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Influence of Axial Load on the Ductility R)
of Type “C” Reinforced Concrete Walls chesk o
with Longitudinal Reinforcement

Variation in the Cores

Meyer David Hilario Martel, Jhon Josue Canchanya Taipe,
Janela Azucena Condor Gonzalez, and Johan James Hinostroza Yucra

Abstract Type “C” shear walls are structural elements with a great capacity to
absorb seismic forces that are commonly used in elevator boxes. The present research
aims to show the effect of the axial load from 980.6 to 7844.8 KN on the ductility of
the walls called (M1) and (M2), also evaluating the ductility in relation to variation
of reinforcement longitudinal in the cores, for which trilinear diagrams of moment—
curvature of both walls were generated. The results showed that the increase in axial
load 1is inversely proportional to the ductility of the wall. On the other hand, the
increase in axial load is directly proportional to the values of moments at each point
of the moment—curvature diagram, but inversely proportional to the curvature at the
points of the yield of steel and exhaustion of the maximum capacity. The increase in
the amount of steel in the cores in the M1 was not optimal, since when comparing
the ductility in both walls, the M1 presents less ductility because there is more steel
in the traction zone.
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1 Introduction

The shear walls have been used especially in high-rise buildings to resist seismic loads
[1]. These walls are critical in seismically active areas since there is an increase in
shear force in the structure [2]. Which are designed to have a no-linear behavior in
severe seismic, where the input seismic energy is absorbed [3].

Likewise, the design of shear walls requires to estimate of their load capacity
as well as their resistance for lateral displacement; in addition, the seismic events
raised have highlighted their seismic performance [4]. However, pre-existing build-
ings show that shear walls lack some ductility [5]. One of the most appropriate
options for concrete structures against seismic loads is to increase their ductility [6].
Due to this, it is necessary to simulate its behavior with greater precision, where
the curvature moment relationship of concrete elements is considered as well as the
stress-deformation relationship of confined and unconfined concrete [7].

Studies of shear walls have been observed in which the curvature moment
decreased when the axial loads increased, resulting in the concrete’s immediate
deformation. Likewise, parameters such as material properties, amount of reinforce-
ment and geometry of the section influence the calculation of the curvature moment
diagram [8].

2 Methodology

In this study, the “C” shaped reinforced concrete walls M1 and M2 were analyzed
with variability in the longitudinal reinforced of the cores. With the intention of
comparing the ductility of both walls with a variation of axial loads from 980.6 to
7844.8 KN, also evaluating the ductility in relation to the change of longitudinal

reinforced in the cores. With a positive “y” eccentricity. Considering f’c 2059.4 N/
cm? and the perfect elastoplastic model of steel with fy 41,187.93 N/cm?.

3 Construction of the Curvature Moment Diagram

The models of idealization of curvature moment allow validating the behavior of
the wall, therefore, in the present study the proposed model from the Book of Eng.
Ottazzi was used, which details the cracking point of the concrete and limits the yield
point that requires variability of the stiffness of the section in study [10]. (See Fig. 1).
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3.1 Hpypothesis to Consider Generating
the Moment—Curvature Diagram

The following points were taken into consideration for the numerical analysis
proposed by the research: The section under analysis is flat and remains flat. There
is no early failure by cutting, or by lateral buckling. The bending tensile strength

of concrete can be estimated as 2+/f /c(%). There is a perfect adhesion between
concrete and steel [10].

3.2 Cracking Point (Point A—Mcr)

The point at which the section under analysis reaches the maximum tensile strength
of the concrete, thus initiating the cracking of the concrete. After this point, the
cracked area of the concrete was neglected in the numerical analysis, so the only
one that provides tensile strength is steel [10]. When comparing the moment of
cracking and the last moment of a wall this is significantly greater than the moment
of cracking which demonstrates low plasticity or seen otherwise allows very little
inelastic deformation [11]. Minimal reinforcement in concrete walls can increase the
cracking moment up to 1.5 times its value [11].

3.3 Creep Point (Point B—My)

Steel creep starting point, the unit deformation of the steel reaches ey =
0.0021(0.21%). One of the most representative states of a moment—curvature
diagram, which precedes the failure point of the section and in turn represents the

end of elastic behavior, relating the yield moment (My) and the creep curvature (¢y)
[10].
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To appreciate the behavior of the concrete wall depends on variables such as the
form of application of loads, and the relationship between steel and concrete, which
1s the reason for the existence of several constitutive laws, therefore, we worked with
the constitutive law of Hognestad that represents the model of stress deformation
related to maximum effort and with a deformation of exhaustion of eo = 0.002 [9].
“Eq. (1) and (2)” defines Hognestad’s proposed constitutive law.

. | 2ec ec\2 | ( kgf
fe= fex ——(—) 28 ). 0 < ec < 0.002 (1)
0 €0 cm?
where:
2% f"c
= 2
€0 e (2)

When performing tests on columns placed vertically with eccentric loads, an
average value of maximum bending stress, f”’, which is equal to 0.85f’c (kgf/cmz)
[9] was found.

Point of Depletion (Point C—Mmax). After exceeding the admissible stresses, the
section does not fail, it still has a reserve that is used in the design for resistance which
we call a point of exhaustion or maximum capacity. The ACI and Peruvian regulations
accept the simplification of an equivalent block of compressions or Whitney rectangle
[10].

3.4 Ductility

Ductility is the property that allows deforming the plastic state without reaching
the fault. Consequently, the ductility of curvature is the ratio of the curvature of
the concrete at its point of exhaustion, which means the concrete has reached a
deformation Ec = 0.003 without any steel failing by breakage and the first creep
of the steel to tension [10]. Ductility is the ability of a material or structure under
inelastic conditions to withstand loads [12]. During an earthquake, the energy is
absorbed by the structure which will be dissipated by the plastic deformation of the
components [13]. “Eq. (3) defines the ductility of the section under analysis”.

pmax
He =
vy

3)
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4 Results

The following figures show the reinforcements used in the M1 and M2 walls (see
Figs. 2 and 3).

The following table shows the summary of the values calculated at each point of
the Moment—curvature of the M1 Diagram (see Table 1).

The following figure shows the moment—curvature diagram as a function of the
variation of the axial load on wall M1 (see Fig. 4).

The following table shows the summary of the values calculated at each point of
the Moment—curvature of the M2 Diagram (see Table 2).

The following figure shows the moment—curvature diagram as a function of the
variation of the axial load on wall M2 (see Fig. 5).

The following tables summarize the ductility calculations in walls M1 and M2 as
a function of the variation of the axial load (see Tables 3 and 4).

The following figure shows the comparison of ductility in walls M1 and M2 as a
function of axial load variation (see Fig. 6).
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Fig. 2 M1 reinforcement proposal 1
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Fig. 3 M2 reinforcement proposal 2

Table 1 Result of generating the moment—curvature diagram with axial load variation of wall 1
Type C

Wall 1 Type C

Axial load Concrete cracking point | Steel creep point Point of failure o
maximum capacity

M cr 0) My Qy M max pmax
KN KN m 103 L  |KNm 103 L  [KNm 1073 L
980.6 1716.05 0.25 4095.38 1.32 5141.38 23.59
1961.2 2036.80 0.33 5114.71 1.38 6169.74 20.23
3922.4 2678.31 0.49 7114.74 1.51 8186.83 15.23
5883.6 3319.76 0.65 9063.59 1.64 10,114.30 12.11
7844.8 3961.23 0.81 10,961.74 1.77 11,950.33 9.88

5 Discussion of Results

When performing an analysis of the formulas used and the results obtained in the
research it was observed that the parameter
area in the direction in which the analysis was performed, when increasing its value

(1)

Cc represents

the distance or compressed
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Momentum variation - curvature with axial load variation in M1
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Fig. 4 Result of generating the moment—curvature with axial load variation of the M1 type C

Table 2 Result of generating the moment—curvature diagram with axial load variation of M2 Type

C
Wall 2 type C
Axial load Concrete cracking point | Steel Creep Point Point of failure o
maximum capacity
M cr 0) My @y M max ¢max
KN KN m 1031 [KNm 10731 |KNm 1073 L
980.6 1700.93 0.26 3683.23 1.30 4441.94 28.36
1961.2 2021.64 0.34 4720.07 1.37 5500.34 22.98
39224 2663.07 0.50 6752.58 1.50 7542.79 17.08
5883.6 3304.49 0.66 8731.02 1.63 9514.16 13.25
7844.8 3945.92 0.82 10,656.90 1.76 11,413.58 10.69

this inversely influences the curvature, in the same way to ductility; In other words,
if the compressed area is larger the ductility will be lower. To increase the ductility
in any section you have to reduce the value of this parameter, for which you had
to increase the amount of steel in the compressed area and increase the f’c, another
option was to increase the width of the compressed area.

The proposal to place more steel in the compressed area is not possible in all cases
since many of the structural elements in which they act forces in flexion or flexo-
compression, these forces act in different directions, which can vary the compressed
area making the steel that was placed to decrease the parameter “c” in that direction
of analysis, It can be more detrimental in a reverse direction since the parameter
“C” depends not only on the width of the compressed zone and the steels in it, but
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Momentum variation -curvature with axial load variation in M2
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Fig. 5 Result of generating the moment—curvature diagram with axial load variation of wall 2
type C

%IZ l‘:’c ﬁ‘f‘ii‘y‘all ITO;SGVSTS“S Axial load (KN) Ductility
980.6 17.88
1961.2 14.61
3922.4 10.08
5883.6 7.39
7844.8 5.58

VTVTI’IIZ:C tiﬁfylazl ITO;‘SCVSIS“S Axial load (KN) Ductility
980.6 21.85
1961.2 16.83
3922.4 11.42
5883.6 8.15
7844.8 6.08

also the steels that are in the tensile zone. Seen another way if there is more steel in
the traction zone, the parameter “c” must have a higher value to balance the internal
forces in the section.
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Ductility vs Axial Load
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Fig. 6 Comparison of the ductility of both diagrams moment—curvature with respect to the
variation of the axial load

6 Conclusion

To sum up, the axial load significantly influences each point of the Moment — Curva-
ture diagram, since in both analyzes as the axial load increases it is necessary to
apply a greater moment to reach the cracking points of the section (Mcr), the yield
point of the steel (My) and point of exhaustion or maximum capacity (Mmax).

(1) In M1 and M2 the (Mcr) with axial load of 980.6 KN. is 1716.04 KN.m and
1700.93 KN.m for axial loads of 1961.2, 3922.4, 5883.6, 7844.8 KN the value
of (Mcr) for M1 increases by 18.69%, 56.07%, 93.45% 130.84% respectively
and for M2 the increase is 18.86%, 56.57%, 94.28% 131.99% respectively.

(2) In M1 and M2 the (My) with axial load of 980.6 KN. is 4095.42 KN.m and
3683.23 KN.m, for the axial loads of 1961.2, 3922.4, 5883.6, 7844.8 KN. the
value of (My) for the first wall increases by 24.89%, 73.72%, 121.31% 167.66%
respectively and for the second wall the increase is 28.15%, 83.33%, 137.05%
189.34% respectively.

(3) In M1 and M2 the (Mmax) with axial load of 980.6 KN. is 5141.35 KN.m
and 4441.94 KN.m, for the axial loads of 1961.2, 3922.4, 5883.6, 7844.8 KN.
the value of (Mmax) for the first wall is increased by 20%, 59.23%, 96.72%
132.44% respectively and for the second wall the increase is 23.83%, 69.81%,
114.19% 156.95% respectively.

(4) It can also be observed that the greater the axial load, the cracking points (Mcr),
and the steel yield point (My) have greater curvature as the axial load increases.

If the diagrams of both walls in the analysis are compared with the same axial load,
the wall with less longitudinal reinforcement in the cores requires a lower moment
value to bring to each point of the diagram, but the curvature at the points of cracking
of the section and of exhaustion or maximum capacity is greater except for the yield
point at which the wall with the greatest reinforcement in the cores has a greater
curvature.

When increasing the value of the axial load the ductility of the wall decreases,
since, for an axial load of 980.6 KN the ductility of the first and second wall is 17.88
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and 21.85, for the axial loads of 1961.2, 3922.4, 5883.6, 7844.8 KN the ductility
in the first wall decreases by 18.28, 43.63, 58.64, 68.77% and in the second wall
decreases by 22.96, 47.73, 62.70 and 72.19%.

Finally, the way in which the amount of steel in the core was increased was not
optimal, since it did not help greatly to increase the ductility of wall 1, and even
this was more harmful. Thanks to the analysis of formulas used and results, it was
concluded that it is necessary to increase the steel in the cores in such a way that,
when performing the analysis in opposite directions, the wall presents a balanced
ductility in both directions.
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