

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Industrial

Tesis

Modelo de gestión de mantenimiento para mejorar la disponibilidad vehicular de la empresa DDP Motor Center SAC Huancayo, 2024

Alessandro Gabriel Caballero Capcha Brayan Emerson Veliz Veliz

> Para optar el Título Profesional de Ingeniero Industrial

> > Huancayo, 2025

INFORME DE CONFORMIDAD DE ORIGINALIDAD DE TRABAJO DE INVESTIGACIÓN

A : Decano de la Facultad de Ingeniería

DE : Wilmer Jimmy Bendezú Álvarez

Asesor de trabajo de investigación

ASUNTO: Remito resultado de evaluación de originalidad de trabajo de investigación

FECHA : 31 de Julio de 2025

Con sumo agrado me dirijo a vuestro despacho para informar que, en mi condición de asesor del trabajo de investigación:

Título

Modelo de gestión de mantenimiento para mejorar la disponibilidad vehicular de la empresa DDP Motor Center SAC Huancayo, 2024

Autor

Alessandro Gabriel Caballero Capcha – EAP. Ingeniería Industrial Brayan Emerson Veliz Veliz – EAP. Ingeniería Industrial

Se procedió con la carga del documento a la plataforma "Turnitin" y se realizó la verificación completa de las coincidencias resaltadas por el software dando por resultado 11 % de similitud sin encontrarse hallazgos relacionados a plagio. Se utilizaron los siguientes filtros:

Filtro de exclusión de bibliografía	SI X	NO
 Filtro de exclusión de grupos de palabras menores Nº de palabras excluidas (en caso de elegir "\$1"): 15 palabras 	SI X	ИО
Exclusión de fuente por trabajo anterior del mismo estudi-	ante SI	NO X

En consecuencia, se determina que el trabajo de investigación constituye un documento original al presentar similitud de otros autores (citas) por debajo del porcentaje establecido por la Universidad Continental.

Recae toda responsabilidad del contenido del trabajo de investigación sobre el autor y asesor, en concordancia a los principios expresados en el Reglamento del Registro Nacional de Trabajos conducentes a Grados y Títulos – RENATI y en la normativa de la Universidad Continental.

Atentamente,

La firma del asesor obra en el archivo original (No se muestra en este documento por estar expuesto a publicación)

ÍNDICE DE CONTENIDO

ASESOR	iv
DEDICATORIA	v
AGRADECIMIENTO	v
ÍNDICE DE CONTENIDO	vi
ÍNDICE DE TABLAS	xiii
ÍNDICE DE FIGURAS	XV
RESUMEN	xviii
ABSTRAC	xix
INTRODUCCIÓN	xx
CAPÍTULO I PLANTEAMIENTO DEL ESTUDIO	21
1.1. Planteamiento y formulación del problema	21
1.1.1. Planteamiento del problema	21
1.1.2. Formulación del problema	23
1.2. Objetivos	23
1.2.1. Objetivo general	23
1.2.2. Objetivos específicos	24
1.3. Justificación e importancia	24
1.3.1. Justificación teórica	24
1.3.2. Justificación práctica	24
1.3.3. Justificación económica	25
1.3.4. Justificación operativa	25
1.3.5. Importancia	25
1.4. Delimitación de la investigación	25
1.4.1. Delimitación temporal	25
1.4.2. Delimitación espacial	25
1.4.3. Delimitación poblacional	25
1.5. Hipótesis de la investigación	26
1.5.1. Hipótesis general	26
1.5.2. Hipótesis específicas	26
1.6. identificación de las variables	26
1.6.1. Variable independiente	26
1.6.2. Variable dependiente	26
1.7. Matriz de operacionalización de variables	27
CAPÍTULO II MARCO TEÓRICO	28

2.1 Antecedentes del problema	28
2.1.1 Antecedentes internacionales	28
2.1.2 Antecedentes nacionales	29
2.1.3 Antecedentes locales	31
2.2 Bases teóricas	32
2.2.1 Mantenimiento	32
2.2.1.1 Objetivo del mantenimiento	32
2.2.2 Gestión	33
2.2.3 Gestión del mantenimiento	33
2.2.3.1 Componentes de la gestión del mantenimiento	33
2.2.4 Modelos de mantenimiento	35
2.2.5 Sistemas de mantenimiento	35
2.2.6 Sistemas y componentes de vehículos	39
2.2.6.1 Suspensión	39
2.2.6.2 Frenos	40
2.2.6.3 Dirección	40
2.2.6.4 Transmisión	40
2.2.6.5 Motor	40
2.2.7 Disponibilidad vehicular	41
2.2.7.1 Factores que afectan la disponibilidad vehicular	41
2.2.8 Mantenibilidad	42
2.2.9 Fiabilidad	43
2.2.9.1 Fiabilidad ideal	43
2.2.9.2 Actividades generales	43
2.2.10Tiempo de vida útil de un recurso	
2.2.11 Tiempo de trabajo del personal	47
2.2.12Orden de trabajo	47
2.2.13 Gestión de inventarios	48
2.2.14Gestión de compras	48
2.2.15Política de compras	49
2.2.16Gestión de almacén de repuestos	49
2.2.16.1 Clasificación de materiales en almacén	50
2.2.17Subcontratación	51
2.2.17.1 Ventajas y desventajas de subcontratar en mantenimiento	53
2.2.18Plan de mantenimiento	54
2.2.18.1 Desarrollo de un plan de mantenimiento efectivo	54
2.2.18.2 Evaluación y revisión del plan de mantenimiento	55

2.2.19 Presupuestos de mantenimiento	55
2.2.19.1 Clasificación de los costos de manten	imiento56
2.2.20 Indicadores de gestión (KPIs)	57
2.2.20.1 Ejemplos de principales indicadores-	59
2.2.21 Herramientas de análisis y priorización	61
2.2.21.1 Diagrama de Ishikawa (causa-efecto)	61
2.2.21.2 Diagrama de Pareto	62
2.2.21.3 Matriz de priorización	63
2.2.21.4 Matriz RACI	65
2.2.22 Análisis interno	66
2.2.22.1 Cadena de valor	66
2.2.22.2 Mapa de procesos	67
2.2.22.3 Matriz FODA	68
2.2.22.4 Matriz de evaluación de factores inter	rnos (MEFI)70
2.2.23 Análisis externo	72
2.2.23.1 Análisis PESTEC	72
2.2.23.2 5 fuerzas de Porter	74
2.2.23.3 Matriz de evaluación de factores exte	rnos (MEFE)75
2.2.24Formulación de estrategias	77
2.2.24.1 Matriz de perfil competitivo (MPC) -	77
2.2.24.2 Matriz de perfil de riesgos (MPR)	79
2.2.25 Indicadores financieros y análisis de renta	bilidad80
2.2.25.1 Análisis económico - financiero	80
2.2.25.2 Valor actual neto (VAN)	81
2.2.25.3 Tasa interna de retorno (TIR)	82
2.2.26 Análisis de flujos de caja	83
2.2.26.1 Flujo de caja económico	83
2.2.26.2 Flujo de caja financiero	84
2.3 Definición de términos básicos	85
CAPÍTULO III METODOLOGÍA DE LA INVE	ESTIGACIÓN87
2.1 Método, tipo y alcances de la investigación	87
2.1.1 Método de la investigación	87
2.1.2 Tipo de investigación	87
2.1.3 Nivel de investigación	87
2.1.4 Diseño de la investigación	88
2.2 Población y muestra	88
2.2.1 Población	88

2.2.2 Muestra	88
2.3 Técnicas e instrumentos de recolección de datos	88
2.3.1 Técnicas utilizadas en la recolección de datos	88
2.3.2 Instrumentos utilizados en la recolección de datos	89
CAPÍTULO IV DIAGNÓSTICO	90
4.1. Descripción de la empresa	90
4.1.1. Actividad laboral	90
4.1.2. Rutas de operación	90
4.1.3. Misión	90
4.1.4. Visión	91
4.1.5. Valores	91
4.1.6. Organigrama	91
4.1.7. Sectores de participación	91
4.2. Diagnóstico interno de la empresa	91
4.2.1. Cadena de valor	91
4.2.2. Matriz FODA	92
4.2.3. Matriz de Evaluación de Factores Internos (MEFI)	94
4.3. Diagnostico externo de la empresa	94
4.3.1. Fuerzas de Porter	94
4.3.2. Matriz de evaluación de factores externos (MEFE)	95
4.4. Formulación de estrategias	97
4.4.1. Matriz de perfil competitivo (MPC)	97
4.5. Diagnóstico del área de mantenimiento	98
4.5.1. Descripción del área de mantenimiento	98
4.5.2. Características de la flota	98
4.5.3. Flota de vehículos Ford Ranger por año de fabricación	100
4.5.4. Distribución de flota vehicular	101
4.5.5. Organigrama del área de mantenimiento	102
4.5.6. Situación actual del área de mantenimiento	103
4.5.6.1. Mantenimiento preventivo en taller propio	103
4.5.6.2. Mantenimiento preventivo en taller externo	105
4.5.6.3. Mantenimiento correctivo en taller propio	106
4.5.6.4. Mantenimiento correctivo en taller externo	108
a) Envío de repuestos a zona	110
b) Compra de repuestos en zona	110
c) Compra directa de repuestos	111
4.5.7. Análisis de la gestión actual de mantenimiento	112

4.5.7.1.	Disponibilidad actual de la flota vehicular	112
4.5.7.2.	Disponibilidad por proyecto	113
4.5.7.3.	Disponibilidad por kilometraje	114
4.5.7.4.	Tiempo de operación	116
4.5.7.5.	Número de paradas mecánicas mensuales (P y NP)	119
4.5.7.6.	Número de paradas mecánicas por proyecto	120
4.5.7.7.	Tiempo de reparación promedio por vehículo	123
4.5.7.8.	Costo por vehículo parado	126
4.5.7.9.	Costo mano de obra en reparación	127
4.5.8. Id	lentificación del problema	129
CAPÍTU	JLO V ANÁLISIS E INTERPRETACIÓN DE RESULTADOS	135
5.1. Imp	plementación de la propuesta	135
5.1.1. M	Iapa de procesos	135
5.1.1.1.	Procesos estratégicos	136
5.1.1.2.	Procesos operativos	136
5.1.1.3.	Procesos de apoyo	137
5.1.2. Pı	roceso de gestión de flota	140
5.1.3. Fi	icha de procesos	140
5.1.4. G	estión del mantenimiento	145
5.1.4.1.	Mantenimiento rutinario por kilometraje	145
5.1.4.2.	Planificación del mantenimiento	145
5.1.4.3.	Orden de trabajo	146
5.1.4.4.	Documentación para la gestión de los mantenimientos	147
5.1.5. G	estión de recursos humanos	150
5.1.5.1.	Estructura de responsabilidades	150
5.1.5.2.	Matriz RACI	151
5.1.5.3.	Flujo de comunicación	153
5.1.6. G	estión de inventario y compras	153
5.1.6.1.	Política de compras	153
5.1.6.2.	Stock de seguridad y punto de reorden	153
5.1.7. G	estión de indicadores	161
5.1.7.1.	Balance Scorecard	161
5.1.7.2.	KPI'S de desempeño	163
5.1.8. A	nálisis financiero	164
5.2. Pre	sentación de resultados	174
5.2.1. D	isponibilidad vehicular global y parcial	174
5.2.2. Ti	iempo medio entre falla (MTBF)	175

5.2.3. Tiempo medio para reparar (MTTR)	176
5.2.4. Costo de mantenimiento	177
5.2.5. Beneficios económicos	178
5.3. Prueba de hipótesis	179
5.3.1. Hipótesis general	179
5.3.2. Hipótesis especifica (a)	180
5.3.3. Hipótesis especifica (b)	181
5.3.4. Hipótesis especifica (c)	182
5.3.5. Hipótesis especifica (d)	183
5.4. Discusión de resultados	184
CONCLUSIONES	189
RECOMENDACIONES	191
REFERENCIAS BIBLIOGRÁFICAS	192
ANEXOS	197

ÍNDICE DE TABLAS

Tabla 1. Matriz de operacionalización de variables	27
Tabla 2. FODA cruzado	92
Tabla 3. Evaluación de factores internos (MEFI)	94
Tabla 4. Evaluación de factores externos (MEFE)	95
Tabla 5. Perfil competitivo (MPC)	97
Tabla 6. Especificaciones técnicas camioneta Ford Ranger	99
Tabla 7. Cantidad y especificaciones de las camionetas muestra	100
Tabla 8. Distribución de flota vehicular	101
Tabla 9. Matriz de prioridad/impacto	130
Tabla 10. Análisis de causas raíz	131
Tabla 11. Soluciones propuestas a causas raíz	133
Tabla 12. Tabla de indicadores	134
Tabla 13. Relación tipo de mantenimiento - kilometraje	145
Tabla 14. Matriz RACI	152
Tabla 15. Stock de seguridad y punto de reorden para sistema de frenos	155
Tabla 16. Stock de seguridad y punto de reorden para sistema de suspensión	156
Tabla 17. Stock de seguridad y punto de reorden para el sistema eléctrico	157
Tabla 18. Stock de seguridad y punto de reorden para sistema de dirección	158
Tabla 19. Stock de seguridad y punto de reorden para sistema de transmisión	158
Tabla 20. Stock de seguridad y punto de reorden para insumos de mantenimientos	159
Tabla 21. Stock de seguridad y punto de reorden para motor	160
Tabla 22. Stock de seguridad y punto de reorden para sistema de combustión	160
Tabla 23. Balance Scorecard	161
Tabla 24. Costo de implementación del plan de mejora	164
Tabla 25. Estado de resultados antes de implementación	166
Tabla 26. Ingresos por plan de mantenimiento	167
Tabla 27. Reprocesos antes de implementación del plan de capacitación	167
Tabla 28. Costos de mantenimiento antes / después de implementación	167
Tabla 29. Reprocesos promedio antes / después	168
Tabla 30. Reprocesos después de implementación	168
Tabla 31. Uso de repuestos antes y después de la implementación	169
Tabla 32. Flujo de caja del modelo de implementación	173
Tabla 33. Resumen general pre y postimplementación	174
Tabla 34. Comparativo de disponibilidad vehicular postimplementación	175
Tabla 35. Comparativo MTBF postimplementación	175

Tabla 36. Comparativo de MTTR postimplementación	176
Tabla 37. Comparativa de costo de mantenimiento postimplementación	177
Tabla 38. Comparativo de beneficios postimplementación	178
Tabla 39. Análisis estadístico de la hipótesis general	180
Tabla 40. Análisis estadístico de la hipótesis (a)	181
Tabla 41. Análisis estadístico de la hipótesis (b)	182
Tabla 42. Análisis estadístico de la hipótesis (c)	183
Tabla 43. Análisis estadístico de la hipótesis (d)	184

ÍNDICE DE FIGURAS

Figura 1. Sistemas de mantenimiento	36
Figura 2. Tiempos en la vida de un recurso	46
Figura 3. Flujo de requisición y almacenamiento	50
Figura 4. Matriz de externalización	52
Figura 5. Metodología SMART	59
Figura 6. Estructura del diagrama de Ishikawa	62
Figura 7. Diagrama de Pareto	63
Figura 8. Matriz de priorización	65
Figura 9. Matriz RACI	66
Figura 10. Ventaja competitiva - cadena de valor	67
Figura 11. Matriz FODA	69
Figura 12. Generación de estrategia - matriz FODA	69
Figura 13. Formato MEFI	72
Figura 14. Modelo 5 fuerzas de Porter	75
Figura 15. Formato MEFE	77
Figura 16. Formato MPC	79
Figura 17. Distribución nacional de flota	90
Figura 18. Organigrama de la empresa	91
Figura 19. Diagnostico interno - cadena de valor	92
Figura 20. Análisis de fuerzas de Porter	95
Figura 21. Camioneta Ford Ranger	100
Figura 22 Flota de vehículos según año	101
Figura 23 Distribución de vehículos por proyectos	102
Figura 24. Organigrama del área de mantenimiento	102
Figura 25. Flujo de mantenimiento preventivo - taller propio	104
Figura 26. Resumen de DAP-mantenimiento preventivo taller propio	104
Figura 27. DAP Mantenimiento preventivo taller propio	105
Figura 28. Diagrama de flujo de mantenimiento preventivo en taller externo	105
Figura 29. Resumen DAP - mantenimiento preventivo en taller externo	106
Figura 30. DAP de mantenimiento preventivo taller externo	106
Figura 31. Diagrama de flujo de mantenimiento correctivo	107
Figura 32. Resumen DAP-mantenimiento correctivo taller propio	107
Figura 33. DAP de mantenimiento correctivo taller propio	108
Figura 34. Flujograma de mantenimiento correctivo en taller externo	109
Figura 35. Resumen DAP mantenimiento correctivo - envío de repuesto	110

Figura 36. DAP mantenimiento correctivo - envío de repuesto	110
Figura 37 Resumen DAP mantenimiento correctivo - compra zona	111
Figura 38 DAP mantenimiento correctivo - compra zona	111
Figura 39 Resumen DAP mantenimiento correctivo - compra directa	112
Figura 40 DAP mantenimiento correctivo - compra directa	112
Figura 41. Disponibilidad vehicular	113
Figura 42. Disponibilidad vehicular por proyecto	114
Figura 43. Disponibilidad por categoría	115
Figura 44. Disponibilidad frente a departamentos de operación	115
Figura 45. Disponibilidad frente a ciudades de Junín	116
Figura 46. Tiempo de operación promedio	116
Figura 47 Tiempo sin operación promedio	117
Figura 48. Tiempo de operación frente a tiempo sin operación	117
Figura 49. Tiempos inoperativos por departamentos	118
Figura 50. Tiempo inoperativo (horas) de ciudades de Junín	118
Figura 51. N° de paradas mensuales de la flota	119
Figura 52. N° de paradas promedio por vehículo	119
Figura 53. Disponibilidad frente al mantenimientos por mes	120
Figura 54. Número de mantenimiento por proyecto	121
Figura 55. Número de mantenimiento correctivo por proyecto	121
Figura 56. N° de correctivos por sistema vehicular	122
Figura 57. Pareto de correctivos por sistema vehicular	123
Figura 58. Tiempo de reparación	124
Figura 59. % de tiempo de operación - mantenimiento preventivo taller propio	124
Figura 60. % de tiempo operación – mantenimiento preventivo taller externo	125
Figura 61. % de tiempo operación – mantenimiento correctivo taller propio	125
Figura 62. % de tiempo operación – mantenimiento correctivo taller externo	126
Figura 63. Costo mensual por vehículo parado	126
Figura 64. Costo promedio mensual por vehículo parado	127
Figura 65. Costo de mano de obra promedio por mes	128
Figura 66. Costo de mano de obra promedio por vehículo	128
Figura 67. Diagrama de Ishikawa	129
Figura 68 Análisis de Pareto	132
Figura 69. Mapa de procesos de DDP Motor Center	135
Figura 70. Flujo TO-BE posterior a la implementación de mejoras	139
Figura 71. Subprocesos de gestión de flota	140
Figura 72. Ficha de proceso de mantenimiento preventivo en taller propio	141

Figura 73. Ficha de proceso de mantenimiento preventivo en taller externo	142
Figura 74. Ficha de proceso de mantenimiento correctivo en taller propio	143
Figura 75. Ficha de proceso de mantenimiento correctivo en taller externo	144
Figura 76. Ficha de proyección semanal de mantenimiento	146
Figura 77. Interfaz de macro en Excel	146
Figura 78. Formato de registro en macro Excel	147
Figura 79. Formato de orden de trabajo	149
Figura 80. Formato de lista de equipos	150
Figura 81. Flujo de comunicación	153
Figura 82. Dashboard de indicadores semanales	163
Figura 83. Dahsboard de indicadores de gestión de mantenimiento	163
Figura 84. Utilidad operativa antes de la implementación de la mejora	166
Figura 85. Comparativo de disponibilidad vehicular postimplementación	175
Figura 86. Comparativo de MTBF postimplementación	176
Figura 87. Comparativo de MTTR postimplementación	177
Figura 88. Comparativa de costo de mantenimiento postimplementación	178
Figura 89. Comparativo de beneficios postimplementación	179

RESUMEN

El presente trabajo de investigación tiene como objetivo mejorar la disponibilidad vehicular en la empresa DDP Motor Center Huancayo mediante la implementación de un modelo de gestión de mantenimiento. A través de los objetivos específicos, busca mejorar el MTBF y MTTR, así como generar beneficios económicos, comparando los resultados obtenidos durante el periodo de análisis previo a la implementación (enero 2023 - mayo 2024) y después de la implementación (junio - diciembre 2024). La investigación sigue un enfoque descriptivo aplicativo, enfocándose en identificar y evaluar los factores que limitan la eficiencia operativa de la flota. Los problemas detectados se presentan en los resultados a través de un análisis detallado de los indicadores clave, utilizando herramientas de medición para cuantificar los avances y optimizar los procesos de mantenimiento. Los resultados mostraron que, tras la implementación del modelo, la disponibilidad vehicular aumentó del 84 % al 89 %. El MTBF creció un 58.7 %, de 402 a 638 horas, mejorando la fiabilidad operativa de la flota. El MTTR global se redujo un 4.7 %, de 86 a 82 horas, con una notable mejora en la categoría A (de 50 a 29 horas). Los costos operativos disminuyeron un 25.5 %, de S/ 1,094.39 a S/ 815.92, optimizando los recursos y mejorando la eficiencia, mientras que los beneficios económicos aumentaron un 54.5 %, de S/ 781,030.88 a S/ 1,206,474.64. Finalmente, se concluye que la implementación del modelo de gestión de mantenimiento ha sido efectiva, mejorando tanto la operatividad de la flota como la eficiencia financiera de la empresa. Para garantizar la sostenibilidad de los beneficios, es fundamental mantener el enfoque en el mantenimiento preventivo y la mejora continua en los procesos.

Palabras clave: disponibilidad vehicular, gestión de mantenimiento, tiempo de inoperatividad, costos operativos, eficiencia operativa.

ABSTRAC

The objective of this research is to improve fleet availability at DDP Motor Center Huancayo through the implementation of a maintenance management model. The specific objectives aim to enhance MTBF and MTTR, as well as generate economic benefits, by comparing the results obtained during the pre-implementation analysis period (January 2023 - May 2024) and the post-implementation period (June - December 2024). The research follows a descriptiveapplied approach, focusing on identifying and evaluating the factors that limit the operational efficiency of the fleet. The detected issues are presented in the results through a detailed analysis of key indicators, using measurement tools to quantify progress and optimize maintenance processes. The results showed that, after the implementation of the model, fleet availability increased from 84% to 89%. The MTBF grew by 58.7%, from 402 to 638 hours, improving the operational reliability of the fleet. The global MTTR decreased by 4.7%, from 86 to 82 hours, with a notable improvement in category A (from 50 to 29 hours). Operating costs decreased by 25.5%, from S/1,094.39 to S/815.92, optimizing resources and improving efficiency, while economic benefits increased by 54.5%, from S/ 781,030.88 to S/ 1,206,474.64. In conclusion, the implementation of the maintenance management model has been effective, improving both fleet operability and the company's financial efficiency. To ensure the sustainability of these benefits, it is essential to maintain the focus on preventive maintenance and continuous process improvement.

Keywords: vehicle availability, maintenance management, downtime, operational costs, operational efficiency.