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Abstract: Climate change has a significant impact on river flows, leading to overflows
and floods that affect populations, especially in Andean regions. This study examines
flood scenarios in the Cunas River Basin (Junin, Peru) through hydrological and hydraulic
simulations under various climate projections. A Reliability Ensemble Averaging (REA)
approach was employed using CMIP6 climate models. In this analysis, precipitation
data were processed, basin parameters were calculated, and peak flows and the extent of
flood-prone areas were estimated. HEC-HMS software was used to simulate peak flows
corresponding to return periods of 25, 50, 100, 139, and 200 years, while HEC-RAS was
employed to determine flood zones. Model calibration and validation relied on historical
precipitation data from nearby stations. The results indicate a considerable increase in
peak flows and flood-prone areas due to climate change. A 3.32% increase in peak flow,
a 55.35% expansion in flood-prone areas, and a 34.12% rise in flood depth are observed.
These findings highlight the importance of implementing riverine protection structures.
This study provides key information for flood risk management in the Peruvian highlands,
using widely accepted tools to understand the hydrological response to climate change.

Keywords: climate change; flood modeling; hydrological simulation; Cunas River;
HEC-HMS; HEC-RAS; CMIP6 climate scenarios; Reliability Ensemble Averaging

1. Introduction

Floods are natural events that are occurring more frequently worldwide. These events
manifest on different temporal and spatial scales, with a duration that can be minimal
(hours) or extend for a longer period (weeks or months). When these floods affect human
populations, they can become natural disasters, causing destruction and generating loss
of human lives [1,2]. Floods not only negatively impact social and economic conditions,
generating high levels of unemployment and worsening public health, but also damage
the ecosystem [3]. It was estimated that, worldwide, floods comprised 43% of total natural
disasters and 47% of total climate-related disasters, affecting 2.3 billion people between the
years 1995 and 2015 [4] and causing economic losses exceeding USD 1 trillion between the
years 1980 and 2013 globally [5].

Due to anthropogenic activities, greenhouse gas emission concentrations have sig-
nificantly increased, causing the climate to undergo constant changes and alterations,
negatively affecting river ecosystems [6,7]. In recent decades, both the magnitude and fre-
quency of floods have notably increased worldwide [8-10]. This increase is largely related
to climate change, which intensifies and raises the frequency of extreme meteorological
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events [11]. Climate change has a significant impact on the probability and intensity of
these extreme events, including intense precipitation [12], which directly affects land use
since they influence the terrain’s capacity to absorb and drain water, modifying river flow,
and causing significant alterations in global hydrological regimes [13,14]. Extreme meteo-
rological precipitation is especially problematic due to its unpredictable and destructive
nature, potentially causing sudden and severe floods that overload infrastructure and cause
significant material damage [15,16], therefore, to address these risks, it is crucial to conduct
a complete analysis of extreme rainfall due to climate change and the impact it will generate
in the future.

It is important to know that in the future, many countries around the world will
be affected by more severe floods compared to those currently occurring, due to climate
change [17-19], and this is the reason why many authorities, engineers, and researchers
are focusing their attention on quantifying the influence of climate change on the hazards
and risks of future floods, in order to prevent and develop strategies that serve as climate
change adaptation and to propose mitigation strategies [20-22]. Nowadays, mathematical
models, hydrological simulation, and runoff prediction have become more relevant for
hazard management, risk assessment, and disaster mitigation caused by floods [23-25],
becoming fundamental tools that contribute to research in modern hydrological engineer-
ing [26-28]. Currently, the use of hydrological models such as the Hydrologic Modeling
System (HEC-HMS) and the River Analysis System (HEC-RAS), developed by the Hydro-
logic Engineering Center (HEC) of the U.S. Army Corps of Engineers, are widely used to
simulate hydrological processes in watershed systems with multiple characteristics and
hydraulic flows in rivers. The HEC-HMS hydrological model, in particular, has stood
out as a crucial tool in this context, being one of the most widely used for simulating
rainfall-runoff processes and analyzing hydrological responses in both urban and natural
watersheds [29-31]. It is also important to mention that the HEC-RAS model is generally
used following the HEC-HMS model, as these tools serve complementary functions in hy-
drological modeling, helping to calculate certain parameters such as water levels, velocities,
and flow propagation in the hydraulic system [32,33]. Worldwide, various studies have
used these models to determine river flow behaviors, conduct mappings, and perform
modeling to identify flooded areas [34-36].

On the other hand, as previously mentioned, due to the various negative effects caused
by climate change, the need has arisen to have climate models that better understand the
climate system to prevent its future evolution; for this reason, the Working Group on
Coupled Modelling (WGCM) of the World Climate Research Program (WCRP) developed
the Coupled Model Intercomparison Project (CMIP) approximately 30 years ago [37]. Over
the years, various coupled models have emerged, such as CMIP1, CMIP2, CMIP3, CMIP5,
and, currently, CMIP6, whose evolution throughout these project phases has had significant
importance in the provision of data and climate models that support the global reports
prepared by the Intergovernmental Panel on Climate Change (IPCC) [38]. Currently, the
latest CMIP6 model is available, and emphasis will be placed on it, as this model includes
scenarios called Shared Socioeconomic Pathways (SSPs) with more advanced climate
change projections and improved spatial and temporal resolutions, which allow for the
simulation of extreme climate events [39]. Several global studies have used the CMIP6
model to predict future temperature and precipitation changes [40,41], as well as to evaluate
the influence of climate change on precipitation patterns through various scenarios [42];
other studies have shown that, based on the CMIP6 model, incorporating the Multi-Model
Ensemble (MME), it outperforms all individual models in precipitation projections [15,43].

Currently, there are various techniques and multiple assembly methods that average
models to improve forecast accuracy and assess uncertainties [44,45]. For this research,
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the Reliability Ensemble Averaging (REA) method was used. The Reliability Ensemble
Averaging (REA) method, developed by Giorgi and Mearns, is a flexible tool for estimat-
ing a probabilistic weighted mean of regional climate change from ensembles of model
simulations for various studies assessing risks and costs [46,47]. The REA method also
allows for evaluating the reliability of the projected weighted average of climate change
and calculating an uncertainty. This method was employed in a study to produce average
and probabilistic climate change projections in Australia and southern Africa [48]. Another
study used this method to project temperature and precipitation changes for various CMIP6
climate models, based on their historical performance, in different subregions of China [49].

In a general context, based on the above, this research aims to determine projected
flood-prone areas in the future under two conditions: the first under normal precipitation
conditions and the second under extreme precipitation due to climate change. The issue
addressed in this study arises from the large river floods (maximum flow events) that
occur in Peru, caused by intense rainfall, which generates significant social, economic, and
environmental consequences. In many parts of Peru, there is no contingency plan when
these events occur, leading to river overflows and flooding. This situation raises greater
concern due to the major impacts that will be generated in the future when, as a result of
climate change, these events intensify. Moreover, unlike developed countries, Peru lacks
many hydrological studies that consider CMIP6 model scenarios to assess the projection of
extreme hydrological events caused by climate change. Focusing on a more local scope,
and based on the exposed problem, this risk is present in the province of Huancayo, Junin
region, due to the increase in the flow of the Cunas River during periods of intense rainfall,
according to reports from the Instituto Nacional de Defensa Civil. These rains cause floods
that pose a significant risk to many homes, fish farms, and agricultural crops, generating
potentially catastrophic damage and threatening the safety of the community in the district
of Pilcomayo [50]. At the beginning of 2024, the collapse of 12 homes was estimated, along
with material damage and impacts on livelihoods (agriculture and fish farms), generating
estimated losses of approximately USD 135 thousand [50].

Given this scenario, the present research aims to analyze how the HEC-HMS (v. 4.12)
and HEC-RAS (v. 6.5) software can simulate the effects of climate change to strategically
map flood-prone areas by comparing both conditions. Within this framework, the main
objective is to evaluate the behavior of the Cunas River, estimating the maximum design
discharge for different return periods (T = 50, 100, 139, 200 years) under baseline conditions
and under the influence of climate change. To achieve this, 10 Global Climate Models
(GCMs) from the SSP5-8.5 climate scenario of the CMIP6 model are used. Additionally,
the study seeks to identify the maximum flood-prone areas under both conditions for a
return period of T = 139 years. For climate change evaluation and prediction, the 10 climate
models were adjusted for the region using bias correction and statistical downscaling,
referenced with local data, including the RAIN4PE product for precipitation. Historical
information was collected from the San Juan de Jarpa and Huayao pluviometric stations,
corresponding to the period 1974-2023. This information was used to calculate the design
discharge under both conditions using the HEC-HMS software. Subsequently, a water flow
simulation was conducted in the study area using the HEC-RAS software to identify and
compare risk areas in the event of a possible flood, both under baseline conditions and
under the influence of climate change.

2. Materials and Methods

The methodological workflow followed in this study is summarized in Figure 1.
Topographic data, obtained from a 5 x 5 m spatial resolution Digital Elevation Model
(DEM), were downloaded from the EOSDA LandViewer platform (https://eos.com/find-
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satellite/, accessed on 15 October 2024), an advanced tool for satellite imagery observation
and analysis. This platform enables the search, visualization, and processing of high-
resolution Digital Terrain Models (DTMs), optimizing the extraction of relevant information
through predefined indices and adjustments. The data were processed in QGIS (v. 3.34.5),
while annual maximum daily precipitation data for baseline conditions and Global Climate
Model (GCM) CMIP6 projections were obtained from meteorological stations near the
study area, managed by the Autoridad Nacional del Agua (ANA) (https://snirh.ana.gob.
pe/SNIRHPortal/, accessed on 7 March 2024) and the Servicio Nacional de Meteorologia
e Hidrologia del Pertt (SENAMHI) (https://www.gob.pe/senamhi, accessed on 7 March
2024). Subsequently, the data underwent quality control and processing before being
integrated into the HEC-HMS model (v. 4.12). Using the Curve Number (CN) method,
peak discharges for different return periods were simulated. The hydrological modeling
results were then input into the HEC-RAS model (v. 6.5) to perform hydraulic simulations
and identify flood-prone areas using RAS-Mapper, enabling a comprehensive assessment
of flood hazard in the Cunas River Basin (CRB).

DEM PRECIPITATION DATA | | cMIP6 GCM DATA
(SXSM) (ANA-SENAMHI)
GIS (VER3.34.5 QUALITY CONTROL AND
QEI51 ) DATA PROCESSING GEOMETRIC
PARAMETERS

77 7777
HYETOGRAPH |—p g(E/C/ HM% —J> PEAK FLOWS FOR DIFFERENT _yi% 5;;”5%
0 LN )

T t Cali. & Validation ¢

CURVE NUMBER (CN) FLOOD MAPPING
METHOD (RAS - MAPPER)

Figure 1. Flowchart illustrating the hydrological process using HEC-HMS and the hydraulic analysis
and modeling using HEC-RAS.

2.1. Study Area

The Cunas River Basin (CRB) is situated in the Junin department (central Peru),
approximately between the following coordinates: latitude 11°53/24"/-12°2548" S and
longitude 75°10'12"-75°37'48" W (WGS 84). It originates in the Cordillera Occidental
at 4953 m above sea level (masl), crosses the provinces of Chupaca, Concepcién, and
Huancayo, and flows into the Mantaro River at approximately 3216 masl. The basin covers
an area of 1700.25 km?, and its main channel extends 93.79 km in length. The Cunas River is
a major tributary of the Mantaro River, which in turn forms part of the Amazon Basin [51].

Precipitation displays a marked seasonal behavior divided into several periods: the
wet season features maximum rainfall in December, January, and February, accumulating
approximately 346 to 450 mm; from March to May, rainfall decreases moderately, with
precipitation recorded between 196 and 281 mm; the dry season occurs between June and
August, with minimal precipitation of 37 to 56 mm; from September to November, rainfall
increases slightly, reaching values between 185 and 230 mm, indicating a transition toward
the wet season [52]. Annually, 83% of precipitation occurs between October and April,
with 48% distributed almost equally across January, February, and March [53]. Interannual
precipitation variability is approximately 18.65% relative to the mean. Extreme events
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include a wet period in 1981 (annual precipitation: 920 mm) and a dry period in 1992
(annual precipitation: 400-500 mm) [53].

To obtain topographic information and integrate topographic data derived from 5 m
spatial resolution Digital Elevation Models (DEMs), QGIS (v. 3.34.5) software (https:/ /qgis.
org/, accessed on 27 March 2024) was used. The drainage network (main channels and
tributaries), basin boundaries (precise basin delineation), and altimetry were delineated
(Figure 2), and the morphometric properties of the basin were calculated (Table 1).
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Figure 2. Location and delineation of the Cunas River Basin.

Table 1. Main morphometric characteristics of the Cunas River Basin.

Cunas River Basin (CRB) Indicator Unit Value
Area [km?2] 1700.25
Perimeter [km] 279.62
Length [km] 54.37
. . . Width [km] 31.27
Morphometric Basin Properties Mean slope [%] 2373
Maximum elevation [masl] 4953.00
Minimum elevation [masl] 3216.00
Mean elevation [masl] 4203.82
Length [km] 93.79
Length to watershed divide [km] 98.50
Main Channel Properties Highest elevation [masl]] 4532
Lowest elevation [masl] 3221
Mean slope [%] 1.40%
Total drainage length [km] 2839.16
. . . Drainage density [km/km?] 1.67
Drainage Basin Properties Stream order [] 50
Runoff coefficient [- 0.59
Compactness coefficient, Kc [-1 1.90
Shape Index Shape factor, Kf [-] 0.19
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2.2. Micro-Watershed Area

The micro-watershed analyzed in this study is located in the northeast of the study
basin. It covers an area of 186.07 km?, with a river channel length of 33.31 km and a slope of
1%. The area has two rainfall stations responsible for measuring and recording precipitation
amounts, expressed in millimeters (mm). The first is the San Juan de Jarpa station, located
at 12°7'28.3" S latitude, 75°25'54.4” W longitude, and an altitude of 3660 masl. The second
is the Huayao station, located at 12°2/24.7" S latitude, 75°19'13.8” W longitude, and an
altitude of 3321 masl (Figure 3). Due to the absence of rain gauge stations within the study
micro-watershed, a nearby station such as San Juan de Jarpa is used. Although it is located
outside the micro-watershed boundaries, its inclusion is based on its proximity to the
micro-watershed limit, and its records influence the study area due to the homogeneous
climatic conditions present in that part of the micro-watershed. This area of influence will
be validated later.

8,680,000N

LEGEND

| [ Subbasin (Study area)
— River

® Populated Place

&1 RAINFALL STATIONS
@ Jarpa Station

@ Huayao Station

Huayao Station

Jarpa Station g R 3 Barrio Yauyoso oc_pu et S

448,000E 456,000E 464,000E ] 472,000E

Figure 3. Delineation and surface extent of the micro-watershed (analysis zone).

2.3. Hydrological Study Under Baseline Conditions
2.3.1. Precipitation Influence and Analysis

As previously mentioned, rainfall measurements and records were obtained from the
San Juan de Jarpa and Huayao stations. This data were provided by the Servicio Nacional de
Meteorologia e Hidrologia del Pertt (SENAMHI) (https://www.gob.pe/senamhi, accessed
on 7 March 2024) and the Autoridad Nacional del Agua (ANA) (https://snirh.ana.gob.
pe/SNIRHPortal/, accessed on 7 March 2024), two key Peruvian agencies responsible for
delivering reliable and accessible meteorological, hydrological, and climatic information.
Historical daily maximum precipitation data from 1974 to 2023 were considered.

To spatially distribute maximum and average precipitation across the basin equitably,
the Thiessen polygon method was applied. This method constructs polygons—formed by
perpendicular bisectors between pairs of adjacent stations—to represent the influence area
of each station [54]. The influence area of the Huayao Station in the micro-watershed is
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108.02 km?, while that of the San Juan de Jarpa Station is 77.45 km?. The corresponding co-
efficients, expressed as percentages using Equation (1), are 41.62% and 58.38%, respectively.

n Ai
P, = EP"XAT (1)
1=

where P, is the weighted or mean precipitation in the basin (in mm), A; is the area of
the polygon corresponding to station i (in km?), A; is the total area (in km?), P; is the
precipitation measured at the station (in mm), and # is the total number of stations.

An adjustment of outliers in precipitation data was performed using the Water Re-
sources Council (WRC) method, which identifies data points that deviate significantly from
the trend of the remaining dataset [55]. According to this statistical outlier analysis, with a
significance level of 10% for a normal distribution, the precipitation data fall within the
trend range, establishing a more robust distribution of the historical records [56].

To assess temporal trends in annual maximum daily precipitation, the Mann—-Kendall
(MK) test [57-59] was applied, which is based on the sequential comparison of the values
in a time series, considering the hypothesis of series stability. According to the analysis
performed with the free software TREND (v. 1.0.2) [60], no statistically significant trend
was observed in the precipitation series of the CRB.

Through the Kolmogorov-Smirnov goodness-of-fit tests [61], it was determined that
the Pearson Type III distribution provides the best fit (99.63%) for calculating annual
maximum precipitation values for return periods of 2, 5, 10, 25, 50, 100, 139, 200, and
500 years. Additionally, a fixed interval factor of 1.13 was applied to the maximum
precipitation values for each of the specified return periods to correct and adjust these
values, improving their representativeness in the hydrological analysis [62].

Subsequently, IDF curves were calculated using the Dyck-Peschke model [63], which,
through multiple regression analysis, derived rainfall intensities for the aforementioned
return periods (Figure 4). This enabled the development of a hyetograph via the Alternating
Block Method, used to analyze the temporal distribution of rainfall across different return
periods [64]. The hyetograph displays rainfall intensity at specific 60-min time intervals,
providing critical input for hydrological modeling. Likewise, a total duration of 1440 min
was considered, aiming to comprehensively capture the temporal distribution of extreme
precipitation events characteristic of the study region. This methodological decision is
based on the approach proposed by the Manual de Disefio de Obras de Drenaje of the
Ministerio de Transportes y Comunicaciones del Pert (MTC) [65], which includes the use
of this duration in the analysis of design storms for hydraulic structures, and is also aligned
with the hydrological procedures recommended by SENAMHI. This approach allowed us
to accurately estimate both the intensity and total volume of the event, which is crucial for
the design of drainage infrastructure, flood control, and territorial planning. Below, the
design precipitation hyetograph for a 139-year return period is shown (Figure 5).

It is important to emphasize that this study primarily focuses on a 139-year return
period, as the provided data are intended to serve as the basis for designing riverbank
defense structures, in accordance with the guidelines established by the Ministerio de
Transportes y Comunicaciones (MTC) [65]. This return period is critical to ensure that such
infrastructure, designed for future resilience, can effectively mitigate flooding risks based
on extreme events with a specific probability of occurrence [65].
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Figure 4. The IDF curve of the CRB.
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Figure 5. Precipitation hyetograph for a 139-year return period under baseline conditions.

2.3.2. Estimation of Maximum Discharge (Qm) Using HEC-HMS

To estimate maximum discharge under baseline conditions for different return peri-
ods, HEC-HMS software (v. 4.12) (https:/ /www.hec.usace.army.mil/software/hec-hms/,
accessed on 28 March 2024) was employed. The Soil Conservation Service (SCS) Curve
Number (CN) method calculates rainfall excess as a function of cumulative precipitation,
land cover, land use, and antecedent soil moisture [66]. This method was selected for its
simplicity, predictability, stability, and reliance on a single variable, CN, to predict the
rainfall-runoff relationship, as well as its responsiveness to key basin properties influ-
encing runoff, such as soil type, land use, surface condition, and antecedent moisture
condition [67]. Furthermore, it provides a rapid method to estimate changes in runoff
resulting from land use modifications [68]. CN values range from 0 to 100, where higher
values indicate greater runoff and reduced infiltration. For calculating the Curve Number
(CN), data from thematic CN maps developed by the Autoridad Nacional del Agua (ANA)
(https:/ /snirh.ana.gob.pe/onrh/, accessed on 7 March 2024) were used. These data were
processed in QGIS to delineate the specific boundaries of our sub-basin. Equation (2) was
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applied to compute the CN, yielding a value of 92, which serves as a key input for the

hydrological model.
Y.CN; x A;
CN==7—"
LA

where CN is the average curve number of the basin, CNj is the curve number of each area

(2)

or sub-basin i, A; is the area corresponding to each CN; (in km?), and ¥ A; is the total area
of the basin (in km?).

The time of concentration (Tc) is the time required for the entire watershed to con-
tribute to runoff at the point of interest for hydraulic design. It is calculated as the time it
takes for runoff to flow from the hydraulically most remote point of the drainage area to
the watershed outlet [69]. The procedures used to estimate Tc depend on several factors,
including watershed characteristics (particularly drainage area) and available morpho-
metric parameters [70]. Different established methods for calculating Tc were compared,
ultimately highlighting and applying only three of them, whose variability (Min. Var. and
Max. Var.) within the acceptable range (5.50 to 8.64) was considered valid. While it is true
that the methods used were originally developed and calibrated for specific regions in
other countries, such as Giandotti (Italy), Kirpich (United States), and California Culverts
Practice (United States), the manual of the Ministerio de Transportes y Comunicaciones
(MTC) allows the use of these methods [65]. Moreover, the decision to use and average
these methods was made because each considers different factors, and applying them
allows for a better representation of the watershed’s hydrological characteristics, such as
topography, climate, roughness, and slopes, thereby reducing the inherent bias of each
one [71,72]. The average Tc value calculated for the studied hydrological unit is 6.22 h
(Table 2).

Table 2. Analysis of methods for calculating the time of concentration (Tc).

Method Used Calculated Tc (h) Min. Var. (h) Max. Var. (h)  Accepted Valid Tc (h)
Giandotti 7.11 5.50 8.64 Yes 7.11
Kirpich 577 5.50 8.64 Yes 5.77
California Culvers Practice 5.78 5.50 8.64 Yes 5.78
Average calculated Tc for the studied hydrological unit 6.22

Similarly to the time of concentration (Tc), the MTC recommends using a 0.6 factor
to determine the lag time (Tp) [65], which, in this case, is 3.73 h. This method has been
adopted due to the complex characteristics of Andean basins in Peru, allowing the SCS
model to be adapted more practically without requiring specific calibrations.

2.3.3. Simulation of the Cunas River Behavior Using HEC-RAS

The HEC-RAS model, developed by the U.S. Army Corps of Engineers (USACE),
employs mass and momentum conservation equations to analyze flow dynamics and
assess flood risks. HEC-RAS (v. 6.7) was used to simulate the behavior of the Cunas River,
enabling the prediction and evaluation of flood magnitude and impact in the study area
under both baseline conditions and a future climate change scenario.

The Cunas River geometry was imported in ESRI Shapefile format. The channel line
was traced following the axis of the natural channel and was used to define the cross-
sections. Bank Lines demarcated the main channel, while flow paths on the floodplain
delineated overflow boundaries. Cross-sections were drawn perpendicular to the water
flow direction and extended beyond the flow lines’ limits. A first simulation was performed,
where 23 cross-sections were created, each 600 m wide and spaced 300 m apart, where the
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overflow of the river under the influence of climate change demonstrated the need for a
wider limitation. Consequently, through multiple simulations with adjusted dimensions, a
new overflow boundary was implemented to encompass greater flood-prone areas. The
cross-sections were strategically repositioned in zones exhibiting more severe flooding,
maintaining an average 300-m spacing along the Cunas River channel to ensure uniform
distribution, a critical factor for accurate topographic representation. For HEC-RAS com-
putations, flow data incorporating maximum discharge values calculated for a 139-year
return period were input.

Manning’s roughness coefficients, selected through field observations and accounting
for the characteristics of the main channel and both banks (right and left), were input based
on the tables proposed by Ven T. Chow [73] (Table 3). The calculated coefficients vary
across river reaches, as illustrated in Figure 6. The downstream slope was derived from
longitudinal profile data, with an elevation difference of 64.80 m between upstream and
downstream reaches and a reach length of 6590.33 m, yielding an approximate slope of 1%
from morphometric parameter calculations. Following geometry definition, the data were
imported into HEC-RAS.

Table 3. Manning’s roughness coefficients selected for each reach of the main channel.

Reach (m) Channel Type and Description n
6899.7-6599 Sparse shrubs and trees 0.055
6599-6300.3 Sparse shrubs and trees 0.055
6300.3-5999 Sparse shrubs and trees 0.055

5999-5701 Sparse shrubs and trees 0.055

5701-5399 Sparse shrubs and trees 0.055
5399-5100.2 Grasslands, no shrubs, short grass 0.030
5100.2-4799 Scattered shrubs, dense undergrowth 0.050

4799-4500 Cleared land with trees and abundant saplings 0.060
4500-4199.9 Mature row crops 0.035
4199.9-3903 Mature row crops 0.035

3903-3600 Scattered shrubs, dense undergrowth 0.050

3600-3300 Grasslands, no shrubs, short grass 0.030

3300-2998 Mature row crops 0.035

2998-2697 Clear, straight stream with rock mounds and vegetation 0.035

2697-2397 Clear, straight stream with rock mounds and vegetation 0.035

2397-2099 Mature row crops 0.035

2099-1799 Clear, straight stream with rock mounds and vegetation 0.035

1799-1498 Clear, straight stream with rock mounds and vegetation 0.035

1498-1201 Clear, straight stream without mounds or deep pools 0.030

1201-899 Clear, straight stream without mounds or deep pools 0.030
899-598 Mature row crops 0.035
598-298 Clear, straight stream with rock mounds and vegetation 0.035
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Figure 6. River channel delineation, flood simulation boundary, and cross-sectional profiles.

2.4. Hydrological Study Under Climate Change Conditions
2.4.1. Global Climate Models (GCMs) from CMIP6

The simulated climate data from Global Climate Models (GCMs) of CMIP6 were

analyzed using the VECC (Visor Escenarios de Cambio Climatico) tool from the Man-
taro Basin Observatory, provided by the Autoridad Nacional del Agua (ANA) (https:
/ /observatoriomantaro.ana.gob.pe/es-es, accessed on 15 March 2024). VECC is a decision-

support tool for addressing climate change impacts in this region, designed to integrate

climatic, hydrological, and socioeconomic information while enabling visualization of
climate data simulated by CMIP6 Global Climate Models (GCMs) that contributed to the
latest IPCC report.

For assessing future precipitation trends, this study utilized 10 GCMs from CMIP6

(CanESM5, CNRM-CM6-1, CNRM-ESM2-1, GFDL-ESM4, IPSL-CM6A-LR, MIROC6, MPI-
ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL y ACCESS-ESM1-5) (Table 4), under the SSP5-8.5
scenario for the period 2023-2100.

Table 4. List of the 10 CMIP6 GCMs used in this study.

N° GCM Name Institution Country Spatial Resolution
M1 CanESM5 Ca“adia:ngeggzlg’sri&ggg;z/;Ode“i“g Canada 2.81° x 2.81°
M2 CNRM-CM6-1 Ce;‘/[téféiﬁggﬂu‘i ?gﬁ‘ﬁg‘% France 14° % 14°

M3 CNRM-ESM2-1 Ce;‘;éféliitfg;ﬂi‘; 1({8:\1111%{;1)1% France 2.8° x 2.8°

M4 GFDL-ESM4 Ge"*’g‘g;gjiﬂ;i(‘é%ﬁmks USA 1° % 1°

M5 IPSL-CM6A-LR Institut Pierre-Simon Laplace (IPSL) France 2.5° x 2.5°
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Table 4. Cont.

N° GCM Name Institution Country Spatial Resolution
Modeling and Information Research on
Climate (MIROC), University of Tokyo,
M6 MIROC6 National Institute for Environmental Japan 1.4° x 1.4°
Studies, and Japan Agency for
Marine-Earth Science and Technology
Max Planck Institute for o o
M7 MPI-ESM1-2-HR Meteorology (MPI-M) Germany 0.94° x 0.94
M8 MRI-ESM2-0 Meteorological Research Institute (MRI) Japan 1.4° x 1.4°
M9 UKESM1-0-LL UK Met Office Hadley Centre UK 1.25° x 1.25
Australian Community Climate and
Earth-System Simulator (ACCESS),
M10 ACCESS-ESM1-5 Commonwealth Scientific and Australia 1.875° x 1.25°

Industrial Research Organisation
(CSIRO), Bureau of Meteorology

This study adopts the SSP5-8.5 scenario from the Coupled Model Intercomparison
Project Phase 6 (CMIP6) to assess climate change impacts in the study basin. This scenario
represents a high-emission pathway characterized by rapid fossil fuel-driven economic
growth and accelerated technological development, resulting in sustained increases in
greenhouse gas emissions [74], projecting an additional radiative forcing of 8.5 W/m? by
the year 2100, potentially increasing global temperatures by 2.42-5.64 °C with significant
implications for flood risk [75].

2.4.2. RAIN4PE Product

The historical and projected precipitation data from the 10 GCMs were specifically
adjusted for the region and study area through a bias correction and statistical downscaling
process, using local data as a reference, including the RAIN4PE product for precipitation.

RAINA4PE is a novel gridded daily precipitation dataset for Peru and Ecuador, devel-
oped by merging precipitation data from multiple sources: the Climate Hazards Group’s
Infrared Precipitation with Satellites (CHIRPS) [76], ERA5 reanalysis [77], and ground-level
precipitation adjusted for terrain elevation using random forest regression; additionally,
the dataset incorporates hydrological correction using streamflow data in basins where
precipitation is underestimated, applying inverse hydrology [78]. Therefore, RAIN4PE
serves as a valuable tool for hydrometeorological applications in the region, including
hydrological modeling and assessment of hydroclimatic extremes such as droughts and
floods (Figure 7).

Figure 7 presents the workflow diagram of the RAIN4PE product, whose methodol-
ogy was structured into three complementary stages. First, a multi-source precipitation
data fusion was performed using the Random Forest (RF) algorithm, incorporating point
observations and covariate variables (CHIRP, ERA5, elevation, and local databases), which
allowed for the generation of a corrected daily dataset known as RAIN4PE. Subsequently, a
hydrological adjustment of the daily precipitation data was applied using the SWAT model,
calibrated with observed streamflow records. In this stage, a hydrological correction factor
(BCF) was introduced and applied to the precipitation dataset (Pg x BCF), enabling improved
streamflow (Q) simulation until objective fit criteria (OFs) were met. Finally, the hydrological
performance of the calibrated model was evaluated during the calibration and validation
periods by calculating goodness-of-fit metrics (GOFs), in order to validate the consistency
and applicability of the corrected dataset for hydrological modeling purposes [78]. The
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RAINA4PE dataset covers the land surface between 19° 5-2° N and 82-67° W with a daily
spatial resolution of 0.1°, spanning the period from 1981 to 2015 [78].

(i) Merging multi-source precipitation (P) data using random forest (RF)

Observed P (d)

Preliminary | | Aggregated Observed P (m)
° RF "—39 daily |»f monthly I}\:I?;::)), é—I]R__F
Covariates P (Pd0) P (Pmo0) Covariates

CHIRP (d
ERAS5 (d)
Elevation
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Elevation
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(ii) Calibration and hydrological adjustment of P datasets using streamflow (Q)

[CHIRPJCHIRPS[MSWEPJ[PISCO]

(iii) Hydrological
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Run calibrated
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model

Simulated Q

SWAT

> Simulated Q

Figure 7. Flowchart for (i) the generation of gridded precipitation dataset, (ii) hydrological model
calibration and adjustment of precipitation datasets, and (iii) hydrological evaluation [78].

2.4.3. Reliability Ensemble Averaging (REA)

REA (Reliability Ensemble Averaging) is a method used to calculate the mean, uncer-
tainty range, and a reliability measure of simulated climate changes at subcontinental scales
from ensembles of different atmosphere—ocean General Circulation Model (AOGCM) simu-
lations [46]. This method employs a weighted average of simulations, where each model’s
contribution to the forecast results is determined by its assigned weight. These weights
are derived from two key criteria: the model’s performance in historical simulations, and
its convergence with other models in future projections [79]. The REA method, widely
employed in previous studies under various approaches [80,81], enhances the accuracy of
climate projections by integrating results from different CMIP6 models under the SSP5-8.5
climate scenario. To apply the REA method, each model projection i from the ensemble of
10 GCMs is assigned a reliability factor R; calculated using Equation (3).

€ €
R oo = (7)< (1) ©
1 1

where B; and D, represent the performance and convergence measures, respectively, for

model i. The parameter ¢ denotes the observational variability, expressed as the difference
between maximum and minimum values. The performance factor Rg ; ranges from 0 (for a
low-performance model) to 1, if | B;| is less than €. Similarly, the convergence factor Rp ;
ranges from 0 (for outlier projections) to 1, if | D;| (the difference between the projection
and the REA mean) is less than e.

The advantage of using the REA method lies in its simultaneous consideration of both
performance (based on a model’s prediction quality) and convergence (determined by its
position within an ensemble of projections) [82]. Therefore, when applying this method, the
primary objective is to assign a weight to each of the 10 GCMs and combine the projections
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through weighted averaging, thereby maximizing precision, reducing uncertainty, and
enhancing reliability in precipitation projections for the region [46]. Figure 8 presents an
analysis with uniform weighting for each model, where validity and predictive capacity
are equal across all models. It further illustrates the variability in weights obtained through
REA method application, demonstrating that certain models are more capable of improving
future climate conditions and discarding the idea that assigning the same weight to each
model (averaging) is better. Figure 9 compares a time series of annual maximum precipita-
tion, presenting historical precipitation data, the mean values from the 10 GCMs, and the
REA-adjusted values. The results highlight the REA method’s performance in combining
and correcting modeled values by closely tracking the historical trend while smoothing
extreme fluctuations.
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Figure 8. Weights derived from the REA method assigned to the 10 GCMs.
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Figure 9. Comparison between historical, ensemble-mean, and REA-adjusted annual maximum
daily precipitation.
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2.4.4. Performance Evaluation Methods

The hydrological model performance in the CRB for hydrological simulation is deter-
mined using the Nash-Sutcliffe Efficiency (NSE) [83]. The NSE ranges from —co to 1, where
values approaching 1 indicate excellent model fit, Equation (4). The absolute fit differences
are quantified using the Mean Absolute Error (MAE, Equation (5)) and Root Mean Square
Error (RMSE, Equation (6)), where a value of 0 indicates perfect agreement. The correlation
coefficient (R?) determines the degree of correlation between simulated and measured data,
ranging from —1 to 1, where values closer to 1 indicate a better fit, Equation (7). The Percent
Bias (PBIAS) measures the model’s overestimation or underestimation, Equation (8).

n . 6.2
NSE =1 E=1(Oi =S (4)
Yi4(0i-0)
. 10—
mag =y 195 ©)

2
RMSE = \/ Yo @ 6)

2
2 ( ', (0;—0)(5;-3) ) -
VI (05 - 0)* /X, (5 - 5)
Yie1(0i = Si)
o }xlOO ®)

PBIAS = [

where O; represents the observed discharge (m3/s), S; is the simulated discharge (m3/s), O
is the mean observed discharge (m3/s), S is the mean simulated discharge (m?/s), and 7 is
the number of observations.

For model calibration, observed discharge data from the Angasmayo hydrometric
station were used, while validation was performed using observed discharge data from the
Pilcomayo hydrometric station, both covering the period from 1984 to 2023. The objective
was to adjust the model parameters until achieving a satisfactory agreement between
observed and simulated discharge values [84,85].

3. Results
3.1. Calculation of Maximum Design Discharge Using HEC-HMS

Following the hydrological analysis of the Cunas River using the HEC-HMS model,
discharge values were obtained for the two analyzed scenarios (baseline conditions and
under climate change influence) for return periods of 25, 50, 100, 139, and 200 years. The
main result of the analysis focused on the 139-year return period, due to the approach the
study presented.

Table 5 shows that the peak discharge for a 139-year return period under normal
conditions was 203.90 m3 /s, while under climate change conditions, it reached 210.90 m3/s,
indicating a 3.32% flow increase attributable to climate change effects. This rise in peak
discharges underscores the growing influence of the climate scenarios applied in our
analysis, highlighting the critical importance of considering climate change as a key variable
when planning preventive measures against hydrological risks such as flooding.

On the other hand, to better manage and extend the scope of the obtained results,
hydrographs (flow rate-time) were obtained. These graphically represent the variation
in the flow rate of the Cunas River as a function of time, given in hours, in response
to the previously analyzed precipitation events. These hydrographs were the result of
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analyses conducted in HEC-HMS, where, after processing the data, the graphs were gener-
ated independently for each return period, with time measured in hours. Subsequently,
after adjusting the information, the hydrographs shown in Figure 10 were obtained for
return periods of 25, 50, 100, 139, and 200 years. These hydrographs are presented under
two conditions: normal conditions (Figure 10a) and with the presence of climate change
(Figure 10b), where the color variation refers to each return period. While it is true that these
hydrographs arise together with the flow rates obtained in Table 5, the importance of these
graphs lies in providing a better understanding of the hydraulic process as a function of time.

Table 5. Comparison of peak discharges under the two analyzed conditions.

Peak Discharge (m3/s)

Return Period (Years)

Baseline Conditions Climate Change Conditions
25 170.20 176.80
50 183.20 190.00
100 197.70 204.00
139 203.90 210.90
200 211.60 218.70
500 232.20 239.40
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Figure 10. Peak discharge-time hydrographs for different return periods: (a) under baseline condi-
tions and (b) with climate change influence.
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Figure 10 displays the hydrographs of peak discharge (m®/s) versus time at half-hour
intervals for the two conditions studied and for the previously established return periods.

Figure 10a shows the hydrograph under baseline conditions, where the peak discharge
for the 139-year return period reaches 203.90 m3/s, occurring at 16:30 h. On the other hand,
Figure 10b presents the hydrograph under climate change conditions, where the temporal
flow distributions exhibit higher peaks compared to baseline conditions. For the 139-year
return period, the peak discharge reaches 210.90 m3/s, also at 16:30 h, representing a 3.32%
increase in discharge.

This indicates that, in both cases, during this time interval, sufficient water has accu-
mulated to generate the highest flow of the event at this specific hour, and the previously
determined time of concentration is a contributing factor to this result.

3.2. Hydrological Model Calibration and Validation

The hydrological model was calibrated and validated using historical observed dis-
charge data from the Angasmayo (calibration) and Pilcomayo (validation) hydrometric
stations for the 1984-2023 period. Performance metrics are detailed in Table 6.

Table 6. Model calibration and validation.

Type Period Event NSE MAE RMSE R? PBIAS
Calibration 1984-2023 0.939  —0.129 5418  0.998  —0.001
Validation 1984-2023 0.921 —3.337 6.095  0.998 0.015

The coefficient of determination (R?) reached a value of 0.998 for both calibration
and validation, indicating a strong linear correlation between observed and simulated
discharges. This high R? suggests that the model effectively captures the overall trend of
the data across the evaluated period.

The Percent Bias (PBIAS) exhibited very low values: —0.001 for calibration and 0.015
for validation. These near-zero values reflect the model’s absence of systematic bias (i.e., no
consistent overestimation or underestimation of discharges), demonstrating its capacity to
simulate the water balance accurately and reliably.

These positive performance metrics confirm the hydrological model’s effectiveness in
representing the average flow behavior of the Cunas River Basin (CRB), providing a robust
foundation for subsequent analyses.

3.3. Flood Simulation (Flooded Areas and Sections)

Using the previously obtained hydrological data and the HEC-RAS software, the
simulation of flooded areas and sections of the Cunas River was conducted for a 139-year
return period (Figure 11), under baseline conditions (Figure 11a) and with climate change
influence (Figure 11b). Additionally, these two simulations were overlaid into a single map
to provide a better perspective between both conditions (Figure 11c).

To delineate flood-prone areas in the Cunas River basin, specific hydraulic thresholds
were applied in HEC-RAS. Flood discharges were simulated for return periods of 25, 50,
100, 139, and 200 years, derived from hydrological modeling in HEC-HMS under CMIP6
climate projections. The 139-year return period was selected for flood simulations under
both baseline conditions and climate change scenarios. As a classification criterion, areas
with water depths equal to or exceeding 0.1 m were considered flooded, in accordance with
standard risk assessment practices. Upstream boundary conditions were defined based on
peak discharges generated by HEC-HMS for the 139-year return period.
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Figure 11. Flooded area and depth for a 139-year return period: (a) under baseline conditions, (b) with
climate change influence, and (c) overlay of both conditions.

This approach enabled a detailed characterization of flood-susceptible zones, integrat-
ing both hydrological variables and established technical criteria.
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Figure 11a displays the flood model under baseline conditions, with a total inundated
area of 686,689 m?. The simulation identified approximately 324 households at risk, of
which 76 households were classified as directly highly vulnerable and 248 as less vulnerable,
primarily in the Centro Poblado La Perla and part of Barrio Yauyos, located in the province
of Chupaca. Additionally, 115 agricultural plots along both banks of the Cunas River
would be impacted. These lands, dedicated to crop production (potatoes, corn, barley,
wheat, quinoa) and livestock rearing (cows, pigs, sheep, chickens, hens), cover a total
area of 183,892 m?, representing 26.78% of the total flooded zone. Critical infrastructure
at risk includes educational institutions, public facilities, recreational areas, the Chupaca
General Cemetery, the Chupaca Municipal Stadium, and key transportation routes such as
Eternidad Road, which provides direct access to the province of Chupaca.

Figure 11b displays the flood model under climate change influence, with a total
inundated area of 1,066,850 m2. The simulation identified approximately 462 households
at risk, of which 105 households were classified as directly highly vulnerable and 357 as
less vulnerable, primarily in Centro Poblado La Perla and Barrio Yauyos, located in the
province of Chupaca. Additionally, 147 agricultural plots along both banks of the Cunas
River would be impacted. These lands, dedicated to crop production (potatoes, corn, barley,
wheat, quinoa) and livestock rearing (cows, pigs, sheep, chickens, hens), cover a total
area of 255,620 m?, representing 23.96% of the total flooded zone. Critical infrastructure
at risk includes educational institutions, public facilities, recreational areas, the Chupaca
General Cemetery, the Chupaca Municipal Stadium, and tourist and rural recreational sites.
Urban areas such as Raymondi and Los Angeles would also be significantly affected, along
with key transportation routes like Eternidad Road (providing direct access to Chupaca
province) and the main road connecting to Yauyos.

Figure 11c displays the overlaid flood extents from both scenarios, revealing a 35.63%
increase in inundated area under climate change influence compared to baseline conditions.
This expansion is most pronounced in peripheral zones of Centro Poblado La Perla and
Barrio Yauyos, where flat topography facilitates water flow propagation. The figure also
illustrates flood depth levels in critical zones for both scenarios, with color intensity corre-
sponding to depth. The maximum flood depth reaches 9.35 m under baseline conditions
and 12.54 m under climate change influence.

When comparing both events, there is a significant variation in the extent of the
flooded areas. On one hand, when simulating under baseline conditions, there are less
vulnerable flooded zones with a moderate impact on urban areas. On the other hand, when
including the effect of climate change, a considerable increase in flooded areas is observed,
also affecting main roads such as those providing access to the province of Chupaca, with
more severe future projections. These projections would imply that the floods affect, on
one hand, many more homes in the Centro Poblado La Perla and the Barrio Yauyos, and on
the other hand, the main road called Coronel Parra, located on the left bank of the Cunas
River, which provides access to the province of Chupaca and the district of Huédchac.

The simulation conducted with HEC-RAS also enabled the visualization of cross-
sectional profiles along the entire length of the Cunas River. This provided detailed insights
into the river’s geometry and elevation variations across defined reaches, as well as the
water flow behavior at varying widths and depths.

Figure 12 primarily displays the most critical cross-sections (C.S. 5100.2) within the
analyzed reach of the Cunas River for a 139-year return period under two scenarios:
baseline conditions (Figure 12a) and climate change influence (Figure 12b). In both cases,
the river at this cross-section exhibits a U-shape, with the left bank significantly higher than
the right bank, reflecting the Cunas River’s distinct topographic characteristics.
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Figure 12. Critical flood cross-sections for a 139-year return period: (a) under baseline conditions and
(b) with climate change influence.

Figure 12a shows that the riverbank elevation is 3236.72 masl, while under baseline
conditions, flooding reached 3238.65 masl, indicating a water level rise of 1.93 m.

Figure 12b, under the influence of climate change and with the same riverbank eleva-
tion (3236.72 masl), shows that flooding reached 3241.50 masl, corresponding to a water
level rise of 4.78 m.

The flood height increase under climate change influence is 2.85 m compared to
baseline conditions.

This simulation also reflects the progressive flood capacity buildup over time, driven
by turbulent mass-removal flows and laminar flows with significant potential to erode
accumulated materials along the channel banks and deposit sediments on the riverbed
along its course. These processes cause the river channel margins to expand progressively
over time. Furthermore, the absence of preventive and mitigation measures—such as
riverbank defense structures (levees, gabions, retaining walls, etc.)—renders the adjacent
population increasingly vulnerable to such events.

4. Discussion

Following the assessment of climate change under the 10 GCMs from CMIP6, the
model initially projects a 3.32% increase in discharge when incorporating climate change,
which is directly attributed to extreme precipitation events. These findings align with a
study [19] which evaluated the response under the RCP 8.5 climate change scenario and
reported projections of an 8.14% increase in precipitation and a 12.6% rise in streamflow for a
high-Andean basin in Peru. Furthermore, projected streamflows under the RCP 8.5 scenario
exhibit a significant increase, particularly during the wet season (November to April) [86].

The selection of HEC-HMS for flood risk assessment in data-scarce Andean environ-
ments was based on three key considerations: first, its specialized capacity for modeling
extreme events (return periods of 25-200 years) and optimal integration with HEC-RAS;
second, its operational efficiency, requiring only basic meteorological and topographic
inputs (5 m DEM), unlike SWAT (which needs detailed soil data) or MIKE11 (requiring
bathymetric surveys), while maintaining robustness with CMIP6 projections through the
REA approach; and third, its methodological synergy, preventing interoperability errors
through seamless coupling with HEC-RAS. As mentioned in [87,88], although SWAT and
MIKE11 offer advantages in long-term water balances and detailed hydrodynamics, respec-
tively, HEC-HMS demonstrated the optimal balance between precision and computational
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feasibility for our specific objectives under climate change scenarios, justifying its selection
despite the alternative capabilities of other models in different contexts.

The results obtained from the calibration and adjustment of peak flows in the hydro-
logical model demonstrate notable performance, with NSE values of 0.939 in calibration
and 0.921 in validation, R? of 0.998 in both cases, and PBIAS close to zero (—0.001% in
calibration and 0.015% in validation). These metrics, along with low MAE and RMSE,
indicate that the values fall within an acceptable range, reflecting the model’s high capa-
bility to simulate streamflow in the Cunas River Basin. However, the effectiveness of this
calibration may depend on specific local conditions such as topography, vegetation cover,
and precipitation patterns, which modulate runoff behavior. Since these conditions vary
across basins, there is a need to assess the model’s transferability to other hydrological
contexts to ensure its accuracy and applicability beyond the studied basin. In this regard,
Merz and Bloschl [85] emphasize that the transferability of hydrological models largely
depends on the similarities in the physical characteristics of the basins, suggesting that
differences in topography and land cover may require model parameter adjustments to
maintain performance in new areas.

It is also essential to highlight that the RAIN4PE product represents the most compre-
hensive and accurate precipitation dataset for hydrological modeling in the study region.
This is because it is the only gridded precipitation product available for Peru and Ecuador,
benefiting from an extensive in situ observation network, multiple precipitation data
sources, environmental variables such as elevation, and integration with streamflow data
to correct precipitation underestimation [78]. Due to these features, RAIN4PE captures
regional precipitation patterns more accurately than other available datasets.

On the other hand, although the REA method adequately captures regional climate
trends, more advanced approaches exist that can better characterize the spatiotemporal
variability of precipitation across different locations and time periods. These methods
improve the reliability of climate projections by assigning weights to each climate model
within a multi-model ensemble and optimizing the overall robustness of the results [81,89].

While HEC-RAS is a widely accepted tool, this study acknowledges certain limitations.
As noted by [90], the accuracy of flood simulations depends on the resolution of the
employed digital elevation model (DEM), introducing uncertainties in areas with low-
resolution topographic data. Although Manning’s roughness coefficients ‘n” were calibrated,
uncertainties persist in ungauged river reaches, affecting velocity and depth estimates.
Furthermore, despite using REA-weighted CMIP6 ensembles, biases in precipitation data
propagate to the hydraulic boundary conditions, influencing model outcomes.

We clarify that this study employed static parameters based on fundamental consider-
ations: first, the analysis specifically focused on isolating climate impacts by maintaining
controlled variables when evaluating rainfall-runoff relationships under CMIP6 scenarios;
second, parameters were calibrated using historical events, though it should be noted
that the 55.35% expansion in flood-prone areas may vary with future land use/land cover
(LULC) changes, likely further increasing runoff coefficients.

Finally, the model did not account for temporary obstructions (e.g., sedimentation,
vegetation debris) during extreme events, which could alter flood dynamics in real-world
scenarios. Although this study provides a comprehensive assessment of flood risks in the
Cunas River Basin, it is important to acknowledge two additional key limitations. First, the
modeling did not explicitly incorporate channel meander migration dynamics due to the
lack of high-resolution historical data on geomorphological changes. Previous studies [91]
have demonstrated that meander migration can significantly alter concentration times (Tc)
and floodable areas. Second, land-use/land-cover (LULC) change projections were based
on regional trends, without considering detailed localized scenarios. A recent study in
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Xiamen, China [92], found that models using static land-use data can underestimate runoff
by up to 5.7%, suggesting that not accounting for detailed local changes in land use may
lead to underestimations in runoff projections under extreme climate scenarios.

While this approach effectively isolates climatic impacts, we recommend that future
studies incorporate coupled geomorphological models [93] to capture the natural evolution
of the channel, including meander migration.

To these limitations we must add that while the SSP5-8.5 scenarios represent relevant
emission ranges for the Andes, they constitute only a subset of possible climate futures, and
other model ensembles could yield different results. Furthermore, our analysis employed
bias-corrected GCM data rather than applying dynamic downscaling. Although this
approach is consistent with regional studies in data-scarce areas, we acknowledge that
higher-resolution regional climate models could more accurately capture orographic effects
on precipitation.

As clearly demonstrated in Figure 10a, the results of this study show that the flooded
area determined under baseline conditions aligns with the zone identified in [94], validating
the model’s accuracy for this region. Furthermore, when considering CMIP6 climate
models, the simulation results clearly reveal a significant increase in flooded areas [95]
as peak discharges rise [96], with an expansion of 35.63%. Vulnerability analysis of these
inundation zones indicates that while both residential areas and agricultural lands are at
risk, agricultural sectors would bear the greatest impact, representing 26.78% of affected
areas under baseline conditions and 23.96% under climate change scenarios. Notably, other
studies estimate agricultural lands may comprise up to 90% of total flooded areas [97]; this is
because agricultural territories are located outside the urban area due to the large extensions
they need and for the use of water, which represents 70% of the extractions [98], since
agriculture is considered essential due to the constant pressure exerted by the population
increase and the total consumption of food [99].

It has been shown that the extent of flooded areas exceeds river levels [100], reaching
heights of approximately 1.93 m under baseline conditions and increasing by 2.85 m with
the presence of climate change, reaching 4.78 m in total height. This increase has severe con-
sequences, as it causes the river to breach its natural boundaries in previously unaffected
areas, significantly expanding both the flood extent and severity. From a risk management
perspective, the increased flood depths necessitate comprehensive planning that incorpo-
rates adaptation of existing infrastructure, implementation of early warning systems, and
flood mitigation strategies (as outlined in [101]). Given that climate change will continue to
alter precipitation patterns and streamflow dynamics, periodic risk assessments and model
adjustments based on updated projections are essential.

In particular, the area of the critical section (C.S. 5100.2) requires priority attention
in future interventions, as its geographical characteristics and current vulnerability could
prove disastrous under future climate scenarios. This study reaffirms such findings by
demonstrating that even shorter return periods already reflect higher discharges than
those estimated under baseline conditions. Furthermore, this phenomenon increases
the frequency of severe hydrological events, consistent with observations by [102], who
highlight that flood events once considered improbable over short timescales now occur
with greater likelihood.

These findings confirm that even marginal increases in streamflow can lead to dispro-
portionately greater impacts on the river’s hydraulic capacity and floodplain inundation
dynamics. Climate change has been shown to disrupt hydrological regimes, amplifying
extreme events, including intense rainfall, and consequently increasing peak river dis-
charges [103]. The significance of these findings lies in their direct implications for risk
management planning and climate change adaptation strategies. The simulation results
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demonstrating more extensive flooding under climate scenarios underscore the critical
need to integrate these projections into disaster mitigation frameworks.

Within the context of climate change, it is essential to consider not only shifts in mean
climatic conditions but also the frequency and intensity of extreme precipitation events [104].
These events, characterized by intense, low-frequency rainfall, can significantly impact
the Cunas River Basin by increasing the risk of severe flash flooding. Climate projections
indicate that these events may intensify, underscoring the need for robust risk management
planning. Furthermore, future studies should adopt multivariate bias correction approaches
that simultaneously adjust multiple climate variables (e.g., precipitation and temperature),
unlike univariate methods [105]. This approach enables better capture of complex variable
interactions, thereby enhancing the accuracy of hydrological projections. Incorporating
these methods would yield more reliable estimates, supporting the development of effective
mitigation strategies while strengthening basin resilience under adverse climatic conditions.

A critical point analysis for potential disaster risk mitigation interventions in the
Cunas River Basin should focus on areas with high flood susceptibility, exacerbated by
climate change impacts. Based on hydrological and hydraulic modeling conducted with
HEC-HMS and HEC-RAS, the following priority zones were identified: First are confluence
areas and low floodplains, particularly in reaches with reduced channel capacity and
gentle slopes. These zones exhibit greater flood depths, requiring structural measures
such as levees, retention ponds, or bank reinforcement to control overflow events. Second
are headwater areas, where the observed 3.32% increase in peak discharges necessitates
upstream interventions including reforestation, check dams, and soil conservation practices
to regulate runoff, thereby reducing sediment transport and downstream flood peaks.
Finally, exposed (urban and agricultural) areas within the alluvial plain of the sub-basin
contain populated and cultivated zones vulnerable to projected 139-year return period
flows. Territorial planning, early warning systems, and channel dredging are recommended
to minimize socioeconomic impacts.

5. Conclusions

Hydrological and hydraulic analysis under baseline conditions determined a peak dis-
charge of 203.90 m®/s and a flood-prone area of 686,689 m? in the study area (Cunas River).
However, when incorporating climate change effects using 10 Global Climate Models
(GCMs) from CMIP6, a significant increase in these values was observed. The peak dis-
charge rose to 210.90 m3/s, representing a 3.32% increase, while the flood-prone area
expanded to 1,066,850 m2, a 35.63% increase.

This study highlights that climate variability and projected increases in streamflow
under climate change scenarios lead to substantial rises in both flood severity and spatial
extent. Compared to baseline conditions, the flood-prone area expanded by 35.63%, which
would primarily affect populations, dwellings, public institutions, agricultural lands, ceme-
teries, tourist recreation areas, and roadways—particularly in the Cento Poblado La Perla
and Barrio Yauyos.

Under baseline conditions, the analysis determined that 324 dwellings and approxi-
mately 115 agricultural plots—totaling 183,892 m? of land dedicated to crops and livestock—
would be affected. In contrast, under climate change scenarios, the number of impacted
dwellings would rise to 462, and agricultural plots to 147, encompassing a total area of
255,620 m?.

Furthermore, the simulation performed with HEC-RAS software revealed flood
heights of 1.93 m under baseline conditions and 4.78 m under climate change, representing
an increase of 2.85 m.
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This research underscores the urgent need to integrate climate change scenarios into
risk management plans, highlighting the importance of adopting more flexible and adaptive
strategies to mitigate disaster impacts. Incorporating these findings into urban and rural
development planning will be critical to safeguarding vulnerable communities, reducing
both structural damage risks and potential economic losses from future extreme events.

The methodological framework (HEC-HMS/HEC-RAS with CMIP6 projections) is
transferable to other Andean basins with similar climatic and data-scarce contexts, provided
that key parameters (e.g., Curve Number, Manning’s coefficients) are locally calibrated,
high-resolution topographic data (e.g., DEM < 30 m) are available, and regional climate
datasets (e.g., RAIN4PE, CHIRPS) replace global products where necessary. While opti-
mized for steep terrains, their application in flat or arid regions would require coupling
with 2D hydraulic models or groundwater dynamics tools (e.g., MODFLOW).

Although our integrated HEC-HMS/HEC-RAS modeling framework using 5 m res-
olution DEM data and CMIP6 projections has provided valuable insights into flood risk
under climate change scenarios in the Cunas River basin, we must acknowledge its limi-
tations. The one-dimensional approach of HEC-RAS, despite employing high-resolution
topographic data, may not fully capture the complex flow dynamics in river floodplains,
particularly in areas with significant lateral flow components.

Our climate impact assessment, while utilizing REA-weighted CMIP6 ensembles,
remains subject to the inherent uncertainties of global climate models at regional scales.
The hydrological modeling assumes static land-use conditions, potentially overlooking
future land cover changes that could alter runoff patterns.

This study provides a robust scientific foundation for the design of riverine defense
structures, considering a return period of 139 years. The findings can serve as a benchmark
for planning and constructing infrastructure to mitigate extreme event impacts across
the basin.

Furthermore, this study establishes several critical research directions to enhance flood
risk management in Andean basins under climate change scenarios: first, the integration
of advanced technologies (drones, LIDAR) to acquire higher-resolution topographic data
for precise delineation of risk zones, particularly around critical infrastructure; second,
conducting rigorous cost-benefit analyses of protection measures; finally, evaluating nature-
based solutions and adaptive land-use planning strategies.

We strongly recommend establishing long-term monitoring networks to overcome
current data limitations and enable more accurate model validation. These methodolog-
ical improvements, combined with replicating and refining this study using advanced
techniques, will establish the foundation for more robust flood management strategies in
climate change contexts.
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