMIENTO E021-0306

1.REFERENCIA:

Expediente : 212305-2021
Presupuesto : 018846-2021
N° de OT : 002501-2021
Fecha de emisión : 2021-12-20
Página : 1 de 4

2. SOLICITANTE : LUIS CASTILLO ROQUE.

Dirección : Mz G Lt 14 PRADERAS DEL NARANJAL SMP.

3.DESCRIPCIÓN DEL EQUIPO

OXÎMETRO

Marca : HANNA INSTRUMENTS

Modelo : HI98193 N° de serie : 04190041101

4. ESPECIFICACIONES TÉCNICAS DEL EQUIPO:

Equipo digital usado para la medición de oxigeno disuelto.

Rango : 0.0 a 600.0% O2

: 0.00 a 50.00 mg/L O₂ : -20.0 a 120.0 °C

Resolución : 0.1 % O1

: 0.01 mg/L Oz : 0.1 °C.

Alimentación : 3 baterias AAA

5.LUGAR Y FECHA DE MANTENIMIENTO:

Área de Electrónica, Óptica y Balanzas de RELES S.R.L. / 2021-12-17

6.CONDICIONES INICIALES DEL EQUIPO:

- El equipo se encontró funcionando.

7.TRABAJOS REALIZADOS:

Se realizó lo siguiente:

- Verificación inicial de funciones.
- Desmontaje del equipo.
- Revisión y limpieza del equipo (interna y externa).
- Verificación del sistema eléctrico (incluidos cables de conexión y terminales).
- Limpieza de contactos.
- Montaje del equipo.
- Verificación de lecturas en medio ambiente.
- Prueba de buen funcionamiento.
- Informe técnico.

R-MAN-01.03 Rev.00 2019-03-01

Página I de 4

8. TRABAJOS ADICIONALES AL PRESUPUESTO:

-Ninguno.

9. CONDICIONES FINALES DEL EQUIPO:

- El equipo quedó funcionando.
- Se obtuvieron los siguientes datos de verificación:

Lectura	Patrón	Lectura Equipo	Temperatura
Nº 1	Ambiente	160.9% OD	23.5°C

10.RECOMENDACIONES:

- Se recomienda realizar el cambio de la membrana y la solución interna.
- · No jalar ni doblar el cable de la sonda.
- Evite exponer al instrumento a riesgos de impacto.
- Se adjuntan recomendaciones adicionales.

11.COMENTARIOS:

- Ninguno.

12.OBSERVACIONES:

- No se realizó el ajuste del equipo al 100 % de saturación ya que no realizo la renovación de la membrana.
- Se colocó una etiqueta autoadhesiva con la indicación de la fecha de servicio y la firma del técnico responsable.

- Próximo servicio recomendado : Diciembre 2022 - Tiempo de garantia : Junio 2022

13. TÉCNICO RESPONSABLE : JOSÉ MIRANDA JIMENEZ.

Documento revisado por:

Aprobado por:

Téchico Responsable RELES S.R.L. Giomar Martinez G. Tecnico Responsable RELES S.R.L.

R-MAN-01.03 Rev.00 2019-03-01

Página 2 de 4

IMÁGENES ANEXAS

ANEXO 12. Informe de mantenimiento del equipo multiparámetro

Importación, Venta, Fabricación, Mantenimiento, Calibración y Certificación de Equipos de Laboratorio

INFORME DE MANTENIMIENTO E021-0307

```
1.REFERENCIA:
```

Expediente : 212305-2021
Presupuesto : 018846-2021
N° de OT : 002502-2021
Pecha de emisión : 2021-12-20
Página : 1 de 5

2. SOLICITANTE : LUIS CASTILLO ROQUE.

Dirección : Mz G Lt 14 PRADERAS DEL NARANJAL SMP.

3.DESCRIPCIÓN DEL EQUIPO:

MULTIPARAMETRO PH/ CONDUCTIVIDAD

Marca : HANNA INSTRUMENTS
Modelo : HI 991301
Serie : F0053359

4. ESPECIFICACIONES TÉCNICAS DEL EQUIPO:

Equipo medidor de acidez y alcalinidad en pH/ conductividad eléctrica. Rango : -2.00 a 16.00 Ph

: +/-825mV

: 0.00uS a 20.00 mS/cm. : 0.00 a 10.00 ppt(g/L). : -5°C a 105°C.

Resolution : 0.01/0.1 pH. : 1 mV. : 0.01mS/cm. : 0.01/ ppt(g/L). : 0.1°C.

Alimentación : 3 pilas AAA 1.5 V.

5.LUGAR Y FECHA DE MANTENIMIENTO:

Área de Electrónica, Óptica y Balanzas de RELES S.R.L. /2021-12-17

6.CONDICIONES INICIALES DEL EQUIPO:

- El equipo se encontró funcionando.

7. TRABAJOS REALIZADOS:

Se realizó lo siguiente:

- Verificación inicial de funciones.
- Desmontaje del equipo.
- Revisión y limpieza del equipo (interna y externa).
- Limpieza y revisión de la tarjeta electrónica.
- Verificación de soldaduras frias de la tarjeta electrónica.
- Montaje del equipo.
- Verificación de eficiencia del electrodo (en mV).
- Verificación de eficiencia de la sonda de conductividad.
- Ajuste del equipo con buffers patrôn.
- Prueba de buen funcionamiento e informe técnico.

8. TRABAJOS ADICIONALES AL PRESUPUESTO

- Ninguno.

R-MAN-01.03 Rev.00 2019-03-01

Pigina I de 5

Jr. Pomabamba Nº 774 - Breña Teif: 4246152 / 3301720 / 6523200 Fax: 6523213 (102) Ventas: (104) ventas@reles.com.pe www.reles.com.pe

Importación, Venta, Fabricación, Mantenimiento, Calibración y Certificación de Equipos de Laboratorio

9. CONDICIONES FINALES DEL EQUIPO:

 El equipo quedó funcionando, obteniêndose los siguientes datos de verificación;

VERIFICACIÓN	DE CONDUCTI	VIDAD
PATRÓN	LECTURA	TEMPERATURA
12880 uS/cm @ 25°C	12.88 mS/cm	23.8 °C
1413 uS/cm @ 25°C	1.44 mS/cm	24.1 °C

- Se adjuntan datos de verificación de pH.

10.RECOMENDACIONES:

- Evite jalar o hacer tensión en los cables de las sondas.
- Evite derramar líquidos sobre la unidad.
- Se adjuntan recomendaciones adicionales.

11.COMENTARIOS:

Sonda multiparametrica HANNA

Modelo: HI 12883 Serie: 26251n

12.OBSERVACIONES:

 Se colocó una etiqueta autoadhesiva con la indicación de la fecha de servicio y la firma del técnico responsable.

- Próximo servicio recomendado : Diciembre 2022 - Tiempo de garantia : Junio 2022

13. TÉCNICO RESPONSABLE : JOSÉ MIRANDA JIMENEZ.

Documento revisado por:

Aprobado por:

José Mirenda J. Técnico Responsable RELES S.R.L. Giomar Martinez G.
Techico Responsable
RELES S.R.L.

IMAGENES DE VERIFICACION

Buffer 4.01 pH

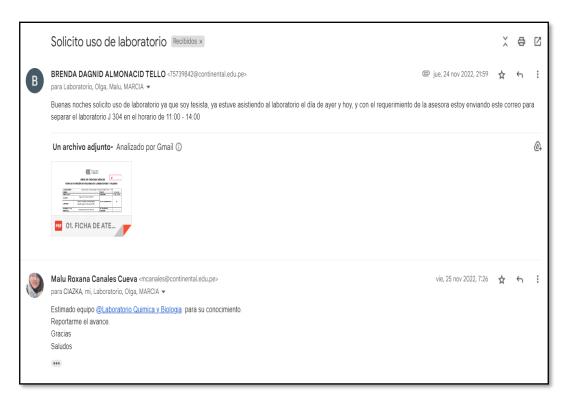
Buffer 7.01 pH

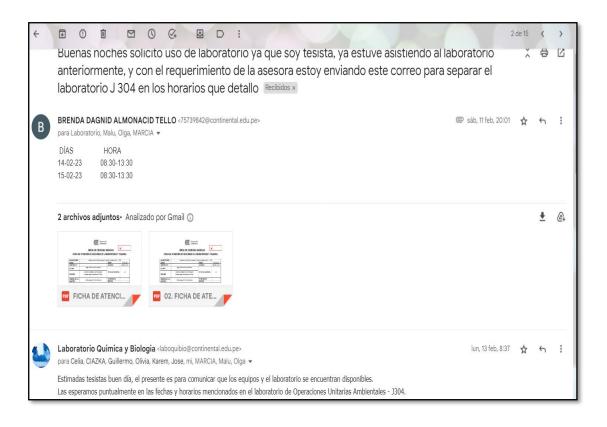
Buffer 10.01 pH

Buffer 1413 uS

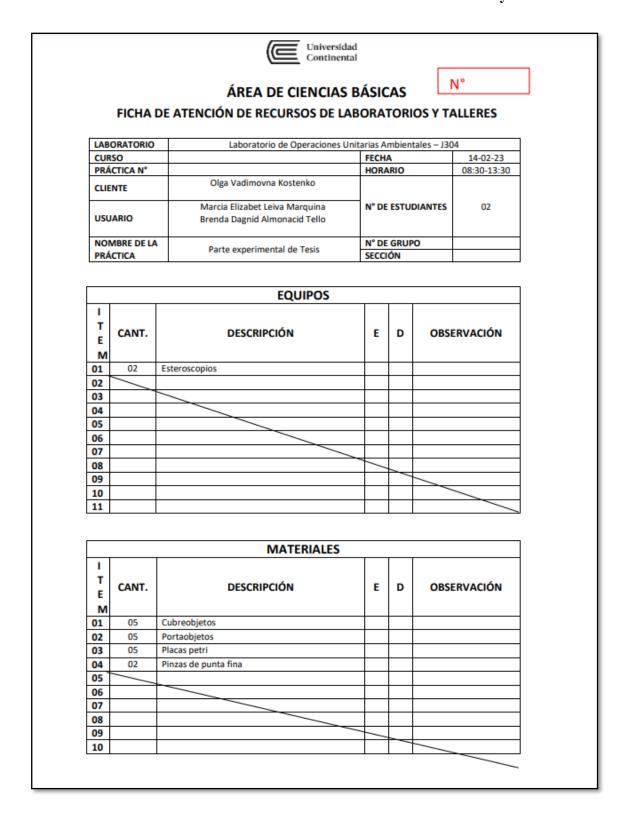
Buffer 12.88 mS

FOTOS ANEXAS




R-MAN-01.03 Rev.00 2019-03-01

Página 4 de 5


ANEXO 13 : Capturas de pantalla de las solicitudes de uso de laboratorio quimico

ANEXO 14: Ficha de atencion de recursos de laboratorios y talleres

11		Contine	encar		
		<u>I</u>			
		REACTIVOS			
T					
T E N	CANT.	DESCRIPCIÓN	E	D	OBSERVACIÓN
01	<u> </u>	+		1	
02				1	
03					
04					
05				+	
06 07	-	+		+	
08	+	+		+	
09		+		+	
10					
T	CANT.	DESCRIPCIÓN	E	D	OBSERVACIÓN
E M					
)1	01	Cofia			
02	01	Par de guantes			
ו כר	01	Mascarilla			
			·		
ОС		AS DURANTE LAS PRÁCTICAS	Firma:		
Ate	ndido por:				
Ate Hor	ndido por:	MADA ()			

ANEXO 15. Datos para hallar el caudal

				1r	a SALIDA	4								2da SAL	IDA								3ra SAL	.IDA			
		PUNTO	1 - CHT 1			٧	C	OORDENADA	SALTURA			PUNTO	1 - CHT 1			٧	:OORDENADA	ALTURA			PUNTO	1 - CHT 1			٧ ;	OORDENADA	V ALTUR
- 1	NCHO (m	CY	MEDIO	S¥		5.55		454815	1759		ANCHO	CY	MEDIO	S¥		5.30	454815	1759		ANCHO	CV	MEDIO	S¥		5.10	454815	1759
	25.00	35.0	35.00	14.00		6.00		8828864			24.6	27.00	30.00	10.00		4.70	8828864			27	29.00	32.00	15.00		4.15	8828864	
	25.10	27.00	34.00	12.00		6.10					26	22.00	28.00	12.00		4.60				26.70	23.00	30.00	16.00		4.90		
	25.20	28.00	30.00	16.00		5.45		CAUDAL			25.3	18.00	25.00	10.00		4.50	CAUDAL			25.55	23.00	28.00	14.00		6.10	CAUDAL	
	25.10	19.00	26.00	28.00		5.56		8.5			25.9	27.00	27.00	13		4.55	9.19			27.5	22.00	34.00	15		5.25	10.37	
	25.80	16.00	33.00	5.00	J			9.19	9.35		26.5	30.00	30.00	13.00]					29.1	24.00	33.00	16.00	23.60			
PROM	25.24	25.00	31.60	15.00	23.87			10.37		PROM	25.66	24.80	28.00	11.60	**	4.73			PROM	27.17	24.20	31.40	15.20	, ,	5.10		
	1110110		2 - CHT 2	OII.		٧		454000			HOUG (2 - CHT 2	AII.		¥	454992	4000		LUOUO /		2 - CHT 2	OII.	-	٧	454992	4000
	ANCHO	_	MEDIO			8.6		454992	4000	,	NCHO (m		MEDIO	S¥		7.52	8829347	1800		ANCHO (m		MEDIO	SV	-	6.5	8829347	1800
	23.5	11	42	8		8.52		8829347	1800		23.5	11.2	82	9.5		8.61	CAUDAI			23.8	12	80	10	-	6.02 7.16	CAUDAI	
	21.7	29	55 54	6		7.69 8.04		CAUDAL			23.1	9.3	80	11.6		7.96 7.78	CAUDAL			22.33	14	83	12.5	-	6.97	CAUDAL 11.19	
	32.7	11	53	10 5		7.23		6.34			32.7	6.2	82	7.5		7.86		1.1		32.9	8	79	9	-	5.84	11.13	-
	23.71	10.2	49	9		8.016		8.87	8.80		23.71	8.6	81	8		7.946	8.87	LI		24	9	81	11	1	6,498		
PROM		14.64	50.6	7.6	24.28	0.010		11.19	0.00	DDOM	24.94	9.02	81.4	9.32	22	1.010	0.01		DDO	25.33	10.8	81.2		34.1	0.730		
11101-1	27.07		3 - ESP 1	1.0	21.20	٧		ILIV		111014	27.07		3 - ESP 1	0.02	33	٧			11101	20.00		3 - ESP 1	10.0	97.1	٧		
	ANCHO		MEDIO	S¥		6.66		455686	1819		NCHO (m		MEDIO	S¥		6.85	455686	1819		ANCHO (m		MEDIO	S¥		8.00	455686	1819
	6.50	5.00	37.00	75.00		5.82		8829602			8.00	11.00	35.00	38.00		6.14	8829602	WW.		11.36	11.00	36.00	36.00		8.15	8829602	1010
	7.40	25.00	70.00	57.00		5.07					7.83	40.00	73.00	14.00		7.80				11.00	20.00	31.00	11.00		7.43		
	6.80	48.00	38.00	51.00		6.34		CAUDAL			7.82	10.00	34.00	13.00		6.19	CAUDAL			8.47	55.00	43.00	12.00		7.89	CAUDAL	
	7.00	25.00	15.00	27.00		5.60	1.44	2.74			8.46	27.00	18.00	16.00		6.32	2.8			8.50	30.00	38.00	15.00		7.36	3.13	
	7.10	20.00	39.00	59.50		****	611	2.8	2.89		8.72	25.00	36.00	17.00		0.06	6.0			8.65	60.00	45.00	14.00		1.00	V.IV	
PROM		24.60	39.80	53.90	39.43	5.90		3.13	2.00	PROM	8.17	22.60	39.20	19.60	**	6.66			PRO	9.60	35.20	38.20	17.60	***	7.77		
11101-1	0.00		4 - ESP 2	00.00	00.10	¥		0.10		11100	V.11		4 - ESP 2	10.00		¥			11101	0.00		4 - ESP 2	11.00		٧		
	ANCHO		MEDIO	S¥		5.49		456044	1819		ANCHO	CV	MEDIO	S¥		4.8	456044	1819		ANCHO		MEDIO	S¥		3.86	456044	1819
	3.86	5.00	43.00	60.00		5.86		8829634	1013		6.5	8.00	40.00	66.00		5.8	8829634	1010		10.12	16	20	40		3.9	8829634	1010
	4.26	_	44.00	74.00		5.81		0023034			8.7		42.00	70.00			0023034			-	11.2	22	25	-	3.72	0023034	
	-	8.00	_	_				ONIDAL			_	11.00	-			5.9	ONUDAL			10.25	_	-		-		OAUDAI	
	4.18	9.00	57.00	80.00		5.46	151	CAUDAL			7.5	10.00	60.00	83.00		4.8	CAUDAL			10.33	10.5	12	26	-	4.42	CAUDAL	
	4.84	7.00	34.00	46.00		5.53	1.51	2.43			8.8	8.00	387.00	50.00		4.9	3.07			10.6	10.6	44	8	-	3.12		
	6.09	5.00	31.00	29.00				3.07	3.98		8	6.00	33.00	31.00						10.67	8	8	13				
PROM	4.646	6.80	41.80	57.80	35.47			6.43		PROM	7.9	30.4	31.6	21.4	28	5.24			PROM	10.394	26.6	31.6	24.8	27.7		6.43	2.23
			5 - LLQ1			¥							5 - LLQ 1			¥						5 - LLQ 1		-	٧		
	ANCHO	C¥	MEDIO	_		9.96		455423	1823		ANCHO	CV	MEDIO	S¥		6.2	455423	1823		ANCHO	CV	MEDIO	S¥	-	6	455423	1823
	20	12	30	21		6.34		8829729			18.36	25	30	26		6.13	8829729			21.1	19.6	30	27	1	6.07	8829729	
	21	14	36	18		6.55					16.53	35	26	19		5.8				19	30.2	28	29		7		
	19	15	32	20		5.53		CAUDAL			16.8	33	29	20		5.5	CAUDAL			18.7	29.2	31	20		6.8	CAUDAL	
	23	12.8	20	19		6.1		5.11			17.2	41	33	22		6.2	6.79	1.42474		20	32	30	18		6.9	7.16	130
	21	14.3	21	16				6.79	6.35		16.81	18	40	20						21	22	39	30				
PROM	20.8	13.62	27.8	18.8	20.07	6.896		7.16		PROM	17.14	30.4	31.6	21.4	28	5.966			PROM	19.96	26.6	31.6	24.8	27.7	6.554		
		PUNTO	6 - HCB 1			¥						PUNTO	6 - HCB 1			¥					PUNTO	6 - HCB 1			¥		
	ANCHO	CY	MEDIO	S¥		6.00		455382	1809		ANCHO	CV	MEDIO	S¥		7.60	455382	1809		ANCHO	CY	MEDIO	S¥		7.00	455382	1809
	25.00	1	30	31)	6.50		8829891			30.00	25.8	50	30		8.00	8829891			36.00	14.00	49.00	22.00		7.36	8829891	
	27.30	18.	44	4	1	6.80					28.00	25.6	53	35		8.10				32.00	13.28	49.00	25.00		6.43		
	28.00	2	_	49	5	6.80		CAUDAL			31.00	27		42		8.00	CAUDAL			43.00	14.51	56.00	35.00		6.00	CAUDAL	
	26.00	2				6.90	1.29	12.12			33.00	25		48		6.90	13.01	1.10		35.00	13.55	48.00	30.00		6.58	14.99	127
	25.00	29.						13.01	13.37		29.00	23.5		36						40.00	15.34	55.00	35.00				
PROM					_	6.60		14.99							_												

ANEXO 16. Datos del total de macroinvertebrados por orden

	1ra ı	noviembre	,				
Ordenes	CHT1	CHT2	HCB1	LLQ1	ESP1	ESP2	TOTAL
Amphypoda	121	0	227	490	703	1937	3478
Coleoptera	82	30	3	0	0	0	115
Diptera	128	105	178	745	23	5	1184
Emiptera	0	9	0	0	0	0	9
Ephemeroptera	156	237	51	47	26	7	524
Lepidoptera	0	0	0	0	0	3	3
Megaloptera	5	1	0	0	0	0	6
Basommatophora	7	29	335	61	135	80	647
Nematodo	0	0	0	0	0	0	0
Odonata	4	0	0	0	0	0	4
Veneroidea	0	0	2	0	0	0	2
Plecoptera	68	310	24	13	0	0	415
Trichopera	184	97	35	8	0	83	407
Tricladida	0	3	48	0	0	156	207
	755	821	903	1364	887	2271	7001
		diciembre	P				
Ordenes	CHT1	CHT2	HCB1	LLQ1	ESP1	ESP2	TOTAL
Amphypoda	9	18	106	115	47	17	312
Coleoptera	7	0	0	0	15	2	24
Diptera	94	20	95	64	121	110	504
Emiptera	0	0	0	0	0	0	0
Ephemeroptera	94	141	144	18	0	8	405
Lepidoptera	0	0	0	0	0	0	0
Megaloptera	5	1	0	0	3	0	9
Basommatophora	0	10	25	1	41	22	99
Odonata	0	5	0	6	0	0	11
Veneroidea	0	0	0	0	0	0	0
Plecoptera	71	70	6	3	0	0	150
Trichopera	120	155	28	18	9	2	332
Tricladida	0	0	0	0	0	0	0
Haplotaxida	0	5	3	0	2	2	12
	400	425	407	225	238	163	1858
		es enero					
Ordenes	CHT1	CHT2	HCB1	LLQ1	ESP1	ESP2	TOTAL
Amphypoda	6	9	59	73	52	17	216
Coleoptera	3	0	0	0	9	6	18
Diptera	50	19	78	32	82	86	347
Emiptera	0	0	0	0	0	0	0
Ephemeroptera	46	101	122	20	0	4	293
Lepidoptera	0	0	0	0	0	0	0
Megaloptera	7	2	0	0	0	0	9
Basommatophora	0	7	22	3	16	11	59
Nematodo	0	0	0	0	0	0	0
Odonata	0	4	0	7	0	0	11
Veneroidea	0	0	0	0	0	0	0
Plecoptera	67	54	6	5	0	0	132
Trichopera	124	105	38	13	8	2	290
Tricladida	0	0	11	15	28	0	54
Haplotaxida	0	2	5	0	0	16	23
TOTAL	303	303	341	168	195	142	1452

ANEXO 17. Datos del total de macroinvertebrados por familia

			1ra NOVIE	MBRE							2da DICII	EMBRE						3ra	ENERO			
		P1 -	P2-	P6 -	P5-	P3-	P4-		P1 -	P2-	P6 -	P5-	P3-	P4-		P1 -	P2-	P6 -	P5-	P3-	P4-	
	FAMILIA	CHONTAB	CHONTAB	HUANCA	LLAMAQ	QUEBRAD	QUEBRA	TOTAL	CHONTABA	CHONTAB	HUANCAB	LLAMAQU	QUEBRAD	QUEBRAD	TOTAL	CHONTABA	CHONTABA	HUANCAB	LLAMAQUIZU	QUEBRADA	QUEBRADA	TOTAL
		AMBA	AMBA 2	BAMBA	UIZU	A1	DA 2		MBA	AMBA 2	AMBA	IZU	A1	A 2		MBA	MBA 2	AMBA	LLAMAQUIZU	1	2	
	Perlidae	23	179	18	13	0	0	233	68	55	6	3	0	0	132	64	45	6	5	0	0	120
10 pts	Polythoridae																					
10 pts	Psephenidae																					
	Gripopterygidae	34	131	6	0	0	0	171	3	15	0	0	0	0	18	3	9	0	0	0	0	12
9pts		0	43	0	0	0	0	43	36	0	0	0	0	0	36	20	0	0	0	0	0	20
_	Leptoceridae	0	26	4	0	0	43	73	84	120	21	4	0	0	229	104	126	35	3	0	0	268
8 pts	Simuliidae	15	0	0	0	0	0	15														
	Vellidae	0	9	0	0	0	0	9														
	Baetidae	145	114	27	42	26	0	354	77	123	135	18	0	8	361	37	89	110	20	0	4	260
	Caenidae																					
	Calopterygidae	4	0	0	0	0	0	4	0	5	0	6	0	0	11	0	4	0	7	0	0	11
7 pts	Hyalellidae	121	0	227	490	703	1937	3478	9	18	100	115	40	17	299	6	9	59	73	52	17	216
	Hydroptilidae																					
	Leptohyphidae	11	102	0	0	0	0	113	17	18	9	0	0	0	44	0	12	12	0	0	0	24
	Planariídae	0	3	48	0	0	156	207								0	0	11	15	28	0	54
	Hydropsychidae	122	28	0	8	0	0	158	0	7	7	14	2	2	32	0	2	15	6	0	2	25
	Aeshnidae																					
6 pts	Ancylidae																					
	Corydalidae	5	1	0	0	0	0	6	5	1	0	0	0	0	6	7	2	0	0	0	0	9
	Elmidae	81	28	3	0	0	0	112	7	0	0	0	15	2	24	3	3	0	0	9	6	21
4 -4-	Noteridae	1	0	0	0	0	0	1					_			_			_	_	_	_
4 pts									13	3	0	0	0	0	16	5	0	0	0	0	0	5
	Hidracarina											_	_		_	_				_		_
	Ceratopogonidae								8	0	0	0	0	0	8	0	5	0	0	0	0	5
3 pts	Physidae Tipulidae	7	29	335	53	133	80	637	0	10	25	1	41	22	99	0	7	22	0	16	11	56
	Ostracoda	33	0	0	3	0	0	36	0	2	0	0	0	0	2	0	0	0	0	0	0	0
	Culicidae																					
	Ephidridae Ephidridae						\vdash		0	0	0	0	0	,	2	0	0	_	0	_	3	3
2pts	Chironomidae	51	104	178	716	20	-	1074	69	26	95	64	117	77	448	39	19	78	0 48	109	108	401
	Muscidae	0	0	0	716	3	5	3	0	0	95	0	2	11	13	2	0	78 0	0	2	9	13
	Tubificidae	U	U	U	U	3	U	3	0	0	3	0	2	18	23	0	2	5	0	0	16	23
1 pts	Oligochaeta								U	U	3	U		19	23	U		,	U	U	10	25
	Poligocitaeta	I		1	I	1			l l		l			I		I	I	I	l l	I	ı I	

ANEXO 18: Cuadro de los parámetros físicos y químicos

		1ra	noviem	bre						2da	diciem	bre					3	ra ener	D		
		PUN	TO 1- CI	HT 1						PUN	ITO 1- CI	HT 1					PUN	TO 1- CH	IT 1		
	рΗ	CE	ST	OD	T.	SAT			рН	CE	ST	OD	T.	SAT		рН	CE	ST	OD	T.	SAT
CHT 1.1	7.55	0.08	0.05	7.00	18.58	94.10		CHT 1.1	7.61	0.10	0.05	7.54	17.30	101.70	CHT 1.1	7.45	0.09	0.05	7.53	17.54	100.50
CHT 1.2	7.70	0.06	0.03	7.20	19.60	99.30		CHT 1.2	7.21	0.08	0.04	6.96	17.00	90.20	CHT 1.2	7.14	0.08	0.05	6.96	18.30	97.70
CHT 1.3	7.65	0.06	0.03	7.00	20.70	98.80		CHT 1.3	7.38	0.06	0.03	7.35	17.60	98.00	CHT 1.3	7.23	0.07	0.04	7.35	17.62	98.00
CHT 1.4	7.52	0.06	0.03	7.14	21.10	102.20		CHT 1.4	7.21	0.06	0.03	7.15	17.20	93.60	CHT 1.4	7.19	0.06	0.04	7.28	17.50	93.60
CHT 1.5	7.44	0.06	0.03	7.33	20.80	105.70		CHT 1.5	7.36	0.06	0.03	7.36	18.70	101.30	CHT 1.5	7.28	0.08	0.04	7.36	19.20	99.78
	7.57	0.06	0.03	7.13	20.16	100.02	21.38		7.35	0.07	0.04	7.27	17.56	96.96		7.26	0.08	0.04	7.30	18.03	97.92
			TO 2 - C								TO 2 - C							TO 2 - C			
	pН	CE	ST	OD	T.	SAT			рН	CE	ST	OD	T.	SAT		рН	CE	ST	OD	T.	SAT
CHT 2.1		0.06	0.03	7.43	23.2	106.7		CHT 2.1	7.41	0.09	0.05	7.4	18.4	100.6	CHT 2.1	7.39	0.09	0.05	7.6	17.8	98.6
CHT 2.2	7.48	0.06	0.03	7.22	21.7	106.5		CHT 2.2	7.1	0.06	0.03	7.32	17.9	99.6	CHT 2.2	7.1	0.07	0.04	7.6	16	98.8
CHT 2.3	7.41	0.06	0.03	6.52	21.7	93.5		CHT 2.3	7.38	0.05	0.03	5.69	19.7	77.9	CHT 2.3	7.38	0.09	0.03	5.4	19.8	78
CHT 2.4	7.37	0.06	0.03	7.12	22.2	103.2		CHT 2.4	7.54	0.06	0.04	7.54	18.9	101.8	 CHT 2.4	7.42	0.06	0.03	7.4	18.6	98.2
CHT 2.5		0.03	0.03	6.59	22	100.5		CHT 2.5	7.28	0.06	0.03	6.97	18.7	93.8	CHT 2.5	7.15	0.07	0.04	7	17.6	90.4
	7.462	0.054	0.03	6.976	22.6	102.1			7.342	0.065	0.036	6.984	18.72	94.74		7.288	0.0775	0.038	7	17.96	92.8
	-11	CE	TO 3 - E	_	т.	CAT			-11	_	TO 3 - E	5P 1	T·	CAT		-11		TO 3 - E		T.	CAT
ESP 1.1	pH 7.87	0.12	ST 0.07	7.33	T* 20.50	SAT 104.40		ESP 1.1	pH 7.62	0.13	ST 0.07	6.43	24.30	98.20	ESP 1.1	pH 7.65	CE 0.13	ST 0.07	OD 6.10	T* 26.90	96.10
ESP 1.1	7.44	0.12	0.07	6.90	19.20	95.10		ESP 1.1	7.62	0.13	0.07	6.01	25.40	94.70	ESP 1.1	7.71	0.13	0.07	5.40	27.50	90.80
ESP 1.3	7.13	0.12	0.07	6.77	19.00	92.70		ESP 1.3	7.65	0.12	0.07	5.85	25.10	90.60	ESP 1.3	7.79	0.13	0.07	6.81	27.70	89.80
ESP 1.4	7.01	0.12	0.07	6.87	19.10	95.40		ESP 1.4	7.58	0.12	0.06	6.09	24.9	93.60	ESP 1.4	7.65	0.12	0.07	5.90	27.70	93.60
ESP 1.5	7.07	0.12	0.07	7.35	19.00	100.10		ESP 1.5	7.63	0.12	0.07	6.02	25.30	94.10	ESP 1.5	7.69	0.13	0.07	5.80	27.80	93.10
LOI 1.0				1.00	10.00	100.10		LOI 1.0													
	7.30	0 12	0.07	7.04	19.36	97.54	19.09		7.63	0.12	0.07	6.08	25.00			7.70	0.13	0.07	6.00	27.56	
	7.30	0.12 PIIN		7.04 SP 2	19.36	97.54	19.09		7.63	0.12 PUN	0.07 TO 4 - E	6.08 SP 2	25.00	94.24		7.70	0.13 PUN	0.07 TO 4 - E	6.00 SP 2	27.56	92.68
		PUN	TO 4 - E	SP 2			19.09			PUN	TO 4 - E	SP 2		94.24			PUN'	TO 4 - E	SP 2		92.68
ESP 2.1	7.30 pH 7.29	PUN'	TO 4 - E		T [.]	SAT	19.09	ESP 2.1	7.63 pH 7.52		TO 4 - E	SP 2 OD	T [.]	94.24 SAT		7.70 pH 7.58		TO 4 - ES	SP 2 OD	T [.]	92.68 SAT
ESP 2.1 ESP 2.2	рН	PUN	TO 4 - E	SP 2 OD			19.09	ESP 2.1 ESP 2.2	рН	PUN CE	TO 4 - E	SP 2		94.24	ESP 2.1 ESP 2.2	рН	PUN'	TO 4 - E	SP 2		92.68
	pH 7.29	PUN1 CE 0.12	O 4 - E ST 0.06	SP 2 OD 6.86	T*	SAT 92.50	19.09		pH 7.52	PUN CE 0.12	TO 4 - E ST 0.07	SP 2 OD 6.23	T* 25.20	94.24 SAT 99.20	ESP 2.1	pH 7.58	PUN * CE 0.11	TO 4 - ES ST 0.08	6.20	T* 25.20	92.68 SAT 95.20
ESP 2.2	pH 7.29 7.49	PUN1 CE 0.12 0.12	O 4 - E ST 0.06 0.06	SP 2 OD 6.86 6.92	T* 18.40	SAT 92.50 94.20	19.09	ESP 2.2	pH 7.52 7.55	PUN CE 0.12 0.11	TO 4 - E ST 0.07 0.06	SP 2 OD 6.23 6.04	T* 25.20 24.10	94.24 SAT 99.20 96.30	ESP 2.1 ESP 2.2	pH 7.58 7.8	PUN* CE 0.11 0.11	TO 4 - ES ST 0.08 0.07	620 5.80	T* 25.20 24.10	92.68 SAT 95.20 99.10
ESP 2.2 ESP 2.3	pH 7.29 7.49 7.33	PUN1 CE 0.12 0.12 0.12	O 4 - E ST 0.06 0.06 0.06	SP 2 OD 6.86 6.92 6.70	T* 18.40 19.00 18.50	92.50 94.20 90.80	19.09	ESP 2.2 ESP 2.3	pH 7.52 7.55 7.60	PUN CE 0.12 0.11 0.13	TO 4 - E ST 0.07 0.06 0.07	SP 2 OD 6.23 6.04 5.87	T* 25.20 24.10 23.00	94.24 SAT 99.20 96.30 88.00	ESP 2.1 ESP 2.2 ESP 2.3	pH 7.58 7.8 7.65	PUN' CE 0.11 0.11 0.12	TO 4 - ES ST 0.08 0.07 0.07	6.20 5.80 5.40	T* 25.20 24.10 24.00	92.68 SAT 95.20 99.10 89.50
ESP 2.2 ESP 2.3 ESP 2.4	pH 7.29 7.49 7.33 7.51	PUNT CE 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	ST 0.06 0.06 0.06 0.06 0.06 0.06	SP 2 OD 6.86 6.92 6.70 6.81 6.62 6.78	T* 18.40 19.00 18.50 19.60	92.50 94.20 90.80 94.70	19.09	ESP 2.2 ESP 2.3 ESP 2.4	pH 7.52 7.55 7.60 7.53	PUN CE 0.12 0.11 0.13 0.12 0.13 0.12 0.13	TO 4 - E ST 0.07 0.06 0.07 0.06 0.08 0.08	SP 2 OD 6.23 6.04 5.87 5.68 5.96 5.96	T* 25.20 24.10 23.00 23.30	94.24 SAT 99.20 96.30 88.00 89.70	ESP 2.1 ESP 2.2 ESP 2.3 ESP 2.4	pH 7.58 7.8 7.65 7.70	PUN' CE 0.11 0.11 0.12 0.12 0.13 0.13	TO 4 - ES ST 0.08 0.07 0.07 0.08 0.09	6.20 5.80 5.40 5.35 5.21 5.59	T* 25.20 24.10 24.00 23.90	92.68 SAT 95.20 99.10 89.50 88.30
ESP 2.2 ESP 2.3 ESP 2.4	pH 7.29 7.49 7.33 7.51 7.33	PUN CE 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 PUN Construction PUN Construction PUN PUN	ST 0.06 0.06 0.06 0.06 0.06	SP 2 OD 6.86 6.92 6.70 6.81 6.62 6.78	T* 18.40 19.00 18.50 19.60 18.82	92.50 94.20 90.80 94.70 89.50 92.34	19.09	ESP 2.2 ESP 2.3 ESP 2.4	pH 7.52 7.55 7.60 7.53 7.54	PUN CE 0.12 0.11 0.13 0.12 0.13 0.12 0.13	TO 4 - E ST 0.07 0.06 0.07 0.06 0.08 0.07 TO 5 - L	SP 2 OD 6.23 6.04 5.87 5.68 5.96 5.96	T* 25.20 24.10 23.00 23.30 23.20 23.76	94.24 SAT 99.20 96.30 88.00 89.70 88.10	ESP 2.1 ESP 2.2 ESP 2.3 ESP 2.4	PH 7.58 7.8 7.65 7.70 7.80	PUN' CE 0.11 0.11 0.12 0.12 0.13 0.13	ST 0.08 0.07 0.07 0.07 0.08 0.09	6.20 5.80 5.40 5.35 5.21 5.59	T* 25.20 24.10 24.00 23.90 23.20 24.08	92.68 SAT 95.20 99.10 89.50 88.30 88.30 92.08
ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5	pH 7.29 7.49 7.33 7.51 7.33 7.39	PUNT CE 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	TO 4 - E ST 0.06 0.06 0.06 0.06 0.06 0.06 TO 5 - L ST	SP 2	T* 18.40 19.00 18.50 19.60 18.82 T*	92.50 94.20 90.80 94.70 89.50 92.34	19.09	ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5	pH 7.52 7.55 7.60 7.53 7.54 7.55	PUN CE 0.12 0.11 0.13 0.12 0.13 0.12 0.13 0.12 PUN CE	TO 4 - E ST 0.07 0.06 0.07 0.06 0.08 0.07 TO 5 - L ST	SP 2 OD 6.23 6.04 5.87 5.68 5.96 5.96 LQ 1	25.20 24.10 23.00 23.30 23.20 23.76	94.24 SAT 99.20 96.30 88.00 89.70 88.10 92.26	ESP 2.1 ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5	PH 7.58 7.8 7.65 7.70 7.80 7.74	PUN' CE 0.11 0.11 0.12 0.12 0.13 0.12 PUN CE	TO 4 - ES ST 0.08 0.07 0.07 0.08 0.09 0.08 TO 5 - LI ST	SP 2 OD 6.20 5.80 5.40 5.35 5.21 5.59 LQ 1 OD	T* 25:20 24:10 24:00 23:90 23:20 24:08	92.68 SAT 95.20 99.10 89.50 88.30 88.30 92.08
ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5	7.29 7.49 7.33 7.51 7.33 7.39 PH	PUN1 CE 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	TO 4 - E ST 0.06 0.06 0.06 0.06 0.06 0.06 TO 5 - L ST 0.19	SP 2 OD 6.86 6.92 6.70 6.81 6.62 6.78 LQ 1 OD 6.24	T* 18.40 19.00 18.50 19.60 18.60 18.82 T* 17	92.50 94.20 90.80 94.70 89.50 92.34 SAT 81.5	19.09	ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5	PH 7.52 7.55 7.60 7.53 7.54 7.55 PH 7.51	PUN CE 0.12 0.11 0.13 0.12 0.13 0.12 0.12 PUN CE 0.18	TO 4 - E ST 0.07 0.06 0.07 0.06 0.08 0.07 TO 5 - L ST 0.1	SP 2 OD 6.23 6.04 5.87 5.68 5.96 5.96 LQ 1 OD 6.58	25.20 24.10 23.00 23.30 23.20 23.76 T' 23.2	94.24 SAT 99.20 96.30 88.00 89.70 88.10 92.26 SAT 101	ESP 2.1 ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5	7.58 7.8 7.65 7.70 7.80 7.74 PH 7.65	PUN' CE 0.11 0.11 0.12 0.12 0.13 0.12 PUN CE 0.17	TO 4 - ES ST 0.08 0.07 0.07 0.08 0.09 0.08 TO 5 - Li ST 0.1	SP 2 OD 6.20 5.80 5.40 5.35 5.21 5.59 LQ 1 OD 6.52	T* 25.20 24.10 24.00 23.90 23.20 24.08 T* 23.2	92.68 SAT 95.20 99.10 89.50 88.30 88.30 92.08 SAT 103
ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5	7.29 7.49 7.33 7.51 7.33 7.39 PH 7.46 7.3	PUN1 CE 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	TO 4 - E ST 0.06 0.06 0.06 0.06 0.06 0.06 TO 5 - L ST 0.19 0.17	SP 2 OD 6.86 6.92 6.70 6.81 6.62 6.78 LQ 1 OD 6.24 6.73	T* 18.40 19.00 18.50 19.60 18.60 18.82 T* 17	92.50 94.20 90.80 94.70 89.50 92.34 SAT 81.5 87.4	19.09	ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2	7.52 7.55 7.60 7.53 7.54 7.55 PH 7.51 7.53	PUN CE 0.12 0.11 0.13 0.12 0.13 0.12 0.13 0.12 PUN CE 0.18 0.36	TO 4 - E ST 0.07 0.06 0.07 0.06 0.08 0.07 ITO 5 - L ST 0.1 0.2	SP 2 OD 6.23 6.04 5.87 5.68 5.96 5.96 LQ 1 OD 6.58 6.1	25.20 24.10 23.00 23.30 23.20 23.76 T' 23.2 20.7	94.24 SAT 99.20 96.30 88.00 89.70 88.10 92.26 SAT 101 89.8	ESP 2.1 ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5	7.58 7.8 7.85 7.70 7.80 7.74 PH 7.65 7.56	PUN CE 0.11 0.12 0.12 0.13 0.12 PUN CE 0.17 0.3	TO 4 - ES ST 0.08 0.07 0.07 0.08 0.09 0.08 TO 5 - LI ST 0.1	SP 2 OD 6,20 5,80 5,40 5,35 5,21 5,59 LQ 1 OD 6,52 6	T* 25:20 24:10 24:00 23:90 23:20 24:08 T* 23:2 23:2	92.68 SAT 95.20 99.10 89.50 88.30 88.30 92.08 SAT 103 90
ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.1 LLQ 1.2 LLQ 1.3	7.29 7.49 7.33 7.51 7.33 7.39 PH 7.46 7.3 7.28	PUN1 CE 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	TO 4 - E ST 0.06 0.06 0.06 0.06 0.06 0.06 TO 5 - L ST 0.19 0.17 0.18	SP 2 OD 6.86 6.92 6.70 6.81 6.62 6.78 LQ 1 OD 6.24 6.73 6.69	T: 18.40 19.00 18.50 19.60 18.60 18.82 T: 17 17, 2 16.9	92.50 94.20 90.80 94.70 89.50 92.34 SAT 81.5 87.4 86.5	19.09	ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.1 LLQ 1.2 LLQ 1.3	7.52 7.55 7.60 7.53 7.54 7.55 PH 7.51 7.53 7.48	PUN CE 0.12 0.11 0.13 0.12 0.13 0.12 0.18 0.18 0.36 0.26	TO 4 - E ST 0.07 0.06 0.07 0.06 0.08 0.07 TO 5 - L ST 0.1 0.2 0.14	SP 2 OD 6.23 6.04 5.87 5.68 5.96 5.96 LQ 1 OD 6.58 6.1 6.6	T' 25.20 24.10 23.00 23.30 23.20 23.76 T' 23.2 20.7 21.9	94.24 SAT 99.20 96.30 88.00 89.70 88.10 92.26 SAT 101 89.8 95.9	ESP 2.1 ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.1 LLQ 1.2 LLQ 1.3	PH 7.58 7.8 7.65 7.70 7.80 7.74 PH 7.65 7.56 7.56	PUN CE 0.11 0.12 0.12 0.13 0.12 PUN CE 0.17 0.3 0.22	TO 4 - ES ST 0.08 0.07 0.08 0.09 0.08 TO 5 - LI ST 0.1 0.16	SP 2 OD 6,20 5,80 5,40 5,35 5,21 5,59 LQ 1 OD 6,52 6 6,4	T' 25.20 24.10 24.00 23.90 23.20 24.08 T' 23.2 23 22.9	92.68 SAT 95.20 99.10 89.50 88.30 88.30 92.08 SAT 103 90 94.8
ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.4	pH 7.29 7.49 7.33 7.51 7.33 7.39 pH 7.46 7.3 7.28 7.25	PUN1 CE 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	TO 4 - E ST 0.06 0.06 0.06 0.06 0.06 0.06 TO 5 - L ST 0.19 0.17 0.18 0.16	SP 2 OD 6.86 6.92 6.70 6.81 6.62 6.78 LQ 1 OD 6.24 6.73 6.69 6.55	T* 18.40 19.00 18.50 19.60 18.60 18.82 T* 17 17.2 16.9 17.1	92.50 94.20 90.80 94.70 89.50 92.34 SAT 81.5 87.4 86.5 86	19.09	ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.4	pH 7.52 7.55 7.60 7.53 7.54 7.55 pH 7.51 7.53 7.48 7.34	PUN CE 0.12 0.11 0.13 0.12 0.13 0.12 PUN CE 0.18 0.36 0.26 0.24	TO 4 - E ST 0.07 0.06 0.07 0.06 0.08 0.07 TO 5 - L ST 0.1 0.2 0.14 0.13	SP 2 OD 6.23 6.04 5.87 5.68 5.96 5.96 LQ 1 OD 6.58 6.1 6.6 6.73	T* 25.20 24.10 23.00 23.30 23.20 27.6 T* 23.2 20.7 21.9 23.1	94.24 94.24 99.20 96.30 88.00 89.70 88.10 92.26 SAT 101 89.8 95.9 104.3	ESP 2.1 ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.4	PH 7.58 7.8 7.65 7.70 7.80 7.74 PH 7.65 7.56 7.56 7.56 7.36	PUN CE 0.11 0.12 0.12 0.13 0.12 PUN CE 0.17 0.3 0.22 0.2	TO 4 - ES ST 0.08 0.07 0.07 0.08 0.09 0.08 TO 5 - LI ST 0.1 0.16 0.17	SP 2 0D 6.20 5.80 5.40 5.35 5.21 5.59 LQ 1 0D 6.52 6 6.4 6.62	T* 25.20 24.10 24.00 23.90 23.20 24.08 T* 23.2 23 22.9 22.8	92.68 SAT 95.20 99.10 89.50 88.30 88.30 92.08 SAT 103 90 94.8 105.8
ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.1 LLQ 1.2 LLQ 1.3	pH 7.29 7.49 7.33 7.51 7.33 7.39 pH 7.46 7.3 7.28 7.25 7.17	PUN1 CE 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.10 0.10 0.10 0.10 0.10 0.10 0.10	TO 4 - E ST 0.06 0.06 0.06 0.06 0.06 TO 5 - L ST 0.19 0.17 0.18 0.16 0.15	SP 2 OD 6.86 6.92 6.70 6.81 6.62 6.78 LQ 1 OD 6.24 6.73 6.69 6.55 6.44	T: 18.40 19.00 18.50 19.60 18.60 18.82 T: 17 17.2 16.9 17.1 17.1	92.50 94.20 90.80 94.70 89.50 92.34 SAT 81.5 87.4 86.5 86 83.3	19.09	ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.1 LLQ 1.2 LLQ 1.3	PH 7.52 7.55 7.60 7.53 7.54 7.55 PH 7.51 7.53 7.48 7.34 7.56	PUN CE 0.12 0.11 0.13 0.12 0.13 0.12 PUN CE 0.18 0.36 0.26 0.24 0.24	TO 4 - E ST 0.07 0.06 0.07 0.06 0.08 0.07 TO 5 - L ST 0.1 0.2 0.14 0.13 0.13	SP 2 OD 6.23 6.04 5.87 5.68 5.96 5.96 LQ 1 OD 6.58 6.1 6.6 6.73 6.4	T* 25.20 24.10 23.00 23.30 23.20 27.6 T* 23.2 20.7 21.9 23.1 22	94.24 SAT 99.20 96.30 88.00 89.70 88.10 92.26 SAT 101 89.8 95.9 104.3 93.2	ESP 2.1 ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.1 LLQ 1.2 LLQ 1.3	pH 7.58 7.8 7.65 7.70 7.80 7.74 pH 7.65 7.56 7.56 7.56 7.59	PUN CE 0.11 0.12 0.12 0.13 0.12 PUN CE 0.17 0.3 0.22 0.2 0.19	TO 4 - ES ST 0.08 0.07 0.08 0.09 0.08 TO 5 - LI ST 0.1 0.16 0.17 0.14	SP 2 OD 6.20 5.80 5.40 5.35 5.21 5.59 LQ 1 OD 6.52 6 6.4 6.62 6.3	T* 25.20 24.10 24.00 23.90 23.20 24.08 T* 23.2 23 22.9 22.8 23	92.68 SAT 95.20 99.10 89.50 88.30 88.30 92.08 SAT 103 90 94.8 105.8 96.6
ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.4	pH 7.29 7.49 7.33 7.51 7.33 7.39 pH 7.46 7.3 7.28 7.25	PUN1 CE 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.10 0.10 0.10 0.10 0.10 0.10 0.10	TO 4 - E ST 0.06 0.06 0.06 0.06 0.06 TO 5 - L ST 0.19 0.17 0.18 0.16 0.15 0.17	SP 2 OD 6.86 6.92 6.70 6.81 6.62 6.78 LQ 1 OD 6.24 6.73 6.69 6.55 6.44 6.53	T* 18.40 19.00 18.50 19.60 18.60 18.82 T* 17 17.2 16.9 17.1	92.50 94.20 90.80 94.70 89.50 92.34 SAT 81.5 87.4 86.5 86	19.09	ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.4	pH 7.52 7.55 7.60 7.53 7.54 7.55 pH 7.51 7.53 7.48 7.34	PUN CE 0.12 0.11 0.13 0.12 0.13 0.12 PUN CE 0.18 0.36 0.26 0.24 0.24 0.256	TO 4 - E ST 0.07 0.06 0.07 0.06 0.08 0.07 TO 5 - L ST 0.1 0.2 0.14 0.13 0.13 0.14	SP 2 OD 6.23 6.04 5.87 5.68 5.96 5.96 LQ 1 OD 6.58 6.1 6.6 6.73 6.4 6.482	T* 25.20 24.10 23.00 23.30 23.20 27.6 T* 23.2 20.7 21.9 23.1	94.24 94.24 99.20 96.30 88.00 89.70 88.10 92.26 SAT 101 89.8 95.9 104.3	ESP 2.1 ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.4	PH 7.58 7.8 7.65 7.70 7.80 7.74 PH 7.65 7.56 7.56 7.56 7.36	PUN CE 0.ff 0.ff 0.fg 0.fg 0.fg 0.fg 0.fg 0.fg	TO 4 - E: ST 0.08 0.07 0.08 0.09 0.08 TO 5 - L: ST 0.1 0.16 0.17 0.14 0.134	SP 2 OD 6.20 5.80 5.40 5.35 5.21 5.59 LQ 1 OD 6.52 6 6.4 6.62 6.3 6.368	T* 25.20 24.10 24.00 23.90 23.20 24.08 T* 23.2 23 22.9 22.8	92.68 SAT 95.20 99.10 89.50 88.30 88.30 92.08 SAT 103 90 94.8 105.8
ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.4	pH 7.29 7.49 7.33 7.51 7.33 7.39 pH 7.46 7.3 7.28 7.25 7.17 7.292	PUN1 CE 0.12 0.12 0.12 0.12 0.12 0.12 0.13 PUN CE 0.38 0.31 0.31 0.29 0.28 0.314 PUN1	TO 4 - E ST 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.17 0.18 0.16 0.15 0.17	SP 2 OD 6.86 6.92 6.70 6.81 6.62 6.78 LQ 1 OD 6.24 6.73 6.69 6.55 6.44 6.53 CB 1	18.40 19.00 18.50 19.60 18.60 18.82 T 17 17 17.2 16.9 17.1 17.1 17.06	92.50 94.20 90.80 94.70 89.50 92.34 SAT 81.5 87.4 86.5 86 83.3 84.94	19.09	ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.4	pH 7.52 7.55 7.60 7.53 7.54 7.55 pH 7.51 7.53 7.48 7.34 7.56 7.484	PUN CE 0.12 0.11 0.13 0.12 0.13 0.12 PUN CE 0.18 0.36 0.26 0.24 0.24 0.256 PUN	TO 4 - E ST 0.07 0.06 0.07 0.06 0.08 0.07 TO 5 - L ST 0.1 0.2 0.14 0.13 0.13 0.14 TO 6 - H	SP 2 OD 6.23 6.04 5.87 5.68 5.96 5.96 LQ 1 OD 6.58 6.1 6.6 6.73 6.4 6.482 CB 1	T* 25,20 24,10 23,00 23,30 23,20 23,76 T* 23,2 20,7 21,9 23,1 22 22,18	94.24 SAT 99.20 96.30 88.00 89.70 88.10 92.26 SAT 101 89.8 95.9 104.3 93.2 96.84	ESP 2.1 ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.4	7.58 7.8 7.65 7.70 7.80 7.74 PH 7.65 7.56 7.56 7.56 7.59 7.532	PUN CE 0.ff 0.ff 0.fg 0.fg 0.fg 0.fg 0.fg 0.fg	TO 4 - E: ST 0.08 0.07 0.08 0.09 0.08 TO 5 - L: ST 0.1 0.16 0.17 0.14 0.134 TO 6 - H:	SP 2 OD 6.20 5.80 5.40 5.35 5.21 5.59 LQ 1 OD 6.52 6 6.4 6.62 6.3 6.368 CB 1	T* 25.20 24.10 24.00 23.90 23.20 24.08 T* 23.2 23 22.9 22.8 23 22.98	92.68 SAT 95.20 99.10 89.50 88.30 88.30 92.08 SAT 103 90 94.8 105.8 96.6 98.04
ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.5	PH 7.29 7.49 7.33 7.51 7.33 7.39 PH 7.46 7.3 7.28 7.25 7.17 7.292	PUN1 CE 0.12 0.12 0.12 0.12 0.12 0.12 0.13 PUN CE 0.38 0.31 0.31 0.29 0.28 0.314 PUN1 CE	TO 4 - E ST 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.17 0.18 0.16 0.15 0.17 TO 6 - H ST	SP 2 OD 6.86 6.92 6.70 6.81 6.62 6.78 LQ 1 OD 6.24 6.73 6.69 6.55 6.44 6.53 CB 1	18.40 19.00 18.50 19.60 18.60 18.82 T 17 17.2 16.9 17.1 17.1 17.06	92.50 94.20 90.80 94.70 83.50 92.34 SAT 81.5 87.4 86.5 86 83.3 84.94	19.09	ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.4 LLQ 1.5	PH 7.52 7.55 7.60 7.53 7.54 7.55 PH 7.51 7.53 7.48 7.34 7.56 7.484 PH	PUN CE 0.12 0.11 0.13 0.12 0.13 0.12 PUN CE 0.18 0.36 0.26 0.24 0.24 0.256 PUN CE	TO 4 - E ST 0.07 0.06 0.07 0.06 0.08 0.07 TO 5 - L ST 0.1 0.2 0.14 0.13 0.14 TO 6 - H ST	SP 2	T* 25.20 24.10 23.00 23.30 23.20 23.76 T* 23.2 20.7 21.9 23.1 22 22.18	94.24 SAT 99.20 96.30 88.00 89.70 88.10 92.26 SAT 101 89.8 95.9 104.3 93.2 96.84	ESP 2.1 ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.4 LLQ 1.5	PH 7.58 7.8 7.65 7.70 7.80 7.74 PH 7.65 7.56 7.56 7.5 7.36 7.59 7.532	PUN CE 0.11 0.12 0.12 0.13 0.12 PUN CE 0.17 0.3 0.22 0.2 0.19 0.216 PUN CE	TO 4 - ES ST 0.08 0.07 0.08 0.09 0.08 TO 5 - Li ST 0.1 0.16 0.17 0.14 0.134 TO 6 - Hi ST	SP 2 OD 6,20 5,80 5,40 5,35 5,21 5,59 LQ 1 OD 6,52 6,6 6,4 6,62 6,3 6,368 CB 1 OD	T' 25.20 24.10 24.00 23.90 23.20 24.08 T' 23.2 23 22.9 22.8 23 22.98	92.68 SAT 95.20 99.10 89.50 88.30 88.30 92.08 SAT 103 90 94.8 105.8 105.6 98.04
ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.4 LLQ 1.5	PH 7.29 7.49 7.33 7.51 7.33 7.39 PH 7.46 7.3 7.28 7.25 7.17 7.292 PH 7.61	PUN1 CE 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.13 0.31 0.31 0.29 0.28 0.314 PUN1 CE 0.12	O 4 - E ST 0.06 0.06 0.06 0.06 0.06 0.06 TO 5 - L ST 0.17 0.18 0.16 0.15 0.17 TO 6 - H ST 0.01	SP 2 0D 6.86 6.92 6.70 6.81 6.62 6.78 LQ 1 0D 6.24 6.73 6.69 6.55 6.44 6.53 CB 1 0D 6.95	T* 18.40 19.00 18.50 19.60 18.60 18.82 T* 17.2 16.9 17.1 17.06 T* 28.5	92.50 94.20 90.80 94.70 89.50 92.34 SAT 815 87.4 86.5 86 83.3 84.94	19.09	ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.4 LLQ 1.5	PH 7.52 7.55 7.60 7.53 7.54 7.55 PH 7.51 7.53 7.48 7.34 7.56 7.484 PH 7.6	PUN CE 0.12 0.11 0.13 0.12 0.13 0.12 PUN CE 0.18 0.36 0.26 0.24 0.24 0.24 0.256 PUN CE 0.14	TO 4 - E ST 0.07 0.06 0.07 0.06 0.08 0.07 TO 5 - L ST 0.1 0.1 0.1 0.13 0.14 TO 6 - H ST 0.13	SP 2	T* 25.20 24.10 23.00 23.30 23.20 23.76 T* 23.2 20.7 21.9 23.1 22 22.18 T* 21.6	94.24 SAT 99.20 96.30 88.00 89.70 88.10 92.26 SAT 101 89.8 95.9 104.3 93.2 96.84	ESP 2.1 ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.4 LLQ 1.5	PH 7.58 7.8 7.85 7.70 7.80 7.74 PH 7.65 7.56 7.5 7.36 7.59 7.532 PH 7.6	PUN CE 0.11 0.12 0.12 0.13 0.12 PUN CE 0.17 0.3 0.22 0.2 0.19 0.216 PUN CE 0.11	TO 4 - ES ST 0.08 0.07 0.08 0.09 0.08 TO 5 - LI ST 0.1 0.16 0.17 0.14 0.134 TO 6 - HI ST 0.14	SP 2 OD 6,20 5,80 5,40 5,35 5,21 5,59 LQ 1 OD 6,52 6,64 6,62 6,3 6,368 CB 1 OD 6,59	T' 25.20 24.10 24.00 23.90 23.20 24.08 T' 23.2 23 22.9 22.8 23 22.98 T' 21.8	92.68 SAT 95.20 99.10 89.50 88.30 88.30 92.08 SAT 103 90 94.8 105.8 96.6 98.04
ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.4 LLQ 1.5 HCB 1.1 HCB 1.1	PH 7.29 7.49 7.33 7.51 7.33 7.39 PH 7.46 7.29 7.29 PH 7.61 7.61 7.62	PUN CE 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 CE 0.33 0.31 0.31 0.29 0.28 0.314 PUN CE 0.12 0.14	TO 4 - E ST 0.06 0.06 0.06 0.06 0.06 0.06 0.06 TO 5 - L ST 0.19 0.17 0.18 0.15 0.17 TO 6 - H ST 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	SP 2 OD 6.86 6.92 6.70 6.81 6.62 6.78 LQ 1 OD 6.24 6.73 6.69 6.55 6.54 6.53 CB 1 OD 6.95 7.24	T: 18.40 19.00 18.50 19.60 18.60 18.60 18.71 17.1 17.06	92.50 94.20 90.80 94.70 89.50 92.34 SAT 81.5 87.4 86.5 86 83.3 84.94 SAT 100.2	19.09	ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.2 LLQ 1.5 LLQ 1.4 LLQ 1.5	PH 7.52 7.55 7.80 7.53 7.54 7.55 PH 7.51 7.53 7.48 7.34 7.484 PH 7.6 7.6 7.6 7.7 7.6	PUN CE 0.12 0.11 0.13 0.12 0.13 0.12 PUN CE 0.18 0.36 0.26 0.24 0.24 0.256 PUN CE 0.14 0.06	TO 4 - E ST 0.07 0.06 0.07 0.06 0.08 0.07 TO 5 - L ST 0.1 0.2 0.14 0.13 0.13 0.14 TO 6 - H ST 0.13 0.03	SP 2 OD 6.23 6.04 5.87 5.68 5.96 LQ 1 OD 6.58 6.1 6.6 6.73 6.4 6.482 CB 1 OD 6.61 6.31	T' 25.20 24.10 23.00 23.30 23.20 23.76 T' 23.2 20.7 21.9 23.1 22 22.18 T' 21.6 22.7	94.24 94.24 99.20 96.30 88.00 89.70 88.10 92.26 SAT 101 89.8 95.9 104.3 93.2 96.84 SAT 96.6 91.6	ESP 2.1 ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.4 LLQ 1.5 HCB 1.1 HCB 1.1	pH 7.58 7.85 7.70 7.70 7.80 7.74 PH 7.85 7.56 7.56 7.59 7.532 PH 7.63 7.74	PUN CE 0.11 0.12 0.12 0.13 0.12 PUN CE 0.17 0.3 0.22 0.2 0.9 0.216 PUN CE 0.11 0.05	TO 4 - ES ST 0.08 0.07 0.07 0.08 0.09 0.08 TO 5 - L ST 0.1 0.16 0.17 0.18 0.17 0.14 0.134 TO 6 - H ST 0.14 0.04	SP 2 OD 6.20 5.80 5.40 5.55 5.21 OD 6.52 6 6.4 6.62 6.3 6.368 CB 1 OD 6.59 6.2	T' 25.20 24.10 24.00 23.90 23.20 24.08 T' 23.2 23 22.9 22.8 23 22.98 T' 21.8 23	92.68 SAT 95.20 99.10 89.50 88.30 88.30 92.08 SAT 103 94.8 105.8 96.6 98.04
ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.5 HCB 1.1 HCB 1.2 HCB 1.2 HCB 1.3	PH 7.29 7.49 7.33 7.51 7.33 7.39 PH 7.46 7.27 7.292 PH 7.61 7.62 7.32	PUN 1 CE 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	TO 4 - E ST 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.0	SP 2 OD 6.86 6.92 6.70 6.81 6.62 6.70 6.81 0D 6.24 6.73 6.69 6.55 6.44 6.53 6.55 6.44 6.53 6.59 6.55 6.44 6.53	T: 18.40 19.00 18.50 19.60 18.60 18.60 18.82 T: 17 17.2 16.9 17.1 17.06 T: 28.5 22.9 24.5	\$AT 92.50 94.20 90.80 94.70 89.50 92.34 81.5 87.4 86.5 86 83.3 84.94 \$SAT 100.2 100.8	19.09	ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.5 HCB 1.1 HCB 1.2 HCB 1.2 HCB 1.3	PH 7.52 7.55 7.80 7.53 7.54 7.55 PH 7.51 7.53 7.48 7.34 7.56 PH 7.61 7.34 7.484 PH 7.6 7.42 7.49	PUN CE 0.12 0.11 0.13 0.12 0.13 0.12 PUN CE 0.18 0.36 0.24 0.24 0.24 0.256 PUN CE 0.18	TO 4 - E ST 0.07 0.06 0.07 0.06 0.08 0.08 0.07 TO 5 - L 0.1 0.13 0.14 0.13 0.14 TO 6 - H ST 0.13 0.03 0.03	SP 2	T' 2520 24.10 23.00 23.00 23.20 23.76 T' 232 20.7 21.9 22.18 T' 21.6 22.7 33.2 22.18	94.24 SAT 99.20 96.30 88.00 88.70 88.10 92.26 SAT 101 303 95.9 104.3 95.84 SAT 96.6 91.6 1018	ESP 2.1 ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.5 HCB 1.1 HCB 1.1 HCB 1.2 HCB 1.3	PH 7.58 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.7	PUN' CE 0.11 0.11 0.12 0.12 0.13 0.12 PUN CE 0.17 0.3 0.22 0.2 0.9 0.9 0.216 PUN' CE 0.11 0.05 0.12	TO 4 - E: ST 0.08 0.07 0.07 0.08 0.07 0.08 0.09 0.09 0.08 TO 5 - Li 0.1 0.16 0.17 0.14 0.134 TO 6 - Hi ST 0.1 0.14 0.04 0.08	SP 2 OD 6.20 5.80 5.40 5.55 5.21 5.59 LQ 1 OD 6.52 6.6 6.4 6.62 6.3 6.368 CB 1 OD 6.59 6.52 6.8	T' 2520 2440 2390 2320 23.02 24.08 T' 232 229 22.98 T' 218 23 32.9 23.9 22.9 23.9 23.9 23.9 23.9 2	92.68 SAT 95.20 95.10 89.50 88.30 88.30 92.08 SAT 103 90 94.8 105.8 96.6 98.04 SAT 96.6 98.04
ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.4 LLQ 1.5 HCB 1.1 HCB 1.1 HCB 1.3 HCB 1.4	PH 7.29 7.49 7.33 7.51 7.39 PH 7.46 7.3 7.28 7.25 7.17 7.292 PH 7.61 7.62 7.32 7.73	PUNI CE 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	TO 4 - E ST 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.0	SP 2 OD 6.86 6.92 6.70 6.81 6.62 6.72 6.73 6.69 6.64 6.73 6.69 6.55 6.44 6.53 CB 1 OD 6.95 7.24 6.8 6.45	T* 18.40 19.00 18.50 19.60 18.60 18.60 18.82 T* 17 17.2 16.9 17.1 17.06 T* 28.5 22.9 24.5 23.5	\$AT 92.50 94.20 90.80 92.34 \$AT 81.5 86.5 86.83.3 84.94 \$SAT 100.2 100.3 89.55	19.09	ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 ELLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.4 LLQ 1.5 HCB 1.1 HCB 1.1 HCB 1.1 HCB 1.1	PH 7.52 7.55 7.60 7.53 7.54 7.55 PH 7.51 7.53 7.48 7.48 7.484 PH 7.61 7.784 7.785	PUN CE 0.12 0.11 0.13 0.12 0.13 0.12 PUN CE 0.18 0.36 0.24 0.24 0.256 PUN CE 0.18 0.006 0.12 0.009	TO 4 - E ST 0.07 0.06 0.07 0.06 0.08 0.07 TO 5 - L 0.1 0.13 0.14 TO 6 - H ST 0.13 0.19 0.10 0.10 0.10 0.10 0.10 0.10 0.10	SP 2	T' 25.20 24.10 23.00 23.00 23.76 T' 23.2 20.7 21.9 22.18 T' 21.6 22.7 23.30 22.30 23	94.24 SAT 99.20 98.00 88.00 88.00 88.10 92.26 SAT 101 89.8 95.9 104.3 96.84 SAT 96.8 1018 109.3	ESP 2.1 ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.4 LLQ 1.5 HCB 1.1 HCB 1.1 HCB 1.1 HCB 1.1	pH 7.58 7.8 7.85 7.70 7.80 7.74 PH 7.65 7.56 7.59 7.36 7.59 7.59 7.59 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51	PUN CE 0.11 0.11 0.12 0.12 0.12 0.13 0.12 PUN CE 0.17 0.3 0.22 0.29 0.29 0.216 PUN CE 0.11 0.05 0.12 0.05 0.12 0.08	TO 4 - E: ST 0.08 0.07 0.07 0.09 0.08 TO 5 - Li ST 0.1 0.11 0.14 0.134 TO 6 - Hi ST 0.14 0.04 0.08 0.07	SP 2	T' 25.20 24.10 24.00 23.90 23.20 24.08 T' 23.2 23 22.98 22.98 23 22.98 23 22.98 24.2	92.68 SAT 95.20 93.10 93.50 88.30 88.30 92.08 SAT 103 90 94.8 105.8 98.04 SAT 96.6 SAT 107.0
ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.5 HCB 1.1 HCB 1.2 HCB 1.2 HCB 1.3	PH 7.29 7.49 7.33 7.51 7.33 7.39 PH 7.46 7.27 7.292 PH 7.61 7.62 7.32	PUN 1 CE 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	TO 4 - E ST 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.0	SP 2 OD 6.86 6.92 6.70 6.81 6.62 6.70 6.81 0D 6.24 6.73 6.69 6.55 6.44 6.53 6.55 6.44 6.53 6.59 6.55 6.44 6.53	T: 18.40 19.00 18.50 19.60 18.60 18.60 18.82 T: 17 17.2 16.9 17.1 17.06 T: 28.5 22.9 24.5	\$AT 92.50 94.20 90.80 94.70 89.50 92.34 81.5 87.4 86.5 86 83.3 84.94 \$SAT 100.2 100.8	19.09	ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.5 HCB 1.1 HCB 1.2 HCB 1.2 HCB 1.3	PH 7.52 7.55 7.80 7.53 7.54 7.55 PH 7.51 7.53 7.48 7.34 7.56 PH 7.61 7.34 7.484 PH 7.6 7.42 7.49	PUN CE 0.12 0.11 0.13 0.12 0.13 0.12 PUN CE 0.18 0.26 0.24 0.24 0.25 PUN CE 0.19 0.25 0.19 0.25 0.19 0.26 0.21 0.25 0.24 0.25	TO 4 - E ST 0.07 0.06 0.07 0.06 0.08 0.08 0.07 TO 5 - L 0.1 0.13 0.14 0.13 0.14 TO 6 - H ST 0.13 0.03 0.03	SP 2	T' 2520 24.10 23.00 23.00 23.20 23.76 T' 232 20.7 21.9 22.18 T' 21.6 22.7 33.2 22.18	94.24 SAT 99.20 98.00 88.00 88.00 92.26 SAT 101 89.8 95.9 94.9 104.3 95.8 SAT 96.6 91.6 1018 109.3 96.6	ESP 2.1 ESP 2.2 ESP 2.3 ESP 2.4 ESP 2.5 LLQ 1.1 LLQ 1.2 LLQ 1.3 LLQ 1.5 HCB 1.1 HCB 1.1 HCB 1.2 HCB 1.3	PH 7.58 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.7	PUN' CE 0.11 0.11 0.12 0.12 0.13 0.12 PUN CE 0.17 0.3 0.22 0.2 0.9 0.9 0.216 PUN' CE 0.11 0.05 0.12	TO 4 - E: ST 0.08 0.07 0.07 0.08 0.07 0.08 0.09 0.09 0.10 0.11 0.16 0.17 0.14 0.134 TO 6 - H ST 0.14 0.04 0.08	SP 2 OD 6.20 5.80 5.40 5.55 5.21 5.59 LQ 1 OD 6.52 6.6 6.4 6.62 6.3 6.368 CB 1 OD 6.59 6.52 6.8	T' 2520 2440 2390 2320 23.02 24.08 T' 232 229 22.98 T' 218 23 32.9 23.9 22.9 23.9 23.9 23.9 23.9 2	92.68 SAT 95.20 99.10 89.50 88.30 88.30 92.08 SAT 103 90 94.8 105.8 96.6 98.04 SAT 96.1 96.1

ANEXO 19: Ficha de muestreo (registro de estereoscopio)

Mes		DE MACROINVEREBRADOS (Re	nbre 2022	
Punto	Réplica	Orden	Familia	Cantidad
Tunto	CHT 1.1			
		Amphypoda	Hyalellidae	5
	CHT 1.1	Plecoptera	Gripopterygidae	1
			Perlidae	18
	CHT 1.1	Coleoptera	Elmidae	7
	CHT 1.1		Dolichopodidae	13
		Diptera	Limoniidae	4
			Chironomidae	20
	CHT 1.1	Trichoptera	Xiphocentronidae	19
	CHT 1.2	Megaloptera	corydalidae	3
	CHT 1.2	Trichoptera	Xiphocentronidae	11
			Leptoceridae	63
	CHT 1.2	Amphypoda	Hyalellidae	4
	CHT 1.2	Plecoptera	Perlidae	18
CHT 1	CHT 1.2	Ephemeroptera	Bactidae	32
	CHT 1.3	Trichoptera	Xiphocentronidae	6
			Leptoceridae	10
	CHT 1.3	Plecoptera	Perlidae	9
	CHT 1.3	Megaloptera	corydalidae	2
	CHT 1.4	Trichoptera	Leptoceridae	11
	CHT 1.4	Ephemeroptera	Baetidae	35
	CHT 1.4	Diptera	Chironomidae	19
	CHT 1.4	Plecoptera	Gripopterygidae	2
	CHT 1.5	Plecoptera	Perlidae	23
	CHT 1.5	Ephemeroptera	Baetidae	10
			Leptohyphidae	17
	CHT 1.5		Chironomidae	30
		Diptera	Ceratopogonidae	8

	CHT 2.1	Ephemeroptera	Baetidae	30
	CHT 2.1	Plecoptera	Perlidae	8
	CHT 2.1		Gripopterygidae	3
	CHT 2.1	Trichoptera	Leptoceridae	41
	CHT 2.1	Amphypoda	Hyalellidae	6
	CHT 2.1		Tipulidae	2
	CHT 2.1	Diptera	Dolichopodidae	3
	CHT 2.1		Chironomidae	12
	CHT 2.2	Ephemeroptera	Baetidae	22
	CHT 2.2	Plecoptera	Perlidae	28
	CHT 2.2	Trichoptera	Leptoceridae	32
	CHT 2.2		Hydropsychidae	1
CHT 2	CHT 2.2	Haplotaxida	Tubificidae	5
	CHT 2.2	Mesogastropoda	Physidae	3
	CHT 2.3	Diptera	Chironomidae	12
CITIZ	CHT 2.3	Trichoptera	Leptoceridae	29
			Hydrospychidae	4
	CHT 2.3	Megaloptera	corydalidae	1
	CHT 2.4	Amphypoda	Hyalellidae	12
	CHT 2.4	Mesogastropoda	Physidae	7
	CHT 2.4	Plecoptera	Perlidae	19
	CHT 2.4	Ephemeroptera	Baetidae	32
	CHT 2.4	Odonata	Calopterygidae	5
	CHT 2.4	Diptera	Limoniidae	1
		330000000000000000000000000000000000000	Chironomidae	2
	CHT 2.5	Trichoptera	Leptoceridae	47
	CHT 2.5		Leptohyphidae	18
		Ephemeroptera	Baetidae	39
	CHT 2.5	Trichoptera	Hydropsychidae	2
	CHT 2.5			

AND INCENTIAL OWNER SELECTION OF SELECTION O

	CHT 2.5	Plecoptera	Gripopterygidae	12
	ESP 1.1	Coleoptera	Elmidae	5
	ESP 1.1	Diptera	Chironomidae	27
	ESP 1.1	Mesogastropoda	Physidae	6
	ESP 1.2	Diptera	Chironomidae	12
			Muscidae	2
	ESP 1.3	Megaloptera	Corvlidae	3
	ESP 1.3		Glossosamatidae	7
		Trichoptera	Hydrospychidae	2
ESP 1	ESP 1.3	Diptera	Chironomidae	17
	ESP 1.3	Mesogastropoda	Physidae	10
	ESP 1.4	Diptera	Chironomidae	27
	ESP 1.4	Coleoptera	Elmidae	10
	ESP 1.4	Amphypoda	Hyalellidae	40
	ESP 1.4	Mesogastropoda	Physidae	7
	ESP 1.5	Diptera	Chironomidae	34
	ESP 1.5	Haplotaxida	Tubificidae	2
	ESP 1.5	Mesogastropoda	Physidae	18
	ESP 2.1	Diptera	Chironomidae	21
		·	Muscidae	11
	ESP 2.1	Haplotaxida	Tubificidae	16
	ESP 2.2	Diptera	Chironomidae	18
		·	Ephidridae	2
ECD 2	ESP 2.3	Diptera	Chironomidae	27
ESP 2	ESP 2.3	Ephemeroptera	Baetidae	8
	ESP 2.3	Mesogastropoda	Physidae	22
	ESP 2.4	Diptera	Chironomidae	20
	ESP 2.4	Amphypoda	Hyalellidae	7
	ESP 2.4	Coleoptera	Elmidae	2
	ESP 2.5	Diptera	Chironomidae	11

	ESP 2.5	Trichoptera	Hydrospychidae	2
	ESP 2.5	Amphypoda	Hyalellidae	10
	ESP 2.5	Haplotaxida	Tubificidae	2
	LLQ 1.1	Ephemeroptera	Baetidae	16
	LLQ 1.1	Odonata	Calopterygidae	2
	LLQ 1.1	Amphypoda	Hyalellidae	23
	LLQ 1.1	Trichoptera	Leptoceridae	4
	LLQ 1.1	Mesogastropoda	Physidae	1
	LLQ 1.2	Amphypoda	Hyalellidae	21
	LLQ 1.2	Diptera	Chironmidae	23
	LLQ 1.2	Ephemeroptera	Baetidae	2
LLQ 1	LLQ 1.2	Odonata	Calopterygidae	4
	LLQ 1.3	Amphypoda	Hyalellidae	2
	LLQ 1.3	Trichoptera	Hydropsychidae	6
	LLQ 1.3	Diptera	Chironmidae	18
	LLQ 1.4	Plecoptera	Perlidae	3
	LLQ 1.4	Amphypoda	Hyalellidae	47
	LLQ 1.5	Diptera	Chironomidae	23
	LLQ 1.5	Amphypoda	Hyalellidae	22
	LLQ 1.5	Trichoptera	Hydrospychidae	8
	HCB 1.1	Amphypoda	Hyalellidae	23
	HCB 1.1	Ephemeroptera	Baetidae	34
	HCB 1.1	Mesogastropda	Physidae	3
	HCB 1.2	Trichoptera	Leptoceridae	21
HCB 1			Hydropsychidae	7
HCB I	HCB 1.2	Mesogastropda	Physidae	6
	HCB 1.2	Amphypoda	Hyalellidae	28
	HCB 1.2	Diptera	Chironmidae	33
	HCB 1.2	Ephemeroptera	Baetidae	30
	HCB 1.2	Haplotaxida	Tubificidae	3

HCB 1.3	Diptera	Chironmidae	26
HCB 1.3	Ephemeroptera	Baetidae	17
HCB 1.3	Mesogastropda	Physidae	11
HCB 1.4	Ephemeroptera	Baetidae	17
HCB 1.4	Diptera	Chironmidae	14
HCB 1.4	Plecoptera	Perlidae	6
HCB 1.4	Amphypoda	Hyalellidae	49
HCB1.5	Diptera	Chironmidae	22
HCB1.5	Ephemeroptera	Baetidae	37
		Leptohyphidae	9
HCB1.5	Mesogastropda	Physidae	5

Mes			Noviembre 2022				
(0.00/0.001)	Réplica	Orden	Familia	Cantidad			
	CHT 1.1	Megaloptera	Corydalidae	5			
	CHT 1.1	Diptera	Simulidae	15			
	CHT 1.1	Plecoptera	Perlidae	21			
	CHT 1.1	Ephemeroptera	Baetidae	10			
	CHT 1.1	Trichoptera	Hydrospychidae	1			
	CHT 1.2	Mesogastropoda	Physidae	5			
	CHT 1.2	Diptera	Chironomidae	32			
	CHT 1.2	Amphypoda	Hyalidae	57			
	CHT 1.2	Odonata	Calopterygidae	4			
CHT	CHT 1.2	Plecoptera	Gripopterygidae	7			
			Perlidae	2			
	CHT 1.2	Ephemeroptera	Baetidae	10			
CHT 1	CHT 1.3	Plecoptera	Gripopterygidae	8			
	CHT 1.3	Diptera	Limonidae	29			
	CHT 1.3		Chironomidae	32			
	CHT 1.3	Ephemeroptera	Baetidae	85			
	CHT 1.3	Trichoptera	Hydrospychidae	19			
	CHT 1.4	Trichoptera	Hydrospychidae	36			
		50000 - 00 00 00 00 00 00 00 00 00 00 00	Leptoceridae	33			
	CHT 1.4	Diptera	Typulidae	62			
	CHT 1.4	Coleoptera	Elmidae	49			
	CHT 1.4	Amphypoda	Hyallidae	64			
	CHT 1.4	Plecoptera	Gripopterygidae	11			
	CHT 1.5	Ephemeroptera	Baetidae	93			
			Leptohyphidae	11			
	CHT 1.5	Mesogastropoda	Physidae	2			
	CHT 1.5	Plecoptera	Gripopterygidae	19			

	CHT 1.5	Coleoptera	Elmidae	32
CHT 2.1	CHT 2.1	Plecoptera	Gripopterygidae	12
	CHT 2.1		Perlidae	17
	CHT 2.1	Diptera	Limonidae	1
	CHT 2.1		Chironomidae	31
	CHT 2.1	Mesogastropoda	Physidae	2
	CHT 2.1	Trichoptera	Hydrospychidae	2
	CHT 2.1		Leptoceridae	9
	CHT 2.1	Coleoptera	Elmidae	11
	CHT 2.2	Plecoptera	Gripopterygidae	27
	CHT 2.2		Perlidae	8
CHT	CHT 2.2	Hemiptera	Vellidae	3
	CHT 2.2	Ephemeroptera	Baetidae	15
	CHT 2.2	Coleoptera	Elmidae	17
CHT 2	CHT 2.2	Mesogastropoda	Physidae	12
1,000,000,000	CHT 2.3	Ephemeroptera	Baetidae	21
			Leptohyphidae	15
	CHT 2.3	Megaloptera	Corydalidae	1
	CHT 2.3	Plecoptera	Perlidae	63
	CHT 2.3	Tricladida	Planariidae	3
	CHT 2.4	Hemiptera	Vellidae	6
	CHT 2.4	Coleoptera	Elmidae	2
	CHT 2.4	Diptera	Chironomidae	26
	CHT 2.4	Trichoptera	Leptoceridae	10
"	CHT 2.4	Mesogastropoda	Physidae	15
	CHT 2.4	Ephemeroptera	Baetidae	68
			Leptohyphidae	87
	CHT 2.4	Plecoptera	Gripopterygidae	92
		and a separation of the second	Perlidae	71
	CHT 2.5	Trichoptera	Hydrospychidae	26

			Leptoceridae	7
			Xiphocentronida	43
	CHT 2.5	Diptera	Chironomidae	47
	CHT 2.5	Ephemeroptera	Baetidae	31
	CHT 2.5	Plecoptera	Perlidae	20
	ESP 1.1	Amphypoda	Hyallidae	176
	ESP 1.1	Mesogastropoda	Physidae	10
	ESP 1.2	Amphypoda	Hyallidae	61
	ESP 1.2	Mesogastropoda	Physidae	94
	ESP 1.2	Diptera	Chironomidae	10
	ESP 1.2	Ephemeroptera	Baetidae	13
	ESP 1.3	Amphypoda	Hyallidae	184
ESP 1	ESP 1.3	Mesogastropoda	Physidae	17
ESP 1.4	ESP 1.4	Amphypoda	Hyallidae	163
	ESP 1.4	Mesogastropoda	Physidae	12
	ESP 1.4	Diptera	Chironomidae	3
	ESP 1.5	Mesogastropoda	Physidae	2
	ESP 1.5	Amphypoda	Hyallidae	119
	ESP 1.5	Ephemeroptera	Baetidae	13
	ESP 1.5	Diptera	Chironomidae	7
			Muscidae	3
	ESP 2.1	Ephemeroptera	Baetidae	4
	ESP 2.1	Mesogastropoda	Physidae	38
	ESP 2.1	Amphypoda	Hyallidae	313
	ESP 2.1	Tricalida	Planariidae	47
	ESP 2.2	Mesogastropoda	Physidae	15
	ESP 2.2	Amphypoda	Hyallidae	361
1	ESP 2.3	Tricalida	Planariidae	20
ESP 2	ESP 2.3	Ephemeroptera	Baetidae	2
	ESP 2.3	Amphypoda	Hyallidae	410

	ESP 2.3	Trichoptera	Leptoceridae	83
	ESP 2.3	Mesogastropoda	Physidae	27
	ESP 2.4	Tricalida	Planariidae	89
	ESP 2.4	Ephemeroptera	Baetidae	1
	ESP 2.4	Amphypoda	Hyallidae	665
	ESP 2.4	Lepidoptera	Grambidae	3
	ESP 2.5	Amphypoda	Hyallidae	188
	ESP 2.5	Diptera	Chironomidae	5
	LLQ 1.1	Diptera	Chironomidae	30
		2552.	Tipulidae	29
	LLQ 1.1	Ephemeroptera	Baetidae	8
	LLQ 1.1	Plecoptera	Perlidae	11
	LLQ 1.1	Trichoptera	Hydrospychidae	4
	LLQ 1.1	Mesogastropoda	Lymnaeidae	5
			Physidae	9
	LLQ 1.1	Amphypoda	Hyallidae	162
	LLQ 1.2	Ephemeroptera	Baetidae	12
	LLQ 1.2	Amphypoda	Hyallidae	97
LLQ 1	LLQ 1.3	Plecoptera	Perlidae	2
LLQ I	LLQ 1.3	Ephemeroptera	Baetidae	5
	LLQ 1.3	Amphypoda	Hyallidae	91
	LLQ 1.3	Diptera	Chironomidae	263
	LLQ 1.3	Mesogastropoda	Lymnaeidae	3
	LLQ 1.3	Trichoptera	Hydrospychidae	4
	LLQ 1.4	Mesogastropoda	Physidae	32
	LLQ 1.4	Ephemeroptera	Baetidae	19
	LLQ 1.4	Amphypoda	Hyallidae	81
	LLQ 1.4	Diptera	Chironomidae	55
	LLQ 1.5	Mesogastropoda	Physidae	12
	LLQ 1.5	Ephemeroptera	Baetidae	3

	LLQ 1.5	Amphypoda	Hyallidae	59
	LLQ 1.5	Diptera	Chironomidae	368
	HCB 1.1	Plecoptera	Gripopterygidae	6
HCB 1.1 HCB 1.1 HCB 1.2 HCB 1.2 HCB 1.2 HCB 1.2 HCB 1.3 HCB 1.3 HCB 1.3 HCB 1.4 HCB 1.4 HCB 1.4 HCB 1.4 HCB 1.4	HCB 1.1	Ephemeroptera	Baetidae	24
	Diptera	Chironomidae	125	
	Amphypoda	Hyallidae	147	
	Mesogastropoda	Physidae	292	
	Coleoptera	Elmidae	3	
	Mesogastropoda	Physidae	19	
	HCB 1.3	Trichoptera	Leptoceridae	4
	HCB 1.3	Tricalida	Planariidae	48
	HCB 1.4	Plecoptera	Perlidae	12
	HCB 1.4	Trichoptera	Hydrospychidae	31
	HCB 1.4	Diptera	Chironomidae	43
	HCB 1.5	Plecoptera	Perlidae	6
	HCB 1.5	Mesogastropoda	Physidae	24
	HCB 1.5	Diptera	Chironomidae	10
	HCB 1.5	Ephemeroptera	Baetidae	27
	HCB 1.5	Amphypoda	Hyallidae	80
	HCB 1.5	Veneroidea	Shaeriidae	2

Mes		D DE MACROINVEREBRADOS (Re	o 2023		
Punto	Réplica	Orden	Familia	Cantidad	
	CHT 1.1	Coleoptera	Elmidae	3	
,			Chironomidae	11	
	CHT 1.1	Diptera	Dolichopodidae	5	
			Limoniidae	4	
			Muscidae	2	
	CHT 1.1	Plecoptera	Perlidae	18	
		Fiecoptera	Gripopterygidae	1	
	CHT 1.1	Ephemeroptera	Baetidae	10	
	CHT 1.1	Trichoptera	Leptoceridae	10	
	CHI 1.1	Inchoptera	Xiphocentronidae	8	
	CHT 1.2	Megaloptera	corydalidae	2	
	CHT 1.2	Trichoptera	Xiphocentronidae	6	
			Leptoceridae	72	
CHT 1	CHT 1.2	Plecoptera	Perlidae	18	
	CHT 1.2	Ephemeroptera	Baetidae	13	
	CHT 1.2	Amphypoda	Hyalellidae	2	
	CHT 1.3	Trichoptera	Xiphocentronidae	6	
	CHI 1.5	Trichoptera	Leptoceridae	13	
	CHT 1.3	Plecoptera	Perlidae	9	
-	CHT 1.3	Megaloptera	corydalidae	5	
	CHT 1.3	Amphypoda	Hyalellidae	1	
	CHT 1.4	Trichoptera	Leptoceridae	9	
	CHT 1.4	Ephemeroptera	Baetidae	12	
	CHT 1.4	Diptera	Chironomidae	13	
	CHT 1.4	Plecoptera	Gripopterygidae	2	
	CHT 1.4	Amphypoda	Hyalellidae	3 .	
	CHT 1.5	Plecoptera	Perlidae	19	

			Baetidae	26
	CHT 2.5	Plecoptera	Gripopterygidae	6
	ESP 1.1	Coleoptera	Elmidae	3
	ESP 1.1	Diptera	Chironomidae	29
	ESP 1.1	Mesogastropoda	Physidae	2
	ESP 1.1	Amphypoda	Hyalellidae	7
	ESP 1.2	Diptera	Chironomidae	15
			Muscidae	2
	ESP 1.2	Tricalida	Planariidae	15
	ESP 1.3	Amphypoda	Hyalellidae	10
	ESP 1.3	Trichoptera	Glossosamatidae	5
ESP 1	ESP 1.3	Trichoptera	Hydrospychidae	3
ESP I	ESP 1.3	Diptera	Chironomidae	12
	ESP 1.3	Mesogastropoda	Physidae	6
	ESP 1.4	Diptera	Chironomidae	24
	ESP 1.4	Coleoptera	Elmidae	6
	ESP 1.4	Amphypoda	Hyalellidae	33
	ESP 1.4	Tricalida	Planariidae	13
	ESP 1.5	Diptera	Chironomidae	29
	ESP 1.5	Haplotaxida	Tubificidae	0
	ESP 1.5	Mesogastropoda	Physidae	8
	ESP 1.5	Amphypoda	Hyalellidae	2
	ESP 2.1	Diptera	Chironomidae	25
	ESP 2.1	Diptera	Muscidae	9
	ESP 2.1	Haplotaxida	Tubificidae	14
ESP 2	ESP 2.2	Distant	Chironomidae	18
ESP Z	ESP 2.2	Diptera	Ephidridae	3
	ESP 2.3	Diptera	Chironomidae	32
	ESP 2.3	Ephemeroptera	Baetidae	4
	ESP 2.3	Mesogastropoda	Physidae	11

	ESP 2.4	Diptera	Chironomidae	22
	ESP 2.4	Amphypoda	Hyalellidae	7
	ESP 2.4	Coleoptera	Elmidae	6
	ESP 2.5	Diptera	Chironomidae	11
	ESP 2.5	Trichoptera	Hydrospychidae	2
	ESP 2.5	Amphypoda	Hyalellidae	10
	ESP 2.5	Haplotaxida	Tubificidae	2
	LLQ 1.1	Ephemeroptera	Baetidae	18
	LLQ 1.1	Odonata	Calopterygidae	2
	LLQ 1.1	Amphypoda	Hyalellidae	18
	LLQ 1.1	Trichoptera	Leptoceridae	3
	LLQ 1.1	Tricalida	Planariidae	9
	LLQ 1.2	Trichoptera	Hydropsychidae	2
	LLQ 1.2	Amphypoda	Hyalellidae	12
	LLQ 1.2	Diptera	Chironmidae	20
	LLQ 1.2	Ephemeroptera	Baetidae	2
	LLQ 1.2	Odonata	Calopterygidae	4
LLQ 1	LLQ 1.3	Amphypoda	Hyalellidae	2
	LLQ 1.3	Trichoptera	Hydropsychidae	4
	LLQ 1.3	Diptera	Chironomidae	12
	LLQ 1.3	Odonata	Calopterygidae	1
	LLQ 1.4	Plecoptera	Perlidae	5
	LLQ 1.4	Amphypoda	Hyalellidae	32
	LLQ 1.4	Tricalida	Planariidae	6
	LLQ 1.5	Diptera	Chironomidae	16
	LLQ 1.5	Mesogastropda	Physidae	3
	LLQ 1.5	Amphypoda	Hyalellidae	9
	LLQ 1.5	Trichoptera	Hydrospychidae	4
	HCB 1.1	Amphypoda	Hyalellidae	17
	UCD 1.1	Enhamarantara	Pactidae	20

	HCB 1.1	Mesogastropda	Physidae	4
	HCB 1.1	Haplotaxida	Tubificidae	2
	HCB 1.2	Trichoptera	Leptoceridae	17
	HCB 1.2	Inchoptera	Hydropsychidae	9
	HCB 1.2	Mesogastropda	Physidae	7
	HCB 1.2	Amphypoda	Hyalellidae	10
	HCB 1.2	Diptera	Chironmidae	35
	HCB 1.2	Ephemeroptera	Baetidae	25
	HCB 1.2	Haplotaxida	Tubificidae	3
	HCB 1.3	Diptera	Chironmidae	12
	HCB 1.3	Ephemeroptera	Baetidae	23
HCB 1	HCB 1.3	Mesogastropda	Physidae	5
	HCB 1.3	Trichoptera	Hydropsychidae	6
	HCB 1.3	Tricalida	Planariidae	4
	HCB 1.4	Ephemeroptera	Baetidae	9
	HCB 1.4	Diptera	Chironomidae	12
	HCB 1.4	Plecoptera	Perlidae	6
	HCB 1.4	Amphypoda	Hyalellidae	32
	HCB 1.4	Trichoptera	Leptoceridae	6
	HCB 1.5	Diptera	Chironmidae	19
	HCB 1.5	Ephemeroptera	Baetidae	24
		Va 577	Leptohyphidae	12
	HCB 1.5	Mesogastropda	Physidae	6
	HCB 1.5	Tricalida	Planariidae	7

ANEXO 20: Formato de recolección de datos de parámetros físicos y químicos

	For	mato de recolección d	e datos de parámetros f					
Mes	Noviembre 2022							
Punto	Réplica	pH	T°	C.E	O. D	TDS		
CHT 1	CHT 1.1	7.55	18.58	0.08	7.00	0.05		
	CHT 1.2	7.70	19.60	0.06	7.20	0.03		
	CHT 1.3	7.65	20.70	0.06	7.00	0.03		
	CHT 1.4	7.52	21.10	0.06	7.14	0.03		
	CHT 1.5	7.44	20.80	0.06	7.33	0.03		
CHT 2	CHT 2.1	7.59	23.20	0.06	7.43	0.03		
	CHT 2.2	7.48	21.70	0.06	7.22	0.03		
	CHT 2.3	7.41	21.70	0.06	6.52	0.03		
	CHT 2.4	7.37	22.20	0.06	7.12	0.03		
	CHT 2.5	7.46	22.00	0.03	6.59	0.03		
ESP 1	ESP 1.1	7.87	20.50	0.12	7.33	0.07		
	ESP 1.2	7.44	19.20	0.12	6.90	0.07		
	ESP 1.3	7.13	19.00	0.12	6.77	0.07		
	ESP 1.4	7.01	19.10	0.12	6.87	0.07		
	ESP 1.5	7.07	19.00	0.12	7.35	0.07		
ESP 2	ESP 2.1	7.29	18.40	0.12	6.86	0.06		
	ESP 2.2	7.49	19.00	0.12	6.92	0.06		
	ESP 2.3	7.33	18.50	0.12	6.70	0.06		
	ESP 2.4	7.51	19.60	0.12	6.81	0.06		
	ESP 2.5	7.33	18.60	0.12	6.62	0.06		
LLQ 1	LLQ 1.1	7.46	17.00	0.38	6.24	0.19		
	LLQ 1.2	7.30	17.20	0.31	6.73	0.17		
	LLQ 1.3	7.28	16.90	0.31	6.69	0.18		
	LLQ 1.4	7.25	17.10	0.29	6.55	0.16		
	LLQ 1.5	7.17	17.10	0.28	6.44	0.15		
HCB 1	HCB 1.1	7.61	28.50	0.12	6.95	0.01		
	HCB 1.2	7.62	22.90	0.14	7.24	0.08		
	HCB 1.3	7.32	24.50	0.11	6.80	0.07		
	HCB 1.4	7,73	23.50	0.20	6.45	0.07		
	HCB 1.5	7.32	23.70	0.15	7.13	0.08		

ZARAVI. INGENIA FLOR INGENIA AMBIENTAL CIP Nº 311370

	1011	mato de recolección di	e datos de parámetros f				
Mes	Diciembre 2022						
Punto	Réplica	pН	T°	C.E	O. D	TDS	
CHT 1	CHT 1.1	7.61	17.30	0.10	7.54	0.0	
	CHT 1.2	7.21	17.00	0.08	6.96	0.04	
	CHT 1.3	7.38	17.60	0.06	7.35	0.03	
	CHT 1.4	7.21	17.20	0.06	7.15	0.03	
	CHT 1.5	7.36	18.70	0.06	7.36	0.03	
CHT 2	CHT 2.1	7.41	18.40	0.09	7.40	0.05	
	CHT 2.2	7.10	17.90	0.06	7.32	0.03	
	CHT 2.3	7.38	19.70	0.05	5.69	0.03	
	CHT 2.4	7.54	18.90	0.06	7.54	0.04	
	CHT 2.5	7.28	18.70	0.06	6.97	0.03	
ESP 1	ESP 1.1	7.62	24.30	0.13	6.43	0.07	
	ESP 1.2	7.69	25.40	0.12	6.01	0.07	
	ESP 1.3	7.65	25.10	0.12	5.85	0.07	
	ESP 1.4	7.58	24.90	0.12	6.09	0.06	
	ESP 1.5	7.63	25.30	0.12	6.02	0.07	
ESP 2	ESP 2.1	7.52	25.20	0.12	6.23	0.07	
	ESP 2.2	7.55	24.10	0.11	6.04	0.06	
	ESP 2.3	7.60	23.00	0.13	5.87	0.07	
	ESP 2.4	7.53	23.30	0.12	5.68	0.06	
	ESP 2.5	7.54	23.20	0.13	5.96	0.08	
LLQ 1	LLQ 1.1	7.51	23.20	0.18	6.58	0.10	
SON CONTROL OF THE SON CONTROL O	LLQ 1.2	7.53	20.70	0.36	6.10	0.20	
	LLQ 1.3	7.48	21.90	0.26	6.60	0.14	
	LLQ 1.4	7.34	23.10	0.24	6.73	0.13	
	LLQ 1.5	7.56	22.00	0.24	6.40	0.13	
HCB 1	HCB 1.1	7.60	21.60	0.14	6.61	0.13	
	HCB 1.2	7.42	22.70	0.06	6.31	0.03	
	HCB 1.3	7.49	33.20	0.12	6.84	0.07	
	HCB 1.4	7.56	23.30	0.09	7.24	0.05	
	HCB 1.5	7.55	22.10	0.25	6.61	0.14	

Mes	Enero 2023						
Punto	Réplica	pH	T°	C.E	O. D	TD	
CHT 1	CHT 1.1	7.45	17.54	0.09	7.53	0.0	
	CHT 1.2	7.14	18.30	0.08	6.96	0.0	
	CHT 1.3	7.23	17.62	0.07	7.35	0.0	
	CHT 1.4	7.19	17.50	0.06	7.28	0.0	
	CHT 1.5	7.28	19.20	0.08	7.36	0.0	
CHT 2	CHT 2.1	7.39	17.80	0.09	7.60	0.0	
	CHT 2.2	7.10	16.00	0.07	7.60	0.0	
	CHT 2.3	7.38	19.80	0.09	5.40	0.0	
	CHT 2.4	7.42	18.60	0.06	7.40	0.0	
	CHT 2.5	7.15	17.60	0.07	7.00	0.0	
ESP 1	ESP 1.1	7.65	26.90	0.13	6.10	0.0	
	ESP 1.2	7.71	27.50	0.13	5.40	0.0	
	ESP 1.3	7.79	27.70	0.12	6.81	0.0	
	ESP 1.4	7.65	27.90	0.13	5.90	0.0	
	ESP 1.5	7.70	27.80	0.12	5.80	0.0	
ESP 2	ESP 2.1	7.58	25.20	0.11	6.20	0.0	
	ESP 2.2	7.80	24.10	0.11	5.80	0.0	
	ESP 2.3	7.65	24.00	0.12	5.40	0.0	
	ESP 2.4	7.70	23.90	0.12	5.35	0.0	
	ESP 2.5	7.80	23.20	0.13	5.21	0.0	
LLQ 1	LLQ 1.1	7.65	23.20	0.17	6.52	0.1	
	LLQ 1.2	7.56	23.00	0.30	6.00	0.1	
	LLQ 1.3	7.5	22.90	0.22	6.40	0.1	
	LLQ 1.4	7.36	22.80	0.20	6.62	0.1	
	LLQ 1.5	7.59	23.00	0.19	6.30	0.1	
HCB 1	HCB 1.1	7.60	21.80	0.11	6.59	0.1	
	HCB 1.2	7.20	23.00	0.05	6.20	0.0	
	HCB 1.3	7.51	32.90	0.12	6.80	0.0	
	HCB 1.4	7.50	24.20	0.08	7.10	0.0	
	HCB 1.5	7.40	24.40	0.20	6.50	0.13	

