

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Civil

Tesis

Estabilización de la subrasante de suelos arenoso-arcilloso con adición parcial de la ceniza de hoja de cebolla roja en la avenida Paraíso distrito de San Antonio - Moquegua 2023

Robin Rafael Ramos Ramos

Para optar el Título Profesional de Ingeniero Civil

Repositorio Institucional Continental Tesis digital

Esta obra está bajo una Licencia "Creative Commons Atribución 4.0 Internacional".

INFORME DE CONFORMIDAD DE ORIGINALIDAD DE TRABAJO DE INVESTIGACIÓN

A DE	:	Decano de la Facultad de Ingeniería Alejandro Vildoso Flores Asesor de trabajo de investigación			
ASUNTO FECHA	: :	: Remito resultado de evaluación de originalidad de trabajo de investigación			
Con sumo ag de investigac		me dirijo a vuestro despacho para informar que, en mi condicio	źn d	e asesor c	del trabajo
		E LA SUBRASANTE DE SUELOS ARENOSO-ARCILLOSO CON AE DE CEBOLLA ROJA EN LA AVENIDA PARAÍSO DISTRITO DE SAN /			
Autores: I . BACH. ROB	SIN RA	SFAEL RAMOS RAMOS – EAP. Ingeniería Civil			
de las coinci	denc	a carga del documento a la plataforma "Turnitin" y se realizó lo ias resaltadas por el software dando por resultado 18 % de s ados a plagio. Se utilizaron los siguientes filtros:			
Filtro de exc	clusió	n de bibliografía	SI	Х	NO
		n de grupos de palabras menores excluidas (en caso de elegir "SI"): 40	SI	Х	NO
Exclusión d	e fuei	nte por trabajo anterior del mismo estudiante	SI	Х	NO
En consecuencia, se determina que el trabajo de investigación constituye un documento original al presentar similitud de otros autores (citas) por debajo del porcentaje establecido por la Universidad Continental.					
concordanci	a a	onsabilidad del contenido del trabajo de investigación sobre los principios expresados en el Reglamento del Registro ados y Títulos – RENATI y en la normativa de la Universidad Cor	Nac	cional de	
Atentamente) ,				

MBA. Ing. Alejandro Vildoso Flores Asesor de trabajo de investigación

AGRADECIMIENTO

Hoy, con inmensa gratitud, me dirijo a todos ustedes para expresar mi sincero agradecimiento por acompañarme en este emocionante viaje y por ser parte de este momento crucial en mi vida. Al alcanzar la culminación de mi tesis, no puedo evitar sentir una profunda gratitud hacia todas las personas que han contribuido de diversas formas para hacer realidad este logro.

DEDICATORIA

Con gran emoción y profundo cariño, dedico esta tesis a mi familia, quienes han sido mi fuente de inspiración y apoyo incondicional a lo largo de esta travesía académica. Tu presencia en mi vida ha sido un faro de luz que ha iluminado mi camino en los momentos más oscuros y ha llenado de alegría los triunfos que juntos hemos alcanzado.

ÍNDICE

AGRADECIMIENTO	II
DEDICATORIA	III
RESUMEN	X
ABSTRACT	XII
INTRODUCCIÓN	XIV
CAPÍTULO I	16
PLANTEAMIENTO DEL ESTUDIO	16
1.1 Planteamiento del problema	16
1.2 Formulación del problema	19
1.2.1. Problema general	19
1.2.2. Problemas específicos	19
1.3 Objetivos de la investigación	20
1.3.1. Objetivo general	20
1.3.2. Objetivos específicos.	20
1.4 Justificación de la investigación	21
1.4.1. Justificación teórica	21
1.4.2. Justificación práctica	21
1.4.3. Justificación metodológica	22
1.5 Delimitación del proyecto	22
1.6 Hipótesis de la investigación	23
1.6.1. Hipótesis general	23
1.6.2. Hipótesis específicas	23
1.7 Variables y operacionalización	23
1.7.1. Identificación de las variables	23
1.7.2. Operacionalización de variables	24
CAPÍTULO II	26
MARCO TEÓRICO	26
2.1 Antecedentes de investigación	26
2.1.1. Antecedentes internacionales	26
2.1.2. Antecedentes nacionales	28
2.2 Bases teóricas	30

2.2.1	Estabilización de subrasante de suelos arenoso-arcillosos	30
CAPÍTU	LO III	42
METOD	OLOGÍA	42
3.1. Enfo	oque de la investigación	42
3.2. Tipo	de investigación	42
3.3. Nive	el de la investigación	43
3.4. Méto	odo de investigación	43
3.5. Dise	ño de investigación	43
3.6. Pobl	ación y muestra del estudio	44
3.6.1. I	Población	44
3.6.2. 1	Muestra	44
3.6.3. I	Muestreo	44
3.6.4. U	Unidad muestral	47
3.7. Técn	icas e instrumentos de recolección de datos	48
3.7.1.	Ге́cnicas de investigación	48
3.7.2. I	Instrumentos de investigación	48
3.7.3. V	Validez de los instrumentos	48
3.7.4. I	Procesamiento de datos	48
3.8. Proc	edimiento	49
3.8.1. (Obtención de la ceniza de hoja de cebolla roja y sus propiedades químicas	49
CAPÍTU	LO IV	54
RESULT	ADOS Y DISCUSIÓN	54
4.1. Desc	ripción del área de estudio	54
4.1.1	Ubicación	54
4.1.2. (Caracterización del área de estudio	54
4.2. Estud	dios previos	55
4.2.1	Análisis de campo	55
4.2.2	Ensayos de laboratorio	55
4.3. Prop	iedades naturales de las muestras de estudio	56
4.3.1	Granulometría de los suelos	56
4.3.2	Clasificación de suelos	64
4.3.3	Contenido de humedad	65
4.4. Anál	isis de las propiedades físicas del suelo	68
4.4.1	Resultados del análisis límite líquido	68

4.4.2	Resultados del análisis límite plástico	70
4.4.3	Resultados del análisis índice de plasticidad	72
4.5. Anál	isis de las propiedades mecánicas del suelo	74
4.5.1	Densidad máxima seca	74
4.5.2	Humedad óptima	75
4.5.3	Capacidad de soporte	78
4.6. Prue	ba de normalidad de las variables	82
4.6.1	Prueba de normalidad propiedades físicas	82
4.6.2	Prueba de normalidad propiedades mecánicas	83
4.7. Cont	rastación de hipótesis	86
4.7.1	Prueba de hipótesis específica 1	86
4.7.2	Prueba de hipótesis específica 2	88
4.8. Disc	usión de resultados	90
4.8.1	Discusión objetivo general	90
4.8.2	Discusión objetivo específico 1	92
4.8.3	Discusión objetivo específico 2	94
CONCLU	JSIONES	96
RECOM	ENDACIONES	98
REFERE	NCIAS BIBLIOGRÁFICAS	100
ANEXO	S	105

ÍNDICE DE TABLAS

Tabla 1. Operacionalización de variables	24
Tabla 2. Diseño de la investigación	45
Tabla 3. Cantidad de muestras de estudio según calicatas	46
Tabla 4. Descripción de los estudios realizados	55
Tabla 5. Análisis granulométrico calicata 1	58
Tabla 6. Análisis granulométrico calicata 2	60
Tabla 7. Análisis granulométrico calicata 3	61
Tabla 8. Clasificación de suelos SUCS y AASHTO de las muestras	64
Tabla 9. Contenido de humedad y peso específico de las muestras	65
Tabla 10. Variación de límite líquido por muestra y dosificación	68
Tabla 11. Variación de límite plástico por muestra y dosificación	70
Tabla 12. Variación del índice de plasticidad por muestra y dosificación	72
Tabla 13. Variación de la densidad máxima seca por muestra y dosificación	74
Tabla 14. Variación contenido óptimo de humedad por muestra y dosificación	75
Tabla 15. Variación CBR al 95% DMS por muestra y dosificación	78
Tabla 16. Variación CBR al 100% DMS por muestra y dosificación	80
Tabla 17. Prueba de normalidad Shapiro Wilk propiedades físicas	83
Tabla 18. Prueba de normalidad Shapiro Wilk propiedades mecánicas	84
Tabla 19. Prueba de hipótesis para muestras emparejadas propiedades físicas	86
Tabla 20. Prueba de hipótesis para muestras emparejadas propiedades mecánicas	89

ÍNDICE DE FIGURAS

Figura 1. Mapas del Porcentaje de arcilla, limo y arena respectivamente para todo el Perú	17
Figura 2 .Mapa de Tipos de Suelo (SUCS): Moquegua. Por Instituto Geofísico del Perú	19
Figura 3. Excavación de calicatas	50
Figura 4. Muestras de suelo en horno para el contenido de humedad	50
Figura 5. Análisis granulométrico de muestras de suelo	52
Figura 6. Aparato de Casagrande para el IP	52
Figura 7. Máquina Proctor Modificado	53
Figura 8. Curva granulométrica calicata 1	59
Figura 9. Curva granulométrica calicata 2	61
Figura 10. Curva granulométrica calicata 3	63
Figura 11. Contenido de humedad natural de las muestras	66
Figura 12. Peso específico de las muestras de estudio	66
Figura 13. Gráfico de variación del límite líquido según dosificaciones	68
Figura 14. Gráfico de variación del límite plástico según dosificaciones	70
Figura 15. Gráfico de variación del índice de plasticidad según dosificaciones	72
Figura 16. Gráfico de variación de la densidad máxima seca según dosificaciones	74
Figura 17. Gráfico de variación del contenido óptimo de humedad según dosificaciones	76
Figura 18. Gráfico de variación del CBR al 95% DMS según dosificaciones	78
Figura 19. Gráfico de variación del CBR al 95% DMS según dosificaciones	80

ÍNDICE DE ECUACIONES

nación 1 Contenido de Humedad

RESUMEN

La presente investigación tuvo como objetivo principal determinar la influencia de la ceniza de hoja de cebolla en la estabilización de suelos con alto contenido de arcillas expansivas en el distrito de San Antonio, Moquegua, durante el año 2023. Para alcanzar dicho objetivo, se desarrolló un estudio de tipo aplicado, con un enfoque cuantitativo y diseño experimental, donde la población abarcó los 3 km de la Av. Paraíso distrito San Antonio, siendo la muestra igual a la población elegida por conveniencia del investigador. Respecto al desarrollo, se realizó un análisis de mecánica de suelos para caracterizar las propiedades físico-mecánicas del suelo en su estado natural, posteriormente, se aplicarán dosificaciones de ceniza de hoja de cebolla en proporciones del 5%, 8%, 12% y 15%, siendo por metro cúbico del material 100, 150, 200 y 300 ml/m³ respectivamente, con el propósito de evaluar progresivamente las mejoras en las propiedades del suelo. Los resultados indicaron que la ceniza de hoja de cebolla influyó significativamente en la estabilización de suelos con alto contenido de arcillas expansivas, donde se evidencia una mejora en las propiedades físicas y mecánicas del suelo, incluyendo la reducción de la expansividad, el aumento de la resistencia al corte, la mejora en la compactación y la disminución de la permeabilidad. La dosificación óptima de ceniza dependió de las características específicas del suelo evaluado, en cuanto al comportamiento mecánico, se observará un incremento significativo en la resistencia a la compresión no confinada y en el índice CBR. Para las muestras de suelo natural compactadas al 95% de densidad máxima seca, los valores de CBR fueron de 8.40%, 10.15% y 11.69%. Al estabilizar el suelo con 300 ml/m³ de ceniza de hoja de cebolla, los valores aumentarán a 23.59%, 25.34% y 26.87% para las calicatas 1, 2 y 3, respectivamente. Asimismo, para las muestras compactadas al 100% de densidad máxima seca, los valores de CBR en el suelo natural fueron de 12.19%, 13.92% y 15.35%, mientras que, para el suelo estabilizado con la misma dosificación de ceniza, los valores alcanzaron 27.38 %, 39,11% y 30,54%. De esta manera se

concluyó con que, el incremento en la resistencia a la compresión no confinada reflejó una mayor capacidad del suelo para soportar cargas sin deformarse, mientras que los aumentos en el índice CBR evidenciaron una mejora en la aptitud del suelo para ser empleado como base de carreteras y otras estructuras.

Palabras clave: Ceniza, cebolla, dosificación, estabilización.

ABSTRACT

The main objective of this research was to determine the influence of onion leaf ash in the stabilization of soils with high expansive clay content in the district of San Antonio, Moquegua, during the year 2023. To achieve this objective, an applied study was developed, with a quantitative approach and experimental design, where the population covered the 3 km of Paraíso Avenue, San Antonio district, being the sample equal to the population chosen for the convenience of the researcher. A soil mechanics analysis was carried out to characterize the physical-mechanical properties of the soil in its natural state. Subsequently, onion leaf ash dosages were applied in proportions of 5%, 8%, 12% and 15% per cubic meter of material, being 100, 150, 200 and 300 ml/m³ respectively, with the purpose of progressively evaluating the improvements in the soil's properties. The results indicated that onion leaf ash had a significant influence on the stabilization of soils with high expansive clay content, where an improvement in the physical and mechanical properties of the soil was evidenced, including a reduction in expansivity, an increase in shear strength, an improvement in compaction and a decrease in permeability. The optimum ash dosage depended on the specific characteristics of the soil evaluated, in terms of mechanical behavior, a significant increase in the unconfined compressive strength and CBR index will be observed. For the natural soil samples compacted to 95% maximum dry density, the CBR values were 8.40%, 10.15% and 11.69%. When stabilizing the soil with 300 ml/m³ of onion leaf ash, the values will increase to 23.59%, 25.34% and 26.87% for pits 1, 2 and 3, respectively. Likewise, for the samples compacted at 100% maximum dry density, the CBR values for the natural soil were 12.19%, 13.92% and 15.35%, while for the soil stabilized with the same ash dosage, the values reached 27.38%, 39.11% and 30.54%. Thus, it was concluded that the increase in the unconfined compressive strength reflected a greater capacity of the soil to support loads without deformation, while the increases

in the CBR index evidenced an improvement in the suitability of the soil to be used as a base for roads and other structures.

Keywords: Ash, onion, dosage, stabilization.

INTRODUCCIÓN

La presente investigación abordará la siguiente pregunta general: ¿Cómo influye la ceniza de hoja de cebolla roja en la mejora de suelos arenosos-arcillosos tipo A4 de la avenida Paraíso, distrito de San Antonio, Moquegua, 2023? Dada la pregunta establecida, se plantea la hipótesis de que la ceniza de hoja de cebolla roja influye significativamente en la mejora de las propiedades de estos suelos, proporcionando una alternativa viable para optimizar su comportamiento físico-mecánico y asegurar la estabilidad de las estructuras proyectadas sobre ellos.

En la actualidad, los suelos arcillosos representan uno de los retos constantes en la ingeniería civil debido a sus comportamientos expansivos ante la variación de la humedad, dichas características logran generar problemas como asentamientos diferenciales, fisuras y fallas en taludes, donde esto requiere el desarrollo de soluciones innovadoras a fin de que se logren mejoras en su estabilidad y desempeño estructural. Dado ello, la investigación evaluará el uso de ceniza de hoja de cebolla roja como una de las alternativas sostenibles para la estabilización de estos suelos.

El estudio se justificará por la necesidad de que se encuentre una solución económica y sostenible que permita la mitigación de los problemas vinculados al suelo arcilloso, donde el empleo de ceniza de hoja de cebolla roja, uno de los subproductos agroindustriales, representará ser estrategias técnicas y ambientalmente viables, lo que promueve el aprovechamiento de residuos y la minimización del impacto ambiental en la construcción. De igual forma, el proceso de calcinación de la hoja de cebolla roja se efectuará bajo condiciones controladas a fin de que se minimice la emisión de contaminantes y se garantice un proceso más limpio en comparación con otras metodologías convencionales de obtención de aditivos minerales.

A fin de conocer el porcentaje óptimo de ceniza de hoja de cebolla a emplear, se trabajará con proporciones del 5%, 8%, 12% y 15% en relación con la masa del suelo, dichos valores fueron seleccionados con base en estudios previos sobre estabilización de suelos con materiales puzolánicos dado que no se encontraron estudios con la misma variable, con ello se buscará examinar el punto de equilibrio entre resistencia mecánica y viabilidad económica, esperando que este enfoque permite identificar la dosificación más eficiente para mejorar las propiedades físico-mecánicas del suelo sin que se comprometa su manejabilidad ni incrementos excesivos en los costos de aplicación.

El desarrollo de esta investigación se estructurará en cinco capítulos. En el primer capítulo, se presentará el planteamiento del estudio, detallando la descripción del problema, los objetivos, la justificación y la hipótesis de la investigación. En el segundo capítulo, se abordará el marco teórico, en el cual se analizarán los antecedentes y conceptos fundamentales que sustentarán el estudio. El tercer capítulo expondrá la metodología empleada, describiendo el tipo de investigación, el enfoque adoptado y los procedimientos aplicados para la recolección y análisis de datos. En el cuarto capítulo, se presentarán y discutirán los resultados obtenidos, estableciendo comparaciones con los objetivos y antecedentes revisados. Finalmente, en el quinto capítulo, se formularán las conclusiones y recomendaciones, con el propósito de orientar futuras investigaciones y aplicaciones prácticas en la estabilización de suelos.

CAPÍTULO I

PLANTEAMIENTO DEL ESTUDIO

1.1 Planteamiento del problema

A nivel internacional, los suelos arenosos-arcillosos presentan desafíos significativos donde las estructuras de soporte construidas sobre estos suelos han provocado asentamientos de hasta un 15% debido a tensiones en flector y axial, además, la superposición de tensiones por pilotes ha generado un incremento en los asentamientos del suelo en hasta un 25%, siendo reducida la capacidad de carga a un rango de 0.950 a 1.100 veces el valor inicial (Modak & Singh, 2023). En la India, particularmente en el estado de Tamil Nadu, los suelos arcillosos absorben agua y se hinchan en días lluviosos, y en verano se encogen por la evaporación del agua, con índices de plasticidad superiores a 14% y presencia de arcillas de hasta un 38.10%, donde tras la presencia de hinchamiento y contracción, las estructuras que fueron construidas, como las edificaciones residenciales o pavimentos se dañan gravemente, siendo requerido el uso de estabilizadores económicos para fortalecer el suelo (Kulanthaivel et al., 2021).

En República Checa, los suelos arenosos-arcillosos en zonas como la región Rodov han generado numerosos problemas estructurales debido a su baja capacidad de soporte de hasta un 3% y alta plasticidad de hasta un 17.8%, a menudo han provocado asentamientos diferenciales y fallas en las infraestructuras que han sido construidas sobre ellos, donde la presencia de fallos en la infraestructura causado por el movimiento de este tipos de suelo cuestan anualmente miles de millones de dólares (Reiterman et al., 2022).

A nivel nacional, en la región de Puno, se ha evidenciado que la presencia de suelos arcillosos con índices de plasticidad elevados de hasta un 37.06% ha sido considerado un problema dado su origen de sensibilidad a la humedad, que da por resultados comportamientos adversos de cambio volumétrico, además, por las variaciones climáticas, se han generado en los últimos

años comportamientos de hinchamiento y contracción, causando graves daños en las estructuras, donde el asentamiento de cimientos, el agrietamiento en edificios y pavimentos son el tipo de fallas estructurales relacionadas con estos suelos (Pilares-Hualpa, Alfaro-Alejo, Pilares-Calla, & Alfaro-Vilca, 2021).

En Piura, en una de sus provincias, Curamori la presencia de suelos es de alta plasticidad con índices de hasta un 24%, donde la construcción de edificaciones en este tipo de suelos con capacidad débil es muy arriesgado, dado a que se ha evidenciado con el transcurrir del tiempo que son sensibles a los asentamientos diferenciales debido a su débil resistencia al corte (Lopez, Bravo, & Fernández, 2021).

En Chiclayo, la inestabilidad de los suelos arenosos-arcillosos ha llevado a problemas significativos de asentamiento, con variaciones de hasta un 20% en la capacidad de carga, además, los asentamientos de hasta 30 mm han sido registrados, afectando la durabilidad de las infraestructuras existentes, esta situación demanda una intervención urgente para mejorar las propiedades mecánicas del suelo y prevenir desastres estructurales (Muñoz, Aguilar, & Díaz, 2023).

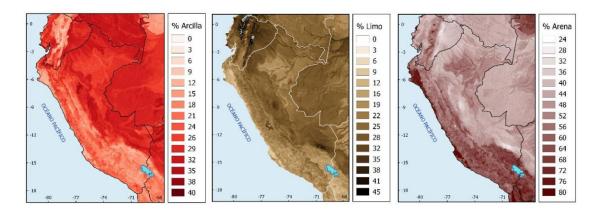


Figura 1. Mapas del Porcentaje de arcilla, limo y arena respectivamente para todo el Perú

Nota. Obtenido de Atlas de Erosión de Suelos por Regiones Hidrológicas del Perú (Sabino Rojas, Felipe

Obando, & Lavado Casimiro, 2017).

A nivel local, en Moquegua los suelos arcillosos de baja capacidad a menudo han presentan problemas significativos en la construcción, a través de capacidades de carga reducidas, alta expansión y contracción, esto ocasionado por los cambios en la humedad, y una notable susceptibilidad a la influencia del agua, llevando a un comportamiento estructural inadecuado, que ha afectado de forma negativa la estabilidad de las edificaciones fueron construidas sobre estos suelos en todo este tiempo (Tarazona, Sulca, Duran, & Llerena, 2020).

En el distrito de San Antonio, estos suelos problemáticos al ser construidas las carreteras han sido durante mucho tiempo un desafío para los ingenieros geotécnicos y de pavimentos debido a la deficiente durabilidad, a la elevada deformación y otras características físicas y mecánicas del suelo, donde los cimientos en suelos arcillosos de alta plasticidad se deforman notablemente debido a su baja resistencia a la compresibilidad cuando se someten a presiones de carga y, por lo tanto, reducen la vida útil de las estructuras (Garcia & Scaletti, 2022).

La necesidad de soluciones sostenibles y económicas es crítica, ya que los métodos tradicionales de estabilización pueden ser costosos y no siempre ofrecen una solución efectiva, por ello, la investigación y aplicación de materiales alternativos, como la ceniza de hoja de cebolla roja, pueden proporcionar una alternativa viable para mejorar la capacidad y durabilidad de los suelos, reduciendo los costos y el impacto ambiental, además, al ser implementadas estas soluciones puede ayudar a mitigar los problemas asociados con la construcción en suelos arcillosos y arenosos, promoviendo un desarrollo resiliente en diversas regiones del país.

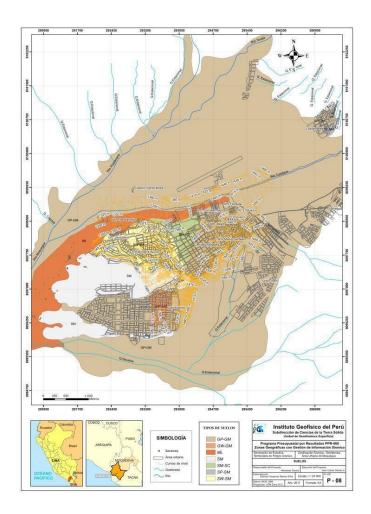


Figura 2 .Mapa de Tipos de Suelo (SUCS): Moquegua. Por Instituto Geofísico del PerúNota. Obtenido de Instituto Geofísico del Perú (Sabino Rojas, Felipe Obando, & LavadoCasimiro, 2017).

1.2 Formulación del problema

1.2.1. Problema general

¿Cómo influye la ceniza de hoja de cebolla roja en la mejora de suelos arenoso-arcilloso tipo

A4 de la avenida paraíso distrito de San Antonio – Moquegua 2023?

1.2.2. Problemas específicos

• ¿Cuál es el procedimiento de obtención de la ceniza de hoja de cebolla roja y sus propiedades químicas?

- ¿Cuál es la influencia de la ceniza de hoja de cebolla como adición en las propiedades físicas de la subrasante de suelos arenoso-arcilloso en la avenida Paraíso distrito de San Antonio – Moquegua 2023?
- ¿Cuál es la influencia de la ceniza de hoja de cebolla como adición en las propiedades mecánicas de la subrasante de suelos arenoso-arcilloso en la avenida Paraíso distrito de San Antonio Moquegua 2023?
- ¿Cuál será la influencia de la ceniza de hoja de cebolla como adición en el costo de la subrasante de suelos arenoso-arcilloso en la avenida Paraíso distrito de San Antonio – Moquegua 2023?

1.3 Objetivos de la investigación

1.3.1. Objetivo general

Determinar la influencia de la ceniza de hoja de cebolla roja en la mejora de suelos arenosoarcilloso tipo A4 de la avenida paraíso distrito de San Antonio – Moquegua 2023.

1.3.2. Objetivos específicos

- Describir el procedimiento de obtención de la ceniza de hoja de cebolla roja y sus propiedades químicas
- Identificar la influencia de la ceniza de hoja de cebolla como adición en las propiedades físicas de la subrasante de suelos arenoso-arcilloso en la avenida Paraíso distrito de San Antonio – Moquegua 2023.
- Determinar la influencia de la ceniza de hoja de cebolla como adición en las propiedades mecánicas de la subrasante de suelos arenoso-arcilloso en la avenida Paraíso distrito de San Antonio – Moquegua 2023.

 Identificar la influencia de la ceniza de hoja de cebolla como adición en el costo de la subrasante de suelos arenoso-arcilloso en la avenida Paraíso distrito de San Antonio – Moquegua 2023.

1.4 Justificación de la investigación

1.4.1. Justificación teórica

Se basó en la necesidad de mejorar las propiedades de los suelos arenoso-arcillosos, que presentan desafíos significativos en la construcción debido a su baja capacidad de carga, alta plasticidad y susceptibilidad a la humedad, además, los suelos arenoso-arcillosos, como los que se encuentran en el distrito de San Antonio — Moquegua, a menudo requieren tratamientos especiales para mejorar su comportamiento estructural. Por ello, la incorporación de aditivos como la ceniza de hoja de cebolla roja surgió como una de las alternativas para ofrecer una solución viable para mejorar estas propiedades.

La literatura existente sobre el uso de cenizas y otros subproductos agrícolas en la modificación de suelos muestra que estos materiales pueden mejorar la capacidad de soporte del suelo y reducir su plasticidad y expansión; no obstante, el uso específico de ceniza de hoja de cebolla roja en suelos arenoso-arcillosos no ha sido ampliamente investigado, lo que justifica la necesidad de esta investigación para llenar este vacío en el conocimiento y proporcionar una base teórica sólida sobre su efectividad.

1.4.2. Justificación práctica

Este estudio se enfocó en los beneficios directos y aplicables de la investigación, permitiendo identificar cómo la ceniza de hoja de cebolla roja afecta las propiedades físicas y mecánicas del suelo arenoso-arcilloso, lo que puede mejorar la estabilidad de la subrasante en la construcción. Por otro lado, evaluar el impacto de la ceniza en los costos de la subrasante proporciona información valiosa para la toma de decisiones económicas en proyectos futuros,

donde si la ceniza resulta ser una opción económica y efectiva en comparación con otros aditivos, podría reducir los costos de construcción y mantenimiento.

1.4.3. Justificación metodológica

La estabilización de suelos con ceniza de hoja de cebolla roja se basa en el método científico para obtener resultados precisos y confiables. Este enfoque implica la aplicación de principios científicos para analizar y mejorar las propiedades del suelo, utilizando criterios y normas establecidos para evaluar sus características mecánicas y físicas. En este proceso, se emplearon herramientas como la Norma Técnica Peruana y el Reglamento Nacional de Edificaciones, que proporcionan directrices claras para los ensayos de propiedades del suelo y los requisitos para las vías pavimentadas. Estos instrumentos aseguran que la aplicación de ceniza de hoja de cebolla roja no solo mejora la calidad del suelo, sino que también cumple con los estándares de construcción necesarios.

Por otro lado, la investigación se centró en el uso de técnicas de análisis estadístico para evaluar los datos recolectados, permitiendo obtener conclusiones precisas sobre el impacto de la ceniza de hoja de cebolla roja en las propiedades del suelo, esto incluyó el análisis de varianza, pruebas de hipótesis y análisis para identificar relaciones significativas y evaluar la eficacia del insumo.

1.5 Delimitación del proyecto

El presente proyecto, en cuanto al modelo de investigación, está enmarcado en los lineamientos y procedimientos descritos en el método científico, que indican el proceso para ejecutar una investigación. En cuanto al aspecto técnico del proyecto, se limita a la aplicación de los procesos y procedimientos descritos por la Norma Técnica Peruana y el Reglamento Nacional de Edificaciones, además de los códigos adicionales que aporten a la investigación. El proyecto se enfocará en la utilización de ensayos de laboratorio de mecánica de suelos para describir la

variación de las propiedades físico-mecánicas del suelo con características de areno arcilloso,

y registrar en qué medida se produce una mejora o aporte significativo.

Hipótesis de la investigación 1.6

1.6.1. Hipótesis general

La ceniza de hoja de cebolla roja influye significativamente en la mejora de las propiedades de

suelos arenoso-arcilloso tipo A4 de la avenida paraíso distrito de San Antonio – Moquegua

2023

1.6.2. Hipótesis específicas

Las propiedades químicas de la ceniza de hoja de cebolla roja cumplen con requerimientos

básicos para la estabilización de suelos.

Existe una influencia significativa de la ceniza de hoja de cebolla como adición en las

propiedades físicas de la subrasante de suelos arenoso-arcilloso en la avenida Paraíso

distrito de San Antonio – Moquegua 2023.

La ceniza de hoja de cebolla como adición influye significativamente en las propiedades

mecánicas de la subrasante de suelos arenoso-arcilloso en la avenida Paraíso distrito de

San Antonio – Moquegua 2023.

El uso de la ceniza de hoja de cebolla como adición influye positivamente en el costo de

la subrasante de suelos arenoso-arcilloso en la avenida Paraíso distrito de San Antonio –

Moquegua 2023.

Variables y operacionalización

1.7.1. Identificación de las variables

Variable independiente: Ceniza de hoja de cebolla roja

Variable dependiente: Estabilización de subrasante de suelos arenoso arcillosos

23

1.7.2. Operacionalización de variables

Tabla 1. Operacionalización de variables

Variables de estudio	Definición conceptual	Definición operacional	Dimensión	Indicador	Tipo de variable	Escala de medición
Variable independiente: Ceniza de hoja de cebolla roja	La cebolla roja forma parte de la familia de las liliáceas, se caracteriza por un alto contenido de Fibra, hierro, calcio, potasio, sodio. Las cebollas son ricas en flavonoides y en compuestos azufrados (sulfóxido alquil cisteína)	La ceniza de cebolla roja se utilizará como un aditivo de mejora de propiedades físico- mecánicas del suelo, en base a dosificaciones controladas, se utilizará para determinar la optimización de las propiedades de suelos arenosos arcillosos.	Dosificaciones	5% ceniza 8% ceniza 12% ceniza	Cuantitativa Cuantitativa Cuantitativa	Razón Razón Razón
Variable dependiente: Estabilización de subrasante de suelos	Se refiere a cualquier método físico, químico, mecánico, biológico o combinado que modifica un suelo natural para lograr un objetivo de ingeniería. La mejora de las propiedades	Se utilizarán muestras de suelo inestable, y expansivos y mediante dosificaciones controladas de aditivo se experimentará para la mejora de sus propiedades, al adicionar la Ceniza de hoja de	Propiedades físicas Propiedades mecánicas	 % de humedad Granulometría Límites Atterberg Densidad máxima seca 	Cuantitativa Cuantitativa	Razón Razón

		-1-111-	TT 1.1
arenoso-	incluye aumentar la capacidad	cebolla se espera mejorar la	 Humedad
arcillosos	de carga, la resistencia a la	propiedades físicas y mecánicas	óptima
	tracción y el rendimiento	del suelo.	 Capacidad
general de los suelos, las rocas		de soporte	
y otros materiales de			Resistencia
construcción in situ (Braja,			mecánica
2015).			

Nota. Elaboración propia.

CAPÍTULO II

MARCO TEÓRICO

2.1 Antecedentes de investigación

2.1.1. Antecedentes internacionales

Para Vargas et al. (2020), en Ibagué, Colombia, estableció por objetivo general mejorar las propiedades físico-mecánicas del suelo afirmado al incorporar diferentes proporciones de ceniza de cascarilla de café. El aspecto metodológico fue de tipo aplicada, diseño experimental, enfoque cuantitativo y nivel explicativo, teniendo por población a suelos de afirmados mezclados con ceniza en proporciones de 4%, 8% y 14%, en base a 22 muestras de suelo patrón y experimentales, utilizando instrumentos como pruebas de Proctor, CBR, y la Máquina de Los Ángeles. Los resultados evidenciaron que la mezcla con un 14% de ceniza y una humedad óptima del 13.8% alcanzó por resistencia mecánica 2.050 kg/cm², lo cual representó una mejora notable en comparación con el suelo original; además, la curva granulométrica A-25 fue la que mostró mejor comportamiento. Concluyó que la utilización de ceniza de cascarilla de café es una alternativa económica, que mejora la capacidad de soporte de la subrasante y, por ende, el desempeño de las diferentes capas estructurales en un pavimento flexible. Siendo el aporte que la ceniza de cascarilla de café puede ser empleado como estabilizador del suelo, siendo una alternativa económica y eficiente para incrementar la capacidad de soporte de subrasantes en pavimentos flexibles

Para Barragán y Cuervo (2019), en Girardot, Colombia, se tuvo por objetivo determinar el efecto de la incorporación del 1% de ceniza de cascarilla de arroz (CCA) en la resistencia del suelo areno-arcilloso. El aspecto metodológico fue de tipo aplicada, diseño experimental, enfoque cuantitativo y nivel explicativo, teniendo por población suelos areno-arcillosos mezclados con un 1% de CCA, además de 3 muestras de suelo patrón y 3 experimentales,

empleando por instrumentos las guías de observación. Evidenció por resultados que la adición de CCA aumentó el CBR del suelo de 1.6 a 1.9, lo que representó un incremento del 19%, pero no suficiente para cumplir con los valores mínimos requeridos por la normativa; además, se observó una disminución en la densidad máxima seca del suelo, que pasó de 1.726 gr/cm³ a 1.714 gr/cm³, con una reducción del 0.7%; la expansión volumétrica del suelo también aumentó en un promedio de 0.09% con la adición de ceniza en comparación con el suelo natural. Concluyeron que, aunque la mejora en las propiedades mecánicas no fue significativa, el uso de ceniza de cascarilla de arroz como estabilizante representa una alternativa económica para la estabilización de suelos inestables en proyectos de infraestructura vial. El aporte del estudio se basó en que, a pesar de la limitación en la mejora, el estudio subraya que la ceniza de cascarilla de arroz puede ser una opción económica viable para la estabilización de suelos en infraestructura vial.

Para Hernández y Herrera (2019), en Bogotá, Colombia, establecieron por objetivo analizar cómo diferentes dosificaciones de ceniza de cascarilla de café (CCC) afectan la resistencia, plasticidad y compactación del suelo. El aspecto metodológico fue de tipo aplicada, diseño experimental, enfoque cuantitativo y nivel explicativo, considerando por población utilizada al suelo arcilloso de baja plasticidad con 4%, 6% y 8% de CCC, teniendo 12 muestras en total, siendo sus instrumentos las fichas de recolección de datos. Evidenció por resultados que el suelo natural presentó una gravedad específica de 2.47 y predominancia de partículas finas; donde la CCC, sin plasticidad y con una gravedad específica de 2.95, mejoró la relación de soporte del suelo de 1.60% a 7.30%, un incremento del 356%, de igual forma, se observó un aumento en la humedad óptima del 37.30% y una disminución en la densidad seca máxima de 4.50%, por otro lado, la resistencia a la compresión confinada también mostró mejoras significativas, aumentando en un 17.4% en condiciones secas y un 28.0% bajo infiltración por capilaridad. Concluyeron que la adición de CCC es efectiva para mejorar la capacidad de carga

y reducir la expansión de suelos arcillo-limosos, proporcionando una solución económica para la estabilización de suelos en proyectos de infraestructura. Siendo el aporte la eficacia de la ceniza de cascarilla de café en la estabilización de suelos arcillo-limosos, ofreciendo una solución sostenible para mejorar la capacidad de carga en proyectos de infraestructura.

2.1.2. Antecedentes nacionales

A nivel nacional, para, Delgado y Mormontoy (2021), en Cusco, plantearon como objetivo demostrar que se pueden mejorar las propiedades físico - mecánicas de un suelo arcilloso con características muy bajas. El aspecto metodológico fue de tipo aplicada, diseño experimental, enfoque cuantitativo y nivel descriptivo correlacional, considerando por población del km 03+950 al km 04+500 de la Vía Expresa de Cusco, siendo las muestras un total de 72 clasificadas en estado natural, suelo natural + 5% de Cal, suelo natural + 5% de Cal + 1% de CMM, suelo natural + 5% de Cal + 2% de CMM, y suelo natural + 5% de Cal + 3% de CMM, evaluadas a través de instrumentos de fichas de observación. Evidenciaron por resultados que se pudo determinar una mejora progresiva en las propiedades físico – mecánicas a medida que se aumentó ceniza de mazorca de maíz, teniendo como mejor resultado el suelo natural + 5% de Cal + 3% de CMM, donde se aprecia el valor más alto de densidad seca máxima (1.725 gr/cm3) y la capacidad de soporte CBR con un valor de 12.84%, que triplicó su valor respecto al CBR del suelo natural, haciendo que este sea recategorizado como una subrasante buena (S3) según el Manual de Carreteras (2013). Concluyeron que un agente de estas mejoras es la composición química de la ceniza de mazorca de maíz, que tiene gran porcentaje de sílice (41.40%), magnesio (29.30%), calcio (10.20%) y otros, que favorecen a la estabilización del suelo. El aporte fue que la mezcla de cal con ceniza resultó en una subrasante con una capacidad de soporte significativamente mejorada, demostrando que la ceniza de mazorca de maíz es una opción efectiva para la estabilización del suelo en proyectos de infraestructura vial.

Para Gala y Huamán (2023), en el distrito de Pilcomayo, establecieron por objetivo determinar los efectos de la incorporación de ceniza de hoja de eucalipto en la estabilización de suelos arcillosos. La investigación fue de tipo aplicada, con un diseño experimental, enfoque cuantitativo y nivel explicativo, tomando como población el suelo en estado natural del distrito de Pilcomayo y como muestra una calicata de estudio. Se emplearon técnicas de análisis de documentos y ensayos de laboratorio como instrumentos de recolección de datos. Evidenciaron por resultados que el Índice de Plasticidad (IP) se redujo en un 12.56% con la adición del 10% de ceniza y en un 18.68% con el 15% de ceniza, en comparación con el suelo patrón (IP = 10.49%); la densidad máxima seca (MDS) disminuyó un 4.60% con el 10% de ceniza y un 5.53% con el 15% de ceniza (en comparación con el suelo patrón, MDS = 2.153 gr/cm³); el valor del CBR aumentó un 470.91% con el 10% de ceniza y un 647.27% con el 15% de ceniza (en comparación con el suelo patrón, CBR = 5.50%). Concluyeron que la incorporación de ceniza de hoja de eucalipto mejora significativamente la estabilidad de suelos arcillosos para su uso como subrasante, siendo los resultados más favorables con un 10% de ceniza. Siendo el aporte que la ceniza de hoja de eucalipto es eficaz para mejorar la estabilidad de suelos como subrasantes, siendo especialmente efectiva en proporciones del 10%, lo que proporciona una alternativa valiosa para la estabilización en obras viales.

En el estudio de Quispe y Quispe (2022) en Jaén, tuvo por objetivo comprobar la influencia de la adición de cenizas de cáscara de café y arroz en la estabilización de suelos arcillosos de subrasante para obras viales. La investigación fue de tipo aplicada, con un diseño experimental, enfoque cuantitativo y nivel explicativo, tomando como población 70 kg de suelo en estado natural del distrito de Pilcomayo y como muestra 3 muestras naturales y 9 experimentales. Se empleó por instrumentos los formatos guía de recolección de datos basados en normas técnicas. Evidenciaron por resultados que la adición de un 5% de cenizas de cáscara de arroz y café elevó el CBR a 19.50%, mientras que con un 10% de cenizas el CBR alcanzó 23.40%, y con

un 20% de cenizas llegó a 29.00%, en comparación con el CBR del suelo natural de 2.70%. Dado ello, concluyó que la utilización de estas cenizas permite estabilizar el suelo arcilloso, mejorándolo a una subrasante de buena o muy buena calidad, recomendándole su uso en las dosis evaluadas para obras viales. El aporte fue la efectividad destacada de estas cenizas en la estabilización de suelos, recomendando su uso para transformar suelos arcillosos en subrasantes de alta calidad.

2.2 Bases teóricas

2.2.1 Estabilización de subrasante de suelos arenoso-arcillosos

2.2.1.1 Estabilización de suelos

La estabilización de suelos se refiere a un conjunto de técnicas y procesos utilizados para mejorar las características físicas, mecánicas y químicas de un suelo con el objetivo de hacerlo más adecuado para un uso específico, como la construcción de infraestructuras viales o edificaciones. El proceso de estabilización tiene como objetivo transformar un suelo en su estado natural en uno que cumpla con ciertos requisitos de resistencia, durabilidad, capacidad portante y otras propiedades necesarias para el proyecto en cuestión (Munirwan, Taib, Taha, Rahman, & Munirwansyah, 2022).

Los suelos naturales pueden variar en términos de composición, densidad, contenido de humedad y otras características. Dependiendo de las necesidades de un proyecto de construcción, es posible que el suelo existente no tenga las propiedades necesarias para soportar las cargas y condiciones requeridas. En tales casos, se realiza el mejoramiento de suelos para mejorar sus características y adecuarlo a los propósitos del proyecto (Zafar, Ansari, & Husain, 2023).

Las técnicas de estabilización pueden ser físicas, químicas o mecánicas. Pueden incluir:

- Compactación: Mediante la aplicación de fuerza mecánica, el suelo se comprime para aumentar su densidad y resistencia (Alhamdi & Albusoda, 2021).
- Adición de agregados: Se mezclan materiales como grava, arena o piedra triturada con el suelo natural para mejorar sus propiedades (Prasad & Hussaini, 2022).
- Adición de estabilizadores Químicos: Se agregan sustancias químicas, como cemento, cal o productos a base de asfalto, para mejorar la cohesión y resistencia del suelo (Gao, Hang, He, Zhang, & Paassen, 2021).
- Mezclas de suelos: Se mezclan diferentes tipos de suelos para crear una mezcla con las características deseadas (Al-Atroush & Sebaey, 2021).
- Refuerzo con geotextiles y geomallas: Se colocan materiales geosintéticos en el suelo para reforzarlo y mejorar su estabilidad (Vicuña, et al., 2024).
- Mejora del drenaje: La implementación de sistemas de drenaje adecuado para evitar la acumulación de agua en el suelo (Alnmr, Ray, & Alsirawan, 2023).
- Inyección de estabilizadores: Introducción de sustancias químicas o mezclas en el suelo mediante inyección para mejorar sus propiedades (Cislaghi, Sala, Borgonovo, Gandolfi, & Bischetti, 2021).

El objetivo final de la estabilización de suelos es asegurar que el suelo tenga la capacidad de soportar las cargas y las condiciones ambientales a las que estarán expuestas sin sufrir asentamientos excesivos, erosión u otros problemas. Esto es esencial para garantizar la seguridad y la durabilidad de las estructuras construidas sobre el suelo, como carreteras, edificios, puentes y otros tipos de infraestructuras (Tiutkin, Autelitano, Giuliani, & Neduzha, 2024).

2.2.1.2 Estabilización de la subrasante

La estabilización de la subrasante es un proceso fundamental en la ingeniería civil que implica mejorar las propiedades del suelo natural que se encuentra debajo de una infraestructura, como carreteras, pavimentos, edificios y cimentaciones. El objetivo es crear una base sólida y estable que pueda soportar las cargas impuestas por la estructura y minimizar los asentamientos diferenciales. La necesidad de estabilización se basa en que la subrasante es la capa de suelo natural que debe soportar las cargas transmitidas desde la estructura. Sin embargo, en muchos casos, el suelo no tiene las características necesarias para cumplir con los requisitos de resistencia y durabilidad. Puede ser heterogéneo, tener baja capacidad de carga, ser susceptible a la expansión y contracción debido a cambios en la humedad, o ser probable a deformaciones bajo cargas. La estabilización se lleva a cabo para modificar estas propiedades y mejorar la calidad del suelo (Prasad & Hussaini, 2022).

Antes de aplicar cualquier técnica de mejoramiento de suelos, es crucial realizar un análisis geotécnico detallado del suelo. Esto implica pruebas de laboratorio y ensayos de campo para determinar la textura, la densidad, la permeabilidad, la resistencia y otras propiedades relevantes del suelo. Estos datos le ayudarán a seleccionar la técnica de mejoramiento más adecuada y diseñar el proceso correctamente (Gao, Hang, He, Zhang, & Paassen, 2021).

La estabilización de la subrasante es un proceso que se utiliza para mejorar las propiedades mecánicas y físicas de la subrasante, la capa de suelo que se encuentra debajo de la capa de pavimento en una carretera (Al-Atroush & Sebaey, 2021). La subrasante es una parte fundamental de la carretera, ya que proporciona un soporte para el pavimento y ayuda a distribuir las cargas del tráfico. Los objetivos de la estabilización de la subrasante son:

- Mejorar la resistencia de la subrasante: La estabilización puede aumentar la resistencia de la subrasante a la compresión, la tracción y la flexión. Esto puede ayudar a reducir el riesgo de asentamientos, deslizamientos y otros problemas de estabilidad (Zafar, Ansari, & Husain, 2023).
- Reducir la permeabilidad de la subrasante: La estabilización puede reducir la permeabilidad de la subrasante, lo que puede ayudar a reducir la erosión y la contaminación (Munirwan, Taib, Taha, Rahman, & Munirwansyah, 2022).
- Mejorar la compactación de la subrasante: La estabilización puede mejorar la compactación de la subrasante, lo que puede facilitar su construcción (Cislaghi, Sala, Borgonovo, Gandolfi, & Bischetti, 2021).
- Reducir la plasticidad de la subrasante: La estabilización puede reducir la plasticidad de la subrasante, lo que puede ayudar a reducir la contracción y la expansión de la subrasante (Alnmr, Ray, & Alsirawan, 2023).

Existen diferentes métodos de estabilización de la subrasante. Los métodos más comunes son:

- Estabilización química: La estabilización química utiliza materiales que reaccionan químicamente con las partículas del suelo para mejorar sus propiedades. Los materiales de estabilización química más comunes son la cal, el cemento y el yeso (Vicuña, et al., 2024).
- Estabilización mecánica: La estabilización mecánica utiliza materiales que unen las partículas del suelo entre sí. Los materiales de estabilización mecánica más comunes son el asfalto, el hormigón y los geosintéticos (Tiutkin, Autelitano, Giuliani, & Neduzha, 2024).

 Estabilización biológica: La estabilización biológica utiliza microorganismos para mejorar las propiedades del suelo. La estabilización biológica es un método relativamente nuevo, pero tiene el potencial de ser una técnica muy eficaz.

La elección del método de estabilización más adecuado dependerá de las características del suelo y de los requisitos del proyecto. En general, la estabilización de la subrasante puede proporcionar los siguientes beneficios:

- Aumento de la vida útil del pavimento: Una subrasante bien estabilizada puede ayudar a reducir el riesgo de daños al pavimento causados por asentamientos, deslizamientos y erosión.
- Mejora de la seguridad: Una subrasante estable puede ayudar a reducir el riesgo de accidentes causados por grietas, baches y otros problemas en el pavimento.
- Reducción de los costos de mantenimiento: Una subrasante bien estabilizada puede requerir menos mantenimiento que una subrasante no estabilizada.

2.2.1.3 Estabilización de suelos arenoso-arcillosos

Los suelos arenosos arcillosos son aquellos que presentan una mezcla de partículas de arena y arcilla. Estos suelos pueden ser difíciles de trabajar y pueden presentar problemas de estabilidad. La estabilización de la subrasante de suelos arenosos arcillosos es un proceso que se utiliza para mejorar sus propiedades mecánicas y reducir los problemas asociados a su inestabilidad.

Algunos procesos de estabilización de suelos arenoso-arcillosos son los siguientes:

Estabilización con cal: La estabilización con cal es un método de mejoramiento químico que se utiliza para mejorar las propiedades de los suelos arenosos arcillosos.
 La cal reacciona químicamente con las partículas de arcilla para formar nuevos compuestos. Estos compuestos hacen que el suelo sea más resistente a la compresión

y al agua. La estabilización con cal se utiliza para mejorar la resistencia al asentamiento, la resistencia al deslizamiento, la resistencia a la erosión, la compactibilidad y la reducción de la plasticidad de los suelos arenosos arcillosos.

- Estabilización con cemento: La estabilización con cemento es un método de mejoramiento químico que se utiliza para mejorar las propiedades de los suelos arenosos arcillosos. El cemento se utiliza para unir las partículas de suelo entre sí.
 Esto aumenta la resistencia y la estabilidad del suelo.
- Estabilización con emulsión asfáltica: La estabilización con emulsión asfáltica es un método de mejoramiento mecánico que se utiliza para mejorar las propiedades de los suelos arenosos arcillosos. La emulsión asfáltica se utiliza para recubrir las partículas de suelo. Esto ayuda a reducir la erosión y la permeabilidad del suelo. La estabilización con emulsión asfáltica se utiliza para mejorar la resistencia a la erosión, la permeabilidad y la reducción de la plasticidad de los suelos arenosos arcillosos.

2.2.1.4 Propiedades físicas de suelos

Las propiedades físicas de los suelos son características intrínsecas y medibles que describen cómo se comporta un suelo en función de su estructura, composición y respuesta a diferentes condiciones. Estas propiedades son fundamentales para entender cómo el suelo interactúa con el agua, el aire, las cargas y las fuerzas externas, lo que a su vez tiene un impacto directo en su uso y comportamiento (Wilches, Burbano, & Sierra, 2020).

Las propiedades físicas de los suelos son:

Contenido de humedad (% humedad)

El contenido de humedad es un parámetro fundamental en el campo de la mecánica de suelos y la geotecnia. Se refiere a la cantidad de agua presente en un suelo en relación con su peso seco. El contenido de humedad es importante en diversas fases de diseño y construcción, ya que influye en las propiedades y el comportamiento del suelo (Chen & Wang, 2023). Aquí hay algunas consideraciones clave sobre el contenido de humedad en suelos mecánicos:

Definición del contenido de humedad: El contenido de humedad (w) se define como la relación entre el peso del agua presente en el suelo (Ww) y el peso seco del suelo (Ws). Matemáticamente, se expresa como:

Ecuación 1

Contenido de Humedad

$$w = \frac{W_w}{W_S} x 100\%$$

Nota. Obtenido de Norma E.O50

Importancia: El contenido de humedad influye en las propiedades físicas y mecánicas del suelo, como su densidad, cohesión, resistencia al corte y capacidad de soporte. También afecta la compactación, permeabilidad y expansión-contracción del suelo (MTC, 2016). Determinación: El contenido de humedad se determina mediante ensayos de laboratorio. El proceso general implica tomar una muestra del suelo, secarla a una temperatura constante (generalmente en un horno a 105°C) para eliminar toda la humedad y luego medir el peso del suelo seco. La diferencia entre el peso de la muestra húmeda original y el peso del suelo seco da el peso del agua presente en la muestra. El contenido de humedad se calcula como se ha deteriorado anteriormente (MTC, 2016).

Curva de compactación: En el estudio de la compactación de suelos, se traza una curva de compactación que muestra cómo varía el contenido de humedad con la densidad del suelo. Esto es esencial para determinar el contenido de humedad óptimo para alcanzar la máxima densidad en un suelo durante el proceso de compactación (Randhawa & Chauhan, 2022).

Granulometría de los suelos

La granulometría es un concepto fundamental en el campo de la mecánica de suelos y la geotecnia. Se refiere al estudio de la distribución de los tamaños de las partículas en un suelo y cómo esta distribución afecta sus propiedades físicas y mecánicas. La granulometría se determina mediante el análisis de tamizado, que consiste en separar las partículas del suelo en diferentes tamaños utilizando tamices de malla de distintos diámetros (Gutiérrez, 2021). Algunos aspectos clave sobre la granulometría en mecánica de suelos son:

- Distribución de tamaño: La granulometría implica analizar la proporción de partículas de diferentes tamaños en una muestra de suelo. Las partículas se dividen generalmente en varias fracciones de tamaño, como arcilla, limo, arena y grava, en función del tamaño de las partículas. La distribución de tamaño se presenta en un gráfico llamado "curva granulométrica" o "curva de distribución de tamaño" (Gutiérrez, 2021).
- Tamizado: El análisis granulométrico se realiza utilizando un conjunto de tamices con diferentes tamaños de malla. La muestra de suelo se coloca en el tamiz superior y se somete a un proceso de choque para permitir que las partículas pasen a través de los tamices según su tamaño. Las partículas retenidas en cada tamiz se pesan y se expresan como porcentaje de la masa total de la muestra (Wilches, Burbano, & Sierra, 2020).

- Curva granulométrica: La curva granulométrica es un gráfico que muestra el porcentaje acumulado de partículas que son más pequeñas que un tamaño de partícula dado en función del diámetro de las partículas. Las partículas se ordenan desde las más pequeñas (arcilla y limo) hasta las más grandes (arena y grava). La curva puede ayudar a comprender la distribución de tamaño y la composición del suelo (MTC, 2016).
- Parámetros granulométricos: A partir de la curva granulométrica, se pueden calcular diversos parámetros que describen la distribución de tamaños, como el diámetro efectivo (D10, D30, D60), coeficiente de uniformidad (Cu), coeficiente de curvatura (Cc), entre otros. Estos parámetros determinan información sobre la gradación y la uniformidad del suelo (MTC, 2016).
- Aplicaciones: El conocimiento de la granulometría es esencial en diversas áreas de la geotecnia, como el diseño de cimentaciones, la evaluación de la estabilidad de taludes, el diseño de obras de drenaje y la determinación de las propiedades de filtración y permeabilidad del suelo (MTC, 2016).
- Comportamiento del suelo: La granulometría influye en las propiedades físicas y mecánicas del suelo, como su capacidad de drenaje, permeabilidad, compresibilidad, resistencia al corte y capacidad de soporte. Por ejemplo, un suelo bien graduado (con una amplia gama de tamaños de partículas) tiende a tener mejor drenaje y capacidad de carga que un suelo mal graduado (MTC, 2016).

Dado ello, la granulometría es esencial para comprender las características y el comportamiento de los suelos en la ingeniería geotécnica. Permite analizar cómo las proporciones de diferentes tamaños de partículas influyen en las propiedades y el comportamiento de los suelos en diversas aplicaciones de construcción e ingeniería civil (Da Silva, Donato, Gouveia, Santana, & Da Silva, 2022).

Límites Atterberg

Los Límites de Atterberg son un conjunto de límites utilizados en mecánica de suelos para caracterizar el comportamiento plástico y la plasticidad de los suelos. Estos límites son definidos por el científico sueco Albert Atterberg y son herramientas clave para comprender las propiedades de los suelos en términos de su contenido de humedad y su capacidad de cambio de estado entre sólido y líquido (MTC, 2014). Los tres límites de Atterberg más importantes son:

- Límite Líquido (LL): El Límite Líquido es el contenido de humedad en el cual un suelo pasa de un estado semilíquido a un estado plástico. En otras palabras, es el punto donde el suelo comienza a fluir como un líquido bajo la influencia de una presión ligera. Se determina utilizando el aparato de Casagrande, donde se moldea una ranura en el suelo y se inclina repetidamente el molde hasta que se cierra a lo largo de una longitud de 13 mm. El contenido de humedad en este punto se registra como el Límite Líquido (MTC, 2016).
- Límite Plástico (LP): El Límite Plástico es el contenido de humedad en el cual un suelo pasa del estado plástico al estado semisólido. En otras palabras, es el punto donde el suelo deja de comportarse como un líquido y comienza a exhibir propiedades plásticas, como capacidad para formar una pequeña bola que no se rompe. Se determina enrollando una porción del suelo en forma de hilo de 3 mm de diámetro y midiendo vueltas completas puede hacer antes de romperse. El contenido de humedad en este punto se registra como el Límite Plástico (MTC, 2016).
- Límite de Contracción (LC) o Límite de Secado (LS): El Límite de Contracción es el contenido de humedad en el cual un suelo pasa de su estado plástico a su estado sólido. Es el punto donde el suelo se contrae al máximo y más allá del cual no puede perder más humedad sin afectar su volumen. A menudo, se considera equivalente al

Límite de Secado, ya que es el contenido de humedad al cual el suelo se comporta como un sólido. El Límite de Contracción se obtiene generalmente a través de experimentos en laboratorio (MTC, 2016).

Estos límites se utilizan para clasificar los suelos en diferentes categorías según su plasticidad. La relación entre los Límites de Atterberg puede proporcionar información sobre la plasticidad y el comportamiento de los suelos en diferentes condiciones. La combinación de los Límites de Atterberg también se utiliza en la elaboración del Diagrama de Plasticidad (también conocido como Diagrama de Plasticidad de Casagrande), que ayuda a clasificar los suelos en términos de sus propiedades plásticas y de límite líquido (Amena, 2022).

Densidad máxima seca y contenido óptimo de humedad

La dimensión de prueba de Proctor modificado busca determinar la máxima densidad seca del suelo y la humedad óptima requerida para lograr esa densidad. Esta es una prueba para el proceso de compresión utilizado en el laboratorio, que define la relación entre el contenido de humedad del suelo y el peso unitario de seco (curva de compresión), Esta prueba solo se utiliza en suelos con un tamiz de 19,0 mm (3/4 de pulgada) y un 30 % o menos de material particulado (MTC, 2016).

Como indicadores se tiene la humedad óptima de los suelos se define como la cantidad de agua, en porcentaje, para la cual el suelo tiene la capacidad de llegar a su máxima compactación, el ordenamiento de las partículas está en su punto máximo, y lo siguiente que se generaría en la compactación es la falla y el otro indicador es la densidad máxima es la cantidad asociada con todos los materiales contenidos en un volumen particular (Randhawa & Chauhan, 2022).

California Bearing Ratio (CBR)

La dimensión de capacidad de soporte (CBR) son pruebas que se utilizan para determinar el soporte y capacidad de resistencia de los suelos bajo un nivel determinado de compactación, en proyectos como carreteras, caminos, terraplenes, etc. Y para clasificar los suelos. El acrónimo CBR significa "California Bearing Ratio" y se deriva del hecho de que este estudio fue propuesto por el Departamento de Transporte de California. El estudio de CBR para suelos consiste esencialmente en comprimir la tierra en una forma estándar, sumergirla en agua y aplicar un punzón a la superficie del suelo con un émbolo estándar. En particular, está sujeto a las normas ASM 1883 o UNE 103502 (Braja, 2015). En proyectos de pavimentación, es importante conocer la capacidad de soporte del suelo compactado, ya que toda la estructura del pavimento, y las cargas que esta soporta, estarán directamente soportadas por el terreno, en la avenida Francisco Falman, en proyectos de pavimentación conocer la capacidad de soporte es esencial para concebir un proyecto de infraestructura vial, además al obtener los valores del CBR en la subrasante de estudio, permitirá conocer la evolución de la capacidad portante del suelo para los distintas dosificaciones consideradas.

El CBR es un estudio que determina la resistencia al corte del suelo en la zona de linealidad, esto significa que no llega al rango plástico y tampoco a la zona de falla. El objetivo es contrastar los esfuerzos que se generan en la muestra a una penetración determinada (Debbarma, Saha, & Sarkar, 2022).

La resistencia al corte del suelo determina factores como la estabilidad, la capacidad de carga admisible, para soportar la estructura del pavimento en carreteras, o para el diseño de una cimentación, también para el empuje del suelo contra un muro de contención (MTC, Manual de Ensayo de Materiales, 2016).

CAPÍTULO III

METODOLOGÍA

3.1. Enfoque de la investigación

El enfoque de la investigación es de carácter cuantitativo. Son aquellos estudios que siguen un enfoque objetivo de la realidad externa tendiente a describir, explicar y predecir de forma causal ese hecho y fenómeno. De esta forma, analizar la información e interpretar sus resultados puede refutar o desmentir hipótesis previas que han sido demostradas, ayudando a sustentar patrones de comportamiento predecibles en la investigación, brinda la oportunidad de generalizar nuestros resultados dentro del marco teórico que sustenta nuestra investigación (Hadi, Martel, Huayta, Rojas, & Arias, 2023, p. 52). En el presente estudio se busca obtener resultados específicos (numéricos) de las propiedades físico-mecánicas del suelo sometido a un proceso de estabilización mediante la aplicación de ceniza de hoja de cebolla roja, ya que se plantea dosificar la muestra del suelo con el material estabilizante y obtener, progresivamente, la variación de sus propiedades.

3.2. Tipo de investigación

El tipo de investigación planteada en el presente proyecto es investigación aplicada. La investigación aplicada se basa en la generación de conocimiento a través de la aplicación a escala de hipótesis teóricas para evaluar aspectos prácticos de una determinada variable. La característica más distintiva de la investigación aplicada es su capacidad para aplicar y resolver inmediatamente problemas reales (Ruiz & Valenzuela, 2022, p. 17). En la presente investigación se pretende aplicar el conocimiento teórico sobre el mejoramiento de suelos para establecer una precedente práctico y obtener resultados específicos de la estabilización de una subrasante de suelos areno arcillosos, con fines de pavimentación, utilizando como aditivo para mejorar sus propiedades la ceniza de hoja de cebolla roja.

3.3. Nivel de la investigación

El nivel de la investigación es del tipo explicativa. Tiene como principal propósito la verificación de la hipótesis, lo que pretende es que las conclusiones logren desencadenar el contraste de leyes o principios científicos (Ñaupas, et al., 2023, p. 159). Este proyecto plantea demostrar las hipótesis y obtener las conclusiones, explicando el efecto de la ceniza de hoja de cebolla roja sobre el mejoramiento de una subrasante, siguiendo los procesos de estabilización de suelos descritos en la Norma Técnica Peruana (NTP).

3.4. Método de investigación

El método de investigación es de carácter científico, al implicar la recolección sistemática de datos y su análisis objetivo para responder a preguntas de investigación, dentro de este marco, se utilizan técnicas de observación, experimentación y análisis para investigar fenómenos, formular y probar hipótesis, y obtener conclusiones basadas en evidencias. Este método busca descubrir patrones, relaciones y causalidades, garantizando la validez y reproducibilidad de los resultados mediante un proceso riguroso y estructurado.

3.5. Diseño de investigación

El diseño de la investigación es experimental del subdiseño cuasiexperimental. Esto significa manipular o controlar variables independientes, esto requiere acciones de planificación que se pueden crear en etapas, tales como un proceso de intervención, o un sistema de análisis de parámetros y rangos (Arias, Holgado, Tafur, & Vasquez, 2022, p. 73). En un diseño cuasiexperimental, los individuos no se toman al azar ni se acoplan en grupos, sino que estos grupos se forman antes del experimento (Hernández & Mendoza, 2018, pág. 173). La investigación busca determinar los efectos de la variable independiente (ceniza de hoja de cebolla roja), sobre la variable dependiente (Estabilización de suelos), para tal objetivo los estudios, a realizar, se asignaron de acuerdo al lineamiento de la NTP y el RNE.

3.6. Población y muestra del estudio

3.6.1. Población

La población, o más precisamente la población objetivo, es el conjunto finito o infinito de individuos, objetos o elementos que comparten propiedades comunes, dentro del área de estudio, y de las cuales se quiere medir algo para obtener conclusiones de la (Ñaupas, et al., 2023, p. 366). En el presente estudio la población está formada por las vías de comunicación no pavimentadas y urbanas del distrito de San Antonio.

La población de estudios fue los 3 km de la Av. Paraíso distrito San Antonio.

3.6.2. Muestra

La muestra es un subconjunto finito extraído de una población accesible; las características, cualidades, y aspectos en general de la muestra son factores representativos de las cualidades del grupo poblacional, la muestra es una fracción, con el suficiente nivel de significancia, de la población (Ñaupas, et al., 2023, p. 367). En el caso del presente estudio al ser la población pequeña, por conveniencia del investigador se opta porque que sea en igual número la muestra (3 km).

3.6.3. Muestreo

El tipo de muestreo aplicado será muestreo por conveniencia, En este tipo de muestra, los elementos de la muestra se seleccionan según su disponibilidad y conveniencia para el investigador.

Según lo señalado en la Norma Técnica Peruana CE.010 de pavimentos urbanos, se considera que se está realizando el estudio en una vía local, la cual por antecedentes ya tiene estudios realizados, por lo cual se asumirá el número mínimo de calicatas establecido por la norma 3 calicatas.

Tabla 2. Diseño de la investigación

Estudio	Disc	eño de la investigació	in
	GE-1	X1 (SN+5%C)	O1
Límites de consistencia	GE-2	X2 (SN+8%C)	O2
	GE-3	X3 (SN+12%C)	О3
	GE-4	X4 (SN+5%C)	O4
Proctor modificado	GE-5	X5 (SN+8%C)	O5
	GE-6	X6 (SN+12%C)	O6
	GE-7	X7 (SN+5%C)	Ο7
California Bearing Ratio CBR	GE-8	X8 (SN+8%C)	O8
	GE-9	X9 (SN+12%C)	O9
Límites de consistencia	GC-1	SN	O10
Proctor modificado	GC-2	SN	O11
California Bearing Ratio CBR	GC-3	SN	O12

GE (1-2-3): Grupo experimental para el estudio de límites de consistencia.

GE (4-5-6): Grupo experimental para el estudio de Proctor modificado.

GE (7-8-9): Grupo experimental para el estudio de CBR.

X (1-2-3): Variable experimental límites de consistencia

X (4-5-6): Variable experimental Proctor modificado

X (7-8-9): Variable experimental CBR

O (1-2-3): Mediciones de las muestras grupo experimental límites de consistencia.

O (4-5-6): Mediciones de las muestras grupo experimental Proctor modificado.

O (7-8-9): Mediciones de las muestras grupo experimental CBR.

GC (1-2-3): Grupo de control estudio de muestras en estado natural.

O (10-11-12): Mediciones de muestra inalteradas en estado natural

Tabla 3. Cantidad de muestras de estudio según calicatas

Estudio	Grupo de	Resultados	Muest	Muestras de estudio		
	estudio observado				S 70-0-1	
	GE-1	O1	C1	C2	C3	
Límites de consistencia	GE-2	O2	C1	C2	C3	
	GE-3	О3	C1	C2	C3	
	GE-4	O4	C1	C2	C3	
Proctor modificado	GE-5	O5	C1	C2	C3	
	GE-6	O6	C1	C2	C3	
California Dassina Datia	GE-7	O7	C1	C2	C3	
California Bearing Ratio	GE-8	O8	C1	C2	C3	
CBR	GE-9	O9	C1	C2	C3	
Límites de consistencia	GC-1	O10	C1	C2	C3	
Proctor modificado	GC-2	O11	C1	C2	C3	
California Bearing Ratio CBR	GC-3	O12	C1	C2	C3	

Nota. Elaboración propia.

Donde:

C1: Análisis de muestras calicata 1

C2: Análisis de muestras calicata 2

C3: Análisis de muestras calicata 3

3.6.4. Unidad muestral

Según las normas técnicas y estándares de ingeniería, las dimensiones de una calicata pueden variar dependiendo del propósito y la ubicación específica del proyecto. Sin embargo, se proporciona una guía general sobre las dimensiones comunes de una calicata basada en las prácticas comunes en la ingeniería geotécnica.

- Número de calicatas: Según la Norma Técnica Peruana NTP 339.145:1999, se recomienda realizar un mínimo de tres calicatas en un área de 3000 m², este número asegura una cobertura adecuada del terreno, permitiendo obtener una muestra representativa del perfil del suelo en la zona investigada.
- Profundidad de las Calicatas: Cada calicata debe tener una profundidad mínima de 1.5
 metros, siendo esta profundidad necesaria para evaluar adecuadamente las condiciones del
 suelo y detectar posibles variaciones en sus propiedades geotécnicas.
- 3. Calicatas adicionales: Para proyectos con áreas mayores o con requisitos específicos, se sugiere realizar una calicata adicional por cada 1000 m³ del volumen total del sitio. Esta recomendación está en línea con la Norma Técnica Peruana CE. 010 y garantiza que la investigación geotécnica sea exhaustiva, proporcionando datos más precisos para el diseño y análisis del proyecto.

Es importante tener en cuenta que estas dimensiones son solo una guía general y pueden variar según las especificaciones y requisitos particulares de cada proyecto, por lo tanto, es recomendable consultar las normas y los códigos de construcción pertinentes, así como trabajar en estrecha colaboración con un especialista calificado para determinar las dimensiones adecuadas de la calicata según sea la investigación.

3.7. Técnicas e instrumentos de recolección de datos

3.7.1. Técnicas de investigación

Observación: Este método se fundamenta en el registro sistemático, ordenado, confiable y preciso de conductas y situaciones que se pueden percibir. La observación puede ser de tipo directo, donde el investigador está presente y observa el comportamiento o evento en tiempo real; o indirecto, realizado a través de protocolos establecidos o grabaciones en video (Hernández & Mendoza, 2018). En la observación directa, el investigador tiene una interacción directa con el fenómeno o sujeto de estudio.

3.7.2. Instrumentos de investigación

Ficha técnica de observación: Es un recurso utilizado para captar datos por medio de la observación directa. En este caso, las guías de observación se componen de fichas técnicas que recogen detalles específicos sobre cada ensayo llevado a cabo.

3.7.3. Validez de los instrumentos

Las fichas de observación empleadas en esta investigación son las utilizadas rutinariamente en los laboratorios para registrar datos de los ensayos, dado que estas guías están diseñadas y aprobadas específicamente para asegurar la precisión y consistencia en la recolección de información durante las pruebas de laboratorio, no fue necesario realizar un proceso adicional de validación del instrumento en este contexto.

3.7.4. Procesamiento de datos

El procesamiento de los datos se efectuó a través del software IBM SPSS, lo que permitió ser interpretados los resultados obtenidos de manera más precisa. Para el análisis estadístico, se utilizaron métodos de estadística descriptiva, como las medidas de tendencia central (media aritmética y mediana), así como técnicas de estadística inferencial. Estas incluyeron pruebas

paramétricas, como la prueba T de Student, y pruebas no paramétricas, como la prueba de Wilcoxon.

3.8. Procedimiento

3.8.1. Obtención de la ceniza de hoja de cebolla roja y sus propiedades químicas

Se procedió a recolectar una cantidad suficiente de hojas de cebolla roja de las áreas de cultivo locales; las hojas recolectadas fueron llevadas al laboratorio, donde se sometieron a un proceso de limpieza para eliminar impurezas y partículas extrañas; posteriormente, las hojas limpias fueron secadas en un horno a una temperatura constante de 105°C durante 24 horas para eliminar toda la humedad presente.

Una vez secas, las hojas de cebolla roja fueron incineradas en un horno de mufla a una temperatura de 600°C durante un periodo de 2 horas; este proceso de calcinación permitió la obtención de ceniza de hoja de cebolla roja; la ceniza resultante fue recolectada, enfriada a temperatura ambiente, y almacenada en un recipiente hermético para evitar la absorción de humedad

Evaluación de las propiedades físicas de la subrasante de suelos arenoso-arcilloso.

En primera instancia, se realizaron 3 calicatas en diferentes ubicaciones dentro del área de estudio, siguiendo las recomendaciones establecidas en la Norma Técnica Peruana NTP 339.145:1999, para asegurar una cobertura adecuada y representativa de la subrasante de suelos arenosos-arcillosos. Cada calicata tuvo una profundidad mínima de 1.5 metros, permitiendo obtener muestras de suelo de diferentes niveles estratigráficos, además, las muestras de suelo extraídas de cada calicata fueron etiquetadas y transportadas al laboratorio para su análisis.

Figura 3. Excavación de calicatas

Determinación del Contenido de Humedad: Se tomaron muestras de suelo en diferentes puntos de la subrasante; cada muestra fue pesada y secada en un horno a 105°C hasta alcanzar un peso constante; la pérdida de peso de la muestra después del secado fue registrada y utilizada para calcular el contenido de humedad del suelo, expresado como porcentaje del peso seco.

Figura 4. Muestras de suelo en horno para el contenido de humedadNota. Elaboración propia.

Ensayo de Granulometría por Lavado: Se llevaron a cabo ensayos de granulometría para determinar la distribución de tamaño de las partículas del suelo, conforme a la normativa NTP 400.018. Se utilizaron tamices estándar, y el material retenido en cada tamiz fue pesado; además, el lavado de la fracción fina permitió separar las partículas más pequeñas (arcillas y limos); los resultados fueron representados en una curva granulométrica para determinar la proporción de arena, limo y arcilla en la muestra.

Figura 5. Análisis granulométrico de muestras de suelo *Nota*. Elaboración propia.

Ensayo de Límites de Atterberg: Este ensayo permitió determinar los límites de consistencia del suelo, específicamente el límite líquido (LL), el límite plástico (LP), y el índice de plasticidad (IP) de acuerdo con la NTP 339.129, ASTM D4318; estos límites se determinaron utilizando el aparato de Casagrande y el cono de penetración para obtener información sobre la plasticidad y la compresibilidad del suelo.

Figura 6. Aparato de Casagrande para el IPNota. Elaboración propia.

Evaluación de las propiedades mecánicas de la subrasante de suelos arenoso-arcilloso.

Ensayo de Proctor Modificado: Para determinar la densidad máxima seca y el contenido de humedad óptimo, se realizaron ensayos de compactación Proctor modificado en conformidad a la NTP 339.141 y ASTM D1557. Se prepararon muestras de suelo a diferentes contenidos de humedad y se compactaron en moldes estándar usando un martillo de compactación bajo condiciones controladas. Cada muestra compactada fue pesada, y la densidad seca fue calculada. Se trazaron curvas de compactación para determinar el contenido de humedad óptimo y la densidad máxima seca.

Figura 7. Máquina Proctor Modificado

Nota. Elaboración propia.

Ensayo de Capacidad de Soporte (CBR): Para determinar la capacidad de soporte del suelo, se realizaron ensayos CBR en muestras compactadas al contenido de humedad óptimo y densidad máxima seca en conformidad a la NTP 339.145 y ASTM D1883. Se colocaron las muestras en un molde de CBR y se sometieron a una penetración controlada utilizando un pistón de carga. La resistencia ofrecida por el suelo a la penetración fue registrada y utilizada para calcular el valor de CBR, que proporciona una medida de la capacidad de soporte del suelo.

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

4.1. Descripción del área de estudio

4.1.1 Ubicación

El distrito de San Antonio se encuentra en la provincia de Mariscal Nieto, en el departamento

de Moquegua, en el sur de Perú. Limita al sur con la provincia de Ilo, al norte con el distrito de

Moquegua, al este con el distrito de Moquegua. El estudio se ubicó en el sector conocido como

Asociación de viviendas Cesar Vallejo pampas de San Antonio

Latitud: 17°12'1.47"S

Longitud: 70°57'24.13"O

Elevación: 1348 msnm

4.1.2. Caracterización del área de estudio

El distrito de San Antonio en la región de Moquegua, Perú, se caracteriza por su ubicación

geográfica en la costa sur del país, con un entorno que combina elementos costeros, desérticos

y montañosos. Gran parte del territorio de San Antonio está compuesto por paisajes desérticos.

Puedes encontrar dunas de arena, de escasa vegetación y un clima seco. El desierto de la costa

es una característica distintiva de esta región. Al este del distrito, se encuentran las montañas

que forman parte de los Andes. Estas presentan una topografía más accidentada ya menudo

están cubiertas de vegetación. Son una parte importante del paisaje y la geografía de San

Antonio.

54

4.2. Estudios previos

4.2.1 Análisis de campo

El proceso de análisis de campo para los estudios de mecánica de suelos en la tesis mencionada se puede dividir en las siguientes etapas:

- Reconocimiento del sitio: Se realiza una visita al sitio para observar las condiciones generales del terreno, la topografía, la vegetación y la presencia de afloramientos rocosos.
 Se toman fotografías y se registran las observaciones en un cuaderno de campo.
- Recolección de muestras: Se recolectan muestras de suelo a diferentes profundidades utilizando diferentes métodos, como calicatas, pozos a cielo abierto o barrenos. Las muestras se clasifican y se almacenan en contenedores adecuados para su posterior análisis en el laboratorio.
- Ensayos de campo: Se realizan ensayos de campo para determinar las propiedades in situ
 del suelo, como la densidad, la humedad, la resistencia al corte y la permeabilidad. Los
 ensayos de campo se pueden realizar utilizando diferentes equipos, como penetrómetros,
 densímetros y permeámetros.
- Interpretación de resultados: Los resultados de los análisis de laboratorio y de los ensayos de campo se interpretan para obtener información sobre las propiedades del suelo y su comportamiento. La información obtenida se utiliza para caracterizar el suelo y para diseñar la solución de estabilización más adecuada.

4.2.2 Ensayos de laboratorio

Tabla 4. Descripción de los estudios realizados

Estudio	Norma	Norma	Descripción
Estudio	ASTM	NTP	Descripcion

Análisis	ASTM	NTP	Determina la distribución de las partículas del
Allalisis	ASTM	NII	Determina la distribución de las particulas del
granulométrico	D422	339.101	suelo por tamaño.
Límites de Atterberg	ASTM D4318	NTP 339.105	Mide el contenido de humedad en el que el suelo cambia de estado plástico a líquido y de límite plástico a límite líquido.
Compactación	ASTM D698	NTP 339.103	Determina la densidad máxima seca y el contenido de humedad óptimo del suelo para su compactación.
CBR	ASTM D1883	NTP 339.113	Mide la resistencia al corte del suelo bajo condiciones de carga repetida.

Nota. Solo se incluyen algunos de los estudios de mecánica de suelos que se pueden realizar para la tesis. La selección de los estudios específicos depende de las características del suelo y de los objetivos de la investigación.

Es importante utilizar las normas ASTM y NTP más recientes para realizar los estudios de mecánica de suelos. Los resultados de los estudios de mecánica de suelos deben ser interpretados correctamente para obtener conclusiones válidas sobre las propiedades del suelo.

4.3. Propiedades naturales de las muestras de estudio

4.3.1 Granulometría de los suelos

En el presente estudio, la clasificación de partículas se hizo mediante granulometría por lavado, es una técnica utilizada en el campo de la geotecnia e ingeniería civil para determinar la distribución de tamaños de partículas en un suelo o agregado. La conceptualización de este método implica comprender cómo se lleva a cabo el proceso para obtener información detallada sobre las fracciones de partículas presentes en una muestra.

Procedimiento realizado

- Selección de la muestra: Se toma una muestra representativa del suelo o agregado que se
 quiere analizar. Esta muestra se recoge cuidadosamente para asegurar que sea
 representativa de la variabilidad del material en el área de interés.
- Secado de la muestra: La muestra se coloca en un horno para eliminar cualquier contenido de agua. Este paso es crucial para obtener mediciones precisas de la distribución de tamaños de partículas y evitar que las partículas estén aglomeradas debido a la humedad.
- Tamizado inicial: La muestra se coloca en un conjunto de tamices con aberturas de malla progresivamente más finas. Estos tamices se apilan, y la muestra se agita o vibra para separar las partículas según su tamaño. Se pesan las fracciones retenidas en cada tamiz.
- Lavado de fracciones retenidas: La fracción más gruesa retenida en el tamiz superior se coloca en un recipiente de lavado. Mediante el uso de agua, se separan las partículas adheridas entre sí. Este proceso se repite hasta que todas las partículas separadas en el tamiz más grueso se recogen en el recipiente de lavado.
- Tamizado después del lavado: La fracción lavada se coloca en un nuevo conjunto de tamices, y el proceso de tamizado se repite. Se pesan las fracciones retenidas en cada tamiz.
- Cálculos y análisis: Con los datos de pesaje de las fracciones retenidas en cada tamiz antes y después del lavado, se calcula el porcentaje acumulado retenido en cada tamiz y el porcentaje pasante. Estos datos se utilizan para construir la curva granulométrica, que representa la distribución de tamaños de partículas en la muestra.

La granulometría por lavado proporciona información valiosa para evaluar la composición del suelo o agregado, lo que es esencial en la planificación y diseño de proyectos de construcción, carreteras y otros proyectos de ingeniería civil.

Tabla 5. Análisis granulométrico calicata 1

	Lecturas del		L	K	Diámet	% Q′
	Hidrómetro				ro	Pasa
Primera	1° Corrección	2 °			(mm)	
Lectura		Corrección				
49.00	44.90	50.00	14.3	0.011	0.043	88.421
			0	5		
47.00	43.10	48.00	14.6	0.008	0.022	84.876
			6	1		
43.00	39.30	44.00	15.3	0.007	0.016	77.393
			8	9		
42.00	38.50	43.00	15.5	0.007	0.011	75.817
			6	7		
37.00	33.70	38.00	16.4	0.007	0.008	66.365
			6	5		
31.00	28.00	32.00	17.5	0.007	0.006	55.140
			4	3		
26.00	23.20	27.00	18.4	0.007	0.004	45.687
			4	2		
24.00	21.40	25.00	18.8	0.007	0.003	42.143
			0	0		
21.00	18.70	22.00	19.3	0.006	0.002	36.826
			4	8		
18.00	16.00	19.00	19.8	0.006	0.001	31.509
			8	7		
16.00	13.01	17.00	20.2	0.006	0.001	25.618
			4	5		

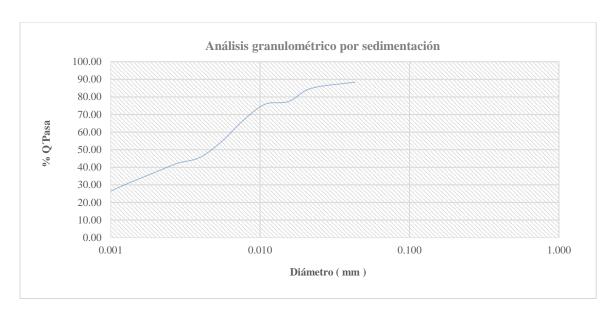


Figura 8. Curva granulométrica calicata 1 *Nota*. Elaboración propia.

La tabla muestra los resultados del análisis granulométrico por lavado de la Calicata 1. Esta información permite determinar la distribución del tamaño de las partículas del suelo, lo cual es fundamental para su clasificación e identificación. A continuación, se interpreta cada una de las columnas de la tabla:

- Diámetro (mm): Esta columna indica el tamaño de las partículas del suelo en milímetros.
 El tamaño de las partículas se reduce de arriba hacia abajo, con el valor más grande (0.043 mm) correspondiente a la arena fina y el valor más pequeño (0.001 mm) a la arcilla.
- % Q´ Pasa: Esta columna indica el porcentaje de la muestra que pasa a través de un tamiz
 con un tamaño de abertura específico. El porcentaje se reduce de arriba hacia abajo, lo que
 significa que hay una mayor cantidad de partículas finas que de partículas gruesas en la
 muestra.

La muestra de la Calicata 1 tiene una alta cantidad de arcilla (más del 30%), lo que la clasifica como un suelo arcilloso. La muestra también contiene una cantidad significativa de arena fina (entre 25% y 30%). La cantidad de limo en la muestra es relativamente baja (menos del 10%).

La distribución del tamaño de las partículas indica que el suelo tiene una baja permeabilidad, lo que significa que el agua fluye a través de él muy lentamente.

Estas características del suelo pueden tener un impacto significativo en el comportamiento del suelo y en la construcción de estructuras en el área.

Tabla 6. Análisis granulométrico calicata 2

	Lecturas del		L	K	Diámet	% Q′
	Hidrómetro				ro	Pasa
Primera	1° Corrección	2 °			(mm)	
Lectura		Corrección				
49.00	44.90	50.00	14.3	0.011	0.043	88.421
			0	5		
47.00	43.10	48.00	14.6	0.008	0.022	84.876
			6	1		
43.00	39.30	44.00	15.3	0.007	0.016	77.393
			8	9		
42.00	38.50	43.00	15.5	0.007	0.011	75.817
			6	7		
37.00	33.70	38.00	16.4	0.007	0.008	66.365
			6	5		
31.00	28.00	32.00	17.5	0.007	0.006	55.140
			4	3		
26.00	23.20	27.00	18.4	0.007	0.004	45.687
			4	2		
24.00	21.40	25.00	18.8	0.007	0.003	42.143
			0	0		
21.00	18.70	22.00	19.3	0.006	0.002	36.826
			4	8		
18.00	16.00	19.00	19.8	0.006	0.001	31.509
			8	7		
16.00	13.01	17.00	20.2	0.006	0.001	25.618
			4	5		

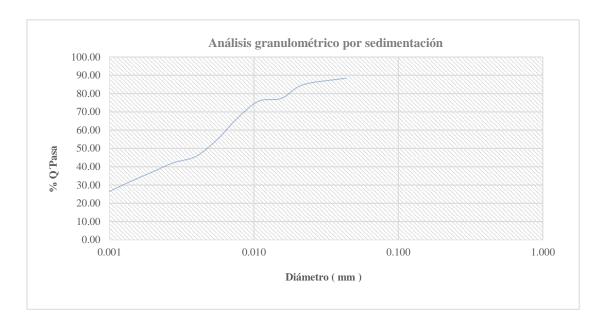


Figura 9. Curva granulométrica calicata 2

Nota. Elaboración propia.

La muestra de la Calicata 2 tiene una alta cantidad de arcilla (más del 30%), lo que la clasifica como un suelo arcilloso. La muestra también contiene una cantidad significativa de arena fina (entre 25% y 30%). La cantidad de limo en la muestra es relativamente baja (menos del 10%).

Los resultados del análisis granulométrico de la Calicata 2 son similares a los de la Calicata 1.

Ambas muestras tienen una alta cantidad de arcilla y una baja permeabilidad.

El suelo de la Calicata 2 es un suelo arcilloso con una baja permeabilidad y una alta capacidad de retención de agua. Estas características del suelo pueden tener un impacto significativo en el comportamiento del suelo y en la construcción de estructuras en el área.

Tabla 7. Análisis granulométrico calicata 3

Lecturas del	L	K	Diámet	% Q′
Hidrómetro			ro	Pasa

Primera	1° Corrección	2 °			(mm)	
Lectura		Corrección				
49.00	44.90	50.00	14.3	0.011	0.043	88.421
			0	5		
47.00	43.10	48.00	14.6	0.008	0.022	84.876
			6	1		
43.00	39.30	44.00	15.3	0.007	0.016	77.393
			8	9		
42.00	38.50	43.00	15.5	0.007	0.011	75.817
			6	7		
37.00	33.70	38.00	16.4	0.007	0.008	66.365
			6	5		
31.00	28.00	32.00	17.5	0.007	0.006	55.140
			4	3		
26.00	23.20	27.00	18.4	0.007	0.004	45.687
			4	2		
24.00	21.40	25.00	18.8	0.007	0.003	42.143
			0	0		
21.00	18.70	22.00	19.3	0.006	0.002	36.826
			4	8		
18.00	16.00	19.00	19.8	0.006	0.001	31.509
			8	7		
16.00	13.01	17.00	20.2	0.006	0.001	25.618
			4	5		

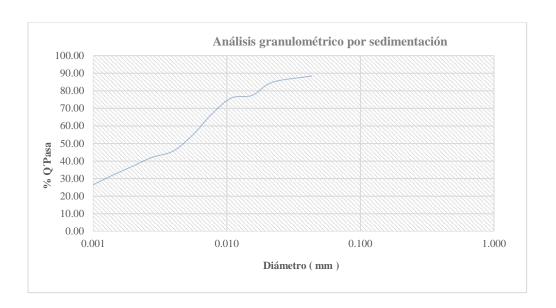


Figura 10. Curva granulométrica calicata 3

La muestra de la Calicata 3 tiene una alta cantidad de arcilla (más del 30%), lo que la clasifica como un suelo arcilloso. La muestra también contiene una cantidad significativa de arena fina (entre 25% y 30%). La cantidad de limo en la muestra es relativamente baja (menos del 10%). La distribución del tamaño de las partículas indica que el suelo tiene una baja permeabilidad, lo que significa que el agua fluye a través de él muy lentamente. El suelo también tiene una alta capacidad de retención de agua, lo que significa que puede almacenar una gran cantidad de agua.

Los resultados del análisis granulométrico de la Calicata 3 son similares a los de las calicatas 1 y 2. Las tres muestras tienen una alta cantidad de arcilla y una baja permeabilidad.

El suelo de la Calicata 3 es un suelo arcilloso con una baja permeabilidad y una alta capacidad de retención de agua. Estas características del suelo pueden tener un impacto significativo en el comportamiento del suelo y en la construcción de estructuras en el área. Se recomienda realizar análisis adicionales para determinar otras propiedades del suelo, como la resistencia al corte y la compactación.

4.3.2 Clasificación de suelos

Tabla 8. Clasificación de suelos SUCS y AASHTO de las muestras

Clasifica	ción de suelos
SUCS	AASHTO
МН-ОН	A-7-5 (18)
СН	A-7-5 (20)
СН	A-7-6 (19)
CL	A-7-6 (12)
	SUCS MH-OH CH CH

Nota. Clasificación de muestras de suelo recolectadas en 4 calicatas (C-1, C-2, C-3, C-4) utilizando dos sistemas de clasificación: SUCS (Sistema Unificado de Clasificación de Suelos) y AASHTO (Sistema de Clasificación de Suelos de la Asociación Americana de Oficiales de Carreteras y Transporte Estatales).

Interpretación de SUCS:

C-1: Clasificada como MH-OH, que corresponde a limo arcilloso de alta plasticidad. Esto indica un suelo cohesivo con un alto contenido de arcilla y limo, lo que podría significar alta capacidad de retención de agua, baja permeabilidad y potencial de expansión.

C-2: Clasificada como CH, que corresponde a arcilla de alta plasticidad. Esta indica un suelo cohesivo con un alto contenido de arcilla, lo que podría significar alta capacidad de retención de agua, muy baja permeabilidad y alta susceptibilidad a la expansión.

C-3: Clasificada como CH, similar a C-2.

C-4: Clasificada como CL, que corresponde a arcilla limosa de baja plasticidad. Esto indica un suelo cohesivo con contenido de arcilla y limo, pero con menor plasticidad que las muestras anteriores, lo que podría sugerir menor expansión y mayor resistencia.

Interpretación de AASHTO:

C-1 y C-2: Clasificadas como A-7-5, que corresponde a suelos de arcilla fina con alto contenido orgánico. Indica suelos con baja capacidad de soporte, alta plasticidad y susceptibilidad a la hinchazón. El número entre paréntesis (18 y 20) representa el Índice de Plasticidad (IP) del suelo, siendo 20 el valor más alto en este caso.

C-3: Clasificada como A-7-6, que corresponde a suelos de arcilla con características similares a A-7-5 pero con un IP menor (19).

C-4: Clasificada como A-7-6, similar a C-3 pero con un IP aún menor (12), lo que podría indicar menor plasticidad y mejor comportamiento.

Ambos sistemas clasifican las muestras como suelos cohesivos con alto contenido de arcilla, pero el SUCS proporciona más información sobre la plasticidad del suelo. La clasificación AASHTO se enfoca en el desempeño del suelo en aplicaciones de carreteras y pavimentos.

Las muestras de suelo analizadas son principalmente arcillosas con alto contenido de arcilla y limo, lo que sugiere baja permeabilidad, alta capacidad de retención de agua y potencial de expansión. La clasificación AASHTO indica que estos suelos tienen baja capacidad de soporte y pueden requerir tratamiento para su uso en aplicaciones de ingeniería. Es importante tener en cuenta que esta interpretación se basa únicamente en la clasificación del suelo y no sustituye a un análisis más detallado de sus propiedades geotécnicas.

4.3.3 Contenido de humedad

Tabla 9. Contenido de humedad y peso específico de las muestras

Muestra	Humedad Natural	Peso específico
Calicata 1 (C-1)	37.61%	2.71
Calicata 2 (C-2)	30.32%	2.96
Calicata 3 (C-3)	20.31%	2.36
Calicata 4 (C-4)	19.87%	2.66

Nota. Elaboración propia.

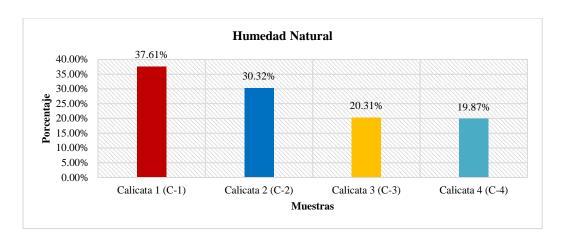


Figura 11. Contenido de humedad natural de las muestras *Nota*. Elaboración propia.

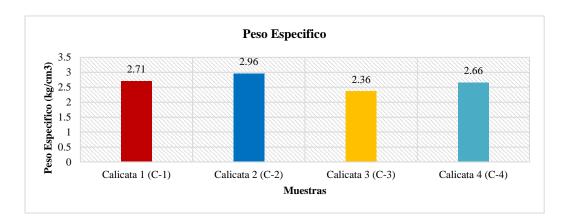


Figura 12. Peso específico de las muestras de estudio *Nota*. Elaboración propia.

La tabla muestra el contenido de humedad natural y el peso específico de las muestras de suelo recolectadas en 4 calicatas (C-1, C-2, C-3, C-4). Esta información es importante para comprender las propiedades del suelo y su comportamiento en diferentes condiciones.

Interpretación del Contenido de Humedad Natural:

 C-1: Con un 37.61% de humedad natural, se encuentra en un estado muy húmedo. Esto puede afectar la capacidad de soporte del suelo, aumentar su plasticidad y complicar su compactación.

- C-2: Con un 30.32% de humedad natural, se encuentra en un estado húmedo. Esta condición puede ser adecuada para la compactación y el trabajo con el suelo, pero aún presenta un contenido de agua elevado.
- C-3: Con un 20.31% de humedad natural, se encuentra en un estado ligeramente húmedo.
 Esta condición puede ser óptima para la compactación y el trabajo con el suelo, ya que presenta un equilibrio entre manejabilidad y estabilidad.
- C-4: Con un 19.87% de humedad natural, se encuentra en un estado seco. Esta condición puede dificultar la compactación del suelo y requerir la adición de agua para alcanzar la humedad óptima.

Interpretación del Peso Específico:

- C-1: Un peso específico de 2.71 g/cm³ indica un suelo relativamente denso. Esto puede ser debido a la presencia de partículas finas y/o a la compactación natural del suelo.
- C-2: Un peso específico de 2.96 g/cm³ indica un suelo muy denso. Esto puede ser debido a la presencia de partículas gruesas y/o a una alta compactación del suelo.
- C-3: Un peso específico de 2.36 g/cm³ indica un suelo medianamente denso. Esta densidad puede ser adecuada para la mayoría de las aplicaciones de ingeniería civil.
- C-4: Un peso específico de 2.66 g/cm³ indica un suelo relativamente denso, en la C-1.

Se observa una tendencia inversa entre la humedad natural y el peso específico. Es decir, a mayor humedad, menor peso específico, y viceversa. Esto se debe a que el agua tiene una densidad menor que la de las partículas del suelo.

Las muestras de suelo presentan diferentes contenidos de humedad natural y pesos específicos, lo que indica una variabilidad en sus propiedades. La humedad natural afecta el comportamiento del suelo en cuanto a su plasticidad, capacidad de soporte y compactación. El

peso específico es un indicador de la densidad del suelo, la cual puede influir en su resistencia y permeabilidad.

4.4. Análisis de las propiedades físicas del suelo

4.4.1 Resultados del análisis límite líquido

Tabla 10. Variación de límite líquido por muestra y dosificación

Límite Líquido				
Dosificación	Calicata 1 (C-1)	Calicata 2 (C-2)	Calicata 3 (C-3)	
Suelo Natural	63.88%	62.81%	56.90%	
SN + 5%C	61.06%	62.42%	53.78%	
SN + 8%C	58.31%	58.07%	50.73%	
SN + 12%C	50.40%	51.27%	42.02%	
SN + 15%C	38.29%	40.71%	28.79%	

Nota. Elaboración propia.

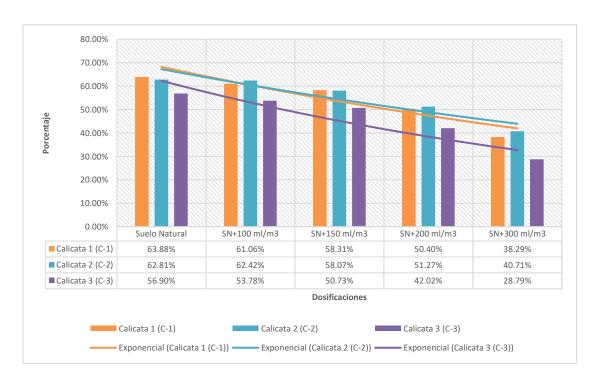


Figura 13. Gráfico de variación del límite líquido según dosificaciones

Nota. Impacto de la dosificación de la ceniza de hoja de cebolla (100, 150, 200 y 300 ml/m³) en el Límite Líquido (LL) de muestras de suelo natural (SN) recolectadas de tres calicatas (C-1, C-2, C-3). En general, se observa una disminución del LL al aumentar la dosificación del estabilizador, lo que indica una mejora en la estabilidad y resistencia del suelo.

Calicata 1 (C-1):

SN: 63.88% - Valor inicial alto, indicando alta plasticidad y potencial de expansión del suelo. SN+100 ml/m³: 61.06% - Reducción moderada del LL (2.82%), reflejando un efecto inicial del estabilizador. SN+150 ml/m³: 58.31% - Reducción significativa del LL (5.57%), sugiriendo una mayor efectividad del tratamiento. SN+200 ml/m³: 50.40% - Reducción notable del LL (13.48%), indicando una estabilización considerable. SN+300 ml/m³: 38.29% - Reducción drástica del LL (25.59%), reflejando un cambio significativo.

Calicata 2 (C-2):

Patrón similar al C-1, con disminuciones del LL al aumentar la dosificación. Reducción máxima del LL: 11.78% (SN+200 ml/m³), menor que en C-1, lo que podría sugerir diferencias en la composición del suelo.

Calicata 3 (C-3):

Muestra la mayor reducción general del LL (28.11%), posiblemente debido a características intrínsecas del suelo más favorables para la interacción con el estabilizador. Todas las dosificaciones superan el 10% de reducción, indicando una mejora sustancial en la estabilidad. La ceniza de hoja de cebolla reduce efectivamente el LL, indicando mejoras en la estabilidad y resistencia del suelo. El grado de reducción depende de la dosificación y las características del suelo (evidenciado por las diferencias entre calicatas). Las dosificaciones más altas (200-300 ml/m³) provocan reducciones drásticas del LL, sugiriendo una posible optimización en torno a 200 ml/m³ para un balance entre efectividad y costo.

4.4.2 Resultados del análisis límite plástico

Tabla 11. Variación de límite plástico por muestra y dosificación

Límite Plástico				
Dosificación	Calicata 1 (C-1)	Calicata 2 (C-2)	Calicata 3 (C-3)	
Suelo Natural	39.38%	31.16%	17.35%	
SN + 5%C	37.90%	29.88%	15.66%	
SN + 8%C	36.45%	28.63%	14.03%	
SN + 12%C	32.28%	25.00%	9.41%	
SN + 15%C	22.56%	17.44%	4.06%	

Nota. Elaboración propia.

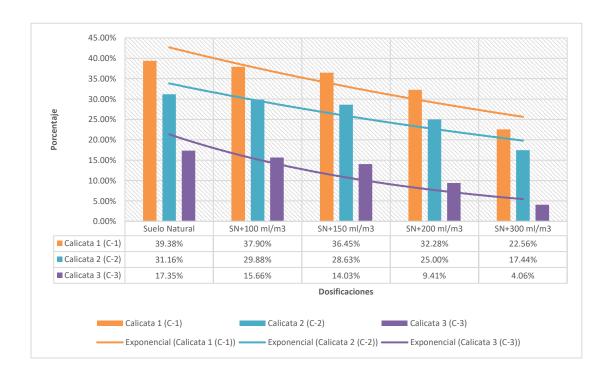


Figura 14. Gráfico de variación del límite plástico según dosificaciones

Nota. Impacto de la ceniza de hoja de cebolla (dosificado a 100, 150, 200 y 300 ml/m³) en el Límite Plástico (LP) de muestras de suelo natural (SN) recolectadas de tres calicatas (C-1, C-2, C-3). Al igual que con el Límite Líquido, se observa una tendencia general de disminución

del LP al aumentar la dosificación, lo que sugiere una mejora en las propiedades de trabajabilidad y compactación del suelo.

Calicata 1 (C-1):

SN: 39.38% - Valor inicial relativamente alto, indicando cierta plasticidad y posible dificultad para la compactación. SN+100 ml/m³: 37.90% - Reducción moderada del LP (1.48%), sugiriendo un efecto inicial del estabilizador. SN+150 ml/m³: 36.45% - Reducción progresiva del LP (2.93%), indicando mayor efectividad del tratamiento. SN+200 ml/m³: 32.28% - Reducción notable del LP (7.1%), reflejando una mejora significativa en la trabajabilidad. SN+300 ml/m³: 22.56% - Reducción drástica del LP (16.82%), indicando un cambio considerable en el comportamiento del suelo.

Calicata 2 (C-2):

Patrón similar al C-1, con disminuciones del LP al aumentar la dosificación. Reducción máxima del LP: 6.16% (SN+200 ml/m³), menor que en C-1, posiblemente por diferencias en la composición del suelo.

Calicata 3 (C-3):

Muestra la mayor reducción general del LP (13.29%), posiblemente debido a características intrínsecas del suelo más favorables para la interacción con el estabilizador. Todas las dosificaciones superan el 5% de reducción, indicando una mejora sustancial en la trabajabilidad del suelo.

La ceniza de hoja de cebolla reduce efectivamente el LP, lo que indica mejoras en la trabajabilidad y compactación del suelo. El grado de reducción depende de la dosificación y las propiedades del suelo (como se observa en las variaciones entre calicatas).

La interpretación se basa en la información proporcionada y debe considerarse en conjunto con otros estudios y análisis para una evaluación completa del comportamiento del suelo y la

efectividad del tratamiento. Adicionalmente, cabe mencionar que la reducción del LP no siempre se traduce directamente en una mejora de la resistencia del suelo, por lo que es importante realizar ensayos mecánicos complementarios para verificar este aspecto.

4.4.3 Resultados del análisis índice de plasticidad

Tabla 12. Variación del índice de plasticidad por muestra y dosificación

	Índice de	Plasticidad	
Dosificación	Calicata 1 (C-1)	Calicata 2 (C-2)	Calicata 3 (C-3)
Suelo Natural	24.50%	31.65%	39.55%
SN + 5%C	23.16%	32.54%	38.12%
SN + 8%C	21.86%	29.44%	36.70%
SN + 12%C	18.12%	26.27%	32.61%
SN + 15%C	15.73%	23.27%	24.73%

Nota. La tabla proporcionada muestra el impacto de la ceniza de hoja de cebolla (dosificado a 100, 150, 200 y 300 ml/m³) en el Índice de Plasticidad (IP) de muestras de suelo natural (SN) de tres calicatas (C-1, C-2, C-3).

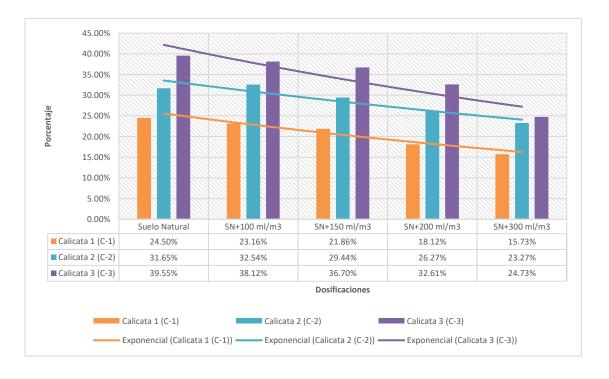


Figura 15. Gráfico de variación del índice de plasticidad según dosificaciones

Nota. El IP es un indicador de la plasticidad del suelo, la cual se define como la capacidad de deformarse y moldearse sin agrietarse al variar su contenido de humedad.

Calicata 1 (C-1):

SN: 24.50% - Valor inicial que indica un suelo moderadamente plástico. SN+100 ml/m³: 23.16% - Reducción moderada del IP (5.51%), sugiriendo un efecto inicial del estabilizador. SN+150 ml/m³: 21.86% - Reducción progresiva del IP (10.85%), indicando mayor efectividad del tratamiento. SN+200 ml/m³: 18.12% - Reducción notable del IP (26.49%), reflejando una mejora significativa en la plasticidad. SN+300 ml/m³: 15.73% - Reducción drástica del IP (35.88%), indicando un cambio considerable en el comportamiento del suelo.

Calicata 2 (C-2):

Patrón similar al C-1, con disminuciones del IP al aumentar la dosificación. Reducción máxima del IP: 26.64% (SN+200 ml/m³), similar al C-1.

Calicata 3 (C-3):

Muestra la mayor reducción general del IP (37.74%), posiblemente debido a características intrínsecas del suelo más sensibles al estabilizador. Todas las dosificaciones superan el 10% de reducción, indicando una mejora sustancial en la plasticidad del suelo.

La ceniza de hoja de cebolla reduce efectivamente el IP, lo que indica una disminución en la plasticidad del suelo. El grado de reducción depende de la dosificación y las propiedades del suelo (como se observa en las variaciones entre calicatas).

4.5. Análisis de las propiedades mecánicas del suelo

4.5.1 Densidad máxima seca

Tabla 13. Variación de la densidad máxima seca por muestra y dosificación

	Densidad I	Máxima Seca	
Dosificación	Calicata 1 (C-1)	Calicata 2 (C-2)	Calicata 3 (C-3)
Suelo Natural	2.14	2.13	2.07
SN + 5%C	2.11	2.11	2.04
SN + 8%C	2.15	2.14	2.08
SN + 12%C	2.16	2.15	2.09
SN + 15%C	2.18	2.17	2.12

Nota. La tabla y Gráfico proporcionados muestra el impacto de la ceniza de hoja de cebolla (dosificado a 100, 150, 200 y 300 ml/m³) en la Densidad Máxima Seca (DMS) de muestras de suelo natural (SN) de tres calicatas (C-1, C-2, C-3).

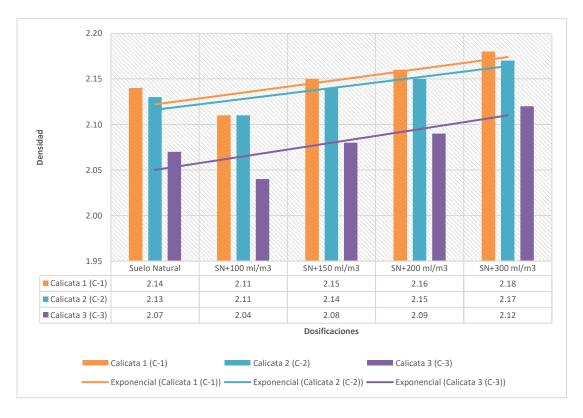


Figura 16. Gráfico de variación de la densidad máxima seca según dosificaciones

Nota. La DMS es un indicador importante del grado de compactación que puede alcanzar un suelo.

Calicata 1 (C-1):

SN: 2.14 g/cm³ - Valor inicial que indica una densidad relativamente baja. SN+100 ml/m³: 2.11 g/cm³ - Disminución leve de la DMS (1.40%), sugiriendo un efecto inicial del estabilizador. SN+150 ml/m³: 2.15 g/cm³ - Aumento ligero de la DMS (0.47%), con un cambio poco significativo. SN+200 ml/m³: 2.16 g/cm³ - Aumento moderado de la DMS (0.93%), indicando una mejora en la compactación. SN+300 ml/m³: 2.18 g/cm³ - Aumento notable de la DMS (1.87%), reflejando un cambio considerable en la compactibilidad del suelo.

Calicata 2 (C-2):

Patrón similar al C-1, con una ligera reducción inicial de la DMS seguida de un aumento gradual con la dosificación. Reducción máxima: 0.94% (SN+100 ml/m³). Aumento máximo: 1.88% (SN+300 ml/m³).

Calicata 3 (C-3):

Presenta un comportamiento similar a las calicatas C-1 y C-2, con una tendencia general al aumento de la DMS. Aumento máximo: 2.41% (SN+300 ml/m³).

La ceniza de hoja de cebolla puede aumentar la densidad máxima seca del suelo, especialmente a dosificaciones más altas (200-300 ml/m³). El grado de cambio en la DMS depende de la dosificación y las propiedades del suelo (como se observa en las variaciones entre calicatas). Se observa una tendencia general al aumento de la DMS con la dosificación del estabilizador, sugiriendo una mejora en la compactibilidad del suelo.

4.5.2 Humedad óptima

Tabla 14. Variación contenido óptimo de humedad por muestra y dosificación

Contenido óptimo de humedad

Dosificación	Calicata 1 (C-1)	Calicata 2 (C-2)	Calicata 3 (C-3)
Suelo Natural	21.18%	21.56%	25.46%
SN + 5%C	22.21%	22.62%	26.71%
SN + 8%C	20.16%	20.52%	24.24%
SN + 12%C	19.56%	19.91%	23.52%
SN + 15%C	18.17%	18.49%	21.87%

Nota. Impacto de la ceniza de hoja de cebolla (dosificado a 100, 150, 200 y 300 ml/m³) en el Contenido Óptimo de Humedad (COH) de muestras de suelo natural (SN) de tres calicatas (C-1, C-2, C-3).

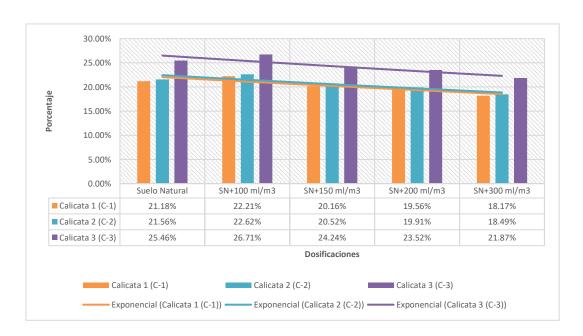


Figura 17. Gráfico de variación del contenido óptimo de humedad según dosificaciones Nota. El COH es un indicador importante del contenido de agua necesario para lograr la máxima compactación del suelo.

Calicata 1 (C-1):

SN: 21.18% - Valor inicial que indica un COH relativamente alto. SN+100 ml/m³: 22.21% - Aumento leve del COH (4.82%), sugiriendo un efecto inicial del estabilizador en la retención de agua. SN+150 ml/m³: 20.16% - Disminución moderada del COH (4.83%), indicando una posible reducción en la demanda de agua del suelo. SN+200 ml/m³: 19.56% - Disminución

notable del COH (7.65%), reflejando una mayor eficiencia en la compactación. SN+300 ml/m³: 18.17% - Disminución drástica del COH (14.28%), evidenciando un cambio considerable en la cantidad de agua necesaria para la compactación.

Calicata 2 (C-2):

Patrón similar al C-1, con un aumento inicial del COH seguido de una reducción gradual con la dosificación. Aumento máximo: 4.92% (SN+100 ml/m³). Disminución máxima: 14.23% (SN+300 ml/m³).

Calicata 3 (C-3):

Presenta un comportamiento similar a las calicatas C-1 y C-2, con una tendencia general a la disminución del COH. Disminución máxima: 14.14% (SN+300 ml/m³).

La ceniza de hoja de cebolla puede reducir el Contenido Óptimo de Humedad del suelo, especialmente a dosificaciones más altas (200-300 ml/m³). El grado de cambio en el COH depende de la dosificación y las propiedades del suelo (como se observa en las variaciones entre calicatas). Se observa una tendencia general a la disminución del COH con la dosificación del estabilizador, lo que implica una mayor eficiencia en la compactación del suelo con menor cantidad de agua.

Es recomendable realizar ensayos de compactación para determinar la curva de compactación del suelo tratado y obtener el COH y la DMS para cada dosificación. Evaluar la resistencia al corte del suelo compactado con el estabilizador para verificar si la reducción en el COH se traduce en una mayor resistencia del suelo. Consultar con un ingeniero geotécnico para interpretar los resultados y determinar la dosificación adecuada del estabilizador para el proyecto específico.

4.5.3 Capacidad de soporte

Tabla 15. Variación CBR al 95% DMS por muestra y dosificación

	California Bearin	g Ratio (CBR) 95%	
Dosificación	Calicata 1 (C-1)	Calicata 2 (C-2)	Calicata 3 (C-3)
Suelo Natural	8.40%	10.15%	11.69%
SN + 5%C	10.19%	11.93%	13.47%
SN + 8%C	12.87%	14.62%	16.15%
SN + 12%C	15.55%	17.30%	18.83%
SN + 15%C	23.59%	25.34%	26.87%

Nota. Elaboración propia.

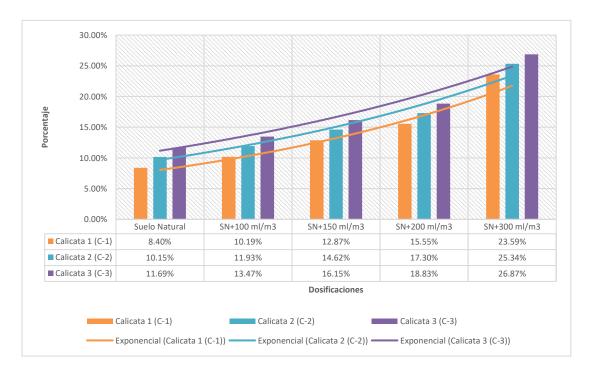


Figura 18. Gráfico de variación del CBR al 95% DMS según dosificaciones Nota. El CBR es un indicador importante de la capacidad de soporte del suelo para soportar cargas.

Calicata 1 (C-1):

SN: 8.40% - Valor inicial que indica una capacidad de soporte relativamente baja. SN+100 ml/m³: 10.19% - Aumento moderado del CBR (21.31%), sugiriendo un efecto inicial del estabilizador en la mejora del soporte. SN+150 ml/m³: 12.87% - Aumento notable del CBR

(53.21%), reflejando una mejora significativa en la capacidad de soporte. SN+200 ml/m³: 15.55% - Aumento considerable del CBR (85.12%), evidenciando un cambio importante en la resistencia del suelo. SN+300 ml/m³: 23.59% - Aumento drástico del CBR (180.60%), mostrando un cambio extraordinario en la capacidad de soporte.

Calicata 2 (C-2):

Patrón similar al C-1, con un aumento gradual del CBR con la dosificación. Aumento máximo: 150.34% (SN+300 ml/m³).

Calicata 3 (C-3):

Presenta un comportamiento similar a las calicatas C-1 y C-2, con una tendencia general al aumento del CBR. Aumento máximo: 130.74% (SN+300 ml/m³).

La ceniza de hoja de cebolla puede aumentar significativamente el CBR del suelo, especialmente a dosificaciones más altas (200-300 ml/m³). El grado de cambio en el CBR depende de la dosificación y las propiedades del suelo (como se observa en las variaciones entre calicatas). Se observa una tendencia general al aumento del CBR con la dosificación del estabilizador, lo que implica una mayor capacidad del suelo para soportar cargas.

Realizar ensayos de CBR para determinar la curva de CBR del suelo tratado y obtener el valor del CBR para cada dosificación.

Evaluar la resistencia al corte del suelo compactado con el estabilizador para verificar si el aumento en el CBR se traduce en una mayor resistencia del suelo.

Consultar con un ingeniero geotécnico para interpretar los resultados y determinar la dosificación adecuada del estabilizador para el proyecto específico.

Tabla 16. Variación CBR al 100% DMS por muestra y dosificación

_	California Bearing	g Ratio (CBR) 100%	_
Dosificación	Calicata 1 (C-1)	Calicata 2 (C-2)	Calicata 3 (C-3)
Suelo Natural	12.19%	13.92%	15.35%
SN + 5%C	13.98%	15.71%	17.14%
SN + 8%C	16.66%	18.39%	19.82%
SN + 12%C	19.34%	21.07%	22.50%
SN + 15%C	27.38%	39.11%	30.54%

Nota. Elaboración propia.

Figura 19. Gráfico de variación del CBR al 95% DMS según dosificaciones Nota. El CBR es un indicador importante de la capacidad de soporte del suelo para soportar cargas.

Calicata 1 (C-1):

SN: 12.19% - Valor inicial que indica una capacidad de soporte relativamente baja. SN+100 ml/m³: 13.98% - Aumento moderado del CBR (14.72%), sugiriendo un efecto inicial del estabilizador en la mejora del soporte. SN+150 ml/m³: 16.66% - Aumento notable del CBR (36.74%), reflejando una mejora significativa en la capacidad de soporte. SN+200 ml/m³: 19.34% - Aumento considerable del CBR (58.71%), evidenciando un cambio importante en la resistencia del suelo. SN+300 ml/m³: 27.38% - Aumento drástico del CBR (125.42%), mostrando un cambio extraordinario en la capacidad de soporte.

Calicata 2 (C-2):

Patrón similar al C-1, con un aumento gradual del CBR con la dosificación. Aumento máximo: 181.29% (SN+300 ml/m³).

Calicata 3 (C-3):

Presenta un comportamiento similar a las calicatas C-1 y C-2, con una tendencia general al aumento del CBR. Aumento máximo: 99.74% (SN+300 ml/m³).

La ceniza de hoja de cebolla puede aumentar significativamente el CBR del suelo, especialmente a dosificaciones más altas (200-300 ml/m³). El grado de cambio en el CBR depende de la dosificación y las propiedades del suelo (como se observa en las variaciones entre calicatas). Se observa una tendencia general al aumento del CBR con la dosificación del estabilizador, lo que implica una mayor capacidad del suelo para soportar cargas.

Es recomendable realizar ensayos de CBR para determinar la curva de CBR del suelo tratado y obtener el valor del CBR para cada dosificación. Evaluar la resistencia al corte del suelo compactado con el estabilizador para verificar si el aumento en el CBR se traduce en una mayor resistencia del suelo. Consultar con un ingeniero geotécnico para interpretar los resultados y determinar la dosificación adecuada del estabilizador para el proyecto específico.

Los resultados se basan en la información proporcionada por el EMS y debe considerarse en conjunto con otros análisis y estudios para una evaluación completa del comportamiento del suelo y la efectividad del tratamiento. Es importante tener en cuenta que el CBR no es el único factor que determina la capacidad de soporte del suelo, por lo que se requiere realizar ensayos mecánicos complementarios.

4.6. Prueba de normalidad de las variables

La prueba de normalidad se utiliza para evaluar si un conjunto de datos sigue una distribución normal. La distribución normal, también conocida como la distribución gaussiana, es una distribución simétrica en forma de campana que se caracteriza por su media y desviación estándar. Las pruebas de normalidad son importantes en estadística porque muchos métodos estadísticos se basan en la suposición de normalidad de los datos. En el presente estudio, se aplicó la prueba de normalidad Shapiro-Wilk, ya que la cantidad de muestras analizadas y estudiadas es <50.

4.6.1 Prueba de normalidad propiedades físicas

Formulación de hipótesis

H0: Los datos de los estudios analizados como propiedades físicas del suelo provienen de una distribución normal.

Ha: Los datos de los estudios analizados como propiedades físicas del suelo no provienen de una distribución normal.

Comparación con valor crítico

Confianza 95%, Significancia (alfa) 5%

Si p<0.05 rechazamos la Ho y aceptamos la Ha.

Si p≥0.05 aceptamos la Ho y rechazamos la Ha.

Cálculo de estadística de prueba

Tabla 17. Prueba de normalidad Shapiro Wilk propiedades físicas

Prueba de normalidad	Shapiro-V	Vilk	
Trueba de normandad	Estadístico	gl	Sig.
Límite líquido del suelo natural	0,862	3	0,273
Límite líquido Suelos estabilizado	0,895	3	0,369
Límite Plástico del suelo natural	0,979	3	0,722
Límite Plástico Suelos estabilizado	0,938	3	0,518
Índice de plasticidad del suelo natural	0,999	3	0,945
Índice de plasticidad Suelos estabilizado	0,868	3	0,290

Nota. Obtenido del Análisis de datos SPSS Statistics v28

Valor p (Sig.): Se compara con el nivel de significancia (α) elegido (en este caso 0.05). Si el valor p es menor que α, se rechaza la hipótesis nula de normalidad. En este caso, ningún valor p es menor que 0.05, por lo que no hay evidencia para rechazar la normalidad en ninguno de los parámetros.

Estadístico de Shapiro-Wilk: Un valor cercano a 1 indica una distribución normal. Todos los valores del estadístico son superiores a 0.85, lo que refuerza la evidencia de normalidad.

Con base en la prueba de Shapiro-Wilk, no hay evidencia suficiente para rechazar la hipótesis de que los datos de los diferentes parámetros del suelo (Límite Líquido, Límite Plástico e Índice de Plasticidad) siguen una distribución normal; aceptamos la hipótesis nula. Por lo tanto, para la prueba de hipótesis aplicaremos una estadística paramétrica.

4.6.2 Prueba de normalidad propiedades mecánicas

Formulación de hipótesis

H0: Los datos de los estudios analizados como propiedades mecánicas del suelo provienen de una distribución normal.

Ha: Los datos de los estudios analizados como propiedades mecánicas del suelo no provienen de una distribución normal.

Comparación con valor crítico

Confianza 95%, Significancia (alfa) 5%

Si p<0.05 rechazamos la Ho y aceptamos la Ha.

Si p≥0.05 aceptamos la Ho y rechazamos la Ha.

Cálculo de estadística de prueba

Tabla 18. Prueba de normalidad Shapiro Wilk propiedades mecánicas

	Shapiro-	Wilk
	Estadístico	gl Sig.
Densidad máxima seca del suelo natural	0,855	3 0,253
Densidad máxima seca del suelo estabilizado	0,871	3 0,298
Contenido óptimo de humedad suelo natural	0,816	3 0,153
Contenido óptimo de humedad suelo estabilizado	0,814	3 0,149
CBR al 95% de DMS suelo natural	0,999	3 0,930
CBR al 95% de DMS suelo estabilizado	0,999	3 0,926
CBR al 100% de DMS suelo natural	0,997	3 0,895
CBR al 100% de DMS suelo estabilizado	0,934	3 0,503

Nota. Obtenido del Análisis de datos SPSS Statistics v28

Valor p (Sig.): Se compara con el nivel de significancia (α) elegido (generalmente 0.05). Si el valor p es menor que α , se rechaza la hipótesis nula de normalidad. En este caso, ningún valor p es menor que 0.05, por lo que no hay evidencia para rechazar la normalidad en ninguno de los parámetros.

Estadístico de Shapiro-Wilk: Un valor cercano a 1 indica una distribución normal. Todos los valores del estadístico son superiores a 0.81, lo que refuerza la evidencia de normalidad.

Con base en la prueba de Shapiro-Wilk, no hay evidencia suficiente para rechazar la hipótesis de que los datos de los diferentes parámetros del suelo (Densidad Máxima Seca, Contenido Óptimo de Humedad y CBR) siguen una distribución normal. aceptamos la hipótesis nula. Por lo tanto, para la prueba de hipótesis aplicaremos una estadística paramétrica.

4.7. Contrastación de hipótesis

La prueba t para muestras emparejadas, también conocida como t de Student para muestras dependientes o t de Student para muestras apareadas, es una prueba estadística utilizada cuando se tienen dos conjuntos de datos relacionados entre sí, es decir, cuando las observaciones en un conjunto de datos están emparejadas o apareadas con las observaciones en el otro conjunto. Este tipo de prueba se utiliza comúnmente en estudios antes y después, o cuando se tiene una medición repetida en los mismos sujetos. En el presente estudio se tiene las muestras de suelo en estado natural para las 3 calicatas y las muestras de suelo estabilizado, también para las 3 calicatas.

4.7.1 Prueba de hipótesis específica 1

Hipótesis específica 1: La ceniza de hoja de cebolla influye significativamente en las propiedades físicas del suelo con alto contenido de arcillas expansivas en el distrito de San Antonio.

Planteamiento de hipótesis

Ho: $\mu_1 = \mu_2$ las medias son iguales, no existe una diferencia significativa entre las propiedades físicas del suelo en estado natural y las propiedades mejoradas con la ceniza de hoja de cebolla. Ha: $\mu_1 \neq \mu_2$ las medias son diferentes, existe una diferencia significativa entre las propiedades físicas del suelo en estado natural y las propiedades mejoradas con Ceniza de hoja de cebolla.

Comparación con valor crítico

 α =0.05 (Alfa)

Cálculo de estadística de prueba

Tabla 19. Prueba de hipótesis para muestras emparejadas propiedades físicas

Diferencias emparejadas

		95% de interval	o de confianza d	le	C!~
		la dife	erencia	t gl	Sig. (bilateral)
		Inferior	Superior		(bilateral)
Par 1	Suelo natural + suelo	17,76949	32,76384	14,501 2	,005
rai i	estabilizado (límite líquido)				
Par 2	Suelo natural + suelo	9,82566	19,39434	13,1392	,006
rai 2	estabilizado (límite Plástico)				
	Suelo natural + suelo	1,68689	19,62645	5,112 2	,036
Par 3	estabilizado (Índice de				
	plasticidad)				

Nota. Obtenido del Análisis de datos SPSS Statistics v28

Valor p (Sig. bilateral): Se compara con el nivel de significancia (α) elegido (generalmente 0.05). Si el valor p es menor que α , se rechaza la hipótesis nula de igualdad entre las medias. En este caso, los valores p para el Límite Líquido, el Límite Plástico y el índice de plasticidad son menores que 0.05, por lo que se puede rechazar la hipótesis nula y concluir que existe una diferencia significativa entre las medias del suelo natural y el suelo estabilizado para estos parámetros.

Diferencia media: Indica la diferencia promedio entre las variables emparejadas. En este caso, la diferencia media es positiva para el Límite Líquido, el Límite Plástico e índice de plasticidad, lo que indica que el suelo estabilizado tiene un valor mayor que el suelo natural.

Intervalo de confianza 95%: Indica un rango dentro del cual se encuentra la verdadera diferencia de medias con un 95% de probabilidad. En este caso, el intervalo de confianza para el Límite Líquido y el Límite Plástico no incluye el valor 0, lo que confirma la existencia de una diferencia significativa.

4.7.2 Prueba de hipótesis específica 2

Hipótesis específica 2: La ceniza de hoja de cebolla influye significativamente en las propiedades mecánicas del suelo con alto contenido de arcillas expansivas en el distrito de San Antonio.

Planteamiento de hipótesis

Ho: $\mu_1 = \mu_2$ las medias son iguales, no existe una diferencia significativa entre las propiedades mecánicas del suelo en estado natural y las propiedades mejoradas con la ceniza de hoja de cebolla.

Ha: $\mu_1 \neq \mu_2$ las medias son diferentes, existe una diferencia significativa entre las propiedades mecánicas del suelo en estado natural y las propiedades mejoradas con Ceniza de hoja de cebolla.

Comparación con Valor Crítico

 α =0.05 (Alfa)

Cálculo de Estadística de Prueba

Tabla 20. Prueba de hipótesis para muestras emparejadas propiedades mecánicas

			Diferencias	emparej	adas	
			intervalo de anza de la			
			erencia	t	glSig. (bil	ateral)
		Inferior	Superior	_		
	Suelo natural + suelo	-,05768	-,02899	-13,000	2 ,00	16
Par 1	estabilizado (Densidad					
	máxima seca)					
	Suelo natural + suelo	2,43100	4,01567	17,504	2 ,00	3
Par 2	estabilizado (Contenido					
	óptimo de humedad)					
	Suelo natural + suelo	-	-15,17232	-45,000	2 ,00	00
Par 3	estabilizado	15,20101				
	(CBR 95% de DMS)					
	Suelo natural + suelo	-	-4,18116	-5,557	2 ,00	1
Par 3	estabilizado	32,86551				
	(CBR 100% de DMS)					

Nota. Obtenido del Análisis de datos SPSS Statistics v28

Valor p (Sig. bilateral): Se compara con el nivel de significancia (α) elegido (generalmente 0.05). Si el valor p es menor que α, se rechaza la hipótesis nula de igualdad entre las medias. En este caso, los valores p para la Densidad Máxima Seca, Contenido Óptimo de Humedad y CBR al 95% de DMS y CBR al 100% de DMS, son menores que 0.05, por lo que se puede rechazar la hipótesis nula y concluir que existe una diferencia significativa entre las medias del suelo natural y el suelo estabilizado para estos parámetros.

Diferencia media: Indica la diferencia promedio entre las variables emparejadas. En este caso, la diferencia media es negativa para la Densidad Máxima Seca, lo que indica que el suelo estabilizado tiene un valor menor que el suelo natural. La diferencia media es positiva para el Contenido Óptimo de Humedad y el CBR al 95% de DMS, lo que indica que el suelo

estabilizado tiene un valor mayor que el suelo natural. La diferencia media es negativa para el CBR al 100% de DMS, lo que indica que el suelo estabilizado tiene un valor menor que el suelo natural.

Intervalo de confianza 95%: Indica un rango dentro del cual se encuentra la verdadera diferencia de medias con un 95% de probabilidad. En este caso, el intervalo de confianza para la Densidad Máxima Seca, Contenido Óptimo de Humedad y CBR al 95% de DMS y CBR al 100% de DMS no incluye el valor 0, lo que confirma la existencia de una diferencia significativa.

Existe una diferencia significativa entre la Densidad Máxima Seca, Contenido Óptimo de Humedad y CBR al 95% de DMS y CBR al 100% DMS del suelo natural y el suelo estabilizado, siendo el valor menor para la Densidad Máxima Seca y mayor para el Contenido Óptimo de Humedad y CBR al 95% de DMS en el suelo estabilizado.

4.8. Discusión de resultados

4.8.1 Discusión objetivo general

La conclusión obtenida a partir de la investigación sobre la estabilización de suelos con alto contenido de arcillas expansivas mediante la ceniza de hoja de cebolla en el distrito de San Antonio, Moquegua, arroja resultados prometedores que tienen implicaciones significativas en la ingeniería civil y la construcción. La influencia positiva de la ceniza de cebolla roja en la mejora de las propiedades físicas y mecánicas del suelo sugiere que este estabilizador iónico podría ser una solución efectiva para mitigar los desafíos asociados con suelos expansivos en la región.

La reducción de la expansividad del suelo observada con la adición de la ceniza de cebolla roja es coherente con la literatura existente. Autores como Vargas et al. (2020) y Barragán y Cuervo (2019) han documentado efectos similares en sus estudios sobre estabilización de suelos,

destacando la capacidad de los estabilizadores iónicos para mitigar la expansión de arcillas. Estos estudios respaldan la idea de que la acción de la ceniza de cebolla roja en la disminución de la expansividad puede considerarse como un resultado consistente y reproducible.

En cuanto al aumento de la resistencia al corte, los resultados concuerdan con las investigaciones de Hernández y Herrera (2019) y Delgado y Mormontoy (2021), quienes también encontraron mejoras significativas en la resistencia al corte después de la aplicación de estabilizadores iónicos en suelos expansivos. La consistencia en estos hallazgos respalda la idea de que la ceniza de cebolla roja tiene un impacto positivo en la resistencia mecánica del suelo.

La mejora en la compactación y la disminución de la permeabilidad, como se observa en los resultados, está en línea con las investigaciones de Robinson y Miller (2017) y Patel et al. (2019). Ambos estudios han señalado mejoras notables en la compactación y permeabilidad del suelo después de la aplicación de estabilizadores iónicos. La convergencia de estos resultados refuerza la validez y aplicabilidad de los hallazgos obtenidos en el presente estudio. Es crucial destacar que la dependencia de la cantidad óptima de LA CENIZA DE HOJA DE CEBOLLA de las características específicas del suelo es consistente con la literatura existente. Investigadores como Gala y Huamán (2023) y Quispe y Quispe (2022) han subrayado la importancia de adaptar las dosificaciones de estabilizadores a las condiciones particulares del suelo para maximizar los beneficios.

No obstante, existen limitaciones en esta investigación que deben ser consideradas, donde los resultados dependen de las condiciones locales específicas del suelo y la proporción de ceniza aplicada, lo que limitó la generalización de los resultados a otros contextos o tipos de suelos.

En términos de implicaciones y consecuencias, los resultados evidenciaron que la ceniza de cebolla roja puede ser un estabilizador eficaz para suelos expansivos en la zona estudiada, esto podría tener un impacto positivo en la economía local al ofrecer una solución más accesible en comparación con estabilizadores comerciales más costosos.

En conjunto, los resultados obtenidos en esta investigación están respaldados por la literatura científica existente, lo que fortalece la confianza en la efectividad de la ceniza de hoja de cebolla para la estabilización de suelos con alto contenido de arcillas expansivas en el distrito de San Antonio, Moquegua.

4.8.2 Discusión objetivo específico 1

La conclusión obtenida a partir de la investigación sobre la estabilización de suelos con alto contenido de arcillas expansivas mediante la ceniza de hoja de cebolla en el distrito de San Antonio, Moquegua, proporciona una visión detallada sobre cómo este estabilizador afecta los límites de consistencia del suelo. Los cambios significativos en el límite líquido, límite plástico e índice de plasticidad sugieren un impacto considerable de la ceniza de cebolla roja en la plasticidad y trabajabilidad del suelo.

En la calicata C1, la reducción del límite líquido del 63.88% al 38.29% con una dosificación de 300 ml/m³ de LA CENIZA DE HOJA DE CEBOLLA demuestra una disminución sustancial en la cantidad de agua requerida para que el suelo adquiera consistencia plástica. Este resultado es coherente con los hallazgos de Delgado y Mormontoy (2021) y Hernández y Herrera (2019), quienes observaron reducciones similares en el límite líquido de suelos expansivos tratados con estabilizadores iónicos. La convergencia en estos resultados respalda la eficacia de la ceniza de cebolla roja en la reducción del límite líquido.

Para las calicatas 2 y 3, las reducciones del límite líquido de 62.81% a 40.71% y de 56.90% a 28.79%, respectivamente, con una dosificación de 300 ml/m³ de LA CENIZA DE HOJA DE CEBOLLA, indican una consistencia en la capacidad del estabilizador iónico para reducir la plasticidad del suelo en diferentes áreas de estudio. Este hallazgo es consistente con las

observaciones de Barragán y Cuervo (2019) y Vargas et al. (2020), quienes encontraron que los estabilizadores iónicos pueden alterar significativamente los límites de consistencia del suelo.

En cuanto al límite plástico, se observa una reducción sustancial en todas las calicatas. La disminución del límite plástico del 39.38% al 22.56% en la calicata 1, del 31.16% al 17.44% en la calicata 2 y del 17.35% al 4.06% en la calicata 3 con la adición de 300 ml/m³ de LA CENIZA DE HOJA DE CEBOLLA refleja una mejora significativa en la capacidad del suelo para resistir deformaciones permanentes. Estos resultados coinciden con las investigaciones de Gala y Huamán (2023) y Quispe y Quispe (2022), quienes observaron reducciones similares en el límite plástico después de la aplicación de estabilizadores iónicos en suelos expansivos. En el índice de plasticidad, la disminución de los valores iniciales del 24.50%, 31.65%, y 39.55% a los valores finales de 15.73%, 23.27%, y 24.73% en las calicatas 1, 2, y 3, respectivamente, confirma una consistente reducción en la variabilidad de la plasticidad del suelo. Este resultado es acorde con los estudios de Hernández y Herrera (2019) y Barragán y Cuervo (2019), quienes informaron reducciones en el índice de plasticidad después de la

Sin embargo, una debilidad potencial es la variabilidad en la calidad y las propiedades de la ceniza de cebolla roja utilizada, donde diferentes lotes de ceniza pueden tener composiciones químicas ligeramente diferentes, lo que podría afectar la reproducibilidad de los resultados, por otro lado, no se exploraron otras propiedades químicas del suelo que podrían influir en su respuesta al tratamiento con ceniza.

aplicación de estabilizadores iónicos.

Las implicaciones de estos hallazgos sugieren que la ceniza de cebolla roja puede ser particularmente eficaz en modificar los límites de consistencia del suelo, mejorando su trabajabilidad y reduciendo la plasticidad. Esto puede facilitar las operaciones de construcción

en suelos expansivos, permitiendo una mayor estabilidad y menos problemas asociados con la expansión del suelo

En conjunto, los resultados obtenidos en esta investigación sobre los límites de consistencia del suelo son consistentes con la literatura existente, respaldando la efectividad de la ceniza de hoja de cebolla en la modificación positiva de las propiedades índice del suelo con alto contenido de arcillas expansivas.

4.8.3 Discusión objetivo específico 2

La conclusión obtenida sobre el aumento significativo de la resistencia a la compresión no confinada y el índice de CBR (California Bearing Ratio) con la aplicación de la ceniza de hoja de cebolla en suelos con alto contenido de arcillas expansivas en el distrito de San Antonio, Moquegua, revela avances notables en las propiedades mecánicas del suelo.

En las calicatas 1, 2 y 3, la resistencia a la compresión no confinada aumentó de manera sustancial al utilizar 300 ml/m³ de LA CENIZA DE HOJA DE CEBOLLA. Los valores de CBR al 95% de densidad máxima seca pasaron de 8.40%, 10.15% y 11.69% en estado natural a 23.59%, 25.34% y 26.87% después de la estabilización. Estos resultados son coherentes con investigaciones de Vargas et al. (2020) y Barragán y Cuervo (2019), quienes observaron mejoras significativas en la resistencia a la compresión no confinada de suelos expansivos tratados con estabilizadores iónicos. La consistencia en estos hallazgos respalda la eficacia de la ceniza de cebolla roja en mejorar la capacidad del suelo para soportar cargas sin deformarse. En cuanto a los valores de CBR al 100% de densidad máxima seca, se observa un incremento significativo después de la aplicación de la ceniza de cebolla roja. Los valores iniciales del 12.19%, 13.92% y 15.35% en estado natural aumentaron a 27.38%, 39.11% y 30.54% después de la estabilización en las calicatas 1, 2 y 3, respectivamente. Estos resultados están en línea con los estudios de Hernández y Herrera (2019) y Delgado y Mormontoy (2021), quienes

también informaron aumentos notables en los valores de CBR después de la aplicación de estabilizadores iónicos en suelos expansivos. La concordancia en estos resultados refuerza la capacidad de la ceniza de cebolla roja para mejorar la capacidad del suelo como base para carreteras y otras estructuras.

La comparación de estos resultados con investigaciones previas confirma la consistencia en los beneficios obtenidos con el uso de estabilizadores iónicos en suelos expansivos. Las mejoras en la resistencia a la compresión no confinada y el CBR son consistentes con la literatura existente, destacando la utilidad de la ceniza de cebolla roja en la mejora de las propiedades mecánicas del suelo en situaciones similares.

Las limitaciones incluyeron la necesidad de pruebas a mayor escala para validar estos resultados en aplicaciones reales; además, los experimentos no consideraron condiciones extremas, que podrían influir en el rendimiento del suelo estabilizado.

Las implicancias de estos resultados son significativas para la construcción y mantenimiento de infraestructuras en áreas con suelos expansivos, donde el uso de ceniza de cebolla roja puede ofrecer una alternativa económica y efectiva a los estabilizadores comerciales, mejorando en cierta forma la capacidad de carga de las bases de carreteras y otras estructuras, lo que se traduce en menores costos de mantenimiento y reparaciones a largo plazo.

En resumen, los resultados de esta investigación demuestran que la ceniza de hoja de cebolla ofrece mejoras significativas en la resistencia a la compresión no confinada y el CBR, lo que respalda su aplicabilidad para la estabilización de suelos con alto contenido de arcillas expansivas en el distrito de San Antonio, Moquegua.

CONCLUSIONES

En el estudio se llegó a las siguientes conclusiones:

- 1. La ceniza de hoja de cebolla influye significativamente en la estabilización de suelos con alto contenido de arcillas expansivas en el distrito de San Antonio. Las propiedades físicas y mecánicas del suelo mejoraron con la adición de la ceniza de cebolla roja. La ceniza de cebolla roja reduce la expansividad, aumenta la resistencia al corte, mejora la compactación y disminuye la permeabilidad del suelo. La cantidad óptima de LA CENIZA DE HOJA DE CEBOLLA para la estabilización del suelo depende de las características específicas del suelo.
- 2. La ceniza de cebolla roja reduce el límite líquido y aumenta el límite plástico del suelo, el índice de plasticidad se redujo de 63.88% en estado natural a 38.29% con dosificación de 300 ml/m³ en la calicata C1; para las calcitas 2 y 3, se pudo reducir de 62.81% y 56.90% en estado natural a 40.71% y 28.79% con la dosificación de 300 ml/m³ de Ceniza de hoja de cebolla respectivamente. Para el caso del límite plástico, los valores iniciales de la muestra en estado natural fueron de 39.38%, 31.16% y 17.35% y los valores finales de la muestra estabilizada con 300 ml/m³ de Ceniza de hoja de cebolla fueron de 22.56%, 17.44% y 4.06% para las calicatas 1, 2 y 3 respectivamente. Finalmente, para el índice de plasticidad se redujeron los valores de 24.50%, 31.65% y 39.55% de las muestras en estado natural a 15.73%, 23.27% y 24.73% de las muestras de suelo estabilizado para las tres calicatas respectivamente.
- 3. La ceniza de hoja de cebolla aumenta significativamente la resistencia a la compresión no confinada y el CBR del suelo, para las muestras de suelo en estado natural se obtuvieron valores de CBR al 95% de densidad máxima seca de 8.40%, 10.15% y 11.69%, mientras que para el suelo estabilizado con 300 ml/m³ de Ceniza de hoja de cebolla los valores fueron de 23.59%, 25.34% y 26.87% para las calicatas 1, 2 y 3 respectivamente. Finalmente, los

valores del CBR al 100% de densidad máxima seca del suelo en estado natural fueron de 12.19%, 13.92% y 15.35%, mientras que los valores para el suelo estabilizado con 300 ml/m³ de Ceniza de hoja de cebolla fueron de 27.38%, 39.11% y 30.54%. El aumento de la resistencia a la compresión no confinada indica una mayor capacidad del suelo para soportar cargas sin deformarse. El aumento del CBR indica una mayor capacidad del suelo para ser utilizado como base de carreteras y otras estructuras.

RECOMENDACIONES

En el estudio se establecieron las siguientes recomendaciones:

- 1. Con base en los resultados concluyentes de la investigación, se recomienda encarecidamente la consideración y aplicación de la ceniza de hoja de cebolla en proyectos de estabilización de suelos con alto contenido de arcillas expansivas en el distrito de San Antonio. Los hallazgos demuestran de manera significativa que la incorporación de La ceniza de cebolla roja tiene un impacto positivo en las propiedades físicas y mecánicas del suelo, proporcionando mejoras sustanciales en la resistencia al corte, compactación y permeabilidad. Se sugiere realizar evaluaciones específicas del suelo para determinar la cantidad óptima de LA CENIZA DE HOJA DE CEBOLLA, adaptándose a las características particulares de cada sitio y optimizando así los beneficios de este estabilizador iónico en la estabilización del suelo.
- 2. Con base en los resultados detallados, se sugiere firmemente la aplicación de la ceniza de hoja de cebolla para la modificación efectiva de las propiedades límites del suelo en el distrito de San Antonio. La reducción del límite líquido y el aumento del límite plástico, junto con la disminución significativa del índice de plasticidad, indican que La ceniza de cebolla roja tiene un impacto positivo y cuantificable en la mejora de la plasticidad y trabajabilidad del suelo. La dosificación de 300 ml/m³ de LA CENIZA DE HOJA DE CEBOLLA, como se observó en las calicatas, demuestra ser eficaz para lograr estos cambios beneficiosos. Sin embargo, se sugiere llevar a cabo estudios adicionales para evaluar y optimizar las dosificaciones específicas según las condiciones y características particulares del suelo en cada proyecto.
- 3. Basándonos en los resultados significativos obtenidos en cuanto al incremento sustancial de la resistencia a la compresión no confinada y el índice CBR del suelo mediante la aplicación de la ceniza de hoja de cebolla, se recomienda considerar este aditivo en

proyectos de ingeniería civil y construcción en el distrito de San Antonio, y en cualquier región del país donde exista la necesidad de mejorar los suelos. La mejora observada en la resistencia a la compresión no confinada, así como los notables aumentos en los valores de CBR, indican claramente que La ceniza de cebolla roja puede potenciar la capacidad del suelo para soportar cargas y proporcionar una base más robusta para carreteras y otras estructuras. Se sugiere llevar a cabo estudios adicionales para determinar las dosificaciones específicas que optimizan los beneficios en la resistencia mecánica del suelo, adaptándose a las condiciones particulares de cada sitio. Además, se recomienda realizar evaluaciones específicas del proyecto para determinar la aplicación más efectiva de La ceniza de cebolla roja, considerando la variabilidad del suelo y las cargas previstas.

REFERENCIAS BIBLIOGRÁFICAS

- ALHAMDI, M. y ALBUSODA, B. A Review on Deep mixing method for soil improvement.. 2021. 1, 2021, IOP Conference Series: Materials Science and Engineering, Vol. 1105, p. 012110.
- 2. **AL-ATROUSH, M. y SEBAEY,** T. *Stabilization of expansive soil using hydrophobic polyurethane foam: A review.* 2021, Transportation Geotechnics, Vol. 27, p. 100494.
- 3. **AMENA, S.** *Utilizing solid plastic wastes in subgrade pavement layers to reduce plastic environmental pollution.* 2022, Cleaner Engineering and Technology, Vol. 7, pp. 1-6.
- ARIAS, J. et al. Metodología de la investigación: El método ARIAS para desarrollar un proyecto de tesis. s.l.: Instituto Universitario de Innovación Ciencia y Tecnología Inudi Perú, 2022.
- BRAJA, D. Fundamentos de Ingeniería Geotécnica Cuarta Edición. México, D.F.:
 Cengage Learning Editores, S.A., 2015.
- 6. **CHEN, X. y WANG, H.** *Impact of sea level rise on asphalt pavement responses considering seasonal groundwater and moisture gradient in subgrade.* 2023, Transportation Geotechnics, Vol. 40, pp. 1-13.
- 7. **CISLAGHI, A. et al.** Towards More Sustainable Materials for Geo-Environmental Engineering: The Case of Geogrids. 5, 2021, Sustainability, Vol. 13, p. 2585.
- 8. CUERVO, H. y BARRAGÁN, C. Análisis del comportamiento físico mecánico de la adición de ceniza de cascarilla de arroz de la variedad blanco a un suelo areno-arcilloso. s.l.: [Tesis de pregrado, Universidad Piloto de Colombia]. Repositorio Institucional UNIPILOTO, 2019.
- 9. **DA SILVA, F. et al.** Analysis of the influence of tropical soil classification methods on railway subgrades according to repeated load triaxial (RLT) and light weight

- deflectometer (LWD) tests.. 2022, Case Studies in Construction Materials, Vol. 17, pp. 1-13.
- 10. DEBBARMA, K.; SAHA, S. y SARKAR, P. Application of vinyl acrylic co-polymer on subgrade and sub base pavement stabilization. 2022, Materialstoday: Proceedings, pp. 1-7.
- 11. DELGADO, C. y MORMONTOY, V. Estabilización de suelos arcillosos con adición de ceniza de mazorca de maíz y cal. s.l.: [Tesis de pregrado, Universidad Andina del Cusco]. Repositorio Digital UANDINA, 2021.
- 12. **GARCIA, J. y SCALETTI, H**.*Análisis sísmico de estructuras subterráneas: Influencia del tipo de suelo, la rigidez relativa y la intensidad del sismo.* 2022. 2, 2022, TECNIA, Vol. 32, pp. 185–198.
- 13. GALA, Y. y HUAMAN, L. Estabilización de suelos arcillosos incorporando ceniza de hoja de eucalipto para el mejoramiento de subrasante en el distrito de Pilcomayo. s.l.: [Tesis de pregrado, Universidad Peruana Los Andes]. Repositorio Institucional de la UPLA, 2023.
- 14. **GAO, Y. et al.** *Pullout behavior of geosynthetic reinforcement in biocemented soils.* 3, 2021, Geotextiles and Geomembranes, Vol. 49, pp. 646-656.
- 15. GUTIÉRREZ, W. Mecánica de suelos aplicada a vías de transporte. s.l.: Marcombo, 2021.
- 16. **HADI, M. et al.** *Metodología de la investigación: Guía para el proyecto de tesis.* s.l. : Instituto Universitario de Innovación Ciencia y Tecnología Inudi Perú S.A.C, 2023.
- 17. **HERNÁNDEZ, ANDRÉS y HERRERA, M**. Análisis de la relación de soporte y resistencia a la compresión de un suelo arcillo-limoso en la vereda de Liberia del municipio de Viotá Cundinamarca estabilizado con ceniza de cascarilla de café. s.l.: [Tesis de pregrado, Universidad de La Salle]. Ciencia Unisalle, 2019.

- 18. **HERNÁNDEZ, R. y MENDOZA, CH.** *Metodologia de la investigación de las rutas cuantitativa, cualitativa y mixta.* Mexico : Mc Graw Hill, 2018.
- 19. LNMR, A., RAY, R. y ALSIRAWAN, R. A State-of-the-Art Review and Numerical Study of Reinforced Expansive Soil with Granular Anchor Piles and Helical Piles. A 2023. 3, 2023, Sustainability, Vol. 15, p. 2802.
- 20. KULANTHAIVEL, P. et al. Experimental investigation on stabilization of clay soil using nano-materials and white cement. 2, 2021, Materials Today: Proceedings, Vol. 45, pp. 507-511.
- 21. LOPEZ, H., BRAVO, B. y FERNÁNDEZ, C. Application of Glass and Fan Shells to a Clay Soil to Increase its Mechanical Properties.. 1, 2021, IOP Conference Series: Materials Science and Engineering, Vol. 1054, p. 012004.
- 22. MINISTERIO de Transportes y Comunicaciones. Manual de Ensayo de Materiales.2016, Ministerio de Transportes y Comunicaciones.
- 23. MUÑOZ, S., AGUILAR, J. y DÍAZ, I. Estabilización de subrasantes mediante el uso de desechos marinos: una revisión de la literatura. 109, 2023, Revista Facultad de Ingeniería Universidad de Antioquia, pp. 25-34.
- 24. MINISTERIO de Transportes y Comunicaciones. Manual de Carreteras: Suelos, Geología, Geotecnia y Pavimentos - Sección: Suelos y Pavimentos. s.l.: Ministerio de Transportes y Comunicaciones, 2014.
- 25. MODAK, R y SINGH, B. Numerical study on settlement-dependent variation of raft-soil-pile interactions for large piled raft in clay soil. 2023, Ocean Engineering, Vol. 281, p. 115011.
- 26. **MUNIRWAN, R. et al.** *Utilization of coffee husk ash for soil stabilization: A systematic review.* 2022, Physics and Chemistry of the Earth, Parts A/B/C, Vol. 128, p. 103252.
- 27. ÑAUPAS, H. et al. Metodología de la investigación total. s.l.: Ediciones de la U, 2023.

- 28. **PRASAD, K. y HUSSAINI, S.** Review of different stabilization techniques adapted in ballasted tracks. 2022, Construction and Building Materials, Vol. 340, p. 127747.
- 29. **PILARES-HUALPA, I., et al.** Characterization of expansive soils for the foundation of an irrigation canal in the Peruvian Andes, Cabana-Mañazo case. 1, 2021, IOP Conference Series: Earth and Environmental Science, Vol. 939, p. 012062.
- 30. **QUISPE, H. y QUISPE, A.** Estabilización de suelos arcillosos de subrasante adicionando ceniza de arroz y café para obras viales en Jaén 2022. s.l. : [Tesis de pregrado, Universidad César Vallejo]. Repositorio Institucional de la UCV, 2022.
- 31. **RANDHAWA, KARANBIR y CHAUHAN, R.** Stabilizing black cotton soil in subgrade with municipal solid waste incineration ash for lowering greenhouse gas emission: A review. 5, 2022, Materialstoday: Proceedings, Vol. 50, pp. 1145-1151.
- 32. **ROJAS, J., GUTIÉRREZ, Y. y VARGAS, Y.** Estabilización de afirmado con ceniza proveniente de desechos de cascarilla de café para aplicar en suelos de construcción de vías. s.l.: [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC, 2020.
- 33. **RUIZ, C. Y VALENZUELA, M.** *Metodología de la Investigación.* s.l. : Fondo Editorial UNAT, 2022.
- 34. **REITERMAN, P. et al.** *Utilization of concrete slurry waste for soil stabilization.* 2022, Case Studies in Construction Materials, Vol. 16, p. e00900.
- 35. SABINO ROJAS, E., OBANDO, O. G. y LAVADO CASIMIRO, W. Atlas de Erosión de Suelos por Regiones Hidrológicas del Perú. Lima, Perú : Senamhi, 2017. ISBN.
- 36. **TALHA, A. M. y HUSAIN, A.** *Soil stabilization by reinforcing natural and synthetic fibers A state of the art review.* Zafar, 2023, Materials Today: Proceedings.

- 37. **TARAZONA, I. et al.** Experimental study of mechanical behavior of stabilized volcanic soil with lime. 2020 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI), pp. 1-5.
- 38. **TIUTKIN, O.** et al. *Stress-strain behavior of railway embankments stabilized with grouted micropiles*. 2024, Alexandria Engineering Journal, Vol. 102, pp. 75-81.
- 39. **VICUÑA, LENIN, et al.** Evaluation of the Effectiveness of Geogrids Manufactured from Recycled Plastics for Slope Stabilization—A Case Study. 8, 2024, Polymers, Vol. 16, p. 1151.
- 40. **WILCHES, F., BURBANO, J. y SIERRA, E.** Subgrade soils characterization data, for correlation of geotechnical variables on urban roads in northern Colombia. 2020, Data in Brief, Vol. 32, pp. 1-7.

ANEXOS

Anexo 01. Matriz de consistencia

Moquegua 2023?

Moquegua 2023.

Moquegua 2023.

Título: "Estabilización de la subrasante de suelos arenoso-arcilloso tipo a4 con adición parcial de la ceniza de hoja de cebolla roja en la avenida paraíso distrito de san Antonio – Moquegua 2023"

Problema Problema general:	Objetivos Objetivo general:	Hipótesis Hipótesis general:	Variables	Dimensiones	Indicadores	Instrumentos	Metodología Tipo de investigación:
¿Cuál será la influencia de la	Determinar la influencia de la	La ceniza de hoja de cebolla roja			• 5 % ceniza	Ficha técnica	Aplicada
ceniza de hoja de cebolla roja como adición en estabilización de la subrasante de suelos	ceniza de hoja de cebolla roja en la mejora de suelos arenoso- arcilloso tipo A4 de la avenida	influye significativamente en la mejora de las propiedades de suelos arenoso-arcilloso tipo A4	Variable independiente: Ceniza de hoja de	% de las Dosificaciones	8% ceniza	Ficha técnica	Enfoque de la investigación: Cuantitativo
arenoso-arcilloso en la avenida Paraíso distrito de San Antonio – Moquegua 2023?	paraíso distrito de san Antonio – Moquegua 2023	de la avenida paraíso distrito de san Antonio – Moquegua 2023	cebolla roja	Dosineaciones			Diseño de la investigación: Experimental de corte cuasiexperimental
					• 12% ceniza	Ficha técnica	-
Problemas específicos:	Objetivos específicos:	Hipótesis específicas:			Contenido de sales		Nivel de la investigación: Explicativa
¿Cuál es el procedimiento de obtención de la ceniza de hoja de	Describir el procedimiento de obtención de la ceniza de hoja	Las propiedades químicas de la ceniza de hoja de cebolla roja		Propiedades químicas de la	Contenido de	NTP 339.147:2002 NTP 339.177:2002	Población:
cebolla roja y sus propiedades	de cebolla roja y sus	cumple con requerimientos		ceniza	clorurosContenido de	NTP 339.177:2002 NTP 339.178:2002	Las vías de comunicación no
químicas?	propiedades químicas	básicos para la estabilización de suelos.			sulfatos		pavimentadas y urbanas del distrito de san Antonio.
¿Cuál será la influencia de la ceniza de hoja de cebolla como	Identificar la influencia de la ceniza de hoja de cebolla como	Existe una influencia significativa de la ceniza de hoja de cebolla					Muestra:
adición en las propiedades físicas	adición en las propiedades	como adición en las propiedades			% de humedad	Ensayo de límites de consistencia	Av. El paraíso
de la subrasante de suelos arenoso-arcilloso en la avenida	físicas de la subrasante de suelos arenoso-arcilloso en la	físicas de la subrasante de suelos arenoso-arcilloso en la avenida		Propiedades físicas	 Granulometría Límites Atterberg	(NTP 339.129,	Unidades de análisis:
Paraíso distrito de San Antonio -	avenida Paraíso distrito de San	Paraíso distrito de San Antonio -	Variable		- Emines Atteroerg	ASTM D4318)	Propiedades físicas y mecánicas
Moquegua 2023? ¿Cuál será la influencia de la	Antonio – Moquegua 2023. Determinar la influencia de la	Moquegua 2023. La ceniza de hoja de cebolla como	dependiente: Estabilización de		Densidad máxima	Ensayo de Proctor	de la subrasante
ceniza de hoja de cebolla como adición en las propiedades	ceniza de hoja de cebolla como adición en las propiedades	adición influye significativamente en las propiedades mecánicas de	subrasante de suelos		seca	(NTP 339.141.ASTM D	
mecánicas de la subrasante de	mecánicas de la subrasante de	la subrasante de suelos arenoso-	arenoso arcillosos	Propiedades	Humedad optimaCapacidad de	1557)	
suelos arenoso-arcilloso en la avenida Paraíso distrito de San	suelos arenoso-arcilloso en la avenida Paraíso distrito de San	arcilloso en la avenida Paraíso distrito de San Antonio –		mecánicas	soporte	Ensayo de CBR	
Antonio – Moquegua 2023?	Antonio – Moquegua 2023.	Moquegua 2023.			 Resistencia mecánica 	(NTP 339.145, ASTM D1883)	
¿Cuál será la influencia de la	Identificar la influencia de la	El uso de la ceniza de hoja de				1.01.1.2.1003)	
ceniza de hoja de cebolla como adición en el costo de la	ceniza de hoja de cebolla como adición en el costo de la	cebolla como adición influye positivamente en el costo de la			- Costos unitorio-		
subrasante de suelos arenoso- arcilloso en la avenida Paraíso	subrasante de suelos arenoso- arcilloso en la avenida Paraíso	subrasante de suelos arenoso- arcilloso en la avenida Paraíso		Costos	Costos unitariosCostos globales	Ficha técnica	
distrito de San Antonio –	distrito de San Antonio –	distrito de San Antonio –			·		

Anexo 02. Resultados del EMS

ARYU E.I.R.L.

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081 Mail: ceyse2009@hotmail.com Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraiso BACH. ROBIN RAFAEL RAMOS RAMOS ASIST. LAB: ING. RESP: G. FLORES M SIMON ORDOÑO P. PROYECTO: N° REGISTRO: 025-002023-001 UBICACIÓN: SOLICITANTE: DEL KM: AL KM: ACOPIO: FECHA: 01-11-2024

Ensayo :

CONTENIDO NATURAL DE HUMEDAD :

Norma : ASTM D 2216

PESO ESPECÍFICO :

Norma: ASTM D 854

Observaciones :		Ubicación :	C-2	
		Estrato:	E-1	
		Potencia :	1.50	m
Tara Número	Unidades	1	2	3
Peso Tara + Muestra Húmeda	Gr	81.00	93.60	116.90
Peso Tara + Muestra Seca	Gr	68.20	78.20	95.80
Peso de la Tara	Gr	24.10	28.00	28.30
Peso de la Muestra Seca	Gr	44.10	50.20	67.50
Peso del Agua	Gr	12.80	15.40	21.10
Contenido de Humedad	%	29.02	30.68	31.26
_/6/20valie-intension			20070-200-200	
Promedio			30.32	6
PESO ESPECÍFICO :		Ubicación :		
Promedio PESO ESPECÍFICO : Observaciones :		Ubicación :	C - 2	
PESO ESPECÍFICO :		Ubicación : Estrato : Potencia :		m
PESO ESPECÍFICO : Observaciones :	Unidades	Estrato:	C - 2 E-1	m 3
PESO ESPECÍFICO :	Unidades Gr	Estrato : Potencia :	C - 2 E-1 1.50	_
PESO ESPECÍFICO : Observaciones : Tara Número Peso del Suelo Seco		Estrato : Potencia :	C - 2 E-1 1.50	3
PESO ESPECÍFICO : Observaciones : Tara Número Peso del Suelo Seco Peso Frasco Vacio	Gr	Estrato : Potencia :	C - 2 E-1 1.50 2 113.80	3 102.70 164.00
PESO ESPECÍFICO : Observaciones : Tara Número Peso del Suelo Seco Peso Frasco Vacío Peso Frasco + Agua	Gr Gr	Estrato : Potencia : 1 139.70 164.00	C - 2 E-1 1.50 2 113.80 164.00	3 102.70 164.00 660.00
PESO ESPECÍFICO : Observaciones : Tara Número	Gr Gr Gr	Estrato : Potencia : 1 139.70 164.00 660.00	C - 2 E-1 1.50 2 113.80 164.00 660.00	3

Ing. Civil SIMON ORDONO PALATO
CIP. 34333

Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081

Mail: ceyse2009@hotmail.com

Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS ASIST. LAB: ING. RESP: N° REGISTRO: G. FLORES M SIMON ORDOÑO P. 025-002023-001 PROYECTO: UBICACIÓN: DEL KM: SOLICITANTE: ACOPIO: AL KM: FECHA: 01-11-2024

Ensayo :

CONTENIDO NATURAL DE HUMEDAD :

Norma:

ASTM D 2216

PESO ESPECÍFICO :

Norma :

ASTM D 854

CONTENIDO NATURAL DE HUMEDAD :				
Observaciones :		Ubicación :	C - 3	
		Estrato :	E1	
		Potencia:	1.50	m
Tara Número	Unidades	1	2	3
Peso Tara + Muestra Húmeda	Gr	81.20	101.20	107.30
Peso Tara + Muestra Seca	Gr	72.50	89.10	95.40
Peso de la Tara	Gr	28.10	30.40	37.10
Peso de la Muestra Seca	Gr	44.40	58.70	58.30
Peso del Agua	Gr	8.70	12.10	11.90
Contenido de Humedad	%	19.59	20.61	20.41
Promedio	25 22		20.21	
PESO ESPECÍFICO :				
Observaciones :		Ubicación :	C - 3	Ť
		Estrato :	E-1	
	73 727	Potencia:	1.50	m
Tara Número	Unidades	1	2	3
Peso del Suelo Seco	Gr	114.40	178.40	104.50
Peso Frasco Vacío	Gr	164.00	164.00	164.00
Peso Frasco + Agua	Gr	660.00	660.00	660.00
Peso Frasco + Agua +Suelo	Gr	728.00	772.00	710.00
Volumen de Sólidos	Cm ³	46.40	66.40	54.50
Peso Específico de Sólidos	Gr / Cm ³	2.47	2 69	1.92
reso Especifico de Solidos	Oi / Oili	2.77	2.00	1.02

Observaciones:

Ing. Civil SIMON ORDONO FALACO

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081

Mail: ceyse2009@hotmail.com

Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS ASIST. LAB: ING. RESP: N° REGISTRO: G. FLORES M SIMON ORDOÑO P. 025-002023-001 PROYECTO: UBICACIÓN: DEL KM: SOLICITANTE: ACOPIO: AL KM: FECHA: 01-11-2024

Ensayo :

CONTENIDO NATURAL DE HUMEDAD :

Norma:

ASTM D 2216

PESO ESPECÍFICO :

Norma :

ASTM D 854

Observaciones :		Ubicación :	C - 4	
		Estrato :	E-1	
		Potencia:	1.50	m
Tara Número	Unidades	1	2	3
Peso Tara + Muestra Húmeda	Gr	84.70	94.60	112.90
Peso Tara + Muestra Seca	Gr	75.40	84.00	99.30
Peso de la Tara	Gr	29.30	30.20	30.40
Peso de la Muestra Seca	Gr	46.10	53.80	68.90
Peso del Agua	Gr	9.30	10.60	13.60
Contenido de Humedad	20.17	19.70	19.74	
Promedio		19.87		
PESO ESPECÍFICO :				
Observaciones :	1	Ubicación :	C-4	
		Estrato:	E-1	
		Potencia :	1.50	m
Tara Número	Unidades	1	2	3
Peso del Suelo Seco	Gr	100.00	120.40	125.60
Peso Frasco Vacío	Gr	164.00	164.00	164.00
Peso Frasco + Agua	Gr	660.00	660.00	660.00
Peso Frasco + Agua +Suelo	Gr	722.00	736.00	738.00
Volumen de Sólidos	Cm ³	38.00	44.40	47.60
Peso Específico de Sólidos	Gr / Cm ³	2.63	2.71	2.64

Ing. Civil SIMON ORDONO FALARO Observaciones:

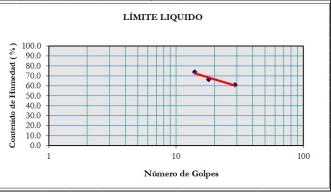
PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio - Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Norma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

LIMITES DE CONSISTENCIA			Ubica	ción :	Calicata	C1	Potenc	ia:	1.50 m		
LIMITES DE CONSISTEN	CIA		Estrate	o:	E1						
			LÍMITE LÍQUIDO		LÍMI.	TE PLÁ	STICO	T 16			
Tara Número		Unidades	1	2	3	1	2	2 3	Limites de Consistencia		
Peso Tara + Muestra Húmeda		Gr	44.00	40.00	43.60	47.20	34.40	40.20	Limite Liquido:	LL =	63.88%
Peso Tara + Muestra Seca		Gr	38.50	34.50	36.00	46.50	33.70	39.40	Límite Plástico:	LP =	39.38%
Peso de la Tara		Gr	26.60	26.50	28.20	44.60	31.80	37.60	Indice de Plasticidad :	IP =	24.50%
Peso de la Muestra Seca		Gr	11.90	8.00	7.80	1.90	1.90	1.80	Contenido de Humedad :	Wn =	37.61%
Peso del Agua		Gr	5.50	5.50	7.60	0.70	0.70	0.80	Grado de Consistencia :	Kw=	1.07
Contenido de Humedad		%	46.22	68.75	97.44	36.84	36.84	44.44	Grado de Consistencia :	Media D	ura , Sólida
Número de Golpes		-	33	22	16	Pron	nedio :	39.38			
Calicata:	C1	<u>100</u> .	o —								-
Calicata:	C1	1 00	0 —								_
Calicata : Estrato :	C1 E1	(100. 90.	0								
		(%) 90. 90. 80.	0								
Estrato :	El	(%) 90. 90. 80. 70. 60.	0 0								
Estrato : Potencia :	E1 1.50 m	(%) 90. 90. 80. 60. 50.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
Estrato : Potencia : Número de	El 1.50 m Contenido de	o de Humedad (%) o de Humedad (%) o de Humedad (%)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
Estrato : Potencia : Número de Golpes	El 1.50 m Contenido de Humedad (%)	(%) 90. 90. 80. 70. 60. 40. 30.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
Estrato : Potencia : Número de Golpes 33	E1 1.50 m Contenido de Humedad (%) 46.22	(%) 100. 90. 80. 70. 60. 40. 30. 20.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
Estrato : Potencia : Número de Golpes 33 22	E1 1.50 m Contenido de Humedad (%) 46.22 68.75	%) 90. 80. 70. 60. 50. 40. 30.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
Estrato : Potencia : Número de Golpes 33 22 16	E1 1.50 m Contenido de Humedad (%) 46.22 68.75 97.44	90. 80. 70. 60. 50. 40. 30. 10.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					10			100
Estrato : Potencia : Número de Golpes 33 22 16	E1 1.50 m Contenido de Humedad (%) 46.22 68.75 97.44	90. 80. 70. 60. 50. 40. 30. 10.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				imero				100

Observaciones:

Ing. Civil SIMON ORDONO FALARO



PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

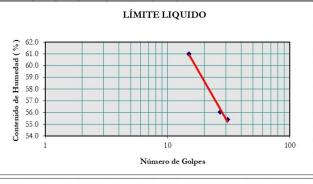
LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Norma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

LIMITES DE CONSISTENC	т.	Ubicae	ción :	Calicata	C2	Potenci	ia:	1.50 m		
LIMITES DE CONSISTENC	IA	Estrate	o:	E1						
		LÍM	ITE LÍC	QUIDO	LÍMI'	ΓE PLÁ	STICO			
Tara Número	Unidades	1	2	3	1	2	3	Límites de Consistencia		
Peso Tara + Muestra Húmeda	Gr	53.70	39.50	47.10	26.90	30.30	31.10	Limite Liquido:	LL =	62.81%
Peso Tara + Muestra Seca	Gr	46.50	33.40	40.00	26.20	29.70	30.50	Límite Plástico:	LP =	31.16%
Peso de la Tara	Gr	34.70	24.20	30.40	24.10	27.80	28.40	Índice de Plasticidad :	IP =	31.65%
Peso de la Muestra Seca	Gr	11.80	9.20	9.60	2.10	1.90	2.10	Contenido de Humedad:	Wn =	30.32%
Peso del Agua	Gr	7.20	6.10	7.10	0.70	0.60	0.60	Grado de Consistencia :	Kw=	1.03
Contenido de Humedad	%	61.02	66.30	73.96	33.33	31.58	28.57	Grado de Consistencia :	Media Du	ıra , Sólida
Número de Golpes		29	18	14	Pron	nedio :	31.16			

Calicata:	C2				
Estrato :	E1				
Potencia:	1.50 m				
Número de	Contenido de				
Golpes	Humedad (%)				
29	61.02				
18	66.30				
14	73.96 62.814				
25					

Observaciones:

Ing. Civil SIMON ORDONO INLACO



PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

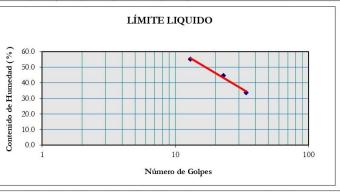
LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Norma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

LIMITES DE CONSISTENCIA		Ubica	ión :	Calicata	C3	Potenci	a :	1.50 m		
LIMITES DE CONSISTENCIA			o :	E1						
			ITE LÍQ	UIDO	LÍMITE PLÁSTICO					
Tara Número Unidades			2	3	1	2	3	Limites de Consistencia		
Peso Tara + Muestra Húmeda	Gr	43.90	49.20	47.10	29.70	33.20	38.40	Limite Liquido:	LL =	56.90%
Peso Tara + Muestra Seca	Gr	39.80	44.20	42.00	29.50	32.80	38.20	Limite Plástico:	LP =	17.35%
Peso de la Tara	Gr	32.40	36.00	32.90	28.20	30.40	37.20	Indice de Plasticidad :	IP =	39.55%
Peso de la Muestra Seca	Gr	7.40	8.20	9.10	1.30	2.40	1.00	Contenido de Humedad :	Wn =	20.21%
Peso del Agua	Gr	4.10	5.00	5.10	0.20	0.40	0.20	Grado de Consistencia :	Kw=	0.93
Contenido de Humedad	%	55.41	60.98	56.04	15.38	16.67	20.00	Grado de Consistencia :	Plástica	
Número de Golpes		31	15	27	Pron	nedio:	17.35			

Calicata:	C3			
Estrato :	E1			
Potencia :	1.50 m			
Número de	Contenido de			
Golpes	Humedad (%)			
31	55.41			
15	60.98			
27	56.04			
25	56.900			

Observaciones:

Ing. Civil SIMON ORDONO INLACO



PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Norma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

LIMITED DE CONCICTENC	т.	Ubicación: Calicata C4				Potenci	ia:	1.50 m		
LIMITES DE CONSISTENC	IA	Estrate	o :	E1						
	2507	LÍM	ITE LÍC	QUIDO	LÍMI	TE PLÁS	STICO	1 1.6		
Tara Número Unidades		1	2	3	1	2	3	Limites de Consistencia		
Peso Tara + Muestra Húmeda	Gr	60.70	68.50	73.30	30.60	31.80	31.80	Límite Líquido:	LL =	41.32%
Peso Tara + Muestra Seca	Gr	49.50	56.40	62.50	30.40	31.30	31.60	Límite Plástico:	LP =	19.05%
Peso de la Tara	Gr	29.20	29.30	30.40	29.20	29.20	30.40	Indice de Plasticidad :	IP =	22.27%
Peso de la Muestra Seca	Gr	20.30	27.10	32.10	1.20	2.10	1.20	Contenido de Humedad :	Wn =	19.87%
Peso del Agua	Gı	11.20	12.10	10.80	0.20	0.50	0.20	Grado de Consistencia :	Kw=	0.96
Contenido de Humedad	%	55.17	44.65	33.64	16.67	23.81	16.67	Grado de Consistencia :	Plástica	
Número de Golpes		13	23	34	Prom	nedio :	19.05			

Calicata:	C2
Estrato :	E3
Potencia:	1.50 m
Número de	Contenido de
Golpes	Humedad (%)
13	55.17
23	44.65
34	33.64
25	41.322

Observaciones:

Ing. Civil SIMON ORDONO FALACO

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081

Mail: ceyse2009@hotmail.com

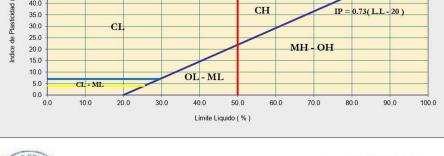
Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

PROYECTO: UBICACIÓN: SOLICITANTE:

ACOPIO:

Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS

G. FLORES M SIMON ORDOÑO P. 025-002023-001 ASIST. LAB: ING. RESP: DEL KM:


AL KM: FECHA: 01-11-2024

CLASIFICACIÓN DE SUELOS SEGÚN S.U.C.S

NTP: 339.134-1999

ASTM: D 2487

		SUELO	S FINOS						SUELOS (GRUESOS	5		
S	uelo que p	asa la mal	la N° 200 e	es > a1 50	%				pasa la mall	N° 200 es < al 50 %			
BAJA PLASTICIDAD Límite Líquido < al 50 % Límite Líquido > al 50 %					La porci	ARENAS La porción de Fracción Gruesa que pasa la malla Nº 4 es mayor ARENAS La porción de Fracción Gruesa que malla Nº 4 es menor					ue pasa l		
OL ML CL OH MH CH					СН		De a	cuerdo al Po	rcentaje que	pasa la mal	la Nº 200 se	tiene :	
							% Que I Mer Ent		GW Hay que u	ble Tipo de , SW , GP o ssar Simbolo I , GC , SM	o SP ogía Dob		
							SM	SP	sw	GC	GM	GP	GW
						Sobre la Línea "A"	Bajo la Línea "A"	No Cumple Antenores	Cu > 6 y 1 < Cc <	Sobre la Línea "A"	Bajo la Línea "A"	No Cumple Antenores	Cu > 6 y 1 < Cc <
						Carta de	Palasticid	ad de Cas	agrande				
								Línea B				Línea A	4
_	50.0		T							T			
%)	45.0												
dad	40.0							CH		I	P = 0.73(L)	.L - 20)	
de Plasticidad (%)	35.0			CL									
Pa	25.0			CL				/					
e G	20.0								MIT	OH			

Ing. Civil SIMON ORDONO FALACO Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081

Mail: ceyse2009@hotmail.com

Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS G. FLORES M SIMON ORDOÑO P. 025-002023-001 ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: UBICACIÓN: DEL KM: SOLICITANTE: ACOPIO: AL KM: FECHA: 01-11-2024

ASTM: D 2487 NTP: 339.134-1999 CLASIFICACIÓN DE SUELOS SEGÚN S.U.C.S

Ubicación:	C-1	Potencia:	1.50 m	
Estrato:	E1			
% Que Pasa la Malla N° 200	* *	93.02		<u> </u>
Límite Líquido	TT =	63.88 %		
Límite Plástico	LP =	39.38 %		
Índice de Plasticidad	IP =	24.50 %		77
Tipo de Suelo Según su Granulometría :		Suelo Fino	ikk	"
1000 (000)		Alta Plasticidad		
Tipo de Simbología :		Simbología Normal		
Tipo de Suelo :		CH, MH, OH		
Suelo :		мн,он	Indicar Tipo de Suelo :	Inorgánico
Características del Suelo :		МН	Son limos de alta plasticida	d, con límite líquido mayor a 50 %,
CLASIFICACIÓN DE SUELOS SEGÚN S.	U.C.S		y se caracterizan por ser m	ny compresibles.
	U.C.S	Potencia:	y se caracterizan por ser m	ay compresibles.
Ubicación :		Potencia :		ay compresibles.
Ubicación : Estrato :	C-2	Potencia : 89.77		ny compresibles.
Ubicación : Estrato : % Que Pasa la Malla № 200	C-2			ay compresibles.
Ubicación : Estrato : % Que Pasa la Malla № 200 Límite Líquido	C-2 E1	89.77		ay compresibles.
Ubicación : Estrato : % Que Pasa la Malla № 200 Límite Líquido	C-2 E1	89.77 62.81 %		ay compresibles.
Ubicación : Estrato : % Que Pasa la Malla № 200 Límite Líquido Límite Plástico Índice de Plasticidad	C-2 E1 LL = LP =	89.77 62.81 % 31.16 %		ay compresibles.
Ubicación : Estrato : % Que Pasa la Malla № 200 Límite Líquido Límite Plástico Índice de Plasticidad	C-2 E1 LL = LP =	89.77 62.81 % 31.16 % 31.65 %		ay compresibles.
Ubicación : Estrato : % Que Pasa la Malla № 200 Límite Líquido Límite Plástico Índice de Plasticidad Tipo de Suelo Según su Granulometría :	C-2 E1 LL = LP =	89.77 62.81 % 31.16 % 31.65 % Suelo Fino	1.50 m	ay compresibles.
Ubicación : Estrato : % Que Pasa la Malla № 200 Límite Líquido Límite Plástico Índice de Plasticidad Tipo de Suelo Según su Granulometría : Tipo de Simbología :	C-2 E1 LL = LP =	89.77 62.81 % 31.16 % 31.65 % Suelo Fino Alta Plasticidad	1.50 m	ay compresibles.
Ubicación : Estrato : % Que Pasa la Malla № 200 Límite Líquido Límite Plástico	C-2 E1 LL = LP =	89.77 62.81 % 31.16 % 31.65 % Suelo Fino Alta Plasticidad Simbología Normal	1.50 m	ay compresibles.
Ubicación : Estrato : % Que Pasa la Malla № 200 Límite Líquido Límite Plástico Índice de Plasticidad Tipo de Suelo Según su Granulometría : Tipo de Simbología : Tipo de Suelo :	C-2 E1 LL = LP =	89.77 62.81 % 31.16 % 31.65 % Suelo Fino Alta Plasticidad Simbología Normal CH , MH , OH	1.50 m	ay compresibles. ad, con límite líquido mayor a 50 %

SIOS GENES	
E VYE E	
Jeine.	

Ing. Civil SIMON ORDONO FALARO Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081

Mail: ceyse2009@hotmail.com

Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS G. FLORES M SIMON ORDOÑO P. 025-002023-001 ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: UBICACIÓN: DEL KM: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

ASTM: D 2487 NTP: 339.134-1999 CLASIFICACIÓN DE SUELOS SEGÚN S.U.C.S

Ubicación:	C-3	Potencia:		1.50 m
Estrato:	E1	Totala:		1.50 H
		JL		T
% Que Pasa la Malla Nº 200		71.12	2	
Límite Líquido	LL =	56.90	%	
Límite Plástico	LP =	17.35	%	
Índice de Plasticidad	IP =	39.55	%	
Tipo de Suelo Según su Granulor	metría :	Suelo Fino		
		Alta Plasticidad		
Tipo de Simbología :		Simbología Nori	mal	
Tipo de Suelo :		CH, MH, OH		
Suelo :		CH		
	СН			
Características del Suelo:		CH		Son arcillas de alta plasticidad, con límite líquido mayor a 50 %
Características del Suelo : CLASIFICACIÓN DE SUELO	OS SEGÚN			Son arcillas de alta plasticidad, con limite liquido mayor a 50 % y se caracterizan por ser muy compresibles.
	OS SEGÚN C-4		1.50 m	
CLASIFICACIÓN DE SUELO		S.U.C.S		
CLASIFICACIÓN DE SUELO Ubicación:	C-4	S.U.C.S		
CLASIFICACIÓN DE SUELA Ubicación: Estrato: % Que Pasa la Malla Nº 200	C-4	S.U.C.S Potencia:		
CLASIFICACIÓN DE SUELO Ubicación : Estrato :	C-4 E1	S.U.C.S Potencia:		
CLASIFICACIÓN DE SUELA Ubicación: Estrato: % Que Pasa la Malla Nº 200 Limite Líquido	C-4 E1	S.U.C.S Potencia: 68.74 41.32 %		
CLASIFICACIÓN DE SUELA Ubicación: Estrato: % Que Pasa la Malla Nº 200 Limite Líquido Limite Plástico	C-4 E1 LL = LP = IP =	S.U.C.S Potencia: 68.74 41.32 % 19.05 %		
CLASIFICACIÓN DE SUELA Ubicación: Estrato: % Que Pasa la Malla Nº 200 Limite Líquido Limite Plástico Índice de Plasticidad	C-4 E1 LL = LP = IP =	S.U.C.S Potencia: 68.74 41.32 % 19.05 % 22.27 %		
CLASIFICACIÓN DE SUELA Ubicación: Estrato: % Que Pasa la Malla Nº 200 Limite Líquido Limite Plástico Índice de Plasticidad	C-4 E1 LL = LP = IP =	S.U.C.S Potencia: 68.74 41.32 % 19.05 % 22.27 % Suelo Fino	1.50 m	
CLASIFICACIÓN DE SUELA Ubicación: Estrato: % Que Pasa la Malla Nº 200 Límite Líquido Límite Plástico Índice de Plasticidad Tipo de Suelo Según su Granulor	C-4 E1 LL = LP = IP =	S.U.C.S Potencia: 68.74 41.32 % 19.05 % 22.27 % Suelo Fino Baja Plasticidad	1.50 m	
CLASIFICACIÓN DE SUELA Ubicación: Estrato: % Que Pasa la Malla Nº 200 Límite Líquido Límite Plástico Índice de Plasticidad Tipo de Suelo Según su Granulor Tipo de Simbología:	C-4 E1 LL = LP = IP =	S.U.C.S Potencia: 68.74 41.32 % 19.05 % 22.27 % Suelo Fino Baja Plasticidad Simbología Norr	1.50 m	
CLASIFICACIÓN DE SUELA Ubicación: Estrato: % Que Pasa la Malla Nº 200 Límite Líquido Límite Plástico Índice de Plasticidad Tipo de Suelo Según su Granulor Tipo de Simbología: Tipo de Suelo:	C-4 E1 LL = LP = IP =	S.U.C.S Potencia: 68.74 41.32 % 19.05 % 22.27 % Suelo Fino Baja Plasticidad Simbología Norr CL., ML., OL	1.50 m	

Ing. Civil SIMON ORDONO FALARO Observaciones:

SERVICIOS Y BIENES DE CALIDAD

Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS G. FLORES M SIMON ORDOÑO P. 025-002023-001 ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: UBICACIÓN: DEL KM: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

ASTM: D 2487 NTP: 339.134-1999 CLASIFICACIÓN DE SUELOS SEGÚN A.A.S.H.T.O.

CLASIFICACIÓN AASHT	то					
Parámetros Usados			Ubicación:	C - 1	Potencia:	1.50 m
% Que Pasa la Malla Nº 200		93.02	Estrato:	E1		
% Que Pasa la Malla Nº 40		97.57	Determinación del Indice de Grupo IG			
% Que Pasa la Malla Nº 10		98.51	a =	40.00	IG =	18.00
Límite Líquido	LL =	63.88 %	b =	40.00		
Límite Plástico	LP =	39.38 %	c =	20.00		
Indice de Plasticidad :	IP =	24.50 %	d =	14.50		
Tipo de Suelo :	Material	Limo Arcil	loso		*	
Clasificación de Suelos :	A - 7					
Suelo :	A - 7 - 5	(18)				
Tipo de Material :	Suelo A	rcilloso				
Terreno de Fundación:	Regular	a Malo				
			T			
CLASIFICACIÓN AASHT			Ubicación ·	C-2	Potencia :	1.50 m
Parámetros Usados			Ubicación :	C - 2	Potencia:	1.50 m
Parámetros Usados % Que Pasa la Malla Nº 200		89.77	Estrato:	C - 2 E1	Potencia:	1.50 m
Parámetros Usados % Que Pasa la Malla Nº 200 % Que Pasa la Malla Nº 40				30 1000	Potencia:	1.50 m
Parámetros Usados % Que Pasa la Malla Nº 200 % Que Pasa la Malla Nº 40 % Que Pasa la Malla Nº 10		89.77 98.49	Estrato : Determinación del Indice de Grupo IG	E1		
Parámetros Usados % Que Pasa la Malla Nº 200 % Que Pasa la Malla Nº 40	ro	89.77 98.49 99.48	Estrato : Determinación del Indice de Grupo IG a =	E1		
Parámetros Usados % Que Pasa la Malla N° 200 % Que Pasa la Malla N° 40 % Que Pasa la Malla N° 10 Límite Líquido Límite Plástico	LL =	89.77 98.49 99.48 62.81 %	Estrato: Determinación del Indice de Grupo IG a = b =	E1 40.00 40.00		
Parámetros Usados % Que Pasa la Malla N° 200 % Que Pasa la Malla N° 40 % Que Pasa la Malla N° 10 Límite Líquido Límite Plástico Indice de Plasticidad :	ILL = LP = IP =	89.77 98.49 99.48 62.81 % 31.16 %	Estrato: Determinación del Indice de Grupo IG a = b = c = d =	40.00 40.00 20.00		
Parámetros Usados % Que Pasa la Malla N° 200 % Que Pasa la Malla N° 40 % Que Pasa la Malla N° 10 Límite Líquido Límite Plástico Indice de Plasticidad :	ILL = LP = IP =	89.77 98.49 99.48 62.81 % 31.16 % 31.65 %	Estrato: Determinación del Indice de Grupo IG a = b = c = d =	40.00 40.00 20.00		
Parámetros Usados % Que Pasa la Malla Nº 200 % Que Pasa la Malla Nº 40 % Que Pasa la Malla Nº 10 Límite Líquido Límite Plástico Indice de Plasticidad : Tipo de Suelo :	ILL = LP = IP = Material	89.77 98.49 99.48 62.81 % 31.16 % 31.65 % Limo Ascil	Estrato: Determinación del Indice de Grupo IG a = b = c = d =	40.00 40.00 20.00		
Parámetros Usados % Que Pasa la Malla Nº 200 % Que Pasa la Malla Nº 40 % Que Pasa la Malla Nº 10 Límite Líquido Límite Plástico Indice de Plasticidad : Tipo de Suelo : Clasificación de Suelos :	LL = LP = IP = Material A - 7	89.77 98.49 99.48 62.81 % 31.16 % 31.65 % Limo Arcil	Estrato: Determinación del Indice de Grupo IG a = b = c = d =	40.00 40.00 20.00		

Ing. Civil SIMON ORDONO PALACO Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081

Mail: ceyse2009@hotmail.com

Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS G. FLORES M SIMON ORDOÑO P. 025-002023-001 ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: UBICACIÓN: DEL KM: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

ASTM: D 2487 NTP: 339.134-1999 CLASIFICACIÓN DE SUELOS SEGÚN A.A.S.H.T.O.

CLASIFICACIÓN AASHT	<i>"</i> 0					
Parámetros Usados			Ubicación:	C-3	Potencia:	1.50 m
% Que Pasa la Malla Nº 200		71.12	Estrato:	E1		
% Que Pasa la Malla Nº 40		86.55	Determinación del Indice de Grupo IG			
% Que Pasa la Malla Nº 10		90.06	a =	36.12	IG =	19.00
Límite Líquido	LL =	56.90 %	b =	40.00		
Límite Plástico	LP =	17.35 %	c =	16.90		
Indice de Plasticidad :	IP =	39.55 %	d =	20.00		
Tipo de Suelo :	Material I	Limo Arcil	loso		*	
Clasificación de Suelos :	A - 7					
Suelo :	A - 7 - 6	(19)				
Tipo de Material :	Suelo Arc	illoso				
Terreno de Fundación:	Regular a	Malo				
CLASIFICACIÓN AASHT						
CLASIFICACION AASHT	ro					
Parámetros Usados	ro 		Ubicación :	C - 4	Potencia:	1.50 m
	ro 	68.74	Ubicación : Estrato :	C - 4 E1	Potencia:	1.50 m
Parámetros Usados	ro 	68.74 86.96			Potencia:	1.50 m
Parámetros Usados % Que Pasa la Malla Nº 200	ro 		Estrato:		Potencia:	1.50 m
Parámetros Usados % Que Pasa la Malla № 200 % Que Pasa la Malla № 40	LL =	86.96	Estrato : Determinación del Indice de Grupo IG	E1		
Parámetros Usados % Que Pasa la Malla Nº 200 % Que Pasa la Malla Nº 40 % Que Pasa la Malla Nº 10		86.96 94.39	Estrato : Determinación del Indice de Grupo IG a =	E1 33.74		
Parámetros Usados % Que Pasa la Malla N° 200 % Que Pasa la Malla N° 40 % Que Pasa la Malla N° 10 Límite Líquido	LL =	86.96 94.39 41.32 %	Estrato : Determinación del Indice de Grupo IG a = b =	E1 33.74 40.00		
Parámetros Usados % Que Pasa la Malla N° 200 % Que Pasa la Malla N° 40 % Que Pasa la Malla N° 10 Límite Líquido Límite Plástico	LL = LP = IP =	86.96 94.39 41.32 % 19.05 %	Estrato: Determinación del Indice de Grupo IG a = b = c = d =	33.74 40.00 1.32		
Parámetros Usados % Que Pasa la Malla N° 200 % Que Pasa la Malla N° 40 % Que Pasa la Malla N° 10 Límite Líquido Límite Plástico Indice de Plasticidad :	LL = LP = IP =	86.96 94.39 41.32 % 19.05 % 22.27 %	Estrato: Determinación del Indice de Grupo IG a = b = c = d =	33.74 40.00 1.32		
Parámetros Usados % Que Pasa la Malla Nº 200 % Que Pasa la Malla Nº 40 % Que Pasa la Malla Nº 10 Límite Líquido Límite Plástico Indice de Plasticidad : Tipo de Suelo :	LL = LP = IP = Material I	86.96 94.39 41.32 % 19.05 % 22.27 % Limo Arcil	Estrato: Determinación del Indice de Grupo IG a = b = c = d =	33.74 40.00 1.32		
Parámetros Usados % Que Pasa la Malla Nº 200 % Que Pasa la Malla Nº 40 % Que Pasa la Malla Nº 10 Límite Líquido Límite Plástico Indice de Plasticidad : Tipo de Suelo : Clasificación de Suelos :	LL = LP = IP = Material I A - 7	86.96 94.39 41.32 % 19.05 % 22.27 % Limo Arcil	Estrato: Determinación del Indice de Grupo IG a = b = c = d =	33.74 40.00 1.32		

Ing. Civil SIMON ORDONO PALATO Observaciones:

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ANÁLISIS GRANULOMÉTRICO POR LAVADO

Fecha de Muestreo:		Calicata:	C-1				
Muestreado por:		Estrato:	E1				
Chequeado por :		Potencia:	1.50 m				
ANÁLISI GRANULOMÉTRICO POI	R LAVADO						
Peso Inicial de la Muestra Seca	230.00	Gr	Ubicación :	D60 =	11.98	Cu =	25.489
Peso de la Muestra Despúes del Labado	223.75	Gr	Estrato:	D30 =	2.40	Cc =	1.023
Perdida por Lavado	6.25	Gr	Potencia:	D10 =	0.47		
Tolerancia 2.72 % Desechar	Ensavo						7.55A

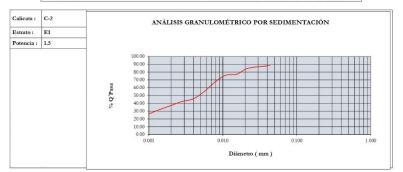
Tamiz	Abertura	Rete	nido	% Q' Pasa
	(mm)	(gr.)	(%)	
8	2.380	7.76	3.37	96.63
20	0.840	5.08	2.21	94.42
30	0.590	4.79	2.08	92.33
40	0.420	6.58	2.86	89.47
60	0.250	7.09	3.08	86.39
80	0.177	25.01	10.87	75.52
100	0.149	7.38	3.21	72.31
120	0.125	7.91	3.44	68.87
200	0.074	5.80	2.52	66.35
Cazoleta		152.60	66.35	
otal, Retenido:		230.00	100.00	

Ing. Civil SIMON CROOKS PALAGO

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO F
	La Avenida Paraíso Distrito De San Antonio - Moquegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist, San Antonio / Moguegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH, ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

Fecha de M Muestread Chequeado	o por :				Calicata : Estrato : Potencia :	C-2 E1 1.50 m						
ANÁLISIS	GRANULOM	ÉTRICO PO	R SEDIMENTA	ACIÓN								
Prueba Nº Unidades 1		2	3	Prueba Nº		Unidades	1	2	3			
Volumen I	nicial		Cm 3	12.00	12.00	12.00	Distancia		Cm ³	12.00	12.00	12.00
Volumen F	inal	8 3	Cm ³	15.00	15.00	15.00	Volumen	2	Cm ³	15.00	15.00	15.00
Volumen d	iel Bulbo		Cm ³	3.00	3.00	3.00	Area		Cm ²	1.25	1.25	1.25
Promedio			Cm 3		3.00		Promedio		Cm ²		1.25	
Lectura de	l Hidrómetro (Xi)	0.00	50.00	Lectura Superio	or del Hidrómetro	0.014	Peso de la Muestra Seca	i		(Gr)	50.00
L1			17.00	8.00	Lectura Inferio	Inferior del Hidrómetro 0.015 Peso Específico de Solidos				(Gr/Cm ³)	2.72	
L2			15.00	15.00	Corrección por Menisco		1.00	Correción por Peso Específico	1			
L(Yi)			23.30	14.30	Lectura Inferio	del Hidrómetro	1.003	1 a= 1		0.98		
Ecuación o	le Ajuste :	L=	-0.180 L(2)	+ 23.300	Corrección por	Defloculante	3.00					
Fecha	Hora	Tiempo	Temperatura	Corrección por	Viscocidad	1	Lecturas del Hidrómetr	ecturas del Hidrómetro L K		K	Diámetro	% Q' Pas
		(minutos)	°C	Temperatura	η	Primera Lectura	1° Corrección	2º Corrección			(mm)	
12-01-00	12:00:00 a.m.	1.00	15	-1.10	0.01567	49.00	44.90	50.00	14.30	0.0115	0.043	88.421
	1	2.00	16	-0.90	0.01111	47.00	43.10	48.00	14.66	0.0081	0.022	84.876
		4.00	17	-0.70	0.01083	43.00	39.30	44.00	15.38	0.0079	0.016	77,393
		8.00	18	-0.50	0.01056	42.00	38.50	43.00	15.56	0.0077	0.011	75.817
		16.00	19	-0.30	0.01030	37.00	33.70	38.00	16.46	0.0075	0.008	66.365
		30.00	20	0.00	0.01005	31.00	28.00	32.00	17.54	0.0073	0.006	55.140
		60.00	21	0.20	0.00981	26.00	23.20	27.00	18.44	0.0072	0.004	45.687
		120.00	22	0.40	0.00958	24.00	21.40	25.00	18.80	0.0070	0.003	42.143
		240.00	23	0.70	0.00936	21.00	18.70	22.00	19.34	0.0068	0.002	36.826
		480.00	24	1.00	0.00914	18.00	16.00	19.00	19.88	0.0067	0.001	31.509
		960.00	25	1.30	0.00894	1600	1301	17.00	20.24	0.0065	0.001	25.618

Observaciones:



ARYU E.I.R.L.
SERVICIOS Y BIENES DE CALIDAD
RUC: 20582797081
Mail: cosye2000@fhormail.com
Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

150 9001

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P
	La Avenida Paraíso Distrito De San Antonio - Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist, San Antonio / Moguegua / Av. Paraiso	DEL KM:	
OLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

Ing. Civil SIMON ORDONO FALARO CIP. \$4333

119

G. FLORES M SIMON ORDOÑO P. 025-002023-001

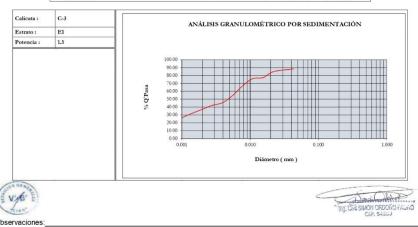
01-11-2024

ARYU E.I.R.L.
SERVICIOS Y BIENES DE CALIDAD
RUC: 20532797081
Mail: cosye2000@fhormail.com
Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso	ASIST. LAB
PROYECTO:	Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ING. RESP.
	La Avenida Paraíso Distrito De San Antonio - Moguegua 2023	N° REGISTRO:
UBICACIÓN:	Dist, San Antonio / Moguegua / Av. Paraiso	DEL KM:
SOLICITANTE:	BACH, ROBIN RAFAEL RAMOS RAMOS	AL KM:
ACOPIO:		FECHA

Fecha de M Muestread Chequeado	por:				Calicata : Estrato : Potencia :	C-3 E1 1.50 m						
ANÁLISIS	GRANULOM	ÉTRICO PO	R SEDIMENTA	ACIÓN								
Prueba Nº			Unidades	1	2	3	Prueba Nº		Unidades	1	2	3
Volumen I	nicial		Cm 3	12.00	12.00	12.00	Distancia		Cm ³	12.00	12.00	12.00
Volumen F	inal		Cm ³	15.00	15.00	15.00	Volumen		Cm ³	15.00	15.00	15.00
Volumen d	el Bulbo		Cm 3	3.00	3.00	3.00	Area		Cm ²	1.25	1.25	1.25
Promedio			Cm 3		3.00	N .	Promedio		Cm ²		1.25	1
Lectura del	Hidrómetro (Xi)	0.00	50.00	Lectura Superi	or del Hidrómetro	0.014	Peso de la Muestra Seca	Ĭ		(Gr)	50.00
L1			17.00	8.00	Lectura Inferio	r del Hidrómetro	0.015	Peso Específico de Solidos			(Gr/Cm ³)	2.72
L2			15.00	15.00	Conección por	Menisco	1.00	Correción por Peso Específico				
L(Yi)	-		23.30	14.30	Lectura Inferio	r del Hidrómetro	1.003	n =		0.98		
Ecuación d	le Ajuste :	L=	-0.180 L(2)	+ 23.300	Conección por	Defloculante	3.00	727,500				
Fecha	Hora	Tiempo	Temperatura	Corrección por	Viscocidad	1	Lecturas del Hidrómet	tro	L	K	Diámetro	% Q Pasa
		(minutos)	°C	Temperatura	η	Primera Lectura	1º Corrección	2º Corrección			(mm)	2
12-01-00	12:00:00 a.m.	1.00	15	-1.10	0.01567	49.00	44.90	50.00	14.30	0.0115	0.043	88.421
		2.00	16	-0.90	0.01111	47.00	43.10	48.00	14.66	0.0081	0.022	84.876
		4.00	17	-0.70	0.01083	43.00	39.30	44.00	15.38	0.0079	0.016	77.393
		8.00	18	-0.50	0.01056	42.00	38.50	43.00	15.56	0.0077	0.011	75.817
		16.00	19	-0.30	0.01030	37.00	33.70	38.00	16.46	0.0075	0.008	66.365
		30.00	20	0.00	0.01005	31.00	28.00	32.00	17.54	0.0073	0.006	55.140
		60.00	21	0.20	0.00981	26.00	23.20	27.00	18.44	0.0072	0.004	45.687
		120.00	22	0.40	0.00958	24.00	21.40	25.00	18.80	0.0070	0.003	42.143
		240.00	23	0.70	0.00936	21.00	18.70	22.00	19.34	0.0068	0.002	36.826
		480.00	24	1.00	0.00914	18.00	16.00	19.00	19.88	0.0067	0.001	31.509
		960.00	25	1.30	0.00894	16.00	13.01	17.00	20.24	0.0065	0.001	25.618

Observaciones:



ARYU E.I.R.L.
SERVICIOS Y BIENES DE CALIDAD
RUC: 20582797081
Mail: cosye2000@fhormail.com
Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

150 9001

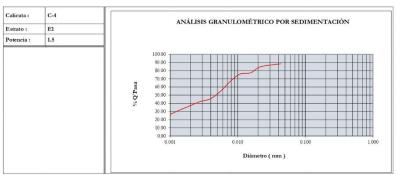
PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P
	La Avenida Paraíso Distrito De San Antonio - Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
OLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

120

Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En La Avenida Paraiso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraiso BACH. ROBIN RAFAEL RAMOS RAMOS ASIST. LAB: ING. RESP: N° REGISTRO: DEL KM: AL KM: FECHA: G. FLORES M SIMON ORDOÑO P. 025-002023-001 PROYECTO: UBICACIÓN: SOLICITANTE: ACOPIO: 01-11-2024

Fecha de M Muestread Chequeado	o por:				Calicata : Estrato : Potencia :	C-4 E1 1.50 m						
ANÁLISIS	GRANULOM	ÉTRICO PO	R SEDIMENTA	ACIÓN								
Prueba Nº			Unidades	1	2	3	Prueba Nº		Unidades	1	2	3
Volumen I	nicial		Cm ³	12.00	12.00	12.00	Distancia		Cm 3	12.00	12.00	12.00
Volumen F	inal		Cm ³	15.00	15.00	15.00	Volumen		Cm ³	15.00	15.00	15.00
Volumen d	el Bulbo		Cm ³	3.00	3.00	3.00	Area		Cm ²	1.25	1.25	1.25
Promedio			Cm 3		3.00	1	Promedio		Cm ²	7/11	1.25	
Lectura del	Hidrómetro (Xi)	0.00	50.00	Lectura Superio	or del Hidrómetro	0.014	Peso de la Muestra Seca	ĺ		(Gr)	50.00
L1		-	17.00	8.00	Lectura Inferior	del Hidrómetro	0.015	Peso Específico de Solidos			(Gr/Cm3)	2.72
L2			15.00	15.00	Corrección por	Menisco	1.00	Correción por Peso Específico				
L(Yi)			23.30	14.30	Lectura Inferior	del Hidrometro	1.003	-		0.98		
Ecuación d	le Ajuste :	L=	-0.180 L(2)	+ 23.300	Corrección por	Defloculante	3.00					
Fecha	Hora	Tiempo	Temperatura	Corrección por	Viscocidad		Lecturas del Hidrómet	то	L	K	Diámetro	% Q Pasa
		(minutos)	° C	Temperatura	η	Primera Lectura	1º Corrección	2º Corrección			(mm)	100
12-01-00	12:00:00 a.m.	1.00	15	-1.10	0.01567	49.00	44.90	50.00	14.30	0.0115	0.043	88.421
		2.00	16	-0.90	0.01111	47.00	43.10	48.00	14.66	0.0081	0.022	84.876
		4.00	17	-0.70	0.01083	43.00	39.30	44.00	15.38	0.0079	0.016	77.393
		8.00	18	-0.50	0.01056	42.00	38.50	43.00	15.56	0.0077	0.011	75.817
		16.00	19	-0.30	0.01030	37.00	33.70	38.00	16.46	0.0075	0.008	66.365
		30.00	20	0.00	0.01005	31.00	28.00	32.00	17.54	0.0073	0.006	55.140
		60.00	21	0.20	0.00981	26.00	23.20	27.00	18.44	0.0072	0.004	45.687
		120.00	22	0.40	0.00958	24.00	21.40	25.00	18.80	0.0070	0.003	42.143
		240.00	23	0.70	0.00936	21.00	18.70	22.00	19.34	0.0068	0.002	36.826
		480.00	24	1.00	0.00914	18.00	16.00	19.00	19.88	0.0067	0.001	31.509
		960.00	25	1.30	0.00894	16.00	13.01	17.00	20.24	0.0065	0.001	25.618

Observaciones:



ARYU E.I.R.L.
SERVICIOS Y BIENES DE CALIDAD
RUC: 20582797081
Mail: cosye2000@fhormail.com
Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

150 9001 Criminal

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoia De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P
	La Avenida Paraíso Distrito De San Antonio - Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

Ing. Civil SIMON ORDONO PAUARO CIP. \$4333

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081

Mail: ceyse2009@hotmail.com

Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraiso BACH. ROBIN RAFAEL RAMOS RAMOS G. FLORES M SIMON ORDOÑO P. 025-002023-001 ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: UBICACIÓN: DEL KM: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

Ubicación:	Calicata C-	-1						N	° de cap	as: 5	
Muestra:	Estrato E1	I					N°	de golpe	s por ca	pa: 56	
Potencia: pro	fundidad 1.	50m							Co	nd:	
<u> </u>	-	DETI	ERMINACI	ON DE LA	DENSI	AD					
Volumen del Molde	(cm3.)	2115.10		2115.10		2115.1	0	2115.10		2115.10	
Peso del Suelo Húmedo+Molde	(gr)	7580.00		8686.44		8346.2	4	8391.60		7642.00	
Peso del Molde	(gr)	3195.00		3195.00		3195.0	0	3195.00		3195.00	
Peso del Suelo Húmedo	(gr)	4385.00		5491.44		5151.2	4	5196.60		4447.00	
Densidad del Suelo Humedo	(gr/cm3)	2.07		2.60		2.44		2.46		2.10	
CAPSULA	N _o	7		D		6		2		11	
Peso Suelo Humedo+Capsula.	(gr)	101.00	105.00	105.00	97.00	90.00	98.00	100.00	102.00	105.00	110.00
Peso Suelo Seco + Capsula	(gr)	89.00	92.00	92.00	85.00	78.00	85.00	85.00	88.00	88.00	92.00
Peso de la Capsula	(gr)	25.00	25.00	32.00	27.00	25.00	25.00	26.00	32.00	25.00	25.00
Peso del Agua	(gr)	12.00	13.00	13.00	12.00	12.00	13.00	15.00	14.00	17.00	18.00
Peso del Suelo Seco	(gr)	64.00	67.00	60.00	58.00	53.00	60.00	59.00	56.00	63.00	67.00
% del Contenido de Humedad	(%)	18.75	19.40	21.67	20.69	22.64	21.67	25.42	25.00	26.98	26.87
Promedio Humedad	(%)	19.08		21.18		22.15		25.21	-	26.92	
Densidad del Suelo Seco	(gr/cm3)	1.74		2.14		1.99		1.96		1.65	
2.10 2.05	c	URVA HUM	MEDAD -	DENSIDA	AD	1					

	2.10																	
m3.)	2.03							/	_									
DENSIDAD (gr/cm3.)	2.00					+	+					1						-
8	1.95							$/\!\!\perp$					·					
SID													\					
N N	1.90	1			+	+		_		_			1					
_	1.85				-	+	$/\!\!+$		-					\bigvee				
	1.80					\perp			_	-				1				
	1.75				<u> </u>	/	_	_						1				
	15	5.00 16	.00 17	.00 1	8.00	19.00	20.00	21.0	0 22.0	23.00	24.0	00 25.	.00 2	26.00	27.00	28.00	29.00	30.00

MAXIMA DENSIDAD SECA (gr/cm3): OPTI. CONT. HUMEDAD (%) DE PESO SECO

Ing. Civil SIMON ORDONO FALARO

SERVICIOS Y BIENES DE CALIDAD

Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraiso BACH. ROBIN RAFAEL RAMOS RAMOS ASIST. LAB: ING. RESP: N° REGISTRO: G. FLORES M SIMON ORDOÑO P. 025-002023-001 PROYECTO: UBICACIÓN: DEL KM: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

Ubicación:	Calicata	C-2						N	l° de ca	pas: 5	
Muestra:	Estrato	E1					N°	de golpe	es por c	apa: 56	6
Potencia: prof	fundidad	1.50m							С	ond:	
-			DETERMIN	ACION DE	LA DENS	SIDAD					
Volumen del Molde	(cm3.)	2115.10)	2115.10		2115.10)	2115.10)	2115.10	
Peso del Suelo Húmedo+Molde	(gr)	7585.00)	8690.98		8391.60	i.	8436.96	1	7647.00	
Peso del Molde	(gr)	3200.00)	3200.00		3200.00	1	3200.00	1	3200.00	
Peso del Suelo Húmedo	(gr)	4385.00)	5490.98		5191.60	1	5236.96	i	4447.00	
Densidad del Suelo Humedo	(gr/cm3)	2.07		2.60		2.45		2.48		2.10	
CAPSULA Nº		10		С		5		В		9	
Peso Suelo Humedo+Capsula.	(gr)	98.00	102.00	102.00	94.00	87.00	95.00	97.00	99.00	102.00	107.00
Peso Suelo Seco + Capsula	(gr)	86.00	89.00	89.00	82.00	75.00	82.00	82.00	85.00	85.00	89.00
Peso de la Capsula	(gr)	26.00	26.00	28.00	27.00	26.00	26.00	27.00	28.00	27.00	27.00
Peso del Agua	(gr)	12.00	13.00	13.00	12.00	12.00	13.00	15.00	14.00	17.00	18.00
Peso del Suelo Seco	(gr)	60.00	63.00	61.00	55.00	49.00	56.00	55.00	57.00	58.00	62.00
% del Contenido de Humedad	(%)	20.00	20.63	21.31	21.82	24.49	23.21	27.27	24.56	29.31	29.03
Promedio Humedad	(%)	20.32		21.56		23.85		25.92		29.17	00
Densidad del Suelo Seco	(gr/cm3)	1.72		2.13		1.98		1.96		1.62	
2.10 2.05 2.00 1.95 1.90		CURVA	HUMEDA	D - DENS	IDAD						

	2.10 -										1						
3.)	2.05 -																
J/CIII	2.00 -				-	_	/		•								
<u>[</u> 6]	1.95 -		+		-		/		+			-			_		
DENSIDAD (gr/cm3.)	1.90 -		+	-	_	-/		-	+	-		+			_	_	_
S	1.85 -		+-		_			-				_			_		
<u> </u>	1.80 -		+	_	_	$/\!$		_	-		_		\	_	_	_	
	1.75 -		-		_/			_	_				1			_	
	1.70 -		+	_	ľ	_		_	_	_				ackslash			
	1.65 -												_	1			_

MAXIMA DENSIDAD SECA (gr/cm3): OPTI. CONT. HUMEDAD (%) DE PESO SECO 2.13 21.56

Ing. Civil SIMON ORDONO FALARO

SERVICIOS Y BIENES DE CALIDAD

Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraiso BACH. ROBIN RAFAEL RAMOS RAMOS G. FLORES M SIMON ORDOÑO P. 025-002023-001 ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: UBICACIÓN: DEL KM: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

PROCTOR MODIFICADO (ASTM D - 1557)

Ubicación: (Calicata	C-3						N	° de cap	oas: 5	
Muestra:	Estrato	E1					N° o	de golpe	s por ca	pa: 56	6
Potencia: profu	undidad	1.50m							Co	ond:	
		ı	DETERMINA	ACION DE	LA DEN	SIDAD	•				
Volumen del Molde	(cm3.)	2115.10)	2115.10	Ē.	2115.10		2115.10		2115.10	
Peso del Suelo Húmedo+Molde	(gr)	7570.00)	8695.51		8436.96		8482.32		7672.00	
Peso del Molde	(gr)	3195.00	i	3195.00		3195.00		3195.00		3195.00	
Peso del Suelo Húmedo	(gr)	4375.00	i	5500.51		5241.96		5287.32		4477.00	
Densidad del Suelo Humedo	(gr/cm3)	2.07		2.60		2.48		2.50		2.12	
CAPSULA №		8		5		Н		F		2	
Peso Suelo Humedo+Capsula.	(gr)	91.00	100.00	95.00	87.00	80.00	88.00	90.00	92.00	95.00	100.00
Peso Suelo Seco + Capsula	(gr)	79.00	83.00	81.00	75.00	68.00	75.00	77.00	80.00	80.00	84.00
Peso de la Capsula	(gr)	25.00	25.00	27.00	27.00	25.00	25.00	26.00	27.00	26.00	26.00
Peso del Agua	(gr)	12.00	17.00	14.00	12.00	12.00	13.00	13.00	12.00	15.00	16.00
Peso del Suelo Seco	(gr)	54.00	58.00	54.00	48.00	43.00	50.00	51.00	53.00	54.00	58.00
% del Contenido de Humedad	(%)	22.22	29.31	25.93	25.00	27.91	26.00	25.49	22.64	27.78	27.59
Promedio Humedad	(%)	25.77		25.46		26.95		24.07		27.68	
Densidad del Suelo Seco	(gr/cm3)	1.64		2.07		1.95		2.01		1.65	
2.10 2.05 E 2.00		CURVA	HUMEDAL	D - DENS	IDAD	_					

-	2.05	-	+			-	-			4		\setminus						
2	2.00	-	+	_	-	+	-	/	1	•				_	-		_	_
9	1.95	-	+		_	-		/	+	_	-		\					-
Š	1.90	-	+		_	_	-/	*	+	_				\leftarrow		_		_
DENSIDAD (grans.)	1.85	-							-	-				$\overline{}$				
5	1.80	-	+-	-	_	-1	\leftarrow		+	_	_			$-$ \	-		_	_
	1.75	-	+	_		/	\rightarrow		\vdash	_		_		-	\vdash	_	_	-
	1.70	-	+	-	_	-	-		+	-	-			_	+	_	_	_
	1.65 1	5.00	16.00	17.00	18.00	19.00	20.0	0 2	1.00	22.00	23.00	24.00	25.00	26.00	27.00	28.00	29.00	30.0
								001	ты	JMEDAD	(%)							

MAXIMA DENSIDAD SECA (gr/cm3): OPTI. CONT. HUMEDAD (%) DE PESO SECO 25.46

Ing. Civil SIMON ORDONO FALARO

SERVICIOS Y BIENES DE CALIDAD

Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraiso BACH. ROBIN RAFAEL RAMOS RAMOS G. FLORES M SIMON ORDOÑO P. 025-002023-001 ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: UBICACIÓN: DEL KM: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

Ubicación: C	Calicata	C-4						1	l° de cap	as: 5	
Muestra:	Estrato	E1					N'	de golp	es por ca	pa: 56	
Potencia: profu	ındidad	1.50m							Co	nd:	
,	-		DETERM	INACION D	E LA DENS	SIDAD					
olumen del Molde	(cm3.)	2115.10)	2115.10		2115.10)	2115.10		2115.10	
eso del Suelo Húmedo+Molde	(gr)	7678.00)	8700.05		8482.32	2	8414.28		7687.00	
eso del Molde	(gr)	3195.00)	3195.00		3195.00)	3195.00		3195.00	
eso del Suelo Húmedo	(gr)	4483.00)	5505.05		5287.32	2	5219.28		4492.00	
ensidad del Suelo Humedo	(gr/cm3)	2.12		2.60		2.50		2.47		2.12	
CAPSULA №		G		В		12		К		11	
eso Suelo Humedo+Capsula.	(gr)	98.00	102.00	105.00	102.00	95.00	98.00	101.00	102.00	106.00	108.00
eso Suelo Seco + Capsula	(gr)	89.00	92.00	92.00	88.00	78.00	85.00	85.00	88.00	88.00	92.00
eso de la Capsula	(gr)	25.00	25.00	32.00	27.00	25.00	25.00	26.00	32.00	25.00	25.00
eso del Agua	(gr)	9.00	10.00	13.00	14.00	17.00	13.00	16.00	14.00	18.00	16.00
eso del Suelo Seco	(gr)	64.00	67.00	60.00	61.00	53.00	60.00	59.00	56.00	63.00	67.00
del Contenido de Humedad	(%)	14.06	14.93	21.67	22.95	32.08	21.67	27.12	25.00	28.57	23.88
romedio Humedad	(%)	14.49		22.31		26.87	-	26.06		26.23	
ensidad del Suelo Seco	(gr/cm3)	1.85		2.12		1.97		1.95		1.68	
2.10 2.05 2.00 1.95 1.90 1.85			CURVAH	UMEDAD	DENSI	DAD	\.				

DENSIDAD (gr/cm3.)	1.95			+		_		4					`				_
9	1.90		1	_	-					_							-
SISI CISI	1.85		+-	+	+		/	-					1	_	_		_
DE.	1.80		+	+	_	1											
	1.75		+	+	+	/	-	-						ackslash	_		_
	1.70		-		_									\perp			_
	1.65				_									__			
	15.0	0 1	00.6	17.00	18.00	19.00	20.00		00 22.0 DNT. HU			1.00 25.0	00 26.00	27.00	28.00	29.00	30.00
								C	JIVI . 110	WILDAD	(70)						

2.12 OPTI. CONT. HUMEDAD (%) DE PESO SECO MAXIMA DENSIDAD SECA (gr/cm3): 22.31 Ing. Civil SIMON ORDONO FALARO Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081

Mail: ceyse2009@hotmail.com Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

2		
Ubicación:	Calicata	C-1
Muestra:	Estrato	Ē1
iviuesti a.	Estrato	
Potencia:	profundidad	1.50m
Potencia:	profundidad	1.50m

MOLDE
Altura Molde mm.
N° Capas
N°Golp x Capa
Cond. Muestra
P. Hüm + Molde
Peso Molde (gr)
Peso Hümedo (gr)
Peso Seo + Tara
Peso Seco + Tara
Peso Seco + Tara
Peso Agua (gr)
Peso Tara (gr)
P. Muestra Seca
Cont. Humedad
Cont.Hum.Prom.
DENSIDAD SECA COMPACTACION CBR 120 5 3 120 5 55 **ANTES DE EMPAPAR** 13140.00 8105.00 5035.00 2264.31 2 22 DESPUES 11382.80 6766.00 4616.80 2250.09 ANTES DE EMPAPAR DESPUES DESPUES 12070.00 7258.00 4812.00 2264.31 13160.54 8105.00 5055.54 2264.31 12100.51 7258.00 4842.51 2264.31 2.14 2-C 141.20 131.70 9.50 34.50 97.20 9.77% 9.77% 1.851 2.13 2-B 140.20 131.30 8.90 33.10 98.20 2.22 3-B 158.10 147.80 10.30 34.50 113.30 2.23 3-C 160.20 149.60 10.60 38.10 111.50 2.05 1-C 145.50 135.50 10.00 34.80 100.70 9.93% 9.93% 1.456 2-A 135.50 127.20 8.30 36.00 91.20 3-A 152.30 142.40 9.90 32.80 109.60 9.10% 9.03%

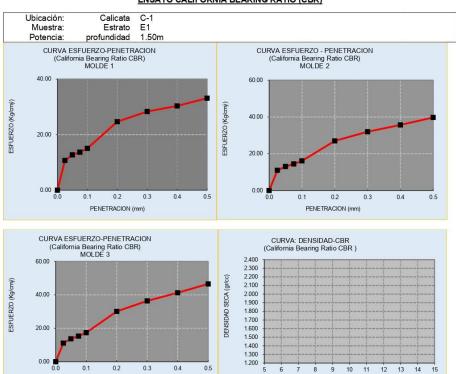
ENSAYO DE HINCHAMIENTO

TIEMPO ACUMULADO		NUMER	O DE MOLD	E	NUMERO	DE MOLDE		NUMERO DE MOLDE		
		LECTURA HINCHA		/IENTO	LECTURA	TURA HINCHAMIENTO		LECTURA	HINCHAMIENTO	
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50

			LINDATOCAL	TON - I LITE	MACION		
PENETRACION			MOLDE N° 01		MOLDE N° 02		MOLDE N° 03
(mm)	(pulg) CARGA		ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO
0.00	0.000	0	0.00	0	0.00	0	0.00
0.64	0.025	15	0.76	20	1.02	22	1.12
1.27	0.050	39	1.99	46	2.34	58	2.95
1.91	0.075	61	3.11	76	3.87	94	4.79
2.54	0.100	85	4.33	105	5.35	131	6.67
5.08	0.200	170	8.66	215	10.95	276	14.06
7.62	0.300	250	12.73	321	16.35	408	20.78
10.16	0.400	315	16.04	420	21.39	529	26.94
12.70	0.500	376	19.15	506	25.77	640	32.59

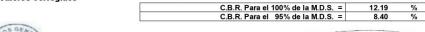
Ing. Civil SIMON ORDONO PALAGO Observaciones:

SERVICIOS Y BIENES DE CALIDAD


RUC: 20532797081

Mail: ceyse2009@hotmail.com Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: G. FLORES M SIMON ORDOÑO P. ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS 025-002023-001 DEL KM: UBICACIÓN: SOLICITANTE: AL KM: ACOPIO: FECHA: 01-11-2024


ENSAYO CALIFORNIA BEARING RATIO (CBR)

PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	4.33	8.66
MOLDE 2	5.35	10.95
MOLDE 3	6.67	14.06

PENETRACION (mm)

	DENS	0.1	0.2	CBR	DMS:	200 000
MOLDE 1	1.456	6.16	8.21	8.21	2.14	gr/cm ²
MOLDE 2	1.851	7.61	10.38	10.38	COH:	
MOLDE 3	2.324	9.49	13.33	13.33	21.18	%

Ing. Civil SIMON ORDONO FALAGO

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

Ubicación:	Calicata	C-2
Muestra:	Estrato	E1
Potencia:	profundidad	1.50m

COMPACTACION CBR

			COMPA	CIACION C	BK		UI.			
MOLDE		1			2			3		
Altura Molde mm.	1	124			120			120		
N° Capas		5			5		5			
N°Golp x Capa		10			25		55			
Cond. Muestra	ANTES DE E	MPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES	
P. Húm.+ Molde		11345.00	11382.80		12070.00	12100.51		13140.00	13160.54	
Peso Molde (gr)	1	6766.00	6766.00		7258.00	7258.00		8105.00	8105.00	
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54	
Vol. Molde (cc)		2250.09	2250.09		2264.31	2264.31		2264.31	2264.31	
Densidad H.(gr/cc)		2.04	2.05		2.13	2.14		2.22	2.23	
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C	
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20	
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60	
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60	
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10	
P. Muestra Seca	102.80	106.50	100.70	91.20	98.20	97.20	109.60	113.30	111.50	
Cont. Humedad	9.05%	9.01%	9.93%	9.10%	9.06%	9.77%	9.03%	9.09%	9.51%	
Cont.Hum.Prom.	800	9.03%	9.93%		9.08%	9.77%		9.06%	9.51%	
DENSIDAD SECA		1.456	1.456		1.851	1.851		2.324	2.324	

ENSAYO DE HINCHAMIENTO

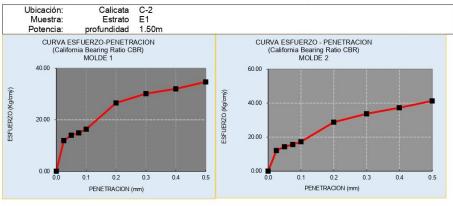
				LINOAIO	DE IIIIGIIAII					
TIEMPO	TIEMPO NUMI		O DE MOLD	E	NUMERO	DE MOLDE		NUMERO DE MOLDE		
ACUMULADO		LECTURA	HINCHAMIENTO		LECTURA	HINCHAMIENTO		LECTURA	HINCHAMIENTO	
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50

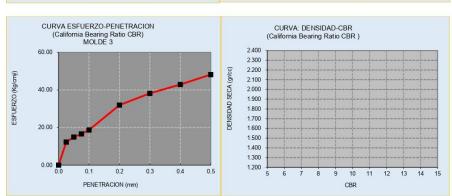
ENSAYO CARGA - PENETRACION

			ENSATO CA	RGA - PENEI	RACION			
PENETRACION		MOLDE N° 01			MOLDE N° 02	MOLDE N° 03		
(mm)	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO	
0.00	0.000	0	0.00	0	0.00	0	0.00	
0.64	0.025	38	1.94	43	2.19	45	2.29	
1.27	0.050	64	3.25	71	3.61	83	4.22	
1.91	0.075	85	4.35	100	5.11	118	6.03	
2.54	0.100	110	5.59	130	6.61	156	7.93	
5.08	0.200	207	10.54	252	12.83	313	15.94	
7.62	0.300	286	14.57	357	18.18	444	22.61	
10.16	0.400	348	17.72	453	23.07	562	28.62	
12.70	0.500	408	20.79	538	27.41	672	34.23	

Ing. Civil SIMON ORDONO FALARO Observaciones:

SERVICIOS Y BIENES DE CALIDAD


RUC: 20532797081



Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: G. FLORES M SIMON ORDOÑO P. ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS 025-002023-001 DEL KM: UBICACIÓN: SOLICITANTE: AL KM: ACOPIO: FECHA: 01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	5.59	10.54
MOLDE 2	6.61	12.83
MOLDE 3	7.93	15.94

	DENS	0.1	0.2	CBR	DMS:	
MOLDE 1	1.456	7.95	10.00	10.00	2.13	gr/cm ²
MOLDE 2	1.851	9.40	12.17	12.17	COH:	
MOLDE 3	2.324	11.29	15.12	15.12	21.56	%

C.B.R. Para el 100% de la M.D.S. = C.B.R. Para el 95% de la M.D.S. = 13.92

Ing. Civil SIMON ORDONO FALAGO

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio - Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

Ubicación:	Calicata	C-3
Muestra:	Estrato	E1
Potencia:	profundidad	1.50m

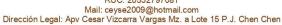
			COMPA	CTACION C	: BK				
MOLDE		1		2					
Altura Molde mm.	1	124			120			120	
N° Capas		5			5			5	
N°Golp x Capa		10			25			55	
Cond. Muestra	ANTES DE E	MPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES
P. Húm.+ Molde		11345.00	11382.80		12070.00	12100.51		13140.00	13160.54
Peso Molde (gr)	1	6766.00	6766.00		7258.00	7258.00		8105.00	8105.00
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54
Vol. Molde (cc)		2250.09	2250.09		2264.31	2264.31		2264.31	2264.31
Densidad H.(gr/cc)		2.04	2.05		2.13	2.14		2.22	2.23
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10
P. Muestra Seca	102.80	106.50	100.70	91.20	98.20	97.20	109.60	113.30	111.50
Cont. Humedad	9.05%	9.01%	9.93%	9.10%	9.06%	9.77%	9.03%	9.09%	9.51%
Cont.Hum.Prom.	600	9.03%	9.93%		9.08%	9.77%		9.06%	9.51%
DENSIDAD SECA		1.456	1.456		1.851	1.851		2.324	2.324

ENSAYO DE HINCHAMIENTO

				LINOAIO	DE IIIIGIIAII					
TIEMPO		NUMER	O DE MOLD	E	NUMERO	DE MOLDE	â	NUMERO DE MOLDE		E
ACUMULADO		LECTURA	LECTURA HINCHAMIENTO		LECTURA	HINCHA	MIENTO	LECTURA	HINCHAMIENTO	
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50

ENSAYO CARGA - PENETRACION

			ENSATO CA	KGA - PENEI	RACION			
PENETRACION		MOLDE N° 01			MOLDE N° 02	MOLDE N° 03		
(mm)	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO	
0.00	0.000	0	0.00	0	0.00	0	0.00	
0.64	0.025	61	3.11	66	3.36	68	3.46	
1.27	0.050	89	4.51	96	4.87	108	5.48	
1.91	0.075	110	5.59	125	6.36	143	7.27	
2.54	0.100	135	6.86	155	7.87	181	9.20	
5.08	0.200	244	12.43	289	14.72	350	17.83	
7.62	0.300	322	16.40	393	20.02	480	24.45	
10.16	0.400	381	19.40	486	24.75	595	30.30	
12.70	0.500	440	22.43	570	29.05	704	35.87	



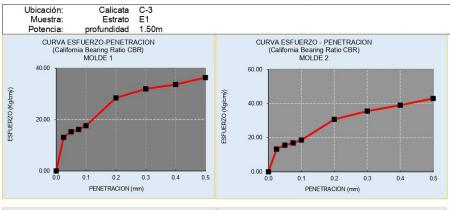
Ing. Civil SIMON ORDONO FALARO Observaciones:

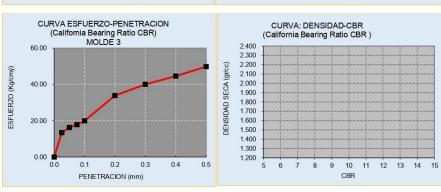
SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081

PROYECTO: UBICACIÓN: SOLICITANTE:

ACOPIO:

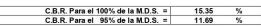

Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS


ASIST. LAB: ING. RESP: N° REGISTRO: DEL KM:

G. FLORES M SIMON ORDOÑO P. 025-002023-001

AL KM: FECHA: 01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)



PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	6.86	12.43
MOLDE 2	7.87	14.72
MOLDE 3	9.20	17.83

(*) Valores Corregidos

	DENS	0.1	0.2	CBR	DMS:	
MOLDE 1	1.456	9.75	11.78	11.78	2.07	gr/cm ²
MOLDE 2	1.851	11.20	13.96	13.96	COH:	
MOLDE 3	2.324	13.08	16.90	16.90	25.46	%

Observaciones:

Ing. Civil SIMON ORDONO FALARO

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

Ubicación:	Calicata	C-4
Muestra:	Estrato	E1
Potencia:	profundidad	1.50m

			COMPA	CTACION C	: BK						
MOLDE		1			2			3			
Altura Molde mm.	1	124			120			120			
N° Capas		5			5			5			
N°Golp x Capa		10			25			55			
Cond. Muestra	ANTES DE E	MPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES		
P. Húm.+ Molde		11345.00	11382.80		12070.00	12100.51		13140.00	13160.54		
Peso Molde (gr)	1	6766.00	6766.00		7258.00	7258.00		8105.00	8105.00		
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54		
Vol. Molde (cc)		2250.09	2250.09		2264.31	2264.31		2264.31	2264.31		
Densidad H.(gr/cc)		2.04	2.05		2.13	2.14		2.22	2.23		
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C		
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20		
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60		
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60		
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10		
P. Muestra Seca	102.80	106.50	100.70	91.20	98.20	97.20	109.60	113.30	111.50		
Cont. Humedad	9.05%	9.01%	9.93%	9.10%	9.06%	9.77%	9.03%	9.09%	9.51%		
Cont.Hum.Prom.	600	9.03%	9.93%		9.08%	9.77%		9.06%	9.51%		
DENSIDAD SECA		1.456	1.456		1.851	1.851		2.324	2.324		

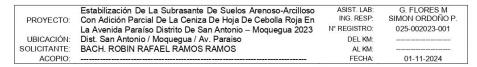
ENSAYO DE HINCHAMIENTO

				LINOAIO	DE IIIIGIIAII						
TIEMPO	TIEMPO		NUMERO DE MOLDE			DE MOLDE		NUMER	NUMERO DE MOLDE		
ACUMULADO		LECTURA	HINCHAI	/IENTO	LECTURA HINCHAMIENTO		LECTURA	HINCHAMIENTO			
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00	
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17	
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33	
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50	
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50	

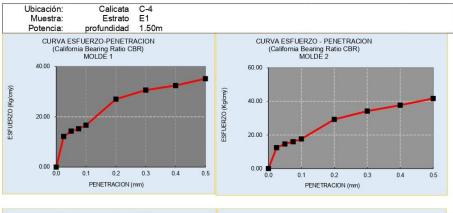
ENSAYO CARGA - PENETRACION

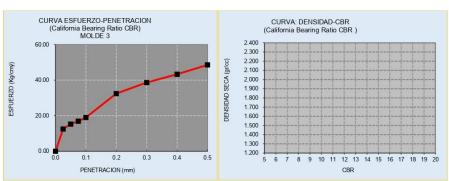
	ENSATO CARGA - PENETRACION												
PENETRACION		1	MOLDE N° 01		MOLDE N° 02	MOLDE N° 03							
(mm) (p	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO						
0.00	0.000	0	0.00	0	0.00	0	0.00						
0.64	0.025	44	2.23	49	2.48	51	2.58						
1.27	0.050	70	3.57	77	3.92	89	4.53						
1.91	0.075	92	4.66	107	5.42	125	6.34						
2.54	0.100	116	5.91	136	6.93	162	8.25						
5.08	0.200	216	11.01	261	13.31	322	16.41						
7.62	0.300	295	15.02	366	18.64	453	23.07						
10.16	0.400	356	18.14	461	23.49	570	29.04						
12.70	0.500	416	21.20	546	27.82	680	34.64						

Ing. Civil SIMON ORDONO FALARO Observaciones:



SERVICIOS Y BIENES DE CALIDAD


RUC: 20532797081


Mail: ceyse2009@hotmail.com Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

ENSAYO CALIFORNIA BEARING RATIO (CBR)

PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	5.91	11.01
MOLDE 2	6.93	13.31
MOLDE 3	8.25	16.41

	DENS	0.1	0.2	CBR	DMS:	
MOLDE 1	1.456	8.40	10.44	10.44	2.12	gr/cm ²
MOLDE 2	1.851	9.85	12.62	12.62	COH:	
MOLDE 3	2.324	11.73	15.56	15.56	22.31	%

C.B.R. Para el 100% de la M.D.S. = C.B.R. Para el 95% de la M.D.S. =

Ing. Civil SIMON CROONS INLAND

14.31

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moquegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

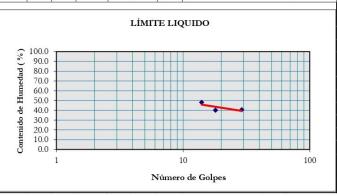
LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Noma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

X1 (SN+5%C)

LIMITES DE CONSISTENCIA		Ubica	ción :	Calicata	C1	Potenc	ia:	1.50 m		
LIMITES DE CONSISTENCIA		Estrat	o:	E1						
	0	LÍM	LIMITE LIQUIDO 1		LIMITE PLASTICO		STICO			
Tara Número	Unidades	1	2	3	1	2	3	Limites de Consistencia		
Peso Tara + Muestra Húmeda	Gr	43.90	39.90	43.50	47.19	34.39	40.19	Limite Liquido:	LL =	61.06%
Peso Tara + Muestra Seca	Gr	38.60	34.60	36.10	46.51	33.71	39.41	Límite Plástico:	LP =	37.90%
Peso de la Tara	Gr	26.60	26.50	28.20	44.59	31.79	37.59	Indice de Plasticidad :	IP =	23.16%
Peso de la Muestra Seca	Gr	12.00	8.10	7.90	1.92	1.92	1.82	Contenido de Humedad :	$W_n =$	37.61%
Peso del Agua	Gr	5.30	5.30	7.40	0.68	0.68	0.78	Grado de Consistencia :	Kw=	1.01
Contenido de Humedad	%	44.16	65.42	93.66	35.42	35.42	42.86	Grado de Consistencia :	Media Du	ara , Sólida
Número de Golpes		33	22	16	Pron	nedio:	37.90			
		LÍMITE LIQUIDO								
Calicata : Cl	<u> </u>	0 —								_

				LÍMITE	LIQUII	00		
Calicata :	Cl	§ 100.0 90.0						
Estrato :	E1							
Potencia:	1.50 m	Hnmedad 70.0 60.0 50.0						
Número de	Contenido de	60.0			1			
Golpes	Humedad (%)	₫ 50.0						
33	44.16	40.0				•		
22	65.42	30.0					•	
16	93.66	20.0 20.0 10.0 0.0						
25	61.062	0.0						
		Ö	1		10			100
				Número	de Golpe	es		

Ing. Givi SIMON ORDONO PALAGO Observaciones:


PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moquegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Norma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

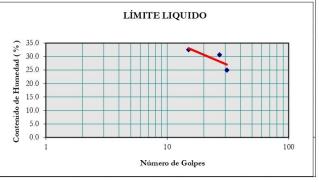
X1 (SN+5%C)

LIMITES DE CONSISTENC	т.	Ubica	ción:	Calicata	C2	Potenci	ia:	1.50 m		
LIMITES DE CONSISTENC	IA	Estrate	o :	E1					1970	
		LÍMITE LÍQUIDO LÍMI			TE PLÁSTICO					
Tara Número	Unidades	1	2	3	1	2	3	Límites de Consistencia		
Peso Tara + Muestra Húmeda	Gr	53.60	39.40	47.00	26.89	30.29	31.09	Limite Liquido:	LL =	60.42%
Peso Tara + Muestra Seca	Gr	46.60	33.50	40.10	26.21	29.71	30.51	Límite Plástico:	LP =	29.88%
Peso de la Tara	Gr	34.70	24.20	30.40	24.09	27.79	28.39	Indice de Plasticidad :	IP =	30.54%
Peso de la Muestra Seca	Gr	11.90	9.30	9.70	2.12	1.92	212	Contenido de Humedad :	Wn =	30.32%
Peso del Agua	Gr	7.00	5.90	6.90	0.68	0.58	0.58	Grado de Consistencia :	Kw=	0.99
Contenido de Humedad	%	58.82	63.43	71.13	32.08	30.21	27.36	Grado de Consistencia :	Plástica	
Número de Golpes		29	18	14	Pron	redio :	29.88			

Calicata:	C2
Estrato :	E1
Potencia:	1.50 m
Número de	Contenido de
Golpes	Humedad (%)
29	58.82
18	63.43
14	71.13
25	60.419

Observaciones:

Ing. Givil SIMON ORDONO FALAGO


PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Norma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

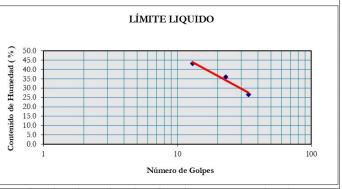
X1 (SN+5%C)

LIMITES DE CONSISTENCIA		Ubica	ión :	Calicata	C3	Potencia:		1.50 m			
LIMITES DE CONSISTENCIA		Estrate	o:	E1							
		LÍMITE LÍQUIDO			LÍMITE PLÁSTICO						
Tara Número	Unidades	1	2	3	1	2	3	Limites de Consistencia			
Peso Tara + Muestra Húmeda	Gr	43.80	49.10	47.00	29.69	33.19	38.39	Limite Liquido:	IT =	53.78%	
Peso Tara + Muestra Seca	Gr	39.90	44.30	42.10	29.51	32.81	38.21	Limite Plástico:	LP =	15.66%	
Peso de la Tara	Gr	32.40	36.00	32.90	28.19	30.39	37.19	Indice de Plasticidad :	IP =	38.12%	
Peso de la Muestra Seca	Gr	7.50	8.30	9.20	1.32	2.42	1.02	Contenido de Humedad :	Wn =	20.21%	
Peso del Agua	Gr	3.90	4.80	4.90	0.18	0.38	0.18	Grado de Consistencia :	Kw=	0.88	
Contenido de Humedad	%	51.99	57.82	53.26	13.64	15.70	17.65	Grado de Consistencia :	Plástica		
Número de Golpes		31	15	27	Pron	nedio:	15.66				

Calicata:	C3
Estrato :	E1
Potencia :	1.50 m
Número de	Contenido de
Golpes	Humedad (%)
31	51.99
15	57.82
27	53.26
25	53.777

Observaciones:

Ing. Civil SIMON ORDONO INLACO


PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moquegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Norma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

X1 (SN+5%C)

LIMITES DE CONSISTENC	T.	Ubica	ión :	Calicata	C4	Potencia:		1.50 m		
LIMITES DE CONSISTENC	IA	Estrato: E1								
		LÍMITE LÍQUIDO			LÍMITE PLÁSTICO		STICO			
Tara Número	Unidades	1	2	3	1	2	3	Limites de Consistencia		
Peso Tara + Muestra Húmeda	Gr	60.60	68.40	73.20	30.59	31.79	31.79	Límite Líquido:	IT =	40.44%
Peso Tara + Muestra Seca	Gr	49.60	56.50	62.60	30.41	31.31	31.61	Límite Plástico:	LP =	17.38%
Peso de la Tara	Gr	29.20	29.30	30.40	29.19	29.19	30.39	Indice de Plasticidad :	IP =	23.06%
Peso de la Muestra Seca	Gr	20.40	27.20	32.20	1.22	2.12	1.22	Contenido de Humedad:	Wn =	19.87%
Peso del Agua	Gr	11.00	11.90	10.60	0.18	0.48	0.18	Grado de Consistencia :	Kw=	0.89
Contenido de Humedad	%	53.92	43.75	32.92	14.75	22.64	14.75	Grado de Consistencia :	Plástica	
Número de Golpes		13	23	34	Prom	nedio :	17.38			

Calicata:	C2					
Estrato:	E3					
Potencia:	1.50 m					
Número de	Contenido de					
Golpes	Humedad (%)					
13	53.92					
23	43.75					
34	32.92					
25	40.441					

Observaciones:

Ing. Givil SIMON ORDONO FALAGO

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

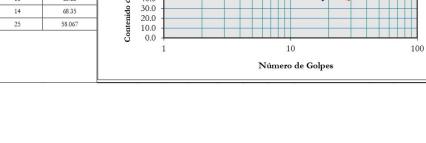
LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Noma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

X2 (SN+8%C)

LIMITES DE CONSISTEN	CIA		Ubica		Calicata	Cı	Potence	ia:	1.50 m		
			Estrat	70.00	E1						
			LÍMITE LÍQUIDO LÍ			LÍMIT	TE PLÁ	STICO	Limites de Consistencia		
Tara Número		Unidades	1	2	3	1	2	3			
Peso Tara + Muestra Húmeda		Gr	43.80	39.80	43.40	47.18	34.38	40.18	Límite Líquido:	LL =	58.31%
Peso Tara + Muestra Seca		Gr	38.70	34.70	36.20	46.52	33.72	39.42	Límite Plástico:	LP =	36.45%
Peso de la Tara		Gr	26.60	26.50	28.20	44.58	31.78	37.58	Indice de Plasticidad :	IP =	21.86%
Peso de la Muestra Seca		Gr	12.10	8.20	8.00	1.94	1.94	1.84	Contenido de Humedad:	Wn =	37.61%
Peso del Agua		Gr	5.10	5.10	7.20	0.66	0.66	0.76	Grado de Consistencia :	Kw =	0.95
Contenido de Humedad		%	42.14	62.18	89.98	34.02	34.02	41.30	Grado de Consistencia :	Plástica	
Número de Golpes			33	22	16	Prom	nedio:	36.45			
C.F.	61					LÍ	MITI	E LIQ	UIDO		
Calicata:	C1	~ 1000	. —			LÍ	міті	E LIQ	UIDO		
Calicata : Estrato :	C1 E1	(% 100.9 90.	0 -			LÍ	MITE	E LIQ	UIDO		
	55	(%) pap 90. 80.	0			LÍ	MITI	E LIQ	PUIDO		
Estrato :	E1	100.0 90.0 80.0 70.0 60.0	0			LÍ	MITE	ELIQ	UIDO		
Estrato : Potencia :	E1 1.50 m	Hnmedad (%) 90. 80. 70. 60. 50.	0 0			LÍ	MITI	ELIQ	OUIDO		
Estrato : Potencia : Número de	E1 1.50 m Contenido de	100.0 90. 80. 70. 60. 50. 50. 60. 40.	0			LÍ	MITI	ЕЦО	OUIDO		
Estrato : Potencia : Número de Golpes	E1 1.50 m Contenido de Humedad (%)	100.0 90. 90. 80. 50. 40. 30.	0			LÍ	MITE	ELIQ	OUIDO		
Estrato : Potencia : Número de Golpes 33	E1 1.50 m Contenido de Humedad (%) 42.14	100.0 90.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			LÍ	MITI	ELIQ	OUIDO		
Estrato : Potencia : Número de Golpes 33 22	E1 1.50 m Contenido de Humedad (%) 42.14 62.18	%) 90. 80. 70. 60. 50. 40. 30. 20.				LÍ	MITI		OUIDO		
Estrato : Potencia : Número de Golpes 33 22 16	E1 1.50 m Contenido de Humedad (%) 42.14 62.18 89.98	90. 80. 70. 60. 50. 40. 20.				LÍ	MITI	10	OUIDO		100

Observaciones:

Ing. Civil SIMON ORDONO PALACO


PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio - Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Noma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

X2 (SN+8%C)

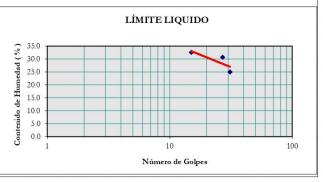
I DIFFE DE CONSISTENCIA		Ubicaci	ón:	Calicata	C2	Potencia		1.50 m			
LIMITES DE CONSISTENCIA		Estrato	:	E1							
		LÍMITE LÍQUIDO LÍMI				TE PLÁS	TICO	200 0 2000 00 0			
Tara Número	Unidades	1	2	3	1	2	3	Limites de Consistencia			
Peso Tara + Muestra Húmeda	Gr	53.50	39.30	46.90	26.88	30.28	31.08	Limite Liquido:	LL =	58.07%	
Peso Tara + Muestra Seca	Gr	46.70	33.60	40.20	26.22	29.72	30.52	Limite Plástico:	LP =	28.63%	
Peso de la Tara	Gr	34.70	24.20	30.40	24.08	27.78	28.38	Indice de Plasticidad :	IP=	29.44%	
Peso de la Muestra Seca	Gr	12.00	9.40	9.80	2.14	1.94	2.14	Contenido de Humedad :	Wn =	30.32%	
Peso del Agua	Gr	6.80	5.70	6.70	0.66	0.56	0.56	Grado de Consistencia:	Kw =	0.94	
Contenido de Humedad	%	56.66	60.63	68.35	30.84	28.87	26.17	Grado de Consistencia:	Plástica		
Número de Goloes		29	18	14	Pron	nedio :	28.63				

Calicata :	C2					LIMI	TE LIQ	UIDO	
Estrato :	E1	_	100.0						
Potencia:	1.50 m	%	90.0						
Número de	Contenido de	ad	80.0	et.	_				
Golpes	Humedad (%)	ned	70.0 - 60.0 -						
29	56.66	Han	50.0						
18	60.63	de	40.0 -		-				
14	68.35	ido	30.0						
25	58.067	ıten	20.0						
		Contenido de Humedad	0.0				10)	

Observaciones:

Ing. Civil SIMON ORDONO FALAGO

SERVICIOS Y BIENES DE CALIDAD
RUC: 20532797081
Mail: ceyse2009@hotmail.com
Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen


PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio - Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:	CONTROL OF NOTICE CONTROL SAME SHEET AND STREET CONTROL SAME SAME SAME SAME SAME SAME SAME SAME	FECHA:	01-11-2024

LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Norma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

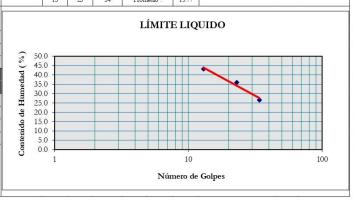
X2 (SN+8%C)

LIMITES DE CONSISTENCIA		Ubicac	ión :	Calicata	СЗ	Potencia:		1.50 m			
LIMITES DE CONSISTENCIA		Estrato	·:	E1							
		LÍMITE LÍQUIDO			LÍMITE PLÁSTICO						
Tara Número	Unidades	1	2	3	1	1 2 3 Limites de Consistencia					
Peso Tara + Muestra Húmeda	Gr	43.70	49.00	46.90	29.68	33.18	38.38	Limite Liquido:	IT =	50.73%	
Peso Tara + Muestra Seca	Gr	40.00	44.40	42.20	29.52	32.82	38.22	Limite Plástico:	LP =	14.03%	
Peso de la Tara	Gr	32.40	36.00	32.90	28.18	30.38	37.18	Indice de Plasticidad :	IP =	36.70%	
Peso de la Muestra Seca	Gr	7.60	8.40	9.30	1.34	2.44	1.04	Contenido de Humedad :	Wn =	20.21%	
Peso del Agua	Gr	3.70	4.60	4.70	0.16	0.36	0.16	Grado de Consistencia :	Kw=	0.83	
Contenido de Humedad	%	48.67	54.75	50.53	11.94	14.75	15.38	Grado de Consistencia :	Plástica		
Número de Golpes		31	15	27	Pron	nedio:	14.03				

Calicata:	C3					
Estrato :	E1					
Potencia :	1.50 m					
Número de	Contenido de					
Golpes	Humedad (%)					
31	48.67					
15	54.75					
27	50.53					
25	50.731					

Observaciones:

Ing. Civil SIMON CROOKS PALAGO


PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
1110120101	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

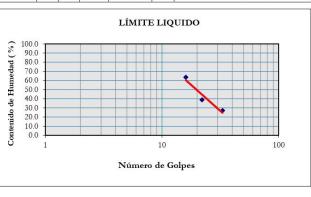
LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Noma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

X2 (SN+8%C)

LIMITES DE CONSISTENCIA		Ubicación: Calicata C4			Potencia:		1.50 m			
LIMITES DE CONSISTENCIA		Estrato	:	E1						
		LÍMITE LÍQUIDO LÍMI				TE PLÁS	TICO			
Tara Número	Unidades	1	2	3	1	2	3	Limites de Consistencia		
Peso Tara + Muestra Húmeda	Gr	60.50	68.30	73.10	30.58	31.78	31.78	Limite Liquido:	LL =	39.57%
Peso Tara + Muestra Seca	Gr	49.70	56.60	62.70	30.42	31.32	31.62	Limite Plástico:	LP =	15.77%
Peso de la Tara	Gr	29.20	29.30	30.40	29.18	29.18	30.38	Indice de Plasticidad :	IP =	23.80%
Peso de la Muestra Seca	Gr	20.50	27.30	32.30	1.24	2.14	1.24	Contenido de Humedad :	Wn =	19.87%
Peso del Agua	Gr	10.80	11.70	10.40	0.16	0.46	0.16	Grado de Consistencia:	Kw =	0.83
Contenido de Humedad	%	52.68	42.85	32.20	12.90	21.50	12.90	Grado de Consistencia:	Plástica	
Número de Goloes		13	23	34	Pron	nedio :	15.77			

Calicata:	C2
Estrato :	E3
Potencia :	1.50 m
Número de	Contenido de
Golpes	Humedad (%)
13	52.68
23	42.85
34	32.20
25	39,566

Ing. Civil SIMON ORDONO INLACO Observaciones:


PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moquegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

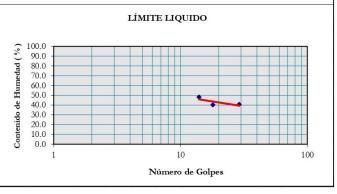
LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Noma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

X3 (SN+12%C)

LIMITES DE CONSISTENCIA		Ubicación: Calicata C1				Potencia: 1.50 m					
LIMITES DE CONSISTENCIA		Estrato: E1									
	LÍMITE LÍQUIDO			LÍMITE PLÁSTICO		STICO					
Unidades	1	2	3	1	2	3	Limites de Consistencia				
Gr	43.50	39.50	43.10	47.15	34.35	40.15	Límite Líquido:	LL =	50.40%		
Gr	39.00	35.00	36.50	46.55	33.75	39.45	Límite Plástico:	LP =	32.28%		
Gr	26.60	26.50	28.20	44.55	31.75	37.55	Indice de Plasticidad :	IP =	18.12%		
Gr	12.41	8.51	8.31	2.00	2.00	1.90	Contenido de Humedad :	Wn =	37.61%		
Gr	4.50	4.50	6.60	0.60	0.60	0.70	Grado de Consistencia :	Kw =	0.71		
%	36.28	52.91	79.47	30.00	30.00	36.84	Grado de Consistencia :	Suave			
	33	22	16	Pron	nedio:	32.28					
				ΤÍ	MITI		IIIDO				
_	Gr Gr Gr Gr	Estrat LiM Unidades 1 Gr 4350 Gr 39.00 Gr 26.60 Gr 12.41 Gr 4.50 % 36.28	Estrato:	Estrato : E1 LiMITE LiQUIDO Unidades 1 2 3 Gr 43.50 39.50 43.10 Gr 39.00 35.00 36.50 Gr 26.60 26.50 28.20 Gr 12.41 8.51 8.31 Gr 4.50 4.50 6.60 % 36.28 52.91 79.47	Estrato: E1 LiMITE LiQUIDO LiMIT Unidades 1 2 3 1 Gr 43.50 39.50 43.10 47.15 Gr 39.00 35.00 36.50 46.55 Gr 26.60 26.50 28.20 44.55 Gr 12.41 8.51 8.31 2.00 Gr 4.50 4.50 6.60 0.60 % 36.28 52.91 79.47 30.00 33 22 16 Pron	Estraty E1	Estrato : E1	Estrato : E1 Limiter PLÁSTICO Limiter Líquido Limiter PLÁSTICO Limiter Líquido Limiter PLÁSTICO Limiter Líquido Limiter PLÁSTICO Limiter Líquido Limiter Líquido Limiter PLÁSTICO Limiter Líquido Limiter PLÁSTICO Limiter PLÁSTICO Limiter Líquido Limiter PLÁSTICO Limiter Líquido Limiter Líquido Limiter Líquido Limiter PLÁSTICO Limiter Líquido Limiter	Estrato : E1		

Calicata:	C1					
Estrato :	E1					
Potencia :	1.50 m					
Número de	Contenido de					
Golpes	Humedad (%)					
33	36.28					
22	52.91					
16	79.47					
25	50.404					

Ing. Civil SIMON ORDONO INLACO Observaciones:


PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio - Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:	CONTROL OF NOTICE CONTROL SAME SHEET AND STREET CONTROL SAME SAME SAME SAME SAME SAME SAME SAME	FECHA:	01-11-2024

LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Noma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

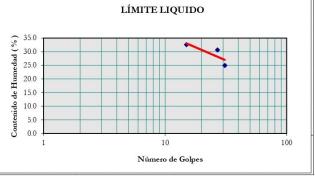
X3 (SN+12%C)

LIMITES DE CONSISTENCIA		Ubicación: Calicata C2		Potencia:		1.50 m					
		Estrato: E1							7		
		LÍMITE LÍQUIDO LÍ				TE PLÁS	TICO	.20 0 000 000			
Tara Número	Unidades	1	2	3	1	2	3	Limites de Consistencia			
Peso Tara + Muestra Húmeda	Gr	53.20	39.00	46.60	26.85	30.25	31.05	Limite Liquido:	LL =	51.27%	
Peso Tara + Muestra Seca	Gr	47.00	33.90	40.50	26.25	29.75	30.55	Limite Plástico:	LP =	25.00%	
Peso de la Tara	Gr	34.70	24.20	30.40	24.05	27.75	28.35	Indice de Plasticidad :	IP =	26.27%	
Peso de la Muestra Seca	Gr	12.31	9.71	10.11	2.20	2.00	2.20	Contenido de Humedad :	Wn =	30.32%	
Peso del Agua	Gr	6.20	5.10	6.10	0.60	0.50	0.50	Grado de Consistencia:	Kw =	0.80	
Contenido de Humedad	%	50.39	52.55	60.37	27.27	25.00	22.73	Grado de Consistencia:	Plástica		
Número de Golpes		29	18	14	Pron	nedio :	25.00				

Calicata:	C2
Estrato :	E1
Potencia :	1.50 m
Número de	Contenido de
Golpes	Humedad (%)
29	50.39
18	52.55
14	60.37
25	51.267

Observaciones:

Ing. Civil SIMON CROOKS PALAGO


PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

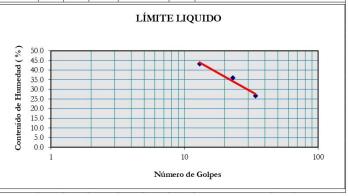
LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Norma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

X3 (SN+12%C)

LIMITES DE CONSISTENCIA		Ubicac	ión :	Calicata	C3	Potenci	a :	1.50 m		
LIMITES DE CONSISTENCIA		Estrato	·:	E1						
			LÍMITE LÍQUIDO			TE PLÁ	STICO			
Tara Número	Unidades	1	2	3	1	2	3	Limites de Consistencia		
Peso Tara + Muestra Húmeda	Gr	43.40	48.70	46.60	29.65	33.15	38.35	Limite Liquido:	TT =	42.02%
Peso Tara + Muestra Seca	Gr	40.30	44.70	42.50	29.55	32.85	38.25	Limite Plástico:	LP =	9.41%
Peso de la Tara	Gr	32.40	36.00	32.90	28.15	30.35	37.15	Indice de Plasticidad :	IP =	32.61%
Peso de la Muestra Seca	Gr	7.91	8.71	9.61	1.40	2.50	1.10	Contenido de Humedad :	Wn =	20.21%
Peso del Agua	Gr	3.10	4.00	4.10	0.10	0.30	0.10	Grado de Consistencia :	Kw=	0.67
Contenido de Humedad	%	39.22	45.95	42.69	7.14	12.00	9.09	Grado de Consistencia :	Suave	
Número de Golpes		31	15	27	Pron	nedio :	9.41			

Calicata:	C3				
Estrato :	E1				
Potencia :	1.50 m				
Número de	Contenido de				
Golpes	Humedad (%)				
31	39.22				
15	45.95				
27	42.69				
25	42 021				

Ing. Civil SIMON ORDONO INLACO Observaciones:


PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Norma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

X3 (SN+12%C)

LIMITES DE CONSISTENCIA		Ubicación: Calicata C4				Potencia	201	1.50 m		
		Estrato	:	E1					·	
		LÍMITE LÍQUIDO L				TE PLÁS	TICO			
Tara Número	Unidades	1	2	3	1	2	3	Limites de Consistencia		
Peso Tara + Muestra Húmeda	Gr	60.20	68.00	72.80	30.55	31.75	31.75	Limite Liquido:	LL =	36.98%
Peso Tara + Muestra Seca	Gr	50.00	56.90	63.00	30.45	31.35	31.65	Limite Plástico:	LP =	11.19%
Peso de la Tara	Gr	29.20	29.30	30.40	29.15	29.15	30.35	Indice de Plasticidad :	IP =	25.79%
Peso de la Muestra Seca	Gr	20.81	27.61	32.61	1.30	2.20	1.30	Contenido de Humedad :	Wn =	19.87%
Peso del Agua	Gr	10.20	11.10	9.80	0.10	0.40	0.10	Grado de Consistencia :	Kw =	0.66
Contenido de Humedad	%	49.03	40.21	30.06	7.69	18.18	7.69	Grado de Consistencia:	Suave	
Número de Golpes		13	23	34	Pron	nedio :	11.19			

Calicata:	C2
Estrato :	E3
Potencia :	1.50 m
Número de	Contenido de
Golpes	Humedad (%)
13	49.03
23	40.21
34	30.06
25	36,982

Observaciones:

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Noma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

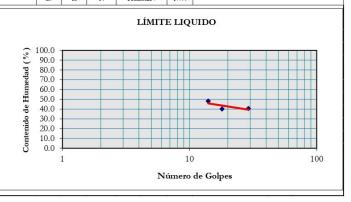
X4 (SN+15%C)

LIMITES DE CONSISTENCIA		Ubicación: Calicata C			Cı	Potence	ia:	1.50 m		
		Estrate	o :	E1						
		LÍM	LÍMITE LÍQUIDO		LÍMITE PLÁS		STICO			
Tara Número	Unidades	1	2	3	1	2	3	Limites de Consistencia		
Peso Tara + Muestra Húmeda	Gr	43.00	39.00	42.60	47.12	34.32	40.12	Límite Líquido:	LL =	38.29%
Peso Tara + Muestra Seca	Gr	39.50	35.50	37.00	46.58	33.78	39.48	Límite Plástico:	LP =	22.56%
Peso de la Tara	Gr	26.59	26.49	28.19	44.00	31.20	37.00	Indice de Plasticidad :	IP =	15.74%
Peso de la Muestra Seca	Gr	12.91	9.01	8.81	2.58	2.58	2.48	Contenido de Humedad :	Wn =	37.61%
Peso del Agua	Gr	3.50	3.50	5.60	0.54	0.54	0.64	Grado de Consistencia :	Kw =	0.04
Contenido de Humedad	%	27.11	38.85	63.56	20.93	20.93	25.81	Grado de Consistencia :	Viscosa	
Número de Goloes		33	22	16	Prom	nedio :	22.56			

Contenido de Humedad		%	27.11	38.85	63.56	20.93	20.93	25.81	Grado de Consistencia : Viscosa
Número de Golpes			33	22	16	Prom	nedio:	22.56	_
						LÍ	MITE	E LIQ	UIDO
Calicata :	C1	100.0	_						
Estrato:	E1	90.0							
Potencia:	1.50 m	90.0 70.0							
Número de	Contenido de	E 60.0						0	•
Golpes	Humedad (%)	(%) 90.0 90.0 80.1 70.0 60.0 40.1 30.0 10.0 0.0							
33	27.11	e 40.0 30.0							•
22	38.85	.g 20.0							
16	63.56	10.0							
25	38.291	Š 0.	1					10	100
						Nú	mero	de G	olpes

Observaciones:

Ing. Givi SIMON ORDONO PALAGO


PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Norma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

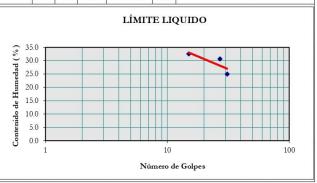
X4 (SN+15%C)

LIMITES DE CONSISTENCIA		Ubicaci	ón:	Calicata	C2	Potencia		1.50 m				
LIMITES DE CONSISTENCIA		Estrato	:	E1								
		LÍMITE LÍQUIDO			LÍMITE PLÁSTIC							
Tara Número	Unidades	1	2	3	1	2	3	Limites de Consistencia				
Peso Tara + Muestra Húmeda	Gr	52.70	38.50	46.10	26.82	30.22	31.02	Limite Liquido:	LL =	40.71%		
Peso Tara + Muestra Seca	Gr	47.50	34.40	41.00	26.28	29.78	30.58	Limite Plástico:	LP =	17.44%		
Peso de la Tara	Gr	34.69	24.19	30.39	23.50	27.20	27.80	Indice de Plasticidad :	IP =	23.28%		
Peso de la Muestra Seca	Gr	12.81	10.21	10.61	2.78	2.58	2.78	Contenido de Humedad :	Wn =	30.32%		
Peso del Agua	Gr	5.20	4.10	5.10	0.54	0.44	0.44	Grado de Consistencia:	Kw =	0.45		
Contenido de Humedad	%	40.59	40.16	48.07	19.42	17.05	15.83	Grado de Consistencia:	Viscosa			
Número de Golpes		29	18	14	Pron	nedio :	17.44					

Calicata:	C2
Estrato :	E1
Potencia :	1.50 m
Número de	Contenido de
Golpes	Humedad (%)
29	40.59
18	40.16
14	48.07
25	40.711

Observaciones:

SERVICIOS Y BIENES DE CALIDAD
RUC: 20532797081
Mail: ceyse2009@hotmail.com
Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen


PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

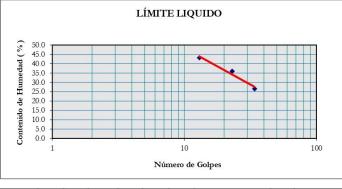
LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Noma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

X4 (SN+15%C)

LIMITES DE CONSISTENCIA		Ubica	ión :	Calicata	C3	Potencia:		1.50 m			
LIMITES DE CONSISTENCIA		Estrate	o:	E1							
		LÍM	ITE LÍQ	UIDO	LÍMITE PLÁSTICO						
Tara Número	Unidades	1	2	3	1	2	3	Limites de Consistencia	1		
Peso Tara + Muestra Húmeda	Gr	42.90	48.20	46.10	29.62	33.12	38.32	Limite Liquido:	IT =	28.79%	
Peso Tara + Muestra Seca	Gr	40.80	45.20	43.00	29.58	32.88	38.28	Limite Plástico:	LP =	4.06%	
Peso de la Tara	Gr	32.39	35.99	32.89	27.60	29.80	36.60	Indice de Plasticidad :	IP =	24.73%	
Peso de la Muestra Seca	Gr	8.41	9.21	10.11	1.98	3.08	1.68	Contenido de Humedad :	Wn =	20.21%	
Peso del Agua	Gr	2.10	3.00	3.10	0.04	0.24	0.04	Grado de Consistencia :	Kw=	0.35	
Contenido de Humedad	%	24.97	32.57	30.66	2.02	7.79	2.38	Grado de Consistencia : Viscosa			
Número de Golose		31	15	27	Pron	edio :	4.06				

Calicata:	C3					
Estrato :	E1					
Potencia :	1.50 m					
Número de	Contenido de					
Golpes	Humedad (%)					
31	24.97					
15	32.57					
27	30.66					
25	28.795					

Observaciones:

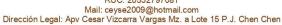

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moquegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

LIMITES DE CONSISTENCIA LÍMITE LÍQUIDO Norma: ASTM D 4318 LÍMITE PLÁSTICO Norma: ASTM D 4319

X4 (SN+15%C)

LIMITES DE CONSISTENCIA		Ubicaci	ón :	Calicata	C4	Potencia	201	1.50 m			
LIMITES DE CONSISTENCIA		Estrato	:	E1							
		LÍMITE LÍQUIDO				TE PLÁS	TICO				
Tara Número	Unidades	1	2	3	1	2	3	Limites de Consistencia			
Peso Tara + Muestra Húmeda	Gr	59.70	67.50	72.30	30.52	31.72	31.72	Limite Liquido:	LL =	32.80%	
Peso Tara + Muestra Seca	Gr	50.50	57.40	63.50	30.48	31.38	31.68	Limite Plástico:	LP =	5.50%	
Peso de la Tara	Gr	29.19	29.29	30.39	28.60	28.60	29.80	Indice de Plasticidad :	IP =	27.31%	
Peso de la Muestra Seca	Gr	21.31	28.11	33.11	1.88	2.78	1.88	Contenido de Humedad :	Wn =	19.87%	
Peso del Agua	Gr	9.20	10.10	8.80	0.04	0.34	0.04	Grado de Consistencia:	Kw =	0.47	
Contenido de Humedad	%	43.17	35.93	26.58	2.13	12.23	2.13	Grado de Consistencia:	Viscosa		
Número de Golpes		13	23	34	Pron	nedio :	5.50				

Calicata:	C2
Estrato :	E3
Potencia :	1.50 m
Número de	Contenido de
Golpes	Humedad (%)
13	43.17
23	35.93
34	26.58
25	32.802



Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081



G. FLORES M SIMON ORDOÑO P. Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS 025-002023-001 DEL KM: UBICACIÓN: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

PROCTOR MODIFICADO (ASTM D - 1557) X5 (SN+5%C)

Ubicación:	Calicata	C-1							N° d	e capas	: 5	
Muestra:	Estrato	E1						N° de g	golpes p	or capa	: 56	
Potencia:	profundidad	1.50m								Cond	:	-
			DETERMI	NACION	DE LA D	ENSIDAD)					
Volumen del Molde		(cm3.)	2120.10		2120.10		2120.10		212	0.10	2120.10	
Peso del Suelo Húmedo	+Molde	(gr)	758	5.00	869	1.44	8351.24		839	6.60	7647.00	
Peso del Molde	so del Molde (gr)		3200.00		3200.00		3200.00		3200.00		3200.00	
Peso del Suelo Húmedo	Peso del Suelo Húmedo		4385.00		5491.44		5151.24		5196.60		4447.00	
Densidad del Suelo Hum	edo	(gr/cm3)	2.07		2.59		2.43		2.45		2.	10
	CAPSULA Nº	7		7)	6		2		11	
Peso Suelo Humedo+Ca	psula.	(gr)	104.00	108.00	108.00	100.00	93.00	101.00	103.00	105.00	108.00	113.00
Peso Suelo Seco + Caps	ula	(gr)	91.50	94.50	94.50	87.50	80.50	87.50	87.50	90.50	90.50	94.50
Peso de la Capsula		(gr)	28.00	28.00	35.00	30.00	28.00	28.00	29.00	35.00	28.00	28.00
Peso del Agua		(gr)	12.50	13.50	13.50	12.50	12.50	13.50	15.50	14.50	17.50	18.50
Peso del Suelo Seco		(gr)	63.50	66.50	59.50	57.50	52.50	59.50	58.50	55.50	62.50	66.50
% del Contenido de Hum	edad	(%)	19.69	20.30	22.69	21.74	23.81	22.69	26.50	26.13	28.00	27.82
Promedio Humedad		(%)	19	.99	22	21	23	3.25	26	.31	27.	.91
Densidad del Suelo Seco		(ar/cm3)	1	72	2	11	1	97	1	94	1.0	83

MAXIMA DENSIDAD SECA (gr/cm3): 2.11 OPTI. CONT. HUMEDAD (%) DE PESO SECO 22.21 Ing. Civil SIMON ORDONO FALACO Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081

Mail: ceyse2009@hotmail.com Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

G. FLORES M SIMON ORDOÑO P. 025-002023-001 Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS DEL KM: UBICACIÓN: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

PROCTOR MODIFICADO (ASTM D - 1557) X5 (SN+5%C)

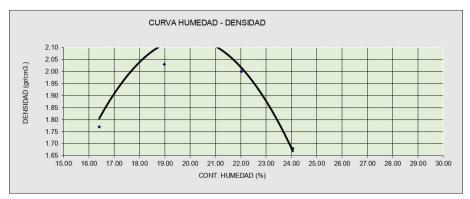
Ubicación: Cal	icata C-2							N°	de capa	s: 5	
Muestra: Es	trato E1						N° d	e golpes	por cap	a: 56	
Potencia: profund	lidad 1.50r	n							Con	d:	-
		DETER	MINACION	I DE LA	DENSID	AD					
Volumen del Molde	(cm3.)	2120	0.10	2120	.10	212	0.10	2120	0.10	2120	0.10
Peso del Suelo Húmedo+Molde	eso del Suelo Húmedo+Molde (gr)		0.00	8695	.98	839	3.60	844	1.96	7652.00	
eso del Molde (gr)		320	5.00	3205.00		3205.00		3205.00		3205.00	
Peso del Suelo Húmedo (gr)		438	4385.00		5490.98		5191.60		5236.96		7.00
Densidad del Suelo Humedo	(gr/cm3)	2.0	07	2.5	9	2.45		2.47		2.10	
CAPSULA	Nº	1	0	С			5	E	3	9)
Peso Suelo Humedo+Capsula.	(gr)	101.00	105.00	105.00	97.00	90.00	98.00	100.00	102.00	105.00	110.00
Peso Suelo Seco + Capsula	(gr)	88.50	91.50	91.50	84.50	77.50	84.50	84.50	87.50	87.50	91.50
Peso de la Capsula	(gr)	29.00	29.00	31.00	30.00	29.00	29.00	30.00	31.00	30.00	30.00
Peso del Agua	(gr)	12.50	13.50	13.50	12.50	12.50	13.50	15.50	14.50	17.50	18.50
Peso del Suelo Seco	(gr)	59.50	62.50	60.50	54.50	48.50	55.50	54.50	56.50	57.50	61.50
% del Contenido de Humedad	(%)	21.01	21.60	22.31	22.94	25.77	24.32	28.44	25.66	30.43	30.08
Promedio Humedad	(%)	21.	30	22.6	62	25	05	27.	05	30.	26
Densidad del Suelo Seco	(gr/cm3)	1	7	21	1	1.	95	1.9	94	16	31



MAXIMA DENSIDAD SECA (gr/cm3): 2.11 OPTI. CONT. HUMEDAD (%) DE PESO SECO 22.62 Ing. Civil SIMON ORDONO PALAGO Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081



G. FLORES M SIMON ORDOÑO P. 025-002023-001 Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS DEL KM: UBICACIÓN: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

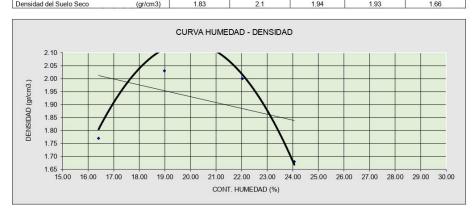
PROCTOR MODIFICADO (ASTM D - 1557) X5 (SN+5%C)

Ubicación:	Calicata	C-3							N° c	de capa	s: 5	
Muestra:	Estrato	E1						N° de	golpes	por cap	a: 56	
Potencia: pro	ofundidad	1.50m								Con	d:	-
			DETER	MINACION	DE LA	DENSIDA	D					
Volumen del Molde (cm3.)		n3.)	212	0.10	2120	0.10	2120	0.10	2120	0.10	212	0.10
Peso del Suelo Húmedo+Molde (gr)		7575.00		8700	8700.51		8441.96		7.32	7677.00		
eso del Molde (gr)		320	0.00	3200.00		3200.00		3200.00		3200.00		
Peso del Suelo Húmedo	eso del Suelo Húmedo (gr)		437	4375.00		5500.51		5241.96		5287.32		7.00
Densidad del Suelo Humedo	Densidad del Suelo Humedo (gr/cm3)		2.06		2.59		2.47		2.49		2.11	
CAPS	SULA Nº			3	5		H		F	:		2
Peso Suelo Humedo+Capsula	. (gr)	94.00	103.00	98.00	90.00	83.00	91.00	93.00	95.00	98.00	103.00
Peso Suelo Seco + Capsula	(gr)	81.50	85.50	83.50	77.50	70.50	77.50	79.50	82.50	82.50	86.50
Peso de la Capsula	(gr)	28.00	28.00	30.00	30.00	28.00	28.00	29.00	30.00	29.00	29.00
Peso del Agua	(gr)	12.50	17.50	14.50	12.50	12.50	13.50	13.50	12.50	15.50	16.50
Peso del Suelo Seco	(gr)	53.50	57.50	53.50	47.50	42.50	49.50	50.50	52.50	53.50	57.50
% del Contenido de Humedad	(%)	23.36	30.43	27.10	26.32	29.41	27.27	26.73	23.81	28.97	28.70
Promedio Humedad		(%)	26	.90	26.71		28.34		25.27		28.83	
Densidad del Suelo Seco	(gr.	/cm3)	1.0	62	2.0)4	1.9	92	1.9	99	1	.63

2.04 OPTI. CONT. HUMEDAD (%) DE PESO SECO MAXIMA DENSIDAD SECA (gr/cm3): 26.71 Ing. Civil SIMON ORDONO PALAGO Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081


Mail: ceyse2009@hotmail.com Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

G. FLORES M SIMON ORDOÑO P. 025-002023-001 Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS DEL KM: UBICACIÓN: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

PROCTOR MODIFICADO (ASTM D - 1557) X5 (SN+5%C)

Ubicación:	Calicata	C-4							N° (de capas	s: 5	
Muestra:	Estrato	E1						N° de	golpes	por capa	: 56	
Potencia: pro	ofundidad	1.50m	i							Cond	d:	-
			DETER	RMINACIO	N DE LA	DENSIDA	AD					
Volumen del Molde	(cm	13.)	2120	0.10	2120	0.10	212	20.10	2120	0.10	2120	0.10
Peso del Suelo Húmedo+Mold	e (gr)		7683	3.00	8705	5.05	848	37.32	841	9.28	7692	2.00
Peso del Molde	(gr)		3200	0.00	3200	0.00	320	00.00	320	3200.00		0.00
Peso del Suelo Húmedo	(gr)		4483	3.00	5505	5.05	528	37.32	521	9.28	4492	2.00
Densidad del Suelo Humedo	(gr/	cm3)	2.	11	2.6	30	2	.49	2.4	46	2.	12
CAPS	SULA Nº			1	E	3		12	P	<	1	1
Peso Suelo Humedo+Capsula	(gr)		101.00	105.00	108.00	105.00	98.00	101.00	104.00	105.00	109.00	111.00
Peso Suelo Seco + Capsula	(gr)		91.50	94.50	94.50	90.50	80.50	87.50	87.50	90.50	90.50	94.50
Peso de la Capsula	(gr)		28.00	28.00	35.00	30.00	28.00	28.00	29.00	35.00	28.00	28.00
Peso del Agua	(gr)		9.50	10.50	13.50	14.50	17.50	13.50	16.50	14.50	18.50	16.50
Peso del Suelo Seco	(gr)		63.50	66.50	59.50	60.50	52.50	59.50	58.50	55.50	62.50	66.50
% del Contenido de Humedad	(%)		14.96	15.79	22.69	23.97	33.33	22.69	28.21	26.13	29.60	24.81
Promedio Humedad	(9	%)	15.	38	23.	33	28	3.01	27.	.17	27.	21
Densidad del Suelo Seco	(arl	cm3)	13	13	2	1	1	94	1.0	93	1.6	36

MAXIMA DENSIDAD SECA (gr/cm3): 2.10 OPTI. CONT. HUMEDAD (%) DE PESO SECO 23.33 Ing. Civil SIMON ORDONO FALACO Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081

Mail: ceyse2009@hotmail.com
Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

G. FLORES M SIMON ORDOÑO P. 025-002023-001 Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS UBICACIÓN: DEL KM: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

PROCTOR MODIFICADO (ASTM D - 1557) X6 (SN+8%C)

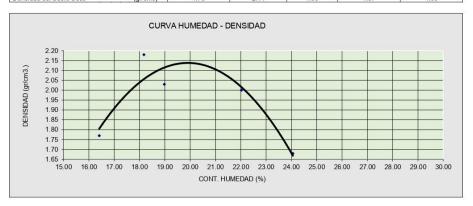
Ubicación: Ca	alicata C-1							N° d	de capas	s: 5	
Muestra: E	strato E1						N° de	golpes	por capa	: 56	
Potencia: profun	didad 1.50r	m							Conc	d:	-
		DETER	RMINACIO	N DE LA	DENSIDA	AD					
Volumen del Molde	(cm3.)	2123	3.10	2123	3.10	212	23.10	2123	3.10	212	3.10
Peso del Suelo Húmedo+Molde	(gr)	7588	3.00	8694	1.44	835	4.24	8399	9.60	7650	0.00
Peso del Molde	(gr)	3203	3.00	3203	3.00	320	3.00	3203	3203.00		3.00
Peso del Suelo Húmedo	(gr)	4385	5.00	549	1.44	515	1.24	5196	6.60	444	7.00
Densidad del Suelo Humedo	(gr/cm3)	2.0)7	2.5	59	2	.43	2.4	15	2.0	09
CAPSULA	Nº	7)		6	2	2	1	1
Peso Suelo Humedo+Capsula.	(gr)	105.00	109.00	109.00	101.00	94.00	102.00	104.00	106.00	109.00	114.00
Peso Suelo Seco + Capsula	(gr)	93.50	96.50	96.50	89.50	82.50	89.50	89.50	92.50	92.50	96.50
Peso de la Capsula	(gr)	29.00	29.00	36.00	31.00	29.00	29.00	30.00	36.00	29.00	29.00
Peso del Agua	(gr)	11.50	12.50	12.50	11.50	11.50	12.50	14.50	13.50	16.50	17.50
Peso del Suelo Seco	(gr)	64.50	67.50	60.50	58.50	53.50	60.50	59.50	56.50	63.50	67.50
% del Contenido de Humedad	(%)	17.83	18.52	20.66	19.66	21.50	20.66	24.37	23.89	25.98	25.93
Promedio Humedad	(%)	18.	17	20.	16	21	.08	24.	13	25.	96
Densidad del Suelo Seco	(gr/cm3)	1.7	74	2.1	15		2	1.9	97	1.6	66

MAXIMA DENSIDAD SECA (gr/cm3): 2.15	OPTI. CONT. HUMEDAD (%) DE PESO SECO	20.16	
-------------------------------------	--------------------------------------	-------	--

Ing. Civil SIMON ORDONO PALATO CIP. \$4333 Observaciones:

SERVICIOS Y BIENES DE CALIDAD

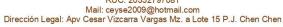
RUC: 20532797081


Mail: ceyse2009@hotmail.com
Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

G. FLORES M SIMON ORDOÑO P. 025-002023-001 Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS DEL KM: UBICACIÓN: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

PROCTOR MODIFICADO (ASTM D - 1557) X6 (SN+8%C)

Ubicación:	Calicata	C-2							N°	de capa	s: 5	
Muestra:	Estrato	E1						N° d	e golpes	por capa	a: 56	
Potencia: p	rofundidad	1.50m								Con	d:	-
			DETER	MINACION	I DE LA	DENSID	AD					
Volumen del Molde	(cr	n3.)	2123.10		2123	.10	212	3.10	2123	3.10	212	3.10
Peso del Suelo Húmedo+Mol	lde (gr)	7593	3.00	8698	.98	839	9.60	8444	1.96	765	5.00
Peso del Molde	(gr)	3208	3.00	3208	.00	320	8.00	3208	3208.00		8.00
Peso del Suelo Húmedo	(gr)	4385	5.00	5490	.98	519	1.60	5236	6.96	444	7.00
Densidad del Suelo Humedo	(gr	/cm3)	2.0	7	2.5	9	2.4	45	2.4	17	2.0	09
CAF	SULA Nº		10)	С			5	B	3	9	•
Peso Suelo Humedo+Capsul	a. (gr)	102.00	106.00	106.00	98.00	91.00	99.00	101.00	103.00	106.00	111.00
Peso Suelo Seco + Capsula	(gr)	90.50	93.50	93.50	86.50	79.50	86.50	86.50	89.50	89.50	93.50
Peso de la Capsula	(gr)	30.00	30.00	32.00	31.00	30.00	30.00	31.00	32.00	31.00	31.00
Peso del Agua	(gr)	11.50	12.50	12.50	11.50	11.50	12.50	14.50	13.50	16.50	17.50
Peso del Suelo Seco	(gr)	60.50	63.50	61.50	55.50	49.50	56.50	55.50	57.50	58.50	62.50
% del Contenido de Humeda	d (%)	19.01	19.69	20.33	20.72	23.23	22.12	26.13	23.48	28.21	28.00
Promedio Humedad	(%)	19.	35	20.5	52	22	.68	24.	80	28.	10
Densidad del Suelo Seco	(gr	/cm3)	1.7	3	2.1	4	1.5	99	1.9	1.97 1.63		63


MAXIMA DENSIDAD SECA (gr/cm3): 2.14 OPTI. CONT. HUMEDAD (%) DE PESO SECO 20.52 Ing. Civil SIMON ORDONO FAUNO CIP. \$4333 Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081



G. FLORES M SIMON ORDOÑO P. 025-002023-001 Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS DEL KM: UBICACIÓN: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

PROCTOR MODIFICADO (ASTM D - 1557) X6 (SN+8%C)

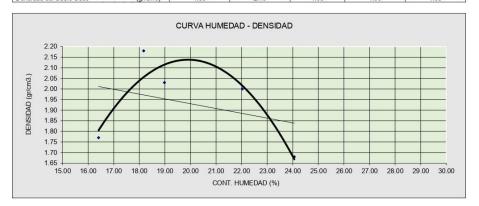
Ubicación: Ca	licata C-3							N° c	le capa	s: 5	
Muestra: Es	strato E1						N° de	golpes	por cap	a: 56	
Potencia: profun	didad 1.50m	1							Con	d:	
		DETER	MINACION	DE LA	DENSIDA	D					
Volumen del Molde	(cm3.)	212	3.10	2123	3.10	2123	3.10	2123	3.10	212	23.10
Peso del Suelo Húmedo+Molde	(gr)	757	8.00	8703	3.51	8444	1.96	8490	0.32	768	30.00
Peso del Molde	(gr)	320	3.00	3203	3.00	3203	3.00	3203	3.00	320	03.00
Peso del Suelo Húmedo	(gr)	437	5.00	5500).51	524	1.96	5287	7.32	447	77.00
Densidad del Suelo Humedo	(gr/cm3)	2	.06	2.5	59	2.4	17	2.4	19	2	.11
CAPSULA	Nº		8			- H	1	F	:		2
Peso Suelo Humedo+Capsula.	(gr)	95.00	104.00	99.00	91.00	84.00	92.00	94.00	96.00	99.00	104.00
Peso Suelo Seco + Capsula	(gr)	83.50	87.50	85.50	79.50	72.50	79.50	81.50	84.50	84.50	88.50
Peso de la Capsula	(gr)	29.00	29.00	31.00	31.00	29.00	29.00	30.00	31.00	30.00	30.00
Peso del Agua	(gr)	11.50	16.50	13.50	11.50	11.50	12.50	12.50	11.50	14.50	15.50
Peso del Suelo Seco	(gr)	54.50	58.50	54.50	48.50	43.50	50.50	51.50	53.50	54.50	58.50
% del Contenido de Humedad	(%)	21.10	28.21	24.77	23.71	26.44	24.75	24.27	21.50	26.61	26.50
Promedio Humedad	(%)	24	.65	24.	24	25.	59	22.	22.88 26.55		
Densidad del Suelo Seco	(gr/cm3)	1	65	20	18	19	96	2 (12	1	66

MAXIMA DENSIDAD SECA (gr/cm3): 2.08 OPTI. CONT. HUMEDAD (%) DE PESO SECO 24.24 Ing. Civil SIMON ORDONO PALAGO

Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081



G. FLORES M SIMON ORDOÑO P. 025-002023-001 Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS DEL KM: UBICACIÓN: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

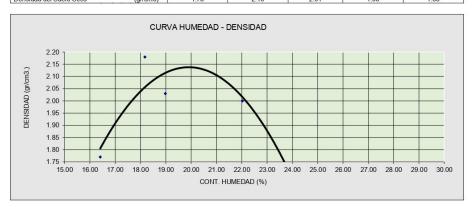
PROCTOR MODIFICADO (ASTM D - 1557) X6 (SN+8%C)

Ubicación:	Calicata	C-4						N° de capas: 5							
Muestra:	Estrato	E1						N° de	golpes	por capa	: 56				
Potencia: prof	undidad	1.50m								Conc	l:	-			
			DETER	RMINACIO	N DE LA	DENSIDA	AD								
Volumen del Molde	(cm	13.)	2123	3.10	2123	3.10	212	3.10	2123	3.10	2123	3.10			
Peso del Suelo Húmedo+Molde	(gr)		7686	6.00	8708	3.05	849	0.32	8422	2.28	7698	5.00			
Peso del Molde	(gr)		3203	3.00	3203	3.00	320	3.00	3203	3.00	3203	3.00			
Peso del Suelo Húmedo	(gr)		4483	3.00	5505	5.05	528	7.32	5219	9.28	4492	2.00			
Densidad del Suelo Humedo	(gr/	cm3)	2.1	11	2.5	59	2	49	2.4	16	2.1	12			
CAPSU	ILA Nº		G	,	E	3		12	P	(1	1			
Peso Suelo Humedo+Capsula.	(gr)		102.00	106.00	109.00	106.00	99.00	102.00	105.00	106.00	110.00	112.00			
Peso Suelo Seco + Capsula	(gr)		93.50	96.50	96.50	92.50	82.50	89.50	89.50	92.50	92.50	96.50			
Peso de la Capsula	(gr)		29.00	29.00	36.00	31.00	29.00	29.00	30.00	36.00	29.00	29.00			
Peso del Agua	(gr)		8.50	9.50	12.50	13.50	16.50	12.50	15.50	13.50	17.50	15.50			
Peso del Suelo Seco	(gr)		64.50	67.50	60.50	61.50	53.50	60.50	59.50	56.50	63.50	67.50			
% del Contenido de Humedad	(%)		13.18	14.07	20.66	21.95	30.84	20.66	26.05	23.89	27.56	22.96			
Promedio Humedad	(9	%)	13.	63	21.	31	25	.75	24.	97	25.	26			
Densidad del Suelo Seco	(gr/	cm3)	1.8	35	2.1	13	1	.98	1.9	96	1.6	88			

MAXIMA DENSIDAD SECA (gr/cm3): 2.13 OPTI. CONT. HUMEDAD (%) DE PESO SECO 21.31 Ing. Civil SIMON ORDONO FALACO Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081


Mail: ceyse2009@hotmail.com
Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

G. FLORES M SIMON ORDOÑO P. 025-002023-001 Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS DEL KM: UBICACIÓN: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

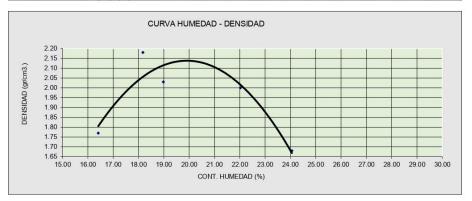
PROCTOR MODIFICADO (ASTM D - 1557) X7 (SN+12%C)

Ubicación:	Calicata C-1 N° de capas: 5											
Muestra:	Estrato	E1						N° de	golpes	por capa	: 56	
Potencia: pr	rofundidad	1.50m	i							Cond	l:	-
			DETER	RMINACIO	N DE LA	DENSIDA	AD					
Volumen del Molde	(cn	n3.)	2124	4.10	212	1.10	212	4.10	2124	4.10	2124	4.10
Peso del Suelo Húmedo+Mol	de (gr)	7589	9.00	869	5.44	835	5.24	8400	0.60	765	1.00
Peso del Molde	(gr)	3204	1.00	3204	1.00	320	4.00	3204	4.00	3204	4.00
Peso del Suelo Húmedo	(gr)	438	5.00	549	1.44	515	1.24	5196	6.60	444	7.00
Densidad del Suelo Humedo	(gr	/cm3)	2.0	06	2.5	59	2	43	2.4	45	2.0)9
CAP	SULA Nº		7)		6	2	2	1	1
Peso Suelo Humedo+Capsula	a. (gr)	105.80	109.80	109.80	101.80	94.80	102.80	104.80	106.80	109.80	114.80
Peso Suelo Seco + Capsula	(gr)	94.60	97.60	97.60	90.60	83.60	90.60	90.60	93.60	93.60	97.60
Peso de la Capsula	(gr)	29.80	29.80	36.80	31.80	29.80	29.80	30.80	36.80	29.80	29.80
Peso del Agua	(gr)	11.20	12.20	12.20	11.20	11.20	12.20	14.20	13.20	16.20	17.20
Peso del Suelo Seco	(gr)	64.80	67.80	60.80	58.80	53.80	60.80	59.80	56.80	63.80	67.80
% del Contenido de Humedao	d (%)	17.28	17.99	20.07	19.05	20.82	20.07	23.75	23.24	25.39	25.37
Promedio Humedad	(%)	17.	64	19.	56	20	.44	23.	49	25.	38
Densidad del Suelo Seco	(gr	/cm3)	1.7	75	2.	16	2	.01	1.9	98	1.6	66

MAXIMA DENSIDAD SECA (gr/cm3): OPTI. CONT. HUMEDAD (%) DE PESO SECO 2.16 19.56 Ing. Civil SIMON ORDONO FALACO Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081



G. FLORES M SIMON ORDOÑO P. 025-002023-001 Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS DEL KM: UBICACIÓN: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

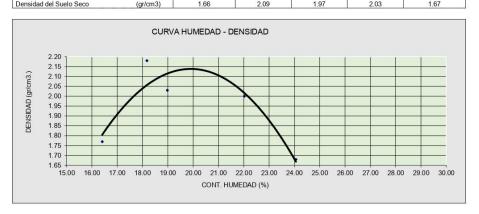
PROCTOR MODIFICADO (ASTM D - 1557) X7 (SN+12%C)

Ubicación:	cación: Calicata C-2 N° de capas: 5											
Muestra:	Estrato	E1						N° d	e golpes	por capa	a: 56	
Potencia: pr	ofundidad	1.50m								Con	d:	-
			DETER	MINACION	DE LA	DENSID/	AD					
Volumen del Molde	(cr	m3.)	2124	1.10	2124	.10	212	4.10	2124	1.10	2124	1.10
Peso del Suelo Húmedo+Mol-	de (gr	r)	7594	1.00	8699	.98	840	0.60	8445	5.96	7656	3.00
Peso del Molde	(gr	7)	3209	00.6	3209	.00	320	9.00	3209	9.00	3209	9.00
Peso del Suelo Húmedo	(gr	-)	4385	5.00	5490	.98	519	1.60	5236	6.96	4447	7.00
Densidad del Suelo Humedo	(gr	r/cm3)	2.0	16	2.5	9	2.4	44	2.4	17	2.0)9
CAP	SULA Nº		1)	С			5	E	3	9)
Peso Suelo Humedo+Capsula	a. (gr)	102.80	106.80	106.80	98.80	91.80	99.80	101.80	103.80	106.80	111.80
Peso Suelo Seco + Capsula	(gr	r)	91.60	94.60	94.60	87.60	80.60	87.60	87.60	90.60	90.60	94.60
Peso de la Capsula	(gr	-)	30.80	30.80	32.80	31.80	30.80	30.80	31.80	32.80	31.80	31.80
Peso del Agua	(gr	-)	11.20	12.20	12.20	11.20	11.20	12.20	14.20	13.20	16.20	17.20
Peso del Suelo Seco	(gr	r)	60.80	63.80	61.80	55.80	49.80	56.80	55.80	57.80	58.80	62.80
% del Contenido de Humedao	i (%)	18.42	19.12	19.74	20.07	22.49	21.48	25.45	22.84	27.55	27.39
Promedio Humedad	((%)	18.	77	19.9	1	21	.98	24.	14	27.	47
Densidad del Suelo Seco	(ar	/cm3)	1.7	3	2.1	5		2	1.9	98	1.6	34

MAXIMA DENSIDAD SECA (gr/cm3): 2.15 OPTI. CONT. HUMEDAD (%) DE PESO SECO 19.91 Ing. Civil SIMON ORDONO FALARO Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081


Mail: ceyse2009@hotmail.com Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

G. FLORES M SIMON ORDOÑO P. Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS 025-002023-001 DEL KM: UBICACIÓN: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

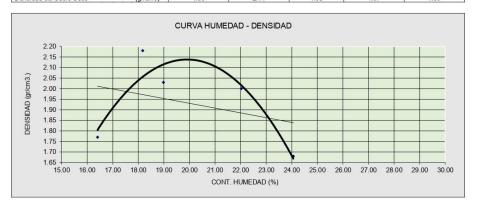
PROCTOR MODIFICADO (ASTM D - 1557) X7 (SN+12%C)

Ubicación:	Calicata	C-3							N° c	le capa	s: 5	
Muestra:	Estrato	E1						N° de	golpes	por capa	a: 56	
Potencia: p	rofundidad	1.50m								Con	d:	-
			DETER	MINACION	DE LA	DENSIDA	D					
Volumen del Molde	(cr	n3.)	212	4.10	212	1.10	2124	1.10	2124	1.10	212	24.10
Peso del Suelo Húmedo+Mol	lde (gr)	757	9.00	870	1.51	8445	5.96	8491	1.32	768	31.00
Peso del Molde	(gr)	320	4.00	320	1.00	3204	1.00	3204	1.00	320	04.00
Peso del Suelo Húmedo	(gr)	437	5.00	550	0.51	5241	1.96	5287	7.32	447	7.00
Densidad del Suelo Humedo	(gr	/cm3)	2	.06	2.	59	2.4	17	2.4	19	2	.11
CAF	PSULA Nº			8		5	H		F			2
Peso Suelo Humedo+Capsul	a. (gr)	95.80	104.80	99.80	91.80	84.80	92.80	94.80	96.80	99.80	104.80
Peso Suelo Seco + Capsula	(gr) [84.60	88.60	86.60	80.60	73.60	80.60	82.60	85.60	85.60	89.60
Peso de la Capsula	(gr)	29.80	29.80	31.80	31.80	29.80	29.80	30.80	31.80	30.80	30.80
Peso del Agua	(gr)	11.20	16.20	13.20	11.20	11.20	12.20	12.20	11.20	14.20	15.20
Peso del Suelo Seco	(gr)	54.80	58.80	54.80	48.80	43.80	50.80	51.80	53.80	54.80	58.80
% del Contenido de Humeda	d (%)	20.44	27.55	24.09	22.95	25.57	24.02	23.55	20.82	25.91	25.85
Promedio Humedad		(%)	23	1.99	23.	52	24.	79	22.	18	25	5.88
Densidad del Suelo Seco	(or	/cm3)	1	66	21	na	10	7	22.18		1.67	

MAXIMA DENSIDAD SECA (gr/cm3): OPTI. CONT. HUMEDAD (%) DE PESO SECO 23.52 Ing. Civil SIMON ORDONO FAUNO CIP. \$4333 Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081


Mail: ceyse2009@hotmail.com Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

G. FLORES M SIMON ORDOÑO P. Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS 025-002023-001 DEL KM: UBICACIÓN: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

PROCTOR MODIFICADO (ASTM D - 1557) X7 (SN+12%C)

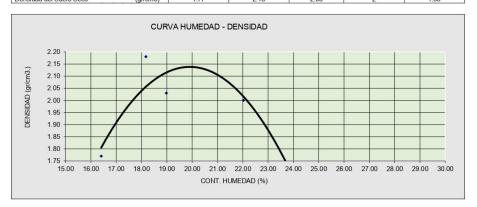
Ubicación:	Calicata	C-4							N° de capas: 5							
Muestra:	Estrato	E1						N° de	golpes	por capa	: 56					
Potencia: pro	fundidad	1.50m	i							Conc	l:	-				
			DETER	RMINACIO	N DE LA	DENSID	AD									
Volumen del Molde	(cn	n3.)	2124	1.10	2124	1.10	212	24.10	2124	1.10	2124	1.10				
Peso del Suelo Húmedo+Molde	e (gr)	7687	7.00	8709	9.05	849	91.32	8423	3.28	7696	6.00				
Peso del Molde	(gr)	3204	1.00	3204	1.00	320	04.00	3204	1.00	3204	1.00				
Peso del Suelo Húmedo	(gr)	4483	3.00	5505	5.05	528	37.32	5219	9.28	4492	2.00				
Densidad del Suelo Humedo	(gr.	/cm3)	2.1	11	2.5	59	2	.49	2.4	16	2.1	11				
CAPS	ULA Nº		G	,	E	3		12	P	(1	1				
Peso Suelo Humedo+Capsula.	(gr) [102.80	106.80	109.80	106.80	99.80	102.80	105.80	106.80	110.80	112.80				
Peso Suelo Seco + Capsula	(gr) [94.60	97.60	97.60	93.60	83.60	90.60	90.60	93.60	93.60	97.60				
Peso de la Capsula	(gr)	29.80	29.80	36.80	31.80	29.80	29.80	30.80	36.80	29.80	29.80				
Peso del Agua	(gr)	8.20	9.20	12.20	13.20	16.20	12.20	15.20	13.20	17.20	15.20				
Peso del Suelo Seco	(gr)	64.80	67.80	60.80	61.80	53.80	60.80	59.80	56.80	63.80	67.80				
% del Contenido de Humedad	(%)	12.65	13.57	20.07	21.36	30.11	20.07	25.42	23.24	26.96	22.42				
Promedio Humedad	(%)	13.	11	20.	71	25	5.09	24.	33	24.	69				
Densidad del Suelo Seco	(gr.	/cm3)	1.8	36	2.1	14	1.98		1.9	97	1.6	39				



MAXIMA DENSIDAD SECA (gr/cm3): OPTI. CONT. HUMEDAD (%) DE PESO SECO 20.71 Ing. Civil SIMON ORDONO FAUNO CIP. \$4333 Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081



G. FLORES M SIMON ORDOÑO P. 025-002023-001 Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS DEL KM: UBICACIÓN: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

PROCTOR MODIFICADO (ASTM D - 1557) X8 (SN+15%C)

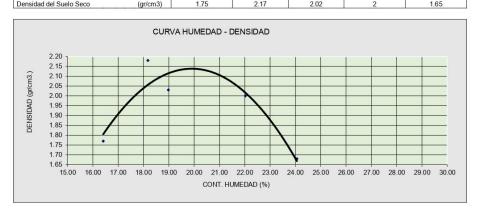
Ubicación:	Calicata C-1 N° de capas: 5											
Muestra:	Estrato	E1						N° de	golpes	por capa	: 56	
Potencia: pr	rofundidad	1.50m								Conc	l:	-
			DETER	RMINACIO	N DE LA	DENSIDA	AD					
Volumen del Molde	(cn	n3.)	2126	6.10	2126	6.10	212	6.10	2126	6.10	2126	3.10
Peso del Suelo Húmedo+Mol-	de (gr)	759	1.00	8697	7.44	835	7.24	8402	2.60	7653	3.00
Peso del Molde	(gr)	3206	6.00	3206	6.00	320	6.00	3206	6.00	3206	6.00
Peso del Suelo Húmedo	(gr)	438	5.00	549	1.44	515	1.24	5196	6.60	4447	7.00
Densidad del Suelo Humedo	(gr	/cm3)	2.0	06	2.5	58	2	.42	2.4	14	2.0)9
CAP	SULA Nº		7)		6	2	2	1	1
Peso Suelo Humedo+Capsula	a. (gr)	106.50	110.50	110.50	102.50	95.50	103.50	105.50	107.50	110.50	115.50
Peso Suelo Seco + Capsula	(gr)	96.00	99.00	99.00	92.00	85.00	92.00	92.00	95.00	95.00	99.00
Peso de la Capsula	(gr)	30.50	30.50	37.50	32.50	30.50	30.50	31.50	37.50	30.50	30.50
Peso del Agua	(gr)	10.50	11.50	11.50	10.50	10.50	11.50	13.50	12.50	15.50	16.50
Peso del Suelo Seco	(gr)	65.50	68.50	61.50	59.50	54.50	61.50	60.50	57.50	64.50	68.50
% del Contenido de Humedao	d (%)	16.03	16.79	18.70	17.65	19.27	18.70	22.31	21.74	24.03	24.09
Promedio Humedad	(%)	16.	41	18.	17	18	.98	22.	03	24.	06
Densidad del Suelo Seco	(gr	/cm3)	1.7	77	2.1	18	2	.03	2		1.6	68



MAXIMA DENSIDAD SECA (gr/cm3): OPTI. CONT. HUMEDAD (%) DE PESO SECO 2.18 18.17 Ing. Civil SIMON ORDONO FALACO Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081



G. FLORES M SIMON ORDOÑO P. Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS 025-002023-001 DEL KM: UBICACIÓN: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

PROCTOR MODIFICADO (ASTM D - 1557) X8 (SN+15%C)

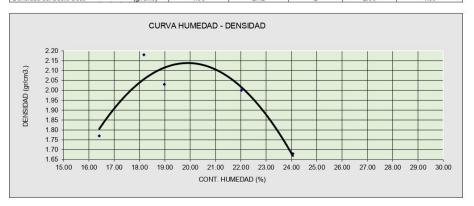
Ubicación: Cal	licata C-2							N°	de capas	s: 5	
Muestra: Es	strato E1						N° de	golpes	por capa	a: 56	
Potencia: profund	didad 1.50r	n							Cond	d:	-
		DETER	MINACIO	N DE LA	DENSID	AD					
Volumen del Molde	(cm3.)	2120	6.10	2126	.10	212	26.10	2126	6.10	2126	6.10
Peso del Suelo Húmedo+Molde	(gr)	759	6.00	8701	.98	840	2.60	8447	7.96	7658	3.00
Peso del Molde	(gr)	321	1.00	3211	.00	321	1.00	321	3211.00		1.00
Peso del Suelo Húmedo	(gr)	438	5.00	5490	.98	519	1.60	5236	6.96	4447	7.00
Densidad del Suelo Humedo	(gr/cm3)	2.0	06	2.5	8	2	.44	2.4	16	2.0)9
CAPSULA	Nº	1	0	С			5	E	3		
Peso Suelo Humedo+Capsula.	(gr)	103.50	107.50	107.50	99.50	92.50	100.50	102.50	104.50	107.50	112.50
Peso Suelo Seco + Capsula	(gr)	93.00	96.00	96.00	89.00	82.00	89.00	89.00	92.00	92.00	96.00
Peso de la Capsula	(gr)	31.50	31.50	33.50	32.50	31.50	31.50	32.50	33.50	32.50	32.50
Peso del Agua	(gr)	10.50	11.50	11.50	10.50	10.50	11.50	13.50	12.50	15.50	16.50
Peso del Suelo Seco	(gr)	61.50	64.50	62.50	56.50	50.50	57.50	56.50	58.50	59.50	63.50
% del Contenido de Humedad	(%)	17.07	17.83	18.40	18.58	20.79	20.00	23.89	21.37	26.05	25.98
Promedio Humedad	(%)	17.	45	18.4	19	20	0.40	22.63 2			02
Densidad del Suelo Seco	(gr/cm3)	1	75	21	7	2	02	5	,	16	35



MAXIMA DENSIDAD SECA (gr/cm3): 2.17 OPTI. CONT. HUMEDAD (%) DE PESO SECO 18.49 Ing. Civil SIMON ORDONO PALAGO Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081



G. FLORES M SIMON ORDOÑO P. 025-002023-001 Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS DEL KM: UBICACIÓN: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

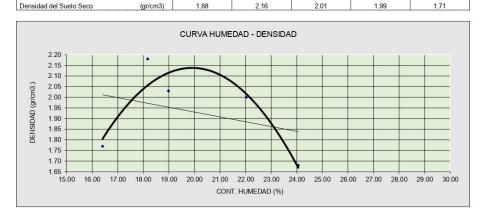
PROCTOR MODIFICADO (ASTM D - 1557) X8 (SN+15%C)

Ubicación: C	alicata	C-3							N°	de capa	as: 5	
Muestra:	Estrato	E1						N° de	golpes	por cap	oa: 56	
Potencia: profu	ındidad	1.50m								Cor	nd:	-
			DETER	RMINACION	N DE LA I	DENSIDA	D					
Volumen del Molde	(cm	3.)	212	6.10	2126.	10	2126	6.10	212	6.10	2126	6.10
Peso del Suelo Húmedo+Molde	(gr)		758	1.00	8706.	51	844	7.96	849	3.32	7683	3.00
Peso del Molde	(gr)		320	6.00	3206.	00	3206	3.00	320	6.00	3206	6.00
Peso del Suelo Húmedo	(gr)		437	5.00	5500.	51	524	1.96	528	7.32	447	7.00
Densidad del Suelo Humedo	(gr/d	cm3)	2.	06	2.59	9	2.4	17	2.4	19	2.1	11
CAPSUL	A Nº			8	5		H	(F		2	
Peso Suelo Humedo+Capsula.	(gr)		96.50	105.50	100.50	92.50	85.50	93.50	95.50	97.50	100.50	105.50
Peso Suelo Seco + Capsula	(gr)		86.00	90.00	88.00	82.00	75.00	82.00	84.00	87.00	87.00	91.00
Peso de la Capsula	(gr)		30.50	30.50	32.50	32.50	30.50	30.50	31.50	32.50	31.50	31.50
Peso del Agua	(gr)		10.50	15.50	12.50	10.50	10.50	11.50	11.50	10.50	13.50	14.50
Peso del Suelo Seco	(gr)		55.50	59.50	55.50	49.50	44.50	51.50	52.50	54.50	55.50	59.50
% del Contenido de Humedad	(%)		18.92	26.05	22.52	21.21	23.60	22.33	21.90	19.27	24.32	24.37
Promedio Humedad	(9	6)	22	.48	21.8	7	22.	96	20.	59	24.	35
Densidad del Suelo Seco	(gr/d	cm3)	1.	68	2.12	2	2	2	2.0	06	1.6	39

MAXIMA DENSIDAD SECA (gr/cm3): 2.12 OPTI. CONT. HUMEDAD (%) DE PESO SECO 21.87 Ing. Civil SIMON ORDONO FAUNO CIP. \$4333 Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081


Mail: ceyse2009@hotmail.com Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

G. FLORES M SIMON ORDOÑO P. Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS 025-002023-001 DEL KM: UBICACIÓN: AL KM: FECHA: SOLICITANTE: ACOPIO: 01-11-2024

PROCTOR MODIFICADO (ASTM D - 1557) X8 (SN+15%C)

Ubicación: C	Calicata C-4							N° c	le capas	: 5	
Muestra:	Estrato E1						N° de	golpes	oor capa	: 56	
Potencia: profu	ındidad 1.50	0m							Cond	l:	-
		DETE	RMINACIO	ON DE LA	DENSID	AD					
Volumen del Molde	(cm3.)	212	6.10	212	6.10	2120	6.10	2120	6.10	212	6.10
Peso del Suelo Húmedo+Molde	(gr)	768	9.00	871	1.05	849	3.32	842	5.28	769	8.00
Peso del Molde	(gr)	320	6.00	320	6.00	320	6.00	320	6.00	320	6.00
Peso del Suelo Húmedo	(gr)	448	3.00	550	5.05	528	7.32	5219	9.28	449	2.00
Densidad del Suelo Humedo	(gr/cm3)	2.	11	2.	59	2.4	49	2.4	45	2.	11
CAPSUL	A Nº		3	E	3	1	2	P	(1	1
Peso Suelo Humedo+Capsula.	(gr)	103.50	107.50	110.50	107.50	100.50	103.50	106.50	107.50	111.50	113.50
Peso Suelo Seco + Capsula	(gr)	96.00	99.00	99.00	95.00	85.00	92.00	92.00	95.00	95.00	99.00
Peso de la Capsula	(gr)	30.50	30.50	37.50	32.50	30.50	30.50	31.50	37.50	30.50	30.50
Peso del Agua	(gr)	7.50	8.50	11.50	12.50	15.50	11.50	14.50	12.50	16.50	14.50
Peso del Suelo Seco	(gr)	65.50	68.50	61.50	62.50	54.50	61.50	60.50	57.50	64.50	68.50
% del Contenido de Humedad	(%)	11.45	12.41	18.70	20.00	28.44	18.70	23.97	21.74	25.58	21.17
Promedio Humedad	(%)	11	93	19	.35	23.	57	22.	85	23.	.37
Doneidad dal Suola Saca	(arlem2)	1	00	2	16	21	11	1.0	00	1	71

MAXIMA DENSIDAD SECA (gr/cm3): 2.16 OPTI. CONT. HUMEDAD (%) DE PESO SECO 19.35 Ing. Civil SIMON ORDONO FALACO Observaciones:

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

X9 (SN+5%C)

Muestra: Potencia:	Estrato profundidad	E1 1.50m	COMPA						
Potencia:	profundidad	1.50m	COMPA						
			COMPA						
			COMPA	CTACION C	BR		31		w
MOLDE		1			2			3	
Altura Molde mm.		124			120			120	
N° Capas		5			5			5	
N°Golp x Capa		10			25			55	
Cond. Muestra	ANTES DE I	MPAPAR	DESPUES	ANTES DE E	MPAPAR	DESPUES	ANTES DE E	MPAPAR	DESPUES
P. Húm.+ Molde		11345.00	11382.80		12070.00	12100.51		13140.00	13160.54
Peso Molde (gr)		6766.00	6766.00		7258.00	7258.00		8105.00	8105.00
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54
Vol. Molde (cc)	1	2250.09	2250.09		2264.31	2264.31		2264.31	2264.31
Densidad H.(gr/cc)		2.04	2.05		2.13	2.14		2.22	2.23
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10
P. Muestra Seca	102.80	106.50	100.70	91.20	98.20	97.20	109.60	113.30	111.50
Cont. Humedad	9.05%	9.01%	9.93%	9.10%	9.06%	9.77%	9.03%	9.09%	9.51%
Cont.Hum.Prom.	10000	9.03%	9.93%		9.08%	9.77%		9.06%	9.51%
DENSIDAD SECA		1.456	1.456		1.851	1.851		2.324	2.324
	122		ENSAYO E	DE HINCHAN	IIENTO				

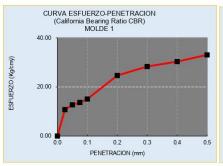
TIEMPO ACUMULADO		NUMER	O DE MOLD	E	NUMER	DE MOLDI		NUMERO DE MOLDE		
		LECTURA	HINCHAMIENTO		LECTURA	HINCHAMIENTO		LECTURA	HINCHAMIENTO	
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50

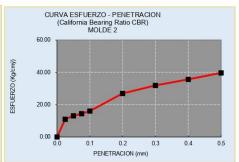
	ENSAYO CARGA - PENETRACION											
PENETRACION			MOLDE N° 01		MOLDE N° 02	MOLDE N° 03						
(mm)	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO					
0.00	0.000	0	0.00	0	0.00	0	0.00					
0.64	0.025	38	1.94	43	2.19	45	2.29					
1.27	0.050	64	3.25	71	3.61	83	4.22					
1.91	0.075	85	4.35	100	5.11	118	6.03					
2.54	0.100	110	5.59	130	6.61	156	7.93					
5.08	0.200	207	10.54	252	12.83	313	15.94					
7.62	0.300	286	14.57	357	18.18	444	22.61					
10.16	0.400	348	17.72	453	23.07	562	28.62					
12.70	0.500	408	20.79	538	27.41	672	34.23					

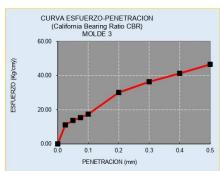
Ing. Civil SIMON ORDONO FALARO Observaciones:

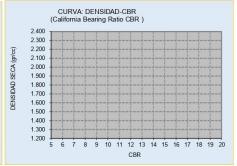
SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081


Mail: ceyse2009@hotmail.com Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen




Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: G. FLORES M SIMON ORDOÑO P. ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS 025-002023-001 DEL KM: UBICACIÓN: SOLICITANTE: AL KM: FECHA: 01-11-2024 ACOPIO


ENSAYO CALIFORNIA BEARING RATIO (CBR) X9 (SN+5%C)

Ubicación:	Calicata	C-1
Muestra:	Estrato	E1
Potencia:	profundidad	1.50m

PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	5.59	10.54
MOLDE 2	6.61	12.83
MOLDE 3	7.93	15.94

j	DENS	0.1	0.2	CBR	DMS:	-
MOLDE 1	1.456	7.95	10.00	10.00	2.14	gr/cm ²
MOLDE 2	1.851	9.40	12.17	12.17	COH:	
MOLDE 3	2.324	11.29	15.12	15.12	21.18	%

Observaciones:

167

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

X9 (SN+5%C)

Ubicación:	Calicata	C-2							
Muestra:	Estrato	E1							
Potencia:	profundidad	1.50m							
	882		COMPA	CTACION C	BR		125	95	10
MOLDE		1			2			3	
Altura Molde mm.		124			120			120	
N° Capas		5			5			5	
N°Golp x Capa		10			25			55	
Cond. Muestra	ANTES DE I	EMPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES
P. Húm.+ Molde		11345.00	11382.80		12070.00	12100.51		13140.00	13160.54
Peso Molde (gr)		6766.00	6766.00		7258.00	7258.00		8105.00	8105.00
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54
Vol. Molde (cc)		2250.09	2250.09		2264.31	2264.31	ľ	2264.31	2264.31
Densidad H.(gr/cc)		2.04	2.05		2.13	2.14		2.22	2.23
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10
P. Muestra Seca	102.80	106.50	100.70	91.20	98.20	97.20	109.60	113.30	111.50
Cont. Humedad	9.05%	9.01%	9.93%	9.10%	9.06%	9.77%	9.03%	9.09%	9.51%
Cont.Hum.Prom.	10.500	9.03%	9.93%		9.08%	9.77%		9.06%	9.51%
DENSIDAD SECA		1.456	1.456		1.851	1.851		2.324	2.324

9.03% 9.93% 9.08° 1.456 1.456 1.85 ENSAYO DE HINCHAMIENTO

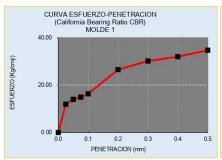
		and the second s						the temperature of		
TIEMPO		NUMER	O DE MOLD	E	NUMER	DE MOLDI	=	NUMERO DE MOLDE		
ACUMULADO		LECTURA	HINCHAI	MIENTO	LECTURA	HINCHA	MIENTO	LECTURA	HINCHA	MIENTO
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50

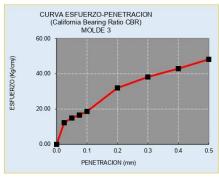
	ENSAYO CARGA - PENETRACION										
PENETRACION		MOLDE N° 01			MOLDE N° 02	MOLDE N° 03					
(mm)	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO				
0.00	0.000	0	0.00	0	0.00	0	0.00				
0.64	0.025	61	3.11	66	3.36	68	3.46				
1.27	0.050	89	4.51	96	4.87	108	5.48				
1.91	0.075	110	5.59	125	6.36	143	7.27				
2.54	0.100	135	6.86	155	7.87	181	9.20				
5.08	0.200	244	12.43	289	14.72	350	17.83				
7.62	0.300	322	16.40	393	20.02	480	24.45				
10.16	0.400	381	19.40	486	24.75	595	30.30				
12.70	0.500	440	22.43	570	29.05	704	35.87				

Ing. Civil SIMON ORDONO FALARO Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081


Mail: ceyse2009@hotmail.com Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen


Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: G. FLORES M SIMON ORDOÑO P. ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS 025-002023-001 DEL KM: UBICACIÓN: SOLICITANTE: AL KM: ACOPIO FECHA: 01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR) X9 (SN+5%C)

Ubicación:	Calicata	C-2
Muestra:	Estrato	E1
Potencia:	profundidad	1 50m

PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	6.86	12.43
MOLDE 2	7.87	14.72
MOLDE 3	9.20	17.83

	DENS	0.1	0.2	CBR	DMS:	
MOLDE 1	1.456	9.75	11.78	11.78	2.13	gr/cm ²
MOLDE 2	1.851	11.20	13.96	13.96	COH:	
MOLDE 3	2.324	13.08	16.90	16.90	21.56	%

15.71

Observaciones:

169

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

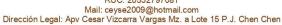
ENSAYO CALIFORNIA BEARING RATIO (CBR)

X9 (SN+5%C)

Ubicación:	Calicata	C-3							
Muestra:	Estrato	E1							
Potencia:	profundidad	1.50m							
, 0.0	protestation		COMPA	CTACION C	BR		N/		
MOLDE		1			2			3	
Altura Molde mm.	1	124			120			120	
N° Capas		5			5			5	
N°Golp x Capa		10			25			55	
Cond. Muestra	ANTES DE	EMPAPAR	DESPUES	ANTES DE I	EMPAPAR	DESPUES	ANTES DE I	EMPAPAR	DESPUES
P. Húm.+ Molde		11345.00	11382.80		12070.00	12100.51		13140.00	13160.54
Peso Molde (gr)		6766.00	6766.00		7258.00	7258.00		8105.00	8105.00
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54
Vol. Molde (cc)	1	2250.09	2250.09		2264.31	2264.31		2264.31	2264.31
Densidad H.(gr/cc)		2.04	2.05		2.13	2.14		2.22	2.23
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10
P. Muestra Seca	102.80	106.50	100.70	91.20	98.20	97.20	109.60	113.30	111.50
Cont. Humedad	9.05%	9.01%	9.93%	9.10%	9.06%	9.77%	9.03%	9.09%	9.51%
Cont.Hum.Prom.	10 Marie	9.03%	9.93%		9.08%	9.77%		9.06%	9.51%
DENSIDAD SECA		1.456	1.456		1.851	1.851		2.324	2.324
		70	ENSAYO I	DE HINCHAN	MENTO	1			

TIEMPO		NUMER	O DE MOLD	E MOLDE NUMERO DE MOLDE NUMERO D			NUMERO DE MOLDE		O DE MOLD	E
ACUMULADO		LECTURA	HINCHAM	HINCHAMIENTO		HINCHA	MIENTO	LECTURA	HINCHA	MIENTO
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50

	ENSAYO CARGA - PENETRACION									
PENETRACION		MOLDE N° 01			MOLDE N° 02	MOLDE N° 03				
(mm)	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO			
0.00	0.000	0	0.00	0	0.00	0	0.00			
0.64	0.025	84	4.28	89	4.53	91	4.63			
1.27	0.050	113	5.78	120	6.13	132	6.74			
1.91	0.075	134	6.83	149	7.60	167	8.52			
2.54	0.100	159	8.12	179	9.14	205	10.46			
5.08	0.200	281	14.31	326	16.60	387	19.71			
7.62	0.300	358	18.23	429	21.85	516	26.28			
10.16	0.400	414	21.08	519	26.43	628	31.98			
12.70	0.500	473	24.07	603	30.69	737	37.51			


Ing. Civil SIMON ORDONO FALARO Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081

PROYECTO: UBICACIÓN:

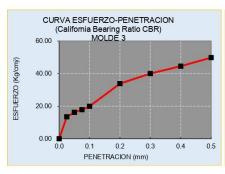
Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS

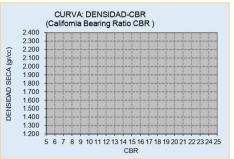
ING. RESP: N° REGISTRO: DEL KM: AL KM:

ASIST. LAB:


G. FLORES M SIMON ORDOÑO P. 025-002023-001

SOLICITANTE: ACOPIO


FECHA: 01-11-2024


ENSAYO CALIFORNIA BEARING RATIO (CBR) X9 (SN+5%C)

Ubicación:	Calicata	C-3
Muestra:	Estrato	E1
Potencia:	profundidad	1.50m

PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	8.12	14.31
MOLDE 2	9.14	16.60
MOLDE 3	10.46	19.71

(*) Valores Corregidos

	DENS	0.1	0.2	CBR	DMS:	
MOLDE 1	1.456	11.55	13.57	13.57	2.07	gr/cm ²
MOLDE 2	1.851	12.99	15.74	15.74	COH:	2012
MOLDE 3	2.324	14.88	18.69	18.69	25.46	%

C.B.R. Para el 100% de la M.D.S. = C.B.R. Para el 95% de la M.D.S. = 13.47

Observaciones:

Ing. Civil SIMON CROONS INLAND

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

X9 (SN+5%C)

Ubicación:	Calicata	C-4							
Muestra:	Estrato	E1							
Potencia:	profundidad	1.50m							
			COMPA	CTACION C	BR			-	
MOLDE	T T	1			2			3	
Altura Molde mm.		124			120			120	
N° Capas		5			5			5	
N°Golp x Capa		10			25			55	
Cond. Muestra	ANTES DE	EMPAPAR	DESPUES	ANTES DE E	MPAPAR	DESPUES	ANTES DE E	MPAPAR	DESPUES
P. Húm.+ Molde		11345.00	11382.80		12070.00	12100.51		13140.00	13160.54
Peso Molde (gr)		6766.00	6766.00		7258.00	7258.00		8105.00	8105.00
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54
Vol. Molde (cc)		2250.09	2250.09		2264.31	2264.31		2264.31	2264.31
Densidad H.(gr/cc)		2.04	2.05		2.13	2.14		2.22	2.23
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10
P. Muestra Seca	102.80	106.50	100.70	91.20	98.20	97.20	109.60	113.30	111.50
Cont. Humedad	9.05%	9.01%	9.93%	9.10%	9.06%	9.77%	9.03%	9.09%	9.51%
Cont.Hum.Prom.	2000	9.03%	9.93%		9.08%	9.77%		9.06%	9.51%
DENSIDAD SECA		1.456	1.456		1.851	1.851		2.324	2.324

ENSAYO DE HINCHAMIENTO

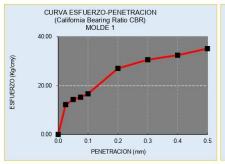
TIEMPO		NUMER	O DE MOLD	E	NUMERO	DE MOLDE	i.	NUMER	O DE MOLD	DE MOLDE HINCHAMIENTO		
ACUMULADO		LECTURA	HINCHAM	/IENTO	LECTURA	HINCHA	MIENTO	LECTURA	HINCHA	MIENTO		
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)		
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00		
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17		
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33		
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50		
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50		

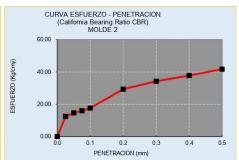
	ENSAYO CARGA - PENETRACION						
PENETRACION			MOLDE N° 01		MOLDE N° 02		MOLDE N° 03
(mm)	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO
0.00	0.000	0	0.00	0	0.00	0	0.00
0.64	0.025	67	3.40	72	3.65	74	3.76
1.27	0.050	95	4.83	102	5.18	114	5.80
1.91	0.075	116	5.90	131	6.67	149	7.58
2.54	0.100	141	7.17	161	8.19	187	9.51
5.08	0.200	253	12.90	298	15.19	359	18.30
7.62	0.300	331	16.86	402	20.47	489	24.90
10.16	0.400	389	19.82	494	25.17	603	30.72
12.70	0.500	448	22.84	578	29.46	712	36.28

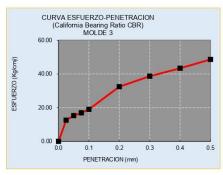
Ing. Civil SIMON ORDONO FALARO Observaciones:

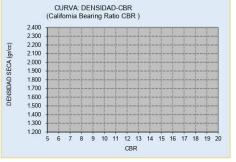
SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081


Mail: ceyse2009@hotmail.com Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen




Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: G. FLORES M SIMON ORDOÑO P. ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS 025-002023-001 DEL KM: UBICACIÓN: SOLICITANTE: AL KM: FECHA: 01-11-2024 ACOPIO:


ENSAYO CALIFORNIA BEARING RATIO (CBR) X9 (SN+5%C)

Ubicación:	Calicata	C-4
Muestra:	Estrato	E1
Potencia:	profundidad	1.50m

PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	7.17	12.90
MOLDE 2	8.19	15.19
MOLDE 3	9.51	18.30

	DENS	0.1	0.2	CBR	DMS:	
MOLDE 1	1.456	10.20	12.23	12.23	2.12	gr/cm ²
MOLDE 2	1.851	11.65	14.40	14.40	COH:	
MOLDE 3	2.324	13.53	17.35	17.35	22.31	%

Observaciones:

173

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio - Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

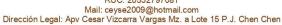
ENSAYO CALIFORNIA BEARING RATIO (CBR)

X10 (SN+8%C)

	4			DE HINCHAN					
DENSIDAD SECA	T	1.456	1.456		1.851	1.851		2.324	2.324
Cont.Hum.Prom.	JAN.	9.03%	9.93%		9.08%	9.77%		9.06%	9.51%
Cont. Humedad	9.05%	9.01%	9.93%	9.10%	9.06%	9.77%	9.03%	9.09%	9.51%
P. Muestra Seca	102.80	106.50	100.70	91.20	98.20	97.20	109.60	113.30	111.50
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
Densidad H.(gr/cc)	1	2.04	2.05		2.13	2.14		2.22	2.23
Vol. Molde (cc)	1	2250.09	2250.09		2264.31	2264.31		2264.31	2264.31
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54
Peso Molde (gr)		6766.00	6766.00		7258.00	7258.00		8105.00	8105.00
P. Húm.+ Molde		11345.00	11382.80		12070.00	12100.51		13140.00	13160.54
Cond. Muestra	ANTES DE I	EMPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES	ANTES DE I	EMPAPAR	DESPUES
N°Golp x Capa		10			25			55	
N° Capas		5			5			5	
Altura Molde mm.		124			120			120	
MOLDE		1			2			3	
			COMPA	CTACION C	BR				
Potencia:	profundidad	1.50m							
Muestra:	Estrato	E1							
Ubicación:	Calicata	C-1							

TIEMPO		NUMER	O DE MOLD	E	NUMER	DE MOLDI	=	NUMER	O DE MOLE	HINCHAMIENTO (mm) (%)		
ACUMULADO		LECTURA	HINCHAI	MIENTO	LECTURA	HINCHA	MIENTO	LECTURA	HINCHA	MIENTO		
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)		
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00		
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17		
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33		
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50		
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50		

ENSAYO CARGA - PENETRACION								
PENETRACION		N	MOLDE N° 01		MOLDE N° 02	MOLDE N° 03		
(mm)	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO	
0.00	0.000	0	0.00	0	0.00	0	0.00	
0.64	0.025	73	3.69	78	3.95	80	4.05	
1.27	0.050	101	5.14	108	5.50	120	6.11	
1.91	0.075	122	6.21	137	6.98	155	7.89	
2.54	0.100	147	7.49	167	8.51	193	9.83	
5.08	0.200	263	13.37	308	15.66	369	18.77	
7.62	0.300	340	17.32	411	20.93	498	25.36	
10.16	0.400	398	20.24	503	25.59	612	31.14	
12.70	0.500	457	23.25	587	29.87	721	36.69	


Observaciones:

Ing. Civil SIMON ORDONO FALARO

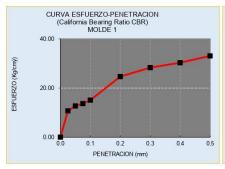
SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081

PROYECTO: UBICACIÓN: SOLICITANTE:

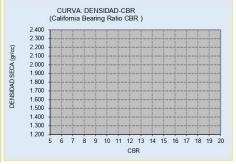
ACOPIO:

Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS


ASIST. LAB: ING. RESP: N° REGISTRO: DEL KM: AL KM:

G. FLORES M SIMON ORDOÑO P. 025-002023-001

FECHA: 01-11-2024


ENSAYO CALIFORNIA BEARING RATIO (CBR) X10 (SN+8%C)

Ubicación:	Calicata	C-1
Muestra:	Estrato	E1
Potencia:	profundidad	1.50m

PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	7.49	13.37
MOLDE 2	8.51	15.66
MOLDE 3	9.83	18.77

	DENS	0.1	0.2	CBR	DMS:	
MOLDE 1	1.456	10.65	12.68	12.68	2.14	gr/cm ²
MOLDE 2	1.851	12.10	14.85	14.85	COH:	
MOLDE 3	2.324	13.98	17.80	17.80	21.18	%

C.B.R. Para el 100% de la M.D.S. =

C.B.R. Para el 95% de la M.D.S. = 12.87 Ing. Civil SIMON CROONS INLAND

Observaciones:

175

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

X10 (SN+8%C)

Ubicación:	Calicata	C-2							
Muestra:	Estrato	E1							
Potencia:	profundidad	1.50m							
	p. a.		COMPA	CTACION C	BR				
MOLDE	1	1		1	2		Î	3	
Altura Molde mm.		124			120			120	
N° Capas		5			5			5	
N°Golp x Capa		10			25			55	
Cond. Muestra	ANTES DE	EMPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES
P. Húm.+ Molde		11345.00	11382.80		12070.00	12100.51		13140.00	13160.54
Peso Molde (gr)		6766.00	6766.00		7258.00	7258.00		8105.00	8105.00
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54
Vol. Molde (cc)		2250.09	2250.09		2264.31	2264.31	ľ	2264.31	2264.31
Densidad H.(gr/cc)		2.04	2.05		2.13	2.14		2.22	2.23
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10
P. Muestra Seca	102.80	106.50	100.70	91.20	98.20	97.20	109.60	113.30	111.50
Cont. Humedad	9.05%	9.01%	9.93%	9.10%	9.06%	9.77%	9.03%	9.09%	9.51%
Cont.Hum.Prom.	9500 9500	9.03%	9.93%		9.08%	9.77%		9.06%	9.51%
DENSIDAD SECA		1.456	1.456		1.851	1.851		2.324	2.324

ENSAYO DE HINCHAMIENTO

TIEMPO ACUMULADO		NUMER	O DE MOLD	E	NUMERO	NUMERO DE MOLDE			NUMERO DE MOLDE		
		LECTURA	HINCHAMIENTO		LECTURA	HINCHAMIENTO		LECTURA	HINCHAMIENTO		
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00	
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17	
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33	
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50	
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50	

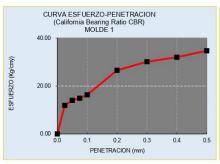
	ENSAYO CARGA - PENETRACION											
PENETRACION	1	N	MOLDE N° 01		MOLDE N° 02	MOLDE N° 03						
(mm)	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO					
0.00	0.000	0	0.00	0	0.00	0	0.00					
0.64	0.025	96	4.86	101	5.12	103	5.22					
1.27	0.050	126	6.41	133	6.76	145	7.37					
1.91	0.075	146	7.46	161	8.22	179	9.14					
2.54	0.100	172	8.75	192	9.77	218	11.09					
5.08	0.200	300	15.25	345	17.55	406	20.65					
7.62	0.300	376	19.15	447	22.77	534	27.20					
10.16	0.400	431	21.93	536	27.27	645	32.82					
12.70	0.500	489	24.89	619	31.51	753	38.33					

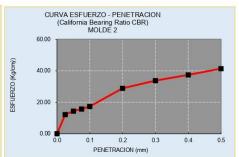
Observaciones:

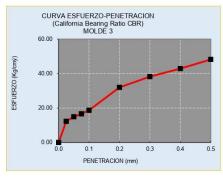
Ing. Civil SIMON ORDONO FALARO

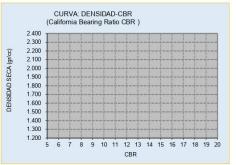
SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081


Mail: ceyse2009@hotmail.com Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen




Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: G. FLORES M ING. RESP: N° REGISTRO: SIMON ORDOÑO P. PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS 025-002023-001 DEL KM: UBICACIÓN: SOLICITANTE: AL KM: FECHA: 01-11-2024 ACOPIO:


ENSAYO CALIFORNIA BEARING RATIO (CBR) X10 (SN+8%C)

Calicata C-2 Estrato E1 profundidad 1.50m Ubicación: Muestra: Potencia:

PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	8.75	15.25
MOLDE 2	9.77	17.55
MOLDE 3	11.09	20.65

(*) Valores Corregidos

	DENS	0.1	0.2	CBR	DMS:	
MOLDE 1	1.456	12.44	14.46	14.46	2.13	gr/cm ²
MOLDE 2	1.851	13.89	16.64	16.64	COH:	
MOLDE 3	2.324	15.78	19.58	19.58	21.56	%

C.B.R. Para el 100% de la M.D.S. = C.B.R. Para el 95% de la M.D.S. =

Observaciones:

Ing. Civil SIMON CROONS INLAND

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

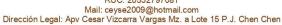
X10 (SN+8%C)

Ubicación:	Calicata	C-3							
Muestra:	Estrato	E1							
Potencia:	profundidad	1.50m							
			COMPA	CTACION C	BR		31	100	w
MOLDE		1			2			3	
Altura Molde mm.		124			120			120	
N° Capas		5			5			5	
N°Golp x Capa		10			25			55	
Cond. Muestra	ANTES DE	EMPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES	ANTES DE E	MPAPAR	DESPUES
P. Húm.+ Molde		11345.00	11382.80		12070.00	12100.51		13140.00	13160.54
Peso Molde (gr)		6766.00	6766.00		7258.00	7258.00		8105.00	8105.00
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54
Vol. Molde (cc)	1	2250.09	2250.09		2264.31	2264.31		2264.31	2264.31
Densidad H.(gr/cc)		2.04	2.05		2.13	2.14		2.22	2.23
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10
P. Muestra Seca	102.80	106.50	100.70	91.20	98.20	97.20	109.60	113.30	111.50
Cont. Humedad	9.05%	9.01%	9.93%	9.10%	9.06%	9.77%	9.03%	9.09%	9.51%
Cont.Hum.Prom.	1000	9.03%	9.93%		9.08%	9.77%		9.06%	9.51%
DENSIDAD SECA	T	1 456	1 456		1 951	1 951		2 224	2 224

1.456 1.851 ENSAYO DE HINCHAMIENTO

TIEMPO		NUMER	O DE MOLD	E	NUMER	NUMERO DE MOLDE			NUMERO DE MOLDE			
ACUMULADO		LECTURA	HINCHAMIENTO		LECTURA	HINCHAMIENTO		LECTURA	HINCHAMIENTO			
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)		
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00		
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17		
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33		
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50		
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50		

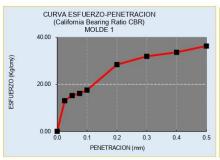
	ENSAYO CARGA - PENETRACION											
PENETRACION	1	N	MOLDE N° 01		MOLDE N° 02	MOLDE N° 03						
(mm)	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO					
0.00	0.000	0	0.00	0	0.00	0	0.00					
0.64	0.025	119	6.04	124	6.29	126	6.39					
1.27	0.050	151	7.67	158	8.03	170	8.64					
1.91	0.075	171	8.70	186	9.46	204	10.38					
2.54	0.100	197	10.01	217	11.03	243	12.36					
5.08	0.200	337	17.14	382	19.43	443	22.54					
7.62	0.300	412	20.98	483	24.60	570	29.03					
10.16	0.400	464	23.61	569	28.95	678	34.50					
12.70	0.500	521	26.53	651	33.15	785	39.97					


Observaciones:

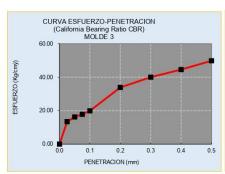
Ing. Civil SIMON ORDONO FALARO

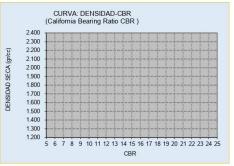
SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081


Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS DEL KM: UBICACIÓN: SOLICITANTE: AL KM: ACOPIO


G. FLORES M SIMON ORDOÑO P. 025-002023-001


FECHA: 01-11-2024


ENSAYO CALIFORNIA BEARING RATIO (CBR) X10 (SN+8%C)

Ubicación:	Calicata	C-3
Muestra:	Estrato	E1
Potencia:	profundidad	1.50m

PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	10.01	17.14
MOLDE 2	11.03	19.43
MOLDE 3	12.36	22.54

(*) Valores Corregidos

	DENS	0.1	0.2	CBR	DMS:	
MOLDE 1	1.456	14.24	16.25	16.25	2.07	gr/cm ²
MOLDE 2	1.851	15.69	18.42	18.42	COH:	
MOLDE 3	2.324	17.57	21.37	21.37	25.46	%

Observaciones:

Ing. Civil SIMON ORDONO FALARO

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

X10 (SN+8%C)

			ENSAYO I	DE HINCHAN	IIENTO				
DENSIDAD SECA		1.456	1.456		1.851	1.851		2.324	2.324
Cont.Hum.Prom.	1915	9.03%	9.93%		9.08%	9.77%		9.06%	9.51%
Cont. Humedad	9.05%	9.01%	9.93%	9.10%	9.06%	9.77%	9.03%	9.09%	9.51%
P. Muestra Seca	102.80	106.50	100.70	91.20	98.20	97.20	109.60	113.30	111.50
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
Densidad H.(gr/cc)		2.04	2.05		2.13	2.14		2.22	2.23
Vol. Molde (cc)	1	2250.09	2250.09		2264.31	2264.31		2264.31	2264.31
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54
Peso Molde (gr)	1	6766.00	6766.00		7258.00	7258.00		8105.00	8105.00
P. Húm.+ Molde		11345.00	11382.80		12070.00	12100.51		13140.00	13160.54
Cond. Muestra	ANTES DE	EMPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES	ANTES DE I	EMPAPAR	DESPUES
N°Golp x Capa		10			25			55	
N° Capas		5			5			5	
Altura Molde mm.	1	124			120			120	
MOLDE		1			2		Ĭ .	3	
			COMPA	CTACION O	BR		The state of the s	-	
Potencia:	profundidad	1.50m							
Muestra:	Estrato	E1							
Ubicación:	Calicata	C-4							

TIEMPO		NUMER	O DE MOLD	E	NUMER	DE MOLDI		NUMERO DE MOLDE		
ACUMULADO		LECTURA	HINCHAI	MIENTO	LECTURA	HINCHA	MIENTO	LECTURA	HINCHA	MIENTO
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50

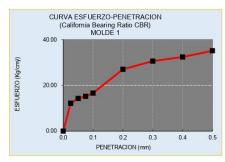
ENSAYO CARGA - PENETRACION								
PENETRACION			MOLDE N° 01		MOLDE N° 02	MOLDE N° 03		
(mm)	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO	
0.00	0.000	0	0.00	0	0.00	0	0.00	
0.64	0.025	101	5.16	106	5.41	108	5.51	
1.27	0.050	132	6.72	139	7.08	151	7.69	
1.91	0.075	153	7.77	168	8.53	186	9.45	
2.54	0.100	178	9.07	198	10.08	224	11.41	
5.08	0.200	309	15.72	354	18.02	415	21.12	
7.62	0.300	385	19.61	456	23.22	543	27.65	
10.16	0.400	439	22.35	544	27.69	653	33.24	
12.70	0.500	497	25.30	627	31.92	761	38.74	

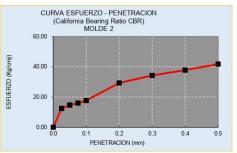
Ing. Civil SIMON ORDONO FALARO Observaciones:

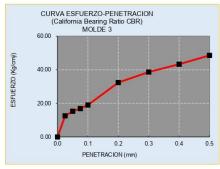
SERVICIOS Y BIENES DE CALIDAD

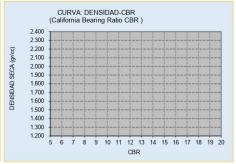
RUC: 20532797081

Mail: ceyse2009@hotmail.com


Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen




PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024


ENSAYO CALIFORNIA BEARING RATIO (CBR) X10 (SN+8%C)

Ubicación:	Calicata	C-4
Muestra:	Estrato	E1
Potencia:	profundidad	1.50m

PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	9.07	15.72
MOLDE 2	10.08	18.02
MOLDE 3	11.41	21.12

WOLDE	11.41	21.
(*) Valores	Correc	idos

	DENS	0.1	0.2	CBR	DMS:	
MOLDE 1	1.456	12.89	14.91	14.91	2.12	gr/cm ²
MOLDE 2	1.851	14.34	17.08	17.08	COH:	
MOLDE 3	2.324	16.23	20.03	20.03	22.31	%

C.B.R. Para el 100% de la M.D.S. =	18.78	%
C.B.R. Para el 95% de la M.D.S. =	15.02	%

Observaciones:

Ing. Civil SIMON CROONS INLAND

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio - Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

X11 (SN+12%C)

Ubicación:	Calicata	C-1							
Muestra:	Estrato	E1							
Potencia:	profundidad	1.50m							
			COMPA	CTACION C	BR		100		
MOLDE		1			2			3	
Altura Molde mm.	1	124			120			120	
N° Capas		5			5			5	
N°Golp x Capa		10			25			55	
Cond. Muestra	ANTES DE	EMPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES
P. Húm.+ Molde		11345.00	11382.80		12070.00	12100.51		13140.00	13160.54
Peso Molde (gr)		6766.00	6766.00		7258.00	7258.00		8105.00	8105.00
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54
Vol. Molde (cc)	1	2250.09	2250.09	1	2264.31	2264.31	ľ	2264.31	2264.31
Densidad H.(gr/cc)		2.04	2.05		2.13	2.14		2.22	2.23
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10
P. Muestra Seca	102.80	106.50	100.70	91.20	98.20	97.20	109.60	113.30	111.50
Cont. Humedad	9.05%	9.01%	9.93%	9.10%	9.06%	9.77%	9.03%	9.09%	9.51%
Cont.Hum.Prom.	19 Mar.	9.03%	9.93%		9.08%	9.77%		9.06%	9.51%
DENSIDAD SECA		1.456	1.456		1.851	1.851		2.324	2.324

ENSAYO DE HINCHAMIENTO

TIEMPO		NUMER	O DE MOLD	E	NUMERO	NUMERO DE MOLDE			NUMERO DE MOLDE		
ACUMULADO		LECTURA	HINCHAM	/IENTO	LECTURA	HINCHA	MIENTO	LECTURA	HINCHA	MIENTO	
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00	
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17	
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33	
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50	
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50	

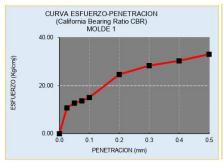
	\$100 m		ENSAYO CAI	RGA - PENET	FRACION			
PENETRACION			MOLDE N° 01		MOLDE N° 02	MOLDE N° 03		
(mm)	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO	
0.00	0.000	0	0.00	0	0.00	0	0.00	
0.64	0.025	107	5.45	112	5.70	114	5.81	
1.27	0.050	138	7.04	145	7.39	157	8.01	
1.91	0.075	159	8.08	174	8.84	192	9.76	
2.54	0.100	184	9.38	204	10.40	230	11.72	
5.08	0.200	318	16.20	363	18.49	424	21.59	
7.62	0.300	394	20.07	465	23.68	552	28.11	
10.16	0.400	447	22.77	552	28.11	661	33.66	
12.70	0.500	505	25.71	635	32.33	769	39.15	

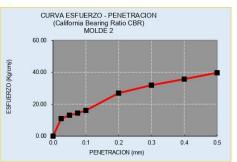
Observaciones:

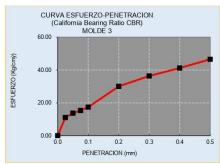
Ing. Civil SIMON ORDONO FALARO

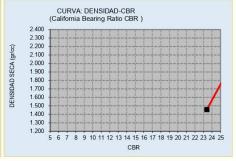
SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081






PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024


ENSAYO CALIFORNIA BEARING RATIO (CBR) X11 (SN+12%C)

Г	Ubicación:	Calicata	C-1	_
	Muestra:	Estrato	E1	
	Potencia:	profundidad	1.50m	

PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	9.38	16.20
MOLDE 2	10.40	18.49
MOLDE 3	11.72	21.59

	DENS	0.1	0.2	CBR	DMS:	
MOLDE 1	1.456	13.34	15.36	15.36	2.14	gr/cm ²
MOLDE 2	1.851	14.79	17.53	17.53	COH:	
MOLDE 3	2.324	16.67	20.48	20.48	21.18	%
		C.B.R. Para	el 100% de l	a M.D.S. =	19.34	%
		C.B.R. Para	el 95% de l	a M.D.S. =	15.55	%

Observaciones:

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

X11 (SN+12%C)

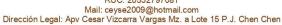
Ubicación:	Calicata	C-2							
Muestra:	Estrato	E1							
Potencia:	profundidad	1.50m							
			COMPA	CTACION C	BR		DE		m
MOLDE		1			2			3	
Altura Molde mm.		124			120			120	
N° Capas		5			5			5	
N°Golp x Capa		10			25			55	
Cond. Muestra	ANTES DE	EMPAPAR	DESPUES	ANTES DE I	EMPAPAR	DESPUES	ANTES DE I	EMPAPAR	DESPUES
P. Húm.+ Molde		11345.00	11382.80		12070.00	12100.51		13140.00	13160.54
Peso Molde (gr)		6766.00	6766.00		7258.00	7258.00		8105.00	8105.00
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54
Vol. Molde (cc)	1	2250.09	2250.09		2264.31	2264.31	ľ	2264.31	2264.31
Densidad H.(gr/cc)		2.04	2.05		2.13	2.14		2.22	2.23
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10
P. Muestra Seca	102.80	106.50	100.70	91.20	98.20	97.20	109.60	113.30	111.50
Cont. Humedad	9.05%	9.01%	9.93%	9.10%	9.06%	9.77%	9.03%	9.09%	9.51%
Cont.Hum.Prom.	2010	9.03%	9.93%		9.08%	9.77%		9.06%	9.51%
DENSIDAD SECA		1.456	1.456		1.851	1.851		2.324	2.324

9.08% 1.851

TIEMPO		NUMER	O DE MOLD	E	NUMERO	NUMERO DE MOLDE			NUMERO DE MOLDE		
ACUMULADO		LECTURA	HINCHAM	/IENTO	LECTURA	HINCHA	MIENTO	LECTURA	HINCHA	MIENTO	
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00	
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17	
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33	
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50	
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50	

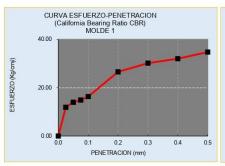
	ENSAYO CARGA - PENETRACION										
PENETRACION			MOLDE N° 01		MOLDE N° 02	MOLDE N° 03					
(mm)	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO				
0.00	0.000	0	0.00	0	0.00	0	0.00				
0.64	0.025	130	6.62	135	6.88	137	6.98				
1.27	0.050	163	8.30	170	8.66	182	9.27				
1.91	0.075	183	9.32	198	10.08	216	11.00				
2.54	0.100	209	10.64	229	11.66	255	12.99				
5.08	0.200	355	18.08	400	20.37	461	23.48				
7.62	0.300	430	21.90	501	25.52	588	29.95				

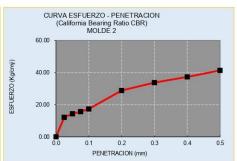
Observaciones:

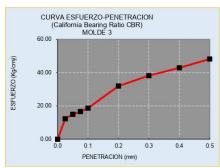

Ing. Civil SIMON ORDONO FALARO

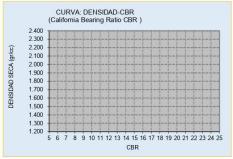
SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081






Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: G. FLORES M ING. RESP: N° REGISTRO: SIMON ORDOÑO P. PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS 025-002023-001 DEL KM: UBICACIÓN: SOLICITANTE: AL KM: FECHA: 01-11-2024 ACOPIO:


ENSAYO CALIFORNIA BEARING RATIO (CBR) X11 (SN+12%C)

Ubicación:	Calicata	C-2
Muestra:	Estrato	E1
Potencia:	profundidad	1.50m

PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	10.64	18.08
MOLDE 2	11.66	20.37
MOLDE 3	12.99	23.48

(*) Valores Corregidos

	DENS	0.1	0.2	CBR	DMS:	
MOLDE 1	1.456	15.14	17.14	17.14	2.13	gr/cm ²
MOLDE 2	1.851	16.59	19.32	19.32	COH:	
MOLDE 3	2.324	18.47	22.26	22.26	21.56	%

Observaciones:

Ing. Civil SIMON ORDONO PALAGO

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio - Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

X11 (SN+12%C)

Ubicación:	Calicata	C-3							
Muestra:	Estrato	E1							
Potencia:	profundidad	1.50m							
			COMPA	CTACION C	BR		. No.	_	
MOLDE		1			2			3	
Altura Molde mm.	1	124			120			120	
N° Capas		5			5			5	
N°Golp x Capa	1	10			25			55	
Cond. Muestra	ANTES DE	EMPAPAR	DESPUES	ANTES DE E	MPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES
P. Húm.+ Molde		11345.00	11382.80		12070.00	12100.51		13140.00	13160.54
Peso Molde (gr)		6766.00	6766.00		7258.00	7258.00		8105.00	8105.00
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54
Vol. Molde (cc)	1	2250.09	2250.09		2264.31	2264.31	ľ	2264.31	2264.31
Densidad H.(gr/cc)		2.04	2.05		2.13	2.14		2.22	2.23
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10
P. Muestra Seca	102.80	106.50	100.70	91.20	98.20	97.20	109.60	113.30	111.50
Cont. Humedad	9.05%	9.01%	9.93%	9.10%	9.06%	9.77%	9.03%	9.09%	9.51%
Cont.Hum.Prom.	3850	9.03%	9.93%		9.08%	9.77%		9.06%	9.51%
DENSIDAD SECA		1.456	1.456		1.851	1.851		2.324	2.324

ENSAYO DE HINCHAMIENTO

TIEMPO		NUMERO DE MOLDE NUMERO DE MOLDE			NUMER	O DE MOLD	Ē			
ACUMULADO		LECTURA	HINCHAI	MIENTO	LECTURA	HINCHAI	MIENTO	LECTURA	HINCHA	MIENTO
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50

	ENSAYO CARGA - PENETRACION										
PENETRACION	1		MOLDE N° 01		MOLDE N° 02	MOLDE N° 03					
(mm)	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO				
0.00	0.000	0	0.00	0	0.00	0	0.00				
0.64	0.025	153	7.79	158	8.05	160	8.15				
1.27	0.050	188	9.56	195	9.92	207	10.53				
1.91	0.075	207	10.56	222	11.33	240	12.24				
2.54	0.100	234	11.91	254	12.93	280	14.25				
5.08	0.200	392	19.96	437	22.26	498	25.36				
7.62	0.300	466	23.73	537	27.35	624	31.78				
10.16	0.400	513	26.13	618	31.47	727	37.03				
12.70	0.500	569	28.99	699	35.61	833	42.43				

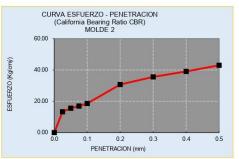
Ing. Civil SIMON ORDONO FALARO Observaciones:

186

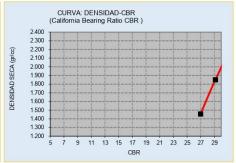
SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081

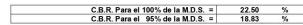
Mail: ceyse2009@hotmail.com Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen




Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: G. FLORES M SIMON ORDOÑO P. ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS 025-002023-001 DEL KM: UBICACIÓN: SOLICITANTE: AL KM: ACOPIO FECHA: 01-11-2024


ENSAYO CALIFORNIA BEARING RATIO (CBR) X11 (SN+12%C)

Ubicación:	Calicata	C-3	
Muestra:	Estrato	E1	
Potencia:	profundidad	1.50m	



PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	11.91	19.96
MOLDE 2	12.93	22.26
MOLDE 3	14.25	25.36

(*) Valores Corregidos

	DENS	0.1	0.2	CBR	DMS:	
MOLDE 1	1.456	16.94	18.93	18.93	2.07	gr/cm ²
MOLDE 2	1.851	18.38	21.10	21.10	COH:	7.77
MOLDE 3	2.324	20.27	24.05	24.05	25.46	%

Ing. Civil SIMON ORDONO FALARO Observaciones:

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

X11 (SN+12%C)

P. Muestra Seca Cont. Humedad	102.80 9.05%	106.50 9.01%	100.70 9.93%	91.20 9.10%	98.20 9.06%	97.20 9.77%	109.60 9.03%	113.30 9.09%	111.50 9.51%
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
Densidad H.(gr/cc)		2.04	2.05		2.13	2.14		2.22	2.23
Vol. Molde (cc)		2250.09	2250.09		2264.31	2264.31		2264.31	2264.31
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54
Peso Molde (gr)		6766.00	6766.00		7258.00	7258.00		8105.00	8105.00
Cond. Muestra P. Húm.+ Molde	ANTES DE	11345.00	11382.80	ANTES DE I	12070.00	12100.51	ANTES DE I	13140.00	13160.54
N°Golp x Capa		10			25			55	
N° Capas		5			5			5	
Altura Molde mm.		124			120			120	
MOLDE		1			2			3	
			COMPA	CTACION C	BR				
Potencia:	profundidad	1.50m							
Muestra:	Estrato	E1							
Ubicación:	Calicata	C-4							

TIEMPO ACUMULADO		NUMER	O DE MOLD	MOLDE NUMERO DE MOLDE				NUMER	O DE MOLD	Ē
		LECTURA	HINCHAI	HINCHAMIENTO		HINCHAMIENTO		LECTURA	HINCHAMIENTO	
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50

			ENSAYO CA	RGA - PENET	RACION				
PENETRACION	1		MOLDE N° 01		MOLDE N° 02		MOLDE N° 03		
(mm)	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO		
0.00	0.000	0	0.00	0	0.00	0	0.00		
0.64	0.025	136	6.91	141	7.17	143	7.27		
1.27	0.050	169	8.62	176	8.97	188	9.58		
1.91	0.075	189	9.63	204	10.39	222	11,31		
2.54	0.100	215	10.96	235	11.98	261	13.30		
5.08	0.200	364	18.55	409	20.84	470	23.95		
7.62	0.300	439	22.36	510	25.97	597	30.40		
10.16	0.400	488	24.87	593	30.21	702	35.77		
12.70	0.500	545	27.76	675	34.38	809	41.20		

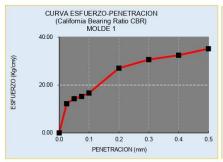
Observaciones:

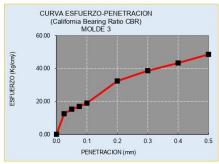
Ing. Civil SIMON ORDONO FALARO

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081

Mail: ceyse2009@hotmail.com


Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen


PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024


ENSAYO CALIFORNIA BEARING RATIO (CBR) X11 (SN+12%C)

Ubicación:	Calicata	C-4
Muestra:	Estrato	E1
Potencia:	profundidad	1.50m

PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	10.96	18.55
MOLDE 2	11.98	20.84
MOLDE 3	13.30	23.95

MOLDE 3	13.30	
(*) Valores	Correc	idos

	DENS	0.1	0.2	CBR	DMS:	
MOLDE 1	1.456	15.59	17.59	17.59	2.12	gr/cm ²
MOLDE 2	1.851	17.04	19.76	19.76	COH:	
MOLDE 3	2.324	18.92	22.71	22.71	22.31	%

C.B.R. Para el 100% de la M.D.S. =	21.46	%	-
C.B.R. Para el 95% de la M.D.S. =	17.70	%	

Ing. Civil SIMON ORDONO FALAGO Observaciones:

189

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio - Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

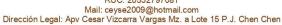
X12 (SN+15%C)

Muestra: Potencia:	Estrato profundidad	E1 1.50m	COMPA						
Potencia:	profundidad	1.50m	COMPA						
			COMPA						
			COMPA	CTACION C	BR		31		w
MOLDE		1			2			3	
Altura Molde mm.		124			120			120	
N° Capas		5			5			5	
N°Golp x Capa		10			25			55	
Cond. Muestra	ANTES DE I	MPAPAR	DESPUES	ANTES DE E	MPAPAR	DESPUES	ANTES DE E	MPAPAR	DESPUES
P. Húm.+ Molde		11345.00	11382.80		12070.00	12100.51		13140.00	13160.54
Peso Molde (gr)		6766.00	6766.00		7258.00	7258.00		8105.00	8105.00
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54
Vol. Molde (cc)	1	2250.09	2250.09		2264.31	2264.31		2264.31	2264.31
Densidad H.(gr/cc)		2.04	2.05		2.13	2.14		2.22	2.23
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10
P. Muestra Seca	102.80	106.50	100.70	91.20	98.20	97.20	109.60	113.30	111.50
Cont. Humedad	9.05%	9.01%	9.93%	9.10%	9.06%	9.77%	9.03%	9.09%	9.51%
Cont.Hum.Prom.	10000	9.03%	9.93%		9.08%	9.77%		9.06%	9.51%
DENSIDAD SECA		1.456	1.456		1.851	1.851		2.324	2.324
	122		ENSAYO E	DE HINCHAN	IIENTO				

		and the second s						the temperature of			
TIEMPO	TIEMPO		O DE MOLD	E	NUMER	NUMERO DE MOLDE			NUMERO DE MOLDE		
ACUMULADO		LECTURA HINCH		MIENTO	LECTURA	CTURA HINCHAMIENTO		LECTURA	HINCHAMIENTO		
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00	
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17	
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33	
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50	
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50	

	ENSAYO CARGA - PENETRACION										
PENETRACION		MOLDE N° 01			MOLDE N° 02		MOLDE N° 03				
(mm)	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO				
0.00	0.000	0	0.00	0	0.00	0	0.00				
0.64	0.025	211	10.72	216	10.98	218	11.08				
1.27	0.050	250	12.72	257	13.08	269	13.69				
1.91	0.075	268	13.67	283	14.43	301	15.35				
2.54	0.100	296	15.06	316	16.08	342	17.41				
5.08	0.200	485	24.68	530	26.97	591	30.07				
7.62	0.300	556	28.32	627	31.93	714	36.36				
10.16	0.400	596	30.33	701	35.68	810	41.23				
12.70	0.500	650	33.09	780	39.71	914	46.53				

Ing. Civil SIMON ORDONO FALARO Observaciones:



ACOPIO:

ARYU E.I.R.L.

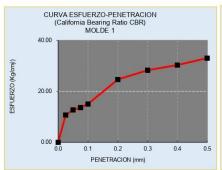
SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081

Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En PROYECTO: UBICACIÓN: SOLICITANTE:

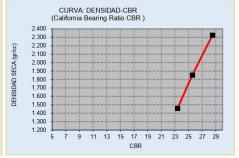
La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS

ING. RESP: N° REGISTRO: DEL KM: AL KM:


ASIST. LAB:

G. FLORES M SIMON ORDOÑO P. 025-002023-001

FECHA: 01-11-2024


ENSAYO CALIFORNIA BEARING RATIO (CBR) X12 (SN+15%C)

Calicata C-1 Estrato E1 profundidad 1.50m Ubicación: Muestra: Potencia:

PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	15.06	24.68
MOLDE 2	16.08	26.97
MOLDE 3	17.41	30.07

	DENS	0.1	0.2	CBR	DMS:	
MOLDE 1	1.456	21.43	23.40	23.40	2.14	gr/cm ²
MOLDE 2	1.851	22.88	25.57	25.57	COH:	
MOLDE 3	2.324	24.76	28.52	28.52	21.18	%

C.B.R. Para el 100% de la M.D.S. =

Observaciones:

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio - Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

X12 (SN+15%C)

Ubicación:	Calicata	C-2							
Muestra:	Estrato	E1							
Potencia:	profundidad	1.50m							
			COMPA	CTACION C	BR		DE	Acc.	w
MOLDE		1			2			3	
Altura Molde mm.		124			120			120	
N° Capas		5			5			5	
N°Golp x Capa		10			25			55	
Cond. Muestra	ANTES DE	EMPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES	ANTES DE I	EMPAPAR	DESPUES
P. Húm.+ Molde		11345.00	11382.80		12070.00	12100.51		13140.00	13160.54
Peso Molde (gr)		6766.00	6766.00		7258.00	7258.00		8105.00	8105.00
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54
Vol. Molde (cc)	1	2250.09	2250.09		2264.31	2264.31	ľ	2264.31	2264.31
Densidad H.(gr/cc)		2.04	2.05		2.13	2.14		2.22	2.23
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10
P. Muestra Seca	102.80	106.50	100.70	91.20	98.20	97.20	109.60	113.30	111.50
Cont. Humedad	9.05%	9.01%	9.93%	9.10%	9.06%	9.77%	9.03%	9.09%	9.51%
Cont.Hum.Prom.	1000	9.03%	9.93%		9.08%	9.77%		9.06%	9.51%
DENSIDAD SECA		1 4 5 6	1 456		1.851	1 851		2 324	2 324

ENSAYO DE HINCHAMIENTO

		and the second s						the second second		
TIEMPO		NUMER	O DE MOLD	E	NUMER	NUMERO DE MOLDE			NUMERO DE MOLDE	
ACUMULADO		LECTURA	HINCHAI	MIENTO	LECTURA	HINCHA	MIENTO	LECTURA	HINCHA	MIENTO
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50

	ENSAYO CARGA - PENETRACION									
PENETRACION	1	MOLDE N° 01			MOLDE N° 02		MOLDE N° 03			
(mm)	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO			
0.00	0.000	0	0.00	0	0.00	0	0.00			
0.64	0.025	234	11.89	239	12.15	241	12.25			
1.27	0.050	275	13.99	282	14.34	294	14.95			
1.91	0.075	293	14.91	308	15.68	326	16.59			
2.54	0.100	321	16.33	341	17.35	367	18.67			
5.08	0.200	522	26.56	567	28.85	628	31.96			
7.62	0.300	592	30.15	663	33.77	750	38.20			
10.16	0.400	629	32.01	734	37.36	843	42.91			
12.70	0.500	682	34.73	812	41.35	946	48.17			

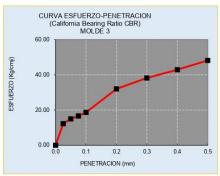
Ing. Civil SIMON ORDONO FALARO Observaciones:

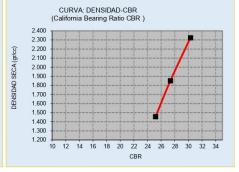
SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081






	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso	ASIST. LAB:	G. FLORES M
PROYECTO:	Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ING. RESP:	SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH, ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:	Exception to the second contract of the second second contract of the second contract of th	FECHA:	01-11-2024


ENSAYO CALIFORNIA BEARING RATIO (CBR) X12 (SN+15%C)

Ubicación:	Calicata	C-2	
Muestra:	Estrato	E1	
Potencia:	profundidad	1.50m	

PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	16.33	26.56
MOLDE 2	17.35	28.85
MOLDE 3	18.67	31.96

	DENS	0.1	0.2	CBR	DMS:	
MOLDE 1	1.456	23.22	25.18	25.18	2.13	gr/cm ²
MOLDE 2	1.851	24.67	27.36	27.36	COH:	
MOLDE 3	2.324	26.55	30.30	30.30	21.56	%

C.B.R. Para el 100% de la M.D.S. = C.B.R. Para el 95% de la M.D.S. =

Ing. Civil SIMON ORDONO FALACO

Observaciones:

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio - Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

X12 (SN+15%C)

Ubicación:	Calicata	C-3							
Muestra:	Estrato	E1							
Potencia:	profundidad	1.50m							
			COMPA	CTACION C	BR		DE	78°	W
MOLDE		1			2			3	
Altura Molde mm.	1	124			120			120	
N° Capas		5			5			5	
N°Golp x Capa		10			25			55	
Cond. Muestra	ANTES DE	EMPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES
P. Húm.+ Molde		11345.00	11382.80		12070.00	12100.51		13140.00	13160.54
Peso Molde (gr)		6766.00	6766.00		7258.00	7258.00		8105.00	8105.00
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54
Vol. Molde (cc)	1	2250.09	2250.09		2264.31	2264.31	ľ	2264.31	2264.31
Densidad H.(gr/cc)		2.04	2.05		2.13	2.14		2.22	2.23
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10
P. Muestra Seca	102.80	106.50	100.70	91.20	98.20	97.20	109.60	113.30	111.50
Cont. Humedad	9.05%	9.01%	9.93%	9.10%	9.06%	9.77%	9.03%	9.09%	9.51%
Cont.Hum.Prom.	1000	9.03%	9.93%		9.08%	9.77%		9.06%	9.51%
DENSIDAD SECA		1.456	1.456		1.851	1.851		2.324	2.324

1.456 1.456 1.851 ENSAYO DE HINCHAMIENTO

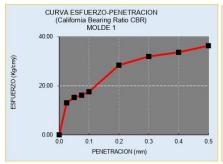
TIEMPO		NUMERO DE MOLDE			NUMERO	NUMERO DE MOLDE			NUMERO DE MOLDE		
ACUMULADO		LECTURA	HINCHAM	/IENTO	LECTURA	HINCHA	MIENTO	LECTURA	HINCHA	MIENTO	
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00	
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17	
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33	
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50	
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50	

ENSAYO CARGA - PENETRACION										
PENETRACION		1	MOLDE N° 01		MOLDE N° 02		MOLDE N° 03			
(mm)	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO			
0.00	0.000	0	0.00	0	0.00	0	0.00			
0.64	0.025	257	13.06	262	13.32	264	13.42			
1.27	0.050	299	15.25	306	15.60	318	16.22			
1.91	0.075	317	16.15	332	16.92	350	17.84			
2.54	0.100	345	17.59	365	18.61	391	19.93			
5.08	0.200	559	28.44	604	30.74	665	33.84			
7.62	0.300	628	31.98	699	35.60	786	40.03			

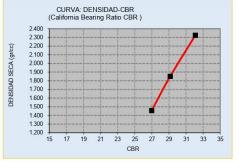
Ing. Civil SIMON ORDONO FALARO Observaciones:

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081




PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
THOTEOIO.	La Avenida Paraíso Distrito De San Antonio – Moquegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH, ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024


ENSAYO CALIFORNIA BEARING RATIO (CBR) X12 (SN+15%C)

Ubicación:	Calicata	C-3	
Muestra:	Estrato	E1	
Potencia:	profundidad	1.50m	

PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	17.59	28.44
MOLDE 2	18.61	30.74
MOLDE 3	19.93	33.84

	DENS	0.1	0.2	CBR	DMS:	
MOLDE 1	1.456	25.02	26.97	26.97	2.07	gr/cm ²
MOLDE 2	1.851	26.47	29.14	29.14	COH:	
MOLDE 3	2.324	28.35	32.09	32.09	25.46	%

C.B.R. Para el 100% de la M.D.S. = C.B.R. Para el 95% de la M.D.S. =

Ing. Civil SIMON ORDONO FALACO

Observaciones:

195

PROYECTO:	Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En	ASIST. LAB: ING. RESP:	G. FLORES M SIMON ORDOÑO P.
	La Avenida Paraíso Distrito De San Antonio – Moguegua 2023	N° REGISTRO:	025-002023-001
UBICACIÓN:	Dist. San Antonio / Moquegua / Av. Paraiso	DEL KM:	
SOLICITANTE:	BACH. ROBIN RAFAEL RAMOS RAMOS	AL KM:	
ACOPIO:		FECHA:	01-11-2024

ENSAYO CALIFORNIA BEARING RATIO (CBR)

X12 (SN+15%C)

Ubicación: Muestra:	Calicata Estrato	C-4 E1							
Potencia:	profundidad	1.50m							
rotericia.	profundidad	1.50111	COMPA	CTACION C	BR				
MOLDE		1			2		i e	3	iii.
Altura Molde mm.		124			120			120	
N° Capas		5			5			5	
N°Golp x Capa		10			25			55	
Cond. Muestra	ANTES DE	EMPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES	ANTES DE I	MPAPAR	DESPUES
P. Húm.+ Molde		11345.00	11382.80		12070.00	12100.51		13140.00	13160.54
Peso Molde (gr)		6766.00	6766.00		7258.00	7258.00		8105.00	8105.00
Peso Húmedo (gr)		4579.00	4616.80		4812.00	4842.51		5035.00	5055.54
Vol. Molde (cc)	1	2250.09	2250.09		2264.31	2264.31		2264.31	2264.31
Densidad H.(gr/cc)		2.04	2.05		2.13	2.14		2.22	2.23
Número de Ensayo	1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
P.Húmedo + Tara	147.20	150.30	145.50	135.50	140.20	141.20	152.30	158.10	160.20
Peso Seco + Tara	137.90	140.70	135.50	127.20	131.30	131.70	142.40	147.80	149.60
Peso Agua (gr)	9.30	9.60	10.00	8.30	8.90	9.50	9.90	10.30	10.60
Peso Tara (gr)	35.10	34.20	34.80	36.00	33.10	34.50	32.80	34.50	38.10
P. Muestra Seca	102.80	106.50	100.70	91.20	98.20	97.20	109.60	113.30	111.50
Cont. Humedad	9.05%	9.01%	9.93%	9.10%	9.06%	9.77%	9.03%	9.09%	9.51%
Cont.Hum.Prom.	3000	9.03%	9.93%		9.08%	9.77%		9.06%	9.51%
DENSIDAD SECA		1.456	1.456		1.851	1.851		2.324	2.324

9.03% 9.93% 9.08° 1.456 1.456 1.85 ENSAYO DE HINCHAMIENTO

TIEMPO		NUMERO DE MOLDE			NUMERO	NUMERO DE MOLDE			NUMERO DE MOLDE		
ACUMULADO		LECTURA	HINCHAI	MIENTO	LECTURA	HINCHAI	MIENTO	LECTURA	HINCHA	MIENTO	
(Hs)	(Días)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	DEFORM.	(mm)	(%)	
0	0	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00	
24	1	0.600	0.600	0.48	0.300	0.300	0.25	0.200	0.200	0.17	
48	2	0.900	0.900	0.73	0.700	0.700	0.58	0.400	0.400	0.33	
72	3	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50	
96	4	1.200	1.200	0.97	0.900	0.900	0.75	0.600	0.600	0.50	

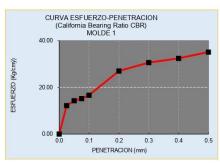
	ENSAYO CARGA - PENETRACION										
PENETRACION		N	MOLDE N° 01		MOLDE N° 02	MOLDE N° 03					
(mm)	(pulg)	CARGA	ESFUERZO	CARGA	ESFUERZO	CARGA	ESFUERZO				
0.00	0.000	0	0.00	0	0.00	0	0.00				
0.64	0.025	239	12.18	244	12.44	246	12.54				
1.27	0.050	281	14.30	288	14.66	300	15.27				
1.91	0.075	299	15.22	314	15.99	332	16.90				
2.54	0.100	327	16.64	347	17.66	373	18.99				
5.08	0.200	531	27.03	576	29.32	637	32.43				
7.62	0.300	601	30.61	672	34.22	759	38.66				
10.16	0.400	637	32.43	742	37.78	851	43.33				
12.70	0.500	690	35.14	820	41.76	954	48.58				

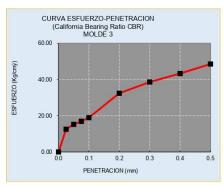
Observaciones:

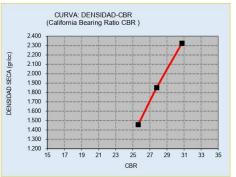
Ing. Civil SIMON ORDONO FALARO

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081


Mail: ceyse2009@hotmail.com Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen


Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En ASIST. LAB: G. FLORES M SIMON ORDOÑO P. ING. RESP: N° REGISTRO: PROYECTO: La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraíso BACH. ROBIN RAFAEL RAMOS RAMOS 025-002023-001 DEL KM: UBICACIÓN: SOLICITANTE: AL KM: FECHA: 01-11-2024 ACOPIO:


ENSAYO CALIFORNIA BEARING RATIO (CBR) X12 (SN+15%C)

Ubicación:	Calicata	C-4	
Muestra:	Estrato	E1	
Potencia:	profundidad	1.50m	

PENTRC.	0.1 (*)	0.2 (*)
MOLDE 1	16.64	27.03
MOLDE 2	17.66	29.32
MOLDE 3	18.99	32.43

	DENS	0.1	0.2	CBR	DMS:	
MOLDE 1	1.456	23.67	25.63	25.63	2.12	gr/cm ²
MOLDE 2	1.851	25.12	27.80	27.80	COH:	
MOLDE 3	2.324	27.00	30.75	30.75	22.31	%

C.B.R. Para el 100% de la M.D.S. = C.B.R. Para el 95% de la M.D.S. =

Ing. Civil SIMON ORDONO FALAGO

Observaciones:

197

SERVICIOS Y BIENES DE CALIDAD

RUC: 20532797081

Mail: ceyse2009@hotmail.com

Dirección Legal: Apv Cesar Vizcarra Vargas Mz. a Lote 15 P.J. Chen Chen

Estabilización De La Subrasante De Suelos Arenoso-Arcilloso Con Adición Parcial De La Ceniza De Hoja De Cebolla Roja En La Avenida Paraíso Distrito De San Antonio – Moquegua 2023 Dist. San Antonio / Moquegua / Av. Paraiso BACH. ROBIN RAFAEL RAMOS RAMOS ASIST. LAB: ING. RESP: N° REGISTRO: G. FLORES M SIMON ORDOÑO P. 025-002023-001 PROYECTO: UBICACIÓN: DEL KM: SOLICITANTE: ACOPIO: AL KM: FECHA: 01-11-2024

Ensayo :

CONTENIDO NATURAL DE HUMEDAD :

Norma:

ASTM D 2216

PESO ESPECÍFICO :

Norma :

ASTM D 854

Observaciones :		Ubicación :	C - 1	
		Estrato :	E-1	
		Potencia :	1.50	m
Tara Número	Unidades	1	2	3
Peso Tara + Muestra Húmeda	Gr	115.60	89.80	95.20
Peso Tara + Muestra Seca	Gr	96.20	73.90	79.50
Peso de la Tara	Gr	44.70	31.80	37.50
Peso de la Muestra Seca	Gr	51.50	42.10	42.00
Peso del Agua	Gr	19.40	15.90	15.70
Contenido de Humedad	%	37.67	37.77	37.38
Promedio				
Promedio	-123		37.61	
20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -			37.61	
Promedio PESO ESPECÍFICO : Observaciones :		Ubicación :	37.61 C - 1	
PESO ESPECÍFICO :		Ubicación : Estrato :		
PESO ESPECÍFICO :			C - 1	m
PESO ESPECÍFICO : Observaciones :	Unidades	Estrato :	C - 1 E-1	m 3
PESO ESPECÍFICO :	Unidades Gr	Estrato : Potencia :	C - 1 E-1 1.50	7
PESO ESPECÍFICO : Observaciones : Tara Número		Estrato : Potencia :	C - 1 E-1 1.50	121.20
PESO ESPECÍFICO : Observaciones : Tara Número Peso del Suelo Seco Peso Frasco Vacio	Gr	Estrato : Potencia : 1 114.20	C - 1 E-1 1.50 2 129.30	3 121.20 164.00
PESO ESPECÍFICO : Observaciones : Tara Número Peso del Suelo Seco Peso Frasco Vacío Peso Frasco + Agua	Gr Gr	Estrato : Potencia : 1 114.20 164.00	C - 1 E-1 1.50 2 129.30 164.00	3 121.20 164.00 660.00
PESO ESPECÍFICO : Observaciones : Tara Número Peso del Suelo Seco	Gr Gr Gr	Estrato : Potencia : 1 114.20 164.00 660.00	C - 1 E-1 1.50 2 129.30 164.00 660.00	3

Ing. Civil SIMON ORDONO FALACO Observaciones:

Anexo 03. Certificados de calibración

03.01. Certificado de calibración de molde Proctor

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL-674-2024

Página 1 de 2

Expediente Fecha de emisión : 063-2024 : 2024-02-16

1. Solicitante

: ARYU E.I.R.L.

Dirección

: APV CESAR VIZCARRA VARGAS MZA. A LOTE. 15 P.J.

CHEN CHEN - MOQUEGUA - MARISCAL NIETO MOQUEGUA

2. Instrumento de Medición

: MARTILLO PROCTOR

Capacidad

: NO INDICA

Marca Serie

: 0261396068-002

Material

: HIERRO

Color

: PLATEADO

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes

Punto de Precisión S.A.C no se

responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

calibración aquí declarados.

3. Lugar y fecha de Calibración

APV CESAR VIZCARRA VARGAS MZA. A LOTE. 15 P. J. CHEN CHEN - MOQUEGUA - MARISCAL NIETO - MOQUEGUA

12 - FEBRERO - 2024

4. Método de Calibración

Por Comparación, tomando como referencia la Norma ASTM D 698 - ASTM D 1557

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
PIE DE REY	MITUTOYO	DM23-C-0239-2023	INACAL - DM
REGLA	MITUTOYO	1AD-1432-2023	INACAL - DM
BALANZA	KERN	LM-002-2024	PUNTO DE PRECISIÓN

6. Condiciones Ambientales

	INICIAL	FINAL
Temperatura °C	26,7	26,7
Humedad %	49	48

7. Observaciones

Los resultados de las mediciones efectuadas se muestran en la página 02 del presente documento

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620 Www.puntodeprecision.com E-mail: ventas@puntodeprecision.com.pe / puntodeprecision@hotmail.com
PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

CERTIFICADO DE CALIBRACIÓN Nº LL-674-2024

Página : 2 de 2

Resultados de Verificación

MEDICIONES	ALTURA DE CAIDA	PESO	DIÁMETRO DE CARA DE IMPACTO
	mm	g	mm
1	458	4527,26	50,88
2	458	4527,26	50,82
3	457	4527,26	50,76
4	457	4527,26	50,74
5	458	4527,26	50,77
6	458	4527,26	50,78
PROMEDIO	457,7	4527,26	50,79
ESTANDAR	457,2	4536,4	50,80
TOLERANCIA ±	1,3 mm	9 g	0,13 mm
ERROR	0,5 mm	-9.14 g	-0,01 mm

FIN DEL DOCUMENTO

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620
www.puntodeprecision.com E-mail: ventas@puntodeprecision.com.pe / puntodeprecision@hotmail.com
PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

CERTIFICADO DE CALIBRACIÓN Nº LL-675-2024

Página : 1 de 2

Expediente Fecha de emisión : **063-2024** : 2024-02-16

1. Solicitante

: ARYU E.I.R.L.

Dirección

: APV CESAR VIZCARRA VARGAS MZA. A LOTE. 15 P.J. CHEN CHEN - MOQUEGUA - MARISCAL NIETO -

MOQUEGUA

2. Instrumento de Medición

: MOLDE PROCTOR 6"

Marca

: NO INDICA

Corio

: NO INDICA

Material

: HIERRO

Color

: PLATEADO

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precision S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados

3. Lugar y fecha de Calibración

APV CESAR VIZCARRA VARGAS MZA. A LOTE. 15 P.J. CHEN CHEN - MOQUEGUA - MARISCAL NIETO - MOQUEGUA 12 - FEBRERO - 2024

4. Método de Calibración

Por Comparación, tomando como referencia la Norma ASTM D 698 - ASTM D 1557.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
PIE DE REY	MITUTOYO	DM23-C-0239-2023	INACAL - DM

6. Condiciones Ambientales

	INICIAL	FINAL	
Temperatura °C	26,5	26,5	
Humedad %	49	49	

7. Observaciones

Los resultados de las mediciones efectuadas se muestran en la página 02 del presente documento.

Jefé de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

6

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620 www.puntodeprecision.com E-mail: ventas@puntodeprecision.com.pe / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

CERTIFICADO DE CALIBRACIÓN Nº LL-675-2024

Página : 2 de 2

DIÁMETRO SUPERIOR DEL MOLDE (A)

DIÁMETRO INFERIOR DEL MOLDE (B)

N° DE MEDICIONES	DIÁMETRO INTERIOR SUPERIOR	DIÁMETRO INTERIOR INFERIOR	ALTURA
	A	В	h
	mm 450.40	mm 152,24	mm 116.10
1	152,40	The state of the s	
2	152,28	152,54	116,35
3	152,52	152,30	116,29
4	152,29	152,35	116,24
5	152,40	152,46	116,18
6	152,32	152,54	116,28
PROMEDIO	152,37	152,41	116,24
ESTÁNDAR	152,40	152,40	116,40
TOLERANCIAS (±)	0,70	0,70	0,50
ERROR	-0,03	0,00	-0,16
VOLUMEN DETERMINADO POR MEDIDAS LINEALES	2120 cm ³		

EIN DEL DOCUMENT

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620 www.puntodeprecision.com E-mail: ventas@puntodeprecision.com.pe / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

03.02. Certificado de calibración CBR

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LFP-163-2024

Página 1 de 6

Expediente Fecha de Emisión : 063-2024 : 2024-02-16

1. Solicitante

: ARYU E.I.R.L.

Dirección

APV CESAR VIZCARRA VARGAS MZA. A LOTE. 15 P.J. CHEN CHEN - MOQUEGUA - MARISCAL NIETO -

MOQUEGUA : ANILLO DE CARGA DE PRENSA CBR

2. Descripción del Equipo

: ORION

Marca de Prensa Modelo de Prensa Serie de Prensa

: NO INDICA

Marca de Anillo Modelo de Anillo Serie de Anillo Capacidad del Anillo : ORION : NO INDICA : 059

: 10000 lb

Marca del Dial Modelo del Dial Serie del Dial Procedencia

Código de Identificación

: ELE : 88-4000 : 062079361 : USA : NO INDICA El Equipo de medición con el modelo y número de serie abajo. Indicados ha sidocalibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precision S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración adul declarados.

3. Lugar y fecha de Calibración

APV CESAR VIZCARRA VARGAS MZA. A LOTE. 15 P.J. CHEN CHEN - MOQUEGUA - MARISCAL NIETO - MOQUEGUA

13 - FEBRERO - 2024

4. Método de Calibración

La calibración se realizó por el método de comparación del dial del anillo y la lectura de celda patrón.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
CELDA DE CARGA	ZEMIC		SISTEMA
INDICADOR	AEP TRANSDUCERS	MT-8009-2023	INTERNACIONAL
		AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	

6. Condiciones Ambientales

1, 40 EL	INICIAL	FINAL
Temperatura °C	27,1	27,1
Humedad %	48	48

7. Observaciones

Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

Jele de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620

www.puntodeprecision.com E-mail: ventas@puntodeprecision.com.pe / puntodeprecision@hotmail.com

PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

CERTIFICADO DE CALIBRACION Nº LFP-163-2024

Página 2 de 6

TABLA Nº 1

SISTEMA	SERIES DE VERIFICACIÓN (kgf)			PROMEDIO
"A"	SERIE 1	SERIE 2	SERIE 3	kgf
100	419.30	418,35	418,70	418,78
200	803.70	802.20	802,35	802,75
300	1 190,60	1 189.20	1 189,90	1 189,90
400	1 592.20	1 591,95	1.591.70	1 591,95
500	1 993,00	1 992,70	1 992,20	1 992,63
7	2 382.25	2 381,10	2 381,15	2 381,50
700	2 792,30	2 791,05	2 791,10	2 791,48

NOTAS SOBRE LA CALIBRACIÓN

Coeficiente Correlación:

 $R^{2} = 0,9999$

Ecuación de ajuste para valores en kgf

y = 3,9565x + 12,9524

x : Lectura del dial y : Fuerza promedio (kgf)

y = 8,7227x + 28,5551

Ecuación de ajuste para valoresen lbf :

x : Lectura del dial y : Fuerza promedio (lbf)

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620
www.puntodeprecision.com E-mail: ventas@puntodeprecision.com.pe / puntodeprecision@hotmail.com
PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

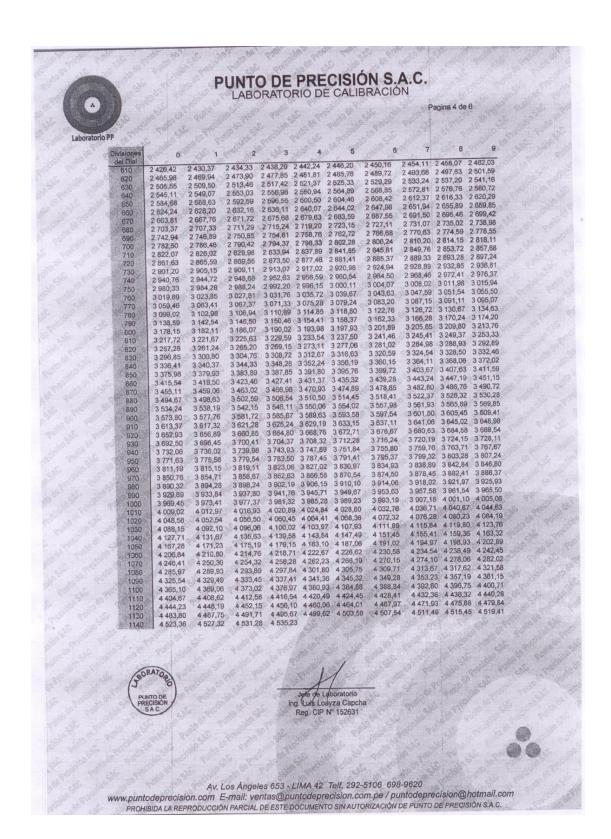
CARTA DE CALIBRACIÓN EN kgf

Página 3 de 6

Marca del Dial Modelo del Dial Serie del Dial Código de Identificación

ELE 88-4000 062079361 NO INDICA

y = 3,9565x + 12,9524


Divisiones	0	19	2	3	4	5	6	7	8	5
del Dial		440.50	416,52	420,47	424,43	428,38	432,34	436,30	440,25	444,21
100	408,60	412,56	456,08	460,04	463,99	467,95	471,91	475,86	479,82	483,78
110	448,17	452,12	495,65	499,60	503,56	507,51	511,47	515,43	519,38	523,34
120	487,73	491,69	535,21	539,17	543,12	547,08	551.04	554,99	558,95	562,91
130	527,30	531,25	574,78	578,73	582,69	586,64	590,60	594,56	598,51	602,47
140	566,86	570,82 610,38	614,34	618,30	622,25	626,21	630,17	634,12	638,08	642,04
150	606,43	649,95	653,91	657,86	661,82	665,77	669,73	673,69	677,64	681,60
160	645,99	689,51	693,47	697,43	701.38	705,34	709,30	713,25	717,21	721,17
170	685,56		733,04	736,99	740,95	744,90	748,86	752,82	756,77	760,73
180	725,12	729,08	772,60	776,56	780,51	784,47	788,43	792,38	796,34	800,30
190	764,69	768,64	812,17	816,12	820.08	824,03	827,99	831,95	835,90	839,86
200	804,25	808,21	851.73	855,69	859,64	863,60	867,56	871,51	875,47	879,43
210	843,82	847,77	891,30	895,25	899,21	903,16	907,12	911,08	915,03	918,99
220	883,38	887,34		934,82	938.77	942,73	946,69	950,64	954,60	958,56
230	922,95	926,90	930,86	974,38	978,34	982,29	986,25	990.21	994,16	998,12
240	962,51	966,47	970,43		1 017.90	1 021,86	1 025,82	1 029,77	1 033,73	1 037,6
250	1 002,08	1 006,03	1 009,99	1 053,55	1 057.47	1 061,42	1 065,38	1 069.34	1 073,29	1.077,2
260	1 041,64	1 045,60	1 049,56			1 100,99	1 104,95	1 108.90	1 112,86	1 116,8
270	1 081,21	1 085,16	1 089,12	1 132,64		1 140,55	1 144,51	1 148,47	1 152,42	1 156,3
280	1 120,77	1 124,73	1 128,69	1 172,21	1 176,16	1 180,12	1 184,08	1 188,03	1 191,99	1 195,9
290	1 160,34	1 164,29	1 168,25	1211,77		1 219,68	1 223,64	1 227,60	1 231,55	1 235,
300	1 199,90	1 203,86	1 207,82		1 255,29	1 259,25	1 263,21	1 267,16		1 275,0
310	1 239,47	1 243,42	1 247,38			1 298,81	1 302,77	1 306.73	1 310,68	1 314,6
320	1 279,03	1 282,99	1 286,95	1 330,47	1 334.42	1 338,38	1 342,34	1 346.29	1 350,25	1 354,
330	1 318,60	1 322,55	1 326,51	1 370,03	1 373,99	1 377,94	1 381,90	1 385,86	1 389,81	1 393,
340	1 358,16	1 362,12	1 366,08		1 413,55	1 417,51	1 421,47	1 425,42	1 429,38	1 433,
350	1 397,73	1 401,68	1 405,64	1 449,16	1 453,12	1.457,07	1 461,03	1 464.99	1 468,94	1 472
360	1 437,29	1 441,25	1 445,21		1 492,68	1 496,64	1 500,60	1 504,55	1 508,51	1 512,
370	1 476,86	1 480,81	1 484,77		1 532,25	1 536,20	1 540,16	1 544.12	1 548,07	1 552,
380	1 516,42	1 520,38	1 524,34	1 528,29		1 575,77	1 579.73	1 583,68	1 587,64	
390	1 555,99	1 559,94	1 563,90	1 567,86	1 571,81	1 615,33	1 619,29	1 623,25	1 627,20	
400	1 595,55	1 599,51	1 603,47		1 611,38	1 654,90	1 658,86	1 662,81	1 666,77	
410	1 635,12	1 639,07	1 643,03	1 646,99	1 650,94	1 694,46	1 698,42	1.702,38	1 706,33	
420	1 674,68	1 678,64	1 682,60	1 686,55	1 690,51		1 737,99	1741,94	BOOK OF THE STATE OF	
430	1 714,25	1 718,20	1 722,16	1 726,12	1 730,07	1 734,03	1 777,55	1 781.51	1 785,46	
440	1 753,81	1 757,77	1 761,73	1 765,68		1 773,59	1 817,12	1 821,07	THE RESERVE OF THE PARTY OF THE	
450	1 793,38	1 797,33	1 801,29	1 805,25		1 813,16	1 856,68	1 860,64		
460	1 832,94	1 836,90	1 840,86	1 844,81		1 852,72	1 896,25		1 904,16	
470	1 872,51	1 876,46	1 880,42	1 884,38		1 892,29		1 939,77		
480	1 912,07	1 916,03	1 919,99	1 923,94		1 931,85	1 935,81	1 979,33		
490	1 951,64	1 955,59	1 959,55	1 963,51	1 967,46	1 971,42	1 975,38		2 022,85	
500	1 991,20	1 995,16	1,999,12	2 003,07		2 010,98	2 014,94	N 1985 CO. CO. LANS		
510	2 030,77	2 034,72	2 038,68	2 042,64		2 050,55	2 054,51	2 058,46		
520	2 070,33	2 074,29	2 078,25		2 086,16	2 090,11	2 094,07		2 101,98	
530	2 109,90	2 113,85	2 117,81	2 121,77		2 129,68	2 133,64	2 137,59		
540	2 149,46	2 153,42	2 157,38		2 165,29	2 169,24	2 173,20	2 177,16		
550	2 189,03	2 192,98	2 196,94			2 208,81	2 212,77	2 216,72		
560	2 228,59	2 232,55	2 236,51				2 252,33	2 256,29		
570	2 268,16	2 272,11	2 276,07				2 291,90	2 295,85		
580	2.307,72	2 311,68	2 315,64				2 331,46	2 335,42		
590	2 347,29	2 351,24	2 355,20			2 367,07	2 371,03	2 374,98		
600	2 386,85	2 390,81	2 394,77	2 398,72	2 402,68	2 406,63	2 410,59	2 414,5	2 418,5	2 422

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Tell. 292-5106 698-9620

www.puntodeprecision.com E-mail: ventas@puntodeprecision.com.pe / puntodeprecision@hotmail.com
PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

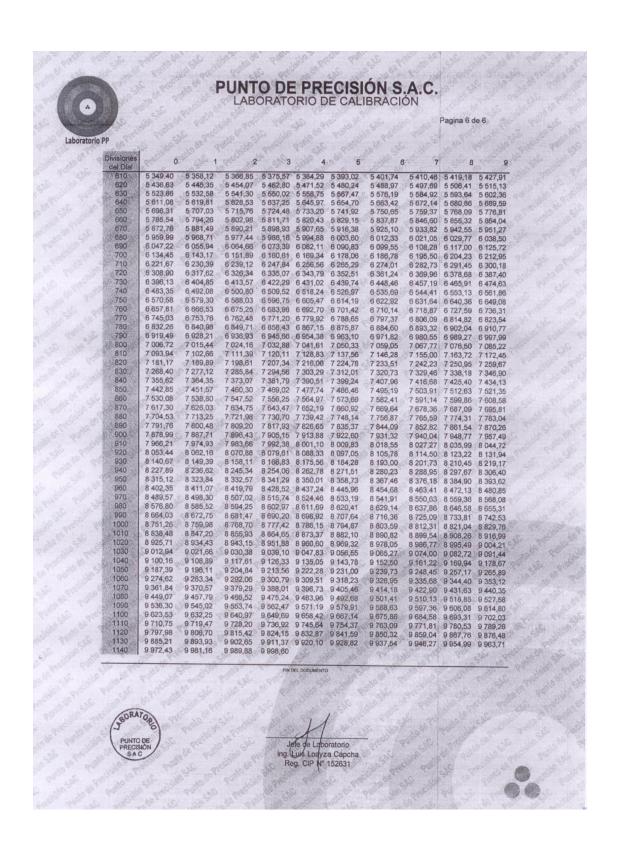
CARTA DE CALIBRACIÓN EN Ibf

Página 5 de 6

Marca de Prensa Marca de Anillo Serie de Anillo Capacidad del Anillo ORION ORION 059 10000 lb

Marca del Dial Modelo del Dial Serie del Dial Código de Identificación

88-4000 062079361 NO INDICA


y = 8,7227x + 28,5551

Divisiones	600	10 63	2	3	4	5	6	7	8	9
del Dial	0	to Pay	Carlot S	0, 70	000	40 500	953,16	961.88	970,61	979,33
100	900,83	909,55	918,27	926,99	935,72	944,44	1 040.39		1 057,83	1 066,56
110	988,05	996,77		1 014,22		1 118,89	1 127,62		1 145,06	1 153,78
120	1 075,28	1 084,00				1 206,12	1 214,84			1 241,01
130	1 162,51	1 171,23	1 179,95	1 188,67		1 293,35	1 302,07		1 319,51	1 328,24
140	1 249,73	1 258,46	1,267,18	THE RESERVE TO SERVE		1 380,57	1 389,30	1 398,02	1 406,74	1 415,48
150	1 336,96		1 354,41	1 363,13		1 467,80	1 476,52		1 493,97	1 502,69
160		1 432,91	1 441,63			1 555,03	1 563,75		1 581,20	1 589,92
170	1 511,41	The second second second	1 616,09	1 624,81		1 642,25	1 650,98		1 668,42	1 677,15
180	1 598,64					1 729,48	1 738.20	1 746,93	1 755,65	1 764,37
190	1 685,87	1 694,59	1 703,31		1 807,99	1 816,71	1 825,43	1 834.15	1 842,88	1 851,60
200	1 773,10	1 781,82	1 877,77	1 886,49		1 903.94	1 912,66	1 921,38	1 930,10	1 938,83
210	1 860,32	1 869,04			1 982,44	1 991,16	1 999,89	2 008,61	2 017,33	2 026,05
220	1 947,55	1 956,27	1 964,99	2 060,94		2.078,39	2 087,11	2 095,84	2 104,56	2 113,28
230	2 034,78	2 043,50	2 052,22		2 156,89	2 165,62	2 174,34	2 183,06	2 191.78	2 200,51
240	2 122,00	2 130,73	2 139,45	2 235,40		2 252,84	2 261,57	2 270,29	2 279,01	2 287,73
250	2 209,23	2 217,95	2 226,68		2 331,35	2 340,07	2 348,79	2 357.52	2 366,24	2 374,96
260	2 296,46	2 305,18	2 313,90 2 401,13		2 418,57	2 427,30	2 436,02	2 444,74	2 453,47	2 462,19
270	2 383,68	2 392,41	2 488.36	2 497,08		2 514,52	2 523,25	2 531,97	2 540,69	2 549,42
280	2 470,91	2 479,63	2 575,58	2 584,31	2 593,03	2 601,75	2 610,47	2 619.20	2 627,92	2 636,64
290	2 558,14	2 566,86	2 662,81	2 671,53		2 688,98	2 697,70	2 706,42	2 715,15	2 723,87
300	2 645,37	2 654,09	2 750,04	2 758,76	2 767,48	2 776,21	2 784,93	2 793,65	2 802,37	2811,10
310	2 732,59	2 828,54	2 837,26	2 845,99	2 854,71	2 863,43	2 872,16	2 880,88	2 889,60	2 898,32
320	2 819,82	2 915,77	2 924,49	2 933,21	2 941,94	2 950,66	2 959,38	2 968,11	2 976,83	2 985,55
330	2 907,05	3 003.00	3 011,72	3 020,44	3 029,16	3 037,89	3 046,61	3 055,33	3 064,05	3 072,78
340	2 994,27 3 081,50	3 090,22	3 098,95	3 107,67		3 125,11	3 133,84	3 142,56	3 151,28	3 160,00
350 360	3 168,73	3 177,45	3 186,17	3 194,90	3 203,62	3 212,34	3 221,06	3 229,79	3 238,51	3 247,23
370	3 255,95	3 264,68	3 273,40		3 290,84	3 299,57	3 308,29	3 317,01	3 325,74	3 334,46
380	3 343,18	3 351,90	3 360,63	3 369,35	3.378,07	3 386,79	3 395,52	3 404,24	3 412,96	3.421,69
390	3 430,41	3 439,13	3 447,85	3 456,58	3 465,30	3 474.02	3 482,74	3 491,47	3 500,19	3 508,91
400	3 517.64	3 526.36	3 535,08	3 543,80	3 552,53	3 561,25	3 569,97	3 578,69	3 587,42	3 596,14
410	3 604,86	3 613.58	3 622,31	3 631,03	3 639,75	3 648,48	3 657,20	3 665,92	3 674,64	3 683,37
420	3 692,09	3 700,81	3 709,53	3 718,26	3 726,98	3 735,70	3 744,43	3 753,15	3 761,87	
430	3 779,32	3 788,04	3 796,76	3 805,48	3 814,21	3 822,93	3.831,65	3 840,38	3 849,10	3 857,82
440	3 866,54	3 875,27	3 883,99	3 892,71	3 901,43	3 910,16	3 918,88	3 927,60	3 936,32	
450	3 953,77	3 962,49	3 971,22	3 979,94	3 988,66	3 997,38	4 006,11	4 014,83	4 023,55	
460	4 041,00	4 049,72	4 058,44	4 067,17	4 075,89	4 084,61	4 093,33	4 102,06		
470	4 128,22	4 136.95	4 145,67	4 154,39	4 163,11	4 171,84	4 180,58	4 189,28		
480	4 215,45	4 224,17	4 232,90	4 241,62	4 250,34	4 259,06	4 267,79		4 285,23	
490	4 302,68	4 311,40	4 320,12	4 328,85	4 337,57	4 346,29	4 355,01	4 363,74		
500	4 389,91	4 398.63	4 407,35	4 416,07		4 433,52	4 442,24	4 450,96		
510	4 477,13	4 485,85	4 494,58	4 503,30	4 512,02	4 520,75	4 529,47	4 538,19		
520	4 564,36	4 573,08	4 581,80	4 590,53	4 599,25	4 607,97	4 616,70		4 634,1	
530	4 651,59	4 660,31	4 669,03	4 677,75	4 686,48		4 703,92	4 712,65		7 4 730,09
540	4 738,81	4.747.54	4 756,26	4.764,98	4 773,70		4 791,15	4 799,87		
550	4 826,04	4 834,76	4 843,49	4 852,21	4 860,93		4 878,38		4 895,8	
560	4 913,27	4 921,99	4 930,71	4 939,44	4 948,18	4 956,88	4 965,60			
570	5 000,49	5 009,22	5 017,94	5 026,66	5 035,38		5 052,83			
580	5 087,72	5 096,44	5 105,17	5 113,89	5 122,61	5 131,33	5 140,06			
590	5 174,95	5 183,67	5 192,39	5 201,12			5 227,28			
600	5 262,18	5 270,90	5 279,62	5 288,34	5 297,07	5 305,79	5 314,51	5 323,2	3 5 3 3 1, 9	6 5 340,6

Jeje de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631 00

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620
www.puntodeprecision.com E-mail: ventas@puntodeprecision.com.pe / puntodeprecision@hotmail.com
peopligiba 14 REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

03.03. Certificado de calibración Copa de Casa Grande para LL

PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL-673-2024

Página : 1 de 3

Fecha de emisión

: **063-2024** : 2024-02-16

1. Solicitante

: ARYU E.I.R.L.

: APV CESAR VIZCARRA VARGAS MZA. A LOTE. 15 P.J. CHEN CHEN - MOQUEGUA - MARISCAL NIETO -

MOQUEGUA

2. Instrumento de Medición

: COPA CASAGRANDE

Marca de Copa

: CL-206

Modelo de Copa Serie de Copa

: ELE INTERNATIONAL

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración APV CESAR VIZCARRA VARGAS MZA. A LOTE. 15 P.J. CHEN CHEN - MOQUEGUA - MARISCAL NIETO - MOQUEGUA 12 - FEBRERO - 2024

4. Método de Calibración

Por Comparación con instrumentos Certificados por el INACAL - DM Tomando como referencia la Norma ASTM D 4318.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
PIE DE REY	MITUTOYO	DM23-C-0239-2023	INACAL - DM
MICROMETRO	INSIZE	DM23-C-0278-2023	INACAL - DM
BALANZA	KERN	LM-002-2024	INACAL - DM

6. Condiciones Ambientales

	INICIAL	FINAL
Temperatura °C	26,7	27,3
Humedad %	48	48

7. Observaciones

Los resultados de las mediciones efectuadas se muestran en la página 02 del presente docui

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620 www.puntodeprecision.com E-mail: ventas@puntodeprecision.com.pe / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

CERTIFICADO DE CALIBRACIÓN Nº LL-673-2024

Página 2 de 3

Tabla de Medidas

			C	OPA CASAGR	ANDE				
DIMENSIONES	А	8	С	E	J	К	L	М	U
DESCRIPCIÓN	RADIO DE LA COPA	ESPESOR DE LA COPA	PROFUNDIDA DE LA COPA	DISTANCIA	ALTURA	ESPESOR	LARGO	ANCHO	Copa desde la guia del espesor a base
	mm	mm	mm	mm	mm	mm	mm	mm	mm
	54,47	1,992	26,71	54,23	59,37	51,31	150,21	125,30	46,80
	54.47	2,164	26,71	54,23	59,37	51,46	150.39	125,34	46,80
MEDIDA TOMADA	54,47	1,983	26.71	54,23	59,37	51,51	150,22	125.15	46,80
	54,47	2,231	26,71	54,23	59,37	51.39	150,28	125,29	46,80
	54,47	1,998	26,71	54,23	59,37	51,58	150,50	125,10	46,80
	54,47	1,987	26,71	54,23	59,37	51,62	150,36	125,17	46,80
PROMEDIO	54,47	2,06	26,71	54,23	59,37	51,48	150,33	125,23	46,80
MEDIDAS STANDARD	54,00	2,00	27,00	56,00	60,00	50,00	150,00	125,00	47,00
TOLERANCIA ±	0,5	0,1	0,5	2,0	1,0	2,0	2,0	2,0	1,0
ERROR	0.47	0.06	-0.29	-1 77	-0.63	1.48	0.33	0.22	-0.20

	Rango según norma	Medida encontrada
Resiliencia	77 % a 90 %	83 %

F	Rango según norma	Masa encontrada
Masa de Copa	185 g a 215 g	189,00 g

Inspección del desgaste

Desgaste de Base: El punto de la base donde la copa hace contacto no debera presentar desgaste mayor de 10 mm de diámetro

DESCRIPCIÓN	DESGASTE DE BASE	
8.1	mm	
	8,91	
	8,91	
MEDIDA TOMADA	8,91	
TOWADA	8,91	
	8,91	
	8,91	
PROMEDIO	8,91	
MEDIDAS STANDARD	<10	

Desgaste de Copa: Reemplace la copa cuando la herramienta de ranurado haya originado en la copa una depresión de 0,1 mm de profundidad o cuando el reborde de la copa haya sido reducido a la mitad de su espesor original.

DESCRIPCIÓN		DESGASTE DE COPA				
		LATERALES DE LA COPA	EL CENTRO DE LA COPA			
	and a	mm	mm			
The second	1	2,163	2,152			
MEDIDA	2	2,230	2,160			
TOMADA	3	1,997	1,981			
TOWADA	4	2,159	1,993			
	5	2,164	2,154			
	6	1,985	1,977			
PROMED	10	2,116	2,070			
MEDIDAS STAI	NDARD	2,000	2,000			
ERROR	1617	0,116	0,070			
ERROR DE DEP	RESIÓN	0,047 mm				

Jefe de Laboratorio Ing. Luís Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620

www.puntodeprecision.com E-mail: ventas@puntodeprecision.com.pe / puntodeprecision@hotmail.com

PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.

CERTIFICADO DE CALIBRACIÓN Nº LL-673-2024

Página : 3 de 3

Desgaste del sujetador de Copa: Verificar que el pivote del sujetador de copa no se trabe y que no este desgastado hasta el punto que permita más de 3 mm de movimiento lado a lado del nunto más hajo de la cono.

іа сора						
DESGASTE DEL SUJETADOR DE LA COPA						
LADO IZQUIERDO	LADO DERECHO					
mm	mm					
0,75	0,61					
	DESGASTE DEL SUJE LADO IZQUIERDO mm					

Desgaste de Leva: La leva no se desgastará a un punto tal que la copa descienda antes que el sujetador de la copa (manubrio de leva) pierda contacto con la leva.

DESGASTE DE LEVA

SI CUMPLE

Pie de Goma: El pie previene los rebotes en la base o deslizamiento en la superficie de trabajo. Reemplazar el pie de Goma cuando este rígido, agrietado o quebradizo por el tiempo.

PIE DE GOMA

SI CUMPLE

FIN DEL DOCUMENTO

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 698-9620 www.puntodeprecision.com E-mail: ventas@puntodeprecision.com.pe / puntodeprecision@hotmail.com prohibida La reproducción parcial de este documento sin autorización de punto de precisión s.a.c.

Anexo 04. Panel Fotográfico

Imagen 1: Compactación de material en molde - Ensayo Proctor Modificado

Imagen 2: Toma de masa de material compactado - Ensayo Proctor Modificado

Imagen 3: Lectura de asentamiento de material compactado - Ensayo CBR

Imagen 4: Compactación de material con martillo Proctor - Ensayo Proctor Modificado

Imagen 5: Tamizado de material - Ensayo de análisis granulométrico

Imagen 6: Selección de equipos y herramientas para ensayo - Ensayo Proctor Modificado

Imagen 7: Homogenización de material para ensayo - Ensayo Proctor Modificado

Imagen 8: Tamizado de material - Ensayo de análisis granulométrico

Imagen 9: Toma de masa de material compactado - Ensayo CBR

Imagen 10: Tamizado de material vía húmeda - Ensayo de análisis granulométrico

Imagen 11: Tamizado de material- Ensayo de análisis granulométrico

Imagen 12: Lectura de carga en prensa CBR digital - Ensayo CBR