

SÍLABO Dibujo Minero

Código	24UC00067		Carácter	Obligatorio
Requisito	Introducción a la Ingeniería de Minas			
Créditos	4			
Horas	Teóricas 2 Prácticas 4			
Año académico	2025			

I. Introducción

Dibujo Minero es una asignatura de especialidad, de carácter obligatorio para la Escuela Académico Profesional de Ingeniería de Minas, que se ubica en el segundo ciclo. Esta asignatura contribuye a desarrollar la competencia Solución de Problemas en el Nivel 1. Tiene como requisito la asignatura de Introducción a la Ingeniería de Minas. Por su naturaleza, incluye componentes teóricos y prácticos que propicia al estudiante la compresión y usos de la herramienta para el dibujo aplicado a la minería, utiliza software CAD bidimensional como herramienta colaborativa que permita comunicar e interpretar diseños, analizando, sintetizando y evaluando el funcionamiento, de equipos y lograr un desempeño competente del profesional en su futura vida laboral. Por otro lado, debido a la naturaleza de los contenidos que desarrolla, la asignatura puede tener un formato presencial, virtual o blended.

Los contenidos generales que se desarrollan en la asignatura son los siguientes: la comunicación gráfica en ingeniería, configuración de un dibujo. Normas de dibujo y conjunto de planos, creación e intersección de tablas, puntos, archivos y grupos de puntos, investigaciones geotécnicas, calicatas, perforaciones y perfil estratigráfico, excavaciones profundas para cimentación, presas, plantas industriales, edificios y caminos de acceso, instalaciones de superficie con pendiente para obras de minería, pad de lixiviación, botaderos.

II. Resultado de aprendizaje de la asignatura

Al finalizar la asignatura, el estudiante será capaz de representar gráficamente en dos y tres dimensiones las vistas de un sólido, utilizando software CAD bidimensional como herramienta colaborativa.

III. Organización de los aprendizajes

Com	Duración en horas	24	
Resultado de aprendizaje de la unidad	raje de la elementos fundamentales de la comunicación gráfica en ingenierí		
Ejes temáticos	 Introducción a la comunicación gráfica en ir Interpretación y uso de términos y conceptos Aplicación de las normas de dibujo y conjun 	s básicos	

Con	Duración en horas	24		
Resultado de	Al finalizar la unidad, cada estudiante será cap	az de realiza	ır dibujos	
aprendizaje de la	y tablas de acuerdo a los estándares de la industria minera usando			
unidad	software CAD bidimensional.			
	1. Configuración de un dibujo en software CAD)		
2. Creación y gestión de tablas				
Ejes temáticos	3. Creación e intersección de tablas			
	4. Uso de archivos y grupos de puntos			

Investigo	Duración en horas	24	
Resultado de aprendizaje de la unidad	Al finalizar la unidad, cada estudiante será con gráficamente los resultados de investigado calicatas, perforaciones y perfiles estratigráfica CAD bidimensional.	ciones geo	técnicas,
Ejes temáticos	 Introducción a investigaciones geotécnicas Representación de calicatas y perforaciones Creación de perfiles estratigráficos 	s	

	Unidad 4 Diseño de obras mineras		
Resultado de aprendizaje de la unidad	Al finalizar la unidad, cada estudiante será capaz de representar gráficamente estructuras de minería como excavaciones profundas para cimentación, presas, plantas industriales, edificios y caminos de acceso, así como instalaciones de superficie con pendiente para obras de minería, utilizando software CAD bidimensional.		
Ejes temáticos	 Diseño de excavaciones profundas para cim Diseño de presas y plantas industriales Diseño de edificios y caminos de acceso Diseño de instalaciones de superficie con pel de minería 		a obras

IV. Metodología

Modalidad Presencial

 Aprendizaje colaborativo: los estudiantes trabajarán en tareas relacionadas con los ejes temáticos, asignándole tareas a cada miembro del equipo.

Modalidad Semipresencial - formato blended

- **Aprendizaje colaborativo**: los estudiantes trabajarán en tareas relacionadas con los ejes temáticos, asignándole tareas a cada miembro del equipo.
- Aprendizaje experiencial: se realizarán ejercicios prácticos utilizando el software CAD bidimensional. Los estudiantes tendrán la oportunidad de aprender y aplicar los conceptos teóricos en situaciones reales y auténticas.
- Método de casos: se presentarán casos que simulen situaciones del mundo real en las que se deben tomar decisiones sobre el diseño de estructuras mineras. Los estudiantes deberán analizar el caso y proponer soluciones gráficas utilizando el software CAD.

•

V. Evaluación

Sobre la probidad académica

Las faltas contra la probidad académica se consideran infracciones muy graves en la Universidad Continental. Por ello, todo docente está en la obligación de reportar cualquier incidente a la autoridad correspondiente; sin perjuicio de ello, para la calificación de cualquier trabajo o evaluación, en caso de plagio o falta contra la probidad académica, la calificación será siempre cero (00). En función de ello, todo estudiante está en la obligación de cumplir el Reglamento Académico y conducirse con probidad académica en todas las asignaturas y actividades académicas a lo largo de su formación; de no hacerlo, deberá someterse a los procedimientos disciplinarios establecidos en el mencionado documento.

¹ Descarga el documento en el siguiente enlace https://shorturl.at/fhosu

Modalidad Presencial

Rubros	Unidad por evaluar	Entregable	Instrumento	Peso parcial (%)	Peso total (%)	
Evaluación de entrada	Requisito	Evaluación individual teórica	Prueba objetiva	0		
Consolidado 1	Unidad 1 Semana 4	Trabajo práctico individual: dibujo CAD	Rúbrica de evaluación	50	20	
C1	Unidad 2 Semana 7	Trabajo práctico individual: dibujo aplicativo CAD	Rúbrica de evaluación	50	20	
Evaluación parcial EP	Unidad 1 y 2 Semana 8	Trabajo práctico individual: dibujo integrador CAD	Rúbrica de evaluación	20		
Consolidado 2	Unidad 3 Semana 12	Trabajo práctico individual: dibujo geotécnico CAD	Rúbrica de evaluación	50		
C2	Unidad 4 Semana 15	Trabajo práctico individual: dibujo integrador CAD	Rúbrica de evaluación	50	20	
Evaluación final EF	Todas las unidades Semana 16	Trabajo práctico individual: final de dibujo CAD	Rúbrica de evaluación	40		
Evaluación sustitutoria²	Todas las unidades Fecha posterior a la evaluación final	Trabajo práctico individual: final de dibujo CAD	Rúbrica de evaluación			

^{*}Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad Semipresencial - formato blended

Rubros	Unidad por evaluar	Semana	Entregable	Instrumento	Peso parcial (%)	Peso total (%)
Evaluación de entrada	Requisito	Primera sesión	Evaluación individual teórica	Prueba objetiva	0	
			Actividades virtuale	es	15	
Consolidado 1 C1	Unidad 1	1 – 3	Trabajo práctico individual: dibujo CAD	Rúbrica de evaluación	85	20
Evaluación parcial EP	Unidad 1 y 2	4	Trabajo práctico individual: dibujo integrador CAD		20)
			Actividades virtuale	es	15	
Consolidado 2 C2	Unidad 3	5 – 7	Trabajo práctico individual: dibujo geotécnico CAD	Rúbrica de evaluación	85	20

Evaluación final EF	Todas las unidades	8	Trabajo práctico individual: final de dibujo CAD	Rúbrica de evaluación	40
Evaluación sustitutoria	Todas las Fecha pos evaluac	sterior a la	Trabajo práctico individual: final de dibujo CAD	Rúbrica de evaluación	

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Fórmula para obtener el promedio

VI. Atención a la diversidad

Las faltas contra la probidad académica se consideran infracciones muy graves en la Universidad Continental. Por ello, todo docente está en la obligación de reportar cualquier incidente a la autoridad correspondiente; sin perjuicio de ello, para la calificación de cualquier trabajo o evaluación, en caso de plagio o falta contra la probidad académica, la calificación será siempre cero (00). En función de ello, todo estudiante está en la obligación de cumplir el Reglamento Académico (https://ucontinental.edu.pe/documentos/informacion_institucional/reglamento-academico.pdf) y conducirse con probidad académica en todas las asignaturas y actividades académicas a lo largo de su formación; de no hacerlo, deberá someterse a los procedimientos disciplinarios establecidos en el mencionado documento.

VII. Bibliografía

Básica

Julian, E. (2021). Modelado BIM con Autodesk Civil 3D. Marcombo.

Quezada, C. (2018). Autocad. Megabite .s.a.c.

Complementaria

Jiménez, J. y Pérez, J. (2020). AutoCAD avanzado para geociencias y minería (2.º ed.). Marcombo.

Calderón, A. y García, B. (2021). Tablas de intersección para ingeniería de minas. Deusto Publicaciones.

Ramírez, P. y Rubio, M. (2019). Investigaciones geotécnicas en minería: Excavación y cimentación (3.º ed.). Springer.

Sánchez, L., y Paredes, R. (2020). Instalaciones de superficie en minería. Elsevier.

VIII. Recursos digitales

Autodesk. (2023). AutoCAD Design. [Software de computadora]. https://latinoamerica.autodesk.com/

Autodesk AutoCAD. (s.f.). Shortcuts Guide. https://damassets.autodesk.net/content/dam/autodesk/www/shortcuts/autocad/AutoCAD_2020_Shortcuts.pdf

Autodesk. (2020). Guía de comandos y atajos de AutoCAD. https://latinoamerica.autodesk.com/shortcuts/autocad

ROMA Ingeniería. (31 de julio de 2022). Curso AUTOCAD 2023 Completo | | Parte 1 [Video]. Youtube. https://www.youtube.com/watch?v=3u-YqmSyVi0