

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Civil

Tesis

Influencia de la adición de ceniza de leño de ciprés en la subrasante arcillosa para la carretera Matapuquio-Collpa Andahuaylas 2022

Jhon Yerovi Altamirano Villena Fredy Utani Huasco

Para optar el Título Profesional de Ingeniero Civil

Huancayo, 2023

Repositorio Institucional Continental Tesis digital

Esta obra está bajo una Licencia "Creative Commons Atribución 4.0 Internacional".

INFORME DE CONFORMIDAD DE ORIGINALIDAD DE TESIS

A : Mg. Ing. Felipe Néstor Gutarra meza

Decano de la Facultad de Ingeniería

DE : MBA. Ing. Alejandro Vildoso Flores

Asesor de tesis

ASUNTO: Remito resultado de evaluación de originalidad de tesis

FECHA: 11 de agosto de 2023

Con sumo agrado me dirijo a vuestro despacho para saludarlo y en vista de haber sido designado asesor de la tesis titulada: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA PARA LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022", perteneciente a los estudiantes JHON YEROVI ALTAMIRANO VILLENA y FREDY UTANI HUASCO, de la E.A.P. de Ingeniería Civil; se procedió con la carga del documento a la plataforma "Turnitin" y se realizó la verificación completa de las coincidencias resaltadas por el software dando por resultado 20 % de similitud (informe adjunto) sin encontrarse hallazgos relacionados a plagio. Se utilizaron los siguientes filtros:

Filtro de exclusión de bibliografía	SI x	NO
 Filtro de exclusión de grupos de palabras menores (N° de palabras excluidas:) 	SI	NOX
Exclusión de fuente por trabajo anterior del mismo estudiante	SI x	МО

En consecuencia, se determina que la tesis constituye un documento original al presentar similitud de otros autores (citas) por debajo del porcentaje establecido por la Universidad.

Recae toda responsabilidad del contenido de la tesis sobre el autor y asesor, en concordancia a los principios de legalidad, presunción de veracidad y simplicidad, expresados en el Reglamento del Registro Nacional de Trabajos de Investigación para optar grados académicos y títulos profesionales – RENATI y en la Directiva 003-2016-R/UC.

Esperando la atención a la presente, me despido sin otro particular y sea propicia la ocasión para renovar las muestras de mi especial consideración.

Atentamente,

Asesor de tesis

Cc. Facultad Oficina de Grados y Títulos Interesado(a)

DECLARACIÓN JURADA DE AUTENTICIDAD

Yo, JHON YEROVI ALTAMIRANO VILLENA, identificado(a) con Documento Nacional de Identidad No. 47893655, de la E.A.P. de Ingeniería Civil de la Facultad de Ingeniería la Universidad Continental, declaro bajo juramento lo siguiente:

- La tesis titulada: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA PARA LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022", es de mi autoría, la misma que presento para optar el Título Profesional de Ingeniero Civil.
- 2. La tesis no ha sido plagiada ni total ni parcialmente, para la cual se han respetado las normas internacionales de citas y referencias para las fuentes consultadas, por lo que no atenta contra derechos de terceros.
- 3. La tesis es original e inédita, y no ha sido realizado, desarrollado o publicado, parcial ni totalmente, por terceras personas naturales o jurídicas. No incurre en autoplagio; es decir, no fue publicado ni presentado de manera previa para conseguir algún arado académico o título profesional.
- Los datos presentados en los resultados son reales, pues no son falsos, duplicados, ni copiados, por consiguiente, constituyen un aporte significativo para la realidad estudiada.

De identificarse fraude, falsificación de datos, plagio, información sin cita de autores, uso ilegal de información ajena, asumo las consecuencias y sanciones que de mi acción se deriven, sometiéndome a las acciones legales pertinentes.

11 de 08 de 2023.

JHON YEROVI ALTAMIRNO VILLENA

DNI. No. 47893655

Cc. Facultad Oficina de Grados y Títulos Interesado(a)

DECLARACIÓN JURADA DE AUTENTICIDAD

Yo, FREDY UTANI HUASCO, identificado(a) con Documento Nacional de Identidad No. 71532961, de la E.A.P. de Ingeniería Civil de la Facultad de Ingeniería la Universidad Continental, declaro bajo juramento lo siguiente:

- La tesis titulada: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA PARA LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022", es de mi autoría, la misma que presento para optar el Título Profesional de Ingeniero Civil.
- 2. La tesis no ha sido plagiada ni total ni parcialmente, para la cual se han respetado las normas internacionales de citas y referencias para las fuentes consultadas, por lo que no atenta contra derechos de terceros.
- 3. La tesis es original e inédita, y no ha sido realizado, desarrollado o publicado, parcial ni totalmente, por terceras personas naturales o jurídicas. No incurre en autoplagio; es decir, no fue publicado ni presentado de manera previa para conseguir algún grado académico o título profesional.
- Los datos presentados en los resultados son reales, pues no son falsos, duplicados, ni copiados, por consiguiente, constituyen un aporte significativo para la realidad estudiada.

De identificarse fraude, falsificación de datos, plagio, información sin cita de autores, uso ilegal de información ajena, asumo las consecuencias y sanciones que de mi acción se deriven, sometiéndome a las acciones legales pertinentes.

11 de 08 de 2023.

FREDY UTANI HUASCO

DNI. No. 71532961

Cc. Facultad Oficina de Grados y Títulos Interesado(a)

INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA PARA LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022

INFORM	E DE ORIGINALIDAD	
2 INDICE	0% 17% 7% 11% trabajos de internet publicaciones trabajos de estudiante	EL
FUENTE	S PRIMARIAS	
1	Submitted to City University of New York System Trabajo del estudiante	1 %
2	www.rte.espol.edu.ec Fuente de Internet	1%
3	Structurae.net Fuente de Internet	1%
4	polodelconocimiento.com Fuente de Internet	1%
5	Submitted to Webster University Trabajo del estudiante	1%
6	repositorio.usil.edu.pe Fuente de Internet	<1%
7	Submitted to Universidad Nacional del Centro del Peru Trabajo del estudiante	<1%
8	www.tesisdelperu.com	

	Fuente de Internet	<1%
9	informatica.upla.edu.pe Fuente de Internet	<1%
10	Submitted to Universidad Internacional SEK Trabajo del estudiante	<1%
11	revistaalconpat.org Fuente de Internet	<1%
12	repositorio.ulvr.edu.ec Fuente de Internet	<1%
13	revistas.ucatolicaluisamigo.edu.co	<1%
14	repositorio.unprg.edu.pe:8080 Fuente de Internet	<1%
15	repositorio.upch.edu.pe Fuente de Internet	<1%
16	repositorioslatinoamericanos.uchile.cl	<1%
17	revistaschilenas.uchile.cl	<1%
18	pdfcookie.com Fuente de Internet	<1%
19	www.docsity.com Fuente de Internet	<1%

civilejournal.org Fuente de Internet	<1%
dokumen.pub Fuente de Internet	<1%
repositorio.espam.edu.ec Fuente de Internet	<1%
repositorio.unapiquitos.edu.pe Fuente de Internet	<1%
repositoriodemo.continental.edu.pe Fuente de Internet	<1%
revistas.uptc.edu.co Fuente de Internet	<1%
26 www.clubensayos.com Fuente de Internet	<1%
revistaingenieria.univalle.edu.co Fuente de Internet	<1%
fr.slideshare.net Fuente de Internet	<1%
repositorio.ufba.br Fuente de Internet	<1%
smartech.gatech.edu Fuente de Internet	<1%
Submitted to Universidad Alas Peruanas Trabajo del estudiante	<1%

32	Submitted to Universidad Nacional de Barranca Trabajo del estudiante	<1%
33	file.scirp.org Fuente de Internet	<1 %
34	repositorio.pucp.edu.pe Fuente de Internet	<1%
35	Submitted to Universidad Senor de Sipan Trabajo del estudiante	<1%
36	brumadinho.ibict.br Fuente de Internet	<1%
37	repositorio.unfv.edu.pe Fuente de Internet	<1%
38	repository.usta.edu.co Fuente de Internet	<1%
39	www.cienciavitae.pt Fuente de Internet	<1%
40	Submitted to Universidad Cooperativa de Colombia Trabajo del estudiante	<1%
41	ociogune.unirioja.es Fuente de Internet	<1%
42	www.repositorio.unu.edu.pe Fuente de Internet	<1%

43	www.hindawi.com Fuente de Internet	<1%
44	www.ije.ir Fuente de Internet	<1%
45	Submitted to Leiden University Trabajo del estudiante	<1%
46	Submitted to University of Newcastle Trabajo del estudiante	<1%
47	www.revistas.ucr.ac.cr	<1%
48	www.revistatyca.org.mx Fuente de Internet	<1%
49	distancia.udh.edu.pe Fuente de Internet	<1%
50	vdocumento.com Fuente de Internet	<1%
51	www.ecorfan.org Fuente de Internet	<1%
52	Elvira Ivone González Jaimes, María de Lourdes Hernández Prieto, Juan Márquez Zea. "La oralidad y la escritura en el proceso de aprendizaje Aplicación del método aprende a escuchar, pensar y escribir", Contaduría y Administración, 2013 Publicación	<1%

53	explora.unex.es Fuente de Internet	<1%
54	repositorio.ulasamericas.edu.pe Fuente de Internet	<19
55	revistas.ufps.edu.co Fuente de Internet	<1%
56	www.metarevistas.org Fuente de Internet	<1%
57	Ivy Tarazona Dominguez, Vitaliano Sulca Llacccho, Gary Duran Ramirez, Gustavo Llerena Cano. "Experimental study of mechanical behavior of stabilized volcanic soil with lime", 2020 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI), 2020 Publicación	<1%
58	Mauled Echeverri-Aguirre, Jarol Molina, Ary A. Hoyos-Montilla, H.H. Carvajal, J.S. Rudas. "Heat flow modelling of the alkaline activation of fly ash with sodium hydroxide in the presence of portlandite", Construction and Building Materials, 2022 Publicación	<1%
59	Submitted to Universidad Nacional Autonoma de Chota Trabajo del estudiante	<1%

60	repositorio.unh.edu.pe Fuente de Internet	<1%
61	repositorio.unjfsc.edu.pe Fuente de Internet	<1%
62	Jayatheja Muktinutalapati, Anasua GuhaRay, Arkamitra Kar. "Experimental Analysis of Strength and Deformation Behavior of Soils Reinforced with Building-Derived Materials", Indian Geotechnical Journal, 2019	<1%
63	sci-hub.hkvisa.net Fuente de Internet	<1%
64	repositorio.upecen.edu.pe Fuente de Internet	<1%
65	revistas.tec.ac.cr Fuente de Internet	<1%
66	cultural-hillary.blogspot.com Fuente de Internet	<1%
67	Submitted to Birla Institute of Technology and Science Pilani Trabajo del estudiante	<1%
68	Ludwing Roald Flores-Quispe. "Gestión del talento humano y rentabilidad del sector hotelero de la región de Puno", Revista Escuela de Administración de Negocios, 2019	<1%

69	revistas.unilibre.edu.co Fuente de Internet	<1 %
70	Submitted to Universidad Autónoma de Ica Trabajo del estudiante	<1%
71	blog.pucp.edu.pe Fuente de Internet	<1%
72	pure.ltu.se Fuente de Internet	<1%
73	www.bdigital.unal.edu.co Fuente de Internet	<1%
74	eprints.ucm.es Fuente de Internet	<1%
75	geotexan.com Fuente de Internet	<1%
76	prezi.com Fuente de Internet	<1%
77	riunet.upv.es Fuente de Internet	<1%
78	Submitted to Universidad Ricardo Palma Trabajo del estudiante	<1%
79	Submitted to Universidad Tecnologica de los Andes Trabajo del estudiante	<1%
80	catalogoweb.unab.edu.pe	

		<1%
81	repositorio.ufsc.br Fuente de Internet	<1%
82	Luis Felipe Lalinde Castrillón. "Estudio de compuestos de GRC y adiciones activas: Propiedades mecánicas, envejecimiento acelerado y durabilidad", Universitat Politecnica de Valencia, 2020 Publicación	<1%
83	informesdelaconstruccion.revistas.csic.es Fuente de Internet	<1%
84	laccei.org Fuente de Internet	<1%
85	virtual.urbe.edu Fuente de Internet	<1%
86	61611cbb-26f0-46c8-899b- de7cd4093658.usrfiles.com Fuente de Internet	<1%
87	Submitted to Corporación Universitaria Remington Trabajo del estudiante	<1%
88	Raissa Santos Reimann, Filippo Romano, Mariana Moraes Cavatti. "Burnout Syndrome (Bs) Among Doctors During the Covid-19	<1%

Pandemic in Porto Velho-ro, Brazil", Research Square Platform LLC, 2022 Publicación

89	Submitted to Universidad Santo Tomas Trabajo del estudiante	<1%
90	Submitted to Universidad Tecnologica del Peru Trabajo del estudiante	<1 %
91	Submitted to Universidad de Guadalajara Trabajo del estudiante	<1%
92	portalrevistas.uct.cl	<1%
93	Submitted to Institut Teknologi Brunei Trabajo del estudiante	<1%
94	Submitted to Pontificia Universidad Catolica Madre y Maestra PUCMM Trabajo del estudiante	<1%
95	Submitted to Universidad del Valle Trabajo del estudiante	<1%
96	pt.scribd.com Fuente de Internet	<1%
97	repositorio.autonoma.edu.pe Fuente de Internet	<1%
98	www.libreriaingeniero.com Fuente de Internet	<1%

99	"Expectativas de estudiantes y experiencia de docentes noveles como información clave para la autorregulación de tres carreras de educación de la Universidad Arturo Prat", Pontificia Universidad Catolica de Chile, 2020 Publicación	<1%
100	infodoctor.org Fuente de Internet	<1%
101	repositorio.upagu.edu.pe Fuente de Internet	<1%
102	"Encyclopedic Dictionary of Landscape and Urban Planning", Springer Science and Business Media LLC, 2010 Publicación	<1%
103	Submitted to Universidad de Huanuco Trabajo del estudiante	<1%
104	WALSH PERU S.A. INGENIEROS Y CIENTIFICOS CONSULTORES. "EIA para la Perforación de 18 Pozos de Desarrollo y Construcción de Facilidades de Producción - Lote 8- IGA0002603", R.D. N° 531-2007-MEM/AAE, 2021 Publicación	<1%
105	cdn.rupress.org Fuente de Internet	<1%
106	dugi-doc.udg.edu Fuente de Internet	

		<1%
107	fonoaudiologia.net Fuente de Internet	<1%
108	rediab.uanl.mx Fuente de Internet	<1%
109	repositorio.unac.edu.pe Fuente de Internet	<1%
110	repositorio.upeu.edu.pe:8080 Fuente de Internet	<1%
111	repositorio.utp.edu.co Fuente de Internet	<1%
112	www.cmhnaaa.org.pe Fuente de Internet	<1%
113	www.lanamme.ucr.ac.cr	<1%
114	www.revistaalfa.org Fuente de Internet	<1%
115	"Advances in Sustainable Construction and Resource Management", Springer Science and Business Media LLC, 2021 Publicación	<1%
116	Alfredo Carbonell Verdú. "Utilización de aceite de semilla de algodón como materia base renovable para la optimización de	<1%

formulaciones de polímeros de alto rendimiento medioambiental", Universitat Politecnica de Valencia, 2018

117	Submitted to Institución Tecnológica Metropolitana de Medellín Trabajo del estudiante	<1%
118	e-archivo.uc3m.es Fuente de Internet	<1%
119	lume.ufrgs.br Fuente de Internet	<1%
120	repositorio.uta.edu.ec Fuente de Internet	<1%
121	worldwidescience.org Fuente de Internet	<1%
122	www.catmed.eu Fuente de Internet	<1%
123	www.deepdyve.com Fuente de Internet	<1%
124	www.polodelconocimiento.com Fuente de Internet	<1%
125	www.scielo.sa.cr Fuente de Internet	<1%
126	www.scipedia.com Fuente de Internet	<1%

%
%
%
%
%
%
%
%
%

pesquisa.bvsalud.org

Fuente de Internet	<1%
previews.americangeosciences.org	<1%
pt.slideshare.net Fuente de Internet	<1%
repositorio.uceva.edu.co Fuente de Internet	<1%
repositorio.unajma.edu.pe Fuente de Internet	<1%
repository.udem.edu.co Fuente de Internet	<1%
ri.uaemex.mx Fuente de Internet	<1%
tesis.pucp.edu.pe:8080 Fuente de Internet	<1%
tesis.unap.edu.pe Fuente de Internet	<1%
146 www.ayto-aviles.es Fuente de Internet	<1%
147 www.cepal.cl Fuente de Internet	<1%
148 www.geothermal-energy.org Fuente de Internet	<1%

149 WWW.r	evistaalconpat.or nternet	g	<1 %
150 WWW.S Fuente de l	cielo.org.ar		<1%
151 WWW.S Fuente de l	cielo.org.mx		<1%
152 reposit	torio.uptc.edu.co		<1%
153 livrosd	eamor.com.br		<1%
Excluir citas Excluir bibliografía	Apagado Apagado	Excluir coincidencias	Apagado

INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA PARA LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022

INFORME DE GRADEMARK	
NOTA FINAL	COMENTARIOS GENERALES
/0	Instructor
70	
PÁGINA 1	
PÁGINA 2	
PÁGINA 3	
PÁGINA 4	
PÁGINA 5	
PÁGINA 6	
PÁGINA 7	
PÁGINA 8	
PÁGINA 9	
PÁGINA 10	
PÁGINA 11	
PÁGINA 12	
PÁGINA 13	
PÁGINA 14	
PÁGINA 15	
PÁGINA 16	
PÁGINA 17	
PÁGINA 18	
PÁGINA 19	

	PÁGINA 20
	PÁGINA 21
	PÁGINA 22
	PÁGINA 23
	PÁGINA 24
	PÁGINA 25
	PÁGINA 26
	PÁGINA 27
	PÁGINA 28
	PÁGINA 29
	PÁGINA 30
	PÁGINA 31
	PÁGINA 32
	PÁGINA 33
	PÁGINA 34
	PÁGINA 35
	PÁGINA 36
	PÁGINA 37
	PÁGINA 38
	PÁGINA 39
	PÁGINA 40
	PÁGINA 41
_	PÁGINA 42
	PÁGINA 43
	PÁGINA 44

PÁGINA 45		
PÁGINA 46		
PÁGINA 47		
PÁGINA 48		
PÁGINA 49		
PÁGINA 50		
PÁGINA 51		
PÁGINA 52		-
PÁGINA 53		
PÁGINA 54		
PÁGINA 55		
PÁGINA 56		
PÁGINA 57		
PÁGINA 58		
PÁGINA 59		
PÁGINA 60		
PÁGINA 61		
PÁGINA 62		
PÁGINA 63		
PÁGINA 64		
PÁGINA 65		

ASESOR MBA Ing. ALEJANDRO VILDOSO FLORES

AGRADECIMIENTO

A nuestros padres, por el apoyo incondicional, durante todo el proceso académico de nuestra formación profesional.

A nuestros docentes, quienes nos transmitieron sus conocimientos y experiencias, contribuyendo así con el logro de nuestros objetivos planteados.

A nuestros amigos, quienes de alguna u otro forma nos han apoyado en el desarrollo y culminación del trabajo de investigación.

Al asesor del proyecto de tesis, el MBA Ing. Alejandro Vildoso Flores, por su experiencia, guía y apoyo en la formulación, el desarrollo y culminación de la presente investigación.

Los autores

DEDICATORIA

A Dios, por guiar y proteger mi camino; a mis padres, por su apoyo y amor incondicional en cada etapa de mi vida, quienes siempre velaron por mi bienestar permitiéndome llegar hasta donde estoy; a mi querida abuela, que siempre está conmigo cuidándome y dándome fortaleza para seguir adelante; a mis tíos, porque con su ejemplo me han inculcado valores y son grandes referentes en mi vida. A toda mi familia, por sus enseñanzas y palabras de aliento; muchas gracias a cada uno de uno de ustedes.

Jhon

A Dios, por acompañarme en todo momento, por darme salud y sabiduría para poder culminar este pequeño gran paso en mi vida profesional. A mi mamá y hermanas, quienes siempre se han preocupado por mi bienestar y son mi mayor motivo para conseguir cada objetivo. A mi abuela, por ser mi segunda madre. A mis tíos, por el apoyo incondicional, alentándome cada día a mejorar y terminar satisfactoriamente esta etapa de mi vida.

Fredy

ÍNDICE

Asesor	xxiv
Agradecimiento	XXV
Dedicatoria	XXV
Índice	xxvii
Índice de tablas	XXX
Índice de figuras	XXX
Resumen	xxxi
Abstract	xxxiii
Introducción	xxxiv
Capítulo I	35
Planteamiento del estudio	35
1.1. Problema de investigación	35
1.1.1. Enfoque internacional	35
1.1.2. Enfoque nacional	37
1.1.3. Enfoque local	38
1.2. Formulación del problema	38
1.2.1. Problema general	38
1.2.2. Problemas específicos	39
1.3. Objetivos	39
1.3.1. Objetivo general	39
1.3.2. Objetivos específicos	39
1.4. Justificación e importancia	39
1.4.1. Justificación	39
1.5. Hipótesis y descripción de variables	41
1.5.1. Hipótesis general	41
1.5.2. Hipótesis específicas	41
1.5.3. Identificación de variables	41
Capítulo II	42
Marco teórico	42
2.1. Antecedentes del problema	42
2.1.1. A nivel internacional	42
2.1.1. A nivel nacional	44

	2.1.2. A nivel local	47
2.2.	Bases teóricas	47
	2.2.1. Carreteras	47
	2.2.2. Subrasante	47
	2.2.3. Estabilización de suelos	49
	2.2.4. Métodos convencionales de estabilización	51
	2.2.5. Cenizas	53
Cap	oítulo III	56
Met	todología	56
3.1.	Método y alcance de la investigación	56
	3.1.1. Tipo de la investigación	56
	3.1.2. Nivel de la investigación	56
	3.1.3. Método de investigación	56
	3.1.4. Diseño de la investigación	57
3.2.	Población y muestra	57
	3.2.1. Población	57
	3.2.2. Muestra	57
	3.2.3. Muestreo.	57
3.3.	Técnicas e instrumentos de recolección de datos	58
	3.3.1. Técnicas de recolección de datos	58
	3.3.2. Técnicas de análisis y procesamiento de datos	70
Cap	oítulo IV	71
Res	ultados y discusión	71
4.1.	Resultados del tratamiento y análisis de la información	71
	4.1.1. Distribución granulométrica	71
	4.1.2. Contenido de humedad	74
	4.1.3. Límites de consistencia	75
	4.1.4. CBR	77
4.2.	Prueba de hipótesis	78
	4.2.1. Prueba inferencial para contenido de humedad	78
	4.2.2. Prueba inferencial para límites de consistencia	81
	4.2.3. Prueba inferencial para CBR	84
4.3.	Discusión de resultados	87
Con	nclusiones	89

Recomendaciones	90
Lista de referencias	91
Anexos	97
Validación de Juicio de Expertos	103

ÍNDICE DE TABLAS

Tabla 1. Número de calicatas para exploración de suelos	58
Tabla 2. Cantidad de muestras de ensayo	58
Tabla 3. Serie de tamices de abertura cuadrada	60
Tabla 4. Distribución granulométrica de calicata 1	71
Tabla 5. Clasificación del suelo de la calicata 1	72
Tabla 6. Distribución granulométrica de calicata 2	72
Tabla 7. Clasificación del suelo de la calicata 2	
Tabla 8. Distribución granulométrica de calicata 3	73
Tabla 9. Clasificación del suelo de la calicata 3	74
Tabla 10. Resumen de contenido de humedad	74
Tabla 11. Límites de consistencia	76
Tabla 12. Resumen de ensayo de relación de soporte de california (CBR)	77
Tabla 13. Prueba de normalidad para el contenido de humedad	79
Tabla 14. Prueba de Anova para contenido de humedad	80
Tabla 15. Comparaciones múltiples para contenido de humedad	80
Tabla 16. Subconjuntos de Tukey para el contenido de humedad	81
Tabla 17. Prueba de normalidad para el índice de plasticidad	82
Tabla 18. Prueba de Anova para el índice de plasticidad	82
Tabla 19. Comparaciones múltiples para el índice de plasticidad	83
Tabla 20. Subconjuntos de Tukey para el índice de plasticidad	84
Tabla 21. Prueba de normalidad para el CBR	85
Tabla 22. Prueba de Anova para el CBR	85
Tabla 23. Comparaciones múltiples para el CBR	86
Tabla 24. Subconjuntos de Tukey para el CBR	86

ÍNDICE DE FIGURAS

Figura 1. Calicata de suelo arcillo	59
Figura 2. Tamices para el ensayo granulométrico	61
Figura 3. SUCS	63
Figura 4. SUCS – identificación en el campo	64
Figura 5. Pesaje del material – ensayo de contenido de humedad	65
Figura 6. Preparación de material para ensayo de límite líquido	67
Figura 7. Hilo de suelo arcilloso – límite líquido	68
Figura 8. Preparación de material para ensayo de CBR	69
Figura 9. Ensayo de CBR 1	69
Figura 10. Ensayo de CBR 2	70
Figura 11. Resumen de contenido de humedad	75
Figura 12. Límites de consistencia	76
Figura 13. Promedio del ensayo de relación de soporte de California (CBR)	78

RESUMEN

Evaluar la influencia de la adición de ceniza de leño de ciprés en la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022. Para el desarrollo del estudio se aplicó el método científico de enfoque cuantitativo, el estudio fue de tipo aplicado y nivel explicativo. La población del estudio estuvo conformada por toda la vía de la carretera Matapuquio – Collpa que comprende un total de km: 18 + 600, donde la muestra se conformó por la zona más crítica de la vía debido a la alta presencia de suelo arcilloso. Durante el proceso experimental se desarrollaron ensayos de caracterización al suelo; además de ello se obtuvo el porcentaje de humedad óptimo, los límites de consistencia y el porcentaje de CBR tanto de la muestra inalterada como de la muestra con adición de ceniza de leño de ciprés. Se excavó un total de 3 calicatas en la zona más crítica de la vía de acuerdo con el Manual de carreteras del MTC. Para la adición de ceniza se tuvo en cuenta 3 tratamientos en diferentes porcentajes (T1 = 5 %, T3 = 10 % y T3 = 15 % de ceniza de leño de ciprés).

Del análisis de los resultados, se evidenció que existe mejora en el índice de plasticidad con el T1 con 5 % de ceniza, ya que el IP > 7 lo que refiere una baja plasticidad del suelo, en cuanto al CBR, el T1 con 5 % de ceniza mejora en un 14.3 % la capacidad resistente del suelo. Finalmente, se llegó a la conclusión que el porcentaje de sustitución óptimo de las cenizas constituye el 5 % de ceniza de leño de ciprés, ya que, para un porcentaje mayor, la mejora de las propiedades físico-mecánicas del suelo en las diferentes muestras no es representativa.

Palabras claves: CBR, ceniza de leño de ciprés, estabilización, subrasante, suelo arcilloso

ABSTRACT

To evaluate the influence of the addition of cypress wood ash in the clay soil subgrade

on the Matapuquio - Collpa road, Andahuaylas, 2022. For the development of the study, the

scientific method of quantitative approach was applied, and the study was of the applied type

and explanatory level. The study population consisted of the entire Matapuquio - Collpa road,

which covers a total of 18 + 600 km, where the sample consisted of the most critical area of the

road due to the high presence of clayey soil. During the experimental process, soil

characterization tests were conducted; in addition the optimum moisture percentage,

consistency limits, and CBR percentage were obtained for both the unaltered sample and the

sample with the addition of cypress wood ash. A total of 3 pits were excavated in the most

critical area of the road according to the MTC Highway manual. Three treatments were

considered for the addition of ash in different percentages (T1 = 5%, T3 = 10% and T3 = 15%

of cypress wood ash).

From the analysis of the results, it was evident that there is an improvement in the

plasticity index with T1 with 5% ash since the PI>7 refers to low soil plasticity. As for the CBR,

T1 with 5% ash improves the soil's resistant capacity by 14.3%. Finally, it was concluded that

the optimum percentage of ash substitution is 5% cypress wood ash, since, for a higher

percentage, the improvement of the physical-mechanical properties of the soil in the different

samples is not representative.

Keywords: CBR, clay soil, cypress wood ash, stabilization, subgrade

xxxiii

INTRODUCCIÓN

Los caminos confirmados a nivel local y regional son una parte importante de la red vial de Apurímac, ya que muchos proyectos están actualmente en construcción y se encuentran en malas condiciones, sujetos a daños estructurales como deformación, agrietamiento, separación, protuberancia o exudación. Por la inoportuna conducta estructural del agregado de mantos que componen el pavimento, el efecto de utilizar materia prima inadecuada. Por tal motivo, en Perú, la utilización de metodologías de estabilización de suelos es uno que se ha utilizado en conjunto con otras técnicas de estabilización y es efectivo para mejorar las condiciones del suelo. Con el fin de mejorar las propiedades físico-mecánicas del suelo, esta investigación presenta una nueva técnica de estabilización de suelos arcillosos utilizando cenizas de leño de ciprés en varias proporciones.

El presente trabajo está dividido en cuatro capítulos: el primero contiene el planteamiento de estudio, la realidad problemática, el planteamiento del problema y su formulación, además de los objetivos tanto principal como específicos, la justificación de trabajo, el planteamiento de la hipótesis y la descripción de las variables.

El capítulo dos trata sobre los antecedentes del trabajo, además de las bases teóricas acerca de las variables de investigación y la definición de términos básicos.

En el capítulo tres se presenta la metodología, donde se redacta el método de investigación utilizado, la población, muestra, técnicas e instrumentos de investigación, así como el procesamiento de datos y su procesamiento hasta antes de la obtención de los resultados.

En el último capítulo se presentan los resultados, la discusión y prueba de hipótesis a través de cuadros de acuerdo con los objetivos planteados, además de los análisis estadísticos realizados a los datos obtenidos para corroborar el nivel de influencia de una variable en otra.

CAPÍTULO I PLANTEAMIENTO DEL ESTUDIO

1.1. Problema de investigación

1.1.1. Enfoque internacional

La arcilla es un suelo cohesivo que puede expandirse y contraerse significativamente en función de su contenido de humedad, lo que puede causar problemas de estabilidad y asentamiento en la subrasante, en ese sentido, la presencia de arcilla en la subrasante de una carretera puede presentar problemas de bajo soporte, inestabilidad y problemas de drenaje (1). Los suelos arcillosos pueden ser una de las causas de la inestabilidad de las vías, lo que a su vez requiere mantenimiento y reparaciones regulares. La presencia de arcilla en la subrasante de las carreteras puede provocar problemas de asentamiento y deformación bajo el peso de la carretera y el tráfico vehicular (2). La estabilización del suelo arcilloso puede ofrecer una serie de beneficios como la mejora en la resistencia al corte del suelo, lo que puede aumentar la capacidad de soporte de la subrasante y reducir los problemas de asentamiento y deformación bajo el peso de la carretera y el tráfico vehicular. Además, la estabilización del suelo puede aumentar la resistencia del suelo al ablandamiento y la deformación causados por la presencia de agua, lo que puede mejorar la durabilidad y la vida útil de la carretera (3).

En ese sentido, Billong et al. (4) señalan que:

La estabilización implica la adición de componentes o sustancias químicas adicionales al suelo, lo que altera sus características ya sea a través de una reacción fisicoquímica o formando una matriz que agrega a los componentes del suelo (p. 2457).

Una de las ideas de investigación más recientes es la estabilización química del suelo mediante métodos de aceleración alcalina, que se perfila como sustituto de los cementantes convencionales (5). Otro tipo de aplicación relacionada con la estabilización de suelos mediante cementos impulsados con álcalis es la mejora de la estabilización de suelos como soleras, revestimientos, revestimientos de diseño de carreteras e inclusive procesos de lijado (6). Al reducir la permeabilidad al agua, aumentar la resistencia al corte, acrecentar la tenacidad al ablandamiento por el ejercicio del agua, reducir la plasticidad y acrecentar el peso unitario de los suelos tratados, la estabilización del suelo puede aumentar la capacidad de carga del suelo y proporcionar estabilidad volumétrica (5). En dicha clase, la estabilización del suelo estriba especialmente de la interacción química del estabilizador y el mineral del suelo para producir el resultado deseado (7).

De acuerdo con Ulate (8) quien manifiesta lo siguiente:

El objetivo de la estabilización del suelo es mejorar las características del suelo en el tiempo teniendo un impacto positivo en ellas. El diseño del procedimiento se basará en la categorización del suelo, lo que ayudará a establecer el tipo y la cuantía del estabilizador por utilizar para tener el resultado esperado en los suelos. (p. 2).

Dicho proceso se desarrolla en el suelo a manera de una serie de métodos químicos y mecánicos que posibilitan la evolución de las diferentes características del suelo, consiguiendo así materiales aptos para el uso previsto (9). Hay suelos de carácter expansivo con hinchamiento, bajando la calidad de los pavimentos, por lo que estabilizar la subrasante es ese paso crucial o muy crucial en la construcción de buenas carreteras (10).

En el contexto internacional, un estudio en Tailandia por Phummiphan et al. (11) concluyen que cuando los suelos lateríticos estabilizados con agentes cementantes activados alcalinamente a base de cenizas volantes se probaron para la resistencia a la compresión no confinada, se descubrió que cumplían con los estándares mínimos de resistencia a los 7 días en circunstancias saturadas para la construcción de vías con volúmenes de tráfico alto y bajo. En Portugal, un estudio por Ríos et al. (12) donde se realizaron un conjunto de ensayos en suelo arenoso mixto reforzados con aditivos de cemento activados con álcali de cenizas volantes tipo F, lo que dio como resultado aumentos significativos en la resistencia y la dureza, la disconformidad más obvia entre este sistema estabilizador y los sistemas convencionales es la rapidez a la

que la mezcla alcanza la firmeza mecánica. Otro estudio en la India por Jittin et al. (13) afirma que la ceniza de cascarilla de arroz se debe agregar a los suelos arcillososarenosos en proporciones de 10 a 20 %, siendo el 20 % la cantidad ideal. También establece que agregar más ceniza a los suelos estabilizados en un rango de 25 a 35 % reducirá el índice de plasticidad del suelo.

1.1.2. Enfoque nacional

En sur del Perú, existen suelos arcillosos que no son adecuados para ser utilizados como cimiento o soporte de estructuras como edificios, puentes o carreteras. Por lo tanto, resulta conveniente reemplazar este tipo de suelo por uno que presente mejores propiedades de firmeza y permeabilidad. Por ejemplo, en la construcción de una carretera, la línea no siempre puede ajustarse a las características de la capa de soporte, por lo que en algunos lugares será necesario tratar el suelo arcilloso para mejorar su resistencia y capacidad de carga. Aunque la estabilización del suelo puede ser una opción viable, es importante considerar los costos y beneficios de la técnica en relación con el proyecto específico y las condiciones del suelo (14).

En consecuencia, la prueba CBR parece ser la prueba más pertinente en la presente investigación. Esta prueba resaltará particularmente la necesidad de estabilizar las muestras obtenidas. La subrasante en todo tipo de área que contemple arcilla significa que sus propiedades son muy específicos en comparación con un suelo normal, lo que lleva a asumir una baja capacidad portante (15). En investigaciones realizadas por Quinte y Cristóbal (16) se encuentra que:

El estudio ha demostrado que el uso de ceniza de eucalipto en arcillas altamente plásticas altera significativamente la estabilidad del suelo, con un aumento del 385,14 % en el valor de CBR y un aumento del 157,94 % en el módulo de elasticidad para suelos con un 10 % de adición de ceniza de eucalipto. Por lo tanto, en conclusión, se recomienda aplicar en los diseños de pavimentos (p. 44).

Por su parte Bueno y Torre (17) en su estudio, se utilizó ceniza de carbón como estabilizador, para mejorar la calidad del suelo con fines de pavimentación. Los investigadores realizaron pruebas para medir los límites de textura, CBR y Proctor, y los resultados fueron muy prometedores, el uso de la ceniza de carbón como estabilizador demostró ser una técnica efectiva para mejorar la calidad del suelo y hacer posible el uso de caminos sin pavimentar.

1.1.3. Enfoque local

En la provincia de Andahuaylas, el suelo es en su mayoría de origen de lluvias, constituido por una acumulación de arcilla, limo, arena y aglomerantes, por lo que es frecuente que la arcilla esté presente cuando se investigan tipos de pavimentación. Puede ser muy flexible y ampliable, por lo que no se recomienda construir ningún tipo de construcción vial en este tipo de terreno, de tal manera que la subrasante es esencialmente significativa porque determina cómo se comportará el pavimento tanto durante la construcción como durante el tiempo que dure su vida útil. Se deben conservar las situaciones excelentes de la subrasante para aguantar las cargas transmitidas por el pavimento, y cuanto mayor sea la calidad del pavimento, más dinero se puede ahorrar sin comprometer la calidad.

Según visita técnica realizada en la vía Matapuquio-Colpa, se observan en arcilla las zonas afectadas antes mencionadas, de donde se desprenden los siguientes problemas: asentamiento diferencial, asentamiento, pozas anidadas, caminos, incomodidad de carrera al acercarse, pérdida de tiempo de viaje en las carreteras, accidentes de tráfico, retrasos en las obras de construcción e inestabilidad de los servicios de transporte debido a la congestión del tráfico. La arcilla, la mala compactación, el mal diseño, la falta de mantenimiento y las lluvias frecuentes son las causas del deterioro de los caminos en el área de estudio. Al mismo tiempo, no se han realizado estudios geomecánicos preliminares en la construcción de carreteras para asegurar la magnitud de las cargas que soportarán.

Adicionalmente, la provincia de Andahuaylas ha experimentado un importante crecimiento poblacional en los últimos años, lo que ha resultado en la necesidad de construir más carreteras. Sin embargo, los terrenos donde se planea construir estas carreteras frecuentemente no cumplen con las especificaciones necesarias, que consiste en estabilizar el suelo para mejorarlo.

1.2. Formulación del problema

1.2.1. Problema general

¿Cómo influye la adición de ceniza de leño de ciprés en la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022?

1.2.2. Problemas específicos

¿Cómo influye la adición de ceniza de leño de ciprés en el óptimo contenido de humedad de la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022?

¿Cómo influye la adición de ceniza de leño de ciprés en el índice de plasticidad de la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022?

¿Cómo influye la adición de ceniza de leño de ciprés en el CBR de la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022?

1.3. Objetivos

1.3.1. Objetivo general

Evaluar la influencia de la adición de ceniza de leño de ciprés en la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022

1.3.2. Objetivos específicos

Identificar la influencia de la adición de ceniza de leño de ciprés en el óptimo contenido de humedad de la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022.

Identificar la influencia de la adición de ceniza de leño de ciprés en el índice de plasticidad de la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022.

Identificar la influencia de la adición de ceniza de leño de ciprés en el CBR de la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022.

1.4. Justificación e importancia

1.4.1. Justificación

1.4.1.1. Justificación social

A nivel social, la investigación realizada tuvo un impacto positivo en la comunidad local. Al utilizar la ceniza de ciprés, que se extrae del mismo lugar, se brindó una nueva opción para la estabilización de las vías de acceso de una manera más ecológica y económica que las tradicionales. Esto redujo los costos de recolección, traslado y distribución, mejorando la calidad de vida de los residentes al hacer más accesibles y seguras las carreteras.

Además, el estudio adaptó la ceniza de ciprés para equilibrar los suelos arcillosos y brindar beneficios técnicos a la industria de la construcción de

carreteras. Esta iniciativa contribuyó a la creación de soluciones económicas y sostenibles para la estabilización de la subrasante de la carretera de bajo tráfico Matapuquio – Collpa, provincia de Andahuaylas. Es importante destacar que los resultados de la investigación tuvieron un impacto en las figuras socioambientales y económicas relevantes en la región, y se espera que las autoridades responsables de estas gestiones tengan en cuenta este estudio al tomar decisiones sobre la infraestructura vial y su mantenimiento.

1.4.1.2. Justificación teórica

Desde el punto de vista teórico, este estudio representó una contribución importante al campo de la estabilización de suelos. Aunque existían diversos métodos de estabilización de suelos como la cal, el cemento, etc., estos habían sido estudiados y utilizados en varios proyectos. Sin embargo, existían pocos estudios que evaluaban el uso de aditivos naturales para la estabilización de suelos, y estos aún no habían sido normados y estandarizados en cuanto a su metodología y aplicación. En este contexto, el estudio se enfocó en evaluar el uso de la ceniza de leño de ciprés como estabilizador de suelo arcilloso. Se trató de un aditivo natural que había recibido poca atención en la literatura científica, y que podría representar una alternativa atractiva y sostenible para la estabilización de suelos. Los resultados del estudio proporcionaron información fundamental para el desarrollo de nuevas técnicas de estabilización de suelos, así como para la mejora de las técnicas existentes. Además, la utilización de un aditivo natural como la ceniza de leño de ciprés podría tener beneficios ambientales y económicos significativos en comparación con los métodos de estabilización convencionales.

1.4.1.3. Justificación práctica

En términos prácticos, la aplicación e implementación de la investigación realizada tuvo un impacto significativo en la carretera Matapuquio - Collpa. Esta mejora en la infraestructura vial tuvo un impacto positivo en la actividad económica de la comunidad, ya que permitió una mejor conexión con otros distritos cercanos y mejoró el nivel de servicio ofrecido a los ciudadanos. Además, la nueva carretera protegió los vehículos de los ciudadanos que transitaban por la zona y abrió nuevas oportunidades para acceder a medios de transporte públicos, lo que facilitó y agilizó la circulación de los ciudadanos.

1.4.1.4. Importancia

La importancia de este estudio es proporcionar una alternativa de solución para mejorar las propiedades mecánicas y físicas de suelos arcillosos. Estas alternativas corresponden al uso de materiales como la ceniza de ciprés derivados de ladrilleras artesanales, por lo que hoy en día las aplicaciones innovadoras de estabilizadores de suelos se encuentran subutilizadas en la provincia de Andahuaylas. Por ello, el estudio se fundamenta en la utilización de estos residuos como estabilizadores de suelos arcillosos, que dan un importante aporte técnico tanto en el aspecto ambiental y económico.

1.5. Hipótesis y descripción de variables

1.5.1. Hipótesis general

La adición de ceniza de leño de ciprés influye significativamente en la subrasante de suelo arcilloso en la carretera Matapuquio - Collpa, Andahuaylas 2022

1.5.2. Hipótesis específicas

La adición de ceniza de leño de ciprés influye significativamente en el contenido de humedad de la subrasante de suelo arcilloso en la carretera Matapuquio - Collpa, Andahuaylas 2022

La adición de ceniza de leño de ciprés influye significativamente en el índice de plasticidad de la subrasante de suelo arcilloso en la carretera Matapuquio - Collpa, Andahuaylas 2022

La adición de ceniza de leño de ciprés influye significativamente en el CBR de la subrasante de suelo arcilloso en la carretera Matapuquio - Collpa, Andahuaylas 2022

1.5.3. Identificación de variables

- Estabilización con ceniza de leño de ciprés
- Subrasante de suelo arcilloso

CAPÍTULO II MARCO TEÓRICO

2.1. Antecedentes del problema

2.1.1. A nivel internacional

Villacís (18), en su estudio, el objetivo fue determinar una comparación de las características de muestras de arcilla expansiva natural y estabilizada y una mezcla de ceniza de cascarilla de arroz y ceniza volcánica de Tungurahua (CV). Para el procedimiento se aplicó el método experimental, lo que incluyó desarrollar análisis físicos y mecánicos en tres especímenes de suelo arcillo expandida y compararlas con especímenes de suelo estabilizado. La estabilización se logra reemplazando el suelo con porcentajes variables de ceniza para inspeccionar los cambios volumétricos. Por ello se utilizan 2 variantes de cenizas, que se combinan a proporciones iguales (50 %-50 % en peso). La prueba se realiza en muestras de suelo en las que el 10 %, 20 % y 30 % de suelo arcilloso se sustituyen por una mezcla de estabilizador y ceniza. Las muestras estabilizadas son más resistentes al corte y tienen mayores ángulos de adhesión y fricción. El óptimo porcentaje de reposición de cenizas es del 20 %. Esto se debe a que los porcentajes más altos no son representativos de las mejoras en las propiedades de la muestra. La muestra de sustituto de ceniza presenta un índice de plasticidad reducido, lo que da como resultado un índice y un potencial de hinchamiento más bajos. Se concluye que el uso de las cenizas en la masa del suelo proporciona una disminución de los efectos de los cambios de volumen característicos de la arcilla expansiva pura, una reducción del límite líquido, una disminución de su peso, una disminución del exponente de hinchamiento, así como un aumento del corte, fuerza y consolidación.

Asfino et al. (19), en su estudio se utilizaron 3 métodos primordiales para examinar la eficacia de la estabilización de cenizas de papel en arcilla. En primer lugar, se investigaron las características físicas de la muestra de suelo. Asimismo, se discute la fuente viable de mezclar diferentes proporciones de suelo. Por último, se examinó la resistencia a la compresión con un medidor de fuerza de presión uniaxial. Luego de combinar la ceniza de papel y los especímenes del suelo en estudio, se encontró que a mayor proporción de ceniza de papel usado, menor es el porcentaje de desperdicio que pasa por el tamiz N.º 200 y el índice de plasticidad. Esto probablemente se deba a que los componentes químicos de la ceniza de papel aplicado ya que se unen a las partículas. Mientras que el potencial de hinchamiento disminuyó levemente a medida que aumentaba el contenido de ceniza de papel recuperada. Asimismo, la resistencia a la compresión aumentó con un aumento en el contenido de cenizas del papel usado en un 5 % y un 10 %.

Ojeda (20), en su estudio, el propósito fue investigar el impacto del uso de ceniza de bagazo de caña de azúcar (CBCA) como reemplazo parcial del cemento Portland compuesto para optimizar las características de los suelos granulares arenosos. Se realizaron pruebas estándar de compresión, AASHTO, resistencia al aplastamiento simple y CBR. Con el fin de comparar la conducta de los suelos naturales estudiados mezclados con 3 %, 5 % y 7 % de cemento portland como porcentaje control, los mismos familiares fueron parcialmente reemplazados con CBCA en porciones de 0 %, 25 %, 50 % y 100 % correspondientes al peso seco del suelo. Conclusiones: El reemplazo parcial del 25 % de CPC por CBCA mostró un desempeño excelente en pruebas de CRB del suelo, resistencia y compactación, y también se mejoraron los suelos con la adición de 7 %, convirtiéndolo en la proporción óptima en suelos arenosos. Esto significa que es factible utilizar CBCA como reemplazo del cemento en forma parcial con el propósito de mejorar las características físico-mecánicas de los suelos en la construcción de capas estructurales de las vías no pavimentadas.

Licuy y Román (21), en su estudio, el propósito fue la estabilización de la arcilla con los grandes rasgos en la provincia de Manabí. Por medio del uso de puzolana de la ceniza del volcán y CCA. Para el análisis muestral se desarrollaron un par de ensayos a los especímenes del suelo, tales como el porcentaje de humedad, granulometría mediante SUCS, compresión del suelo, cortante directa, hinchamiento y absorción. La proporción de puzolana fue de 10 %, 20 %, 10 %, 20 % y ceniza de cascarilla de arroz puzolánica de la misma composición con una dosis del 30 % de ceniza volcánica. En cuanto a las pruebas físicas y mecánicas realizadas, se pudo

obtener como resultados en esta investigación que fue optimo a una tasa de sustitución del 20 %, ya que mostraron un mejor porcentaje en mejorar las características del suelo, pero a una tasa del 30 % no hubo mejora significativa con la sustitución. De acuerdo con los resultados obtenidos en todas las pruebas, se ha comprobado que los mejores resultados de estabilidad se pueden obtener reemplazando un 20 % de puzolana, lo que reduce el valor del índice de expansión de un 34 % a un 62 %, por lo tanto, el uso de estos productos como es la puzolana natural es estable y tiene métodos alternativos para las propiedades del suelo.

2.1.1. A nivel nacional

Quinte y Cristóbal (16), en su estudio, el objetivo fue determinar cambios en la estabilidad del subsuelo tras la adición de ceniza de eucalipto en la zona turística de Junín, Concepción, Piedra Parada en 2021. Se utilizó como metodología el tipo aplicado – explicativo y diseño experimental del método deductivo. La subrasante de la pista calzada de 2182 km en el área turística Piedra Parada sirvió como población de estudio. El resultado final fue un suelo con un 10 % de ceniza de eucalipto que acrecentó la densidad seca máxima en 10,45 %, disminuyó el índice plástico en 54,97 %, aumentó la CBR en 385,14 % y acrecentó el módulo de resiliencia en 157,94 %. Las investigaciones muestran que la estabilidad del suelo es significativamente diferente, ya que el suelo que contiene 10 % de ceniza aumenta el peso seco máximo a 10,45 % el índice plástico disminuye de 54,97 %, el CBR aumenta en 385,14 % y el módulo de elasticidad aumentó en 157,94 %.

Pérez (22), en su estudio tuvo como objetivo identificar el porcentaje de ceniza de sustrato, producto de la albañilería de Cerámicas Júpiter S. A. C. se obtuvo de la quema de la madera y el carbón que se utiliza al cocer los ladrillos en la fábrica. La arcilla se valora para su aplicación como suelo mejorado para caminos. El estudio es de nivel aplicado y exploratorio, y las hipótesis propuestas se prueban a través de una variedad de pruebas físicas y mecánicas enfocadas en la resolución de problemas. Se tomaron cuatro muestras del material, cada una en sus estados naturales y mezcladas con diferentes porcentajes de ceniza de fondo al 30 %, 20 % y 10 % mediante una técnica de muestreo no probabilística intencional. Los análisis utilizados fueron granulométricos, CBR, Proctor, gravedad específica y plasticidad. La adición de cenizas de fondo de la cerámica Júpiter S. A., según los hallazgos mejora las propiedades mecánicas del suelo al reducir el índice de plasticidad, aumentar el porcentaje de CBR y mejorar la consistencia y la gravedad específica del material sólido.

Espino (23), en su estudio, el propósito principal fue identificar cómo la adición de cenizas de madera de fondo en el suelo arcilloso aplicado a las subrasantes afectaba su capacidad de estabilización. La población de la investigación fueron todos los suelos arcillosos que se encuentran en las calles y avenidas de la provincia de Satipo, y la muestra fueron 360 kg de suelo arcilloso de la avenida. La metodología del estudio fue científica, de investigación tipo aplicado, con nivel explicativo, y diseño experimental. Con respecto al porcentaje de agua natural de la arcilla cuando se añadió ceniza de madera al fondo, este contenido de agua disminuyó en comparación con el aumento, y se observó una evaluación similar del índice de plasticidad que este contenido de agua disminuyó con el aumento de la adición de ceniza. Diferentes tratamientos de sitio T₀, T₁ y T₂. En general, se indica que agregar ceniza de madera al fondo tiene un impacto significativo en la densidad seca máxima de la arcilla y, por lo tanto, en la estabilidad de la arcilla aplicada en el suelo. La adición de ceniza de madera de fondo no siempre es mayor, lo que se demuestra junto con la fuerte correlación entre la proporción de ceniza de madera añadida y el contenido de humedad natural, el índice de plasticidad y el valor de CBR, el porcentaje asegura una mejora en los resultados.

Alanya (24), en su estudio, el objetivo de este estudio fue identificar cómo las cenizas de madera de los hornos de ladrillos hechos a mano afectan la estabilidad del suelo arcilloso a lo largo de la red vial del barrio Antarumi-Macachacra en Ayacucho. La investigación es aplicada, el diseño de investigación es no experimental, transversal, y la técnica es la observación sistemática. La población del estudio incluyó todas las pruebas de mecánica de suelos, lo demuestran las pruebas granulométricas, límites de consistencia, Proctor y CBR. Por esta razón, se compararon e interpolaron los resultados de ambos estudios de investigación; en ambos, se utilizó ceniza de madera como aditivo, aunque en diferentes dosis por los autores de cada artículo. Las dosis de 17 %, 21 % y 25 % de ceniza de madera fueron sugeridas para esta investigación con el propósito de conocer nuevos resultados. El resultado principal del estudio evaluó la mejora en las propiedades mecánicas del suelo, por lo que se determinó que la dosis de ceniza de madera propuesta era la más adecuada para la ejecución del estudio. Se concluyó que la incorporación de un 25 % de ceniza de madera mejoró cada propiedad del suelo, aumentando la cohesión en un 18,53 %, aumentando la densidad seca hasta en un 6,20 % y la humedad y carga óptima en un 23,16 %. La capacidad fue del 24,35 %, todos los valores cumplieron con las expectativas del estudio y confirmaron la principal hipótesis.

Torres y Landa (25), en su estudio, el objetivo de aumentar el porcentaje de CBR de la subrasante identificada como inadecuada o pobre, esta investigación tiene como objetivo identificar el porcentaje óptimo de aprovechamiento del material estabilizador, compuesto por cal y ceniza de bagazo de caña de azúcar (CBCA). Para comprender el cambio en la propiedad física y mecánica de la mezcla, es importante comprender cómo la ceniza de bagazo de caña de azúcar (CBCA) influye en el suelo natural de manera similar a como lo hace la cal. Según SUCS y AASHTO, el suelo en la investigación es arcilloso y tiene un índice de plasticidad bajo de A-6 (8). Se ha mezclado con 5 %, 15 % y 25 % de material estabilizador en relación con la masa seca, junto con combinaciones de 100 % de CBCA, 75 % de CBCA y 25 % de cal, 50 % de CBCA y 50 % de cal, y 100 % de cal. Todas las combinaciones indicadas se probaron frente a Proctor y CBR y cada resultado se analizó utilizando un gráfico de líneas de ambas pruebas. El material estabilizador constituye el 5 % de la masa arcillosa seca, lo que resulta en una mejora inmediata y efectiva de la CBR (que aumenta en un 110,81 % en comparación con el suelo natural) y la densidad (que aumenta en un 54,7 % en comparación con el suelo natural). Esta proporción se compone de una mezcla parcialmente combinada de 50 % de cal y 50 % de CBCA que se eligió por razones económicas con una menor aplicación de cal.

Mamani y Yataco (26), en su estudio, el propósito fue cuantificar la contribución de la ceniza de madera de fondo a la estabilización del suelo arcilloso. Se realizó una evaluación de las características físico-mecánica del material arcillo afianzado con ceniza de madera de fondo como parte de un programa de ensayos de laboratorio para lograr este objetivo. Del distrito de Pacaicasa se obtuvo las muestras de suelos arcillosos y cenizas de madera de fondo de hornos de ladrillos artesanales usados en este estudio. De la prueba de límite de densidad se aprecia una mejora en la característica física de la arcilla. Resultados: Según las pruebas de propiedades mecánicas el ensayo Proctor modificado proporciona la máxima densidad y el máximo contenido de humedad, las ventajas de las mezclas producidas, la reducción de la humedad asociada con la adición de Clinker. En cuanto a la prueba de corte directo para determinar el módulo de resistencia, se observa un aumento del 50 %. Conclusiones: Las cenizas de fondo pueden mejorar las propiedades físicas del suelo arcilloso al reducir el índice de plasticidad de la prueba de límite de consistencia y aumentar la gravedad de los sólidos. El suelo arcilloso en estudio también presenta un comportamiento físico-mecánico mejorado después de ser mezclado con ceniza de madera de fondo.

2.1.2. A nivel local

Vargas (27), en su estudio, el propósito fue identificar el efecto de añadir ceniza de Schinus (molle) en la estabilidad base del sendero Yanakillca en la provincia de Apurímac, Antabamba en el año 2022. La investigación fue cuantitativa, del tipo aplicada, con un diseño experimental. Se tomó como muestra la vía de Yanakillca, Antabamba – Apurímac, que se extiende del km 00 000 al km 08 0000 de la vía. Los formatos de pruebas de laboratorio fueron las herramientas utilizadas para la recolección de datos. Los hallazgos del estudio mostraron que agregar 13 % de ceniza de Schinus (molle) en el suelo satisface los criterios enumerados en la sección del Manual de Caminos del Ministerio de Transporte y Comunicaciones sobre suelos, geología, geotecnia y pavimentos. Se concluyó que los porcentajes recomendados mejoraron la característica mecánica del suelo, y la adición de 13 % de ceniza de Schinus (molle) incrementó la capacidad portante. Como resultado, la CBR aumentó de 1,888 % a 22,5 %, de 1,843 % a 22,4 % y de 1,739 % a 21,9 %, del cual se determina que la ceniza de Schinus (molle) aumentó la CBR más de 10 veces. Esto admite ventajas positivas en las compañías constructoras de construcción de carreteras, ya que un excedente se traduce en menores costos de compra de productos y, por lo tanto, en la fase de mantenimiento.

2.2. Bases teóricas

2.2.1. Carreteras

Una infraestructura de transporte útil que permite que los automóviles se muevan continuamente en el área y el tiempo con un nivel adecuado de seguridad y comodidad. Esto puede incluir más carreteras, una o más direcciones de vehículos o uno o más carriles en cada dirección, en función de los requerimientos de la petición de tráfico y su categorización práctica (29).

La manera de vida actual son las vías mecanizadas que ofrece la tecnología, la carretera que da libertad y autonomía. Proporciona un mayor acceso a la comprensión sobre otros pueblos y culturas, las geografías en las que viven, los entornos históricos y artísticos que han construido (30).

2.2.2. Subrasante

La subrasante de una carretera es la superficie de material granular que se ha terminado en la superficie de la tierra y sirve de base para el pavimento propuesto o afirmado de la carretera (31). Se deben tener consideraciones especiales para asegurar que este material esté debidamente conformado, ya que sirve como columna directa de

la estructura en contacto con los vehículos. La durabilidad de la puesta en servicio por lo general será posible gracias a las particularidades ideales de construcción y diseño de la subrasante, el camino está sustancialmente preservado porque prohíbe deformaciones bruscas que podrían causar que el pavimento se rompa o se afirme (25).

La capacidad de la resistencia y la deformación por cortante bajo las cargas del tráfico depende de la subrasante de una carretera, que generalmente es un componente fundamental de la misma, de tal forma que si colapsa, el pavimento también lo hará (32). La capacidad de carga de los sustratos se evalúa utilizando el CBR. Este es el valor estándar aceptado para la resistencia del material y se refiere al 95 % de la densidad seca máxima de la prueba Proctor modificada (33).

Los criterios especificados por la MTC (31) para clasificar los niveles de tolerancia del suelo implementados mediante la prueba de la relación de soporte de California (CBR) se desarrollan libremente de acuerdo con:

- < 3 % CBR de baja calidad
- 3 a 5 % CBR pobre
- 6 a 10 % CBR regular
- 11 a 19 % CBR bueno
- 20 a 29 % CBR buena calidad
- > a 30 % CBR excelente

2.2.2.1. Suelos arcillosos

Las arcillas son comunes en áreas con mucha precipitación y mal drenaje. Este tipo de suelo se caracteriza por un alto contenido de agua y baja resistencia, y cambia de volumen a medida que cambia el contenido de agua de la arcilla (34). La arcilla es compuesta primariamente por un mineral denominado arcilla, que lo hace espeso y pegajoso en presencia de humedad y muy rígido en ausencia de agua. La arcilla consiste o contiene una gran proporción de arcilla, generalmente no apta para el tráfico (33).

Tal como se describe en el Sistema unificado de clasificación de suelos (SUCS), la arcilla es un suelo en el que la arcilla predomina sobre otros tipos de partículas. De manera similar, las arcillas se definen como compuestos minerales de menos de 3,9 µm de diámetro que retienen agua y son plásticas. Este último está asociado con cambios en las potencias formadas entre las

átomos ligeros de átomos adyacentes como consecuencia de su reducción de tamaño debido a la hidratación (35). Esta se compone de caolinita, illita, montmorillonita y otros grupos minerales con constitución octaédrica y tetraédrica; y las propiedades únicas de sus partículas de escamas en un sentido geológico (36).

2.2.3. Estabilización de suelos

La estabilización implica mezclar cantidades suficientes de aditivos en un suelo adherente para originar una reacción química que cementa los compuestos del suelo, lo que aumenta en gran medida la resistividad del suelo. Los estabilizadores generalmente requieren una mayor proporción de aditivos que los modificadores. En síntesis, cuando un suelo se considera firme cuando exhibe una firmeza significativa y duradera a la deformidad cuando se somete a cargas periódicas o perennes en condiciones secas o húmedas (37).

En este proceso se aplica diferentes productos químicos convencionales a los que se pueden añadir algunos materiales tradicionales o nuevos materiales para aumentar la resistencia y otras características mecánicas (38). La estabilización de suelos es un proceso encargado de mejorar las características del suelo a lo largo del tiempo, y tener un efecto positivo sobre el mismo, el diseño de este proceso dependerá de la categorización del suelo, lo que determinará el tipo y cantidad de material estable y por ende afectará en el resultado esperado en el suelo (8). Según el MTC (31) al estabilizar el suelo se aumenta la resistencia mecánica de las características a lo largo del tiempo mediante diversas técnicas, incluida la adición de suelo o la adición de uno o más estabilizadores, y debe ser consistente con la compactación.

En palabras de Hasan et al. (39) con este procedimiento se aumenta la cabida de carga de los suelos locales, aumentar la resistencia al corte, acrecentar la resistencia al reblandecimiento del agua, minimizar la estabilidad a granel debido a la reducción de la porosidad al agua, reducir la blandura y acrecentar el peso unitario del suelo tratado.

Las técnicas más simples de estabilizar un suelo es la compactación y los drenajes del suelo; sin embargo, en algunas situaciones, estos dos métodos son insuficientes para conseguir el mejor afirmado del terreno, por lo que una de las técnicas de estabilización de suelos más eficientes es el perfeccionamiento de la gradación del tamaño de las partículas del suelo. Se pueden utilizar aglutinantes para lograr esto (40).

2.2.3.1. Criterio para la estabilización de suelos

El MTC (31) define 7 parámetros geotécnicos para determinar adecuadamente la estabilidad antes de realizar mejoras en un subsuelo inadecuado o pobre.

- 1. La subrasante con CBR por debajo del 6 % o con humedad localizada o lugares blandos deben someterse a una investigación especial para determinar el procedimiento de estabilización ideal para mejorar, son: estabilizar mecánicamente, substitución del subsuelo, uso de geosintéticos, terraplenes, estabilización aplicando bases de arena o taludes.
- 2. Se corresponderá incluir en la ejecución una capa de material anticontaminante con un espesor mínimo de 10 cm o un geotextil en los casos en que las subrasantes contengan material arcilloso o limoso que al mojarse pueda contaminar las capas granulares del pavimento.
- 3. Para subrasantes extraordinarias o buenas debe estar a 0,60 m sobre la capa freática, bueno y regular es a 0,80 m, de 1,0 m para subrasantes pobres y a 1.20 m para inadecuados.
- 4. Como pauta general, los suelos sujetos a congelamiento son limos y aquellos que tienen menos del 3 % del peso en material de tamaño menor a 0.02 mm. Por lo que, si hay heladas (en zonas por encima de los 4000 m s. n. m.), se examina el efecto congelante de la subrasante, ya que la superficie del terreno se retira al máximo de la napa freática.

2.2.3.2. Proceso de estabilización subrasante con aditivos

Los aditivos para estabilizar los suelos se usan comúnmente en áreas donde predominan los finos y casi no hay canteras naturales, como es en el caso de la sierra en el Perú. Al respecto, el MTC (31) muestra un procedimiento típico para realizar correctamente este forma de estabilizar, el cual se resume a continuación.

 En la primera fase se ejecuta el procedimiento de escarificado 1 y el proceso de pulverización antes de usar la mezcla en el mismo lugar para homogeneizar el diámetro de las partículas de suelo y prepararlas para su procesamiento.

- En la segunda fase, aplicar el aditivo sobre el suelo escarificado y añadir agua a tantas superficies como sea viable.
- En la tercera fase, se retira la tierra con una motoniveladora u otro equipo hasta que la mezcla del suelo, aditivos y agua sea homogénea.
- En la cuarta fase se ejecuta una compactación controlada para lograr la densidad deseada, cuyo valor varía del 95 % al 100 % de la densidad seca máxima del ensayo Proctor estándar o modificado.
- En la quinta fase, el suelo tratado se somete a un proceso de endurecimiento, que monitorea gradualmente las condiciones de la carretera hasta que el material adquiere las propiedades especificadas.

2.2.4. Métodos convencionales de estabilización

De acuerdo con Rivera y Mejía (5) la estabilización del suelo viene a ser el procedimiento para potenciar la calidad natural del suelo con el fin de lograr propiedades físicas, químicas y mecánicas estables asociadas con las condiciones ambientales, mediante estos procedimientos para estabilizar, se pueden cambiar más de una propiedad del suelo como expansión controlada, mayor resistencia, plasticidad reducida, permeabilidad reducida, protección contra la erosión, etc.

2.2.4.1. Estabilización física y mecánica

Estabilizar físicamente implica cambiar las propiedades del suelo alterando ciertas propiedades y dándole así nuevas propiedades estructurales. El procedimiento físico involucra el uso de materiales llamados geosintéticos, como los geotextiles, mayormente hechos de fibras sintéticas como el polipropileno o el poliéster, geomallas, geomembranas, láminas polimérico-impermeables elaboradas en cloruro polivinilo o polietileno de baja o alta densidad (41).

De acuerdo con Das (42) estabilizar mecánicamente implica la compactación estática o dinámica del suelo con el fin de incrementar su densidad, reducir la porosidad, resistencia mecánica y la permeabilidad. También se puede premezclar diferentes variedades de suelo para obtener las especificaciones correctas. Los propósitos de ingeniería del procedimiento fueron esencialmente:

- a) incrementar su capacidad portante
- b) reducir el asentamiento de la estructura
- c) controlar los cambios de volumen no deseados
- d) reducir la permeabilidad al agua
- e) incrementar la estabilización de taludes

2.2.4.2. Estabilización química

Para estabilizar químicamente los suelos se usa mediante métodos de activación alcalina es una de las últimas propuestas de estudio que surgen como alternativa a los cementos tradicionales, los estudios realizados ha logrado avances significativos en la evaluación de las propiedades mecánicas y la estabilidad del suelo, en relación con el medio ambiente, el cemento alcalino activado se considera teóricamente una alternativa más sostenible que el cemento convencional, ya que consume menos energía durante la producción y utiliza residuos de ciertos precursores o producidos industrialmente (cenizas y escorias de alto horno, etc.) con el fin de producir, facilitando así el aprovechamiento de los recursos naturales (43).

Para la estabilización química consiste en la adición al suelo de productos o materiales químicos que influyen sus características mediante reacciones fisicoquímicas u originan una matriz que queda unida a las partículas del suelo (4). Esta manera de estabilización, los materiales químicos se mezclan con el material del suelo y alteran la estructura interna del suelo mediante reacciones fisicoquímicas o mediante la creación de una matriz que une las partículas del suelo (5).

A. Estabilización de suelos utilizando cenizas volantes

Debido a las desventajas económicas y ambientales asociadas con la cal y el cemento portland, las cenizas volantes se utilizan como material para la estabilización de suelos, lo que motiva muchos estudios sobre estos subproductos para desarrollar nuevos cementantes ambientalmente sostenibles para diversas necesidades técnicas. Sus aplicaciones se usaban como aditivos en productos de concreto y cemento; más tarde comenzaron a utilizarse como materiales de relleno estructural para terraplenes; y finalmente como estabilizadores de suelo en la construcción de carreteras (44).

Según el tipo de carbón utilizado para la combustión, las cenizas volantes se dividen en cenizas tipo F y cenizas tipo C (ASTM C618); la ceniza tipo F consiste en óxidos de silicio, aluminio y hierro (SiO₂, Al₂ O₃, Fe₂ O₃, respectivamente), donde representa el 70 % del material y un contenido muy bajo de óxido de calcio (CaO) menos del 10 %, mientras que la ceniza Clase C tiene un contenido de CaO de más del 30 % y un contenido alto de óxido de azufre (SO₃) (45).

De acuerdo con Kim et al. (46) la resistencia al corte del suelo estabilizado con cenizas volantes se asigna a las características del ángulo de fricción interno de las cenizas volantes tipo F, ya que la resistencia resultante está relacionada con la fricción entre sus partículas, aunque para las cenizas volantes tipo C, están más asociadas a la resistencia cohesiva debido a su elevada capacidad de cementación. Un trabajo por Joshi et al. (47) cuando se usa suelos arcillosos se estabiliza como base o subbase para pavimentos flexibles, el valor de CBR, el módulo de resistencia y la resiliencia la compresión no aumentan directamente con el aumento del contenido de cenizas en la mezcla del suelo, solo se aplica a materiales estables, permite capas más delgadas y proporciona un diseño de pavimento más económico.

2.2.5. Cenizas

La ceniza es un producto de una reacción química que ocurre al quemar cualquier materia prima (madera) que sea de naturaleza inorgánica. Frecuentemente se mezcla con impurezas de otros minerales (24).

La ceniza muy fina es un subproducto del proceso de combustión del carbón pulverizado, comúnmente relacionado con las centrales eléctricas. Asimismo, es un polvo de grano fino que consiste de sílice, óxido de aluminio y varios óxidos y álcalis; también tiene propiedades puzolánicas y tiende a reaccionar con la cal hidratada para formar componentes cementosos (42).

2.2.5.1. Clasificación de tipos de ceniza

A. Ceniza volante

Este tipo de ceniza se suele encontrar a manera de polvo o arena muy fino, al tacto es suave y de color gris claro, dependiendo de la proporción de hierro a carbón sin quemar. Sus propiedades físicas y su cualidad van a depender de varios factores, incluyendo la estructura química de los

componentes no combustibles del carbón, el grado de pulverización, el tipo de caldera, el temple de combustión y el tipo de colector utilizado (48).

En general, la textura fina que se ubica en las cenizas volantes (sin triturar) es parecido a la del cemento Portland común, con dimensión de partículas que van desde 0,2 a 200 micras de grosor, y solo en algunos casos alcanzan las 500 micras. La consistencia total es de unos 0,89 g/cm³ aproximadamente. La gravedad peculiar de las moléculas finas oscila entre 2,0 y 2,9 g/cm³ (49).

B. Ceniza de fondo

Esta ceniza tiene moléculas angulosas en su estructura, y su superficie tiene una textura muy áspera y porosa. Las dimensiones de las partículas varían entre arena y grava finas, con un bajo índice de finos; principalmente un material graduado dominado por la dimensión de arena fina (24).

Esta ceniza incorpora una parte de ceniza gruesa producida en las cámaras de combustión inferior y primaria. A menudo se combina con escoria de minerales ubicados en el combustible (48). La ceniza de fondo consiste en la fracción de ceniza gruesa formada en la cámara de combustión principal e inferior. A menudo se combina con impurezas minerales presentes en el combustible, como lodos. Los residuos arrastrados por los ases de combustión en el horno, por lo que cae al fondo del horno y se disocia de manera mecánica. Las cenizas de fondo constituyen la mayoría (60 %) de toda la ceniza de la combustión de carbón y madera (26).

2.2.5.2. Ceniza de leño de ciprés

El ciprés es un árbol grande, tiene una forma cónica y de copa estrecha. Esta especie es una planta monoica, la mayor parte de su vida es verde, aromática y resinosa, el tallo tiene un diámetro que mide más de 100 cm y llega a obtener hasta 40 m de altura, con una corteza delgada, fibrosa, puede separarse en tiras estrechas y largas de color marrón, las hojas son de color verde oscuro, simples y opuestas, presentan distintas formas y tamaños en forma de escamas de 1-2 mm de largo, las hojas marchitas perduran en el árbol (50).

Los tallos (leña) se utilizan como combustible para la elaboración de ladrillos artesanales, de los que se consigue la ceniza del leño de ciprés. Por su composición química, las cenizas contienen un alto contenido de elementos puzolánicas, como el dióxido de silicio (SiO₂) y otros óxidos, que originan actividad puzolánica, lo que permite su uso como estabilizador de suelos o como material cementante en morteros.

La ceniza de madera tiene varios beneficios en la industria de la construcción porque posee elementos del cemento como: CaO (óxido de calcio) y SiO₂ (óxido de silicio). Si la ceniza se usa como material de relleno, la utilidad de la ceniza vendrá a relevancia debido a la gran cantidad debido a las extensas magnitudes de tierra, y también se reducirán los vertederos de ceniza para mejorar el entorno ambiental. El beneficio que se percibe al usar ceniza de madera como material de estabilización está relacionado con el costo, ya que la estabilización con ceniza de madera reduce los costos de transporte debido a la entrega de material de cantera y el reemplazo de la subrasante (24).

CAPÍTULO III METODOLOGÍA

3.1. Método y alcance de la investigación

3.1.1. Tipo de la investigación

El tipo de investigación es aplicado, ya que utiliza conocimientos definidos y anteriores para obtener nuevos conocimientos y así crear nuevas técnicas y métodos para resolver dificultades inmediatos en la realidad (51).

3.1.2. Nivel de la investigación

El nivel de la investigación es explicativo, de acuerdo con Hernández y Mendóza (52) su objetivo es atender a los eventos causales y fenómenos físicos, y se orienta en describir por qué ocurren los fenómenos y en qué circunstancias se comportan, o por qué más de dos variables están relacionadas.

3.1.3. Método de investigación

El método de la investigación es científico, a jucio de Hernández-Sampieri y Mendóza (52) Se considera un grupo de métodos empíricos y sistemáticos utilizados para estudiar fenómenos. Y de enfoque cuantitativo, según Hernández y Mendóza (52) ya que los resultados y los datos que se obtienen están sujetos a análisis estadístico porque son datos numéricos obtenidos de la recopilación de datos basada en instrumentos estandarizadas y, por lo tanto, se pueden medir y demostrar si son válidos y confiables.

3.1.4. Diseño de la investigación

El diseño de investigación será cuasiexperimental, según Hernández et al. (51) indican que al menos una variable independiente se manipula deliberadamente para ver la influencia sobre las variables dependientes, en lugar de asignar o emparejar sujetos al azar en grupos, estos grupos se forman antes del experimento.

X = tratamiento

3.2. Población y muestra

3.2.1. Población

La población de estudio estuvo compuesta por los suelos de la carretera Matapuquio-Collpa, que abarca una longitud total de 18.6 kilómetros y conecta los centros poblados de Matapuquio y Collpa. Según Mejía (53) menciona que una población viene a ser un grupo de análisis de estudio divididos por investigadores de acuerdo con parámetros establecidos y requisitos de investigación.

3.2.2. Muestra

La muestra del estudio se conformó por el suelo de la subrasante ubicada en la progresiva (Km: 15 + 100 - Km 18 + 300), la elección de esta progresiva se debe a que el lugar se encuentra la zona más crítica de la vía debido a la alta presencia de suelo arcilloso.

3.2.3. Muestreo

Se aplicó un muestreo no probabilístico mediante la realización de pozos exploratorios de 1,5 m. considerando la profundidad mínima según el Manual de carreteras de MTC, donde se va a determinar las propiedades físico-mecánicas del material subrasante sobre el que se realiza la investigación (31), el número mínimo de calicatas por kilómetro estará definido de acuerdo al tipo de carretera.

Tabla 1. Número de calicatas para exploración de suelos

Carreteras de bajo volumen de tránsito: carreteras con un IMDA ≤ 200 veh./día, de una calzada

1.50 m respecto al nivel de subrasante del proyecto

• 1 calicata x km

Nota: se tuvo en cuenta el tipo de carretera establecido en la RD 037-2008-MTC/14 y el Manual de Ensayo de Materiales del MTC

De acuerdo con lo descrito, la zona crítica de la vía comprende un total de 3 kilómetros por lo que se trabajó bajo 3 calicatas y según la normativa se realizó de la siguiente manera:

Tabla 2. Cantidad de muestras de ensayo

	(Calicata	1	(Calicata	2		Total		
	M1	M2	M3	M1	M2	M3	M1	M2	M3	
Muestra patrón	01	01	01	01	01	01	01	01	01	09
T1	01	01	01	01	01	01	01	01	01	09
T2	01	01	01	01	01	01	01	01	01	09
Т3	01	01	01	01	01	01	01	01	01	09
Total										36

En ese sentido se puso a ensayo 36 muestras.

3.3. Técnicas e instrumentos de recolección de datos

3.3.1. Técnicas de recolección de datos

En este estudio, se empleó la técnica de observación directa para recopilar datos sobre el proceso de adición de ceniza de leño de ciprés a un suelo arcilloso. Según Tamayo (54), las observaciones directas son aquellas en las que los investigadores observan y registran los datos a través de sus propias percepciones. En este caso, los investigadores observaron directamente el proceso de adición de ceniza de leño de ciprés al suelo arcilloso para analizar su efecto en las propiedades físicas y mecánicas del suelo.

3.3.1.1. Recojo de material arcilloso de campo

Las calicatas o pozos y las trincheras son excavaciones que autorizan la observación directa del terreno donde se ejecuta la toma de muestra y la ejecución de ensayos in situ. También cabe señalar que las muestras obtenidas

pertenecen al tipo de muestras alteradas en bolsa de plástica (Ministerio de vivienda construcción y saneamiento, 2018).

De acuerdo con el Manual de ensayo de materiales MTC, se recomienda obtener materiales de muestra de 50 a 200 kg para establecer las características del material. Respecto a la profundidad de excavación de calicatas de carreteras, áreas o aeropuertos de aparcamientos, debe ser al menos 1,5 m por debajo de la subrasante (Ministerio de Transportes y Comunicaciones, 2016).

De acuerdo con las características del suelo antes mencionadas, la cantidad de material obtenido fue de 200 kg. además, el Manual de Carreteras - Suelos y pavimentos indica que se recomienda una calicata por cada km de carretera, para vías con poco tráfico. Por esta razón, en este estudio se ejecutó una calicata en la subrasante de la carretera.

En la siguiente figura, se pueden observar las calicatas realizadas en diferentes progresivas:

Figura 1. Calicata de suelo arcillo

Se muestra la imagen correspondiente a la excavación de la calicata 1 (C-1) de suelo arcillo, cuya ubicación es la progresiva km: 42+250 en la

carretera Matapuquio – Collpa del distrito de Kishuara, de la provincia de Andahuaylas.

3.3.1.2. Análisis granulométrico

El Manual de ensayo de materiales establece que se debe obtener una muestra representativa para la realización de ensayos que se ejecuten. Asimismo, señala que la determinación de la granulometría del suelo por tamizado (MTC E 107) debe realizarse de acuerdo con la norma ASTM D 422, ya que el propósito del ensayo es establecer el porcentaje de suelo donde pasan por varios tamices de la serie utilizada en los ensayos, hasta el tamiz número 200 (74 mm).

Del mismo, presenta la serie de tamices a emplear, tal como se muestra en la tabla siguiente (33).

Tabla 3. Serie de tamices de abertura cuadrada

Tamices	Abertura (mm)
3"	75 000
2"	50 800
1 ½"	38 100
1"	25 400
3/4"	19 000
3/8"	9500
N.° 4	4760
N.° 10	2000
N.° 20	0,840
N.° 40	0,425
N.° 60	0,260
N.° 140	0,106
N.° 200	0,075

Fuente: Ministerio de Transportes y Comunicaciones (33)

Figura 2. Tamices para el ensayo granulométrico

Procedimiento de ensayo:

Análisis por medio de tamizado de la fracción retenida en el tamiz de $4.760~\mathrm{mm}$ (N.º 4)

- Use un tamiz para separar la porción de la muestra que queda en el tamiz N.º 4.
- Para tamizar el material a mano, mueva la malla de lado a lado con un movimiento circular. Los tamices mecánicos deben funcionar durante diez minutos.
- 3. Para determinar el peso de cada fracción con una precisión del 0,2 %, el peso de todas las fracciones se suma al peso original de la muestra y la diferencia no debe ser superior al 0,2 %.

Análisis granulométrico de las fracciones finas:

- 4. El análisis del granulométrico se puede realizar en el material que pasa por el N.º 4 (4760 mm) mediante tamizado o sedimentación. En este caso, se hace por tamizado.
- 5. Para materiales arenosos con una pequeña cantidad de limo y arcilla, las piezas se trituran y tamizan hasta secarlas.
- 6. Para el material que pasa por el tamiz N.º 200 (0,074 mm), el material se lavó y se pasó por un tamiz seco para su análisis, después se pesó el material seco.

En las siguientes figuras, se muestra la clasificación de los suelos según SUCS y AASHTO.

SISTEMA UNIFICADO DE CLASIFICACIÓN DE SUELOS (S.U.C.S.) INCLUYENDO IDENTIFICACIÓN Y DESCRIPCIÓN

	DIVISIÓN MAYOR						NOMBRES TÍPICOS	CRITER	CRITERIO DE CLASIFICACIÓN EN EL LABORATORI					
		gnesa es 4	0	LIMPIA nada de as finas	simb ^o GV		Gravas bien graduadas,mezclas de grava y arena con poco o nada de finos	MÉTRICA, S SUELOS del 12%:	COEFICIENTE DE UNIFORMI COEFICIENTE DE CURVATU $Cu = D_{60}/D_{10}$	IDAD Cu: mayor de 4. RA Cc: entre 1 y 3. $Cc = (D_{30})^2 / (D_{10})(D_{60})$				
нето 200 ⊕		GRAVAS Más de la mitad de la fracción gruesa es retenida por la malla No. 4	cm. COM A No. 4	GRAVAS LIMPIA Poco o nada de partículas finas	GP		Gravas mal graduadas,mezclas de grava y arena con poco o nada de finos	GRANULO! No. 200) LO! V,SP; más dobles **	NO SATISFACEN TODOS LOS REQUISITOS DE GRADUACIÓN PARA GW.					
SUELOS DE PARTÍCULAS GRUESAS Más de la mitad del material es retenido en la malla número 200 ⊕	ple vista.		PARA CLASIFICACIÓN VISUAL PUEDE USARSE ½ cm. COMO EQUIVALENTE A LA ABERTURA DE LA MALLA No. 4	GRAVA CON FINOS Cantidad apreciable de partículas finas	* d u		Gravas limosas, mezclas de grava, arena y limo	DETERMÍNER LOS PORCEYTAIS DE GRAVA Y ARENA DE LA CURVA GRANLLOMÉTRICA, DEPENDIRENCA, DEPENDIRENCA, DE PORCEYTAIS DE FORMANCA DE PROST MAN EN PARA DE LA CORTAGO CONTINUE NE CASTRICAN COMO SIGILE. Menos del 56.60W.CPSM.ST. int. del 17%, GAGGN.CRANCE, Enne 5%, 12%, Casos de frontex que requieren el mode simbolas dobies ** int. del 17%, CAGGN.CRANCE, Enne 5%, 12%, Casos de frontex que requieren el mode simbolas dobies **	LÍMITES DE ATTERBERG ABAJO DE LA "LÏNEA A" O LP. MENOR QUE 4.	Arriba de la "línea A" y con I.P. entre 4 y 7 son casos de				
SUELOS DE PARTÍCULAS GRUESAS tad del material es retenido en la malla nú	sibles a sim		PUEDE U	GRAV/ FIN Cantidad ap particul			Gravas arcillosas,mezclas de gravas,arena y arcilla	Y ARENA D acción que pas Menos del ae requieren el a	LÍMITES DE ATTERBERG ARRIBA DE LA "LÎNEA A" CON LP. MAYOR QUE 7.	frontera que requieren el uso de símbolos dobles.				
DE PART sterial es re	equeñas vi	ARENAS Más de la mitad de la fracción gruesa pasa por la malla No. 4	N VISUA LA ABER	ARENA LIMPIA Poco o nada de partículas finas	SW	Arenas bien graduadas, arena con gravas, con poca o nada de finos.		DE GRAVA DE FINOS (fi 10 SIGUE: de frontera qu	$Cu = D_{66}/D_{10} \ \ mayor \ de \ 6 ; \ \ Ce = (D_{50})^2/(D_{10})(D_{60}) \ \ entre \ 1 \ y \ 3.$					
SUELOS tad del ma	las más p		FICACIÓ LENTE A	ARENA Poco o partícu	SP		Arenas mal graduadas, arena con gravas, con poca o nada de finos.	RCENTAJES RCENTAJE ICAN CON v 12% Casos	No satisfacen todos los requ	isitos de graduación para SW				
íás de la mi	adamente,		RA CLASI EQUIVAI	ARENA CON FINOS Cantidad apreciable de partículas finas	* SM	d u	Arenas limosas, mezclas de arena y limo.	ESE LOS POI ADO DEL POI SE CLASIF SC. Entre 5%	LÍMITES DE ATTERBERG ABAJO DE LA "LÏNEA A" O I.P. MENOR QUE 4.	Arriba de la "línea A" y con I.P. entre 4 y 7 son casos de				
Σ	on, aproxin		PA	PA	PA	ARENA O Cantidad at partícul	SC		Arenas arcillosas, mezclas de arena y arcilla.	DETERMÍN DEPENDIES GRUESOS GM, GC,SM,	LÍMITES DE ATTERBERG ARRIBA DE LA "LÎNEA A" CON I.P. MAYOR QUE 7.	frontera que requieren el uso de símbolos dobles.		
•	No.200) so	LIMOS Y ARCILLAS	.0		ML	,	Limos inorgánicos, polvo de roca, limos arenosos o arcillosos ligeramente plásticos.	C – Arcilla	S – Arena, O – Suelo Orgánico, W – Bien Graduada, P – Mal ilidad, H – Alta Compresibilida	Graduada, L – Baja				
S úmero 200	o (la malla		Límite Líquido	menor de 50	CL OL		Arcillas inorgánicas de baja o media plasticidad, arcillas con grava, arcillas arenosas, arcillas limosas, arcillas pobres.	9	CARTA DE PLASTICIDAD (S.U.C.S.)					
LAS FINA r la malla n	de diámetr		ī	п			Limos orgánicos y arcillas limosas orgánicas de baja plasticidad.	50						
PARTÍCU	e 0.074 mm	LIMOS Y ARCILLAS	9		МН		Limos inorgánicos, limos micáceos o diatomáceos, más elásticos.	40		35.5.5				
SUELOS DE PARTÍCULAS FINAS Más de la mitad del material pasa por la malla número 200 ⊕	.as partículas de 0.074 mm de diámetro (la malla No.200) son, aproximadamente, las más pequeñas visibles a simple vista		Límite Líquido	Mayor de 50			Arcillas inorgánicas de alta plasticidad, arcillas francas.	30	Я					
St is de la mita	Las p	ГІМО	11	V	ОН		Arcillas orgánicas de media o alta plasticidad, limos orgánicos de media plasticidad.	10	CI OI OI	300				
W		AL	SUELO TAME! GÁNIC	NTE	P		Turbas y otros suelos altamente orgánicos.	0 1	0 20 30 40 50 LL.%	60 70 80 90 100				

^{**} CLASIFICACIÓN DE FRONTERA- LOS SUELOS QUE POSEAN LAS CARACTERÍSTICAS DE DOS GRUPOS SE DESIGNAN CON LA COMBINACIÓN DE LOS DOS SÍMBOLOS; POR EJEMPLO GW-GC, MEZCLA DE ARENA Y GRAVA BIEN GRADUADAS CON CEMENTANTE ARCILLOSO.

** TODOS LOS TAMAÑOS DE LAS MALLAS EN ESTA CARTA SON LOS US. STANDARD.

** LA DIVISIÓN DE LOS GRUPOS GM Y SM EN SUBDIVISIONES d'Y u SON PARA CAMINOS Y AEROPUERTOS UNICAMENTE, LA SUB-DIVISIÓN ESTA BASADA EN LOS LÍMITES DE ATTERBERG EL SUFIJO d SE USA CUANDO EL LL. ES DE 28 O MENOS Y EL LP. ES DE 6 O MENOS. EL SUFIJO U ES USADO CUANDO EL LL. ES MAYOR QUE 28.

Figura 3. SUCS

Sistema USCS de Clasificacion de Suelos

IDENTIIFICACION EN EL CAMPO					SIMBOLO DEL GRUPO	% PASA 0.008MM	NOMBRES TIPICOS		CRITERIOS DE CLASIFICACION EN EL LABORATORIO						
200)	SMM	GRAVAS LIMPIAS (CON POCOS FINOS O SIN ELLOS)	AMPLIA GAMA DE TAMAÑ LOS TA	IOS Y CANTIDADES AMAÑOS INTERMEI		GW	< 5	GRAVA BIEN GRADUADA, MEZCLA DE GRAVA Y AREAN CON POCOS FINOS O SIN ELLOS	AMPO	CCION		1	RE EN EL S (GW-GC, MIZ #200	$Cu = \frac{D60}{D10}$ MAYOR QUE 4	$Cc = \frac{D30^2}{D60*D10}$ ENTRE 1 Y 3
TAMIZ# 2	GRAVAS < 50% PASA 0.05MM (TAMIZ # 4)	GRAVAS (CON FINOS	PREDOMINIO DE UN TAMAÑO O UN TIPO DE TAMAÑO, CON AUSENCIA DE ALGUNOS TAMAÑOS INTERMEDIOS			GP		GRAVA MAL GRADUADA, MEZCLA DE ARENA Y GRAVA CON POCOS FINOS O SIN ELLOS	N EN EL C	DETERMINESE LOS PORCENTAJES DE GRAVA Y ARENA A PARTIR DE LA CURVA GRANULOMETRICA SEGÚN EL PORCENTAJE DE FINOS (FRACCION QUE PASA POR EL TAMIZ# 200), LOS SUELOS GRUESOS SE CLASFICAN COMO SIGILE:	GW, GP, SW, SP	J, SC	COUNTE TA	NO SATISFACEN TODOS LOS REQU	JISITOS GRANULOMETRICOS DE LAS GW (GP > 3) - (GW = Cu > 4 y Cc = 1 a 3)
PASA 0.08MM (TAMIZ#	VAS < 509 (TAN	GRAVAS CON FINOS (CANTIDAD APRECIABLE DE FINOS)	FRACCION FINA NO PLASTICA (PARA LA IDENTIFICACION VER EL GRUPO ML, MAS ABAJO)			GM	> 12	GRAVAS LIMOSAS, MEZCLA MAL GRADUADAS DE GRAVA ARENA Y LIMO	COLUMNA DE IDENTIFICACION EN EL CAMPO	ARENA A TAJE DE FI RUESOS SI	GW, GF	GM, GS,	LIMITES QUE RE DE SIMBOLOS E SW-SW SP-SC	DE LA LINEA A O IP MENOR QUE 4 (IP = 0.73 (WI - 20) < 4	POR ENCIMA DE LA LINEA A CON Ip ENTRE 4 Y 7; CASOS LIMITES QUE REQUIEREN EL USO DE
50% PASA (GRA	GRAV FIP (CAN APRECI	FINOS PLASTICOS (PARA IDENTIFICARLOS VER EL GRUPO CL MAS ABAJO)			GC		GRAVAS ARCILLOSAS, MEZCLA MAL GRADUADAS DE GRAVA, ARENA Y ARCILLA		GRAVA Y, PORCENI SUELOS GE			CASOS I EMPLEO I GP-GM	LIMITES DE ATTERBERG POR DEBAJO DE LA LINEA A O Ip MAYOR QUE 7 (Ip = 0.73 (WI - 20) > 7	SIMBOLOS DOBLES
GRUESO < 50	SMM	ARENAS LIMPIAS (CON POCOS FINOS O SIN ELLOS)	AMPLIA GAMA DE TAMAÑOS Y CANTIDADES APRECIABLES DE TODOS LOS TAMAÑOS INTERMEDIOS		sw	- 5	ARENAS BIEN GRADUADA, ARENA CON GRAVA, CON POCOS FINOS O SIN ELLOS	DETERMINESE LOS PORCENTAJES DE GRAVA Y ARENA . CURVA GRANULOMETRICA SEGÚN EL PORCENTAJE DE QUE PASA POR EL TAMIZ # 200) LOS SUELOS GRUESOS COMO SIGUE:					$Cu = \frac{D60}{D10}$ MAYOR QUE 6	$Cc = \frac{D30^2}{D60*D10}$ ENTRE 1 Y 3	
DE GRANO GR	ARENAS > 50% PASA 0.05MM (TAMIZ # 4)		PREDOMINIO DE UN 1 AUSENCIA DE AL	TAMAÑO O UN TIPO GUNOS TAMAÑOS		SP	<5	ARENA MAL GRADUADAS, ARENA CON GRAVA, CON POCOS FINOS O SIN ELLOS	≤	S PORCEN METRICA: TAMIZ #:	MENOS DEL 5%	MAS DEL 12%	5% AL 12%	Cc = 1 a 3) - (Si	OS GRANULOMETRICOS DE LAS SW (SW = Cu > 6 y P = Cu ≤ 6 y Cc < 1 o Cc > 3)
SUELO DE G	NAS > 50% (TAIN	ARENAS CON FINO (CANTIDAD APRECIABLE DE FINOS)	FINOS NO PLASTICOS (PAR	RA IDENTIFICARLOS ABAJO)	VER EL GRUPO ML MAS	SM	> 12	ARENAS LIMOSAS, MEZCLAS DE ARENA Y LIMO MAS GRADUADA		INESE LOS GRANULOI SA POR EL IGUE:	MENOS	MASD	5% A	LIMITES DE ATTERBERG POR DEBAJO DE LA LINEA A O IP MENOR QUE 4	POR ENCIMA DE LA LINEA A CON Ip ENTRE 4 Y 7; CASOS LIMITES QUE REQUIEREN EL USO DE
ns	ARE	ARENAS FINO (CAN APRECIAE FINO	FINOS PLASTICOS (PARA	A IDENTIFICARLOS V ABAJO)	sc		ARENAS ARCILLOSAS, MESZLAS MAL GRADUADAS DE ARENAS O ARCILLAS	DE SUELC	DETERN CURVA (QUE PA! COMO S				LIMITES DE ATTERBERG POR DEBAJO DE LA LINEA A O Ip MAYOR QUE 7	SIMBOLOS DOBLES	
		METODOS DE IDENTIFICACION PARA LA FRACCION QUE PASA POR EL TAMIZ # 40							NES						
#200)		LIMITE E 50	RESISTENCIA EN ESTADO SECO (A LA DISGREGACION)	DILATACION (REACCION A LA AGITACION)	TENACIDAD (CONSISTENCIA CERCA DEL LIMITE PLASTICO)				FRACCIO					LINEA A :	(WL - 20)
M (TAMIZ		AS CON L	NULA A LIGERA	RAPIDA A LENTA	NULA	ML	PLOVO D ARCII	ORGANICOS Y ARENAS MUY FINAS, E ROCA, ARENAS FINAS LIMOSAS O LLAS CON LIGERA PLASTICIDAD	CAR LAS	9	60	Fo		RANDO CON SUELOS	
50% PASA 0.08MM (TAMIZ #200)		OS Y ARCILLAS CON LIM LIQUIDO MENOR DE 50	MEDIA A ALTA	NULA A MUY LENTA	MEDIA	сг	A MEDIA	NORGANICAS DE PLASTICADAD BAJA I, ARCILLAS CON GRAVA, ARCILLAS SA, ARCILLAS LIMOSAS, ARCILLAS MAGRAS	A IDENTIF	STICIDAD	40				CH LINEA A
		LIMOSY	LIGERA A MEDIA	LENTA	LIGERA	OL		DRGANICOS Y ARCILLAS LIMOSAS ANICAS DE BAJA PLASTICIDAD	TRICA PAR	1	30	E			
NO FINO		AS CON	LIGERA A MEDIA	LENTA A NULA	LIGERA A MEDIA	мн	AREN	ORGANICAS, SUELOS LIMOSOS O DSOS FINOS MICACEOS O CON TOMEAS, LIMOS ELASTICOS		100		E			OH 0 MH
SUELO DE GRANO FINO >		Y AKGILLAS CON LIQUIDO MAYOR DE 50	ALTA A MUY ALTA	NULA	ALTA	СН	ARCILLAS O	RGANICAS DE PLASTICIDAD MEDIA A ALTA	URVA GRA	FOTONT	10	`Ē		2.M. 0.0M.	
SUEL		LIMITE	MEDIA A ALTA	NULA A MUY LENTA	LIGERA A MEDIA	ОН	ARCILLAS O	RGANICAS DE PLASTICIDAD MEDIA A ALTA	CESE LA CI			0	10	20 30 40 50 LIMITE LIQ	60 70 80 90 100 UIDO
SUELOS	ALTAME	NTE ORGANICAS	FACILMENTE IDENTIFICA ESPONJOSA Y FRECUE			Pt	TURBA					DAD PARA LA CLASIFICACION GRANO FINO	EN LABORATORIO DE SUELOS DE		

Figura 4. SUCS – identificación en el campo

3.3.1.3. Humedad natural

Según el Manual de ensayo de materiales que alude a la norma ASTM D 2216 donde establece el ensayo de contenido de humedad, donde el objetivo del ensayo es establecer el porcentaje de agua en masa dada del suelo.

A. Procedimiento de ensayo

- 1. Se toma una muestra representativa para el ensayo y divídala en cuartos.
- Para los materiales arcillosos se tomaron para este ensayo 50 gr, de los cuales se consideró 4 muestras adicionando ceniza de leño de ciprés en proporciones de 0 %, 5 %, 10 % y 15 %.
- 3. La muestra se coloca en un horno de secado.
- 4. Pese el material de ensayo seco y registrar los datos.

Figura 5. Pesaje del material – ensayo de contenido de humedad

3.3.1.4. Índice de plasticidad

Para obtener resultados para este elemento, se considera como referente a la norma ASTM D 4318, respecto a la MTC E.1.1.1. (límites del plástico) y MTC E.1.1.0. (límite líquido del suelo), donde incluye la determinación del índice de plasticidad (33).

Procedimiento de ensayo:

A. Límite líquido

- 1. Se prepara una muestra de suelo de 200 g y pasarla por el tamiz N.º 40
- 2. El peso del agua destilada se calcula como el 25 % del peso de la muestra.
- 3. Mezcle el material del suelo con agua destilada y amase hasta obtener una pasta con una espátula.
- 4. Vierta la mezcla en los vasos Casagrande para crear una superficie lisa y uniforme.
- 5. Se forma una abertura en el material para hacer un agujero en el material colocado con el acanalador.
- Después de cortar el material, continúe girando la manivela (3 golpes/s)
 hasta que se cierre la abertura, contando el número de golpes hasta que
 cierre.
- 7. Repetir la prueba hasta 3 veces hasta obtener resultados, 15 a 25, 20 a 30 y 25 a 35 veces. Contiene diferentes porcentajes de ceniza de ciprés además del 5 %, 10 % y 15 %.
- 8. Se procedió con la recolección el material y ponerlo en cápsulas y meterlo en el horno, con el propósito de obtener la humedad del material ensayado.
- La siguiente figura, muestra la preparación del material de ensayo en la copa Casa Grande.

Figura 6. Preparación de material para ensayo de límite líquido

B. Límite plástico

- 1. Se moldea parte de la muestra de la copa de ensayo, en forma elipsoide.
- 2. Luego pase los dedos por una superficie lisa para formar un cilindro.
- 3. Si el cilindro no alcanza un diámetro de 3,2 mm y no se desmenuza, repite el elipsoide y repite el proceso.
- 4. El desmoronamiento del suelo se comporta de manera diferente según el tipo de suelo probado.
- Luego de realizar estas descripciones, se procede a recolectar 6 gramos de material, se encapsulan y se introducen en un horno para obtener el contenido de humedad del material a ensayar.

En la figura, se muestra el hilo de suelo arcilloso formado en el ensayo y el tipo de desmoronamiento que debe presentar el hilo o cilindro del suelo arcilloso.

Figura 7. Hilo de suelo arcilloso – límite líquido

C. Índice de plasticidad

Para establecer el índice de plasticidad, procede de la diferencia entre el límite líquido y el límite de plasticidad, determinado por la fórmula:

$$IP = LL - LP$$

3.3.1.5. Capacidad de resistencia del suelo

Según el Manual de ensayo de materiales, tiene como referencia a la norma ASTM D.1.8.8.3, donde el ensayo de CBR de suelos en laboratorio se conoce como el método de prueba estándar para California Bearing Ratio (CBR).

Figura 8. Preparación de material para ensayo de CBR

Figura 9. Ensayo de CBR 1

Figura 10. Ensayo de CBR 2

3.3.2. Técnicas de análisis y procesamiento de datos

Se aplicaron diversas técnicas de análisis y procesamiento de datos. En particular, se realizaron pruebas de laboratorio para medir las propiedades físicas y mecánicas del suelo tratado con ceniza, incluyendo el contenido de humedad, la plasticidad y el CBR. Además, para analizar y comparar los datos recolectados, se aplicaron pruebas de hipótesis utilizando el análisis de varianza (ANOVA). Esta técnica estadística permitió evaluar si había una diferencia significativa entre las propiedades del suelo tratado con ceniza y el suelo sin tratar en términos de su contenido de humedad, plasticidad y CBR.

CAPÍTULO IV RESULTADOS Y DISCUSIÓN

4.1. Resultados del tratamiento y análisis de la información

4.1.1. Distribución granulométrica

El análisis de tamaño de partículas se realiza para determinar con precisión el diámetro de las partículas que componen el suelo bajo investigación y para comprender sus propiedades internas, siguiendo los procedimientos especificados en las normas aplicables.

Tabla 4. Distribución granulométrica de calicata 1

TAMIZ	ABERTURA (mm)	% Parcial Retenido	% Acumulado Retenido	% Acumulado que Pasa
2 1/2 in.	63.300	0.00	0.00	100.00
2 in.	50.800	0.00	0.00	100.00
1 -1/2 in.	38.100	0.00	0.00	100.00
1 in.	25.400	0.00	0.00	100.00
3/4 in.	19.000	0.00	0.00	100.00
3/8 in.	9.500	0.00	0.00	100,00
No. 4	4.750	0.00	0.00	100.00
No. 8	2.380	0.61	0.61	99.39
No. 10	2.000	0.81	1.42	98.58
No. 16	1.190	1.12	2.53	97.47
No. 20	0.840	12.37	14.91	85.09
No. 30	0.600	12.22	27.12	72.88

No. 40	0.425	11.81	38.94	61.06
No. 50	0.297	9.38	48.32	51.68
No. 60	0.250	10.09	58.41	41.59
No. 80	0.177	14.60	73.01	26.99
No. 100	0.150	4.73	77.74	22.26
No. 200	0.075	10.23	87.96	12.04
FONDO		12.04	100.00	0.00

La tabla muestra los resultados de las pruebas correspondientes al análisis del tamaño de partículas del tamiz, en donde se presenta el porcentaje que pasa por el tamiz N.º 200 de la muestra tomada la calicata 1 (en adelante llamada C-1) cuya profundidad de excavación fue de 1.50 m, realizado bajo lo dispuesto en la norma NTP 339.128.

Tabla 5. Clasificación del suelo de la calicata 1

Clasificación del suelo C-1					
CLASIFICACIÓN SUCS (ASTM D2487)	CL				
CLASIFICACIÓN AASHTO (ASTM D3282)	A-2-6 (0)				
Nombre del grupo	Arcilla arenosa de baja plasticidad				

En la tabla se presenta la clasificación del suelo de la calicata 1, donde la clasificación SUCS evidenció un valor de (CL) y en la clasificación AASHTO un valor (A-S-6) por lo que pertenece a una clasificación de arcilla arenosa de baja plasticidad.

Tabla 6. Distribución granulométrica de calicata 2

Tamiz	Abertura (mm)	% parcial retenido	% acumulado retenido	% acumulado que pasa
2 ½ in.	63.300	0.00	0.00	100.00
2 in.	50.800	0.00	0.00	100.00
1 -1/2 in.	38.100	0.00	0.00	100.00
1 in.	25.400	0.00	0.00	100.00
3⁄4 in.	19.000	0.00	0.00	100.00
3/8 in.	9.500	0.00	0.00	100.00
No. 4	4.750	0.00	0.00	100.00
No. 8	2.380	3.56	3.56	96.44
No. 10	2.000	1.71	5.27	94.73
No. 16	1.190	2.28	7.55	92.45
No. 20	0.840	8.27	15.82	84.18
No. 30	0.600	5.65	21.48	78.52
No. 40	0.425	13.54	35.02	64.98
No. 50	0.297	9.31	44.33	55.67

No. 60	0.250	4.56	48.89	51.11
No. 80	0.177	8.88	57.78	42.22
No. 100	0.150	3.04	60.81	39.19
No. 200	0.075	6.84	67.66	32.34
FONDO		32.34	100.00	0.00

La tabla muestra los resultados de las pruebas correspondientes al análisis del tamaño de partículas del tamiz, en donde se presenta el porcentaje que pasa por el tamiz N.º 200 de la muestra tomada de la calicata 2 (en adelante llamada C-2) cuya profundidad de excavación fue de 1.50 m, realizado bajo lo dispuesto en la norma NTP 339.128.

Tabla 7. Clasificación del suelo de la calicata 2

Clasificación del suelo C-1				
Clasificación SUCS (ASTM D2487	CL			
Clasificación AASHTO (ASTM D3282)	A-2-6 (0)			
Nombre del grupo	Arcilla arenosa de baja plasticidad			

En la tabla se presenta la clasificación del suelo de la calicata 2, donde la clasificación SUCS evidenció un valor de (CL) y en la clasificación AASHTO un valor (A-S-6) por lo que pertenece a una clasificación de arcilla arenosa de baja plasticidad.

Tabla 8. Distribución granulométrica de calicata 3

Tamiz	Abertura (mm)	% parcial retenido	% acumulado retenido	% acumulado que pasa
2 1/2 in.	63.300	0.00	0.00	100.00
2 in.	50.800	0.00	0.00	100,00
1 -1/2 in.	38.100	0.00	0.00	100.00
1 in.	25.400	0.00	0.00	100.00
3/4 in.	19.000	0.00	0.00	100.00
3/8 in.	9.500	0.00	0.00	100.00
No. 4	4.750	1.30	1.30	98.70
No. 8	2.380	4.47	5.77	94.23
No. 10	2.000	3.93	9.70	90.30
No. 16	1.190	4.54	14.24	85.76
No. 20	0.840	5.79	20.03	79.97
No. 30	0.600	4.17	24.20	75.80
No. 40	0.425	11.85	36.05	63.95
No. 50	0.297	9.55	45.59	54.41
No. 60	0.250	8.19	53.78	46.22

No. 80	0.177	12.86	66.64	33.36
No. 100	0.150	5.57	72.22	27.78
No. 200	0.075	12.96	85.18	14.82
FONDO		14.82	100.00	0.00

La tabla muestra los resultados de las pruebas correspondientes al análisis del tamaño de partículas del tamiz, en donde se presenta el porcentaje que pasa por el tamiz N.º 200 de la muestra tomada de la calicata 3 (en adelante llamada C-3) cuya profundidad de excavación fue de 1.50 m, realizado bajo lo dispuesto en la norma NTP 339.128.

Tabla 9. Clasificación del suelo de la calicata 3

zuszu st etusyteuetett uet suete ue tu euttettu e					
Clasificación del suelo C-1					
Clasificación SUCS (ASTM D2487	CL				
Clasificación AASHTO (ASTM D3282)	A-2-6 (0)				
Nombre del grupo	Arcilla arenosa de baja plasticidad				

En la tabla se presenta la clasificación del suelo de la calicata 3, donde la clasificación SUCS evidenció un valor de (CL) y en la clasificación AASHTO un valor (A-S-6) por lo que pertenece a una clasificación de arcilla arenosa de baja plasticidad.

4.1.2. Contenido de humedad

Se definió el contenido de humedad de las muestras bajo estudio a través de pruebas de humedad para determinar el mejor curso para reducir la humedad del suelo. Con base en esta teoría, se obtuvieron los siguientes resultados y se presentan en la siguiente tabla, en la que se compararon las diferencias en el contenido de humedad de los coeficientes con relación a la muestra patrón, donde los tratamientos fueron al 5 %, 10 % y 15 %.

Tabla 10. Resumen de contenido de humedad

	Cont	Promedio		
	C-1	C-2	C-3	Promedio
Muestra patrón	9.0 %	8.8 %	9.1 %	9.0 %
T1 (5 %)	9.5 %	9.4 %	9.7 %	9.5 %
T2 (10 %)	9.3 %	9.1 %	9.4 %	9.3 %
T3 (15 %)	9.8 %	9.7 %	9.9 %	9.8 %

En esta tabla se puede observar el ensayo de contenido de humedad de las tres calicatas en estudio y los distintos tratamientos, donde el contenido de humedad para la muestra patrón en las calicatas C-1, C-2 y C-3 resultó 9 %, 8.8 % y 9.1 % de humedad respectivamente. En cuanto al tratamiento 1 con 5 % de ceniza de leño de ciprés en las calicatas C-1, C-2 y C-3 se obtuvieron valores de 9.5 %, 9.4 % y 9.7 % respectivamente. Con relación al tratamiento 2 con 10 % de ceniza de leño de ciprés en las calicatas C-1, C-2 y C-3 se pudo evidenciar resultados de 9.3 %, 9.1 % y 9.4 % de humedad, respectivamente. Finalmente, en el tratamiento 3 con 15 % de ceniza de leño de ciprés en las calicatas C-1, C-2 y C-3 se encontraron valores de 9.8 %, 9.7 % y 9.9 % de humedad respectivamente.

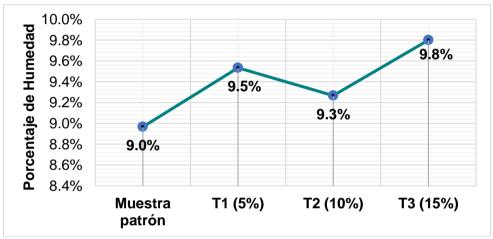


Figura 11. Resumen de contenido de humedad

De la figura se muestra el promedio de humedad de los distintos tratamientos del estudio, donde para la muestra patrón se obtuvo un valor promedio de 9 % de humedad, en cuanto al T1 con 5 % de ceniza de leño de ciprés un valor de 9.5 % de humedad, según al T2 con 10 % de ceniza de leño de ciprés un valor de 9.3 % de humedad y por último, en el T3 con 15 % de ceniza de leño de ciprés un valor de 9.8 % de humedad. De acuerdo con los resultados se infiere que no se obtuvo mejoras significativas con relación a la humedad del suelo con los diferentes tratamientos, ya que los valores del ensayo para el T1, T2 y T3 se ubican por encima de la humedad natural (muestra patrón) del suelo sin ninguna adición.

4.1.3. Límites de consistencia

El límite de Atterberg o límite de densidad del suelo se utiliza para saber y describir a la conducta exacta del suelo en estudio. En esta prueba, el límite líquido (LL), el límite plástico (LP) y la diferencia entre esos números da el índice de plasticidad porcentual (IP). Resumen de los resultados de la pantalla:

Tabla 11. Límites de consistencia

	Límites de consistencia					
	Limite liquido	Limite plástico	Índice de plasticidad			
Muestra patrón	20.25 %	8.34 %	11.91			
T1 (5 %)	20.0 %	16.0 %	4.0			
T2 (10 %)	19.3 %	12.0 %	7.3			
T3 (15 %)	21.0 %	12.0 %	9.0			

Los límites de Atterberg hacen posible una codificación completa de la arcilla y una evaluación de varias de sus propiedades. Estos están correlacionados con la capacidad de una sustancia para absorber agua y el volumen de agua que contiene. En la tabla se muestran los resultados obtenidos de los ensayos correspondientes a la plasticidad del material, estos indican que el límite líquido de la muestra patrón fue de 20.25% y para los tratamientos T1 = 20%, T2 = 19.3% y T3 = 21% respectivamente, en relación a límite plástico, se pudo evidenciar los siguientes valores: muestra patrón = 8.34%, T1 = 16%, T2 = 12% y T3 = 12% y, por último, al desarrollar el cálculo para el índice de plasticidad, los resultados fueron: muestra patrón = 11.91, T1 = 4, T2 = 7.3 y T3 = 9.

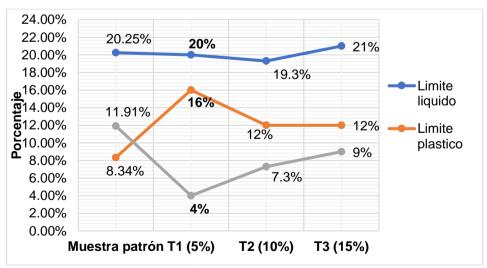


Figura 12. Límites de consistencia

Para determinar el tamaño del intervalo de humedad en el que el suelo tiene su consistencia plástica, se realizó un cálculo con relación al índice de plasticidad. Según

los resultados obtenidos, la muestra patrón, T2 y T3 tiene una plasticidad media (7 < IP \leq 20) lo que caracteriza principalmente un suelo arcilloso de mediana plasticidad. En cuanto al T1 con 5 % de ceniza de leño de ciprés, se obtuvo IP > 7 lo que refiere una baja plasticidad del suelo.

4.1.4. CBR

Usando la Prueba de relación de soporte de California, se realizaron pruebas de suelo natural (muestras modelo) y varios tratamientos para establecer los parámetros del suelo que cuantifican la resistencia al suelo. Con relación al concepto, están los resultados consecutivos, donde, el porcentaje de tolerancia de los tratamientos se comparó con muestras estándar, donde los tratamientos fueron al 5 %, 10 % y 15 %.

Tabla 12. Resumen de ensayo de relación de soporte de california (CBR)

_			Duomadia	
	C-1	C-2	C-3	Promedio
Muestra patrón	12.2 %	12.9 %	12.0 %	12.4 %
T1 (5 %)	14.4 %	15.2 %	13.3 %	14.3 %
T2 (10 %)	12.0 %	12.4 %	11.9 %	12.1 %
T3 (15 %)	11.2 %	11.8 %	11.0 %	11.3 %

En la presente tabla se muestra el ensayo de relación de soporte de california (CBR) de la muestra del estudio, del cual por medio del análisis para la muestra patrón se pudo evidenciar los siguientes valores: C-1 = 12.2 %; C-2 = 12.2 % y C-3 = 12 %. Por otro lado, en cuanto al tratamiento 1 con 5 % de ceniza de leño de ciprés los valores fueron: C-1 = 14.4 %; C-2 = 15.2 % y C-3 = 13.3 %. Mientras que para el tratamiento 2 con 10 % de ceniza de leño de ciprés se obtuvo los valores siguientes: C-1 = 12 %; C-2 = 12.4 % y C-3 = 11.9 %. Finalmente, del análisis para el tratamiento 3 con 15 % de ceniza de leño de ciprés los resultados obtenidos fueron: C-1 = 11.2 %; C-2 = 11.8 % y C-3 = 11 %.

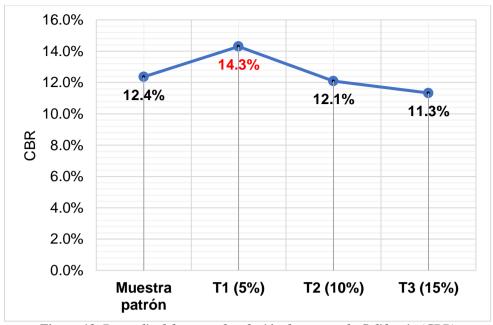


Figura 13. Promedio del ensayo de relación de soporte de California (CBR)

De la figura, se muestra el promedio del ensayo de relación de soporte de california (CBR), del análisis se pudo evidenciar que la muestra patrón obtuvo un valor de 12.4 %, el tratamiento 1 un valor de 14.3 %, el tratamiento 2 un resultado de 12.1 % y, por último, el tratamiento 4 un resultado de 11.3 %. De acuerdo con los resultados se infiere que no hay presencia de mejora en CBR del suelo en los tratamientos T2 y T3 respecto a la muestra patrón, lo que evidencia que la adición de ceniza de leño de ciprés no mejora en la densidad del suelo. Sin embargo, se evidencia una mejora en el CBR del suelo con el tratamiento T1 con 5 % de ceniza de leño de ciprés donde el valor fue 14.3 % por encima del valor de la muestra patrón.

4.2. Prueba de hipótesis

Se utilizó el software SPSS 26 para realizar la prueba de hipótesis. Las variables numéricas se tomaron en consideración al momento de crear el análisis estadístico y se utilizó la prueba de normalidad de Shapiro-Wilk para determinar si los datos presentaban o no una normal distribución.

4.2.1. Prueba inferencial para contenido de humedad

4.2.1.1. Objetivo específico 1

Identificar la influencia de la adición de ceniza de leño de ciprés en el óptimo contenido de humedad de la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022.

4.2.1.2. Hipótesis específica 1

La adición de ceniza de leño de ciprés mejora el contenido de humedad de la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022.

4.2.1.3. Planteamiento de la prueba de hipótesis general

Hipótesis nula (H0): La adición de ceniza de leño de ciprés no mejora el contenido de humedad de la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022.

Hipótesis alterna (Ha): La adición de ceniza de leño de ciprés mejora el contenido de humedad de la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022.

Se comienza realizando un análisis descriptivo de los resultados de las pruebas para los distintos tratamientos del suelo antes de pasar a la prueba de normalidad y homogeneidad para el análisis de la prueba de hipótesis. Se define el nivel de significación como = 0,05, que representa la cantidad de error que se supone cuando se ejecutan las pruebas.

Asimismo, se realiza la prueba de Anova para cotejar los diferentes tratamientos e identificar cuál es significativamente superior al grupo de control. Mediante el test de Tukey se determina qué tratamiento es el más exitoso.

Tabla 13. Prueba de normalidad para el contenido de humedad

Identificador del suelo		Kolmogórov	Kolmogórov-Smirnov a		Shapiro-Wilk		
		Estadístico	gl	Sig.	Estadístico	gl	Sig.
	Muestra patrón	0.253	3		0.964	3	0.637
Contenido de humedad	T1 (5 %)	0.253	3		0.964	3	0.637
	T2 (10 %)	0.253	3		0.964	3	0.637
	T3 (15 %)	0.175	3		1.000	3	1.000

Los valores de significación de la tabla son superiores a 0,05, lo que indica una distribución normal. Después de eso, como se muestra en la evidencia a continuación, se realizó la prueba Anova.

Tabla 14. Prueba de Anova para contenido de humedad

	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	1.149	3	0.383	19.153	0.001
Dentro de grupos	0.160	8	0.020		
Total	1.309	11			

Planteamiento de las hipótesis

- Ho: T0 = T1 = T2 = T3 = T4

- Ha: $Ti \neq Tj$

Según la regla de decisión, se decide aceptar la hipótesis alternativa porque la tabla muestra un valor de significancia de 0.001 < 05. De esto, se consigue concluir que los tratamientos estudiados tienen diferentes efectos sobre el contenido de humedad del suelo. Luego se realizó la prueba *post hoc* de Tukey para confirmar que existen diferencias estadísticas entre los grupos.

Tabla 15. Comparaciones múltiples para contenido de humedad

(I) Identi	(I) Identificador del		Desv.	C!a	Intervalo de confianza al 95 %		
suelo		de medias (I-J)	Error	Sig.	Límite inferior	Límite superior	
	T1 (5 %)	-,56667*	0.11547	0.0	05 -0.9364	-0.1969	
Muestra patrón	T2 (10 %)	-0.30000	0.11547	0.1	17 -0.6698	0.0698	
	T3 (15 %)	-,83333*	0.11547	0.0	00 -1.2031	-0.4636	
	Muestra patr	ón ,56667*	0.11547	0.0	05 0.1969	0.9364	
T1 (5 %)	T2 (10 %)	0.26667	0.11547	0.1	75 -0.1031	0.6364	
T3 (15 %)		-0.26667	0.11547	0.1	75 -0.6364	0.1031	
T2 (10 %)	Muestra patr	ón 0.30000	0.11547	0.1	17 -0.0698	0.6698	

	T1 (5 %)	-0.26667	0.11547	0.175	-0.6364	0.1031
	T3 (15 %)	-,53333*	0.11547	0.007	-0.9031	-0.1636
	Muestra patrón	,83333*	0.11547	0.000	0.4636	1.2031
T3 (15 %)	T1 (5 %)	0.26667	0.11547	0.175	-0.1031	0.6364
	T2 (10 %)	,53333*	0.11547	0.007	0.1636	0.9031

En la tabla, se observa la variación de forma significativa respecto al suelo natural, excepto el tratamiento T2 con 10 % de ceniza de leño de ciprés, ya que la significancia es superior a 0.05.

Tabla 16. Subconjuntos de Tukey para el contenido de humedad

Identificador del suelo	N -	Subcon	Subconjunto para alfa $= 0.05$				
identificador dei suelo	14	1	2	3			
Muestra patrón	3	9.0					
T1 (5 %)	3	9.3	9.3				
T2 (10 %)	3		9.5	9.5			
T3 (15 %)	3			9.8			
Sig.		0.117	0.175	0.175			

Con un nivel de significancia de 0.05, según el análisis de la prueba de Tukey, se afirma que el porcentaje de humedad promedio del suelo natural es menor a los otros tres tratamientos (T1, T2 y T3). Con lo que se infiere que no hay mejora en el porcentaje de humedad, ya que no hubo disminución en ninguno de los tratamientos aplicados a la subrasante del suelo.

4.2.2. Prueba inferencial para límites de consistencia

4.2.2.1. Objetivo específico 2

Identificar la influencia de la adición de ceniza de leño de ciprés en el índice de plasticidad de la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022.

4.2.2.2. Hipótesis específica 2

La adición de ceniza de leño de ciprés mejora el índice de plasticidad de la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022.

4.2.2.3. Planteamiento de la prueba de hipótesis general

Hipótesis nula (H0): La adición de ceniza de leño de ciprés **no mejora** el índice de plasticidad de la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022.

Hipótesis alterna (Ha): La adición de ceniza de leño de ciprés **mejora** el índice de plasticidad de la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022.

Se comienza realizando un análisis descriptivo de los resultados de las pruebas para los distintos tratamientos del suelo antes de pasar a la prueba de normalidad y homogeneidad para el análisis de la prueba de hipótesis. Se define el nivel de significación como = 0,05, que representa la cantidad de error que se supone cuando se ejecutan las pruebas.

Asimismo, se realiza la prueba de Anova para cotejar los diferentes tratamientos e identificar cuál es significativamente superior al grupo de control. Mediante el test de Tukey se determina qué tratamiento es el más exitoso.

Tabla 17. Prueba de normalidad para el índice de plasticidad

Idantificadan d	Identificador del suelo		Kolmogórov-Smirnova			ilk
identificador d			gl Sig.	Estadístico	gl	Sig.
	Muestra patrón	0.253	3	0.964	3	0.637
Índice de	T1 (5 %)	0.253	3	0.964	3	0.637
plasticidad	T2 (10 %)	0.253	3	0.964	3	0.637
	T3 (15 %)	0.253	3	0.964	3	0.637

Los valores de significación de la tabla son superiores a 0,05, lo que indica una distribución normal. Después de eso, como se muestra en la evidencia a continuación, se realizó la prueba Anova.

Tabla 18. Prueba de Anova para el índice de plasticidad

	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	97.402	3	32.467	1830.865	0.000
Dentro de grupos	0.142	8	0.018		
Total	97.544	11			

Planteamiento de las hipótesis

- Ho: T0 = T1 = T2 = T3 = T4
- Ha: Ti ≠ Tj

Según la regla de decisión, se decide aceptar la hipótesis alternativa porque la tabla muestra un valor de significancia de 0.001 < 05. De esto, se concluye que los tratamientos estudiados tienen diferentes efectos sobre el índice de plasticidad del suelo arcilloso. Luego se realizó la prueba *post hoc* de Tukey para confirmar que existen diferencias estadísticas entre los grupos.

Tabla 19. Comparaciones múltiples para el índice de plasticidad

(I) Identif	(I) Identificador del		Desv.	C:~	Intervalo d al 9	
sue	elo	de medias (I-J)	Error	Sig.	Límite inferior	Límite superior
	T1 (5 %)	7,87000*	0.10873	0.000	7.5218	8.2182
Muestra patrón	T2 (10 %)	4,43667*	0.10873	0.000	4.0885	4.7849
	T3 (15 %)	2,77000*	0.10873	0.000	2.4218	3.1182
	Muestra patrón	-7,87000*	0.10873	0.000	-8.2182	-7.5218
T1 (5 %)	T2 (10 %)	-3,43333*	0.10873	0.000	-3.7815	-3.0851
	T3 (15 %)	-5,10000*	0.10873	0.000	-5.4482	-4.7518
	Muestra patrón	-4,43667*	0.10873	0.000	-4.7849	-4.0885
T2 (10 %)	T1 (5 %)	3,43333*	0.10873	0.000	3.0851	3.7815
	T3 (15 %)	-1,66667*	0.10873	0.000	-2.0149	-1.3185
	Muestra patrón	-2,77000*	0.10873	0.000	-3.1182	-2.4218
T3 (15 %)	T1 (5 %)	5,10000*	0.10873	0.000	4.7518	5.4482
	T2 (10 %)	1,66667*	0.10873	0.000	1.3185	2.0149

Se realizó el análisis de comparaciones múltiples de Tukey entre los distintos porcentajes adicionados para determinar el mejor nivel que sobresale

del resto de niveles. En el porcentaje de T1 se encontró las diferencias más significativas con cada uno de los demás porcentajes.

Tabla 20. Subconjuntos de Tukey para el índice de plasticidad

Identificador	NT	Sı	abconjunto p	ara alfa = 0.	05
del suelo	N	1	2	3	4
Muestra patrón	3	4.0			
T1 (5 %)	3		7.3		
T2 (10 %)	3			9.0	
T3 (15 %)	3				11.9
Sig.		1.000	1.000	1.000	1.000

Con un nivel de significancia de 0.05, según el análisis de la prueba de Tukey, se afirma que el índice de plasticidad del suelo promedio del tratamiento T1 con 5 % de ceniza de leño de ciprés es mayor a los otros tres tratamientos (muestra patrón, T2 y T3). Con lo que se infiere que existe una mejora en el porcentaje del índice de plasticidad del suelo con el tratamiento 1.

4.2.3. Prueba inferencial para CBR

4.2.3.1. Objetivo específico 3

Identificar la influencia de la adición de ceniza de leño de ciprés en el CBR de la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022.

4.2.3.2. Hipótesis específica 3

La adición de ceniza de leño de ciprés mejora el CBR de la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022.

4.2.3.3. Planteamiento de la prueba de hipótesis general

Hipótesis nula (H0): La adición de ceniza de leño de ciprés **no mejora** el CBR de la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022.

Hipótesis alterna (Ha): La adición de ceniza de leño de ciprés **mejora** el CBR de la subrasante de suelo arcilloso en la carretera Matapuquio – Collpa, Andahuaylas, 2022.

Se comienza realizando un análisis descriptivo de los resultados de las pruebas para los distintos tratamientos del suelo antes de pasar a la prueba de normalidad y homogeneidad para el análisis de la prueba de hipótesis. Se define el nivel de significación como = 0,05, que representa la cantidad de error que se supone cuando se ejecutan las pruebas.

Asimismo, se realiza la prueba de Anova para cotejar los diferentes tratamientos e identificar cuál es significativamente superior al grupo de control. Mediante el test de Tukey se determina qué tratamiento es el más exitoso.

Tabla 21. Prueba de normalidad para el CBR

Identificador del		Kolmogóro	v-Smir	nov ^a	Shapiro-Wilk			
	suelo	Estadístico	gl	Sig.	Estadístico	gl	Sig.	
	Muestra patrón	0.304	3		0.907	3	0.407	
CBR	T1 (5 %)	0.208	3		0.992	3	0.826	
CDK	T2 (10 %)	0.314	3		0.893	3	0.363	
	T3 (15 %)	0.292	3		0.923	3	0.463	

Los valores de significación de la tabla son superiores a 0,05, lo que indica una distribución normal. Después de eso, como se muestra en la evidencia a continuación, se realizó la prueba de Anova.

Tabla 22. Prueba de Anova para el CBR

	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	14.329	3	4.776	13.878	0.002
Dentro de grupos	2.753	8	0.344		
Total	17.083	11			

Planteamiento de las hipótesis

- Ho: T0 = T1 = T2 = T3 = T4
- Ha: Ti ≠ Tj

Según la regla de decisión, se decide aceptar la hipótesis alternativa porque la tabla muestra un valor de significancia de 0.001 < 05. De esto, se

concluye que los tratamientos estudiados tienen diferentes efectos sobre el porcentaje del CBR del suelo arcilloso. Luego se realizó la prueba *post hoc* de Tukey para confirmar que existen diferencias estadísticas entre los grupos.

Tabla 23. Comparaciones múltiples para el CBR

	ficador del	Diferencia de medias	Dogr	a.	Into	ervalo de al 95	confianza %
su	suelo		Error	Sig.	Límite inferior		Límite superior
	T1 (5 %)	-1,93333*	0.47900	0.0	16	-3.4673	-0.3994
Muestra patrón	T2 (10 %)	0.26667	0.47900	0.9	42	-1.2673	1.8006
	T3 (15 %)	1.03333	0.47900	0.2	15	-0.5006	2.5673
	Muestra patr	ón 1,93333*	0.47900	0.0	16	0.3994	3.4673
T1 (5 %)	T2 (10 %)	2,20000*	0.47900	0.0	08	0.6661	3.7339
	T3 (15 %)	2,96667*	0.47900	0.0	01	1.4327	4.5006
	Muestra patr	ón -0.26667	0.47900	0.9	42	-1.8006	1.2673
T2 (10 %)	T1 (5 %)	-2,20000*	0.47900	0.0	08	-3.7339	-0.6661
	T3 (15 %)	0.76667	0.47900	0.4	30	-0.7673	2.3006
	Muestra patr	ón -1.03333	0.47900	0.2	15	-2.5673	0.5006
T3 (15 %)	T1 (5 %)	-2,96667*	0.47900	0.0	01	-4.5006	-1.4327
	T2 (10 %)	-0.76667	0.47900	0.4	30	-2.3006	0.7673

En la tabla, se observa la variación de forma significativa respecto al suelo natural, excepto el tratamiento T2 con 10 % de ceniza de leño de ciprés y T3 con 15 % de ceniza de leño de ciprés, ya que la significancia es superior a 0.05.

Tabla 24. Subconjuntos de Tukey para el CBR

Identificador del	N —	Subconjunto p	ara alfa = 0.05
suelo	Ν ———	1	2
T3 (15 %)	3	11.3	
T2 (10 %)	3	12.1	
Muestra patrón	3	12.4	
T1 (5 %)	3		14.3
Sig.		0.215	1.000

Con un nivel de significancia de 0.05, según el análisis de la prueba de Tukey, se afirma que el CRB del suelo promedio del tratamiento T1 con 5 % de ceniza de leño de ciprés es mayor a los otros tres tratamientos (muestra patrón, T2 y T3). Con lo que se infiere que existe una mejora en el porcentaje del CBR del suelo con el tratamiento 1.

4.3. Discusión de resultados

El estudio se desarrolló en base al objetivo general "Evaluar la influencia de la adición de ceniza de leño de ciprés en la subrasante de suelo arcilloso en la carretera Matapuquio -Collpa, Andahuaylas 2022" donde se aplicó tres diferentes tratamientos de ceniza de leño de ciprés en los siguientes porcentajes (5%, 10% y 15%). Los resultados de la investigación se mostrarán a continuación; en cuanto al contenido de humedad, se demostró que los tres diferentes tratamientos no mejoraron significativamente en comparación con el suelo natural, ya que los porcentajes obtenidos fueron superiores a los de las muestras patrón. Según Espino (26) encontró resultados similares a este estudio en su estudio sobre la adición de ceniza de madera de fondo para la estabilización de suelos arcillosos, donde demostró que el contenido de humedad natural de los suelos arcillosos disminuyó respecto al aumento, igual valor de índice de plasticidad, por lo que se observó la misma evaluación y se observó una disminución al aumentar la adición de cenizas en los tratamientos T0, T1 y T2. En un estudio titulado "Determinación de la incidencia de la adición de ceniza de fondo con respecto al suelo arcilloso", Mamani y Yataco Mamani y Yataco (29) encontraron que agregar ceniza de fondo respecto al suelo arcilloso reduce el índice de plasticidad del ensayo de límites de consistencia y aumenta la gravedad específica de sólidos, promoviendo propiedades físicas del suelo. Finalmente, encontraron que agregar ceniza de fondo al suelo arcilloso investigado optimiza sus propiedades físicas-mecánicas.

En contraste, el tratamiento T1 con 5% de ceniza de leño de ciprés mostró una mejora en la CBR del suelo natural en comparación con los otros tratamientos, lo que indica que el aumento del 5% mejoró la resistencia. Hallazgos similares fueron encontrados por Asfino et al. (22) descubrieron que la adición de cenizas de papel desechado a un suelo arcilloso aumenta la resistencia a la compresión, incrementado con la ceniza con el papel desechado 5% y 10%, al mismo tiempo que reduce ligeramente el potencial de hinchamiento y aumenta el porcentaje de suelo que pasa por el tamizado número 200. utilizado. Por otro lado, Ojeda-Farias (23) en México, investigó el efecto de la ceniza de bagazo de la caña de azucar sobre la resistencia a CBR, comparando el comportamiento de los suelos naturales estudiados y mezclando porcentajes de 3%, 5% y 7%, para llegar a la conclusión de que El 5% de reemplazo de CBCA se puede determinar como el mejor porcentaje en suelo granular arenoso, ya que mostró

excelentes resultados en la prueba CBR, lo que indica la viabilidad de usar cenizas como sustituto parcial del cemento, para mejorar las propiedades mecánicas del suelo utilizado en la construcción de capas de construcción de carreteras. Mientras que Quinte y Cristóbal (16) en su investigación sobre la estabilidad de subrasante de cenizas de eucalipto en relación con la prueba CBR pudieron mostrar una mejora significativa del 15,7% en comparación con los suelos naturales con un 10% de ceniza de eucalipto añadido, también mostró que los porcentajes más altos tendían a disminuir la CBR del suelo. Asimismo, Torres y Landa (27) utilizaron en su estudio porcentajes de cenizas de 5%, 15% y 25% y concluyeron de sus ensayos que la proporción de material estabilizador era relativa al 5% del peso seco de la arcilla, presentando mejora inmediata de CBR, 110,81% superior al suelo natural.

De manera general, Pérez (25) llega a la conclusión general de que la adición de ceniza de fondo de ladrillera cerámica a suelos arcillosos reduce el Índice de Plasticidad, eleva el porcentaje de CBR y mejora la consistencia y el peso específico de las partículas sólidas, todo lo cual es ventajoso para la conservación del suelo y sus propiedades mecánicas. Como resultado, los suelos arcillosos se estabilizan y sus propiedades mecánicas mejoran mediante la adición de cenizas. Mientras que Espino (26) mostró una alta correlación entre el porcentaje de ceniza de madera añadida y el contenido de humedad natural, el índice de plasticidad y el valor de CBR, también mostró que la adición de ceniza de madera no necesariamente tenía un mayor porcentaje de fondo para garantizar mejores resultados.

CONCLUSIONES

- El porcentaje de sustitución óptimo de las cenizas constituye el 5% de ceniza de leño de ciprés, ya que, para un porcentaje mayor, la mejora de las propiedades físico mecánicas del suelo en las diferentes muestras no es representativa.
- 2. De acuerdo al contenido de humedad, cuyo ensayo busca determinar el porcentaje de humedad de las muestras en estudio, se obtuvo un porcentaje promedio de humedad de 9% para el suelo natural sin ninguna adición, por lo que, al realizar la comparación con los tratamientos de ceniza de leño de ciprés, no se obtuvo mejoras significativas en relación a la humedad del suelo, según el análisis de la prueba de Tukey, podemos afirmar que el porcentaje de humedad promedio del suelo natural es menor a los otros tres tratamientos (T1, T2 y T3), del cual se concluye que la ceniza de leño de ciprés no disminuye el contenido de humedad del suelo en ningún porcentaje de tratamiento.
- 3. De acuerdo con los resultados del ensayo de límites de Atterberg se hizo el cálculo correspondiente al índice de plasticidad, ya que este factor indica la magnitud del intervalo de humedades en el cual el suelo posee su consistencia plástica. Según los resultados obtenidos, la muestra patrón, T2 y T3 tiene una plasticidad media (7 < IP ≤ 20) lo que caracteriza principalmente un suelo arcilloso de mediana plasticidad. En cuanto al T1 con 5% de ceniza de leño de ciprés, se obtuvo IP>7 lo que refiere una baja plasticidad del suelo. Con lo que inferimos que existe una mejora significativa con la adición de 5% de ceniza, ya que disminuyó la plasticidad del suelo.
- 4. En relación a los resultados del análisis de las pruebas de CBR en el suelo natural y los diferentes tratamientos, se pudo evidenciar que el mayor aumento en la eficiencia se logró cuando se aplicó el 5% de ceniza de leño de ciprés (material estabilizador) en relación con el peso seco del suelo natural, muy por encima del límite mínimo de 6 % de CBR. Por el contrario, el aumento de CBR disminuyó a medida que se utilizaba más ceniza de leño de ciprés, lo que se debió principalmente a la reducción excesiva de material arcilloso debido a la casi sustitución de una gran cantidad de material estabilizador.

RECOMENDACIONES

- 1. Se sugiere utilizar ceniza de leño de ciprés en una proporción no mayor al 5%, ya que se han obtenido buenos resultados en la reducción de la compactación del suelo (CRB). Sin embargo, se recomienda realizar más pruebas de laboratorio en futuras investigaciones para respaldar la afirmación de que esta sustancia es un estabilizador del suelo altamente efectivo.
- 2. Es importante tener en cuenta que las propiedades de la ceniza pueden variar significativamente según la temperatura de combustión. Por lo tanto, se recomienda realizar un análisis de estabilidad de la ceniza de leño de ciprés a una temperatura de combustión superior a 900 °C, utilizando sílice cristalina, para evaluar su capacidad de mejorar la estabilidad de la arcilla.
 - 3. Con el fin de comprender y analizar de manera más completa el efecto de la adición de ceniza de leño de ciprés, se sugiere llevar a cabo estudios futuros que contemplen distintos porcentajes de adición. De esta forma, se podrán realizar comparaciones más exhaustivas y obtener información valiosa para determinar la cantidad óptima de ceniza de ciprés a utilizar.
 - 4. Realizar un análisis económico de la adición de ceniza de leño de ciprés en la subrasante arcillosa. Esto puede incluir una evaluación de los costos asociados con la adición de ceniza y los beneficios en términos de mejora de las propiedades del suelo y reducción de los costos de mantenimiento a largo plazo.
 - 5. Se recomienda investigar el uso de cenizas provenientes de vertederos no controlados con un contenido de sílice lo suficientemente elevado como para ser reutilizadas en la estabilización del suelo. Esto permitiría explorar nuevas oportunidades de aprovechar este tipo de residuos de manera efectiva y sostenible.

LISTA DE REFERENCIAS

- OLANO PÉREZ, Purificación Lisbet; MARÍN BARDALES, Noé Humberto; BENITES CHERO, Julio César. Incremento del valor de soporte del suelo adicionando ecoestabilizante a partir de cenizas de cascarilla de café arábica. Suelos Ecuatoriales. Online. 2021. Vol. 51, no. 1–2, p. 68–76. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo = 8234911
- 2. CHINCHAY DÍAZ, Linberg. Influencia del aditivo sika dust seal como agente estabilizador de suelos en la trocha carrozable tramo La Serma Tambillo Jaén, Cajamarca. Online. Universidad Nacional de Cajamarca, 2018. Available from: http://repositorio.unc.edu.pe/handle/UNC/2547
- 3. **HALL, M.R.; NAJIM, K.B.; KEIKHAEI DEHDEZI, P.** Soil stabilisation and earth construction: materials, properties and techniques. In : *Modern Earth Buildings*. Online. Elsevier, 2012. p. 222–255.
- BILLONG, Ndigui; MELO, U.C.; LOUVET, F.; NJOPWOUO, D. Properties of compressed lateritic soil stabilized with a burnt clay–lime binder: Effect of mixture components. *Construction and Building Materials*. Online. junio 2009. Vol. 23, no. 6, p. 2457–2460. DOI 10.1016/j.conbuildmat.2008.09.017.
- RIVERA, Jhonathan F.; AGUIRRE-GUERRERO, Ana; MEJÍA DE GUTIÉRREZ, Ruby; OROBIO, Armando. Estabilización química de suelos - Materiales convencionales y activados alcalinamente (revisión). *Informador Técnico*. Online. 30 marzo 2020. Vol. 84, no. 2, p. 43–67. DOI 10.23850/22565035.2530.
- RIOS, Sara; CRISTELO, Nuno; VIANA DA FONSECA, António; FERREIRA, Cristiana. Stiffness Behavior of Soil Stabilized with Alkali-Activated Fly Ash from Small to Large Strains. *International Journal of Geomechanics*. Online. marzo 2017. Vol. 17, no. 3. DOI 10.1061/(ASCE)GM.1943-5622.0000783.
- 7. **MAKUSA**, **G. P.** *Soil stabilization methods and materials in engineering practice: State of the art review*. Luleå tekniska universitet, 2013.
- ULATE-CASTILLO, A. Estabilización de suelos y materiales granulares en caminos de bajo volumen de tránsito, empleando productos no tradicionales. *PITRA-LanammeUCR*. Online. 2017. Vol. 8, no. 2. Available from: https://www.lanamme.ucr.ac.cr/repositorio/handle/50625112500/908
- 9. HIGUERA SANDOVAL, C. H.; GÓMEZ CRISTANCHO, J. C.; PARDO NARANJO, Óscar E. Caracterización de un suelo arcilloso tratado con hidróxido de calcio. *Revista Facultad de Ingeniería*. Online. 2013. Vol. 21, no. 32, p. 21–40. Available from: https://revistas.uptc.edu.co/index.php/ingenieria/article/view/1431

- 10. ARRIETA BALDOVINO, Jair de Jesús; DOS SANTOS IZZO, Ronaldo Luis; DA SILVA, Érico Rafael; LUNDGREN ROSE, Juliana. Sustainable Use of Recycled-Glass Powder in Soil Stabilization. *Journal of Materials in Civil Engineering*. Online. mayo 2020. Vol. 32, no. 5. DOI 10.1061/(ASCE)MT.1943-5533.0003081.
- 11. PHUMMIPHAN, Itthikorn; HORPIBULSUK, Suksun; RACHAN, Runglawan; ARULRAJAH, Arul; SHEN, Shui-Long; CHINDAPRASIRT, Prinya. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material. *Journal of Hazardous Materials*. Online. enero 2018. Vol. 341, p. 257–267. DOI 10.1016/j.jhazmat.2017.07.067.
- 12. RIOS, Sara; RAMOS, Catarina; VIANA DA FONSECA, António; CRUZ, Nuno; RODRIGUES, Carlos. Mechanical and durability properties of a soil stabilised with an alkali-activated cement. *European Journal of Environmental and Civil Engineering*. Online. 6 febrero 2019. Vol. 23, no. 2, p. 245–267. DOI 10.1080/19648189.2016.1275987.
- JITTIN, V.; BAHURUDEEN, A.; AJINKYA, S. D. Utilisation of rice husk ash for cleaner production of different construction products. *Journal of Cleaner Production*. Online. agosto 2020. Vol. 263, p. 121578. DOI 10.1016/j.jclepro.2020.121578.
- 14. ESCOBAR SULCA, Juan Jesús; QUISPE SÁNCHEZ, Giancarlo Djorkaef; QUISPE SALAZAR, Fernando Raúl; ARANA SOTO, Jammy Bryan; HUARCAYA QUIQUIA, Rosario Belén. Estabilización de una subrasante arcillosa de baja plasticidad con cenizas de cáscara de arroz. Online. Pontificia Universidad Católica del Perú, 2021. Available from: http://hdl.handle.net/20.500.12404/18221
- 15. MÁRQUEZ MARTINEZ, Karolina. Mejoramiento de la estabilización en la subrasante de suelos arcillosos usando plásticos reciclados PET en el distrito La Encantada, provincia de Morropón – Piura 2019. Online. Universidad Nacional de Piura, 2019. Available from: http://repositorio.unp.edu.pe/handle/20.500.12676/2241
- 16. QUINTE BALTAZAR, Monica Milagritos; CRISTOBAL GAVANCHO, Fiorella Patricia. Estabilización de subrasante con cenizas de eucalipto, paraje turístico Piedra Parada, Concepción, Junín 2021. Online. Universidad Continental. Facultad de Ingeniería, 2022. Available from: https://hdl.handle.net/20.500.12394/11362
- 17. BUENO REGALADO, Jesus Anthony; TORRE MAZA, Homaly Dayer. Mejoramiento de la estabilidad del suelo con cenizas de carbón con fines de pavimentación en el barrio del Pinar, Independencia, Huaraz 2018. Online. Universidad César Vallejo, 2019. Available from: https://hdl.handle.net/20.500.12692/40554
- 18. VILLACÍS TRONCOSO, Eugenia de las Mercedes; LUNA HERMOSA, Germán; ESCADEILLAS, Gilles; ROMÁN SOLÓRZANO, Karina; LICUY ORDÓÑEZ, Cristhian; ORBE PINCHAO, Liseth; ZÚÑIGA MORALES, Paúl; GUERRERO BARRAGÁN, Víctor. Estabilización de arcillas expansivas con ceniza volcánica y ceniza

- de cascarilla de arroz. *Revista Tecnológica ESPOL*. Online. 30 junio 2022. Vol. 34, no. 2, p. 14–27. DOI 10.37815/rte.v34n2.821.
- 19. ASFINO PUTRA, Okri; HERMAN, Herman; MEDRIOSA, Hamdeni; NUGROHO, Fajar. Effectiveness of waste paper ash for stabilization on clay soil. *Revista Ingeniería de Construcción*. Online. 2022. Vol. 37, no. 2. DOI 10.7764/RIC.00030.21.
- 20. OJEDA FARÍAS, Omar Farid; BALTAZAR ZAMORA, Miguel Ángel; MENDOZA RANGEL, José Manuel. Influencia de la inclusión de ceniza de bagazo de caña de azúcar sobre la compactación, CBR y resistencia a la compresión simple de un material granular tipo subrasante. Revista ALCONPAT. Online. 30 abril 2018. Vol. 8, no. 2, p. 194–208. DOI 10.21041/ra.v8i2.282.
- 21. LICUY ORDÓÑEZ, Cristhian Abel; ROMÁN SOLÓRZANO, Karina Elizabeth. Estudio de la estabilización de arcillas expansivas utilizando el 10, 20 y 30 % en peso, de puzolanas de ceniza del volcán Tungurahua y ceniza de la cascarilla de arroz en composiciones iguales. Online. Escuela Politécnica Nacional, 2020. Available from: http://bibdigital.epn.edu.ec/handle/15000/20630
- 22. **PEREZ LOPEZ, R.** Estabilización de suelos arcillosos aplicando ceniza de madera de fondo para su uso como subrasante mejorada de pavimento, producto de ladrillera Cerámicas Júpiter S.A.C. del departamento de Ucayali. Online. Universidad Nacional de Ucayali. Facultad de Ingeniería de Sistemas y de Ingeniería Civil, 2021. Available from: http://repositorio.unu.edu.pe/handle/UNU/5148
- 23. **ESPINO MARQUEZ, Yhon Marcial.** Adición de Ceniza de Madera de Fondo en la Estabilización de Suelos Arcillosos y su Aplicación a Subrasante. Online. Universidad Peruana Los Andes, 2021. Available from: https://hdl.handle.net/20.500.12848/3571
- 24. **ALANYA PALOMINO, Cesar Eduardo.** Estabilización de suelos arcillosos incorporando cenizas de madera, originadas por ladrilleras artesanales, en la red vial vecinal Antarumi Macachacra, Ayacucho. Online. Universidad César Vallejo, 2020. Available from: https://hdl.handle.net/20.500.12692/64764
- 25. TORRES MONTESINOS, Sergio Feliciano; LANDA ALARCON, Jacques Yitzhak. Mejoramiento de suelos arcillosos en subrasante mediante el uso de cenizas volantes de bagazo de caña de azúcar y cal en el tramo de la carretera Tingo María Monzón en la provincia de Leoncio Prado. Online. Universidad Peruana de Ciencias Aplicadas, 2020. Available from: http://hdl.handle.net/10757/653977
- 26. MAMANI BARRIGA, Lux Eva; YATACO QUISPE, Alejandro Jesús. Estabilización de suelos arcillosos aplicando ceniza de madera de fondo, producto de ladrilleras artesanales en el departamento de Ayacucho. Online. Universidad de San Martín de Porres. Facultad de Ingeniería y Arquitectura, 2017. Available from: https://hdl.handle.net/20.500.12727/3635

- 27. VARGAS CHACALTANA, Luis Alberto. Estabilización de subrasante con adición de ceniza Schinus (molle) en la trocha carrozable Yanakillca, Provincia Antabamba, Apurímac-2022. Online. Universidad César Vallejo. Facultad de Ingeniería y Arquitectura, 2022. Available from: https://hdl.handle.net/20.500.12692/87709
- 28. CARBAJAL CESPEDES, Mijael. Estabilización de la subrasante adicionando cenizas de madera en la vía de evitamiento, distrito de Abancay, Apurímac-2022. Online. Universidad César Vallejo, 2022. Available from: https://hdl.handle.net/20.500.12692/92670
- 29. Instituto Nacional de Vías Invías. Glosario de Manual de diseño geométrico de carreteras Online. Colombia, 2018. Available from: https://www.invias.gov.co/index.php/servicios-al-ciudadano/glosario/130-glosario-manual-diseno-geometrico-carreteras
- 30. Asociación Española de la Carretera; Comité de Seguimiento de la Política de Comunicación. La carretera en la sociedad del siglo XXI Online. España, 2006. Available from: http://www.aecarretera.com/Libro definitivo.pdf
- 31. **Ministerio de Transportes y Comunicaciones.** *Manual de Carreteras-Suelos, Geología y Pavimentos: Sección Suelos y Pavimentos* Online. Lima, Perú, 2014. Available from: https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/MTC NORMAS/ARCH_PDF/MAN_7 SGGP-2014.pdf
- 32. RONDÓN-QUINTANA, Hugo Alexander; RUGE-CÁRDENAS, Juan Carlos; MUNIZ de FARIAS, Márcio. Behavior of Hot-Mix Asphalt Containing Blast Furnace Slag as Aggregate: Evaluation by Mass and Volume Substitution. *Journal of Materials in Civil Engineering*. Online. febrero 2019. Vol. 31, no. 2. DOI 10.1061/(ASCE)MT.1943-5533.0002574.
- 33. Ministerio de Transportes y Comunicaciones. Manual de ensayo de materiales Online. Peru, 2016. Available from: https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/documentos/manuales/Manual Ensayo de Materiales.pdf
- 34. KRAEMER, C, PARDILLO, J.; ROCCI, S.; ROMANA, M.; SÁNCHEZ, V. *Ingeniería de Carreteras*. . Madrid, España : McGraw-Hill, 2004.
- 35. **MOSQUEDA TINOCO, A.** Identificación de arcillas expansivas. *Tecnología y ciencias del agua*. Online. 1986. N.° 3, p. 9–18. Available from: http://revistatyca.org.mx/ojs/index.php/tyca/article/view/514/451
- 36. **ESCOBAR POTES, C.; DUQUE ESCOBAR, G.** *Geotecnia para el trópico andino*. . Colombia : Departamento de Matemáticas y Estadística, 2016.
- 37. MONTEJO FONSECA, Alfonso; MONTEJO PIRATOVA, Alejandro; MONTEJO PIRATOVA, Alberto. Estabilización de Suelos. Ediciones De La U, 2018.

- 38. LIU, Yuyi; SU, Yunhe; NAMDAR, Abdoullah; ZHOU, Guoqing; SHE, Yuexin; YANG, Qin. Utilization of Cementitious Material from Residual Rice Husk Ash and Lime in Stabilization of Expansive Soil. *Advances in Civil Engineering*. Online. 1 abril 2019. P. 1–17. DOI 10.1155/2019/5205276.
- 39. HASAN, Umair; CHEGENIZADEH, Amin; BUDIHARDJO, Mochamad Arief; NIKRAZ, Hamid. Experimental Evaluation of Construction Waste and Ground Granulated Blast Furnace Slag as Alternative Soil Stabilisers. *Geotechnical and Geological Engineering*. Online. 21 diciembre 2016. Vol. 34, no. 6, p. 1707–1722. DOI 10.1007/s10706-016-9983-z.
- 40. **FIROOZI, Ali Akbar; GUNEY OLGUN, C.; FIROOZI, Ali Asghar; BAGHINI, Mojtaba Shojaei.** Fundamentals of soil stabilization. *International Journal of Geo-Engineering*. Online. 16 diciembre 2017. Vol. 8, no. 1, p. 26. DOI 10.1186/s40703-017-0064-9.
- 41. LIU, Jin; SHI, Bin; JIANG, Hongtao; HUANG, He; WANG, Gonghui; KAMAI, Toshitaka. Research on the stabilization treatment of clay slope topsoil by organic polymer soil stabilizer. *Engineering Geology*. Online. enero 2011. Vol. 117, no. 1–2, p. 114–120. DOI 10.1016/j.enggeo.2010.10.011.
- 42. **DAS, Braja.** Fundamentals of Geotechnical Engineering. . Auckland, Nueva Zelanda: Global Engineering, 2013.
- 43. SYED-ZUBER, S. Z.; KAMARUDIN, H.; MUSTAFA, A.; ABDULLAH, M.; BINGUSSAIN, M.; SALWAS, M. Review on soil stabilization techniques. *Australian Journal of Basic and Applied Sciences*. 2013. Vol. 7, p. 258–265.
- 44. **BEHNOOD, Ali.** Soil and clay stabilization with calcium- and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques. *Transportation Geotechnics*. Online. diciembre 2018. Vol. 17, p. 14–32. DOI 10.1016/j.trgeo.2018.08.002.
- 45. **MOGHAL, Arif Ali Baig.** State-of-the-Art Review on the Role of Fly Ashes in Geotechnical and Geoenvironmental Applications. *Journal of Materials in Civil Engineering*. Online. agosto 2017. Vol. 29, no. 8. DOI 10.1061/(ASCE)MT.1943-5533.0001897.
- 46. **KIM, Bumjoo; PREZZI, Monica; SALGADO, Rodrigo.** Geotechnical Properties of Fly and Bottom Ash Mixtures for Use in Highway Embankments. *Journal of Geotechnical and Geoenvironmental Engineering*. Online. julio 2005. Vol. 131, no. 7, p. 914–924. DOI 10.1061/(ASCE)1090-0241(2005)131:7(914).
- 47. **JOSHI, Amruta R.; PATEL, Satyajit; SHAHU, Jagdish Telangrao.** Utilization of Class 'C' Fly Ash in Flexible Pavement System—A Review. In: *Geotechnics for Transportation Infrastructure*. Online. 2019. p. 629–638.

- 48. **Ministerio de Fomento.** *Cenizas volantes de carbón y cenizas de hogar o escorias* Online. España, 2011. Available from: http://www.cedexmateriales.es/catalogo-de-residuos/24/diciembre-2011/
- 49. **GONZÁLES, A.** Estabilización mecánica de suelos cohesivos a través de la utilización de cal ceniza volante. . Guatemala : Universidad de San Carlos de Guatemala, 2014.
- 50. ROJAS-RODRÍGUEZ, Freddy; TORRES-CÓRDOBA, Gustavo. Árboles del Valle Central de Costa Rica: reproducción Ciprés (Cupressus lusitanica Mill.). Revista Forestal Mesoamericana Kurú. Online. 29 diciembre 2014. Vol. 12, no. 28, p. 46. DOI 10.18845/rfmk.v12i28.2099.
- 51. HERNÁNDEZ-SAMPIERI, R.; FERNÁNDEZ-COLLADO, C.; BAPTISTA-LUCIO, M. del P. Metodología de la investigación. 6ta ed. México : McGraw-Hill, 2014.
- 52. **HERNÁNDEZ-SAMPIERI, R.; MENDÓZA, C.** *Metodología de la investigación, las rutas cuantitativa cualitativa y mixta.* . Ciudad de México, México : Mc Graw Hill, 2018. ISBN 978-1-4562-6096-5.
- 53. **MEJIA, E.** *Técnicas e instrumentos de investigación*. Primera Ed. Lima : Universidad Nacional Mayor de San Marcos, 2005.
- 54. **TAMAYO y TAMAYO, Mario.** *El proceso de la investigación científica*. 4ta edición. Mexico: Limusa, 2004.
- 55. Ministerio de Vivienda, Construcción y Saneamiento. Norma de suelos y cimentaciones E.050, 2018.

ANEXOS

Anexo 1
Operacionalización de variables

Tipo	o De Variable	Definición Conceptual	Definición Operacional	Dimensiones	Indicadores	Unidades De Medidas	Tipo De Variable	Escala De Medición
	Estabilización	La estabilización es un	La incorporación de ceniza	% de	0% de ceniza de leño	kg	Cuantitativa	Nominal
endiente	con ceniza de leño de ciprés	proceso de mejoramiento de suelos que implica la adición de ceniza, generalmente producida	de leño de ciprés se realizó en diferentes porcentajes al suelo arcilloso para mejorar sus propiedades físicas y	dosificación de ceniza de leño de ciprés proporción peso	de ciprés Incorporación de 5% de ceniza de leño de ciprés	kg	Cuantitativa	
Variable Independiente		por la combustión de madera u otros materiales orgánicos, al	mecánicas, se evaluó mediante la adición de 5%, 10% y 15% de ceniza.	del cemento	Incorporación de 10% de ceniza de leño de ciprés	kg	Cuantitativa	
Varia		suelo existente para mejorar sus propiedades físicas y mecánicas (24).			Incorporación de 15% de ceniza de leño de ciprés	kg	Cuantitativa	
	Subrasante de suelo arcilloso	La subrasante de suelo arcilloso es la capa	La evaluación de la subrasante de suelo arcilloso	Contenido de humedad	Ensayo de contenido de humedad	%	Cuantitativa	Numérica
ndiente		inferior de una vía de transporte terrestre, que se encuentra	será mediante la evaluación del contenido de humedad del suelo, el índice de	Índice de plasticidad	(LL) - (LP) = (IP)	%	Cuantitativa	Numérica
Variable Dependiente		directamente debajo de la capa de base y la capa de rodadura. Esta capa está compuesta por suelo arcilloso, que se caracteriza por su alta plasticidad y expansión (31).	plasticidad y el CBR del suelo.	CBR	Ensayo de Proctor Modificado	Gr/cm3	Cuantitativa	Numérica

Anexo 2 Matriz de consistencia

Problema general	Objetivo general	Hipótesis general	Variables	Dimensiones	Indicadores	Metodológico
					0% de ceniza de	Tipo de investigación:
¿Cómo influye la adición	Evaluar la influencia de	La adición de ceniza de leño de	Estabilización	% de	leño de ciprés	Aplicada
de ceniza de leño de	la adición de ceniza de	ciprés mejora las propiedades	con ceniza de	dosificación		Nivel de investigación:
ciprés en la subrasante de	leño de ciprés en la	físico - mecánicas de la	leño de ciprés	de ceniza de	Incorporación	Explicativo
suelo arcilloso en la	subrasante de suelo	subrasante de suelo arcilloso en		leño de ciprés	de 5% de ceniza	Método de
carretera Matapuquio -	arcilloso en la carretera	la carretera Matapuquio -		proporción	de leño de	investigación: Científica
Collpa, Andahuaylas	Matapuquio - Collpa,	Collpa, Andahuaylas 2022		peso del	ciprés	De Enfoque Cuantitativa
2022?	Andahuaylas 2022			cemento		Diseño de
					Incorporación	investigación:
Problema					de 10% de	Cuasi Experimental
Específicos	Objetivo Específicos	Hipótesis Específicos			ceniza de leño	Técnicas de recolección
					de ciprés	de datos
¿Cómo influye la adición	Identificar la influencia	La adición de ceniza de leño de				 Observación directa
de ceniza de leño de	la adición de ceniza de	ciprés influye			Incorporación	Instrumentos de
ciprés en el contenido de	leño de ciprés en el	significativamente en el			de 15% de	recolección de datos
humedad de la	contenido de humedad	contenido de humedad de la			ceniza de leño	 Fichas técnicas del
subrasante de suelo	de la subrasante de	subrasante de suelo arcilloso en			de ciprés	laboratorio de pruebas a
arcilloso en la carretera	suelo arcilloso en la	la carretera Matapuquio -				realizar
Matapuquio - Collpa,	carretera Matapuquio -	Collpa, Andahuaylas 2022				
Andahuaylas 2022?	Collpa, Andahuaylas				Ensayo de	
	2022		Subrasante de	Contenido de	contenido de	
			suelo	humedad	humedad	Población:
¿Cómo influye la adición	Identificar la influencia	La adición de ceniza de leño de	arcilloso	,		La población de estudio
de ceniza de leño de	la adición de ceniza de	ciprés influye		Índice de	(LL) - (LP) =	estuvo compuesta por los
ciprés en el índice de	leño de ciprés en el	significativamente en el índice		plasticidad	(IP)	suelos de la carretera
plasticidad de la	índice de plasticidad de	de plasticidad de la subrasante				Matapuquio-Collpa, que
subrasante de suelo	la subrasante de suelo	de suelo arcilloso en la carretera		CBR	Ensayo de	abarca una longitud total
arcilloso en la carretera	arcilloso en la carretera	Matapuquio - Collpa,			Proctor	de 18.6 kilómetros y
Matapuquio - Collpa,	Matapuquio - Collpa,	Andahuaylas 2022			Modificado	conecta los centros
Andahuaylas 2022?	Andahuaylas 2022					poblados de Matapuquio
						y Collpa.

¿Cómo influye la adición de ceniza de leño de ciprés en el CBR de la subrasante de suelo arcilloso en la carretera Matapuquio - Collpa, Andahuaylas 2022? Identificar la influencia la adición de ceniza de leño de ciprés en el CBR de la subrasante de suelo arcilloso en la carretera Matapuquio -Collpa, Andahuaylas 2022

La adición de ceniza de leño de ciprés influye significativamente en el CBR de la subrasante de suelo arcilloso en la carretera Matapuquio -Collpa, Andahuaylas 2022

Muestra:

La muestra del estudio se conformó por el suelo de la subrasante ubicada en la progresiva (Km: 15 + 100 – Km 18 + 300)

Anexo 3

Certificados de laboratorio

Certificación de la ceniza de leño de ciprés

CERTIFICADO DE ENSAYO CQ-4543922-08

1. DATOS DEL CLIENTE

a. Solicitante : JHON YEROVI ALTAMIRANO VILLENA FREDY UTANI HUASCO

esis : "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022".

2. FECHAS DE ENSAYO

a. Inicio : 22/11/2022
 b. Finalización : 23/11/2022
 c. Emisión de Informe : 23/11/2022

3. CONDICIONES AMBIENTALES DE ENSAYO

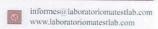
a. Temperatura : 21.1 °Cb. Humedad Relativa : 43%

4. ENSAYO SOLICITADO Y MÉTODO UTILIZADO

a. Ensayo solicitado : COMPOSICIÓN QUÍMICA DE OXIDOS

Método solicitado : FLUORESCENCIA DE RAYOS X

5. DATOS DE LAS MUESTRAS ANALIZADAS


TABLA 1: DATOS DE LA MUESTRA A ENSAYAR

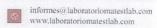
CÓDIGO	NOMBRE DE PRODUCTO	INFORMACIÓN ADICIONAL
MTL-426-08	Ceniza de leño de ciprés	Código de muestra: CE-531
WIIL-420-08	Ceniza de ieno de cipres	Toma de muestra: 22/11/22

^{*} Los resultados pertenecen a las muestras entregadas al laboratorio por parte del solicitante.

6. RESULTADOS

a. Resultados obtenidos:

TABLA 2: RESULTADOS DE COMPOSICIÓN QUÍMICA


CÓDIGO	ENSAYOS	UNIDAD	RESULTADO
	Determinación de óxido de calcio (CaO)	0%	16.01
	Determinación de dióxido de silicio (SiO ₂)	%	59.52
	Determinación de trióxido de azufre (SO ₃)	%	4.11
	Determinación de óxido de magnesio (MgO)	%	2.32
	Determinación de óxido de manganeso (MnO)	%	3.71
	Determinación de trióxido de aluminio (Al ₂ O ₃)	%	2.22
MTL-426-08	Determinación de pentóxido de fósforo (P ₂ O ₃)	%	1.1
	Determinación de trióxido de hierro (Fe ₂ O ₃)	%	2.96
	Determinación de óxido de bario (BaO)	%	1.23
	Determinación de óxido de zinc (ZnO)	%	0.12
	Determinación de óxido de cobre (CuO)	%	0.03
	Determinación de trióxido de cromo (CrO ₃)	%	0.98
	Otros	%	4.14

^{*} Los resultados pertenecen a las muestras entregadas al laboratorio por parte del solicitante.

Validación de Juicio de Expertos

CERTIFICADO DE VALIDACION DEL INSTRUMENTO DE RECOLECCION DE DATOS

I. DATOS GENERALES

Apellidos y Nombres del experto: Vildoso Flores, Alejandro.

N° de registro CIP: 122950 Especialidad: Construcción

Autores del instrumento: Bach. Altamirano Villena Jhon Yerovi.

Bach. Utani Huasco Fredy.

Instrumento de evaluación: Contenido de humedad, CBR, granulometría.

II. ASPECTOS DE VALIDACION

(1) MUY DEFICIENTE (2) DEFICIENTE (3) ACEPTABLE (4) BUENA (5) EXCELENTE

CRITERIOS	INDICADORES	1	2	3	4	5
CLARIDAD	CLARIDAD Los ítems están definidos con lenguaje apropiado y libre de ambigüedad acorde con los sujetos muéstrales.					3
OBJETIVIDAD	OBJETIVIDAD Las instrucciones y los ítems del instrumento permiten recolectar los resultados obtenidos sobre la variable: estabilización de la subrasante con ceniza de leño de ciprés en todas sus dimensiones en indicadores conceptuales y operacionales.					>
ACTUALIDAD El instrumento muestra vigencia acorde con el conocimiento científico, tecnológico, innovación y legal inherente a la variable: estabilización con ceniza de leño de ciprés.						2
ORGANIZACION	Los ítems del instrumento reflejan el orden entre la definición operacional y conceptual respecto a la variable, de manera que permiten hacer inferencias en función a las hipótesis, problema y objetivos de la investigación.					2
SUFICIENCIA	Los ítems del instrumento son suficientes en cantidad y calidad acorde con la variable, indicadores y dimensiones.					2
INTENCIONALIDAD	Las añadiduras del instrumento son coherentes con el tipo de investigación y responden a los objetivos, hipótesis y variables de estudio.					>
CONSISTENCIA	La información que se recoja a través de las añadiduras del instrumento, describir, análisis y explicar la realidad, motivo de la investigación.					3
COHERENCIA Las añadiduras del instrumento conllevan relación con los indicadores de cada dimensión de variable: subrasante de suelo arcilloso.						2
METODOLOGIA La relación entre técnica y el instrumento propuesto garantizan el propósito de la investigación, desarrollo tecnológico e innovador.						>
PERTINENCIA	La relación de las añadiduras conlleva relación con la escala valorativa del instrumento.					7
	TOTAL			50		

OJO: Tener en cuenta que el instrumento es válido cuando se tiene un puntaje mínimo de 45: sin embargo, un puntaje menor al anterior se considera al instrumento no valido ni aplicable

OBSERVACIONES:	
OBTENCION DE CALIFICACION 50	Lima, 14 de Noviembre del 2022
	1.1

SELLO Y FIRMA:

Validado por:

Tipo de validador	Interno (X) Externo () [Docente]
Apellidos Y Nombres	Vildoso Flores Alejandro
Sexo	Masculino (X) Femenino ()
Profesión	INGENIERO CIVIL
Grado Académico	Licenciado () Magister (X) Doctor ()
Años de Experiencia Laboral	5-10 () 11–15 (X) 16-20 () 21 a mas años ()

Solo para validado externo:

Organización donde labora	COPROVA SRL Y DOCENTE UNIVERSITARIO
Cargo Actual	GERENTE DE PROYECTOS/DTP
Área de especialización	CONSTRUCCION
Número de teléfono de contacto	989438864
Correo electrónico de contacto	alejandro.vildoso@coprovasrl.com
Medio de preferencia de contacto	Por teléfono () Por Correo Electrónico ()
Firma del validador Experto	ALEJANDRO VILDOSO FLORES INGENIERO CIVIL Reg. CIP. Nº 122950
Nombres Y Apellidos	Alejandro Vildoso Flores
D.N.I.	10712728

CERTIFICADO DE VALIDACION DEL INSTRUMENTO DE RECOLECCION DE DATOS

	AT	20	OFA	-	AIFO
1 11	AII	35	(- - \		ALES

Apellidos y Nombres del experto: farçan Quispitupa Gido
Nº de registro CIP: 78016
Especialidad: Geotecina
Autores del instrumento: Bach. Altamirano Villena Thon Yerovi
Bach. Utani Huasco Fredy
Instrumento de evaluación: Contenido de humedad, CBR, granulometría.

II. ASPECTOS DE VALIDACION

(1) MUY DEFICIENTE (2) DEFICIENTE (3) ACEPTABLE (4) BUENA (5) EXCELENTE

CRITERIOS	INDICADORES	1	2	3	4	5
CLARIDAD	Los ítems están definidos con lenguaje apropiado y fibre de ambigüedad acorde con los sujetos muéstrales.					×
OBJETIVIDAD	Las instrucciones y los ítems del instrumento permiten recolectar los resultados obtenidos sobre la variable: estabilización de la subrasante con ceniza de leño de ciprés en todas sus dimensiones en indicadores conceptuales y operacionales.					>
ACTUALIDAD	El instrumento muestra vigencia acorde con el conocimiento científico, tecnológico, innovación y legal inherente a la variable: Estabilización con ceniza de leño de ciprés.					X
Los ítems del instrumento reflejan el orden entre la definición operacional y conceptual respecto a la variable, de manera que permiten hacer inferencias en función a las hipótesis, problema y objetivos de la investigación.						٥
SUFICIENCIA	Los ítems del instrumento son suficientes en cantidad y calidad acorde con la variable, indicadores y dimensiones.					X
INTENCIONALIDAD	Las añadiduras del instrumento son coherentes con el tipo de investigación y responden a los objetivos, hipótesis y variables de estudio.					0
CONSISTENCIA	La información que se recoja a través de las añadiduras del instrumento, describir, análisis y explicar la realidad, motivo de la investigación.					X
COHERENCIA Las añadiduras del instrumento conllevan relación con los indicadores de cada dimensión de variable: subrasante de suelo arcilloso.						a
METODOLOGIA	La relación entre técnica y el instrumento propuesto garantizan el propósito de la investigación, desarrollo tecnológico e innovador.					0
PERTINENCIA	La relación de las afiadiduras conlleva relación con la escala valorativa del instrumento.					0
	TOTAL		6	0		

OJO: Tener en cuenta que el instrumento es válido cuando se tiene un puntaje mínimo de 45: sin embargo, un puntaje menor al anterior se considera al instrumento no valido ni aplicable

OBSERVACIONES:	
OBTENCION DE CALIFICACION 50	Lima, 4 Noviembre del 2022

SELLO Y FIRMA:

Validado por:

Tipo de validador	Interno () Externo () [Docente]
Apellidos Y Nombres	Guspitupa Guido fartan
Sexo	Masculino () Femenino ()
Profesión	
Grado Académico	Licenciado () Magister () Doctor ()
Años de Experiencia Laboral	5-10 () 11-15 () 16-20 () 21 a mas años ()

Solo para validado externo:

Organización donde labora	INGEOLAB SEL
Cargo Actual	Gerente
Área de especialización	Geotecnia
Número de teléfono de contacto	983619242
Correo electrónico de contacto	guindo 1274 agmail.com
Medio de preferencia de contacto	Por teléfono () Por Correo Electrónico 🛇
Firma del validador Experto	Ing Guldo Farfan Quispitupo Ing Guldo Farfan Quispitupo Ingenero Civil
Firma del validador Experto Nombres Y Apellidos	Ing Guldo Farfan Quispitupa Ing Guldo Farfan Quispitupa Ingeniero Civil CIP 78016

CERTIFICADO DE VALIDACION DEL INSTRUMENTO DE RECOLECCION DE DATOS

I. DATOS GENERALES

Apellidos y Nombres del experto: CALDERON CATACORA JOSÉ ROBERTO

Nº de registro CIP: 91473

Especialidad: OBRAS VIALES

Autores del instrumento:

ALTAMIRANO VILLENA SHON YEROV.

UTANI HUASCO FREDY

Instrumento de evaluación: Contenido de humedad, CBR, granulometría.

II. ASPECTOS DE VALIDACION.

II. ASPECTOS DE VALIDACION

(1) MUY DEFICIENTE (2) DEFICIENTE (3) ACEPTABLE (4) BUENA (5) EXCELENTE

CRITERIOS	INDICADORES	1	2	3	4	E
CLARIDAD	Los ítems están definidos con lenguaje apropiado y libre de ambigüedad acorde con los sujetos muéstrales.					1
OBJETIVIDAD	Las instrucciones y los ítems del instrumento permiten recolectar los resultados obtenidos sobre la variable: estabilización de la subrasante con ceniza de leño de ciprés en todas sus dimensiones en indicadores conceptuales y operacionales.					,
ACTUALIDAD	El instrumento muestra vigencia acorde con el conocimiento científico, tecnológico, innovación y legal inherente a la variable: Estabilización con ceniza de leño de ciprés.					,
ORGANIZACION	Los ítems del instrumento reflejan el orden entre la definición operacional y conceptual respecto a la variable, de manera que permiten hacer inferencias en función a las hipótesis, problema y objetivos de la investigación.					7
SUFICIENCIA	Los ítems del instrumento son suficientes en cantidad y calidad acorde con la variable, indicadores y dimensiones.)
INTENCIONALIDAD	Las añadiduras del instrumento son coherentes con el tipo de investigación y responden a los objetivos, hipótesis y variables de estudio.					1
CONSISTENCIA	La información que se recoja a través de las añadiduras del instrumento, describir, análisis y explicar la realidad, motivo de la investigación.)
COHERENCIA	Las añadiduras del instrumento conllevan relación con los indicadores de cada dimensión de variable: subrasante de suelo arcilloso.				9	7
METODOLOGIA	La relación entre técnica y el instrumento propuesto garantizan el propósito de la investigación, desarrollo tecnológico e innovador.					7
PERTINENCIA	La relación de las afiadiduras conlleva relación con la escala valorativa del instrumento.					1
TOTAL			<	1	1	

OJO: Tener en cuenta que el instrumento es válido cuando se tiene un puntaje mínimo de 45: sin embargo, un puntaje menor al anterior se considera al instrumento no valido ni aplicable

OBSERVACIONES:		
OBTENCION DE CALIFICACION 50	Lima, 14 Noviembre del 2022	

SELLO Y FIRMA:

Validado por:

Interno () Externo () [Docente]
CALDERIN CATACORA JOSE ROBERTO
Masculino (x) Femenino ()
INGENIERO CIVIL
Licenciado () Magister () Doctor ()
5-10 () 11-15 (X) 16-20 () 21 a mas años (

Solo para validado externo:

Organización donde labora	RUNCEPALIONO DISTRITAL DE DANCHA
Cargo Actual	SUPERVISOR DE OBRA
Área de especialización	OBRAS VIALES
Número de teléfono de contacto	935424632
Correo electrónico de contacto	C- Catacora Dhotmail. com
Medio de preferencia de contacto	Por teléfono () Por Correo Electrónico (X)
Firma del validador Experto	Ios Roberta Calderón Catacorri In GENIERO CIVIL CIP. 91473
Nombres Y Apellidos	JOSE ROBERTO CALDERON CATACORA

Calibración De Equipos De Laboratorio

Balanza Henkel

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 033

CERTIFICADO DE CALIBRACIÓN Nº LM-420-2021

Página: 1 de 3

 Expediente
 : 131-2021

 Fecha de Emisión
 : 2021-11-29

1. Solicitante : MATESTLAB S.A.C.

Dirección : MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

2. Instrumento de Medición : BALANZA

Marca : HENKEL

Modelo : FA2004

Número de Serie : GK109136

Alcance de Indicación : 200 g (*)

División de Escala de Verificación (e)

División de Escala Real (d) : 0,1 mg

Procedencia : NO INDICA

Identificación : LS-06

Tipo : ELECTRÓNICA

Ubicación : LABORATORIO

Fecha de Calibración : 2021-09-24

La incertidumbre reportada en presente certificado incertidumbre expandida medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2. La incertidumbre fue determinada según la "Guía para la Expresión de la incertidumbre en la medición". Generalmente, el valor de la magnitud está dentro del intervalo los determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95 %.

Los resultados son válidos en el momento y en las condiciones en que se realizarón las mediciones y no debe ser utilizado como certificado de conformidad con normas de productos o como certificado del sistema de calidad de la entidad que lo produce.

Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento de instrumento de medición o a reglamentaciones vigentes.

PUNTO DE PRECISIÓN S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declamentos.

3. Método de Calibración

La calibración se realizó mediante el método de comparación según el PC-011 4ta Edición, 2010; Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase I y II del SNM-INDECOPI.

4. Lugar de Calibración

LABORATORIO de MATESTLAB S.A.C.

MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

PUNTO DE PRECISIÓN SA C

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631 00

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com
PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO N° LC - 033

CERTIFICADO DE CALIBRACIÓN Nº LM-420-2021

5. Condiciones Ambientales

101 TO 101 TO 101	Mínima	Máxima
Temperatura	20,6	21,5
Humedad Relativa	56,8	62.6

6. Trazabilidad

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

	Trazabilidad	Patrón utilizado	Certificado de calibración
0	INACAL - DM	Juego de pesas (exactitud F1)	IP-296-2019

7. Observaciones

(*) La balanza se calibró hasta una capacidad de 200,0004 g

Antes del ajuste, la indicación de la balanza fue de 199,9982 g para una carga de 200,0000 g El ajuste de la balanza se realizó con las pesas de Punto de Precisión S.A.C.

Los errores máximos permitidos (e.m.p.) para esta balanza corresponden a los e.m.p. para balanzas en uso de funcionamiento no automático de clase de exactitud I, según la Norma Metrológica Peruana 003 - 2009. Instrumentos de Pesaje de Funcionamiento no Automático.

Se colocó una etiqueta autoadhesiva de color verde con la indicación de "CALIBRADO".

Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

8. Resultados de Medición

INSPECCIÓN VISUAL						
AJUSTE DE CERO	TIENE	ESCALA	NO TIENE			
OSCILACIÓN LIBRE	TIENE	CURSOR	NO TIENE			
PLATAFORMA	TIENE	SIST. DE TRABA	NO TIENE			
NIVELACIÓN	TIENE	A SENT ME				

ENSAYO DE REPETIBILIDAD

Medición	Carga L1=	100,0002	1	Carga L2=	200,0004	g
No	l (g)	ΔL (mg)	E (mg)	1 (g)	ΔL (mg)	E (mg)
1	100,0000	0,0	-0,2	200,0000	0,0	-0,4
2	100,0000	0,0	-0,2	200,0000	0,0	-0.4
3	100,0001	0,0	-0.1	200,0000	0,0	-0,4
4	100,0000	0,0	-0,2	200,0000	0,0	-0,4
5	100,0000	0,0	-0,2	200,0000	0,0	-0.4
6	100,0000	0.0	-0,2	200,0001	0,0	-0,3
7	100,0001	0,0	-0,1	200,0000	0,0	-0,4
8	100,0000	0,0	-0,2	200,0000	0,0	-0,4
9	100,0000	0,0	-0,2	200,0000	0,0	-0,4
10	100,0000	0,0	-0,2	200,0000	0,0	-0,4
rencia Máxima	the state of	100	0,1	5X8 19	-330 600	0,1
r máximo permi	tido ±	2 n	na	+	31	

PT-06.F06 / Dick nbre 2016 / Rev 02

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 033

CERTIFICADO DE CALIBRACIÓN Nº LM-420-2021

ENSAYO DE EXCENTRICIDAD

Posición					Determinació	n del Error co	rregido		
de la Carga	Carga mínima (g)	l (g)	ΔL (mg)	Eo (mg)	Carga L (g)	1(9)	ΔL (mg)	E (mg)	Ec (mg)
1	7 9 6	0,0009	0,0	-0,1		59,9999	0,0	-0,3	-0,2
2	770, 200	0,0010	0,0	0,0	190	60,0001	0,0	-0,1	-0,1
3	0,0010	0,0011	0,0	0,1	60,0002	60,0002	0,0	0,0	-0,1
4	" Care 20	0,0011	0,0	0,1		60,0001	0,0	-0,1	-0,2
5	95	0,0012	0,0	0,2		59,9999	0,0	-0,3	-0,5
valor entre (0 v 10 e				Error máxim	o permitido :	±	2 ma	

ENSAYO DE PESAJE

Carga L		CRECIEN	TES		DECRECIENTES				temp
(g)	1 (g)	ΔL (mg)	E (mg)	Ec (mg)	1 (g)	ΔL (mg)	E (mg)	Ec (mg)	(mg)
0,0	0,0010	0,0	0,0						
0,0	0,0100	0,0	0,0	0,0	0,0100	0,0	0,0	0,0	1
0,2	0,2000	0,0	0,0	0,0	0,2001	0,0	0,1	0,1	0
0,5	0,5001	0,0	0,1	0,1	0,5000	0,0	0,0	0,0	0
2,0	2,0002	0,0	0.1	0,1	2,0000	0,0	-0,1	-0,1	0
5,0	5,0000	0,0	-0,1	-0,1	5,0001	0,0	0,0	0,0	0
10,0	10,0001	0,0	0,0	0,1	10,0001	0,0	0,0	0,1	0
20,0	20,0002	0,0	0,2	0,2	20,0001	0,0	0,1	0,1	0
50,0	50,0001	0,0	0,0	0,0	50,0002	0,0	0,1	0,1	0
100,0	100,0002	0,0	0,0	0,0	100,0002	0,0	0,0	0,0	0
200,0	200,0000	0,0	-0,4	-0,4	200,0000	0,0	-0,4	-0,4	0

99	100	$R_{corregida} = R + 5,19x$	10 ⁻⁴ x R
A Carried	Asserted Property	Incertidumbre	8 10 10 10 10 10 10 10 10 10 10 10 10 10
	U _R =	2\\ 6,78x10 ⁻³ mg ² + 7	,43x10 ⁻¹ x R ²

en mg

FIN DEL DOCUMENTO

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Balanza Ohaus Ls10

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO N° LC - 033

CERTIFICADO DE CALIBRACIÓN Nº LM-418-2021

Fecha de Emisi

131-2024

1. Solicitante

MATESTLAB S.A.C.

Dirección

MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

2. Instrumento de Medición BALANZA

Marca

: OHAUS

: EB30

Número de Serie

8031307548

Alcance de Indicación

: 30 000 g

División de Escala

de Verificación (e)

División de Escala Real (d)

: 1g

: CHINA

Identificación

: LS-10

: ELECTRÓNICA

Ubicación

: LABORATORIO

Fecha de Calibración

: 2021-09-22

La incertidumbre reportada en el certificado presente incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2. La incertidumbre fue determinada según la "Guía para la Expresión de la incertidumbre en la medición". Generalmente, el valor de la magnitud está dentro del intervalo de los valores determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95 %.

Los resultados son válidos en el momento y en las condiciones en que se realizarón las mediciones y debe ser utilizado no como certificado de conformidad con normas de productos o como certificado del sistema de calidad de la entidad que lo produce.

solicitante corresponde disponer en su momento ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

PUNTO DE PRECISIÓN S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí

3. Método de Calibración

La calibración se realizó mediante el método de comparación según el PC-011 4ta Edición, 2010; Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase I y II del SNM-INDECOPI.

Lugar de Calibración

LABORATORIO de MATESTLAB S.A.C.

MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

BORATOR PLINTO DE

PT-06.F06 / Diciembre 2016 / Rev 02

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 033

CERTIFICADO DE CALIBRACIÓN Nº LM-418-2021

Página: 2 de 3

5. Condiciones Ambientales

The state of the s	Minima	Máxima
Temperatura	21,7	21,9
Humedad Relativa	61,1	61,1

6. Trazabilidad

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Certificado de calibración
the title and a comment	Juego de pesas (exactitud F1)	PE20-C0772-2020
	Pesa (exactitud F1)	CCP-0340-007-2020
INACAL - DM	Pesa (exactitud F1)	CCP-0340-006-2020
INACAL - DIVI	Pesa (exactitud F2)	LM-114-2019
	Pesa (exactitud F2)	LM-115-2019
	Pesa (exactitud F2)	LM-116-2019

7. Observaciones

(*) La balanza se calibró hasta una capacidad de 30 000 g

Antes del ajuste, la indicación de la balanza fue de 29 983 g para una carga de 30 000 g

El ajuste de la balanza se realizó con las pesas de Punto de Precisión S.A.C.

Los errores máximos permitidos (e.m.p.) para esta balanza corresponden a los e.m.p. para balanzas en uso de funcionamiento no automático de clase de exactitud II, según la Norma Metrológica Peruana 003 - 2009. Instrumentos de Pesaje de Funcionamiento no Automático.

Se colocó una etiqueta autoadhesiva de color verde con la indicación de "CALIBRADO".

Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

8. Resultados de Medición

	INSPECCIÓ	N VISUAL	
AJUSTE DE CERO	TIENE	ESCALA	NO TIENE
OSCILACIÓN LIBRE	TIENE	CURSOR	NO TIENE
PLATAFORMA	TIENE	SIST. DE TRABA	NO TIENE
NIVELACIÓN	TIENE		

ENSAYO DE REPETIBILIDAD

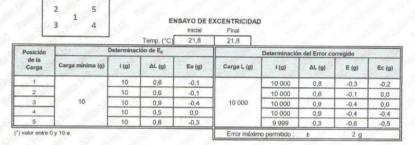
Inicial Final

Medición	Carga L1=	15 000 g	Della Vallagia	Carga L2=	30 000 (
No.	1 (g)	ΔL (g)	E (g)	I (g)	ΔL (g)	E (g)
1	15 000	0,7	-0,3	30 000	0,6	-0,2
2	15 000	0,6	-0,2	30 000	0,5	-0,1
3	15 000	0,6	-0,2	30 000	0,8	-0.4
4	15 000	0,8	-0,4	30 000	0,8	-0,4
5	15 001	0,3	1,1	30 000	0,6	-0,2
6	15 000	0,9	-0,5	30 000	0,9	-0,5
7	15 000	0,6	-0,2	30 000	0,6	-0,2
8	15 000	0,5	-0,1	30 000	0,7	-0,3
9	15 000	0,8	-0,4	30 000	0,8	-0,4
10	15 000	0,7	-0,3	30 000	0,6	-0,2
iferencia Máxima	an tan ex	A 60 1	1,6	1 18 18 18 18 18 18 18 18 18 18 18 18 18	307 31	0,4
rror máximo permi	tido ±	2 g		±	3 (100

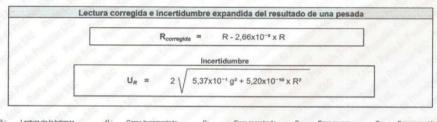
PT-06.F06 / Diciembre 2016 / Rev 02

Jefe de Jaboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106


www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO N° LC - 033



CERTIFICADO DE CALIBRACIÓN Nº LM-418-2021

ENSAYO DE PESAJE

				III III CICII	1 H HOI				
- 72	the day.	O no	Temp. (°C)	21,8	21,9				
Carga L				DECRECIE	ENTES		± emp		
(g)	1 (g)	ΔL(g)	E (g)	Ec (g)	1 (g)	ΔL (g)	E (g)	Ec (g)	(g)
10,0	10	0,6	-0,1					1000	-
50,0	50	0,5	0,0	0,1	50	0,6	-0,1	0,0	1
500,0	500	0,6	-0,1	0,0	500	0,8	-0,3	-0,2	1
2 000,0	2 000	0,9	-0,4	-0,3	2 000	0,6	-0,1	0,0	1
5 000,0	5 000	0,6	-0,1	0,0	5 000	0,5	0,0	0,1	1
7 000,0	7 000	8,0	-0,3	-0,2	7 000	0,6	-0,1	0,0	2
10 000,0	10 000	0,6	-0.1	0,0	10 000	0,4	0,1	0,2	2
15 000,1	15 000	0,6	-0,2	-0,1	15 000	0,8	-0,4	-0,3	2
20 000,1	20 001	0,3	1,1	1,2	20 000	0,7	-0,3	-0,2	2
25 000,1	25 001	0,4	1,0	1,1	25 001	0,3	1,1	1,2	3
30 000,1	30 000	0,8	-0,4	-0,3	30 000	0,8	-0,4	-0.3	3

R: g

FIN DEL DOCUMENTO

PT-06.F06 / Diciembre 2016 / Rev 02

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

Balanza Ohaus

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 033

CERTIFICADO DE CALIBRACIÓN Nº LM-418-2021

131-2021 Fecha de Emisión 2021-11-29

1. Solicitante MATESTLAB S.A.C.

MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL Dirección

1 g

2DA ETAPA - SAN MARTIN DE PORRES - LIMA

2. Instrumento de Medición

Marca : OHAUS

Modelo : EB30

Número de Serie : 8031307548

Alcance de Indicación 30 000 g

División de Escala

de Verificación (e)

División de Escala Real (d) : 1 g

: CHINA

: LS-10 Identificación

: ELECTRÓNICA

- Ubicación : LABORATORIO

Fecha de Calibración : 2021-09-22

La incertidumbre reportada presente certificado es incertidumbre expandida medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2. La incertidumbre fue determinada según la "Guía para la Expresión de la incertidumbre en la medición". Generalmente, el valor de la magnitud está dentro del intervalo de los valores determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95 %.

Los resultados son válidos en el momento y en las condiciones en que se realizarón las mediciones y debe ser utilizado certificado de conformidad con normas de productos o como certificado del sistema de calidad de la entidad que lo produce.

solicitante corresponde disponer en su momento ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

PUNTO DE PRECISIÓN S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Método de Calibración

La calibración se realizó mediante el método de comparación según el PC-011 4ta Edición, 2010; Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase I y II del SNM-INDECOPI.

4. Lugar de Calibración LABORATORIO de MATESTLAB S.A.C.

MZA, A LOTE, 24 INT, 2 URB, MAYORAZGO NARANJAI, 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

PT-06.F06 / Diciembre 2016 / Rev 02

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 033

CERTIFICADO DE CALIBRACIÓN Nº LM-418-2021

5. Condiciones Ambientales

C WE WILL THE	Mínima	Máxima
Temperatura	21,7	21,9
Humedad Relativa	61,1	61,1
Trazabilidad Este certificado de o medida de acuerdo co		
Trazabilid	ad	
Carried States	12 May	Juego

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Certificado de calibración
The same of the sa	Juego de pesas (exactitud F1)	PE20-C0772-2020
	Pesa (exactitud F1)	CCP-0340-007-2020
INACAL - DM	Pesa (exactitud F1)	CCP-0340-006-2020
INACAL - DIVI	Pesa (exactitud F2)	LM-114-2019
	Pesa (exactitud F2)	LM-115-2019
	Pesa (exactitud F2)	LM-116-2019

(*) La balanza se calibró hasta una capacidad de 30 000 g

Antes del ajuste, la indicación de la balanza fue de 29 983 g para una carga de 30 000 g El ajuste de la balanza se realizó con las pesas de Punto de Precisión S.A.C.

Los errores máximos permitidos (e.m.p.) para esta balanza corresponden a los e.m.p. para balanzas en uso de funcionamiento no automático de clase de exactitud II, según la Norma Metrológica Peruana 003 - 2009. Instrumentos de Pesaje de Funcionamiento no Automático.

Se colocó una etiqueta autoadhesiva de color verde con la indicación de "CALIBRADO".

Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

8. Resultados de Medición

INSPECCIÓN VISUAL							
AJUSTE DE CERO	TIENE	ESCALA	NO TIENE				
OSCILACIÓN LIBRE	TIENE	CURSOR	NO TIENE				
PLATAFORMA	TIENE	SIST. DE TRABA	NO TIENE				
NIVELACIÓN	TIENE						

ENSAYO DE REPETIBILIDAD

Medición	Carga L1=	15 000 g		Carga L2=	30 000	g
N°	l (g)	ΔL (g)	E (g)	I (g)	ΔL (g)	E (g)
1 0	15 000	0,7	-0,3	30 000	0,6	-0,2
2	15 000	0,6	-0,2	30 000	0,5	-0,1
3	15 000	0,6	-0,2	30 000	0,8	-0,4
4 00	15 000	0,8	-0,4	30 000	8,0	-0,4
5	15 001	0,3	1,1	30 000	0,6	-0,2
6	15 000	0,9	-0,5	30 000	0,9	-0,5
7	15 000	0,6	-0,2	30 000	0,6	-0,2
8	15 000	0,5	-0,1	30 000	0,7	-0,3
9	15 000	0,8	-0,4	30 000	8,0	-0,4
10	15 000	0,7	-0,3	30 000	0,6	-0,2
erencia Máxima	40, 10, 12,	A 600 - 1	1,6	300	W '05	0,4
or máximo permi	itido ±	2 9	1 180 00	±.0	3	1000

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 033

CERTIFICADO DE CALIBRACIÓN Nº LM-418-2021

Página: 3 de 3

2 5 3 1 4

ENSAYO DE EXCENTRICIDAD

Inicial Final p. (°C) 21,8 21,8

Posición					Determinació	n del Error co	rregido			
de la Carga	Carga mínima (g)	l (g)	ΔL (g)	Eo (g)	Carga L (g)	l (g)	ΔL (g)	E (g)	Ec (g)	
1	10 m	10	0,6	-0,1		10 000	0,8	-0,3	-0,2	
2	18/0, 4/0,	10	0,6	-0,1		10 000	0,6	-0,1	0,0	
3	10	10	0,9	-0,4	10 000	10 000	10 000	0,9	-0,4	0,0
4	" Peter 120"	10	0,5	0,0	100	10 000	0,9	-0,4	-0,4	
5	OF OF O	10	0,8	-0,3		9 999	0,3	-0,8	-0,5	
valor entre (y 10 e	100	30 2.6		Error máxim	permitido :	±	2 g	70.0	

ENSAYO DE PESAJE

Inicial Final

Carga L		CRECIEN	TES		DECRECIENTES			± emp	
(g)	l (g)	ΔL (g)	E (g)	Ec (g)	1 (g)	ΔL (g)	E (g)	Ec (g)	(g)
10,0	10	0,6	-0,1			100			
50,0	50	0,5	0,0	0,1	50	0,6	-0,1	0,0	1
500,0	500	0,6	-0,1	0,0	500	0,8	-0,3	-0,2	1
2 000,0	2 000	0,9	-0,4	-0,3	2 000	0,6	-0.1	0,0	1
5 000,0	5 000	0,6	-0,1	0,0	5 000	0,5	0,0	0,1	1
7 000,0	7 000	0,8	-0,3	-0,2	7 000	0,6	-0,1	0,0	2
10 000,0	10 000	0,6	-0,1	0,0	10 000	0,4	0,1	0,2	2
15 000,1	15 000	0,6	-0,2	-0,1	15 000	0,8	-0,4	-0,3	2
20 000,1	20 001	0,3	1,1	1,2	20 000	0,7	-0,3	-0,2	2
25 000,1	25 001	0,4	1,0	1,1	25 001	0,3	1,1	1,2	3
30 000,1	30 000	0,8	-0,4	-0,3	30 000	0,8	-0,4	-0,3	3

e.m.p.: error máximo permitido

R: Lectura de la balanza

Carga Incrementada

Error encontrado

Error en cero

Error corregido

R: en g

AL:

FIN DEL DOCUMENTO

PT-06.F06 / Diciembre 2016 / Rev 02

Jefe de/Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

Prensa CBR

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LFP - 328 - 2021

Página : 1 de 2

Expediente : 131-2021 Fecha de emisión : 2021-11-29

2. Descripción del Equipo

1. Solicitante : MATESTLAB S.A.C.

Dirección : MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

nuipo : PRENSA CBR

Marca de Prensa : RUMISTONE
Modelo de Prensa : NO INDICA
Serie de Prensa : 202052+6

 Marca de Celda
 : KELI

 Modelo de Celda
 : F-5-A A

 Serie de Celda
 : AQJ9175

 Capacidad de Celda
 : 5 t

Marca de indicador : HIWEIGH
Modelo de Indicador : X8
Serie de Indicador : NO INDICA

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precision S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA 24 - SETIEMBRE - 2021

4. Método de Calibración

La Calibración se realizo de acuerdo a la norma ASTM E4.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
CELDA DE CARGA	MAVIN	CCP - 0340 - 005 - 20	FLICROM
INDICADOR	MCC	CCF - 0340 - 003 - 20	ELIGITON

6. Condiciones Ambientales

10	INICIAL	FINAL
Temperatura °C	21,7	21,3
Humedad %	64	65

7. Resultados de la Medición

Los errores de la prensa se encuentran en la página siguiente.

8. Observaciones

Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

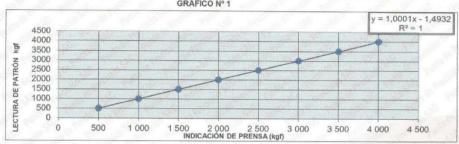
CERTIFICADO DE CALIBRACIÓN Nº LFP - 328 - 2021

Página : 2 de 2

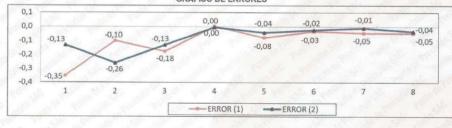
TABLA Nº 1

DIGITAL	SI	ERIES DE VERIF	PROMEDIO	ERROR	RPTBLD		
"A" kgf	SERIE 1	SERIE 2	ERROR (1)	ERROR (2)	"B" kgf	Ep %	Rp %
500	501,75	500,65	-0,35	-0,13	501,20	-0.24	0,22
1000	1001,00	1002,60	-0,10	-0,26	1001,80	-0,18	-0,16
1500	1502,65	1501,95	-0,18	-0,13	1502.30	-0,15	0.05
2000	1999,95	2000,10	0,00	0.00	2000.03	0,00	-0.01
2500	2501,95	2501,05	-0,08	-0.04	2501.50	-0,06	0.04
3000	3001,00	3000,70	-0.03	-0.02	3000.85	-0.03	0.01
3500	3501,60	3500,35	-0.05	-0.01	3500.98	-0.03	0.04
4000	4001,90	4001,40	-0.05	-0.04	4001.65	-0.04	0.01

NOTAS SOBRE LA CALIBRACIÓN


1.- Ep y Rp son el Error Porcentual y la Repetibilidad definidos en la citada Norma:

Ep= ((A-B) / B)* 100 Rp = Error(2) - Error(1)


2.- La norma exige que Ep y Rp no excedan el 1,0 %
3.- Coeficiente Correlación: R² = 1

Ecuación de ajuste y = 1,0001x - 1,4932 Donde: x: Lectura de la pantalla y : Fuerza promedio (kgf)

GRÁFICO Nº 1

GRÁFICO DE ERRORES

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Copa Casagrande

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 976 - 2021

Página : 1 de 2

: 131-2021 Expediente : 2021-11-29 Fecha de emisión

: MATESTLAB S.A.C. 1. Solicitante

: MZA. A LOTE. 24 INT, 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

: COPA CASAGRANDE 2. Instrumento de Medición

: NO INDICA Modelo de Copa · NO INDICA : 2020192 Serie de Copa : NO INDICA Código de Identificación

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

24 - SETIEMBRE - 2021

4. Método de Calibración

Por Comparación con instrumentos Certificados por el INACAL - DM. Tomando como referencia la Norma ASTM D 4318.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
PIE DE REY	INSIZE	TC - 9991 - 2020	INACAL - DM

6. Condiciones Ambientales

100	INICIAL	FINAL
Temperatura °C	22,1	22,0
Humedad %	59	59

Los resultados de las mediciones efectuadas se muestran en la página 02 del presente documento.

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 976 - 2021

Página : 2 de 2

Medidas Verificadas

COPA CASAGRANDE					RANURADO	3				
West and	CONJUNT	O DE LA CA	ZUELA			BASE		EXT	REMO CURV	ADO
DIMENSIONES	A	В	С	N	К	L	М	а	b	С

DESCRIPCIÓN	RADIO DE LA COPA	ESPESOR DE LA COPA	PROFUNDIDA DE LA COPA	Copa desde la guia del espesor a base	ESPESOR	LARGO	ANCHO	ESPESOR	BORDE CORTANTE	ANCHO
2024 200	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
MEDIDA TOMADA	55,62	2,06	26,73	49,36	52,23	146,56	125,10	10,05	2,19	13,18
MEDIDAS STANDARD	54	2	27	47	50	150	125	10	2	13,5
TOLERANCIA ±	0,5	0,1	0,5	1,0	2,0	2,0	2,0	0,05	0,1	0,1
ERROR	1,62	0,06	-0,27	2,36	2,23	-3,44	0,1	0,05	0,19	-0,32

FIN DEL DOCUMENTO

PUNTO DE PRECISIÓN S A C

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Bureta

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

Página : 1 de 1

CERTIFICADO DE CALIBRACIÓN Nº LV - 079 - 2021

Punto de Precisión SAC

: 131 - 2021

Fecha de Emisión : 2021-11-29

1. Solicitante : MATESTLAB S.A.C.

Dirección : MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES

2. Instrumento de Medición : BURETA

GIARDINO Canacidad Nominal : 25 mL Marca División de Escala NO INDICA 0,1 mL Modelo Tipo EX NO INDICA Serie Material **VÍDRIO** NO INDICA Procedencia Clase de Exactitud Código de Identificación NO INDICA Temperatura de Referencia : 20 °C Tiempo de espera 10 s Tiempo de descarga 5 s ± 0.05 s

3. Lugar y fecha de Calibración

Laboratorio de Punto de Precisión S.A.C.

29 de Setiembre de 2020

4. Método de Calibración

Determinación del volumen vertido por el método gravimétrico, según la PC-015 4ta edición: Procedimiento para la calibración de material volumétrico de vidrio del INACAL - DM.

5. Patrones de Referencia

Los resultados obtenidos tienen trazabilidad a los patrones Nacionales de la INACAL - DM.

Balanza con Certificado de Calibración : LM-004-2020
Termómetro con Certificado de Calibración : LT-270-2019
Termohigrometro con Certificado de Calibración : T-2228-2019

6. Condiciones Ambientales

Temperatura	21,3 °C	
Humedad Relativa	67,8 %	
Presión Atmosférica	997 mbar	

7. Resultados

Valor Nominal (mL)	Volumen Vertido (mL)	Desviación (mL)	Incertidumbre (mL)
7,5	7,403	-0,097	0,12
15,0	14,933	-0,067	0,12
25,0	24,948	-0.052	0.12

8. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2. La incertidumbre fue determinada según la "Guía para la expresión de la incertidumbre en la Medición". Generalmente, el valor de la magnitud está dentro del intervalo de los valores determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95 %.

9. Observaciones y Notas

El error máximo permitido (emp) para bureta de capacidad nominal de 25 mL de división mínima 0,1 mL de clase de exactitud A según fabricante es ± 0,1 mL

El tiempo de descarga determinado es: 36 s .

Los resultados son válidos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una nueva calibración, la cual está en

El presente documento es válido sólo en su papel original, a condición que se muestre en su totalidad y no en forma parcial o fragmentada, no pudiendo extender la conclusión a otras unidades.

PUNTO DE PRECISIÓN SA C

FIN DEL DOCUMENT

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com
PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

Mufla

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LT - 368 - 2021

Página : 1 de 2

: 131-2021 Expediente Fecha de emisión : 2021-11-29

1. Solicitante : MATESTLAB S.A.C.

: MZA, A LOTE, 24 INT, 2 URB, MAYORAZGO NARANJAL Dirección

2DA ETAPA - SAN MARTIN DE PORRES - LIMA

2. Instrumento de Medición : MUFLA

Indicación Alcance de Indicación DIGITAL NO INDICA Resolución Marca de Equipo NO INDICA Modelo de Equipo NO INDICA Serie del Equipo NO INDICA Código de Identificación NO INDICA Marca de Indicador AUTONICS : TCN4S : NO INDICA Modelo de Indicador

Punto de Precisión S.A.C. utiliza en sus verificaciones y calibraciones patrones con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

calibración aquí declarados.

3. Lugar y fecha de Calibración

MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

4. Método de Calibración

La calibración se efectuo según el procedimiento de calibración PC - 017 del servicio nacional de metrología, del INACAL - DM.

5. Trazabilidad

Procedencia

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
TERMOMETRO DIGITAL	FLUKE	CT - 003 - 2018	INACAL - DM

6. Condiciones Ambientales

10,000	INICIAL	FINAL	
Temperatura °C	21,3	21,4	
Humedad %	66	66	

7. Resultados de la Medición

Los resultados de las mediciones se muestran en la página siguiente, tiempo de estabilización de la Mufla no menor a 30 minutos. La Incertidumbre a sido determinada con un factor de cobertura k=2 para un nivel de confianza del 95 %.

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620 PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

CERTIFICADO DE CALIBRACION Nº LT - 368 - 2021

Página : 2 de 2

Resultados de la Medición

INDICACIÓN DEL EQUIPO (°C)	TEMPERATURA CONVENCIONALMENTE VERDADERA (°C)	CORRECCIÓN (°C)	INCERTIDUMBRE
450	522.6	1 -1	(°C)
656		72,3	2,1
863	737,9	81,9	3,2
003	951,0	87,8	3.2

LA TEMPERATURA CONVENCIONAL VERDADERA (TCV) RESULTA DE LA RELACIÓN TCV = INDICACIÓN DEL EQUIPO + CORRECCIÓN

FIN DEL DOCUMENTO

BORATOR PUNTO DE PRECISIÓN S A C

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com
PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620

Pipeta Graduada

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LV - 078 - 2021

Punto de Precisión SAC Expediente Página : 1 de 1 : 131 - 2021

Fecha de Emisión : 2021-11-30

: MATESTLAB S.A.C. Solicitante

: MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

: PIPETA GRADUADA Instrumento de Medición

SUPERIOR Marca Capacidad Nominal 2 mL NO INDICA 0,02 mL Modelo División de Escala NO INDICA Tipo FX Serie NO INDICA VÍDRIO Procedencia Material Código de Identificación NO INDICA AS Clase de Exactitud : 20 °C Tiempo de espera 55 Temperatura de Referencia Tiempo de descarga 2 s ± 0.05 s

Lugar y fecha de Calibración Laboratorio de Punto de Precisión S.A.C. 29 de Setiembre de 2021

Método de Calibración Determinación del volumen vertido por el método gravimétrico, según la PC-015 4ta edición: Procedimiento para la calibración de material volumétrico de vidrio del INACAL - DM.

Patrones de Referencia

Los resultados obtenidos tienen trazabilidad a los patrones Nacionales de la INACAL - DM.

: LM-004-2020 Balanza con Certificado de Calibración : LT-270-2019 Termómetro con Certificado de Calibración : T-2228-2019 Termohigrometro con Certificado de Calibración

Condiciones Ambientales

Temperatura	21,2 °C	
Humedad Relativa	67,8 %	
Presión Atmosférica	997 mbar	

7. Resultados

Valor Nominal (mL)	Volumen Vertido (mL)	Desviación (mL)	Incertidumbre (mL)
0.6	0,591	-0,009	0,12
1.2	1,190	-0,010	0,12
2.0	1,998	-0,002	0,12

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2. La incertidumbre fue determinada según la "Guía para la expresión de la incertidumbre en la Medición". Generalmente, el valor de la magnitud está dentro del intervalo de los valores determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95 %.

Observaciones y Notas

El error máximo permitido (emp) para pipeta graduada de capacidad nominal de 2 mL de división mínima 0,02 mL de clase de exactitud AS según fabricante es ± 0,012 mL

El tiempo de descarga determinado es: 8 s

Los resultados son válidos en el momento de la calibración. Al solicitante le corresponde disponer en si función de su uso, conservación y mantenimiento del instrumento o equipo de medición. El presente documento es válido sólo en su papel original, a condición que se muestre en su totalidad y conclusión a otras unidades.

BORATOR PUNTO DE PRECISIÓN

FIN DEL DOCUMENT

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620

PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

Estufa

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LT - 369 - 2021

Página : 1 de 4

Expediente : 131-2021 Fecha de emisión : 2021-11-25

1. Solicitante : MATESTLAB S.A.C.

Dirección : MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL

2DA ETAPA - SAN MARTIN DE PORRES - LIMA

2. Instrumento de Medición : ESTUFA

Indicación : DIGITAL

 Marca del Equipo
 : PERUTEST

 Modelo del Equipo
 : PT-H136

 Serie del Equipo
 : 0120

 Capacidad del Equipo
 : 134 L

 Código de Identificación
 : NO INDICA

Marca de indicador : AUTOCOMP
Modelo de indicador : TCD
Serie de indicador : NO INDICA
Temperatura calibrada : 110 °C

El instrumento de medición con el modelo y número de serie abajo indicados ha sido calibrado, probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes

Punto de Precision S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA 24 - SETIEMBRF - 2020

4. Método de Calibración

La calibración se efectuó según el procedimiento de calibración PC-018 del Servicio Nacional de Metrología del INACAL - DM.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
TERMOMETRO DIGITAL	APPLENT	150-CT-T-2020	INACAL - DM

6. Condiciones Ambientales

1000	INICIAL	FINAL
Temperatura °C	21,3	21,4
Humedad %	65	65

7. Conclusiones

La estufa se encuentra fuera de los rangos 110 °C \pm 5 °C para la realización de los ensayos de laboratorio según la norma ASTM.

8. Observaciones

Con fines de identificación se ha colocado una etiqueta autoadhesiva de color yerde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACION Nº LT - 369 - 2021

Página : 2 de 4

mpo	Hid. (C)		TEMPERATURA EN LAS POSICIONES DE MEDICIÓN (°C)								
	Temperatura del	2.33		EL INFER			NIVEL SUPERIOR				
iin.)	equipo	1	2	3	4	5	6	7	C	NON	1 10
0	110	1000	100 1			9	0	- 1	8	9	10

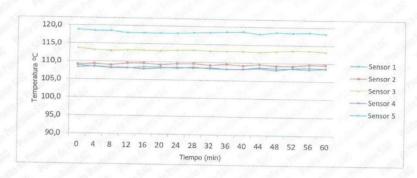
CALIBRACIÓN PARA 110 °C

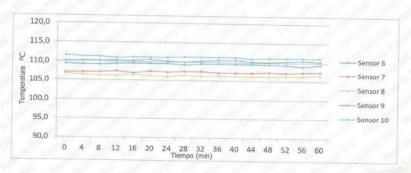
Tiempo	Ind. (°C)	TEMPERATURA EN LAS POSICIONES DE MEDICIÓN (°C)								77	1	ΔTMax	
	Temperatura del		NIV	EL INFE	RIOR				EL SUPE			T. prom	
(min.)	equipo	1	2	3	4	5	6	7	8	9	1 10	(°C)	- TMin
0	110	108,9	109,1	113,7	108.3	118.8	109.4	107.1	106.7	110.2	111.6	-	(°C)
2	110	108,6	109,6	113,2	108,5	118,6	109.6	107,5	106,6	110,2	111.2	110,4	12,1
4	109	108,5	109,3	113,2	108.6	118,5	109.3	107,2	106,5	110,2		110,4	12,0
6	110	108,2	109,2	113,3	108,5	118,3	109,2	107,4	106,3		111,3	110,3	12,0
8	110	108,2	109.0	113,0	108,3	118,5	109,3	107,2	106,3	110,2	111,2	110,2	12,0
10	109	108.4	109.0	113.0	108.2	118.4	109,3	107,2	106,2	110,3	111,3	110,1	12,3
12	110	108,2	109,5	113,2	108.3	118,0	109,2	107,5	106,3	110,2	111,3	110,1	12,1
14	110	108,3	109,3	113.2	108.2	118,0	109,3	107,3		110,3	111,0	110,2	11,8
16	110	108,5	109.6	113,2	108,0	118,0	109,5	107,2	106,3	110,2	111,3	110,1	11,7
18	109	108,6	109,1	113.2	108.0	118,2	109,6		106,5	110,3	111,2	110,2	11,5
20	110	108,5	109,2	113,1	108,3	118,0	109,5	107,0	106,3	110,3	111,4	110,2	11,9
22	110	108.3	109,3	113.0	108,3	118,2		107,5	106,2	110,6	111,2	110,2	11,8
24	110	108,3	109,5	113,3	108,5	118,0	109,2	107,2	106,5	110,3	111,5	110,2	11,7
26	109	108,0	109,6	113,3	108,6	118,0	109,6	107,3	106,0	110,2	111,2	110,2	12,0
28	110	108,6	109,6	113,4	108,4		109,2	107,4	106,0	110,3	111,1	110,1	12,0
30	109	108,2	109,3	113,4	108,6	118,2	109,3	107,5	106,4	110,0	111,3	110,3	11,8
32	110	108,3	109,2	113,2	108,5	118,4	109,3	107,6	106,3	110,3	111,3	110,3	12,1
34	110	108,4	109,6	113,3	108,5	118,3	109,6	107,5	106,2	110,3	111,3	110,2	12,1
36	109	108,2	109,5	113,3		118,2	109,5	107,2	106,2	110,3	111,3	110,3	12,0
38	110	108,5	109,5	113,2	108,2	118,5	109,6	107,2	106,3	110,5	111,3	110,3	12,2
40	109	108,3	109,0		108,3	118,5	109,5	107,3	106,5	110,3	111,6	110,3	12,0
42	110	108,4	109,5	113,2	108,2	118,6	109,6	107,2	106,2	110,6	111,3	110,2	12,4
44	109	108,7	109,5	113,0	108,2	118,2	109,5	107,4	106,3	110,3	111,0	110,2	11,9
46	110	108,6	109,6	113,0	108,5	118,0	109,6	107,2	106,2	110,2	111,0	110,2	11,8
48	110	108,5	109,3	113,2	108,3	118,0	109,6	107,5	106,3	110,1	111,1	110,2	11,7
50	110	108,6		113,3	108,0	118,5	109,5	107,4	106,2	110,1	111,2	110,2	12,3
52	109	108,5	109,6	113,2	108,4	118,3	109,6	107,6	106,5	110,3	111,3	110,3	11,8
54	110	108,2		113,6	108,6	118,4	109,4	107,2	106,3	110,3	111,2	110,3	12,1
56	110	108,2	109,4	113,2	108,5	118,2	109,0	107,3	106,2	110,2	111,3	110,2	12,0
58	109	108.5	109,6	113,5	108,8	118,5	109,0	107,4	106,3	110,5	111,2	110,3	12,2
60	110		109,5	113,6	108,5	118,5	109,6	107,2	106,5	110,3	111,3	110,4	12,0
PROM	109,7	108,6	109,5	113,2	108,6	118,2	109,5	107,5	106,6	110,3	111,2	110,3	11,6
MAX	110.0	108,4	109,4	113,3	108,4	118,3	109,4	107,3	106,3	110,3	111,3	110,2	The second
MIN		108,9	109,6	113,7	108,8	118,8	109,6	107,6	106,7	110,6	111,6	A CONTRACTOR	
TT	109,0	108,0	109,0	113,0	108,0	118,0	109,0	107,0	106,0	110,0	111,0		
11	1,0	0,9	0,6	0,7	0,8	0,8	0,6	0,6	0.7	0.6	0,6		

Parámetro	Valor (°C)	Incertidumbre Expandida (°C)
Máxima Temperatura Medida	118.8	0.4
Minima Temperatura Medida	106,0	0,5
Desviación de Temperatura en el Tiempo	0.9	0,3
Desviación de Temperatura en el Espacio	12.0	0,2
Estabilidad Media (±)	0,45	0.02
Jniformidad Media	12,8	0,02

Para cada posición de medición su "desvíación de temperatura en el tiempo" DTT esta dada por la diferencia entre la máxima y la mínima temperatura registradas en dicha posición Entre dos posiciones de medición su "desviación de temperatura en el espacio" esta dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.

La incertidumbre expandida de la medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k =2 que, para una distribución normal corresponde a una probabilidad de cobertura de apróximadamente 95 %.

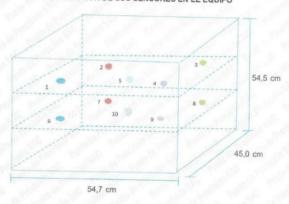

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631



CERTIFICADO DE CALIBRACION Nº LT - 369 - 2021

Página : 3 de 4

TEMPERATURA DE TRABAJO 110 °C


Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

CERTIFICADO DE CALIBRACION Nº LT - 369 - 2021

Página : 4 de 4

DISTRIBUCIÓN DE LOS SENSORES EN EL EQUIPO

- Los Sensores 5 y 10 se ubicaron sobre sus respectivos niveles. Los demas sensores se ubicaron a 8 cm de las paredes laterales y a 8 cm del fondo y Los cemas sensores se duncaron a sensores del necesario del frente del equipo.

 Los Sensores del nivel superior se ubicaron a 1,5 cm por encima de la altura mas alta
- Los Sensores del nivel inferior se ubicaron a 1,5 cm por debajo de la parrilla más baja.

FIN DEL DOCUMENTO BORATOR PUNTO DE PRECISIÓN S A C Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631 Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620 www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

Tamiz 1 1/2"

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 956 - 2021

El Equipo de medición con el modelo y

número de serie abajo. Indicados ha sido calibrado probado y verificado usando

patrones certificados con trazabilidad a la

las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la

ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento del instrumento de medición o

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una

incorrecta interpretación de los resultados de la

reglamentaciones vigentes.

calibración aquí declarados.

Dirección de Metrología del INACAL y otros. Los resultados son válidos en el momento y en

Expediente : 131-2021 : 2021-11-22 Fecha de Emisión

: MATESTLAB S.A.C.

: MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

2. Instrumento de Medición : TAMIZ

: 1 ½ pula Diametro de Tamiz : 8 pulg

: GRAN TEST

: 69994 : ACERO Color : PLATEADO

Código de Identificación : NO INDICA

3. Lugar y fecha de Galibración

LABORATORIO DE SUELOS DE MATESTLAB S.A.C. 22 - SETIEMBRE - 2020

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

NSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
PIE DE REY	INSIZE	TC - 9991 - 2020	INACAL - DM

6. Condiciones Ambientales

	INICIAL	FINAL
Temperatura °C	21,4	21,4
Humedad %	64	64

7. Observaciones

On fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

(*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

8. Resultados

			М	EDIDAS	TOMAD	AS				PROMEDIO	ESTÁNDAR mm	ERROR	DESVIACIÓN ESTANDAR MÁXIMA	DESVIACION ESTANDAR
38,49	38,03	37,63	37,94	37,49	38,62	37,94	38,31	38,01	37,97	400			00° 90°	min -
37,95	38,24	38,19	38,31	38,30	37,59	37,62	37,59	37,69	37,59	37,98	37,50	0,47	- 0	0,336

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 957 - 2021

Página : 1 de 2

El Equipo de medición con el modelo y

número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una

incorrecta interpretación de los resultados de la

calibración aquí declarados.

Expediente Fecha de Emisión : 131-2021 : 2021-11-22

1. Solicitante : MATESTLAB S.A.C.

: MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA Dirección

2. Instrumento de Medición : TAMIZ

Tamiz N° Diametro de Tamiz : 8 pulg

: GRAN TEST

Serie : 61465 : ACERO : PLATEADO Código de Identificación : NO INDICA

Lugar y fecha de Calibración
 LABORATORIO DE SUELOS DE MATESTLAB S.A.C.
 22 - SETIEMBRE - 2021

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
PIE DE REY	INSIZE	TC - 9991 - 2020	INACAL - DM

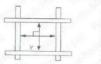
6. Condiciones Ambientales

	MAINT	LHAML
Temperatura °C	21,5	21,4
Humedad %	64	64

- Con fines de identificación se ha colocado una eliqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

BORATOR PUNTO DE PRECISIÓN S A C

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631



CERTIFICADO DE CALIBRACIÓN Nº LL - 957 - 2021

8. Resultados

Página : 2 de 2

	MEDIDAS TOMADAS mm									PROMEDIO	ESTÁNDAR mm		DESVIACIÓN ESTANDAR MÁXIMA	DESVIACIÓN ESTANDAR
25,20	25,08	24,91	25,09	24,99	25,32	25,05	24,90	24,24	24,94	Hatt		mm	n mm	mm
25.09	24.24	24,99	25,01	24,63	24,59	24,67	25,13	25,11	24,63	440			and the	
24,63	24,67	25,09	24,99	24,24	25,01	25,09	24,24	24,59	25,01	24,85	25,00	-0,15	- 19	0,305
24,99	24,24	25,13	24,63	24,99	24,59	25,11	24,67	25,13	25,09	1		- 80	Dalla F	

IN DEL DOCUMENTO

Jefe de Laboratorio Ing. Lois Loayza Capcha Reg. CIP N° 152631

WWW.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com
PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

Tamiz N°2"

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 955 - 2021

Página : 1 de 1

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando

patrones certificados con trazabilidad a la

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante

le corresponde disponer en su momento la ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento

del instrumento de medición o a

Punto de Precisión S.A.C no se responsabiliza

de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una

incorrecta interpretación de los resultados de la

reglamentaciones vigentes.

calibración aguí declarados.

Dirección de Metrología del INACAL y otros.

Expediente Fecha de Emisión : 131-2021 : 2021-11-22

1. Solicitante : MATESTLAB S.A.C.

: MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA

ETAPA - SAN MARTIN DE PORRES - LIMA

2. Instrumento de Medición : TAMIZ

Tamiz N° : 2 pulg Diametro de Tamiz : GRAN TEST Serie : 73542 : ACERO Color : PLATEADO : NO INDICA

3. Lugar y fecha de Calibración

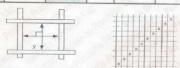
LABORATORIO DE SUELOS DE MATESTLAB S.A.C. 22 - SETIEMBRE - 2021

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
PIE DE REY	INSIZE	TC - 9991 - 2020	INACAL - DM


6. Condiciones Ambientales

Dr. Ber	INICIAL	FINAL
Temperatura °C	21,4	21,4
Humedad %	64	64

7. Observaciones
 Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

 (*) La desviación estandar encontrada no excede a la desvia ición estandar máxima de la tabla 1 según la norma ASTM E11-09.

8. Resultados MEDIDAS TOMADAS PROMEDIO ESTÁNDAR ERROF mm 49,75 50,03 49,78 49,81 49.83 49.76 49 88 49.63 49,74 50,00 -0.26 0.125 49,60 49.72 49.58 49.62

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620 PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

Tamiz N°3"

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 954 - 2021

Pagina : 1 de 1

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante

le corresponde disponer en su momento la

ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento

instrumento de medición o

Punto de Precisión S.A.C no se responsabiliza

de los perjuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una

incorrecta interpretación de los resultados de la

reglamentaciones vigentes.

calibración aquí declarados.

Expediente Fecha de Emisión : 2021-11-23

1. Solicitante : MATESTLAB S.A.C.

MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA Dirección

2. Instrumento de Medición : TAMIZ Tamiz Nº : 3 pulg

Diametro de Tamiz : 8 pula

: GRAN TEST : 73287 : ACERO Material : PLATEADO Código de Identificación : NO INDICA

3. Lugar y fecha de Calibración

LABORATORIO DE SUELOS DE MATESTLAB S.A.C. 22 - SETIEMBRE - 2021

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

INSTRUMENTO	MARCA	CERTIFICADO I	TRAZABILIDAD
PIE DE REY	INSIZE	TC - 9991 - 2020	INACAL - DM
		1 .0 0001 - 2020	INACAL - DIM

6. Condiciones Ambientales

INICIAL FINAL

Temperatura °C	21,1	21
Humedad %	59	62

Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

(*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

B. Resu	Itados	Part Labor			0	9	400	L gf	F	- 13 m			(*)	
	50° c.5		M		TOMAD,	AS			- A - A - A - A - A - A - A - A - A - A	PROMEDIO		ERROR	DESVIACIÓN ESTANDAR MÁXIMA	DESVIACIÓN ESTANDAR
76.06	75.06	76.00	75 40						A. C.	mm	mm	mm	mm	mm
10,00	70,00	10,00	75,10	75,09	75,50	75,08	75,10	74,99	74,98	75,21	75,00	0,21	10	0.332

Jefe de Laboratorio Ing. Luis-Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620 PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

Tamiz N°4

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 960 - 2021

Página : 1 de 2

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante la corresponde disponer en su momento la ejecución de una recalibración, la cual está en

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una

incorrecta interpretación de los resultados de la

Dirección de Metrología del INACAL y otros.

función del uso, conservación y mante del instrumento de medición

reglamentaciones vigentes.

calibración aquí declarados

Fecha de Emisión : 2021-11-22

: MATESTLABSAC

: MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

2. Instrumento de Medición : TAMIZ

Tamiz N°

Diametro de Tamiz

: GRAN TEST

: ACERO

: NO INDICA Código de Identificación

3. Lugar y fecha de Calibración

LABORATORIO DE SUELOS DE MATESTLAB S.A.C. 22 - SETIEMBRE - 2021

: PLATEADO

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

PIE DE REY	INICIZE	TO 0001 0000	TRAZABILIDAD
LIE DE VET	INSIZE	TC - 9991 - 2020	INACAL - DM
		10 0001 2020	INVOICE - DIM

6. Condiciones Ambientales

102	INICIAL	FINAL
Temperatura °C	21,5	21,4
Humedad %	64	65

7. Observaciones

7. Doservaciones

Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

(*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

BORATOR

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 960 - 2021

ágina · 2 do 2

8. Resultados

			N	EDIDAS		AS				PROMEDIO	ESTÁNDAR	ERROR	DESVIACIÓN ESTANDAR MÁXIMA	DESVIACION ESTANDAR
100			-		nm			- 10		mm	mm	mm	mm	mm
4,79	4,81	4,79	4.75	4,88	4,72	4,68	4,80	4,68	4,79	- 355		1	1000	ER. 182
4,80	4,79	4,68	4,83	4,88	4,82	4,81	4,83	4,76	4,88	7 9			100	
4,75	4,70	4,81	4,88	4,70	4,72	4,76	4,88	4,75	4,77	10000	- 100	. "	A 100 PM	
4,68	4,80	4,82	4,75	4,79	4,76	4,80	4,83	4,79	4,72			2012		
4,72	4,79	4,88	4,83	4.70	4,81	4,68	4,76	4,82	4,68		W.	9	1000	
4,88	4,77	4,81	4,80	4,72	4,70	4,83	4,81	4,72	4,75	4,78	4,75	0,03	0,13	0,06
4,82	4,68	4,76	4,83	4,79	4,68	4,88	4,80	4,77	4,77	P		5	100	
4,75	4.79	4,72	4,88	4,73	4,73	4,79	4,77	4,79	4,83			Salan	77	
4,75	4,82	4,88	4,76	4,79	4,80	4,70	4,81	4,88	4.75	THE COLUMN	2000	269	and the same	
4,70	4,68	4,81	4,73	4,82	4,68	4,75	4,83	4,72	4.80	A 400	10 40	100	100	

IN DEL DOCUMENTO

Jete de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Tamiz N°10

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 961 - 2021

Página : 1 de 2

El Equipo de medición con el modelo y número

de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento de instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza

de los perjuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

calibración aquí declarados.

: 131-2021 : 2021-11-22 Expediente Fecha de Emisión

1 Solicitante : MATESTI AB S.A.C.

: MZA, A LOTE, 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

2. Instrumento de Medición : TAMIZ : 10 Tamiz N°

Diametro de Tamiz : 8 pulg : GRAN TEST Marca

: 66821 : ACERO Material : PLATEADO Còdigo de Identificación : NO INDICA

3. Lugar y fecha de Calibración LABORATORIO DE SUELOS DE MATESTLAB S.A.C. 22 - SETIEMBRE - 2021

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
RETICULA DE MEDICIÓN	INSIZE	LLA - 099 - 2019	INACAL - DM

6. Condiciones Ambientales
NICIAL FINAL

Temperatura °C	21,5	21,4
Humedad %	64	65

5. Trazabilidad

7. Ubservationes

On fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

(*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

SORATOR

ing. Luis Loayza Capcha Reg. CIP N° 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 961 - 2021

Página · 2 de 2

8. Resultados

	- 10		М	EDIDAS	TOMADA	IS		100		PROMEDIO	ESTÁNDAR	ERROR	DESVIACIÓN ESTANDAR MÁXIMA	DESVIACIÓN ESTANDAR
	20	300	74/2	m	m		3/	9		mm	mm	mm	mm	mm
1,911	1,885	1,982	1,996	1,933	1,972	1,863	1,921	2,000	1,964					- Maria
2,002	1,972	1,933	1,885	1,863	1,996	1,921	1,982	1,933	2,002	-				120
1,982	1,885	1,996	1,863	1,885	1,996	1,933	1,996	1,885	1,982	100		8		Sept. 1
1,972	1,982	1,911	1,996	1,911	1,885	1,982	1,996	1,972	2,002	200		-		ALCONO.
1,982	1,933	1,982	1,885	1,996	1,863	1,911	1,933	1,982	1,933		9/0			10 PM
1,972	1,911	1,996	1,863	1,982	1,933	1,982	1,885	1,996	1,972	1015	2,000	-0,055	0,072	0,045
1,921	1,972	1,933	1,911	1,885	1,996	1,933	1,885	1,972	1,982	1,945	2,000	-0,055	0,072	0,040
1,972	1,982	1,933	1,972	1,982	1,933	1,911	1,996	1,911	1,863	No. in Section	100 M	1	400	5 00
1,911	1,933	1.911	1,996	1,972	1,996	1,972	1,885	1,911	1,996	Same	200	18, 5	S 1500	113 10
1,921	1,933	1,982	1,982	1,911	1,996	1,933	1,996	1,911	1,885	2000		1000	September 1	40.536
1,982	1,885	1,982	1,885	1,863	1,933	1,911	1,921	1,885	1,921	.5. 3		4000	The state	in Ann
1,921	1,982	1,982	1,933	1,972	1,863	1,996	1,996	2,002	2,002	3 000	96 15	-6	P. Carlo	S . 30

FIN DEL DOCUMENTO

Jete de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Tamiz N°20

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 962 - 2021

Página : 1 de 2

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento det instrumento de medición o reglamentaciones vigentes.

131-2021 Expediente Fecha de Emisión : 2021-11-22

1. Solicitante : MATESTLAB S.A.C.

: MZA, A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA Dirección

2. Instrumento de Medición : TAMIZ

Diametro de Tamiz

: GRAN TEST : ACERO : PLATEADO Color Código de Identificación

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE SUELOS DE MATESTLAB S.A.C. 22 - SETIEMBRE - 2021

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
RETICULA DE MEDICIÓN	INSIZE	LLA - 099 - 2019	INACAL - DM

6. Condiciones Ambientales

	HALCHUE	1 11 47 47
Temperatura °C	21,5	21,4
Humedad %	65	65

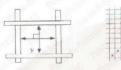
7. Observaciones

Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

(*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

SORATOR

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631



CERTIFICADO DE CALIBRACIÓN Nº LL - 962 - 2021

ágina : 2 de 2

8. Resultados

	E	guille No.	ME	EDIDAS		AS				PROMEDIO	ESTÁNDAR	ERROR	DESVIACIÓN ESTANDAR MÁXIMA	DESVIACIÓN
				hi	n		0.00	2000	-	μm	μm	μm	μm	μm
700	850	760	690	820	750	760	810	710	800	- 110		-		A. Sala
820	847	850	820	847	844	844	690	819	820			100		3700
844	846	800	810	847	839	690	833	850	822	100 E 200	100 mm	0		S. 1
846	833	850	820	839	690	839	820	819	842	1 m		G 188	44, 91	10/2/20
850	839	819	846	820	850	829	847	839	833		AND SOLVER		355 00	0,799
846	820	833	829	829	846	844	819	820	844	100	130	40	100	September 1
800	850	820	833	844	850	833	846	850	800	See Marie	100 mg	100	Section 2	day.
844	829	800	829	810	844	820	833	846	846	820	850	-30	39,36	38,58
850	820	690	829	820	839	819	822	810	842	020	830	-50	55,50	50,00
842	760	839	850	844	810	760	819	850	820	100		and the same	10 5300	and a
810	820	700	819	750	829	820	750	810	842		460	2/60	10/07	5 - 30
833	833	800	829	819	844	847	820	850	842	10,000		30	an deline	700
833	850	820	690	847	850	844	847	750	842	3700 387		1950	Section 1	10,000
847	844	847	810	820	839	850	850	760	820	4000		Serge,	E grid	10/10
800	829	850	829	833	839	810	842	839	839	2.00		September 1	100 m	229/0
833	850	847	847	800	820	839	850	810	760	9 1	85	1.5	10,000	0.5

FIN DEL DOCUMENTO

Jete de Laboratorio Ing. Luis toayza Capcha Reg. CIP N° 152631

Tamiz Nº 3/4"

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 958 - 2021

Página : 1 de 2

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento del instrumento de medición o a

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

reglamentaciones vigentes.

calibración aquí declarados.

Expediente Fecha de Emisión : 131-2021 : 2021-11-22

: MATESTLAB S.A.C.

: MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

2. Instrumento de Medición : TAMIZ

Tamiz N° : 3/4 pula Diametro de Tamiz : 8 pula

: GRAN TEST

: 62015 : ACERO : PLATEADO Código de Identificación : NO INDICA

3. Lugar y fecha de Calibración LABORATORIO DE SUELOS DE MATESTLAB S.A.C. 22 - SETIEMBRE - 2021

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

NSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
PIE DE REY	INSIZE	TC - 9991 - 2020	INACAL - DM

6. Condiciones Ambientales

	INICIAL	FINAL
Temperatura °C	21,5	21,4
Humedad %	64	64

- 7. Observaciones
- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

BORATOR PUNTO DE PRECISIÓN S A C

Jele de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620 PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

CERTIFICADO DE CALIBRACIÓN Nº LL - 958 - 2021

8. Resultados

Página : 2 de 2

MEDIDAS TOMADAS mm						PROMEDIO	ESTÁNDAR mm	ERROR	DESVIACIÓN ESTANDAR MÁXIMA mm	DESVIACIÓN ESTANDAR				
19,02	19,00	18,94	19,16	18,98	19,19	19,18	19,07	18,79	19,14	19,04	19,00		0,446	0,124
18,94	18,79	19,19	19,14	18,87	19,18	19,04	19,07	19,14	18,98					
19,04	18,98	19,00	19,16	18,98	19,18	19,02	19,16	18,94	19,19			0,04		
19,14	19,02	18,94	19,19	19,00	19,07	18,79	18,87	19,18	19,02					
19,18	19,16	18,87	19,16	19,07	19,04	19,00	18,79	19,19	18,86					

FIN DEL DOCUMENT

Jete de Laboratorio Ing. Luis Łoayza Capcha Reg. CIP N° 152631

Tamiz Nº 3/8"

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 959 - 2021

Página : 1 de 2

El Equipo de medición con el modelo y

número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la

Los resultados son válidos en el momento y en las condiciones de la calibración, Al solicitante le corresponde disponer en su momento la

ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

calibración aquí declarados.

del instrumento de medición o reglamentaciones vigentes.

Dirección de Metrología del INACAL y otros.

: 131-2021 Fecha de Emisión : 2021-11-22

: MATESTLAB S.A.C. 1. Solicitante

: MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA Dirección

2. Instrumento de Medición

Tamiz N°

Diametro de Tamiz : 8 pulg

: 62027 : ACERO

: PLATEADO

: NO INDICA Código de Identificación

3. Lugar y fecha de Calibración LABORATORIO DE SUELOS DE MATESTLAB S.A.C.

22 - SETIEMBRE - 2021

4 Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD		
PIE DE REY	INSIZE	TC - 9991 - 2020	INACAL - DM		

6. Condiciones Ambientales

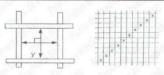
3600	INICIAL	FINAL
Temperatura °C	21,5	21,4
Humedad %	64	64

Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

(*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

BORATOR PUNTO DE PRECISIÓN S A C

Ing. Luis Loayza Capcha Reg. CIP N° 152631


PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 959 - 2021

Página · 2 de 2

8. Resultados

			M	EDIDAS	TOMAD	AS				PROMEDIO	ESTÁNDAR mm	ERROR	DESVIACIÓN ESTANDAR MÁXIMA mm	DESVIACIÓN ESTANDAR
9,37	9,36	9,42	9,29	9,42	9,32	9,39	9,36	9,35	9,42	Hou	32 6	111111	нип	mm
9,39	9,35	9,32	9,37	9,32	9,30	9,31	9,35	9,36	9,37	1000		1		
9,42	9,39	9,37	9,31	9,30	9,35	9,36	9,30	9,31	9,40	100		- 65		
9,35	9,36	9,32	9,29	9,37	9,29	9,38	9,42	9,39	9,29	9,35	9,50	-0,15	0,237	0,042
9,40	9,39	9,42	9,29	9,39	9,31	9,42	9,40	9,37	9,35					
9,42	9,38	9,36	9,32	9,36	9,37	9,35	9,32	9,31	9,38	5 44		3- 1	all make	
9,40	9,42	9,35	9,31	9,38	9,32	9,29	9,30	9,36	9,29	150		200	Age, El	

FIN DEL DOCUMENTO

Jeve de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620
www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com
prohibida La reproducción parcial de este documento sin autorización de punto de precisión s.a.c.

Tamiz N°40

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 963 - 2021

Página : 1 de 2

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

calibración aquí declarados.

Expediente Fecha de Emisión : 2021-11-22

: MATESTLAB S.A.C.

: MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

2. Instrumento de Medición : TAMIZ

Tamiz N° : 40 : 8 pulg Diametro de Tamiz

: 73389 : ACERO Material : PLATEADO

: NO INDICA Código de Identificación

3. Lugar y fecha de Calibración LABORATORIO DE SUELOS DE MATESTLAB S.A.C.

22 - SETIEMBRE - 2021

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAL
RETICULA DE MEDICIÓN	INSIZE	LLA - 099 - 2019	INACAL - DM

Temperatura °C	21,0	21,4
Humedad %	65	65

7. Observaciones

5. Trazabilidad

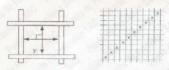
Con fines de identificación se ha colocado una etiqueta autoadhesiva de color ve certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

(*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

SORATOR

Jele de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620 PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.


PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 963 - 2021

Página : 2 de 2

8. Resultados

			M	EDIDAS		AS				PROMEDIO	ESTÁNDAR	ERROR	DESVIACIÓN ESTANDAR MÁXIMA	DESVIACIÓN ESTANDAR
423	419	422	417	418	m 416	423	421	424	421	μm	μm	μm	μm	μm
									421			1		
419	424	423	421	421	419	423	417	422	419			100		and and
419	416	424	419	421	423	420	422	423	416	10 mg/s				25
420	417	423	421	416	418	419	418	418	417	100 M		100	Age, 10	Act.
421	423	420	422	423	417	420	423	422	419	1		51	Market Comment	
416	420	418	421	416	419	416	424	421	416	1		4		
422	417	419	422	418	423	422	419	418	417	50 00		S	St. D. Walte	
424	420	416	417	423	424	422	424	423	422	1000		Sec	77	
423	417	423	416	422	416	424	422	424	419	300		100	alega, de	
421	418	418	419	421	418	419	418	419	424	200		100	18	
424	422	422	422	417	422	424	416	424	424	420	425	-5	25,08	2,65
422	417	424	419	420	421	421	423	419	418	100		75, 4	The state of	
416	423	418	416	422	423	418	424	422	417	13 P			Alexandra.	
422	421	417	423	423	416	417	422	419	423	4000		7000	5: 00	
417	422	419	422	424	418	422	420	418	422	1000	0 0 00	1000	100	
422	423	420	419	417	419	416	419	420	421				100	
416	417	417	416	424	417	423	418	422	419	137		300	Partie	
419	418	423	417	423	416	421	423	417	419	900	1000	0350	2 330	
417	423	416	422	418	422	419	424	423	416	1000		and the same	2.072	
423	421	417	423	417	423	419	422	416	417	100		000	7940	

PUNTO DE PRECISIÓN SA C

Jeje de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620
www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com
PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

Tamiz N°60

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 964 - 2021

Página : 1 de 2

: 131-2021 Expediente Fecha de Emisión : 2021-11-22

: MATESTLAB S.A.C. 1. Solicitante

: MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA Dirección

2. Instrumento de Medición : TAMIZ

Tamiz N° Diametro de Tamiz : 8 pulg

: GRAN TEST Marca : ACERO : PLATEADO Color Código de Identificación : NO INDICA

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

las condiciones de la calibración. Al solicitante les corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración LABORATORIO DE SUELOS DE MATESTLAB S.A.C.

22 - SETIEMBRE - 2021

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
RETICULA DE MEDICIÓN	INSIZE	LLA - 099 - 2019	INACAL - DM

6. Condiciones Ambientales NICIAL FINAL

Temperatura °C	21,7	21,7
Humedad %	65	65

7. Observaciones

- 7. Upservaciones

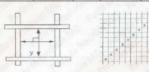
 Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

 (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

SORATOR PUNTO DE PRECISIÓN S A C

Jefe de Laboratorio Ing. Lois Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620 www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.


PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 964 - 2021

Página : 2 de :

8. Resultados

													(*)	
			М	EDIDAS	TOMAD	AS	7000			PROMEDIO	ESTÁNDAR	ERROR	DESVIACIÓN ESTANDAR MÁXIMA	DESVIACIÓN ESTANDAR
				μ	m			- 100		μm	μm	μm	μm	μт
256	263	244	251	231	244	240	251	261	243	1 189	NOTE TO		September 1	24 120
244	231	240	263	251	239	256	231	263	244	100			No. of Parties	11/10
261	263	263	256	261	263	243	231	239	244	199			A STATE OF THE PARTY OF THE PAR	
244	256	244	240	244	239	256	256	256	243			100	4400	Service Control
231	251	243	231	263	231	240	251	243	263	19 150	3000	100	2000	O STATE
263	239	263	256	251	263	244	261	263	257	300		7		
244	256	240	261	243	251	256	251	240	256	JE 198		SI al	W. 10 to	
251	257	231	256	244	239	231	256	244	263	1000		A SECTION ASSESSMENT	400	
263	256	263	240	263	256	244	261	257	244	385		100	California de	
240	243	256	257	231	261	231	259	256	261	A. 440	and the	100	35	
244	256	240	263	257	256	244	261	251	231	39	000000	1	20 200	
263	251	244	261	231	239	259	263	259	244	250	250	0	17,99	10,49
256	263	231	256	256	240	244	259	240	263	18 P 18 S		900	Alexander of	
261	251	263	257	240	263	231	256	261	243	400		4500	S	
244	256	243	263	231	243	261	263	251	256	2000	Sec. 1	1500	199,90	
263	240	251	244	261	256	244	251	240	256	N. 57		- C	Carlotte Carlotte	
261	244	256	257	263	240	231	256	244	231	1000	AND S	F 40	Sec.	
263	231	251	256	261	256	251	231	263	261	46,772		100	in digital	
244	256	231	243	263	240	263	231	256	244	100		A PARTY	Stage Office	
244	244	263	251	263	231	261	251	240	239	135		Alego.	10000	
263	256	231	256	240	244	263	243	244	256	1000		2000	outle III	
256	244	239	244	231	263	243	256	261	240	The States		STATE OF	Alaga A	

FIN DEL DOCUMENTO

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com

PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

Tamiz N°100

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 965 - 2021

Página : 1 de 2

: 131-2021 Fecha de Emisión : 2021-11-22

1. Solicitante : MATESTLAB S.A.C.

: MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

2. Instrumento de Medición : TAMIZ Tamiz N° Diametro de Tamiz : GRAN TEST

: 63607 : ACERO : PLATEADO Código de Identificación : NO INDICA

El Equipo de medición con el modelo y número de serie abajo, indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE SUELOS DE MATESTLAB S.A.C. 22 - SETIEMBRE - 2021

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
RETICULA DE MEDICIÓN	INSIZE	LLA - 099 - 2019	INACAL - DM

6. Condiciones Ambientales

0, 50, 4	INICIAL	FINAL
Temperatura °C	21,7	21,7
Humedad %	65	65

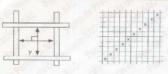
- 7. Observaciones
 Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de
- certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

 (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

BORATOR PUNTO DE

Jete de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620 PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.


PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 965 - 2021

Pánina · 2 de 2

8. Resultados

			N	IEDIDAS	TOMAD	AS				PROMEDIO	ESTÁNDAR µm	ERROR	(*) DESVIACIÓN ESTANDAR MÁXIMA JIM	DESVIACIÓN ESTANDAR
156	154	154	152	153	154	153	152	153	156	pini	pin	hiti	hu	μm
155	156	151	153	157	155	150	154	153	151	1		15	100	
154	155	152	157	153	156	151	156	154	155	7		1		
150	156	154	152	158	155	152	155	157	155	38 34			18 M	
153	153	158	151	156	152	153	150	156	154			.0	outle.	
154	154	155	153	157	158	154	153	152	158	100		W		
157	152	153	152	155	152	150	156	157	153				1600	
155	150	156	154	156	154	156	151	154	155		- C	1	1950	
156	154	158	155	153	150	153	155	153	156	Se got			30 10	
156	152	156	151	154	154	156	154	150	152	200 187		080	Act, Ca	
155	154	150	155	153	155	155	157	156	157	100		1	3160	
153	150	153	154	157	154	152	155	151	154	-310° x		30	000	
156	153	152	151	156	150	150	154	152	150	A0.	10 00	100	clife of	
157	155	156	152	157	152	155	151	157	152	154	150	4	13,30	2,10
155	154	153	150	152	154	156	156	154	155			2800	10000	
154	157	151	154	153	157	155	151	155	152	100	300	× 1	-900	
158	156	154	156	155	156	153	156	155	157	130		300	Acres 10	
154	155	152	155	152	154	153	151	154	153	200	- Jan 190	100	- "	
151	152	155	152	153	150	154	152	151	156	100	1101	77.4	1034	
156	151	156	157	154	154	153	155	152	158	100		35	30	
158	156	153	152	153	150	152	156	157	153	2 6 7		1	59"	
154	153	154	151	156	154	157	150	153	158	O'STE		3	die Filip	
158	152	155	153	155	153	156	154	152	154	200		100	Company Company	
152	154	156	156	152	153	155	155	156	158	1000		- 33		
156	153	154	153	154	152	154	152	157	154	1000	5,45	0	100 100	
151	152	151	152	155	153	153	155	152	153			600	1000	

Jete de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com

PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

Tamiz N°140

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 966 - 2021

Página : 1 de 2

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido

calibrado probado y verificado usando patrones certificados con trazabilidad a la

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento

del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza

de los perjuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

calibración aquí declarados.

Dirección de Metrología del INACAL y otros.

Expediente : 131-2021 Fecha de Emisión : 2021-11-22

: MATESTLAB S.A.C. 1. Solicitante

: MZA, A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA

2. Instrumento de Medición

Tamiz N° : 140 Diametro de Tamiz : 8 pulg

: GRAN TEST Marca

: 74664 : ACERO Material : PLATEADO Color

Código de Identificación : NO INDICA

3. Lugar y fecha de Calibración

LABORATORIO DE SUELOS DE MATESTLAB S.A.C. 22 - SETIEMBRE - 2021

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD	
RETICULA DE MEDICIÓN	INSIZE	LLA - 099 - 2019	INACAL - DM	

6. Condiciones Ambientales

20	INICIAL	FINAL
Temperatura °C	21,7	21,7
Humedad %	65	65

7. Observaciones

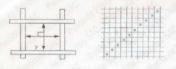
7. Ouservaciones
Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

(*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

BORATOR PUNTO DE PRECISION S A C

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620 PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.


8. Resultados

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 966 - 2021

Página : 2 de 2

MEDIDAS TOMADAS PROMEDIO ESTÁNDAR 10.77 2.35

PUNTO DE PRECISION S A C

Jete de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com

PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

Tamiz N° 200

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 967 - 2021

Página : 1 de 2

Expediente Fecha de Emisión : 2021-11-22

1. Solicitante : MATESTLAB S.A.C.

MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA Dirección

2. Instrumento de Medición : TAMIZ Tamiz N° Diametro de Tamiz : 8 pula

: GRAN TEST

Serie : 72843 : ACERO : PLATEADO Código de Identificación : NO INDICA

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el mon Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE SUELOS DE MATESTLAB S.A.C. 22 - SETIEMBRE - 2021

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO I	TRAZABILIDAD
RETICULA DE MEDICIÓN	INSIZE	LLA - 099 - 2019	INACAL - DM
		1	II WOAL - DIVI

6. Condiciones Ambientales

	INICIAL	FINAL
Temperatura °C	21,7	21,7
Humedad %	65	65

7. Observaciones

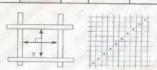
Con fines de identificación se ha colocado una eliqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

(*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

BORATOR

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620 www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.


8. Resultados

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 967 - 2021

Página : 2 de 2

1200	ATTAC TO	- Today	240										(*)	
			N	MEDIDAS		DAS				PROMEDIO	ESTÁNDAR	ERROR	DESVIACIÓN ESTANDAR MÁXIMA	DESVIACIÓN ESTANDAR
74	71	73	1 75	1	ım	1	000	1		μm	μт	μm	μm	μm
72	69	73	75	69	71	76	74	74	71		100		and the	201 20
71	74		74	74	75	73	72	76	73	1000		455		183
75	70	74	73	70	74	73	73	74	72			00		
		70	75	74	76	75	71	69	71				4 3	100
69	74	73	71	69	74	69	75	73	76	100		3.0	100	A STATE
71	69	74	73	75	69	73	74	71	74	100		500		To all the
74	71	69	74	71	74	76	69	76	73	1 39		-	1000	10,000
75	72	71	76	74	73	74	70	74	76	1.57		1	Que and	1900
74	74	72	73	76	75	70	71	72	73				Service and	100
73	72	71	74	73	74	73	69	73	70	12 79		1	100	80,09
74	71	72	76	71	75	71	74	75	75	1000		450	7 23	900
69	73	71	73	75	71	76	75	73	71	W. 72	00	30	0.510	12 Co
71	74	76	75	74	76	71	74	74	70	100	27 - 00	100-	100	
70	74	75	71	73	69	71	75	72	75	18	See and	-	-35	Mary and the
75	69	73	74	72	71	74	75	73	73	150 151		000	100	400
75	71	76	70	71	72	70	71	70	71	73	75	-2	9,02	2,06
74	69	75	73	74	74	75	70	74	70	1200		100	100	1500
70	71	74	73	70	75	71	69	74	70	1000		32.		77.00
71	69	70	71	71	73	73	69	69	71	10 10		3	don Hill	-07
76	74	74	76	75	76	74	71	70	70	-69		-69		10,000
74	76	69	71	75	74	73	72	75	71				10/10	300
71	73	74	70	71	73	70	71	69	74	107 _0		8	110	13900
70	71	76	73	72	71	71	70	71	71	37			1800	30
74	72	74	74	73	76	72	74	75	72	537		900	700 TO	400
72	74	76	71	71	73	71	73	74	71	700		200		200
73	72	71	74	69	74	72	74	69	76	1		000	- 1820	2000
71	71	74	75	74	73	75	75	73	71	1339		1389	1	100
75	73	75	73	75	71	74	73	74		100		200	200	200 40
71	74	73	74	73	73	69			76			Sull.	May and	S. College
73	75	71	75	71		-	71	75	71	D 1000		000	100	S .18
10	10	1.1	10	11	74	71	69	74	76			183	100	

PUNTO DE PRECISIÓN SA C

FIN DEL DOCUMENTO

Jete de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Tamiz N°200-1

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 968 - 2021

Página : 1 de 2

Expediente 131-2021 : 2021-11-22

1. Solicitante : MATESTLAB S.A.C.

: MZA. A LOTE. 24 INT. 2 URB. MAYORAZGO NARANJAL 2DA ETAPA - SAN MARTIN DE PORRES - LIMA Dirección

2. Instrumento de Medición : TAMIZ

: 200 Diametro de Tamiz Marca : GRAN TEST

: 60608 : ACERO : PLATEADO Color Código de Identificación : NO INDICA

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados

3. Lugar y fecha de Calibración

LABORATORIO DE SUELOS DE MATESTLAB S.A.C. 22 - SETIEMBRE - 2021

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
RETICULA DE MEDICION	INSIZE	LLA - 099 - 2019	INACAL - DM

6. Condiciones Ambientales

20	INICIAL	FINAL
Temperatura °C	21,7	21,7
Humedad %	65	65

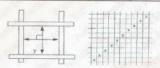
- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

 (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

BORAFOR PUNTO DE PRECISI

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620 PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.


8. Resultados

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 968 - 2021

Página : 2 de 2

400	100	- Hall	3/61	E-LO I	200	35	1000	A 27 - 13					(*)	
			N	EDIDAS		AS				PROMEDIO	ESTÁNDAR	ERROR	DESVIACIÓN ESTANDAR MÁXIMA	DESVIACIÓ ESTANDAR
76	74	77	76	72	im 75	77	75	78	1 70	μm	μm	μm	μm	μm
77	78	78	75	77	76	75	76	78	76	-		389		6.80
78	76	77	74	77	74	72	78	75	73	-		25		200
72	72	75	72	76	78	74	72	77	75	- CF 1	W 100	170		100
75	77	76	77	76	72	77	76	76	74	000			Sec. 10	1
77	72	75	72	75	76	78	75	77	72	100			400	
76	74	76	77	76	78	77	74	77	74	1 25	1000		450	
73	75	72	78	72	74	77	76	76	76	97K 40	200		" the " And	
77	74	75	77	77	72	74	76	75	73	7		14	25	
78	72	76	75	74	73	77	75	74	72	SU 18		5	W. 1942	
76	77	74	77	76	76	72	76	77	77	10000	100	0.59	Solar Ca	
77	74	75	72	75	72	78	73	78	76	75 -01		9	1300	
77	72	76	77	77	76	76	76	77	73	100		00-	A 100	
75	78	76	74	75	78	72	75	72	77	200		3	De.	
74	77	73	72	76	72	76	77	77	72	- S		300	1500	
72	72	76	77	72	76	76	77	74	76	75	75	0	9,02	1,95
77	76	78	74	77	73	72	75	78	73	100	100	000	May Hay	
74	77	72	78	76	74	78	76	72	77		0.00	2	100 mg	
75	77	76	72	72	78	72	75	76	73	10	C 6	7	and the	
72	73	75	74	76	77	74	75	77	76	00000		000	5	
76	74	77	73	72	76	78	74	72	77	1 200		ne l	100	
72	75	76	77	72	78	76	72	77	78	3000		300	de 2	
76	72	75	74	74	72	78	74	76	77	1	6	-5-	105	
78	74	74	76	78	74	77	72	78	76	1000			P. P. B.	
77	78	72	76	77	77	74	72	77	73	-600		139	-	
76	77	74	75	76	78	76	77	73	76	100	Nº al	2	1000	
78	77	76	72	76	74	75	77	74	75		San San San	The same	8800	
76	76	75	74	75	72	75	74	76	77			1	230	
78	72	77	76	77	76	72	76	72	77				18 18 P	
77	76	72	77	76	72	76	76	74	74	a falls		1089	190,	

PUNTO DE PRECISIÓN SA C

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

00

Resultados de laboratorio

Ensayo De Clasificación De Suelos

FORMATO ENSAYO PARA CLASIFICACIÓN DE LOS SUELOS

Código	CS-FO-02	
Versión	01	
Fecha	18-10-2022	
Página	1 de 1	

PROYECTO

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022" . JHON YERÔVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO REGISTRO N°: MTL22-TS-531 MUESTREADO POR : J. E.G. ENSAYADO POR : P. ESCOBEDO SOLICITANTE CÓDIGO DE PROYECTO UBICACIÓN DE PROYECTO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. FECHA DE ENSAYO : 18/10/2022 MUESTRA DE SUELO TURNO MATERIAL MATERIAL

CÓDIGO DE MUESTRA
SONDAJE / CALICATA
N° DE MUESTRA
PROGRESIVA PROFUNDIDAD NORTE ESTE COSTA

r	(
Tara Nº	F7
Peso de tara	210
Tara + m húmeda	2356.1
Tara + m seca	2182.4
Tamaño máx. de partículas	A 1
Método de Ensayo	"B"
Método de secado	Horno a 110 +/-5°C

	TA	BLE 1 Minimum F	Requirements for Mass	of Test Specimen, and	Balance Readability	/
Maximum Pa	TABLE 1 Minimum Re imum Particle Size (100 % Passing)	thôd A Recorded to ±1%		Method B Recorded to ±0.1 %		
SI Unit Sieve Size	1 -4	Alternative Sieve Size	Specimen Mass	Balance Readability (g)	Specimen Mass (g)	Balance Readability (g
75.0 mm 37.5 mm 19.0 mm 9.5 mm 4.75 mm 2.00 mm	200	3 in 1-½ in. 3/2 in. 4/2 in. No. 4 No. 10	5 kg 1 kg 250 g 60 g 20 g 20 g	10 10 1 0.1 0.1	50 kg 10 kg 2.5 kg 500 g 100 g 20 g	10 10 1 0.1 0.1

ANÁLISIS GRANULOMÉTRICO POR TAM

Método de ensayo B: Tamizado integral <N°4

	Peso Inicial S	eco:	1972.4
TAMIZ	ABERTURA	PE	SO
2"	50.800	0	.0
1 1/2"	38.100	0	0.0
1"	25.400	0	.0.
3/4"	19.000	0	.0
3/8"	9.500	0	.0
Nº 4	4.750	0	.0
Nº8	2.380	. 1	2.0
Nº 10	2.000	10	5.0
Nº 16	1.190	2:	2.0

MÉTODO DE TAMIZADO

TAMIZ	ABERTURA	PESO
Nº 20	0.840	244.0
N° 30	0.600	241.0
Nº 40	0.425	233.0
N° 50	0.297	185.0
Nº 60	0.250	199.0
Nº 80	0.177	288.0
Nº 100	0.150	93.3
Nº 200	0.075	201.7
< Nº 200	1 1	237,4

Procedimiento de obtención de mue: "Secada al horno a 110 +/- 5°C"

Maximum Particle Size of Material
Sieve Particle Results Reported Results Reported
No. 10 2.00 50 g 100 g No. 4 4.75 75 g 200 g
\$\frac{1}{10}\$, \$\frac{105}{10}\$ \$\frac{1}{9}\$ \$\frac{1}{9

7 3			LÍMITES I	DE CONSIST	TENCIA - ASTM D4318
7,7	LÍMI	TE LÍQUIDO			
Método de ensayo	Multipunto	•	Unipunto a		Método de secado
DESCRIPCIÓ	N	1	2	3	DESCRIPCIÓ
Nro. de Recipiente			10		Nro. de Recipiente
Peso de Recipiente		12.70	12.20	12.50	Peso de Recipiente
Peso Recipiente + Suelo Hum	edo	27.21	26.00	25,25	Peso Recipiente + Suelo
Peso Recipiente + Suelo Seco	(B)	25.00	23.50	22.60	Peso Recipiente + Suelo
Nº De Golpes		34	24	14	Cantidad minima requeri

Manual

Método de preparación Horno		Ambie	nte
N° De Golpes	34	24	14
Peso Recipiente + Suelo Seco (B)	25.00	23.50	22.60
Peso Recipiente + Suelo Humedo	27.21	26.00	25,25
Peso de Recipiente	12.70	12.20	12.50

LÍMITE PLÁSTICO			
Método de secado Horno	0		Ambiente a
DESCRIPCIÓN	1	2	. 3
Nro. de Recipiente	1	2	3
Peso de Recipiente	7.50	7.50	7.10
Peso Recipiente + Suelo Humedo	16.80	20.40	18.60
Peso Recipiente + Suelo Seco (B)	16.10	19.40	17.70
Cantidad minima requerida 6g	[Cumple!	¡Cumple!	¡Cumple!

OBSERVACIONES:
Clasificación visual - manual: CL - Suelo arcilloso en estado de baja plasticidad de color

EQUIPO UTILIZADO				
EQUIPO	- 4	CÓDIGO	F. CALIBRACIÓN	N° CERT. CALIBRACIÓN
Balanza digital New Classic 6000g x 0,1g	-	LS-08	22/09/2022	LM-416-2022
Balanza digital Ohaus 30000g x 1g	115	LS-07	22/09/2022	LM-418-2022
Balanza digital Henkel 200g x 0.01mg	500	LS-06	24/09/2022	LM-420-2022
Horno digital Termocup 196L 0° a 300°C	197	LS-20	24/09/2022	LM-369-2022

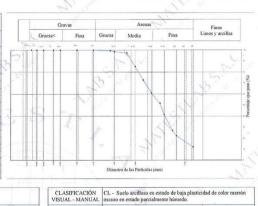
MATESTLAB S.A.C TÉCNICO - LEM JEFE - LEM MATESTLAS S.A.C. MATESTLABS.A.C. OLLE CUMPA BARRETO GERENTE GENERAL KELY YANINA TIMOCO LOZADA INGENERIO CIVIL INGENERIO CIVIL INGENERIO CIP N° 180999

Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

975232841 922318222

FORMATO ENSAYO PARA CLASIFICACIÓN DE LOS SUELOS

.,	Código	CS-FO-03	
	Versión	01	
	Fecha	18-10-2022	
	Página	1 de 1	


SOLICITANTE CÓDIGO DE PROYECTO UBICACIÓN DE PROYECTO

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIC-OLLPA ANDAHUAYLAS 2022" JIÓN YEROVI ALTAMIRANO VILLENA / FREDV UTANI HUASCO INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. MUESTRA DE SUELO

REGISTRO Nº: MUESTREADO POR ENSAYADO POR MTL22-TS-531 : J. E.G. : P. ESCOBEDO FECHA DE ENSAYO : 18/10/2022 TURNO PROFUNDIDAD NORTE ESTE COSTA 1.50 m

MATERIAL CÓDIGO DE MUESTRA SONDAJE / CALICATA Nº DE MUESTRA PROGRESIVA

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM D6913					
TAMIZ	ABERTURA (mm)	PORCENTAJE QUE PASA	ESPECIFIC.		
2 1/2"	38.100	100.00			
2"	38.100	100.00			
1 1/2"	38.100	100.00			
. 1"	25.400	100.00	· ·		
3/4"	19.000	100.00	4 1		
3/8"	9.500	100.00	(1)		
Nº 4	4.750	100.00	17.3		
N° 8	2.380	99.39	617 1		
Nº 10	2.000	98.58	11		
N° 16	1.190	97.47	N 18		
N° 20	0.840	85.09			
Nº 30	0.600	72.88	. 4		
Nº 40	0.426	61.06			
Nº 50	0.297	51.68			
N° 60	0.250	41.59			
N° 80	0.177	26.99	7		
N° 100	0.150	22,26	7.7		
N° 200	0.075	12.04			
Fondo	-	0.00 /	7		

CONTENIDO DE HUMEDAD ASTM D2216	
CONTENIDO DE HUMEDAD (%)	8.8
MÉTODO DE SECADO	Homo a 110 +/-5°C
MÉTODO DE REPORTE	"B"
MATERIALES EXCLUÍDOS	Ninguno

METODO DE SECADO		Homo a 110 +/-5°C	NOTAS SOBRE LA	No hay presencia de ma
MÉTODO DE REPORTE	- VI. VI. VI.	"B"	MUESTRA	ella)
MATERIALES EXCLUÍDOS		Ninguno		
. 15				
PROCEDIMIENTO DE OBTENCIÓN DE MUESTRA	"Secada a	l horno a 110 +/- 5°C"		GRAVICS DE FILI DEZ
PROCEDIMIENTO DE TAMIZADO	B: Tam	izado integral <nº4< td=""><td>No. in</td><td></td></nº4<>	No. in	
TAMIZ SEPARADOR		Ninguno	23%	
MÉTODO DE REPORTE DE RESULTADOS		"B"	Ph.	
			110	

LÍMITES DE CON ASTM D4	
LIMITE LÍQUIDO	22.01
LÍMITE PLÁSTICO	8.34
ÎNDICE DE PLASTICIDAD	13.67
INDICE DE CONSISTENCIA (Ic)	0.97
INDICE DE LIQUIDEZ (IL)	0.0

COMPOSICIÓN FÍSICA DEL SUELO EN FUNCIÓN AL TAMAÑO DE PARTÍC				
	CONTENIDO DE GRAVA PRESENTE EN EL SUELO %	0.00		
	CONTENIDO DE ARENA PRESENTE EN EL SUELO %	87.96		
	CONTENIDO DE FINOS PRESENTES EN EL SUELO %	12.04		

CL/	ASIFICACIÓN DEL SU	JELO
CLASIFICACIÓN SUCS (ASTM	D2487)	CL
CLASIFICACIÓN AASHTO (ASTM D3282)		A-2-6 (0)
NOMBRE DEL GRUPO	Arcilla areno	sa de baja plasticidad

Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

INFORME DE ENSAYO Standard Test Methods for Particle-Size Distributio Using Sieve Analysis ASTM D6913/D6913M - 17

	Código	CS-FO-01
	Versión	01
-	Fecha	18-10-2022
	Página	I de 1

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022" : IHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO MTL22-TS-531 : J. E.G. : P. ESCOBEDO UBICACIÓN DE PROYECTO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. FECHA DE ENSAYO : 18/10/2022 CÓDIGO DE MUESTRA SONDAJE / CALICATA Nº DE MUESTRA PROGRESIVA PROFUNDIDAD NORTE ESTE COSTA : 1.50 m

TAMIZ	ABERTURA (mm)	Fracción Gruesa de Separación (0,1 g)	Fracción Fina Tamizado Simple (0,01 g)	Retenido en Tamiz Separador (%)	Factor de Tamizado	% Parcial Retenido	% Acumulado Retenido	% Acumulado que Pasa	Especificación Máximo
2 1/2 in.	63,300	0.0	1		0.0475127	0.00	0.00	100,00	1
2 in.	50,800	0.0	The same of the sa	16 1	0.0475127	0,00	0.00	100,00	1
1 -1/2 in.	38.100	0.0		18-4	0.0475127	0.00	0.00	100.00	-
1 in.	25.400	0.0		1	0.0475127	0.00	0.00	100.00	
3/4 in.	19.000	0.0			0.0475127	0.00	0.00	100.00	-
3/8 in.	9.500	0.0			0.0475127	0.00	0.00	100,00	
No. 4	4.750	0.0		0.0	0.0475127	0.00	0.00	100.00	
No. 8	2.380	figher.	75.00		0.0475127	3.56	3.36	96.44	
No. 10	2.000	7.00	36.00		0.0475127	1.71	5.27	94.73	
No. 16	1.190	1 8	48.00		0.0475127	2.28	7.35	92.45	
No. 20	0.840	Y .	174.00		0.0475127	8.27	15.82	84.18	
No. 30	0,600		119.00		0.0475127	5.65	21.48	78.52	
No. 40	0.425	1.6	285.00		0.0475127	13.54	35.02	64.98	
No. 50	0,297	(0)	196,00		0.0475127	9.31	44.33	55.67	
No. 60	0.250	17	96,00		0.0475127	4.56	48.89	51.11	
No. 80	0.177		187,00		0.0475127	8.88	57.78	42.22	
No. 100	0,150	1000	63.94		0.0475127	3.04	60.81	39.19	
No. 200	0.075	the same of	144.00		0.0475127	6.84	67.66	32.34	
FONDO			680,76		0.0475127	32,34	100,00	0,00	

10					Gran	ras							Arenas						Limos	inos y arcilla		
0		(iruesa	<		Fi	na		Gru	esa		Media			Fin	a				,	1	
	3 m	20	117h	1m	3/6/	2	Sin .	tot		No	10	74s 20	No	4) tis 6	1	00 140	200				1	T 100
	Ш										-								40			
	П							1	1			1				17		31				93
	Ш						10	П					1				13			3		60
	+						1	Н			-		1		H	1	1	Н	+-	3		70
	+	-	- 13												-	10			-			60
- 4	1	- 1	- 3				-	П	5			_		-				Н				50
-			-							0	1			di	1							43
Ò							4										+					39
	11						6	1														1
5	Ш					2	U	П						-	3	N		П				20
						3		1						1	. 3							10
	36.200		81 W			2	8	-	8	1	800	3	150	41.7		-	8		-	-		0
	25	-	8 8		1/3		0	-				las Partic	ulas (mm)			9	0			-		

MATESTLAB S.A.C JEFE-LEM MATESTLAB S.A.C YANIKA TINOCO LOZAD INGENIERO CIVIL Reg. CIP N° 180999 NICOLLE CUMPA BARR GERENTE GENERAL

Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

975232841 922318222

FORMATO ENSAYO PARA CLASIFICACIÓN DE LOS SUELOS

	Código	CS-FO-02	
	Versión	01	
	Fecha	18-10-2022	
	Página	1 de 1	
_			

PROYECTO

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022" : JHON YERÓVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO REGISTRO Nº: MUESTREADO POR ENSAYADO POR MTL22-TS-531 : J. E.G. : P. ESCOBEDO SOLICITANTE CÓDIGO DE PROYECTO UBICACIÓN DE PROYECTO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. FECHA DE ENSAYO : 18/10/2022 : MUESTRA DE SUELO MATERIAL TURNO MATERIAL

CÓDIGO DE MUESTRA

SONDAJE / CALICATA

N° DE MUESTRA

PROGRESIVA PROFUNDIDAD NORTE ESTE 1.50 m PROGRESIVA COSTA

(**	
Tara Nº	N2
Peso de tara	211
Tara + m húmeda	2485.0
Tara + m seca	2315.7
Tamaño máx. de particulas	4 1
Método de Ensayo	"B"
March 1	11 110 1100

		TA	BLE 1 Minimum R	equirements for Mass	of Test Specimen, and	Balance Readability	4
Maxin	oum Partic	lo Sizo	(100 % Passing)		ethod A Recorded to ±1%		Method B It Recorded to ±0.1 %
Si U		9.00	Alternative Sieve	Specimen Mass	Balance Readability (g)	Specimen Mass (g)	Balance Readability (g
75.0 m 37.5 m 19.0 m 4.75 m	nm nm n	2	3 in 1-1/2 in. 3/2 in. 3/2 in. 1/4 in. No. 4	5 kg 1 kg 260 g 60 g 20 g 20 g	10 10 1 0.1 0.1	50 kg 10 kg 2.5 kg 500 g 100 g	10 10 1 0.1 0.1

ANÁLISIS GRANULOMÉTRICO POR TAMIZ.

Peso Inicial Se

TAMIZ ABERTURA
2° 50,800
1 1/2° 28,400
38,100
3/4° 19,000
3/8° 9,500
N° 4 4,750
N° 8 2,380
N° 10 2,000
N° 16 1,190 0.0 75.0 36.0 48.0

MÉTODO DE TAMIZADO Manual

"Secac	la al horno a 110 -	-/- 5°C"
Pe	so de fracción < 1	N°4 2104.7
TAMIZ	ABERTURA	PESO
Nº 20	0.840	174.0
N° 30	0.600	119.0
Nº 40	0.425	285.0
Nº 50	0.297	196.0
Nº 60	0.250	96.0
Nº 80	0.177	187.0
310 100	0.150	63.9

Procedimiento de obtención de muestra:

TIPO DE SUELO Inorgánico

TABLE 2	Minimum Mass	Requirement for	Specimen
Maximum Particle (99 % or mo			ass of Specimen.
Alternative Sieve Designation	Maximum Particle Size, mm	Method A Results Reported to Nearest 1 %	Method B Results Reported to Nearest 0.1 %
No. 40 No. 10 No. 4	0.425 2.00 4.75	50 g 50 g 75 g	75 g 100 g 200 g
36 in. 35 in. 1 in.	0.5 19.0 25.4 38.1	165 g ^G 1.3 kg ^G 3 kg ^G 10 kg ^G	0
1-1/2 in. 2 in. 3 in.	50.8 76.2	25 kg - 70 kg =	0

LÍMITES	DE CONSISTENCI	A - ASTM D4318	

		TE LÍQUIDO	v	
Método de ensayo	Multipunto	10	Unipunto a	
DESCRIPC	IÓN	1	2	3
Nro. de Recipiente			5	
Peso de Recipiente		12.50	12.50	12.20
Peso Recipiente + Suelo Hu	imedo	26.80	28,10	28,90
Peso Recipiente + Suelo Se	co (B)	24.30	25.13	25.50
Nº De Golpes	1 1	34	24	14

LÍMITE PLÁSTICO DESCRIPCIÓN
Nro. de Recipiente
Peso de Recipiente
Peso Recipiente + Suelo Humedo
Peso Recipiente + Suelo Seco (B)
Cantidad minima requerida 6g

OBSERVACIONES:
Clasificación visual - manual: CL - Suelo arcilloso en estado de baja plasticidad de color marrón oscuro en estado parcialmente himedo
No hay presencia de material superficial (grammineas raíces y restos de ella)
Muestra tomada en campo por el personal de MATESTLAB S.A.C.

EQUIPO UTILIZADO							
EQUIPO	1	CÓDIGO	F. CALIBRACIÓN	N° CERT. CALIBRACIÓN			
Balanza digital New Classic 6000g x 0,1g	1	LS-08	22/09/2022	LM-416-2022			
Balanza digital Ohaus 30000g x 1g	11	LS-07	22/09/2022	LM-418-2022			
Balanza digital Henkel 200g x 0.01mg	100	LS-06	24/09/2022	LM-420-2022			
Horno digital Termocup 196L 0° a 300°C	.63	LS-20	24/09/2022	LM-369-2022			

MATESTLAB S.A.C

TÉCNICO - LEM MATESTLAB S.A.C.

MATESTLAB S.A.C. KELY YANINA TINOCO LOZADA INGENIERO CIVIL REPUCIPA" 180999

JEFE - LEM

Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

975232841 922318222

FORMATO ENSAYO PARA CLASIFICACIÓN DE LOS SUELOS

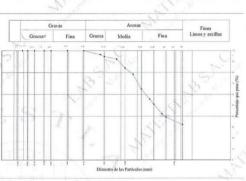
Código	CS-FO-03	
Versión	01	
Fecha	18-10-2022	
Página	1 de 1	
	Versión Fecha	Versión 01 Fecha 18-10-2022

SOLICITANTE CÓDIGO DE PROYECTO UBICACIÓN DE PROYECTO : "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022" JION YEROVI ALTAMIRANO VILLENA / FREDY UTAMI HUASCO

REGISTRO Nº: MUESTREADO POR ENSAYADO POR MTL22-TS-531 : J. E.G. : P. ESCOBEDO

MATERIAL

INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. : MUESTRA DE SUELO


TURNO

FECHA DE ENSAYO : 18/10/2022

CÓDIGO DE MUESTRA SONDAJE / CALICATA Nº DE MUESTRA PROGRESIVA

PROFUNDIDAD NORTE ESTE COSTA

TAMIZ	ABERTURA (mm)	PORCENTAJE QUE PASA	ESPECIFIC
2 1/2"	38,100	100.00	
2"	38,100	100.00	
1 1/2"	38.100	100.00	
1"	25.400	100.00	
3/4"	19.000	100.00	
3/8"	9.500	100.00	- 5
Nº 4	4.750	100.00	(_)
Nº 8	2,380	96.44	62.00
Nº 10	2.000	94.73	N. Y.
Nº 16	1.190	92,45	100
N° 20	0.840	84.18	1
Nº 30	0.600	78.52	10
Nº 40	0.426	64.98	-
Nº 50	0.297	55.67	
Nº 60	0.250	51.11	No.
N° 80	0.177	42.22	
Nº 100	0.150	39.19	1
Nº 200	0.075	32.34	

O	A A I TO A
CONTENIDO DE HUMEDA ASTM D2216	D
CONTENIDO DE HUMEDAD (%)	8,0
MÉTODO DE SECADO	Homo a 110 +/-5°C
MÉTODO DE REPORTE	"B"
MATERIAL EC EVOLUTIONS	Minimum

CLASIFICACIÓN VISUAL - MANUAL	CL - Suelo arcilloso en estado de baja plasticidad de color marrón oscuro en estado parcialmente húmedo
NOTAS SOBRE LA MUESTRA	No hay presencia de material superficial (gramíneas raices y restos de ella)

PROCEDIMIENTO DE OBTENCION DE MUESTRA PROCEDIMIENTO DE TAMIZADO TAMIZ SEPARADOR METODO DE REPORTE DE RESULTADOS

LÍMITES DE CONS ASTM D43	
LÍMITE LÍQUIDO	23.40
LÍMITE PLÁSTICO	9.80
INDICE DE PLASTICIDAD	13.60
INDICE DE CONSISTENCIA (Ic)	1.13
INDICE DE LIQUIDEZ (IL)	-0.1
MÉTODO DE ENSAYO DE LÍMITE LÍQUIDO	

1	307								
de rue	201		.0		-				
derails.	22.4								
3	113								
	200							-	
	Be.								
	12.	3	00	25	20	25	11	15	27

COMPOSICIÓN FÍSICA DEL SUELO EN FUNCIÓN AL TA	MAÑO DE PARTÍCULAS
CONTENIDO DE GRAVA PRESENTE EN EL SUELO %	0.00
CONTENIDO DE ARENA PRESENTE EN EL SUELO %	67.66
CONTENIDO DE FINOS PRESENTES EN EL SUELO %	32.34

Cr.	ASIFICACIÓN DEL SU	TELO
CLASIFICACION SUCS (ASTM	D2487)	CL
CLASIFICACIÓN AASHTO (AS	TM D3282)	A-2-6 (1)
NOMBRE DEL GRUPO	Arcilla arenos	sa de baja plasticidad

JEFE - LEM MATESTLAB S.A.C.

MATESTLAB S.A.C

Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

975232841 922318222

Using Sieve Analysis ASTM D6913 / D6913M - 17

1	
Código	CS-FO-01
Versión	01
Fecha	18-10-2022
Página	1 de 1

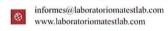
REGISTRO Nº: MUESTREADO POR ENSAYADO POR : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. FECHA DE ENSAYO : 18/10/2022 UBICACIÓN DE PROYECTO : 1.50 m

Grava: 1.30 Arena: 83.88 Finos: 14.82

TAMIZ	ABERTURA (mm)	Fracción Gruesa de Separación (0,1 g)	Fracción Fina Tamizado Simple (0,01 g)	Retenido en Tamiz Separador (%)	Factor de Tamizado	% Parcial Retenido	% Acumulado Retenido	% Acumulado que Pasa	Especificación Maximo
2/1/2 in.	63.300	0.0	()		0.0506714	0.00	0,00	100.00	1
2 in.	50,800	0.0	The second	18 6	0.0506714	0.00	0,00	100,00	Lun
1 -1/2 in.	38,100	0.0		11-4	0.0506714	0,00	0.00	100.00	1
1 in.	25,400	0,0		Barrett .	0.0506714	0.00	0.00	100,00	17
3/4 in.	19,000	0,0	4 7		0.0506714	0.00	0.00	100,00	100
3/8 in.	9,500	0,0			0.0506714	0.00	0.00	100.00	
No. 4	4.750	25.6		0.0	0.0506714	1.30	1.30	98.70	
No. 8	2.380	Security	88.30		0.0506714	4.47	5.77	94.23	
No. 10	2,000		77,60		0.0506714	3.93	9.70	90.30	
No. 16	1.190		89.50		0.0506714	4.54	14.24	85.76	
No. 20	0.840	- 31	114,30		0.0506714	5.79	20.03	79.97	
No. 30	0.600		82.20		0.0506714	4.17	24.20	75.80	
No. 40	0.425	L.	233.90		0.0506714	11.85	36.05	63.95	
No. 50	0.297	(900)	188.40		0.0506714	9.55	45,59	54.41	
No. 60	0.250	100	161.60		0.0506714	8.19	53.78	46,22	
No. 80	0.177	7	253.80		0.0506714	12.86	66.64	33,36	
No. 100	0.130	1000	110,00		0.0506714	5.57	72.22	27.78	
No. 200	0.075	The same of	255.84	1	0.0506714	12.96	85,18	14.82	
FONDO			292.46		0.0506714	14.82	100,00	0.00	

Gravas						Arenas											Finos			
	Grues	a<		Fir	na		Grue	:sa		Media			F	ina			Lui	nos y arc	illus	Y
3 in 2	110	1 in	54 n	30	n	No.4		Na	10	No 20	N	40 10	60	100	140	200				
						П	1	-									100		1	
Ш					4.	П	110			-							2"			95
-					100	H					-	1		+	1				33	- 00
-	-				1	Н	-		-		1	-		-	-	1	-	+	-	71
11									-			1		4						- 61
	-	2										1								
4	100					Ш							M				15			4
						П			- 1		1421									
1					1	N							\Box	7		Ħ				- 2
-		-		-	1		1					-		-	1			_		- 2
				1	V							-	4.							ti
111				in								133	11	1						
	3n 2	3n 2n 112s		Gruesa< 2m 2m 112m 1m 54m	Gnesas Fin 2n 2n 1920 in 34n 30	Gruss< Fina 200 200 100 100 100 100 100 100 100 100	Gracias Fina 200 200 200 200 200 200 200 200 200 20	Gruss< Fina Gruss 200 200 100 100 100 100 100 100 100 100	Gruess Fina Gruess 200 200 100 100 300 100 100 100 100 100 100 1	Grucias* Fina Grucia 220 270 1100 110 2210 250 250 250 250 250 250 250 250 250 25	Gruesa - Fina Gruesa Media 200 200 100 100 100 100 100 100 100 100	Gruesa Fina Gruesa Media 200 200 1200 1200 1300 1300 1300 1004 10000 10025 100	Grucsa C Fina Grucsa Media 200 270 1523 10 244 350 104 1050 1052 1040 10	Grussa	Gruesa	Gruesa	Gruesa Fina Gruesa Media Fina 200 20 120 130 130 130 130 130 130 130 130 130 13	Grussa	Gruesa S Fina Gruesa Media Fina Limos y arc	Gractas Fina Gractas Media Fina Limos y arcillas Carros y arcillas

TÉCNICO - LEM MATESTLAB S.A.C.


MATESTLAB S.A.C.

MATESTLAB S.A.C

KELY YANINA PINOCO LOZADA INGENIERO CIVIL Reg. CIP Nº 180999

Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

FORMATO ENSAYO PARA CLASIFICACIÓN DE LOS SUELOS

J	Código	CS-FO-02	
	Versión	01	
	Fecha	18-10-2022	
	Página	1 de 1	
_			

SOLICITANTE	: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022" : JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO	LA SUBRASANTE ARCILLOSA EN	REGISTRO Nº: MUESTREADO POR	MTL22-TS-531 : J. E.G.
CÓDIGO DE PROYECTO	:=\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7 1	ENSAYADO POR	: P. ESCOBEDO
UBICACIÓN DE PROYECTO	: INSTALACIONES DE LABORATORIO MATESTLAB S.A.C.	100 C	FECHA DE ENSAYO	: 18/10/2022
MATERIAL	: MUESTRA DE SUELO	7	TURNO	Diurno
CÓDIGO DE MUESTRA	1	6 100	PROFUNDIDAD	: 1.50 m
SONDAJE / CALICATA	:C-3	Mr. M.	NORTE	;
N° DE MUESTRA	: M-1		ESTE	;
PROGRESIVA	·		COSTA	0

(.	
Tara N°	D5
Peso de tara	210.7
Tara + m húmeda	2388.7
Tara + m seca	2184.2
Tamaño máx, de particulas	4 \
Método de Ensayo	"B"
Método de secado	Horno a 110 +/-5°C

		TA	BLE 1 Minimum I	Requirements for Mass	of Test Specimen, and	Balance Readabili	ity	
Maxi	Maximum Particle Size (100 % Passing)				Method A Water Content Recorded to ±1%		Method B. Water Content Recorded to ±0.1 %	
Sieve	Unit Size	740	Alternative Sieve Size	Specimen Mass	Balance Readability (g)	Specimen Mass (g)	Balance Readability (g	
75.0 37.5 19.0 9.5 m 4.75	mm mm nm	3	3 in 1-1/2 in. 3/2 in. 1/2 in. No. 4 No. 10	5 kg 1 kg 250 g 60 g 20 g 20 g	10 10 1 0.1 0.1	50 kg 10 kg 2.5 kg 500 g 100 g 20 a	10 10 1 0.1 0.1	

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO - ASTM D6913

Método de ensayo B: Tamizado integral <N°4

	Peso Inicial S	eco: 1973.5	
TAMIZ	ABERTURA	PESO	
2"	50.800	0.0	Ī
1 1/2"	38.100	0.0	7
15	25.400	0.0	
3/4"	19.000	0.0	
3/8"	9.500	0.0	
Nº 4	4.750	25.6	
Nº8	2.380	88,3	
Nº 10	2.000	77.6	
Nº 16	1.190	89.5	

Nº 16	1.190	89.5
MÉTODO	DE TAMIZADO	Manual

	o de fracción <	
	ABERTURA	
N° 20	0.840	114.3
N° 30	0.600	82.2
N° 40	0.425	233.9
N° 50	0.297	188.4
Nº 60	0.250	161.6
N° 80	0.177	253.8
Nº 100	0.150	110.0

TIPO DE SUELO

Maximum Particle Size of Material		Minimum Dry Mass of Specimen,		
(99 % or more passes)		g or kg ⁴		
Alternative	Maximum	Method A	Method B	
Sieve	Particle	Results Reported	Results Reported	
Designation	Size, mm	to Nearest 1 %	to Nearest 0.1 %	
No. 40	0.425	50 g	75 g	
No. 10	2.00	50 g	100 g	
No. 4	4.75	75 p	200 g	
39 in.	9.5	165 g ^C	0	
94 in.	19.0	1.3 kg ^C		
1 in.	25.4	3 kg ^C		
1-1/2 in.	38.1	10 kgc	0	
2 in.	50.8	25 kgc		
3 in.	76.2	70 kgc		

LÍMITES	DE CONSISTI	ENCIA - AST	M D4318

7	LÍMIT	E LÍQUIDO	1, 1	
Método de ensayo	Multipunto	a 100	Unipunto ^a	
DESCRIPC	IÓN	1 0	2	3
Nro. de Recipiente			1	
Peso de Recipiente		12.32	12.25	13.00
Peso Recipiente + Suelo H	umedo	29.21	26.00	26.12
Peso Recipiente + Suelo Se	co (B)	26.32	23.40	23.40
Nº De Golpes	V	34	24	14

Horno	
Horno	
	Horno Horno

	Ambiente	
110+/-5°C	Ambiente	

	LÍMITE PLÁ	STICO	
Método de secado Horno	0		Ambiente "
DESCRIPCIÓN	1	2	. 3
Nro. de Recipiente	1	2	3
Peso de Recipiente	7.30	7.20	7.20
Peso Recipiente + Suelo Humedo	19.20	20.40	18.50
Peso Recipiente + Suelo Seco (B)	18.30	19.20	17.50
Cantidad minima requerida 6g	[Cumple!	[Cumple!	¡Cumple!

EQUIPO UTILIZADO					
EQUIPO	1	CÓDIGO	F. CALIBRACIÓN	N° CERT. CALIBRACION	
Balanza digital New Classic 6000g x 0,1g	5	LS-08	22/09/2022	LM-416-2022	
Balanza digital Ohaus 30000g x 1g	1.	LS-07	22/09/2022	LM-418-2022	
Balanza digital Henkel 200g x 0.01mg	-	LS-06	24/09/2022	LM-420-2022	
Horno digital Termocup 196L 0° a 300°C	127	LS-20	24/09/2022	LM-369-2022	

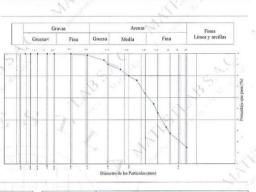
MATESTLAB S.A.C

MATESTLAB S.A.C.

JEFE - LEM

Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

975232841 922318222



FORMATO ENSAYO PARA CLASIFICACIÓN DE LOS SUELOS

	Código	CS-FO-03	
Ş	Versión	01	
	Fecha	18-10-2022	
	Página	1 de 1	

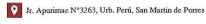
PROYECTO	EN LA CARRETERA MATAPUQ	N DE CENIZA DE LEÑO DE CIPRÉS E UIO-COLLPA ANDAHUAYLAS 2022" /ILLENA / FREDY UTANI HUASCO		REGISTRO N°: MUESTREADO POR	MTL22-TS-531 : J. E.G.
CÓDIGO DE PROYECTO	i /- 1 9			ENSAYADO POR	: P. ESCOBEDO
UBICACIÓN DE PROYECTO	INSTALACIONES DE LABORAT	ORIO MATESTLAB S.A.C.	10	FECHA DE ENSAYO	: 18/10/2022
MATERIAL	: MUESTRA DE SUELO		1. 1. 2.	TURNO	Diumo
CÓDIGO DE MUESTRA	3-1/2	1	1/13	PROFUNDIDAD	: 1.50 m
SONDAJE / CALICATA	: C-3	5		NORTE	(:
N° DE MUESTRA	: M-1	(N) 12 '		ESTE	?
PROGRESIVA	S	7.3	1,1	COSTA	1-

	200	ASTM D6913	
TAMIZ	ABERTURA (mm)	PORCENTAJE QUE PASA	ESPECIFIC
2 1/2"	38,100	100.00	
2"	38,100	100.00	
1 1/2"	38.100	100.00	
1"	25,400	100.00	
3/4"	19.000	100.00	
3/8"	9.500	100,00	- 4
Nº 4	4.750	98.70	6.5
N° 8	2,380	94.23	6.2
Nº 10	2.000	90.30	16.
Nº 16	1.190	85.76	1
Nº 20	0.840	79.97	1
Nº 30	0.600	75.80	- 0
Nº 40	0.426	63.95	1
Nº 50	0.297	54.41	
Nº 60	0.250	46.22	Secretary Control
Nº 80	0.177	33.36	7
Nº 100	0.150	27.78	
N° 200	0.075	14.82	
Fondo		0.00	

CONTENIDO DE HU ASTM D2216	
CONTENIDO DE HUMEDAD (%)	10.4
MÉTODO DE SECADO	Homo a 110 +/-5°C
MÉTODO DE REPORTE	"B"
MATERIALES EXCLUÍDOS	Ninguno

NOTAS SOBRE LA No hay presencia de material superficial (gramineas raices y res ella)		CL - Suelo arcilloso en estado de baja plasticidad de color marrón oscuro en estado parcialmente húmedo
	1	

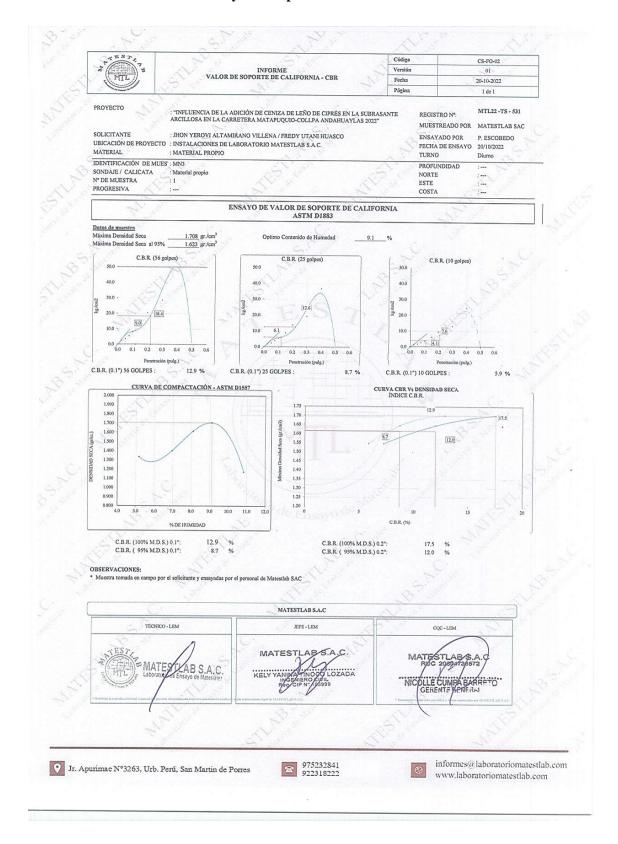
PROCEDIMIENTO DE OBTENCIÓN DE MUESTRA	"Secada al homo a 110 +/- 5°C"
PROCEDIMIENTO DE TAMIZADO	B: Tamizado integral < N°4
TAMIZ SEPARADOR	Ninguno
MÉTODO DE REPORTE DE RESULTADOS	"B"


LÍMITES DE CONS ASTM D43	
LIMITE LÍQUIDO	23.20
LÍMITE PLÁSTICO	9.30
INDICE DE PLASTICIDAD	13.91
INDICE DE CONSISTENCIA (Ic)	0.92
INDICE DE LIQUIDEZ (IL)	0.1
MÉTODO DE ENSAYO DE LÍMITE LÍQUIDO	C

20-	1	 -	-	
12%				
31%				. 16
201-				
17				

COMPOSICIÓN FÍSICA DEL SUELO EN FUNCIÓN AL TA	MAÑO DE PARTÍCULAS
CONTENIDO DE GRAVA PRESENTE EN EL SUELO %	1.30
CONTENIDO DE ARENA PRESENTE EN EL SUELO %	83.88
CONTENIDO DE FINOS PRESENTES EN EL SUELO %	14.82

CL/	ASIFICACIÓN DEL SU	ELO
CLASIFICACIÓN SUCS (ASTM	D2487)	CL
CLASIFICACIÓN AASHTO (AS	TM D3282)	A-2-6 (0)
NOMBRE DEL GRUPO	Arcilla areno:	a de baja plasticidad



Ensayo De Soporte De California

INFORME VALOR DE SOPORTE DE CALIFORNIA - CBR

Código	CS-FO-02
Versión	01
Fecha	20-10-2022
Página	1 de 1

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022" MTL22 -TS - 531 REGISTRO Nº MUESTREADO POR MATESTLAB SAC : JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO SOLICITANTE ENSAYADO POR P. ESCOBEDO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. UBICACIÓN DE PROYECTO FECHA DE ENSAYO MATERIAL : MATERIAL PROPIO TURNO IDENTIFICACIÓN DE MUESTRA : MN3 PROFUNDIDAD SONDAJE / CALICATA : Material propio NORTE N° DE MUESTRA : 1 ESTE PROGRESIVA COSTA

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA ASTM D1883 CALCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA (C.B.R.) Molde Nº Número de capas Número de golpes Peso suelo compactado (gr.) Peso suelo e molde (gr.) Peso suelo compactado (gr.) Volumen del molde (cm²) NO SATURADO NO SATURADO NO SATURADO SATURADO 8,003 7,974 8,114 3,706 2,098 1.766 3,576 2,136 1.674 3,957 2,135 1.853 1.701 Densidad húmeda (gr./cm³) Densidad Seca (gr./cm³) 1.546 1.645 CONTENIDO DE HUMEDAD Peso de tara (gr.) 95.5 492.5 92.8 Peso de tara (gr.) Tara + suelo húmedo (gr.) Tara + suelo seco (gr.) Peso de agua (gr.) Peso de suelo seco (gr.) Humedad (%) 521.8 38.4 462.0 27.4 30.5 429.0 372.3 9.0 7.4 EXPANSIÓN Tiempo Hr 0 24 48 72 96 Expans Fecha Hora Diel Dial mm % 0.00 0.00 0.00 0.00 18-Oct 11:00 11:00 11:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18-Oct 19-Oct 19-Oct 0.00 0.00 0.06 0.00 0.00 0.00 0.06 0.00 0.00 0.06 0.08 0.07 0.00 20-Oct 0.09 0.11 PENETRACIÓN Molde N° 34 Cor Molde Nº 42 Carga Standard (kg/cm²) Carga Corrección kg kg/cm² kg/cm² CBR % Carga Corrección kg/cm² CBR % (pulg.) 0.025 0.050 0.075 0.100 kg/cm² CBR % 3.8 5.4 6.1 8.7 8.8 13.9 12.6 12.0 8.0 13.0 20.5 28.6 54.5 70.000 9.0 12.9 0.150 0.200 0.300 0.400 5.9 9.4 13.0 24.8 0.0 105.000 17.5 7.6 7.2 415

OBSERVACIONES:

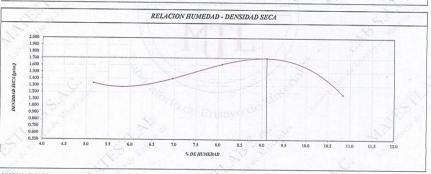
Muestra tomada en campo por el solicitante y ensayadas por el personal de Matestlab SAC


1100

Ir. Apurimae N°3263, Urb. Perú, San Martin de Porres

INFORME PROCTOR MODIFICADO (ASTM D1557 / ASTM D1883)

Código	CS-FO-02	
Versión	01	
Fecha	18-10-2022	
Página _ "	1 de 1	


MTL22 -TS - 531 MATESTLAB SAC

P. ESCOBEDO 18/10/2022

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ABCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022"

: JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO
:INSTALACIONES DE LABORATORIO MATESTLAB S.A.C.
: MATERIAL PROPIO REGISTRO Nº: PROYECTO MUESTREADO POR SOLICITANTE ENSAYADO POR FECHA DE ENSAYO TURNO UBICACIÓN DE PROYECTO MATERIAL IDENTIFICACIÓN DE MUESTRA : MN3 PROFUNDIDAD NORTE ESTE COSTA SONDAJE / CALICATA N° DE MUESTRA PROGRESIVA : Material propio

ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO PARA CER ASTM D1857 / ASTM D1883						
£ 150		Volumen Molde Peso Molde	956 4315	cm³	\$ ³	- N
NUMERO DE ENSAYOS	1 4 5	[A > 1	2	3	4	5
Peso Suelo + Molde	gr.	5,660	5,750	5.985	5.560	-
Peso Suelo Humedo Compactado	gr.	1,345	1,435	1,670	1,245	Note that the same of the same
Peso Volumetrico Humedo	gr.	1.407	1,501	1,747	1,302	
Recipiente Numero		J7	N8	R3	W5	
Peso de la Tara	gr.	92.5	92.4	88.7	79.5	
Peso Suelo Humedo + Tara	gr.	300.2	355.3	412.2	332.2	
eso Suelo Seco + Tara	gr.	290.0	338.2	388.0	307.5	
eso del agua	gr.	10.2	17.1	24.2	24.7	
eso del suelo seco	gr.	198	246	299	228	
Contenido de agua	%	5.2	7.0	8.1	10.8	
Densidad Seca	gr/cc	1,338	1.403	1.616	1,175	

OBSERVACIONES:

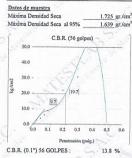
Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

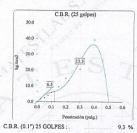
975232841 922318222

INFORME VALOR DE SOPORTE DE CALIFORNIA - CBR

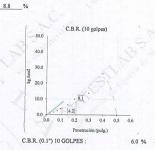
	Código	CS-FO-02	
N	Versión	01	
	Fecha	20-10-2022	
3	Página	1 de 1	1

PROYECTO


: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022"


: JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. : MATERIAL PROPIO SOLICITANTE UBICACIÓN DE PROYECTO MATERIAL

IDENTIFICACIÓN DE MUES: : MN2 SONDAJE / CALICATA N° DE MUESTRA PROGRESIVA


MTL22 -TS - 531 REGISTRO Nº: MUESTREADO POR MATESTLAB SAC ENSAYADO POR P. ESCOBEDO FECHA DE ENSAYO TURNO 20/10/2022 Diumo PROFUNDID NORTE ESTE COSTA

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA ASTM D1883



Optimo Contenido de Humedad

OBSERVACIONES:

* Muestra tomada en campo por el solicitante y ensayadas por el personal de Matestlab SAC

Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

975232841 922318222

-	Código	CS-FO-02	
1	Versión	01	
	Fecha	20-10-2022	
	Página	1 de 1	

PROYECTO	: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022"	REGISTRO Nº: MUESTREADO POR	MTL22 -TS - 531 MATESTLAB SAC
SOLICITANTE	: JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO	ENSAYADO POR	P. ESCOBEDO
UBICACIÓN DE PROYECTO	: INSTALACIONES DE LABORATORIO MATESTLAB S.A.C.	FECHA DE ENSAYO	20/10/2022
MATERIAL	: MATERIAL PROPIO	TURNO	Diurno
IDENTIFICACIÓN DE MUESTRA	: MN2	PROFUNDIDAD	:- Not - 10
SONDAJE / CALICATA	: Material propio	NORTE	4-1-1-1
N° DE MUESTRA	:1	ESTE	:
PROGRESIVA	:- :- : : : : : : : : : : : : : : : : :	COSTA	:

774	-			- 3				- 3			COSTA	1	<u> </u>	
C - V			O . E	NSAYO :	DE VAL	OR DE SO		DE CA	LIFORN	IA		Topic Control	95	
ATTENDED TO		74	CA	LCULO DI	LA RELA	ACIÓN DE	SOPORT	E CALIFO	PNIA (C	R P)				
Molde Nº	19	-			26	34	DOLORE		34	J.K.,	Desc.			-
Número de capas		0 3			5	7	-		5				42	-
Número de golpes					56				25		-		5	
Condición de la muestra	NV	AT 1	NO SA	TURADO		JRADO	NO SA	TURADO	-	URADO	NOC	ATURADO	_	UDADO
Peso suelo + molde (gr.)	m 2			990	100			700	JAI	DICADO		.488	SAI	URADO
Peso molde (gr.)			8,	003			8,1		-			974	7	
eso suelo compactado (g	r.)		3.	987			3.5			No la constitución		514	-	
/olumen del molde (cm3)	7		2,	135	1	1.04	2,0					.136	No	
Densidad húmeda (gr./cm)			867			1.7					645		1
Densidad Seca (gr./cm3)			1.	715		- 300	1.6	_	-8			526		
a management	Legal Land	4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Ormi		CON	TENIDO D	-		1	30000	-	220		
eso de tara (gr.)		1	10	0.5	1971	-10	10	the state of the s	Mark :	STEEL PROPERTY.		0.7		
ara + suelo húmedo (gr.)			58	4.7	1 25		49	0.5	100	100		10.4		
ara + suelo seco (gr.)		17	54	545.2			468.0		1930	- 16.	480.0			
Peso de agua (gr.)		. Ge	39	9,5		22.5			30,4					
eso de suelo seco (gr.)	o de suelo seco (gr.)		44	4.7			362.8		2504		389,3			
fumedad (%)	nedad (%)		8	8.9		6.2			-	7.8				
Ph.					STORES.	EXPAN	ISIÓN		17-74	Endonesia.	100		1	-
Fecha	Hora	Tiempo		Dial	Exp	ansión	r	ial	Exp	ansión		Dial	Exp	ansión
	0.00	Hr		01"	mm	%		ridi	mm	%		Diat	mm	1 %
18-Oct	11:00	0		.00	0.00	0,00	0.	.00	0.00	0.00		0.00	0.00	0,00
18-Oct	11:00	24		.00	0.00	0.00	0.	.04	0.00	0.00		0.06	0.00	0.00
19-Oct	11:00	48		.06	0.00	0.00	0.	06	0.00	0.00		0.08	0.00	0.00
19-Oct	11:00	72		.07	0.00	0.00	0.	.08	0.00	0.00		0.08	0.00	0.00
20-Oct	11:00	96	. 0	.09	0.00	0.00	0.	11	0.00	0.00	7-06	0.12	0.00	0.00
	AL AL		130	1	1	PENETR	ACIÓN	/	at a					
Penetración	Carga S	tandard	- 5		N° 26				Nº 34			Molde	Nº 42	
	(kg/c			ırga	Corre	ección	Ca		Corn	ección	C	arga	Corre	ección
(pulg.)	0		kg	kg/cm ²	kg/cm²	CBR %	kg	kg/cm ²	kg/cm ²	CBR %	kg	kg/cm ²	kg/cm ²	CBR %
0.025	V= 0		55	2.7			37	1.8	120	100	25	1.2		16.7
0.050	* - CO.		76	3.8	20		51	2.5		4,5	34	1.7	-	1
0.075	18.5		121	6.0	100	E (C.17)	81	4.0			54	2.7	- X7	14.
0.100	70.0	000	173	8.6	9.7	13.8	117	5.8	6.5	9.3	78	3.9	4.2	6.0
0.150			282	14.0			189	9.4	100	4	127	6.3	Wall Service	
0.200	105.	000	444	22,0	19.7	18.8	298	14.8	.13.5	12.9	201	9.9	8.1	7.7
0.300			618	30.6			415	20.6			279	13.8	200	
0,400		- 5	1177	58.3	200		791	39.2		P. Samera	532	26.3		

OBSERVACIONES:

* Muestra tomada en campo por el solicitante y ensayadas por el personal de Matestlab SAC

Jr. Apurimae N°3263, Urb. Perú, San Martin de Porres

INFORME PROCTOR MODIFICADO (ASTM DISS7 / ASTM DISS3)

_			
	Código	CS-FO-02	
	Versión	01	
	Feeha	18-10-2022	
	Página	1 de 1	1

PROYECTO SOLICITANTE UBICACIÓN DE PROYECTO MATERIAL

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUA/LAS 2022" : JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO

: INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. : MATERIAL PROPIO

REGISTRO Nº: MTL22 -TS - 531 MATESTLAB SAC MUESTREADO POR ENSAYADO POR FECHA DE ENSAYO P. ESCOBEDO TURNO

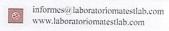
IDENTIFICACIÓN DE MUESTRA SONDAJE / CALICATA Nº DE MUESTRA PROGRESIVA

: MN2 : Material propio

PROFUNDIDAD NORTE ESTE COSTA

, P. 6	ENSAYO	DE COMPACTAC ASTM	ION - PROCTO I D1557 / ASTM	R MODIFICADO PA D1883	RA CBR	
		Volumen Molde Peso Molde	956 4315	cm³ gr.		SP 37
NUMERO DE ENSAYOS		1	2	3	4	5
Peso Suelo + Molde	gr.	5,602	5,865	6,058	5,550	7
Peso Suelo Humedo Compactado	gr.	1,287	1,550	1.743	1,235	
Peso Volumetrico Humedo	gr.	1.346	1.621	1.823	1,292	
Recipiente Numero		A9	F5	C5	S3	
eso de la Tara	gr.	95.0	91.5	88.2	78.1	
eso Suelo Humedo + Tara	gr.	395.2	410.8	387.4	376.1	
Peso Suelo Seco + Tara	gr.	376.7	382.4	362.0	359.2	
eso del agua	gr.	18.5	28.4	25.4	16.9	
eso del suelo seco	gr.	282	291	274	281	
Contenido de agua	%	6.6	9,8	9.3	6.0	
Densidad Seca	gr/cc	1.263	1.477	1,668	1,219	

OBSERVACIONES:

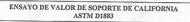

* Muestra tomada en campo por el sol nal de Matestlab SAC

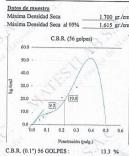
Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

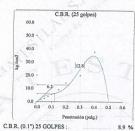
INFORME VALOR DE SOPORTE DE CALIFORNIA - CBR

è	Código	CS-FO-02
	Versión	01
	Fecha	20-10-2022
0	Página	I de I

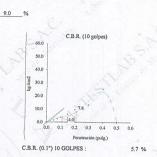
SOLICITANTE

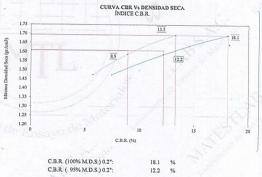

MATERIAL


: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022"


: JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. : MATERIAL PROPIO UBICACIÓN DE PROYECTO

IDENTIFICACIÓN DE MUE SONDAJE / CALICATA Nº DE MUESTRA Material propio 1 PROGRESIVA


MTL22 -TS - 531 REGISTRO Nº: MUESTREADO POR MATESTLAB SAC ENSAYADO POR P. ESCOBEDO FECHA DE ENSAYO TURNO 20/10/2022 Diurno PROFUNDIE NORTE ESTE



Optimo Contenido de Humedad

COSTA

OBSERVACIONES:

Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

975232841 922318222

INFORME VALOR DE SOPORTE DE CALIFORNIA - CBR

CS-FO-02
01
20-10-2022
1 de 1

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022" MTL22 -TS - 531 REGISTRO Nº: MUESTREADO POR MATESTLAB SAC SOLICITANTE : JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO ENSAYADO POR P. ESCOBEDO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. UBICACIÓN DE PROYECTO FECHA DE ENSAYO 20/10/2022 MATERIAL : MATERIAL PROPIO TURNO IDENTIFICACIÓN DE MUESTRA : MN PROFUNDIDAD SONDAJE / CALICATA : Material propio NORTE N° DE MUESTRA ESTE PROGRESIVA COSTA

(- Si			O I	ENSAYO	DE VAL	OR DE SO		E DE CA	LIFORN	IA	7			
~ 35		- 19 1	CA	LCULO DI	E LA REL	ACIÓN DE	SOPOR	CE CALLE	DNIA (C	PPI				
Molde Nº		m 7 1	-		26	TOTO DE	DOLOK	LE CALIF	34	D.R.)	1			1
Número de capas	100	V S			5		-		************		-		42	
Número de golpes	- X- Y-2	100			56		-		5 25	The state of the s	-		5	
Condición de la muestra	AV	47 18	NO SA	TURADO	1	URADO	NOC	TURADO	APPROXIMATION AND ADDRESS OF THE PERSON NAMED IN				10	4
Peso suelo + molde (gr.)	m 15	A RIPE	-	,920	SAI	UKADU	1	.670	SAI	URADO		ATURADO	SAT	URADO
Peso molde (gr.)	V			.003	1		-	114	1			1,350		1
Peso suelo compactado (gr.)		-	917			-	556	-			.974		
Volumen del molde (cm3)				135					-			376	100	
Densidad húmeda (gr./cm				835			-	098 695	1		-	136	N	
Densidad Seca (gr./cm³)				694					-			.581		
1000				0,74	CON	TENIDO E		588	1 70		1.	.475		
Peso de tara (gr.)	v i missonia.	1	0	5.5	COL	NTENIDO D		DAD 12.5	1	-	-			A TOTAL OR
Tara + suelo húmedo (gr.)	100	-	2.5					-	- Commence of		00.2		
Tara + suelo seco (gr.)		1.3	480.5					7.5	5		526.8			
eso de agua (gr.)	Scotter	925	-	2.0				5.0			498.2		PERSONAL PROPERTY.	
Peso de suelo seco (gr.)								2.5			28.6			The state of
Peso de suelo seco (gr.) 385.0 Humedad (%) 8.3								2.5	13 1			398.0		
Authorita (70)	1	1 77	- 0	3				.8	1000			7.2		
	-5-	Tiempo	-	Dial	Eur	EXPAN ansión	SION		1		100 P		1 1	
Fecha	Hora	Hr		.01"	-	%	- 1	Dial	-	ansión	1	Dial	Exp	ansión
18-Oct	11:00	0		0.00	mm 0.00		Steel Comme		mm	%			mm	%
18-Oct	11:00	24		0.00	0.00	0.00	-	.00	0.00	0.00		0.00	0.00	0.00
19-Oct	11:00	48		.06	-	0.00	-	.04	0.00	0.00		0.06	0.00	0.00
19-Oct	11:00	72		.07	0.00	0.00		.06	0.00	0.00		0.08	0.00	0.00
20-Oct	11:00	96		.09	0.00	0.00		.08	0.00	0.00		0.08	0.00	0.00
20 001	11:00	90	-	.09	0.00	0.00		.11	0.00	0.00	(0.12	0.00	0.00
			- 33	Molde	210.04	PENETR.	ACIÓN							
Penetración	Carga S		-	rga				Molde N° 34			Molde N° 42			A Laboratory
(pulg.)	(kg/c	cm²)				ección	•	ırga		ección		arga	Corre	ección
0.025	5-		kg	kg/cm ²	kg/cm ²	CBR %	kg	kg/cm ²	kg/cm ²	CBR %	kg	kg/cm ²	kg/cm ²	CBR %
0.050			73	2.6			35	1.7			24	1.2		1
0.075				3.6	200 -1		49	2.4		555	33	1.6	The same	188
0.100	70.0	200	116	5.7		- (T-T)	78	3.9	152 - 3		52	2.6	1200	48
0.150	70.0	200		8.3	9.3	13,3	112	5.6	6.2	8.9	75	3.7	4.0	5.7
0.200	105.	000	271	13.4			182	9.0	100		122	6.1	5-1-63	
0.300	105.	000	427	21.1	19.0	18.1	287	14.2	12.8	12.2	193	9.5	7.8	7.4
0.400			594	29.4			399	19.8	- 8		268	13.3	200	0.75
0,500			1132	56.1			761	37.7			511	25.3		
0.300		100	20	0.0	112,0			0.0				0.0		

OBSERVACIONES:

* Muestra tomada en campo por el solicitante y ensayadas por el personal de Matestlab SAC

Jr. Apurimae N°3263, Urb. Perú, San Martin de Porres

975232841 922318222

INFORME PROCTOR MODIFICADO (ASTM D1557 / ASTM D1883)

Cédigo	CS-FO-02	
Versión	01	
Fecha	18-10-2022	_
Página	1 de 1	5

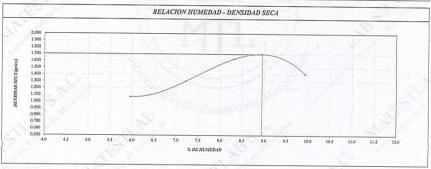
PROYECTO SOLICITANTE UBICACIÓN DE PROYECTO MATERIAL

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUA/1AS 2022" : JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. : MATERIAL PROPIO

MUESTREADO POR ENSAYADO POR FECHA DE ENSAYO

MTL22 -TS - 531 MATESTLAB SAC P. ESCOBEDO 18/10/2022

IDENTIFICACIÓN DE MUESTRA : MN
SONDAJE / CALICATA : Material propio


N° DE MUESTRA : I
PROGRESIVA : .--

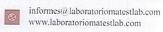
PROFUNDIDAD NORTE ESTE COSTA

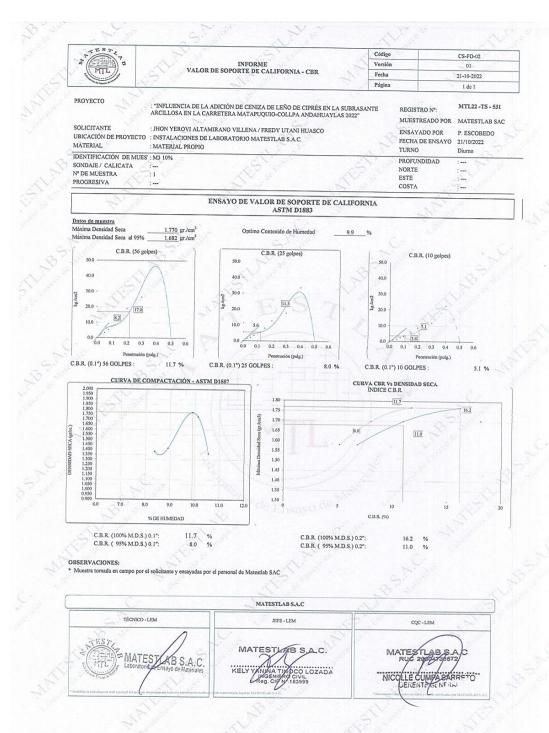
TURNO

REGISTRO Nº:

No.	ENSAYO	DE COMPACTAC ASTM	ION - PROCTO I D1557 / ASTM	R MODIFICADO PA D1883	RA CBR	
5/20		Volumen Molde Peso Molde	956 4315	cm³ gr.		W.
NUMERO DE ENSAYOS		. 1	2	3	4 1	5
Peso Suelo + Molde	gr.	5,650	5,800	6.005	5,400	
Peso Suelo Humedo Compactado	gr.	1,335	1,485	1,690	1.085	
Peso Volumetrico Humedo	gr.	1.396	1,553	1,768	1.135	
Recipiente Numero		D5	B7	J3	A7	
Peso de la Tara	gr.	95.2	90.5	85.2	75.1	
Peso Suelo Humedo + Tara	gr.	380,4	398.2	396.4	366.9	
Peso Suelo Seco + Tara	gr.	361.2	370.4	372.5	350.5	
Peso del agua	gr.	19.2	27.8	23.9	16.4	
Peso del suelo seco	gr.	266	280	287	275	
Contenido de agua	%	7.2	9.9	8.3	6.0	
Densidad Seca	gr/cc	1.302	1.413	1,632	1.071	

OBSERVACIONES:


* Muestra tomada en campo por el :



Jr. Apurimae N°3263, Urb. Perú, San Martin de Porres

975232841 922318222

975232841 922318222

Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

informes@laboratoriomatestlab.com

www.laboratoriomatestlab.com

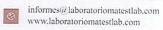
Códig		CS-FO-02	
Versió	n	01	
Fecha		21-10-2022	
Págin:		1 de 1	

PROYECTO	: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022"		REGISTRO N°: MUESTREADO POR	MTL22 -TS - 531 MATESTLAB SAC
SOLICITANTE	: JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO	0	ENSAYADO POR	P. ESCOBEDO
UBICACIÓN DE PROYECTO	: INSTALACIONES DE LABORATORIO MATESTLAB S.A.C.	1	FECHA DE ENSAYO	21/10/2022
MATERIAL	: MATERIAL PROPIO		TURNO	Diumo
IDENTIFICACIÓN DE MUESTRA	: M3 10%	6	PROFUNDIDAD	1202 -00
SONDAJE / CALICATA			NORTE	
N° DE MUESTRA	:1		ESTE	:
PROGRESIVA			COSTA	; -

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA ASTM D1883 CALCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA (C.B.R.)

Moide IV					26	C M	1		34		1		42					
Número de capas		V			5	D. 10			5		5							
Número de golpes					56	- 3			25	100			10					
Condición de la muestra	4 V	AT IN	NO SA	ATURADO	SAT	URADO	NO SA	TURADO		URADO	NOS	NO SATURADO		URADO				
Peso suelo + molde (gr.)	4 15		12	,152	100			.985		Old III O		11,602		DICADO				
Peso molde (gr.)			8.	.003				114	1			974						
Peso suelo compactado (gr.)	-	4.	149		14	3	871				.628	1					
Volumen del molde (cm3)			2,	135				098				.136	100					
Densidad húmeda (gr./cm	3)		1.	943				845	and the	L. N. J.		699						
Densidad Seca (gr./cm ³)			1.	769	The World	To Vinger and	-	699	-4			581						
	and the said		- Graesi	in a	CON	NTENIDO E			1/50		~ 3	.561						
Peso de tara (gr.)	17 99 07	1	9	2.1	100			0.4	1		0	18.3						
l'ara + suelo húmedo (gr.)		49	95.2	1			0.8	1	- 1.7	510.5		1					
Tara + suelo seco (gr.)	-	10	45	59.0			-	3.0	1000			82.0	-					
Peso de agua (gr.)	500	Land Co	3	6.2	-7	The		7.8	No.		28.5		101-10					
Peso de suelo seco (gr.)	1.00	-	36	56.9		4823	32	2.6			383.7							
Humedad (%)		- Marie	9	0.9	1000		8	.6	3 PM N	1	7.4							
-				I Fall		EXPAN	ISIÓN		-	- mrss								
Fecha	Fecha Hora Tiempo		Dial		Expansión		and the second second		Exp	ansión		-	Exp	ansión				
	Tiora	Hr	0	.01"	mm	%	1	Dial	mm	mm %	Dial		mm	%				
19-Oct	11:00	0	(0.00	0.00	0.00	0	0.00	0,00	0.00	-	0.00	0.00	- 0.00				
19-Oct	11:00	24	(0.00	0.00	0.00	0	0.04	0,00	0.00	-	0.06	0.00	0.00				
20-Oct	11:00	48	(0.06	0.00	0.00	0.06		0.00	0.00	0.08		0.00	0.00				
21-Oct	11:00	72	(0.07	0.00	0.00	0.08		0.00	0.00	0.08		0.00	0.00				
22-Oct	11:00	96		0.09	0.00	0.00	0	0.11	0,00	0.00		0.12	0.00	0.00				
The second		7/1.			3, 1	PENETR	ACIÓN	1-17				Aug .	5.00	0.00				
Penetración	Carga S		- 4	Molde	N° 26			Molde	Nº 34	2 1	100	Molde	N° 42					
1 CHCH BUIDH	(kg/c		C	arga	Corr	ección	Ca	arga	Corn	ección	C	arga		ección				
(pulg.)	(kg/c	<i>,</i>	kg	kg/cm ²	kg/cm ²	CBR %	kg	kg/cm ²	kg/cm ²	CBR %	kg	kg/cm ²	kg/cm ²	CBR %				
0.025	Q= 31	Spile D.S	47	2.3		1	32	1.6	100		21	1.1	AMOUNT	CDIC				
0.050			66	3,3	400		44	2.2		-3	30	1.5	-	1				
0.075	1,7		104	5.1		- tani	70	3.5			47	2.3	76°5C 3					
0.100	70.0	000	150	7.4	8.2	11.7	101	5.0	5.6	8.0	68	3.3	3.6	5.1				
0.150		Address to the	243	12.0			163	8.1	10		110	5.4	0.0	5.1				
0.200	105.6	000	383	19.0	17.0	16.2	257	12.7	11.5	11.0	173	8.6	7.1	6.8				
0.300			533	26.4			358	17.7			241	11.9		0.0				
0.400			1016	50.3			683	33.8			459	22.7						
0.500		1	-	0.0				-						-				

OBSERVACIONES:


* Muestra tomada en campo por el solicitante y ensayadas por el per sonal de Matestlab SAC

Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

INFORME PROCTOR MODIFICADO (ASTM DI557 / ASTM DI883)

Cédigo	CS-FO-02	_
Versión	01	
Feeha	19-10-2022	_
Página	1 de 1	,

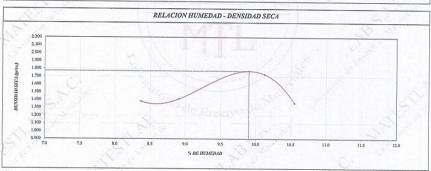
PROYECTO SOLICITANTE UBICACIÓN DE PROYECTO MATERIAL

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022"

JEHON YEROVA LATAMIRANO VILLENA /FREDY UTANI HUASCO

INSTALACIONES DE LABORATORIO MATESTLAB S.A.C.

MATERIAL PROPIO


REGISTRO Nº: MUESTREADO POR ENSAYADO POR FECHA DE ENSAYO TURNO

MTL22 -TS - 531 MATESTLAB SAC P. ESCOBEDO 19/10/2022

IDENTIFICACIÓN DE MUESTRA : M3 10%
SONDAJE / CALICATA :-Nº DE MUESTRA :1
PROGRESIVA :--

PROFUNDIDAD NORTE ESTE COSTA

	ENSAYO		IÓN - PROCTOR I D1557 / ASTM I	MODIFICADO PARA 01883	A CBR	
67,10	145	Volumen Molde Peso Molde	956 4315	cm³		W.S
NUMERO DE ENSAYOS		N 1	2	3	4	1 5
Peso Suelo + Molde	gr.	5,750	5,788	6.135	5,755	
Peso Suelo Humedo Compactado	gr.	1,435	1,473	1.820	1,440	
Peso Volumetrico Humedo	gr.	1.501	1,541	1,904	1,506	
Recipiente Numero		B2	Ň2	U5	R2	
Peso de la Tara	gr.	95.2	82.5	95.0	90.0	
Peso Suelo Humedo + Tara	gr.	438.5	399.1	405.0	418.0	
Peso Suelo Seco + Tara	gr.	412.0	373.2	376.5	386.7	
Peso del agua	gr.	26.5	25.9	28.5	31.3	
eso del suelo seco	gr.	317	291	282	297	
Contenido de agua	%	8.4	8.9	10.1	10.5	
Densidad Seca	gr/cc	1.385	1,415	1,729	1,363	

OBSERVACIONES:

* Muestra tomada en campo por el so nte y ensayadas por el personal de Matestlab SAC

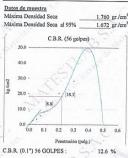
Ir. Apurimae N°3263, Urb. Perú, San Martin de Porres

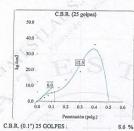
INFORME VALOR DE SOPORTE DE CALIFORNIA - CBR

-	Código	CS-FO-02	ā
1	Versión	01	
	Fecha	21-10-2022	
100	Página	1 de I	

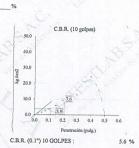
SOLICITANTE

MATERIAL


: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022"


: JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. : MATERIAL PROPIO UBICACIÓN DE PROYECTO

IDENTIFICACIÓN DE M SONDAJE / CALICATA Nº DE MUESTRA 1 PROGRESIVA

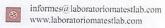

MTL22 -TS - 531 REGISTRO Nº: MUESTREADO POR MATESTLAB SAC ENSAYADO POR P. ESCOBEDO 21/10/2022 FECHA DE ENSAYO TURNO PROFINDIDA NORTE ESTE

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA ASTM D1883

Optimo Contenido de Humedad

COSTA

OBSERVACIONES:


Muestra tomada en campo por el solicitante y ensayadas por el personal de Matestlab SAC

Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

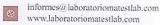
Código	CS-FO-02
Versión	01
Fecha	21-10-2022
Página	1 de 1
	Versión Fecha

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022" PROYECTO MTL22 -TS - 531 REGISTRO Nº MUESTREADO POR MATESTLAB SAC SOLICITANTE : JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO ENSAYADO POR P. ESCOBEDO UBICACIÓN DE PROYECTO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. FECHA DE ENSAYO 21/10/2022 MATERIAL : MATERIAL PROPIO TURNO IDENTIFICACIÓN DE MUESTRA : M3 10% PROFUNDIDAD SONDAJE / CALICATA NORTE N° DE MUESTRA ESTE PROGRESIVA COSTA

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA ASTM D1883

<u>`</u>		1.7%	- X-			ASTM	3					V						
		Ton and	CA			ACIÓN DE	SOPORT			B.R.)								
Molde №			26	A	34				42									
Número de capas				5				5	-			5						
Número de golpes	100	- 12	56						25				10	2				
Condición de la muestra			NO SA	TURADO	SATI	URADO	NO SA	TURADO	SAT	URADO	NO SA	ATURADO	SATI	JRADO				
Peso suelo + molde (gr.)		A 1.00		1000		2 1.00		,105	1		11.	920	1 3		11	1,590	154	
Peso molde (gr.)			8,	.003			8,	114	00			.974	V					
Peso suelo compactado (g	r.)		4,	102	-		3,	806			3	.616	1					
Volumen del molde (cm3)	<u> </u>		2,	135	1	1	2,0	098				.136	V					
Densidad húmeda (gr./cm	3)		1.	921			1.3	314	CLUB-			.693		-150				
Densidad Seca (gr./cm3)			1.	760		July wy and W	1.0	594	-47.			566		7.7/2				
50 100	and the said and	21.3	975%		CON	TENIDO D	E HUME	DAD	100		-							
eso de tara (gr.)		4	9	0.5	1	-13		5.2	1-11		0	08.5	I					
l'ara + suelo húmedo (gr.)		1	51	510.5			48	5.2	1000	- N. C.	-	00.0		-				
Γara + suelo seco (gr.)			47	475.2		1		460.0		470.0								
eso de agua (gr.)	my.	- 66	3	35.3		Property and the same		25.2			30.0		-					
Peso de suelo seco (gr.)	100	1	38	384.7		354.8					371.5							
Humedad (%)			9	9.2		7.1		Land Variable		8.1		1	ATT BUT IN					
= 1 A)	C. Lastin			4.6.4		EXPAN	NSIÓN				3.1							
Fecha	Hora	Tiempo	I	Dial Expansión				Evpansión					Evn	Expansión				
recna	Hora	Hr		.01"	mm	%	I	Dial	mm	%	Dial		mm %					
19-Oct	11:00	0	(0.00	0.00	0.00	0.00		0.00	0.00	0.00		0.00 -	0.00				
19-Oct	11:00	24		0.00	0.00	0.00	0.04		0.00	0.00	0.06		0.00	0.00				
20-Oct	11:00	48		0.06	0.00	0.00	0.06		0.00	0.00	0.08		0.00	-				
21-Oct	11:00	72	(0.07	0.00	0.00	0.08		0.00	0.00	0.08		-	0.00				
22-Oct	11:00	96		0.09	0.00	0.00		.11	0.00	0.00		0.12	0,00	0.00				
			- 4	100	0.00	-			0.00	0.00	100	0.12	0.00	0.00				
		of November 1		Molde	Nº 26	PENETR	ACION	3/-14	Nº 34				210					
Penetración	Carga S		C	Carga		Corrección		Carga		Corrección		Carga		Nº 42 Corrección				
(pulg.)	(kg/c	m*)	kg	kg/cm ²	kg/cm ²	CBR %	kg	kg/cm ²	kg/cm ²	CBR %	kg							
0.025	S-2		51	2.5	ASS CITE	CDA 76	34	1.7	Ku/cm	CDR %	23	kg/cm ²	kg/cm ²	CBR 9				
0.050	× 10		70	3.5	200		47	2.3	-			1.1		1				
0.075			112	5.5	200	5 84 3-5	75	3.7		1	32		A SHITT	-				
0,100	70.0	00	160			12.6	108	5.3	6.0	8.6	50 72	3.6		350				
0.150			261	12.9	8.8	1,600	175	8.7	1	0.6			3.9	5.6				
0.200	105,0	000	411	20.3	18.3	17.4	276	13.7	12.5		118	5.8	100000					
			444	1 20.0	10,3	1/.49	210	13./	14.3	11.9	185	9.2	7.6	7.2				
0.300			572	28,3			384	19.0	-		258	12.8						

OBSERVACIONES:


* Muestra tomada en campo por el solicitante y ensayadas por el personal de Matestlab SAC

Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

Código	CS-FO-02	The land
Versión	01	
Fecha	19-10-2022	
Página	1 de 1	34

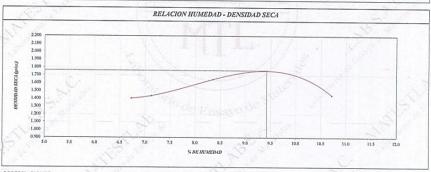
PROYECTO SOLICITANTE UBICACIÓN DE PROYECTO MATERIAL

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUA/LAS 2022" : JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO

REGISTRO Nº: MUESTREADO POR ENSAYADO POR FECHA DE ENSAYO

TURNO

COSTA

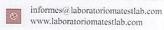

MTL22 -TS - 531 MATESTLAB SAC P. ESCOBEDO 19/10/2022

IDENTIFICACIÓN DE MUESTRA :M3 10%
SONDAJE / CALICATA :-Nº DE MUESTRA :1
PROGRESIVA :--

: INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. : MATERIAL PROPIO

PROFUNDIDAD NORTE ESTE

Profes	BNOATO		I D1557 / ASTM I	MODIFICADO PAI 01883	KA CBR	
ENY SE	77:55	Volumen Molde Peso Molde	956 4315	cm³ gr.		W.
NUMERO DE ENSAYOS		1	2	3	4	- 5
Peso Suelo + Molde	gr.	5,750	5,788	6,022	5.850	-
eso Suelo Humedo Compactado	gr.	1,435	1,473	1.707	1,535	
eso Volumetrico Humedo	gr.	1,501	1.541	1.786	1,606	
tecipiente Numero		B2	Ň2	U5	R2	
'eso de la Tara	gr.	95.2	82.5	95.0	90.0	
eso Suelo Humedo + Tara	gr.	420.5	380.3	390.8	400.0	
eso Suelo Seco + Tara	gr.	400.0	360.5	368.0	370.0	
eso del agua	gr.	20.5	19.8	22.8	30.0	
eso del suelo seco	gr.	305	278	273	280	
ontenido de agua	%	6.7	7.1	8.4	10.7	
Densidad Seca	gr/cc	1.406	1,438	1,648	1,450	

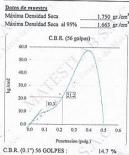

OBSERVACIONES:

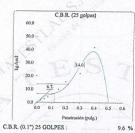
* Muestra tomada en campo por el soli al de Matestlab SAC

INFORME VALOR DE SOPORTE DE CALIFORNIA - CBR

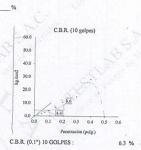
Código	CS-FO-02
Versión	01
Fecha	21-10-2022
Página	I de l

SOLICITANTE


: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022"


SOLICITANTE : JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO UBICACIÓN DE PROYECTO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. MATERIAL PROPIO

IDENTIFICACIÓN DE MUES SONDAJE / CALICATA № DE MUESTRA PROGRESIVA

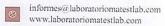

MTL22 -TS - 531 REGISTRO Nº: MUESTREADO POR MATESTLAB SAC ENSAYADO POR P. ESCOBEDO FECHA DE ENSAYO 21/10/2022 TURNO Diurno PROFUNDID NORTE ESTE

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA ASTM D1883



Optimo Contenido de Humedad

COSTA


OBSERVACIONES:

Muestra tomada en campo por el solicitante y ensayadas por el personal de Matestlab SAC

Código	CS-FO-02
Versión	01
Fecha	21-10-2022
Página	l de I

PROYECTO	: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022"		REGISTRO Nº: MUESTREADO POR	MTL22 -TS - 531 MATESTLAB SAC
SOLICITANTE	- 05	ENSAYADO POR	P. ESCOBEDO	
UBICACIÓN DE PROYECTO	: INSTALACIONES DE LABORATORIO MATESTLAB S.A.C.	- 2	FECHA DE ENSAYO	
MATERIAL	: MATERIAL PROPIO	ÇV" si	TURNO	Diurno
IDENTIFICACIÓN DE MUESTRA	: M3 5%	1	PROFUNDIDAD	- 1 × × × ×
SONDAJE / CALICATA	- 70, 2, XA		NORTE	
N° DE MUESTRA	:1		ESTE	1-31
PROGRESIVA	··· // // // // // // // // // // // //		COSTA	

1			C .	NSAYO	DE VAL	OR DE SO		E DE CA	LIFORN	IA				
Name of the last			CA	LCULO DI	E LA REL	ACIÓN DE	SOPOR	TE CALIFO	DRNIA (C	RR)		-		
Molde N°	1	707	V		26	0.	J	L CILDII	34	D.K.)	1			-
Número de capas	14.	V B			5	100	1		5				42	-
Número de golpes					56				25		-		5	
Condición de la muestra	XV	-	NO SA	TURADO	SAT	URADO	NOS	TURADO		URADO	NOC	ATURADO	-	~
Peso suelo + molde (gr.)	and its		12	150	7			.850	SAI	UKADU	-	1,520	SAT	URADO
Peso molde (gr.)	wil		8.	003			-	114	1			974		
eso suelo compactado (s	gr.)		4.	147				736	1			.546	+	
Volumen del molde (cm3)			2.	135	1			098				.136	1	
Densidad húmeda (gr./cm	3)	The Trans	1.	942				781	364			.660		-
Densidad Seca (gr./cm3)			1.	777				641				.538	-	
10 No. 10 No. 10		-	tevo		CON	NTENIDO D			100	0.50		.538	_	-
Peso de tara (gr.)		Section 1	9	7.2	-	TENIDO D		0.7	1			2.5	_	
Tara + suelo húmedo (gr.))		55	0.5	1 35			20.9					-	
Tara + suelo seco (gr.)		512.0		/			05.0			500.0				
Peso de agua (gr.)		-	8.5			25.9			470.0 30,0		-	-		
Peso de suelo seco (gr.)		41	4.8				14.3	45.4			77.5			
Iumedad (%)		-	9.3			8.5			-	7.9				
1	29	100	-	1.7	-	EXPAN					1.00	1.9		
Fecha	Hora	Tiempo	I	Dial	Exp	ansión	on the column		Exp	ansión /	40.		From	ansión
rectia	riora	Hr	0.	.01"	mm	%		Dial	mm	%		Dial	mm	%
19-Oct	11:00	0		.00	0.00	0.00		0.00	0.00	0,00	-	0.00	0.00	
19-Oct	11:00	24	0	.00	0.00	0.00		0.04	0.00	0.00		0.06		0.00
20-Oct	11:00	48	0	.06	0.00	0.00	-	0.06	0.00	0.00		0.08	0.00	0.00
20-Oct	11:00	72	C	.07	0.00	0.00		0.08	0.00	0.00		0.08	0.00	-
21-Oct	11:00	96		.09	0.00	0.00		0.11	0.00	0.00		0.12	0.00	0.00
				Lu. Va	30	PENETR.			0.00	0.00		0.12	0.00	0.00
Penetración	V 12 400			Molde	Nº 26	LEINEIN	ACION	Molde	N° 34			3/-1/-	N° 42	
Penetracion	Carga S		C	ırga	Corre	ección	C	arga		ección	-	arga		ección
(pulg.)	(kg/c	m)	kg	kg/cm ²	kg/cm ²	CBR %	kg	kg/cm²	kg/cm ²	CBR %	kg	kg/cm ²		-
0.025	D-1		59	2.9	- CILI		39	1.9	Kjø/CIII	CDA 76	26	1.3	kg/cm ²	CBR %
0.050			82	4.0	70		55	2.7	-	-	37	1.3		-
0.075	18.47		129	6.4	7	3 50 50	87	4.3			58	2.9		1
0.100	70.0	00	186	9.2	10.3	14.7	125	6.2	6.7	9,6	84	4.2	4.4	15
0.150			302	15.0			203	10.1	0.7	7.0	136	6.8	4.4	6,3
0.200	105.0	000	476	23.6	21.2	20,2	320	15.8	14.0	13.3	215	10.6	0.6	
0.300			662	32.8		2012	445	22.0	14,0	13.3	299	10.6	8.6	8.2
0.400		- 4	1262	62.5			848	42.0			570	28.2		-
0.500		- 0		0.0		-	-10	0.0	-		370	28.2		

Jr. Apurimae N°3263, Urb. Perú, San Martin de Porres

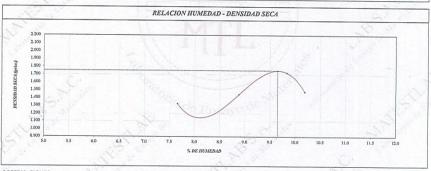
Cédigo	CS-FO-02
Versión	01
Feeha	19-10-2022
Página	1 do 1

PROYECTO SOLICITANTE UBICACIÓN DE PROYECTO MATERIAL

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUA/LAS 2022" : JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. : MATERIAL PROPIO

1.750 gr/cm³.

REGISTRO Nº: MTL22 -TS - 531 MUESTREADO POR MATESTLAB SAC ENSAYADO POR FECHA DE ENSAYO P. ESCOBEDO 19/10/2022 TURNO


9.7 %

IDENTIFICACIÓN DE MUESTRA :M3 5%
SONDAJE / CALICATA :-№ DE MUESTRA :1
PROGRESIVA :--

Densidad Máxima Seca

PROFUNDIDAD NORTE ESTE COSTA

,	ENSAYO		IÓN - PROCTO I D1557 / ASTM	R MODIFICADO PAR D1883	A CBR	
EN . 10	-13:	Volumen Molde Peso Molde	956 4315	cm³		N E
NUMERO DE ENSAYOS	142	(% × 1	2	3	4	
Peso Suelo + Molde	gr.	5,680	5,820	6.125	5.875	7
Peso Suelo Humedo Compactado	gr.	1,365	1,505	1,810	1,560	
Peso Volumetrico Humedo	gr.	1.428	1,574	1.893	1,632	
Recipiente Numero		14	Y5	T2	04	
Peso de la Tara	gr.	75.9	95.1	120.4	105.0	
Peso Suelo Humedo + Tara	gr.	340.2	335.4	355.0	349.4	
Peso Suelo Seco + Tara	gr.	321.4	315.8	334.0	326.8	
Peso del agua	gr.	18.8	19.6	21.0	22.6	
Peso del suelo seco	gr.	246	221	214	222	
Contenido de agua	%	7.7	8.9	9.8	10.2	
Densidad Seca	gr/cc	1,326	1.446	1,724	1,481	

OBSERVACIONES:

* Muestra tomada en campo por el solicitante y ensayadas por el personal de Matestlab SAC

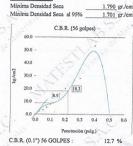
Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

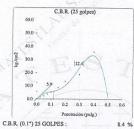
975232841 922318222

Datos de muestra

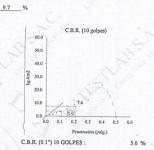
INFORME VALOR DE SOPORTE DE CALIFORNIA - CBR

-	Código	CS-FO-02
1	Versión	01
	Fecha	21-10-2022
5	Página	1 de 1


: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022"


: JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. : MATERIAL PROPIO UBICACIÓN DE PROYECTO MATERIAL

:1


MTL22 -TS - 531 REGISTRO Nº: MUESTREADO POR MATESTLAB SAC ENSAYADO POR P. ESCOBEDO 21/10/2022 FECHA DE ENSAYO TURNO PROFUNDIDAL NORTE ESTE COSTA

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA ASTM D1883



Optimo Contenido de Humedad

OBSERVACIONES:

Muestra tomada en campo por el solicitante y ensayadas por el personal de Matestlab SAC

Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

975232841 922318222

Código	CS-FO-02
Versión	01
Fecha	21-10-2022
Página	1 de 1

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022" PROYECTO MTL22 -TS - 531 REGISTRO Nº: MUESTREADO POR MATESTLAB SAC SOLICITANTE : JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO ENSAYADO POR P. ESCOBEDO UBICACIÓN DE PROYECTO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. FECHA DE ENSAYO 21/10/2022 MATERIAL : MATERIAL PROPIO TURNO Diurno IDENTIFICACIÓN DE MUESTRA : M2 15% PROFUNDIDAD SONDAJE / CALICATA NORTE N° DE MUESTRA ESTE PROGRESIVA COSTA

C- X			(F	NSAYO	DE VAL	OR DE SO ASTM		E DE CA	LIFORN	IA.	vis II	100		Fi b
5~			CA	LCULO DI	LA REL	ACIÓN DE	SOPOR	TE CALLE	DDNIA (C)	P P \				
Molde N°		7	1		26	O. I	DOLOK	LE CALLE	34	J.K.)	1			-
Número de capas		V 5			5					Com.			42 5	70
Número de golpes					56				25					-
Condición de la muestra	AV.		NO SA	TURADO	-	URADO	NOS	TURADO		URADO	NOC	ATURADO	10	
Peso suelo + molde (gr.)	en "		THE REAL PROPERTY.	.198	1	OTC IDO	The state of the s	.960	SAI	DRADO		1,600	SAI	URADO
Peso molde (gr.)				003				.114	18 30			.974		
Peso suelo compactado (ga	(.)		4	195	- Arek		-	846				.626		
Volumen del molde (cm3)		1000		135	-		1	098	1			,136	100	
Densidad húmeda (gr./cm3)			965				833		WILL BY		.698	-	
Densidad Seca (gr./cm³)				792				693				.583		
	Anna Anna Anna	233	70%	San Car	CON	TENIDO E			740	Constitution of the Park		,303		
Peso de tara (gr.)		1	9	0.4		X BITTO		5.5	1			08.2		10
Tara + suelo húmedo (gr.)			44	15.2	1			00.9	N			80.8		
Tara + suelo seco (gr.)	-	1	41	4.0	1/			70.0			455.0			
Peso de agua (gr.)		100	3	1.2	Company of the same		-	30.9			25.8			750
Peso de suelo seco (gr.)	10	7	32	23.6			374,5		EDIC A	356.8			HIL	
Humedad (%)	134 36	1000	9	0.6		8		3.3	S. 45	10 - 10 - 10	-	7.2		
\sim	M. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	CONTRACT.		111	1	EXPAN	SIÓN			1	No. Of The London	-	A TOTAL CO.	
Fecha	Hora	Tiempo		Dial	Exp	ansión		Dial	Exp	ansión		2	Exp	ansión
X	11014	Hr	0	.01"	mm	%		Diai	mm	%		Dial	mm	%
19-Oct	11:00	0	(0.00	0.00	0.00	common re-	0.00	0.00	0.00		0.00	0.00	- 0.00
19-Oct	11:00	24	(0.00	0.00	0.00	(0.04	0.00	0.00		0.06	0.00	0.00
20-Oct	11:00	48	(0.06	0,00	0.00	. (0.06	0.00	0.00		0.08	0.00	0.00
20-Oct	11:00	72	(0.07	0.00	0.00		0.08	0.00	0.00		0.08	0.00	0.00
21-Oct	11:00	96	(0.09	0.00	0.00	. (0.11	0.00	0.00		0.12	0.00	0.00
			- 4	- A	1	PENETR	ACIÓN	17.5	1			EVE TO		7
Penetración	Carga S	tondard	1 2		Nº 26	124753	10000000	Molde	N° 34			Molde	Nº 42	HV. N. C.
	(kg/c		C	arga	Com	ección	C	arga	Corre	ección	C	Carga	Corr	ección
(pulg.)	1	-/	kg	kg/cm ²	kg/cm ²	CBR %	kg	kg/cm ²	kg/cm ²	CBR %	kg	kg/cm ²	kg/cm ²	CBR %
0.025	S	1	50	2.5	4		34	1.7			23	1.1		100
0.050	* 138	4 4 7 7	70	3.4	70		47	2.3		100	31	1.6	2.50	1
0.075	200		110	5.5		S. Maria	74	3.7	KE BOOK		50	2.5		- 30
0,100	70.0	100	159	7.9	8.9	12.7	107	5.3	5.9	8.4	72	3.5	3.9	5.6
0.150			258	12.8	-		173	8.6	1 1/4		116	5.8		
0.200	105.	000	406	20.1	18.3	17.4	273	13.5	12.4	11.8	183	9.1	7.6	7.2
0.300			565	28.0			380	18.8	No.		255	12.6	127	
0.400		- 5	1076	53.3			723	35.8			486	24.1		
0.500		1		0.0			12-18-	0.0		1000000		0.0		

OBSERVACIONES:

* Muestra tomada en campo por el solicitante y ensayadas por el personal de Matestlab SAC

Jr. Apurimae N°3263, Urb. Perú, San Martin de Porres

975232841 922318222

1	Código	CS-FO-02
	Versión	01
	Fecha	19-10-2022
	Página	1 de 1

PROYECTO SOLICITANTE UBICACIÓN DE PROYECTO MATERIAL

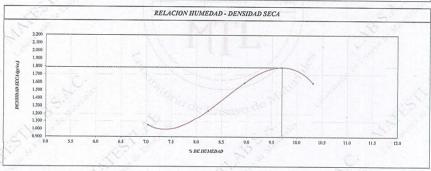
: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022"

JENON YEROVA LATAMIRANO VILLENA / FREDY UTANI HUASCO

INSTALACIONES DE LABORATORIO MATESTLAB S.A.C.

MATERIAL PROPIO

REGISTRO Nº: MUESTREADO POR ENSAYADO POR FECHA DE ENSAYO


MTL22 -TS - 531 MATESTLAB SAC P. ESCOBEDO

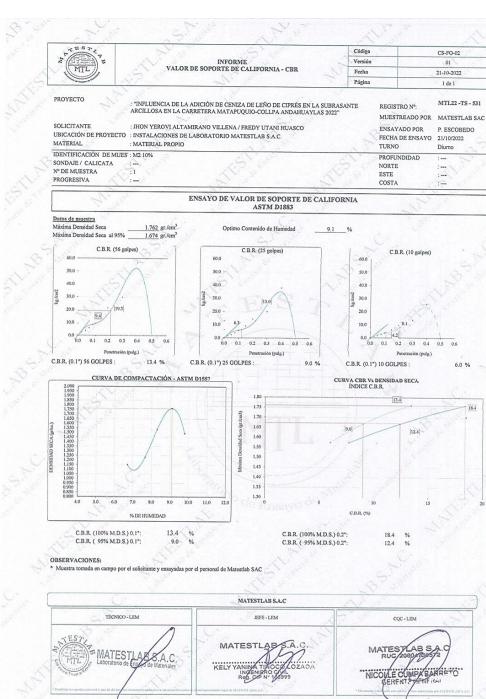
IDENTIFICACIÓN DE MUESTRA :M2 15%
SONDAJE / CALICATA :-
№ DE MUESTRA :1
PROGRESIVA :--

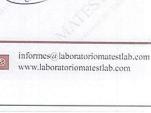
PROFUNDIDAD NORTE ESTE COSTA

TURNO

	ENSAYO		CIÓN - PROCTO M D1557 / ASTM	R MODIFICADO PAI D1883	RA CBR	
67,30	-	Volumen Molde Peso Molde	956 4315	cm³		- V.
NUMERO DE ENSAYOS		A 11	2	3	4	W 5
Peso Suelo + Molde	gr.	5,390	5,600	6,000	5,980	
Peso Suelo Humedo Compactado	gr.	1,075	1,285	1.685	1.665	
Peso Volumetrico Humedo	gr.	1.124	1.344	1.763	1.742	
Recipiente Numero		H5	Y8	R3	W2	
Peso de la Tara	gr.	80.4	75.2	90.5	95.0	
Peso Suelo Humedo + Tara	gr.	430.2	380.2	420.9	350.5	-
Peso Suelo Seco + Tara	gr.	407.2	357.0	390.0	329.5	
Peso del agua	gr.	23.0	23.2	30.9	21.0	-
eso del suelo seco	gr.	327	282	300	235	
Contenido de agua	%	7.0	8.2	10.3	9.0	
Densidad Seca	gr/cc	1.051	1.242	1,598	1,598	

OBSERVACIONES:


* Muestra tomada en campo por el soli nal de Matestlab SAC



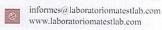
Jr. Apurimae N°3263, Urb. Perú, San Martin de Porres

975232841 922318222

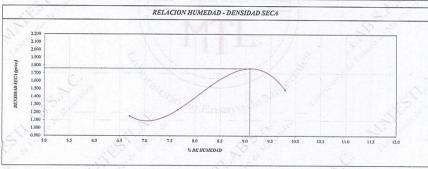
	Código	CS-FO-02
١	Versión	01
	Fecha	21-10-2022
110	Página	1 de I

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022" PROYECTO MTL22 -TS - 531 REGISTRO Nº: MUESTREADO POR MATESTLAB SAC SOLICITANTE : JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO ENSAYADO POR P. ESCOBEDO UBICACIÓN DE PROYECTO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. FECHA DE ENSAYO 21/10/2022 MATERIAL : MATERIAL PROPIO TURNO Diumo IDENTIFICACIÓN DE MUESTRA : M2 10% PROFUNDIDAD SONDAJE / CALICATA NORTE N° DE MUESTRA ESTE

PROGRESIVA	130	:		- 1	0,			. Y .	Sec.		COSTA	-	:	
C - S			C . E	NSAYO I	DE VAL	OR DE SO		E DE CA	LIFORN	IA		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
×* 33		77-13-	CA	LCULO DI	LA REL	ACIÓN DE	SOPOR	TE CALLEC	DRNIA (C	RD)				
Molde N°		An	26			TOTOTI DE	DOI OK		34	D.R.)				
Número de capas		V 5			5	-	-		-				42	76.
Número de golpes					56	-	-		5 25				5	
Condición de la muestra	30		NOCA	TURADO	-	URADO	NOCA		-				10	
eso suelo + molde (gr.)		-	-	100	SAI	OKADO	NO SATURADO SATURADO			ATURADO	SAT	URADO		
eso molde (gr.)				003				114	1	0		,580		
eso suelo compactado (s	r)			097				781				.974	1	
olumen del molde (cm3)				135								606	1	
Pensidad húmeda (gr./cm	3)			919			2,098 1.802		-	136	-	2 200		
Pensidad Seca (gr./cm³)		-		761	-		1.669		-	.688				
July Deck (Brackle)			- 1.		CON	TENIDOD	DE HUMEDAD		6.1	.574				
eso de tara (gr.)		1000	0	5.2	CON	TENIDO D			1		700			
'ara + suelo húmedo (gr.)	1		486.2		1			98.0 505.2				100.2		
ara + suelo seco (gr.)		1		4.0				75.0	-		520.4 492.0			
eso de agua (gr.)	See all the	* 19	_	2.2	-			0.2	100		28.4			
eso de suelo seco (gr.)	1/4	25		8.8		-	-	77.0				91.8		0.00
Iumedad (%)	7	10000	-	.0				3.0			-	7.2		
	7		9.0		EXPAN						200	1.2		
Fecha		Tiempo	I	Dial	Exp	ansión	- Onto Committee		Exp	ansión			Evo	ansión
recha	Hora	Hr		01"	mm	%		Dial	mm	%		Dial	mm	%
19-Oct	11:00	0		.00	0.00	0.00		0.00	0.00	0,00		0.00	0.00	- 0.00
19-Oct	11:00	24	0	.00	0.00	0.00		0.04	0.00	0,00		0.06	0.00	0.00
20-Oct	11:00	48	C	.06	0.00	0.00	(0.06	0,00	0.00		0.08	0.00	0.00
20-Oct	11:00	72	(.07	0.00	0.00		0.08	0.00	0.00		0.08	0.00	0.00
21-Oct	11:00	96		.09	0.00	0.00		0.11	0.00	0.00		0.12	0.00	0.00
			- 4	1	1000	PENETR	ACIÓN		2.2	0.00			0.00	0.00
	- 1/2	Sales of the		Molde	Nº 26	TUITUIT	reion.	Molde	N° 34			Molde	Nº 42	
Penetración		tandard	C	erga	Corr	ección	C	arga		ección		arga	-	ección
(pulg.)	(kg/	cm-)	kg	kg/cm²	kg/cm²	CBR %	kg	kg/cm ²	kg/cm ²	CBR %	kg	kg/cm ²	kg/cm ²	CBR %
0.025	-		53	2.6			36	1.8	na/Gill	U.S. 10	24	1.2	KM/CIII	CDK 7
0.050	e		74	3.7	40		50	2.5			33	1.7	-	-
0.075	-0.5		117	5.8		C.63	79	3.9			53	2.6	1 2 X 2	
0,100	70.	000	168	8.3	9.4	13.4	113	5.6	6.3	9.0	76	3.8	4.2	6.0
0.150			274	13.5	-		184	9.1	- 02		124	6.1		0.0
0.200	105	.000	431	21.3	19.3	18.4	290	14.3	13.0	12.4	195	9.6	8.1	7.7
0,300			600	29.7			403	20.0	15		271	13.4	- 10	
0.400		- 3	1143	56.6			768	38.0			516	25.6		
0.500			Y 35	0.0	-			0.0	-	1	-10			


OBSERVACIONES:

* Muestra tomada en campo por el solicitante y ensayadas por el personal de Matestlab SAC

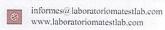


INFORME PROCTOR MODIFICADO (ASTM DISS7 / ASTM DISS3)

Código	CS-FO-02	
Versión	01	
Fecha	19-10-2022	7
Página	1 de 1	

PROYECTO	: "INFLUENCIA DE LA ADICIÓN DE CEN SUBRASANTE ARCILLOSA EN LA CARR ANDAHUAYLAS 2022"			REGISTRO Nº: MUESTREADO POR	MTL22 -TS - 531 MATESTLAB SAC
SOLICITANTE	: JHON YEROVI ALTAMIRANO VILLENA	/FREDY UTANI HUAS	sco	ENSAYADO POR	P. ESCOBEDO
UBICACIÓN DE PROYECTO	: INSTALACIONES DE LABORATORIO M	IATESTLAB S.A.C.	100	FECHA DE ENSAYO	19/10/2022
MATERIAL	: MATERIAL PROPIO		11 0	TURNO	Diumo
W 10, 11			Le Ma		
IDENTIFICACIÓN DE MUESTRA	: M2 10%	Let Heading		PROFUNDIDAD	:
SONDAJE / CALICATA	:			NORTE	-
N° DE MUESTRA	:1			ESTE	:
PROGRESIVA				COSTA	:
-		See St.			

		ASIN	4 D1557 / ASTM I	71003		
		Volumen Molde Peso Molde	956 4315	cm³ gr.		~ ~ ~
NUMERO DE ENSAYOS		1 1	2	3	4	5
Peso Suelo + Molde	gr.	5,490	5,585	5,905	5,880	7
Peso Suelo Humedo Compactado	gr.	1,175	1,270	1,590	1.565	
Peso Volumetrico Humedo	gr.	1.229	1.328	1.663	1.637	
Recipiente Numero		H5	Y8	R3	W2	
eso de la Tara	gr.	80.4	75.2	90.5	95.0	
Peso Suelo Humedo + Tara	gr.	410.2	345.2	380.2	355.2	
Peso Suclo Seco + Tara	gr.	389.5	326.0	358.0	332.0	
Peso del agua	gr.	20.7	19.2	22.2	23.2	
eso del suelo seco	gr.	309	251	268	237	
Contenido de agua	%	6.7	7.7	8.3	9.8	
Densidad Seca	gr/cc	1.152	1.234	1.536	1.491	

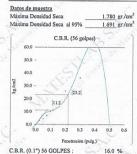

OBSERVACIONES:

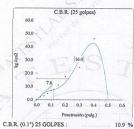
* Muestra tomada en campo por el so al de Matestlab SAC

INFORME VALOR DE SOPORTE DE CALIFORNIA - CBR

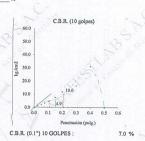
Cédige	CS-FO-02
Versión	01
Fecha	21-10-2022
Página	1 de 1
	Versión Fecha

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022"


SOLICITANTE UBICACIÓN DE PROYECTO MATERIAL


: JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. : MATERIAL PROPIO

IDENTIFICACIÓN DE MUES' : M2 5% SONDAJE / CALICATA N° DE MUESTRA PROGRESIVA


MTL22 -TS - 531 REGISTRO Nº: MUESTREADO POR MATESTLAB SAC ENSAYADO POR P. ESCOBEDO 21/10/2022 FECHA DE ENSAYO TURNO PROFUNDIDAL NORTE ESTE COSTA

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA ASTM D1883

Optimo Contenido de Humedad

OBSERVACIONES:

* Muestra tomada en campo por el solicitante y ensayadas por el personal de Matestlab SAC

Ir. Apurimac N°3263, Urb. Perú, San Martin de Porres

975232841 922318222

	Código	CS-FO-02	
	Versión	01	
	Fecha	21-10-2022	
3	Página	1 de I	

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022" PROYECTO MTL22 -TS - 531 REGISTRO Nº: MUESTREADO POR MATESTLAB SAC SOLICITANTE : JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO ENSAYADO POR P. ESCOBEDO UBICACIÓN DE PROYECTO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. FECHA DE ENSAYO 21/10/2022 MATERIAL : MATERIAL PROPIO TURNO IDENTIFICACIÓN DE MUESTRA : M2 5% PROFUNDIDAL SONDAJE / CALICATA NORTE Nº DE MUESTRA ESTE PROGRESIVA COSTA

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA ASTM D1883

H.		-	~			ASIM	D1883				May 1	1			
~'		0.2	CA	LCULO DE	LA REL	ACIÓN DE	SOPORT	TE CALIFO	ORNIA (C.	3.R.)	I See See Lie				
Molde №	- (17)	- Y			26	4	34			×-	-	42	-		
Número de capas	\			5 🐆 👈			5 5				5				
Número de golpes	A V	1		56				24.001.57.00.00	25	100			10 -	7	
Condición de la muestra			NO SA	TURADO	SATI	JRADO	NO SA	TURADO	SATI	JRADO	NO SA	ATURADO		URADO	
Peso suelo + molde (gr.)	S 5		12	,150	67		- 11	.850	100		The same of the sa	.520	JAI	CICIDO	
Peso molde (gr.)			8,	003	1		8.	114	1 32			974	1		
Peso suelo compactado (gr.)		4,	147	-16	1	3.	736				546	1 22		
Volumen del molde (cm3)		2,	135		20.00		098		7213		136	No.		
Densidad húmeda (gr./cm	r ³)		1.	942		The last	1.	781	200		-	660			
Densidad Seca (gr./cm ³)			1.	777	100	1200	1.	641	140			538		7 100	
50 N E 10	a Property	The latest	(Same	dise to	CON	TENIDO D	E HUME	DAD	197		C131				
Peso de tara (gr.)		100	9	7.2	1213			0.7			9	2.5	T		
l'ara + suelo húmedo (gr.)		55	550.5		The said	420.9		15 14		00.0	1			
l'ara + suelo seco (gr.)		7	51	2.0			30	395.0		***************************************	70.0	1			
Peso de agua (gr.)			3	8.5	1	71,-71		5.9				30.0		-	
Peso de suelo seco (gr.)	10	7	41	4.8		ANT L	30	14.3	105 1		377.5				
Humedad (%)	70	- 5200	9	0.3	331	-1.1		1.5				7.9			
A.				C. P	-	EXPAN			TOUR		3/9		22.00	namawija.	
Fecha	Hora	Tiempo	1	Dial			Dial		Exp	nsión	and the same of th		Exp	Expansión	
Toolia	Hota	Hr	0	.01"	mm	%		Diai	mm	%	Dial		mm %		
19-Oct	11:00	0	(0,00	0.00	0.00	(0.00	0.00	0.00		0.00	0.00 -	0.00	
19-Oct	11:00	24	(0.00	0.00	0.00	(0.04	0.00	0.00	- (0.06	0.00	0.00	
20-Oct	11:00	48	(0.06	0.00	0.00		0.06	0.00	0.00		0.08	0.00	0.00	
20-Oct	11:00	72	(0.07	0.00	0.00	(0.08	0.00	0.00	- 4	0.08	0.00	0.00	
21-Oct	11:00	96	(0.09	0.00	0.00	(0.11	0.00	0.00	0.12		0.00	0.00	
			2.5		Qa III	PENETR	ACIÓN			35		N	0.00	0.00	
Penetración		I		Molde	Nº 26		Molde		N° 34		Molde		Nº 42		
renetration	Carga S (kg/c		C	arga	Corre	ección	C	arga	Corr	ección	C	arga		ección	
(pulg.)	(kg/c	m)	kg	kg/cm²	kg/cm²	CBR %	kg	kg/cm²	kg/cm ²	CBR %	kg	kg/cm ²	kg/cm ²	CBR %	
0.025	7-1	cultive news	65	3.2	-		43	2.1	- Com		29	1.4	KID/CIII	CDK /	
0.050	1000	100	90	4.5	473 Ly		60	3.0	1	100	41	2.0	1000	T N	
0.075	KX -		142	7.1	100	bins	96	4.7			64	3.2	- X X		
0,100	70.0	000	205	10.1	11.2	16.0	138	6.8	7.6	10.9	93	4.6	4.9	7.0	
0.150			333	16.5			224	11.1	1.0		150	7.4	7.7	1.0	
0.200	105.	000	525	26.0	23.2	22.1	352	17.5	16.0	15.2	237	11.7	10.0	9.5	
0.300			730	36.2			491	24.3	10.0		330	16,3	10.0	7.3	
0.400		40	1391	68.9			935	46.3			628	31.1		-	
0.500		1	-	0.0				-0.0	-		020	0.0			

OBSERVACIONES:

* Muestra tomada en campo por el solicitante y ensayadas por el personal de Matestlab SAC

Jr. Apurimae N°3263, Urb. Perú, San Martin de Porres

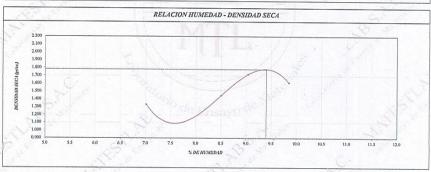
T	Cédigo	CS-FO-02	
	Versión	01	
	Fecha	19-10-2022	3
	Página	1 de I	

SOLICITANTE UBICACIÓN DE PROYECTO MATERIAL

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022"

JEHON YEROVA LATAMIRANO VILLENA / FREDY UTANI HUASCO

INSTALACIONES DE LABORATORIO MATESTLAB S.A.C.


: MATERIAL PROPIO

MTL22 -TS - 531 MATESTLAB SAC REGISTRO №: MUESTREADO POR ENSAYADO POR FECHA DE ENSAYO P. ESCOBEDO 19/10/2022 TURNO

IDENTIFICACIÓN DE MUESTRA SONDAJE / CALICATA Nº DE MUESTRA PROGRESIVA

PROFUNDIDAD NORTE ESTE COSTA

\mathcal{P}_3	ENSAYO		ION - PROCTO I D1557 / ASTM	R MODIFICADO PARA (D1883	CBR	
677.6		Volumen Molde Peso Molde	956 4315	cm³		AV 15
NUMERO DE ENSAYOS		A 7 1	2	3	4	-5
Peso Suelo + Molde	gr.	5,680	5,820	6,105	6.010	7
Peso Suelo Humedo Compactado	gr.	1,365	1,505	1.790	1.695	
Peso Volumetrico Humedo	gr.	1.428	1.574	1.872	1.773	
Recipiente Numero		E7	Q5	H6	R5	
Peso de la Tara	gr.	72.5	90,4	108.2	98.4	
Peso Suelo Humedo + Tara	gr.	339.5	334.1	354.4	348.2	
Peso Suelo Seco + Tara	gr.	322.0	315.0	334.0	325.8	-
Peso del agua	gr.	17.5	19.1	20.4	22.4	
eso del suelo seco	gr.	250	225	226	227	
Contenido de agua	%	7.0	8.5	9.0	9.9	
Densidad Seca	gr/cc	1.334	1,451	1,717	1,614	

OBSERVACIONES:

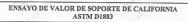
* Muestra tomada en campo por el so

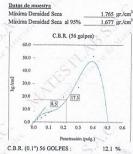
	MATESTLAB S.A.C	<u> </u>
TÉCNICO-LEM	JEFE - LEM	CQC-LEM
MATES ABS.A Laboratod de Ensayo de Mater		MATESTLAB & A. C RIG 20634738972
Onda la negrodacción titud o purcual del processo dispanento ate la previo autorización co	KELY YAIVING TINOOO LOZADA INGENIERO EIVIL Bod. CIP W. 183999	NICOLLE CUMPA BARRETO GERENTE GENERAL

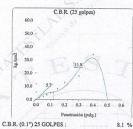
Ir. Apurimae N°3263, Urb. Perú, San Martin de Porres

INFORME VALOR DE SOPORTE DE CALIFORNIA - CBR

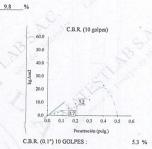
3	Código	CS-FO-02
	Versión	01
1	Fecha	20-10-2022
9	Página	1 de 1

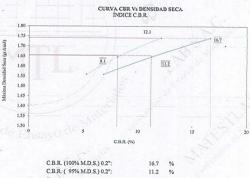

PROYECTO


: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022"


: IHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. : MATERIAL PROPIO SOLICITANTE UBICACIÓN DE PROYECTO MATERIAL

IDENTIFICACIÓN DE MUES: M15% SONDAJE / CALICATA N° DE MUESTRA PROGRESIVA


MTL22 -TS - 531 REGISTRO Nº: MUESTREADO POR MATESTLAB SAC ENSAYADO POR P. ESCOBEDO FECHA DE ENSAYO TURNO 20/10/2022 Diurno PROFUND ESTE



Optimo Contenido de Humedad

COSTA

CURVA DE COMPACTACIÓN - ASTM D1557 2.000 1.950 1.800 1.750 1.600 1.500 1.400 1.400 1.400 1.250 1.100 1.100 1.100 1.050 1.050 0.900 0.900 0.800 % DE HUMEDAD 12.1 C.B.R. (100% M.D.S.) 0.1": C.B.R. (95% M.D.S.) 0.1":

OBSERVACIONES:

* Muestra tomada en ada en campo por el solicitante y ensayadas por el personal de Matestlab SAC

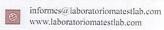
Ir. Apurimac N°3263, Urb. Perú, San Martin de Porres

975232841 922318222

	The state of the s	
2	Código	CS-FO-02
	Versión	01.
	Fecha	20-10-2022
\$	Página	1 de I

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022" PROYECTO MTL22 -TS - 531 REGISTRO Nº: MUESTREADO POR MATESTLAB SAC SOLICITANTE : JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO ENSAYADO POR P. ESCOBEDO UBICACIÓN DE PROYECTO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. FECHA DE ENSAYO 20/10/2022 MATERIAL : MATERIAL PROPIO Diumo TURNO IDENTIFICACIÓN DE MUESTRA : M15% PROFUNDIDAD SONDAJE / CALICATA NORTE N° DE MUESTRA ESTE PROGRESIVA

. V			E	NSAYO I	DE VAL	OR DE SO		E DE CA	LIFORN	A			3.54	
1						ASTM	D1883			year and				
ST. IN CO.		7. 1	CA	LCULO DE	LA RELA	ACIÓN DE	SOPORT	E CALIFO	RNIA (C.)	3 R)				
Molde N°			-		26	34	T		34	7	359		42	794
Número de capas	- X	7. 8	5						5	n - 1			5	
Número de golpes		- 10	56						25	14.2			10	7
Condición de la muestra		-10	NO SA	TURADO	-	JRADO	NOSA	TURADO		JRADO	NOSA	TURADO	The state of the s	RADO
Peso suelo + molde (gr.)	N N		12	.090	100			.880	0/11	MAIDO		,540	SAIL	KADO
Peso molde (gr.)			8.	003				114	1 8			974	1	
Peso suelo compactado (s	gr.)		4.	087	- 18		THE PERSON NAMED IN	766				566	1	
Volumen del molde (cm ³)		THE	2,	135	1		-	098				136	15	
Densidad húmeda (gr./cm3)			1.5	914			-	795		and the same	-	669	100000	
Densidad Seca (gr./cm3)			1.743		Samuel S			648	100			560		
			1000		CON	TENIDO D	E HUME	DAD	749		N.Y.	125 17-11	100) Page
Peso de tara (gr.)			90.5		17		9	5.5		Name of the last	9	1.2		
Tara + suelo húmedo (gr.)		_~	450.8				435.9				420.8			
Tara + suelo seco (gr.)		2	41	8.5	Part I		408.0		1	4	399.2		10.10	
eso de agua (gr.)		- 19	3:	2.3	-	-	2	7.9	100		21.6			-
Peso de suelo seco (gr.)	10	328.0				11925	31	2.5	ST-AT		308.0		Autorio de	
Humedad (%)	74 30	- Marine	9	.8			8	.9		- Total		7.0	1	-63
A.			Windley-	14 14		EXPAN	SIÓN	100	17-11-10		d W			Dien-
Fecha	Hora	Tiempo		Dial	Exp	ansión		Dial	Exp	nsión		Dial	Expansión	
43.42.14		Hr		.01"	mm	%		Jim.	mm	%		Diai	mm	%
18-Oct	11:00	0		0.00	0.00	0.00	AND ADDRESS OF THE PARTY.	0.00	0.00	0.00	- (0.00	0.00 -	0.00
18-Oct	11:00	24		0.00	0.00	0.00		0.04	0.00	0.00	(0.06	0.00	0.00
19-Oct	11:00	48		1.06	0.00	0.00	ALL ALL	0.06	0.00	0.00	(0.08	0.00	0.00
19-Oct	11:00	72		0.07	0.00	0.00		0.08	0.00	0.00.	(0.08	0.00	0.00
20-Oct	11:00	96		0.09	0.00	0.00		0.11	0.00	0.00	- (0.12	0.00	0.00
			35.5	1	Section	PENETR	ACIÓN	1	-	100	10000		CIDS.T	
Penetración	Carga S	tandard	-		N° 26				Nº 34		HUNE		Nº 42	
	(kg/c			arga		ección		arga	-	ección	C	arga	Corre	cción
(pulg.)	100	Bi	kg	kg/cm ²	kg/cm ²	CBR %	kg	kg/cm ²	kg/cm ²	CBR %	kg	kg/cm ²	kg/cm ²	CBR %
0.025	V. T		48	2.4	200		32	1.6		100	22	1.1		1 7
0.050	-1900		67	3.3	-00-2		45	2.2			30	1.5	100	
0.075	3.7		106	5.2		CAST	71	3.5			48	2.4	20X	10
0.100	70.0	000	153	7.6	8.5	12.1	102	5.1	5.7	8.1	69	3.4	3.7	5,3
0.150			248	12.3		-	167	8.2	133		112	5.5		
0.200	105.	000	390	19.3	17.5	16.7	262	13.0	11.8	11.2	176	8.7	7.2	6.9
0.300			543	26.9			365	18.1			245	12.1		
0.400		- 3	1035	51.3		1	696	34.4			467	23.1		


OBSERVACIONES:

* Muestra tomada en campo por el solicitante y ensayadas por el personal de Matestlab SAC

Cédigo	CS-FO-02	
Versión	01	100
Fechn	18-10-2022	
Página	1 de 1	11.5
	Versión Fechn	Versión 01 Fechn 18-10-2022

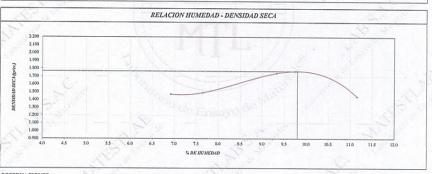
PROYECTO UBICACIÓN DE PROYECTO

MATERIAL

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUA/LAS 2022" : JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO

: INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. : MATERIAL PROPIO

REGISTRO Nº: MUESTREADO POR ENSAYADO POR FECHA DE ENSAYO TURNO

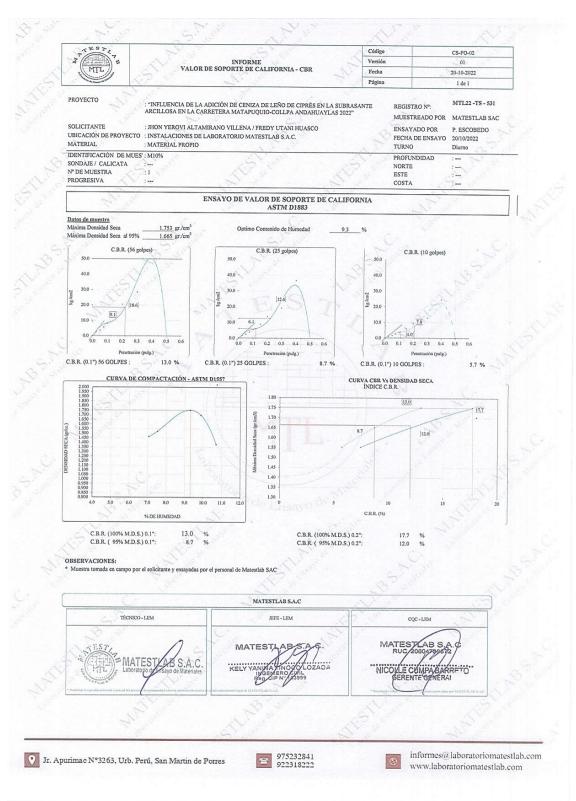

MTL22 -TS - 531 MATESTLAB SAC P. ESCOBEDO 18/10/2022

PROFUNDIDAD

NORTE ESTE COSTA

Diumo

	ENSAYO		ION - PROCTO I D1557 / ASTM	R MODIFICADO PAR D1883	A CBR	
57,34		Volumen Molde Peso Molde	956 4315	cm³		X
NUMERO DE ENSAYOS		1	2	3	4	5
Peso Suelo + Molde	gr.	5,820	5,850	6,135	5.850	7 25
Peso Suelo Humedo Compactado	gr.	1,505	1,535	1.820	1,535	
Peso Volumetrico Humedo	gr.	1.574	1.606	1,904	1,606	13
Recipiente Numero		W1	Y2	U5	L5	
Peso de la Tara	gr.	75.4	92.6	95.2	99.2	1
Peso Suelo Humedo + Tara	gr.	355.2	405.2	400.0	385.2	1
Peso Suelo Seco + Tara	gr.	337.1	383.0	374.0	356.5	
Peso del agua	gr.	18.1	22.2	26.0	28.7	-
Peso del suelo seco	gr.	262	290	279	257	
Contenido de agua	%	6.9	7.6	9.3	11.2	
Densidad Seca	gr/cc	1.472	1.492	1.741	1.445	


OBSERVACIONES:
* Muestra tomada en c al de Matestlab SAC

MATESTLAB S.A.C TÉCNICO - LEM JEFE - LEM

Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

975232841 922318222

INFORME VALOR DE SOPORTE DE CALIFORNIA - CBI

-	Código	CS-FO-02	
4	Versión	01	Ī
	Fecha	20-10-2022	
3	Página	1 de 1	

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022" PROYECTO MTL22 -TS - 531 REGISTRO Nº: MUESTREADO POR MATESTLAB SAC SOLICITANTE : JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO ENSAYADO POR P. ESCOBEDO UBICACIÓN DE PROYECTO ; INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. FECHA DE ENSAYO 20/10/2022 MATERIAL : MATERIAL PROPIO TURNO Diumo IDENTIFICACIÓN DE MUESTRA : M10% PROFUNDIDAD SONDAJE / CALICATA NORTE N° DE MUESTRA ESTE

C. X		3	E	NSAYO	DE VAL	OR DE SO		E DE CAI	LIFORN	IA		1907	TELET	
V 34			CA	LCULO DI	E LA REL	ACIÓN DE	SOPOR	TE CALIFO	RNIA (C)	RR)				
Molde Nº	-		-		26	1	1		34	J.IC)	No.		10	- 1
Número de capas		7 - 5	5					5		-		5	-	
Número de golpes		- 2	56					25				10		
Condición de la muestra	V .	4	NO SA	TURADO	-	URADO	NOS	TURADO	_	URADO	NOS	ATURADO	SATURADO	
Peso suelo + molde (gr.)				.090			-	.880	D/11	CICIDO	-	.540	SAI	JIVADO
Peso molde (gr.)				003				.114	1			974	1	
Peso suelo compactado (gr.) Volumen del molde (cm³) Densidad húmeda (gr./cm²)			4,	087				766	1			566	1	
		V	2,	135	100	1 1	-	.098	1508			.136	1	
			1.	914			-	795	12.35			669		
Densidad Seca (gr./cm3)			1.752					652	- 1		-	553		1000
00 - N/- LO	- France		-0.000		CON	TENIDO D			Jan She		-25		-	
'eso de tara (gr.)			98,4		/		92.5				95.5			
Tara + suelo húmedo (gr.)		-	420.2				400.5		XA		390.5			
Tara + suelo seco (gr.)			39	3.0			31	76.0	1			70.0		4.
eso de agua (gr.)		- 19	2	7.2	-			24.5				20.5		1 20
Peso de suelo seco (gr.)	10	2	29	4.6			28	33.5	整 计 一次			74.5		
Humedad (%)	A 20	12000	9	0.2				3.6	WALK.	and the same	W.Bill	7.5		
A	100	- 1		1 1 1	1.00	EXPAN	SIÓN		777	nunt la	4 9			ENTRY
Fecha	Hora	Tiempo	Dial		Expansión		Dial		Exp	ansión	Dial		Expansión	
40-7		Hr		.01"	mm	%	-		mm	%	Diai		mm %	
18-Oct	11:00	0		0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00 -	0.00
18-Oct	11:00	24		0.00	0.00	0.00	(0.04	0.00	0.00		0.06	0.00	0.00
19-Oct	11:00	48		0.06	0.00	0.00		0.06	0.00	0.00		0.08	0.00	0.00
19-Oct	11:00	72	-	0.07	0.00	0.00		0.08	0.00	0.00		0.08	0.00	0.00
20-Oct	11:00	96		0.09	0.00	0.00	(0.11	0.00	0.00	D/- 119	0.12	0.00	0.00
			1	1	1	PENETR	ACIÓN	7	32.	30	17			THE REAL PROPERTY.
Penetración	Carga S	tandard			Nº 26				Nº 34	200	Molde		N° 42	Ulan K
	(kg/c			arga	-	ección	_ C	arga		ección	C	arga	Corre	ección
(pulg.)	~		kg	kg/cm ²	kg/cm ²	CBR %	kg	kg/cm ²	kg/cm ²	CBR %	kg	kg/cm ²	kg/cm ²	CBR %
0.025	V.		51	2.5			34	1.7	Service y	1000	23	1.1		V 35
0.050	1.00		71	3.5	30-7		48	2,4		138	32	1.6	2500	138
0.075	18.3		113	5.6		Editi	76	3.7			51	2,5	100	132
	70.0	000	162	8.0	9.1	13.0	109	5.4	6.1	8.7	73	3.6	4.0	5.7
0.150		3 7 5 7	263	13.0			177	8.8	40		119	5.9	V I THE	
0.200	105.	000	415	20.5	18.6	17.7	279	13.8	12,6	12.0	187	9.3	7.8	7.4
0,300			577	28.6			388	19.2			261	12.9		
0,400		- 57	1100	54.5			739	36.6	- No.		497	24.6	126	

OBSERVACIONES:

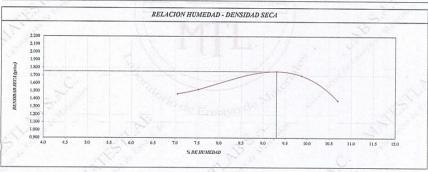
* Muestra tomada en campo por el solicitante y ensayadas por el personal de Matestlab SAC

Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

975232841 922318222

Código	CS-FO-02
Versión	01
Fecha	18-10-2022
Página	1 de 1

SOLICITANTE UBICACIÓN DE PROYECTO MATERIAL

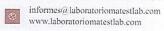

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ABCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUA/LAS 2022" : JHON YEROVI ALTAMIRANO VILLENA/FREDY UTANI HUASCO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. : MATERIAL PROPIO

REGISTRO Nº: MTL22 -TS - 531 MUESTREADO POR MATESTLAB SAC ENSAYADO POR FECHA DE ENSAYO P. ESCOBEDO 18/10/2022 TURNO

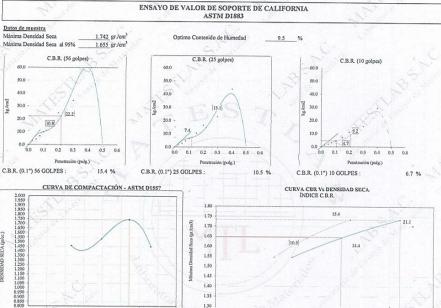
IDENTIFICACIÓN DE MUESTRA :M10%
SONDAJE / CALICATA :-N° DE MUESTRA :1
PROGRESIVA :--

PROFUNDIDAD NORTE ESTE COSTA

	ENSAYO I		ION - PROCTOR I D1557 / ASTM D	MODIFICADO PARA 1883	CBR	
		Volumen Molde Peso Molde	956 4315	cm³ gr.		W. 12
NUMERO DE ENSAYOS		1	2	3	4 3	- 5
Peso Suelo + Molde	gr.	5,815	5,880	6,100	5,778	7
Peso Suelo Humedo Compactado	gr.	1,500	1,565	1,785	1,463	
Peso Volumetrico Humedo	gr.	1.569	1.637	1,867	1,530	3
Recipiente Numero		W1	Y2	U5	L5	
Peso de la Tara	gr.	75.4	92.6	95.2	99.2	
Peso Suelo Humedo + Tara	gr.	335.1	328.5	380.2	342.5	
Peso Suelo Seco + Tara	gr.	318.0	312.0	354.6	319.0	
Peso del agua	gr.	17.1	16.5	25.6	23.5	
Peso del suelo seco	gr.	243	219	259	220	
Contenido de agua	%	7.0	7.5	9.9	10.7	
Densidad Seca	gr/cc	1,466	1.523	1,699	1.383	


OBSERVACIONES:

nal de Matestlab SAC



Código CS-FO-02 INFORME VALOR DE SOPORTE DE CALIFORNIA - CBR 01 Fecha 20-10-2022 Página I de l

MTL22 -TS - 531 : "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022" REGISTRO Nº: MUESTREADO POR MATESTLAB SAC : JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO : INSTALACIONES DE LABORATORIO MATESTLAB S.A.C. : MATERIAL PROPIO ENSAYADO POR P. ESCOBEDO FECHA DE ENSAYO 20/10/2022 TURNO PROFUNDIDAD NORTE ESTE COSTA

OBSERVACIONES:

C.B.R. (100% M.D.S.) 0.1": C.B.R. (95% M.D.S.) 0.1":

15.4

%

% DE HUMEDAD

1.35 1.30

C.B.R. (100% M.D.S.) 0.2": C.B.R. (95% M.D.S.) 0.2":

21.1 14.4

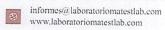
Jr. Apurimae N°3263, Urb. Perú, San Martin de Porres

975232841 922318222

_	The state of the s	
-	Código	CS-FO-02
1	Versión	01
	Fecha	20-10-2022
3	Página	1 de 1

PROYECTO	: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022"		TRO Nº: FREADO POR	MTL22 -TS - 531 MATESTLAB SAC	
SOLICITANTE	: JHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO	ENSAY	ADO POR	P. ESCOBEDO	-
UBICACIÓN DE PROYECTO	: INSTALACIONES DE LABORATORIO MATESTLAB S.A.C.	FECHA	DE ENSAYO		-
MATERIAL	: MATERIAL PROPIO	TURNO		Diurno	-
IDENTIFICACIÓN DE MUESTRA	:MI 5%	PROFU	NDIDAD	:AU - a	-
SONDAJE / CALICATA	F	NORTE			-
N° DE MUESTRA	<u>:1</u>	ESTE		1-2	_
PROGRESIVA		COSTA		;	_

				NEANO	DEMAK	00 00 00	22022	100			-	7.7			
C -				NSAYU	DE VAL	OR DE SO ASTM		E DE CA	LIFORN	IA					
			CA	LCULO DI	E LA REL	ACIÓN DE	SOPOR	TE CALLE	DNIA (C	D D)					
Molde N°			-		26	On the	E SOPORTE CALIFORNIA (C.B.R.)								
Número de capas	1	7	5 5			-		5		-		42			
Número de golpes	200		56					25				5			
Condición de la muestra	1 4	-	NO SA	TURADO	-	URADO	NO.C.	ATURADO	SATURADO		210.0		10		
Peso suelo + molde (gr.)	m 2 5		1	.050	3/11	CICADO	-	850	SAI	UKADO		TURADO	SAT	URADO	
Peso molde (gr.)			-	003				114	-			,520	1	<u> </u>	
Peso suelo compactado (047				.736	1			974	1		
Volumen del molde (cm3			-	135				.098				546	472		
Densidad húmeda (gr./cm			-	896				781	1000		-	136			
Densidad Seca (gr./cm³)				735	1			.644	- 10			660	-		
Constitute Section (Sistem)		A.	155	CON	NTENIDO D			Name of Street		- 1.	545	1			
Peso de tara (gr.)	140.00	100	0	5.5	CON	I ENIDO D	1000000	-	_		The same of	100	_	76.50	
Tara + suelo húmedo (gr.)		380.4					90.4 450.2				100.0				
Tara + suelo seco (gr.)			356.2				***********	422.5				420.1			
Peso de agua (gr.)		- 64	24.2		-	-			1	- V	398.0		_	1	
Peso de suelo seco (gr.)	100	N N		0.7	_			32.1	-			2.1			
Humedad (%)				1.3				-			***************************************	08.0			
- A	7	7 3	-	1 11 11	-	EXPAN		3.3	The same of the sa			7.4			
	-0-	Tiempo	Т	Dial	Exp	ansión	With the same of	- N	Eve	ansión			-		
Fecha		Hr	0.01"		mm			Dial		%	Dial		Expansión		
18-Oct	11:00	0	0	1.00	0.00	0.00		0.00	0,00	0.00	-	0.00	mm	%	
18-Oct	11:00	24	0	.00	0.00	0.00	Property and the second	0.04	0.00	0.00	0.06		0.00	- 0.00	
19-Oct	11:00	48	0	.06	0.00	0,00		0.06	0.00	0.00		0.08	0.00	0.00	
19-Oct	11:00	72		0.07	0.00	0.00	-	0.08	0.00	0.00		0.08	0.00	0.00	
20-Oct	11:00	96	0	1.09	0.00	0.00		0.11	0.00	0.00		0.12	0.00	0.00	
					0.00	PENETR			0.00	0.00		7.12	0.00	0.00	
	No. of the last of	No. of the last of	-0.0	Molde	N° 26	PENEIR	ACION	Molde	Nº 34	1		24.11	210 14		
Penetración	Carga S		C	arga		ección		arga		ección	-		Nº 42		
(pulg.)	(kg/c	m")	kg	kg/cm ²	kg/cm ²	CBR %	kg	kg/cm ²	kg/cm ²		-	arga		ección	
0.025	DV 33	- TO THE	61	3.0	KgCiil	CDR 78	41	2.0	kg/cm"	CBR %	kg 28	kg/cm²	kg/cm ²	CBR %	
0.050	-C 1500		85	4.2	200	1	57	2.8	-	-	39	1.4			
0.075	12.5		135	6.7		5 As 50	91	4.5	-	1	61	1.9		-	
0.100	70.0	00	194	9.6	10.8	15.4	131	6.5	7.4	10.5	88	4.3	4.7	-	
0.150			316	15.6			212	10.5	1.7	10.5	143	7.1	4.7	6.7	
0.200	105.0	000	498	24.6	22.2	21.1	334	16.6	15.1	14,4	225	11.1	0.0	-	
0.300			693	34.3			466	23.1	13.1	19.4	313	15.5	9.2	8.8	
0.400		- 14	1320	65.3			887	43.9			596		181	-	
0.500				0.0		1	007	0.0	-		390	29.5		-	


OBSERVACIONES:

* Muestra tomada en campo por el solicitante y ensayadas por el personal de Matestlab SAC

Ī	Código	CS-FO-02			
	Versión	01			
	Fecha	18-10-2022			
	Página	1 de l			

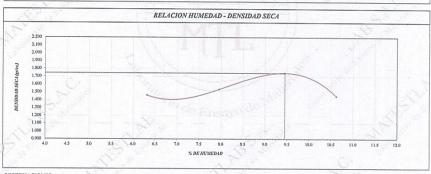
PROYECTO SOLICITANTE UBICACIÓN DE PROYECTO MATERIAL

: "INFLUENCIA DE LA ADICIÓN DE CENIZA DE LEÑO DE CIPRÉS EN LA SUBRASANTE ARCILLOSA EN LA CARRETERA MATAPUQUIO-COLLPA ANDAHUAYLAS 2022"

JEHON YEROVI ALTAMIRANO VILLENA / FREDY UTANI HUASCO

: INSTALACIONES DE LABORATORIO MATESTLAB S.A.C.

: MATERIAL PROPIO


REGISTRO Nº: MUESTREADO POR ENSAYADO POR FECHA DE ENSAYO TURNO

MTL22 -TS - 531 MATESTLAB SAC P. ESCOBEDO 18/10/2022 Diurno

IDENTIFICACIÓN DE MUESTRA :MI 5%
SONDAJE / CALICATA :-N* DE MUESTRA :1
PROGRESIVA :--

PROFUNDIDAD NORTE ESTE COSTA

ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO PARA CBR ASTM D1557 / ASTM D1883								
2A 38		Volumen Molde Peso Molde	956 4315	cm³		SV S		
NUMERO DE ENSAYOS		N 1	2	3	4	5		
Peso Suelo + Molde	gr.	5,800	5,900	6,140	5,850	7		
Peso Suelo Humedo Compactado	gr.	1,485	1,585	1,825	1.535			
Peso Volumetrico Humedo	gr.	1.553	1.658	1,909	1.606	0.00		
Recipiente Numero		A7	B5	L7	T4			
Peso de la Tara	gr.	70,5	95.2	100.5	92.5			
Peso Suelo Humedo + Tara	gr.	336,5	319.2	355.6	342.5			
Peso Suelo Seco + Tara	gr.	320.7	302.7	333.6	318.5			
Peso del agua	gr.	15.8	16.5	22.0	24.0			
eso del suelo seco	gr.	250	208	233	226			
Contenido de agua	%	6.3	8.0	9.4	10.6			
Densidad Seca	gr/cc	1,461	1.536	1.744	1,452			

OBSERVACIONES: * Muestra tomada en ca

	MATESTLAB S.A.C	
TÉCNICO-LEM	JEFE-LEM	CÓC-TEM
MATES LAB S.A.C.	MATESTLAB S.A.C. KELY YANMA TINOCO LOZADA HOGBERG COLL ROSE HEROCOLL RO	MATESTLAB S.A.C. RUC 20084739472 NICOLLE 20082ARRETO

Jr. Apurimac N°3263, Urb. Perú, San Martin de Porres

975232841 922318222

Anexo 4 Panel fotográfico

Recolección de leño de ciprés

Recolección de leño de ciprés

Calcinación del leño de ciprés

Extracción de muestras de suelo

Ensayos de laboratorio

Ensayos de laboratorio

Ensayos de laboratorio

Ensayos de laboratorio

Ensayos de laboratorio

