

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Eléctrica

Tesis

Estudio de coordinación de protecciones de una subestación de distribución eléctrica perteneciente a una planta de refinación ubicada a 100 m.s.n.m. usando el software ETAP

Christian Anibal Chicana Diaz

Para optar el Título Profesional de Ingeniero Electricista

Arequipa, 2023

INFORME DE CONFORMIDAD DE ORIGINALIDAD DE TESIS

Α	:	Dr. Felipe Néstor Gutarra Meza Decano de la Facultad de Ingeniería
DE	:	Alberto Sergio Tejada Rojas Asesor de tesis
ASUNTO	:	Remito resultado de evaluación de originalidad de tesis
FECHA	:	31 de diciembre de 2023

Con sumo agrado me dirijo a vuestro despacho para saludarlo y en vista de haber sido designado asesor de la tesis titulada: "ESTUDIO DE COORDINACIÓN DE PROTECCIONES DE UNA SUBESTACIÓN DE DISTRIBUCIÓN ELÉCTRICA PERTENECIENTE A UNA PLANTA DE REFINACIÓN UBICADA A 100 M. S. N. M. USANDO EL SOFTWARE ETAP", perteneciente al estudiante Christian Aníbal Chicana Díaz, de la E.A.P. de Ingeniería Eléctrica; se procedió con la carga del documento a la plataforma "Turnitin" y se realizó la verificación completa de las coincidencias resaltadas por el software dando por resultado 19 % de similitud (informe adjunto) sin encontrarse hallazgos relacionados a plagio. Se utilizaron los siguientes filtros:

 Filtro de exclusión de bibliografía 	SI X	NO
 Filtro de exclusión de grupos de palabras menores (Nº de palabras excluidas: 0) 	SI	NOX
• Exclusión de fuente por trabajo anterior del mismo estudiante	SI X	NO

En consecuencia, se determina que la tesis constituye un documento original al presentar similitud de otros autores (citas) por debajo del porcentaje establecido por la Universidad.

Recae toda responsabilidad del contenido de la tesis sobre el autor y asesor, en concordancia a los principios de legalidad, presunción de veracidad y simplicidad, expresados en el Reglamento del Registro Nacional de Trabajos de Investigación para optar grados académicos y títulos profesionales – RENATI y en la Directiva 003-2016-R/UC.

Esperando la atención a la presente, me despido sin otro particular y sea propicia la ocasión para renovar las muestras de mi especial consideración.

Atentamente,

La firma del asesor obra en el archivo original (No se muestra en este documento por estar expuesto a publicación)

DECLARACIÓN JURADA DE AUTENTICIDAD

Yo, Christian Aníbal Chicana Díaz, identificado(a) con Documento Nacional de Identidad No. 40587408, de la E.A.P. de Ingeniería Eléctrica de la Facultad de Ingeniería la Universidad Continental, declaro bajo juramento lo siguiente:

- La tesis titulada: "ESTUDIO DE COORDINACIÓN DE PROTECCIONES DE UNA SUBESTACIÓN DE DISTRIBUCIÓN ELÉCTRICA PERTENECIENTE A UNA PLANTA DE REFINACIÓN UBICADA A 100 M. S. N. M. USANDO EL SOFTWARE ETAP", es de mi autoría, la misma que presento para optar el Título Profesional de Ingeniero Electricista.
- 2. La tesis no ha sido plagiada ni total ni parcialmente, para la cual se han respetado las normas internacionales de citas y referencias para las fuentes consultadas, por lo que no atenta contra derechos de terceros.
- La tesis es original e inédita, y no ha sido realizado, desarrollado o publicado, parcial ni totalmente, por terceras personas naturales o jurídicas. No incurre en autoplagio; es decir, no fue publicado ni presentado de manera previa para conseguir algún grado académico o título profesional.
- 4. Los datos presentados en los resultados son reales, pues no son falsos, duplicados, ni copiados, por consiguiente, constituyen un aporte significativo para la realidad estudiada.

De identificarse fraude, falsificación de datos, plagio, información sin cita de autores, uso ilegal de información ajena, asumo las consecuencias y sanciones que de mi acción se deriven, sometiéndome a las acciones legales pertinentes.

26 de diciembre de 2023.

La firma del autor y del asesor obra en el archivo original (No se muestra en este documento por estar expuesto a publicación)

ESTUDIO DE COORDINACIÓN DE PROTECCIONES DE UNA SUBESTACIÓN DE DISTRIBUCIÓN ELÉCTRICA PERTENECIENTE A UNA PLANTA DE REFINACIÓN UBICADA A 100 M. S. N. M. USANDO EL SOFTWARE ETAP

INFORME DE ORIGINALIDAD 9% FUENTES DE INTERNET PUBLICACIONES TRABAJOS DEL INDICE DE SIMILITUD ESTUDIANTE FUENTES PRIMARIAS tesis.ipn.mx 3% 1 Fuente de Internet 2% www.scribd.com 2 Fuente de Internet hdl.handle.net 2% 3 Fuente de Internet repositorio.unap.edu.pe 1% 4 Fuente de Internet bibdigital.epn.edu.ec 1% 5 Fuente de Internet repositorio.uncp.edu.pe 1% 6 Fuente de Internet

Submitted to Universidad Continental 1% 7 Trabajo del estudiante idoc.pub 1% 8

Fuente de Internet

9	imseingenieria.blogspot.com Fuente de Internet	1 %
10	www.paraquesirveweb.com	1%
11	repositorio.continental.edu.pe	<1%
12	1library.co Fuente de Internet	<1%
13	dspace.ups.edu.ec	<1%
14	www.theibfr.com Fuente de Internet	<1%
15	repositorio.untels.edu.pe	<1%
16	Vsip.info Fuente de Internet	<1%
17	dspace.ucuenca.edu.ec	<1%
18	repositorio.utc.edu.ec	<1%
19	Submitted to Universidad Politecnica Salesiana del Ecuado Trabajo del estudiante	<1%

20 repositorio.une.edu.pe

C			 100 100 100	
	-	-		
a set set as	to here in the other	1 mar 1	 	The Rev

	Fuente de Internet	<1%
21	www.schneider-electric.com.ar	<1%
22	archive.org Fuente de Internet	<1%
23	Submitted to Universidad de Oviedo Trabajo del estudiante	<1%
24	repositorio.unal.edu.co	<1%
25	harmonic.upc.es	<1%
26	www.slideshare.net	<1%
27	Submitted to Universidad Cesar Vallejo Trabajo del estudiante	<1%
28	Submitted to Universidad de Málaga - Tii Trabajo del estudiante	<1%
29	WWW.cne.cl Fuente de Internet	<1%
30	gardentasuna.bizkaia.eus	<1%
31	www.ummto.dz Fuente de Internet	<1%

32	www.coursehero.com Fuente de Internet	<1%
33	repositorio.uss.edu.pe Fuente de Internet	<1%
34	www.gob.mx Fuente de Internet	<1%
35	repositorio.ucv.edu.pe Fuente de Internet	<1%
36	www.repositorio.usac.edu.gt	<1%
37	Submitted to Escuela Politecnica Nacional Trabajo del estudiante	<1%
38	Submitted to Tecsup Trabajo del estudiante	<1%
39	Submitted to Universidad Europea de Madrid Trabajo del estudiante	<1%
40	vdocuments.mx Fuente de Internet	<1%
41	www.juntadeandalucia.es	<1%
42	es.slideshare.net Fuente de Internet	<1%
43	İSSUU.COM Fuente de Internet	<1%

44	electricidad.utpuebla.edu.mx	<1%
45	tesis.ucsm.edu.pe Fuente de Internet	<1%
46	www.tecsaqro.com.mx	<1%
47	Submitted to Universidad Nacional del Centro del Peru Trabajo del estudiante	<1%
48	repositorio.usm.cl Fuente de Internet	<1%
49	vdocumento.com Fuente de Internet	<1%
50	repositorio.ujcm.edu.pe Fuente de Internet	<1%
51	repositorio.unsaac.edu.pe	<1%
52	www.ptolomeo.unam.mx:8080	<1%
53	repositorio.uap.edu.pe	<1%
54	livrosdeamor.com.br Fuente de Internet	<1%

55

Submitted to Engineers Australia Trabajo del estudiante

		<1%
56	Christophe Prévé. "Protection of Electrical Networks", Wiley, 2006 Publicación	<1%
57	Submitted to Universidad Tecnologica del Peru Trabajo del estudiante	<1%
58	repositorio.uns.edu.pe	<1%
59	renati.sunedu.gob.pe Fuente de Internet	<1%
60	departamento.us.es	<1%
61	pt.scribd.com Fuente de Internet	<1%
62	dokumen.pub Fuente de Internet	<1%
63	e-management.mx Fuente de Internet	<1%
64	repositorio.upse.edu.ec	<1%
65	www.pemex.com Fuente de Internet	<1%

66	WWW.travimus.com	<1%
67	docplayer.es Fuente de Internet	<1%
68	doku.pub Fuente de Internet	<1%
69	dialnet.unirioja.es	<1%
70	Submitted to Universidad Nacional de Colombia Trabajo del estudiante	<1%
71	tesis.pucp.edu.pe	<1%
72	www.dof.gob.mx Fuente de Internet	<1%
73	www.oatioasis.com	<1%
74	biblioteca.usac.edu.gt Fuente de Internet	<1%
75	repositorio.uandina.edu.pe	<1%
76	repositorio.upao.edu.pe	<1%

77	ECOGESTION CONSULTORES S.A.C "DIA del Proyecto de Inversión Denominado Planta Precor - Chilca-IGA0019213", R.D. N° 00116- 2021-PRODUCE/DGAAMI, 2022 Publicación	<1%
78	ENVIRONMENTAL HYGIENE & SAFETY SRLTDA. "Actualización del Plan de Manejo Ambiental de la DIA de la Planta N° 1 - Lurín- IGA0017768", R.D. N° 00124-2020- PRODUCE/DGAAMI, 2022 Publicación	<1%
79	apirepositorio.unh.edu.pe	<1%
80	aprenderly.com Fuente de Internet	<1%
81	dspace.unitru.edu.pe Fuente de Internet	<1%
82	es.scribd.com Fuente de Internet	<1%
83	repositorio.utelesup.edu.pe	<1%
84	ri.ues.edu.sv Fuente de Internet	<1%
85	roderic.uv.es Fuente de Internet	<1%

86	www.emprender-facil.com	<1%
87	Submitted to BENEMERITA UNIVERSIDAD AUTONOMA DE PUEBLA BIBLIOTECA Trabajo del estudiante	<1%
88	Submitted to Universidad Andina Nestor Caceres Velasquez Trabajo del estudiante	<1%
89	ecosafetech.in Fuente de Internet	<1%
90	edoc.pub Fuente de Internet	<1%
91	fdocuments.es Fuente de Internet	<1%
92	fr.slideshare.net Fuente de Internet	<1%
93	revistas.utb.edu.ec	<1%
94	ri2.bib.udo.edu.ve:8080	<1%
95	upc.aws.openrepository.com	<1%
96	www.juridicas.com	<1%

1 % 1 %
1%
1
%
1%
1%
1%
1%
1%
1%
1%
1%

109	repository.unad.edu.co Fuente de Internet	<1%
110	talenta.usu.ac.id	<1%
111	voterodriguez.com Fuente de Internet	<1%
112	webquery.ujmd.edu.sv Fuente de Internet	<1%
113	www.greatwall-lubricant.com	<1%
114	www.mediate.com	<1%
115	www.mundohvacr.com.mx	<1%
116	www.redepapa.org	<1%
117	www.sunat.gob.pe	<1%
118	Juan David Vargas, Gustavo Ramos. "Fault locator implementation for radial distribution systems", IEEE Latin America Transactions, 2014 Publicación	<1%
119	doaj.org Fuente de Internet	<1%

120	futur.upc.edu Fuente de Internet	<1%
121	qdoc.tips Fuente de Internet	<1%
122	coggle.it Fuente de Internet	<1%
123	documentop.com Fuente de Internet	<1%

Excluir citas	Activo	Excluir coincidencias	Apagado
Excluir bibliografía	Activo		

-

ÍNDICE

RESUMEN	
INTRODUCCIÓN	
CAPÍTULO I: PLANTEAMIENTO DEL ESTUDIO	29
1.1. Planteamiento del problema y formulación del problema	29
1.1.1. Problema general	31
1.1.2. Problemas específicos	31
1.2. Objetivos	
1.2.1. Objetivo general	
1.2.2. Objetivos	
1.3. Justificación e importancia	
1.3.1. Justificación práctica	33
1.3.2. Justificación metodológica	
1.3.3. Justificación social	33
1.3.4. Limitación de la presente investigación	33
1.4. Hipótesis y variables	34
CAPÍTULO II: MARCO TEÓRICO	37
2.1 Antecedentes	37
2.2 Bases teóricas	41
2.2.2. Estructura general de una red de distribución industrial	41
2.2.3. Sistemas de puesta a tierra	53
2.2.4. Principales fallas que ocurren en sistemas eléctricos	57
2.2.6. Método de cálculo de la corriente de cortocircuito	61
2.2.7. Importancia del cálculo mínimo de cortocircuito para la selectividad de la	91
2.2.8. Funciones de protección y sus aplicaciones	93
2.2.11. Objetivos básicos de protección del sistema	108
CAPÍTULO III: METODOLOGÍA	119
3.1 Tipo de investigación	119
3.2. Nivel de investigación	119
3.3. Diseño de la investigación	119
3.4. Población y muestra	120

3.4.1. Población	
3.4.2. Muestra	
3.5. Técnicas e instrumentos de recolección de datos	
3.6. Diseño de ingeniería	
CAPÍTULO IV: RESULTADOS Y DISCUSIÓN	
4.1. Descripción del sistema	
4.1.1. Datos del sistema eléctrico	
4.1.2. Diagrama unifilar	
4.2. Software utilizado	
4.3. Estudios y resultados	
4.3.1. Estudio de flujo de potencia	
4.3.2. Estudio de corto circuito	
4.3.3. Estudio de coordinación de protecciones	
4.4. Discusión de resultados	
4.4.1. Discusión de resultados del análisis flujo de potencia	
4.4.2. Discusión de resultados de cortocircuito	
4.4.3. Discusión de resultados de coordinación	
CAPÍTULO V: CONCLUSIONES Y RECOMENDACIONES	
5.1. Conclusiones	
5.1.1 Conclusión general	
5.1.2. Conclusiones específicas	
5.2. Recomendaciones	251
REFERENCIAS BIBLIOGRÁFICAS	
ANEXOS	

ÍNDICE DE TABLAS

Tabla 1. Operacionalización de las variables	
Tabla 2. Permitividad relativa de los materiales aislantes	76
Tabla 3. Capacitancia de cables blindados EPR individualmente en $\mu F/km$	76
Tabla 4. Capacitancia de cables blindados individualmente PE en μ F/km	76
Tabla 5. Tensiones máximas y mínimas aceptables en barras	
Tabla 6. Perfiles de tensión y factores de potencia	
Tabla 7. Niveles de cortocircuito máximos y mínimos de las fuentes de alimenta	ción eléctrica
Barra A y B de 33KV	
Tabla 8. Funciones de protección según ANSI/IEEE.	131
Tabla 9. Cálculo de parámetros de ajuste para relé R-SE2-A-01.	136
Tabla 10. Cálculo de parámetros de ajuste para relé R-SEP-A-01.	140
Tabla 11. Cálculo de parámetros de ajuste para relé R-SEP-A-02.	144
Tabla 12. Cálculo de parámetros de ajuste para relé R-SE1-A-01.	148
Tabla 13. Cálculo de parámetros de ajuste para relé R-SE2-A-02.	
Tabla 14. Cálculo de parámetros de ajuste para relé R-SE3-A	156
Tabla 15. Cálculo de parámetros de ajuste para relé R-SE4-A	160
Tabla 16. Cálculo de parámetros de ajuste para relé R-SE1-A-02.	164
Tabla 17. Cálculo de parámetros de ajuste para relé R-SE5-A	168
Tabla 18. Cálculo de parámetros de ajuste para relé R-S01-A.	172
Tabla 19. Cálculo de parámetros de ajuste para relé R-SET-A.	176
Tabla 20. Cálculo de parámetros de ajuste para relé R-SEP-B-01.	
Tabla 21. Cálculo de parámetros de ajuste para relé R-SE1-B-01	
Tabla 22. Cálculo de parámetros de ajuste para relé R-SE2-B.	
Tabla 23. Cálculo de parámetros de ajuste para relé R-SE3-B.	
Tabla 24. Cálculo de parámetros de ajuste para relé R-SE4-B.	196
Tabla 25. Cálculo de parámetros de ajuste para relé R-SE5-B.	
Tabla 26. Cálculo de parámetros de ajuste para relé R-SE1-B-02	
Tabla 27. Cálculo de parámetros de ajuste para relé R-SO1-B	
Tabla 28. Cálculo de parámetros de ajuste para relé R-SET-B	212
Tabla 29. Cálculo de parámetros de ajuste para relé R-SEP-B-02.	216

ÍNDICE DE FIGURAS

Figura 1. Falla trifásica aguas abajo de interruptor 52_A30
Figura 2. Ajuste de parámetro de corriente R_SEP_A
Figura 3. Registro de corriente y tiempo de falla
Figura 4. Estructura de una red de distribución
Figura 5. Conexión de un alimentador único43
Figura 6. Conexión en anillo
Figura 7. Conexión en paralelo
Figura 8. Ejemplo de disposición de una subestación de distribución en anillo
Figura 9. Una barra colectora, una fuente de suministro
Figura 10. Una barra colectora sin acoplador, dos fuentes de suministro
Figura 11. Dos secciones de barra con acoplador, dos fuentes de suministro
Figura 12. Una barra colectora sin acoplador, tres fuentes de suministro
Figura 13. Tres secciones de bus con acopladores, tres fuentes de suministro
Figura 14. Esquema de una red radial con dos alimentadores simples
Figura 15. Esquema red radial de doble alimentación sin acoplador
Figura 16.Esquema de red radial de doble alimentador con acoplador
Figura 17. punto neutral de un sistema estrella trifásico
Figura 18. Sistemas de puesta a tierra
Figura 19. Cortocircuito fase-tierra
Figura 20, Cortocircuito entre fases libre de tierra
Figura 21. Cortocircuitos trifásicos
Figura 22. Diagrama monofásico equivalente de la red aguas arriba del cortocircuito
Figura 23. Impedancia equivalente de dos enlaces paralelos idénticos
Figura 24. Desglose de un sistema trifásico desequilibrado en la suma de tres sistemas
trifásicos equilibrados: secuencia positiva, secuencia negativa y secuencia cero
Figura 25. Diagramas monofásicos positivo, negativo y de secuencia cero de red equivalente
Figura 26. Impedancia de secuencia cero de transformadores detectada por el secundario73
Figura 27. Impedancia de secuencia cero de puesta a tierra del neutro74
Figura 28. Cable blindado colectivamente75
Figura 29. Cable blindado individualmente75

Figura 30. Circulación de corrientes de falla a tierra	79
Figura 31. Diagrama de secuencia cero de una red afectada por una falla fase-tierra	80
Figura 32. Diagrama de secuencia cero monofásico cuando el neutro está directamente	
conectado a tierra	83
Figura 33. Dispersión de la corriente capacitiva en una red con varios alimentadores	85
Figura 34. Valor de la corriente de reconexión a través de las capacitancias de fase sana.	86
Figura 35. Bucle de falla para un cortocircuito entre fases libre de tierra.	89
Figura 36. Sobretensiones transitorias en una red sin conexión a tierra o con impedancia	
limitada a tierra cuando ocurre una falla de fase a tierra	92
Figura 37. Conexión de un relé de sobrecorriente sin alimentación auxiliar	94
Figura 38. Conexión de un relé de sobrecorriente con alimentación auxiliar	94
Figura 39. Retardo de tiempo independiente.	95
Figura 40. Protección de tiempo inverso.	95
Figura 41. Curvas estándar inversa, muy inversa y extremadamente inversa en $T = 1$ seg	undo.
	96
Figura 42. Instrumento de medición de corriente residual usando una balanza central	97
Figura 43. Instrumento de medición de corriente residual que utiliza tres transformadore	s de
corriente	98
Figura 44. Esquema de protección contra fallas entre fases y curva de selectividad	99
Figura 45. Esquema de protección para fallas a tierra teniendo una resistencia conectada	en el
neutro del transformador y curvas de selectividad	100
Figura 46. Dos secciones de línea separadas por un transformador.	102
Figura 47. Selectividad amperimétrica entre dos tramos de línea separados por un	
transformador	103
Figura 48. Selectividad graduada en el tiempo.	104
Figura 49. Intervalo de selectividad	105
Figura 50. Selectividad graduada en el tiempo con protección de sobrecorriente de tiemp	00
independiente	106
Figura 51. Selectividad graduada en el tiempo con protección de sobrecorriente de tiemp	00
inverso	107
Figura 52. Diseño de ingeniería.	121
Figura 53. Diagrama Unifilar actual de la SEP 33KV.	123
Figura 54. Parámetros de ajuste R-SE2-A-01.	137
Figura 55. Coordinación de protección "SE2-A-01" Y "52A"	138
Figura 56. Resultados de la secuencia de eventos de protección en el alimentador SE2-A	01.
	139
Figura 57. Parámetros de ajuste R-SEP-A-01	141

Figura 58	. Coordinación de protección "SEP-A-01" Y "52A"1	42
Figura 59	. Resultados de la secuencia de eventos de protección en el alimentador SEP-A-01	ι.
		43
Figura 60	. Parámetros de ajuste R-SEP-A-021	45
Figura 61	. Coordinación de protección "SEP-A-02" Y "52A"1	46
Figura 62	. Resultados de la secuencia de eventos de protección en el alimentador SEP-A-02	2.
		47
Figura 63	. Parámetros de ajuste R-SE1-A-011	49
Figura 64	. Coordinación de protección "SE1-A-01" Y "52A"1	50
Figura 65	. Resultados de la secuencia de eventos de protección en el alimentador SE1-A-01	•
 Figura 66	. Parámetros de aiuste R-SE2-A-02	.51 53
Figura 67	. Coordinación de protección "SE2-A-02" Y "52A"	54
Figura 68	Resultados de la secuencia de eventos de protección en el alimentador SE2-A-02	2.
0	1	55
Figura 69	. Parámetros de ajuste R-SE3-A 1	57
Figura 70	. Coordinación de protección "SE3-A" Y "52A"1	58
Figura 71	. Resultados de la secuencia de eventos de protección en el alimentador SE3-A 1	59
Figura 72	. Parámetros de ajuste R-SE4-A 1	61
Figura 73	. Coordinación de protección "SE4-A" Y "52A"1	62
Figura 74	. Resultados de la secuencia de eventos de protección en el alimentador SE4-A 1	63
Figura 75	. Parámetros de ajuste R-SE1-A-021	65
Figura 76	. Coordinación de protección "SE1-A-02" Y "52A"1	66
Figura 77	. Resultados de la secuencia de eventos de protección en el alimentador SE1-A-02	2.
		67
Figura 78	. Parámetros de ajuste R-SE5-A 1	69
Figura 79	. Coordinación de protección "SE5-A" Y "52A"1	170
Figura 80	. Resultados de la secuencia de eventos de protección en el alimentador SE5-A 1	171
Figura 81	. Parámetros de ajuste R-S01-A1	173
Figura 82	. Coordinación de protección "S01-A" Y "52A"1	174
Figura 83	. Resultados de la secuencia de eventos de protección en el alimentador SO1-A1	75
Figura 84	. Parámetros de ajuste R-SET-A1	177
Figura 85	. Coordinación de protección "SET-A" Y "52A"1	78
Figura 86	. Resultados de la secuencia de eventos de protección en el alimentador SET-A. 1	179
Figura 87	. Parámetros de ajuste R-SEP-B-011	81
Figura 88	. Coordinación de protección "SEP-B-01" Y "52A"1	82

Figura 89. Resultados de la secuencia de eventos de protección en el alimentador SEP-B-01	
	83
Figura 90. Parámetros de ajuste R-SE1-B-01 1	85
Figura 91. Coordinación de protección "SE1-B-01" Y "52A"1	86
Figura 92. Resultados de la secuencia de eventos de protección en el alimentador SEP-B-01	
	87
Figura 93. Parámetros de ajuste R-SE2-B1	89
Figura 94. Coordinación de protección "SE2-B" Y "52A" 1	90
Figura 95. Resultados de la secuencia de eventos de protección en el alimentador SE2-B1	91
Figura 96. Parámetros de ajuste R-SE3-B1	.93
Figura 97. Coordinación de protección "SE3-B" Y "52A" 1	94
Figura 98. Resultados de la secuencia de eventos de protección en el alimentador SE3-B1	95
Figura 99. Parámetros de ajuste R-SE4-B1	97
Figura 100. Coordinación de protección "SE4-B" Y "52A" 1	.98
Figura 101. Resultados de la secuencia de eventos de protección en el alimentador SE4-B. 1	99
Figura 102. Parámetros de ajuste R-SE5-B	201
Figura 103. Coordinación de protección "SE5-B" Y "52A"	202
Figura 104. Resultados de la secuencia de eventos de protección en el alimentador SE5-B.2	203
Figura 105. Parámetros de ajuste R-SE1-B-02	205
Figura 106. Coordinación de protección "SE1-B-02" Y "52A"2	206
Figura 107. Resultados de la secuencia de eventos de protección en el alimentador SE1-B-0	2.
	207
Figura 108. Parámetros de ajuste R-SO1-B2	209
Figura 109. Coordinación de protección "SO1-B" Y "52A"2	209
Figura 110. Resultados de la secuencia de eventos de protección en el alimentador SO1-B.2	211
Figura 111. Parámetros de ajuste R-SET-B2	213
Figura 112. Coordinación de protección "SET-B" Y "52A"2	214
Figura 113. Resultados de la secuencia de eventos de protección en el alimentador SET-B.2	215
Figura 114. Parámetros de ajuste R-SEP-B-022	217
Figura 115. Coordinación de protección "SEP-B-02" Y "52A"2	218
Figura 116. Resultados de la secuencia de eventos de protección en el alimentador SEP-B-0	02.
	219
Figura 117. Esquema de protección de los alimentadores de 33KV2	28
Figura 118. Falla trifásica SE2-A-012	29
Figura 119. Falla trifásica SEP-A-012	230
Figura 120. Falla trifásica SEP-A-022	231
Figura 121. Falla trifásica SE1-A-012	232

Figura 122. Falla trifásica SE2-A-02	
Figura 123. Falla trifásica SE3-A	234
Figura 124. Falla trifásica SE4-A	235
Figura 125. Falla trifásica SE1-A-02	
Figura 126. Falla trifásica SE5-A	237
Figura 127. Falla trifásica SO1-A	238
Figura 128. Falla trifásica SET-A	239
Figura 129. Falla trifásica SEP-B-01	
Figura 130. Falla trifásica SE1-B-01	241
Figura 131. Falla trifásica SE2-B	242
Figura 132. Falla trifásica SE3-B	243
Figura 133. Falla trifásica SE4-B	244
Figura 134. Falla trifásica SE5-B	245
Figura 135. Falla trifásica SE1-B-02	
Figura 136. Falla trifásica SO1-B	247
Figura 137. Falla trifásica SET-B	
Figura 138. Falla trifásica SEP-B-02	

RESUMEN

La presente tesis es un estudio de coordinación de protección de los relés que protegen los alimentadores de 33000 kilovoltios (33KV) ubicados en la subestación eléctrica principal en una planta de refinación de hidrocarburos, debido a la modificación de la topología de su sistema de distribución eléctrica de media tensión.

El objetivo es mejorar la selectividad de los relés de protección calculando los ajustes óptimos para las funciones de sobrecorriente y así garantizar un despeje adecuado y focalizado de las fallas eléctricas que se presenten en los alimentadores de 33KV, salvaguardando un correcto comportamiento del sistema de distribución eléctrico de la refinería.

Utilizando la información técnica recopilada, de la aparamenta eléctrica (aparatos de maniobra, de regulación y control, de medida, etc.) y haciendo uso del software ETAP 20.6.0, se obtuvieron los resultados del análisis del flujo de potencia, corrientes de cortocircuito y la coordinación de protecciones, detectando los valores nominales y fuera de rango frente a condiciones normales y en condiciones de contingencia (fallas eléctricas trifásica, bifásicas y monofásicas) de todo el sistema eléctrico, con lo cual se plantearon diferentes soluciones que permitieron una correcta operación de sistema de protección.

Se calcularon nuevos ajustes de operación para los relés de protección por sobrecorriente de cada alimentador de 33KV optimizando su sensibilidad y selectividad para despejar las fallas eléctricas, el cual fue validado y corroborado en los diferentes escenarios simulados con el software ETAP, obteniéndose resultados satisfactorios. La metodología que se empleó es aplicativa, de nivel explicativo y diseño experimental.

Palabras Clave: niveles de cortocircuito, ajuste de relés, selectividad.

ABSTRACT

The relay in this thesis is a protection coordination study of refiners that protect the 33,000 kilovolt (33KV) feeders located in the main electrical substation in a hydrocarbon refining plant, due to the modification of the topology of its distribution system. electrical. medium voltage.

The objective is to improve the selectivity of the protection relays by calculating the optimal settings for the overcurrent functions, thus guaranteeing an adequate and focused clearance of the electrical faults that occur in the 33KV feeders, safeguarding the correct behavior of the electrical distribution system. . from the refinery.

Using the technical information collected from the electrical equipment (switching, regulation and control devices, measuring devices, etc.) and using the ETAP 20.6.0 software, the results of the analysis of power flow, short-circuit currents and the coordination of protections, detecting the nominal values and out of range against normal conditions and in contingency conditions (three-phase, two-phase and single-phase electrical faults) of the entire electrical system, with which different solutions were proposed that allowed correct operation of protection system.

New operating settings were calculated for the overcurrent protection relays of each 33KV feeder, optimizing their sensitivity and selectivity to clear electrical faults, which was validated and corroborated in the different scenarios simulated with the ETAP software, obtaining satisfactory results. The methodology used is applicative, explanatory level and experimental design.

Keywords: short circuit levels, relay adjustment, selectivity.