

## **FACULTAD DE INGENIERÍA**

Escuela Académico Profesional de Ingeniería Civil

## Tesis

Adición de la Ceniza de la Cascarilla de Café y Cáscara de Huevo para Mejorar la Resistencia a la Compresión del Concreto f'c=210 kg/cm2 en Zapatas de un Polideportivo, Cusco-2023

Makliber Ronald Alfaro Yanque Leonard Mendoza Chuctaya

Para optar el Título Profesional de Ingeniero Civil

Cusco, 2025

## Repositorio Institucional Continental Tesis digital



Esta obra está bajo una Licencia "Creative Commons Atribución 4.0 Internacional".

# INFORME DE CONFORMIDAD DE ORIGINALIDAD DE TRABAJO DE INVESTIGACIÓN

Decano de la Facultad de Ingeniería

Α

| DE                                                                                                                                                                                                                                                                                   | :       | Juan José Bullón Rosas                                                                                                                                                                        |        |            |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|----------|
|                                                                                                                                                                                                                                                                                      |         | Asesor de trabajo de investigación                                                                                                                                                            |        |            |          |
| ASUNTO                                                                                                                                                                                                                                                                               | :       | Remito resultado de evaluación de originalidad de trabajo d                                                                                                                                   | ni ek  | vestigacić | n        |
| FECHA                                                                                                                                                                                                                                                                                | :       | 30 de Julio de 2025                                                                                                                                                                           |        |            |          |
| Con sumo a<br>trabajo de ir                                                                                                                                                                                                                                                          |         | o me dirijo a vuestro despacho para informar que, en mi con<br>gación:                                                                                                                        | ndicić | ón de ase  | sor del  |
|                                                                                                                                                                                                                                                                                      |         | niza de la Cascarilla de Café y Cáscara de Huevo para Mejor<br>Concreto f'c=210 kg/cm2 en Zapatas de un Polideportivo, Cusc                                                                   |        |            | ia a la: |
|                                                                                                                                                                                                                                                                                      |         | d Alfaro Yanque – EAP. Ingeniería Civil<br>oza Chuctaya – EAP. Ingeniería Civil                                                                                                               |        |            |          |
| Se procedió con la carga del documento a la plataforma "Turnitin" y se realizó la verificación completa de las coincidencias resaltadas por el software dando por resultado 13 % de similitud sin encontrarse hallazgos relacionados a plagio. Se utilizaron los siguientes filtros: |         |                                                                                                                                                                                               |        |            |          |
| • Filtro de ex                                                                                                                                                                                                                                                                       | kclusić | on de bibliografía                                                                                                                                                                            | SI     | X          | NO       |
|                                                                                                                                                                                                                                                                                      |         | on de grupos de palabras menores<br>excluidas <b>(en caso de elegir "SI")</b> :15                                                                                                             | SI     | X          | NO       |
| • Exclusión o                                                                                                                                                                                                                                                                        | de fue  | ente por trabajo anterior del mismo estudiante                                                                                                                                                | SI     |            | NO X     |
| En consecuencia, se determina que el trabajo de investigación constituye un documento original al presentar similitud de otros autores (citas) por debajo del porcentaje establecido por la Universidad Continental.                                                                 |         |                                                                                                                                                                                               |        |            |          |
| concordanc                                                                                                                                                                                                                                                                           | ia a    | onsabilidad del contenido del trabajo de investigación sobre<br>los principios expresados en el Reglamento del Registro Na<br>rados y Títulos – RENATI y en la normativa de la Universidad Co | acio   | nal de Tr  |          |
| Atentament                                                                                                                                                                                                                                                                           | e,      |                                                                                                                                                                                               |        |            |          |

La firma del asesor obra en el archivo original (No se muestra en este documento por estar expuesto a publicación)

## **AGRADECIMIENTO**

Agradecemos a Dios por habernos dado la fortaleza, salud y sabiduría necesarias para culminar con éxito esta etapa tan importante de nuestra formación profesional.

A nuestras familias, por su amor incondicional, comprensión y apoyo constante. Gracias por ser nuestro motor, por acompañarnos en cada paso y por creer en nosotros incluso en los momentos más difíciles.

Expresamos nuestro agradecimiento al Ing. Juan José Bullón Rosas, asesor de esta tesis, por su valiosa orientación, compromiso y apoyo constante a lo largo del desarrollo de este trabajo de investigación. Su experiencia, paciencia y disposición para compartir conocimientos fueron fundamentales para alcanzar los objetivos planteados y culminar con éxito este proyecto.

Y a todas las personas e instituciones que, de alguna manera, contribuyeron con la realización de esta tesis. A todos ustedes, muchas gracias.

#### **DEDICATORIAS**

A Dios, por concederme el don de la vida, la sabiduría y la fortaleza necesarias para llevar a cabo esta tesis.

A mi madre, Julieta Yanque Torres, quien desde el cielo me ha guiado en cada paso. Su recuerdo y amor han sido una fuente constante de inspiración para alcanzar esta meta.

A mi esposa, Mgt. Ing. Gardenia Tupayachi Solórzano, quien fue un pilar fundamental en este camino. Su apoyo incondicional, paciencia y aliento me sostuvieron en los momentos más desafiantes.

A mis familiares y amigos, tanto de mi parte como de la de mi esposa, por sus muestras de afecto y apoyo a lo largo de este proceso.

Y a mi compañero de tesis, con quien compartí este camino hacia un objetivo común, trabajando siempre con compromiso, respeto y coordinación.

Makliber R. Alfaro Yanque

A mí eternamente amada hermanita en el cielo; desde un inicio fuste mi genio faro inalcanzable en lo académico. Y aunque tratar de igualarte seria como un milagro tardío, viviré desafiante y rebelde al sistema de la vida para ser feliz a mi forma sin seguir estándares existenciales y absurdas.

Leonard Mendoza Chuctaya

# ÍNDICE

| AGRADECIMIENTO                                  | 4  |
|-------------------------------------------------|----|
| DEDICATORIAS                                    | 5  |
| ÍNDICE                                          | 6  |
| ÍNDICE DE TABLAS                                | 8  |
| ÍNDICE DE FIGURAS                               | 13 |
| RESUMEN                                         | 18 |
| ABSTRACT                                        | 19 |
| INTRODUCCIÓN                                    | 20 |
| CAPÍTULO I: PLANTEAMIENTO DEL ESTUDIO           | 21 |
| 1.1. Planteamiento y formulación del problema   | 21 |
| 1.2. Formulación del problema                   | 23 |
| 1.2.1. Problema General                         | 23 |
| 1.2.2. Problemas Específicos                    | 23 |
| 1.2. Objetivos                                  | 23 |
| 1.2.1. Objetivo General                         | 23 |
| 1.2.2. Objetivos Específicos                    | 23 |
| 1.4. Justificación e importancia                | 24 |
| 1.5. Hipótesis y variable                       | 27 |
| 1.5.1. Hipótesis General                        | 27 |
| 1.5.2. Hipótesis Específica                     | 27 |
| 1.6. Operacionalización de las variables        | 28 |
| CAPÍTULO II: MARCO TEÓRICO                      | 32 |
| 2.1. Antecedentes de la investigación           | 32 |
| 2.1.1. Antecedentes nacionales                  | 32 |
| 2.1.2. Antecedentes internacionales             | 34 |
| 2.2. Bases Teóricas                             | 35 |
| 2.2.1 Ceniza de la cascarilla de café           | 35 |
| 2.2.2 Cáscara de Huevo                          | 42 |
| 2.2.3 Generalidades del Concreto                | 45 |
| CAPÍTULO III: METODOLOGÍA                       | 84 |
| 3.1 Método, tipo o alcance de la investigación: | 84 |
| 3.2 Materiales y métodos:                       | 84 |

| 3.2.1. Procedimiento                                                                                                                                                           | 87    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 3.2.2. Técnica de análisis de datos                                                                                                                                            | .112  |
| CAPÍTULO IV RESULTADOS Y DISCUSIÓN                                                                                                                                             | .113  |
| 4.1 Presentación de resultados                                                                                                                                                 | .113  |
| 4.1.1 Diseño de mezcla                                                                                                                                                         | .113  |
| 4.1.2 Pruebas de concreto endurecido                                                                                                                                           | . 130 |
| 4.1.3 Pruebas de concreto fresco                                                                                                                                               | . 183 |
| 4.1.4 Diseño de Zapata                                                                                                                                                         | .323  |
| 4.2. Discusión d Resultados                                                                                                                                                    | .340  |
| 4.2.1 Discusión sobre la influencia de la ceniza de cascarilla de café, cascara de huevo y la combinación de ambas en la resistencia a la compresión a los 7 días 14 y 28 días |       |
| 4.2.2 Discusión sobre la influencia de la ceniza de cascarilla de café, cascara de huevo y la combinación de ambas en las propiedades físicas del concreto fresco              |       |
| 4.2.3 Discusión sobre la influencia de la ceniza de cascarilla de café, cascara de huevo y la combinación de ambas en el diseño de una zapata para un polideportivo.           |       |
| CAPÍTULO V CONCLUSIONES Y RECOMENDACIONES                                                                                                                                      | .349  |
| 5.1 Conclusiones                                                                                                                                                               | .349  |
| 5.2 Recomendaciones                                                                                                                                                            | .355  |
| REFERENCIAS BIBLIOGRÁFICAS                                                                                                                                                     | .357  |
| ANEXOS                                                                                                                                                                         |       |
|                                                                                                                                                                                |       |

# ÍNDICE DE TABLAS

| Tabla 1 Composición química de la cascarilla de café                                                               | 39  |
|--------------------------------------------------------------------------------------------------------------------|-----|
| Tabla 2 Composición química                                                                                        | 45  |
| Tabla 3 Tipos de Cemento                                                                                           | 47  |
| Tabla 4 <i>Límites permisibles para el agua de mezcla y curado según la norma NTP 339.088</i>                      | 52  |
| Tabla 5 Requerimiento de granulometría de Agregado fino                                                            | 53  |
| Tabla 6 Límites de sustancias nocivas en el agregado fino                                                          | 54  |
| Tabla 7 Límites de la granulometría del agregado fino                                                              | 66  |
| Tabla 8 Tamices para agregado grueso y cantidad mínimo de la muestra                                               | 66  |
| Tabla 9 Cantidad aproximada de aire atrapado según TMN (Tamaño Máximo Nominal)                                     | 70  |
| Tabla 10 Clases de mezclas según su asentamiento                                                                   | 76  |
| Tabla 11 Desarrollo aproximado de la resistencia a la compresión del concreto con la edad asumiendo 100% a 28 días | 83  |
| Tabla 12 Muestras de concreto patrón                                                                               | 85  |
| Tabla 13 Muestras incorporando ceniza de cascarilla de café                                                        | 86  |
| Tabla 14 Muestras incorporando y cascara de huevo                                                                  | 86  |
| Tabla 15 Muestras incorporando ceniza de cascarilla de café y cascara de huevo                                     | 87  |
| Tabla 16 Peso mínimo de la muestra de ensayo                                                                       | 97  |
| Tabla 17 Ensayo – Análisis granulométrico                                                                          | 113 |
| Tabla 18 Análisis de ensayos                                                                                       | 114 |
| Tabla 19 Porcentaje de componentes                                                                                 | 115 |
| Tabla 20 Agregado Grueso                                                                                           | 117 |
| Tabla 21 Agregado grueso                                                                                           | 117 |
| Tabla 22 Agregado fino                                                                                             | 120 |
| Tabla 23 Agregado grueso                                                                                           | 120 |
| Tabla 24 Agregado fino                                                                                             | 121 |
| Tabla 25 Agregado Grueso                                                                                           | 121 |
| Tabla 26 Agregado fino                                                                                             | 122 |
| Tabla 27 Agregado Grueso                                                                                           | 122 |
| Tabla 28 Peso específico del Agregado Fino                                                                         | 123 |
| Tabla 29 Absorción del Agregado Fino                                                                               | 124 |
| Tabla 30 Peso específico del Agregado Grueso                                                                       | 124 |
| Tabla 31 Absorción del Agregado Grueso                                                                             | 124 |
| Tabla 32 Descripción de mezcla de patrón                                                                           | 125 |

| Tabla 33 Agregado fino                                                             | . 126 |
|------------------------------------------------------------------------------------|-------|
| Tabla 34 Agregado grueso                                                           | . 126 |
| Tabla 35 Diseño de mezcla patrón                                                   | . 127 |
| Tabla 36 <i>La proporción en peso seria</i>                                        | . 127 |
| Tabla 37 Diseño de mezcla patrón                                                   | . 127 |
| Tabla 38 Diseño de Mezcla patrón con adición de CCC                                | . 128 |
| Tabla 39 Diseño de Mezcla patrón con adición de CH                                 | . 129 |
| Tabla 40 Diseño de Mezcla patrón con adición de CCC+CH                             | . 129 |
| Tabla 41 Resistencia a la compresión a los 7, 14 y 28 días para todas las muestras | . 130 |
| Tabla 42 Variación porcentual de la resistencia                                    | . 135 |
| Tabla 43 Variación porcentual de la resistencia                                    | . 136 |
| Tabla 44 Variación porcentual de la resistencia                                    | . 137 |
| Tabla 45 Variación porcentual de la resistencia                                    | . 138 |
| Tabla 46 Variación porcentual de la resistencia                                    | . 139 |
| Tabla 47 Variación porcentual de la resistencia                                    | . 140 |
| Tabla 48 Variación porcentual de la resistencia                                    | . 141 |
| Tabla 49 Variación porcentual de la resistencia                                    | . 142 |
| Tabla 50 Variación porcentual de la resistencia                                    | . 143 |
| Tabla 51 Variación porcentual de la resistencia                                    | . 144 |
| Tabla 52 Variación porcentual de la resistencia                                    | . 146 |
| Tabla 53 Variación porcentual de la resistencia                                    | . 147 |
| Tabla 54 Variación porcentual de la resistencia                                    | . 148 |
| Tabla 55 Variación porcentual de la resistencia                                    | . 149 |
| Tabla 56 Variación porcentual de la resistencia                                    | . 150 |
| Tabla 57 Variación porcentual de la resistencia                                    | . 151 |
| Tabla 58 Variación porcentual de la resistencia                                    | . 152 |
| Tabla 59 Variación porcentual de la resistencia                                    | . 154 |
| Tabla 60 Variación porcentual de la resistencia                                    | . 155 |
| Tabla 61 Variación porcentual de la resistencia                                    | . 156 |
| Tabla 62 Variación porcentual de la resistencia                                    | . 157 |
| Tabla 63 Variación porcentual de la resistencia                                    | . 158 |
| Tabla 64 Variación porcentual de la resistencia                                    | . 159 |
| Tabla 65 Variación porcentual de la resistencia                                    | . 160 |
| Tabla 66 Variación porcentual de la resistencia                                    | . 161 |

| Tabla 67 Variación porcentual de la resistencia      | . 162 |
|------------------------------------------------------|-------|
| Tabla 68 Variación porcentual de la resistencia      | . 163 |
| Tabla 69 Temperatura del concreto para 50 muestras   | . 184 |
| Tabla 70 Consistencia del concreto para 50 muestras  | . 188 |
| Tabla 71 Peso unitario para 50 muestras              | . 193 |
| Tabla 72 % de aire atrapado para 50 muestras         | . 197 |
| Tabla 73 Tiempo de Fraguado para mezcla patrón       | . 201 |
| Tabla 74 Tiempo de fraguado                          | . 202 |
| Tabla 75 Tiempo de Fraguado para mezcla + CCC 1%     | . 204 |
| Tabla 76 Tiempo de fraguado                          | . 205 |
| Tabla 77 Tiempo de Fraguado para mezcla + CCC 3%     | . 207 |
| Tabla 78 Tiempo de fraguado                          | . 208 |
| Tabla 79 Tiempo de Fraguado para mezcla + CCC 5%     | . 210 |
| Tabla 80 Tiempo de fraguado                          | . 212 |
| Tabla 81 Tiempo de Fraguado para mezcla + CH 1%      | . 214 |
| Tabla 82 Tiempo de fraguado                          | . 215 |
| Tabla 83 Tiempo de Fraguado para mezcla + CH 3%      | . 217 |
| Tabla 84 Tiempo de fraguado                          | . 218 |
| Tabla 85 Tiempo de Fraguado para mezcla + CH 5%      | . 220 |
| Tabla 86 Tiempo de fraguado                          | . 221 |
| Tabla 87 Tiempo de Fraguado para mezcla + CCC+ CH 1% | . 223 |
| Tabla 88 Tiempo de fraguado                          | . 224 |
| Tabla 89 Tiempo de Fraguado para mezcla + CCC+ CH 3% | . 226 |
| Tabla 90 Tiempo de fraguado                          | . 228 |
| Tabla 91 Tiempo de Fraguado para mezcla + CCC+ CH 5% | . 229 |
| Tabla 92 Tiempo de fraguado                          | . 230 |
| Tabla 93 Relación del tiempo de fraguado             | . 232 |
| Tabla 94 Resistencia a la compresión                 | . 233 |
| Tabla 95 Nomenclatura utilizada                      | . 234 |
| Tabla 96 Datos descriptivos                          | . 235 |
| Tabla 97 Shapiro-Wilk normality test                 | . 237 |
| Tabla 98 Prueba de homogeneidad                      | . 238 |
| Tabla 99 homogeneidad entre grupos                   | . 239 |
| Tabla 100 Análisis de la varianza                    | . 240 |

| Tabla 101 | Comparación de medidas       | 241 |
|-----------|------------------------------|-----|
| Tabla 102 | Valor Critico de la varianza | 243 |
| Tabla 103 | Resistencia a la compresión  | 245 |
| Tabla 104 | Nomenclatura utilizada       | 246 |
| Tabla 105 | Datos descriptivos           | 247 |
| Tabla 106 | Shapiro-Wilk normality test  | 249 |
| Tabla 107 | prueba de homogeneidad       | 250 |
| Tabla 108 | Varianzas no homogéneas      | 251 |
| Tabla 109 | Análisis de la varianza      | 252 |
| Tabla 110 | Comparación de medidas       | 253 |
| Tabla 111 | Valor Critico de la varianza | 255 |
| Tabla 112 | Resistencia a la compresión  | 257 |
| Tabla 113 | Nomenclatura utilizada       | 258 |
| Tabla 114 | Datos descriptivos           | 259 |
| Tabla 115 | Prueba de Shapiro - Wilk     | 261 |
| Tabla 116 | Prueba de homogeneidad       | 263 |
| Tabla 117 | Tratamientos diferentes      | 264 |
| Tabla 118 | Análisis de varianza         | 265 |
| Tabla 119 | Comparación de medias        | 266 |
| Tabla 120 | Valor Critico de la varianza | 269 |
| Tabla 121 | Nomenclatura utilizada       | 271 |
| Tabla 122 | Datos descriptivos           | 272 |
| Tabla 123 | Shapiro - Wilk               | 274 |
| Tabla 124 | Prueba de homogeneidad       | 276 |
| Tabla 125 | Coeficientes                 | 277 |
| Tabla 126 | Análisis de varianza         | 279 |
| Tabla 127 | Comparación de medidas       | 280 |
| Tabla 128 | Valor Critico de la varianza | 283 |
| Tabla 129 | Datos descriptivos           | 285 |
| Tabla 130 | Shapiro Wilk                 | 287 |
| Tabla 131 | Prueba de homogeneidad       | 288 |
| Tabla 132 | Coeficiente                  | 289 |
| Tabla 133 | Análisis de varianza         | 291 |
| Tabla 124 | Comperación de medidas       | 202 |

| Tabla 135 Valor Critico de la varianza                                        | 294 |
|-------------------------------------------------------------------------------|-----|
| Tabla 136 Datos descriptivos                                                  | 296 |
| Tabla 137 Shapiro - Wilk                                                      | 297 |
| Tabla 138 Prueba de homogeneidad                                              | 299 |
| Tabla 139 Coeficiente                                                         | 301 |
| Tabla 140 Análisis de la varianza                                             | 303 |
| Tabla 141 Comparación de medidas                                              | 304 |
| Tabla 142 Valor Critico de la varianza                                        | 306 |
| Tabla 143 Datos descriptivos                                                  | 308 |
| Tabla 144 Shapiro Wilk                                                        | 310 |
| Tabla 145 Prueba de homogeneidad                                              | 312 |
| Tabla 146 Coeficientes                                                        | 313 |
| Tabla 147 Análisis de la varianza                                             | 315 |
| Tabla 148 Comparación de las medidas                                          | 316 |
| Tabla 149 Valor Critico de la varianza                                        | 319 |
| Tabla 150 Análisis de precios unitarios del costo de producción               | 332 |
| Tabla 151 Análisis de precios unitarios                                       | 332 |
| Tabla 152 Análisis de precios unitarios                                       | 333 |
| Tabla 153 Análisis de precios unitarios                                       | 333 |
| Tabla 154 Análisis de precios unitarios                                       | 334 |
| Tabla 155 Análisis de precios unitarios                                       | 334 |
| Tabla 156 Análisis de precios unitarios                                       | 335 |
| Tabla 157 Análisis de precios unitarios                                       | 335 |
| Tabla 158 Análisis de precios unitarios                                       | 336 |
| Tabla 159 Análisis de precios unitarios                                       | 337 |
| Tabla 160 Análisis de precios unitarios                                       | 338 |
| Tabla 161 Cuadro resumen precio por metro cubico                              | 339 |
| Tabla 162 Resultado de la resistencia a la compresión con conversión de N/mm2 | 342 |

# ÍNDICE DE FIGURAS

| Figura 1 Obtención de la Cascarilla de Café                                                     | 38 |
|-------------------------------------------------------------------------------------------------|----|
| Figura 2 Horno de incineración de la cascarilla de café                                         | 40 |
| Figura 3 Temperatura del Horno (1000°C)                                                         | 40 |
| Figura 4 Cascarilla de café incinerada                                                          | 41 |
| Figura 5 Ceniza de cascarilla de café                                                           | 41 |
| Figura 6 Molino de Laboratorio                                                                  | 43 |
| Figura 7 Proceso de Molienda de la Cáscara de Huevo                                             | 43 |
| Figura 8 Cemento Portland                                                                       | 48 |
| Figura 9 Bolsa de Cemento Portland tipo I                                                       | 50 |
| Figura 10 Ubicación de la cantera Cunyac                                                        | 57 |
| Figura 11 Ubicación satelital de la cantera Cunyac                                              | 58 |
| Figura 12 Trayecto de Cusco a la cantera de Cunyac                                              | 58 |
| Figura 13 Cantera Cunyac                                                                        | 59 |
| Figura 14 Ubicación de la Cantera Vicho (con referencia al distrito de Huacarpay)               | 59 |
| Figura 15 Cantera Vicho                                                                         | 60 |
| Figura 16 Procedimiento para determinar el peso específico y % de absorción del agregado fino   |    |
| Figura 17 Procedimiento para determinar el peso específico y % de absorción del agregado grueso | 61 |
| Figura 18 Procedimiento para determinar el peso unitario suelto del agregado                    |    |
| Figura 19 Procedimiento para determinar el peso unitario compactado del agregado                |    |
| Figura 20 Procedimiento para determinar el contenido de humedad del agregado                    |    |
| Figura 21 Procedimiento para determinar el análisis granulométrico del agregado                 |    |
| Figura 22 Procedimiento para determinar el material que pasa por el tamiz n.º200                | 68 |
| Figura 23 Factores que afectan el contenido del aire                                            |    |
| Figura 24 Principales propiedades del concreto fresco                                           | 73 |
| Figura 25 Procedimiento para medir el asentamiento                                              |    |
| Figura 26 Procedimiento para medir el asentamiento del concreto (slump)                         |    |
| Figura 27 Ensayo de peso unitario de concreto fresco                                            |    |
| Figura 28 Procedimiento para determinar el peso unitario y rendimiento del concreto             |    |
| Figura 29 Ensayo de aire atrapado                                                               |    |

| Figura 30 Procedimiento para determinar el contenido de aire en el concreto fresco-método presión  |     |
|----------------------------------------------------------------------------------------------------|-----|
| Figura 31 Proceso de fraguado del concreto                                                         | 80  |
| Figura 32 Factores de afectan el fraguado                                                          | 80  |
| Figura 33 Procedimiento para determinar la temperatura del concreto                                | 81  |
| Figura 34 Procedimiento para determinar el esfuerzo a la compresión de los especímenes de concreto |     |
| Figura 35 Desarrollo aproximado de la resistencia del concreto con la edad                         | 83  |
| Figura 36 Bolsa de Cemento Portland tipo I                                                         | 89  |
| Figura 37 Ubicación de la cantera Cunyac                                                           | 89  |
| Figura 38 Ubicación satelital de la cantera Cunyac                                                 | 90  |
| Figura 39 Trayecto de Cusco a la cantera de Cunyac                                                 | 90  |
| Figura 40 Ubicación de la Cantera Vicho (con referencia al distrito de Huacarpay)                  | 91  |
| Figura 41 Cantera Vicho                                                                            | 91  |
| Figura 42 Cantera Vicho                                                                            | 92  |
| Figura 43 Ubicación de lalaguna de Piuray                                                          | 92  |
| Figura 44 Quemado de cascarilla de café                                                            | 93  |
| Figura 45 Molienda de cascara de huevo                                                             | 94  |
| Figura 46 Análisis de composición química de la ceniza de cascarilla de café                       | 94  |
| Figura 47 Análisis de composición química de la cascara de huevo                                   | 95  |
| Figura 48 Muestreo del agregado fino                                                               | 96  |
| Figura 49 Muestreo del agregado fino                                                               | 96  |
| Figura 50 Muestreo para determinar absorción de agregado                                           | 97  |
| Figura 51 Muestreo del agregado fino                                                               | 98  |
| Figura 52 Muestreo del agregado fino                                                               | 98  |
| Figura 53 Muestreo del agregado fino                                                               | 99  |
| Figura 54 Muestreo del agregado fino                                                               | 99  |
| Figura 55 Muestreo del agregado fino                                                               | 100 |
| Figura 56 Muestreo del agregado fino                                                               | 100 |
| Figura 57 Proceso de granulometría con tamices                                                     | 101 |
| Figura 58 Cantidad mínima de la muestra                                                            | 101 |
| Figura 59 Cantidades corregidas por humedad y absorción                                            | 103 |
| Figura 60 Medición de peso de agregados                                                            | 104 |
| Figura 61 Mezclado de agregados.                                                                   | 105 |

| Figura 62 Ensayo de medición de temperatura                                            | 106 |
|----------------------------------------------------------------------------------------|-----|
| Figura 63 Ensayo de medición de temperatura                                            | 106 |
| Figura 64 Ensayo de asentamiento                                                       | 107 |
| Figura 65 Ensayo de asentamiento                                                       | 107 |
| Figura 66 Capacidad de los recipientes de medición                                     | 108 |
| Figura 67 Ensayo de peso unitario                                                      | 108 |
| Figura 68 Ensayo de contenido de aire                                                  | 109 |
| Figura 69 Ensayo de contenido de aire                                                  | 109 |
| Figura 70 Ensayo de tiempo de fraguado                                                 | 110 |
| Figura 71 Elaboración de testigos                                                      | 110 |
| Figura 72 Curado de probetas                                                           | 111 |
| Figura 73 Ensayo de resistencia a la compresión                                        | 112 |
| Figura 74 Curva granulométrica del agregado fino                                       | 114 |
| Figura 75 Porcentajes de componentes-Agregado fino                                     | 115 |
| Figura 76 Curva granulométrica del agregado fino                                       | 116 |
| Figura 77 Curva granulométrica del agregado grueso                                     | 118 |
| Figura 78 Porcentaje de componentes-Agregado Grueso                                    | 118 |
| Figura 79 Curva granulométrica del agregado grueso                                     | 119 |
| Figura 80 Evolución de la resistencia a la compresión                                  | 134 |
| Figura 81 Comparativo de resistencia entre mezcla con aditivo y patrón                 | 134 |
| Figura 82 F'c de concreto con aditivo ceniza de cascarilla de café al 1% versus patrón | 135 |
| Figura 83 F'c de concreto con aditivo ceniza de cascarilla de café al 3% versus patrón | 136 |
| Figura 84 F'c de concreto con aditivo ceniza de cascarilla de café al 3% versus patrón | 137 |
| Figura 85 F'c de concreto con aditivo cascara de huevo al 1% versus patrón             | 138 |
| Figura 86 F'c de concreto con aditivo cascara de huevo al 3% versus patrón             | 139 |
| Figura 87 F'c de concreto con aditivo cascara de huevo al 5% versus patrón             | 140 |
| Figura 88 F'c de concreto con aditivo CCC+CH al 1% versus patrón                       | 141 |
| Figura 89 F'c de concreto con aditivo CCC+CH al 3% versus patrón                       | 143 |
| Figura 90 F'c de concreto con aditivo CCC+CH al 5% versus patrón                       | 144 |
| Figura 91 F'c de concreto con aditivo CCC 1% versus patrón                             | 145 |
| Figura 92 F'c de concreto con aditivo CCC 3% versus patrón                             | 146 |
| Figura 93 F'c de concreto con aditivo CCC 5% versus patrón                             | 147 |
| Figura 94 F'c de concreto con aditivo CH 1% versus patrón                              | 148 |
| Figura 95 F'c de concreto con aditivo CH 3% versus patrón                              | 149 |

| Figura 96 F'c de concreto con aditivo CH 5% versus patrón                     | 150 |
|-------------------------------------------------------------------------------|-----|
| Figura 97 F'c de concreto con aditivo CCC+CH 1% versus patrón                 | 152 |
| Figura 98 F'c de concreto con aditivo CCC+CH 3% versus patrón                 | 153 |
| Figura 99 F'c de concreto con aditivo CCC+CH 5% versus patrón                 | 154 |
| Figura 100 F'c de concreto con aditivo CCC 1% versus patrón                   | 155 |
| Figura 101 F'c de concreto con aditivo CCC 3% versus patrón                   | 156 |
| Figura 102 F'c de concreto con aditivo CCC 5% versus patrón                   | 157 |
| Figura 103 F'c de concreto con aditivo CH 1% versus patrón                    | 158 |
| Figura 104 F'c de concreto con aditivo CH 3% versus patrón                    | 159 |
| Figura 105 F'c de concreto con aditivo CH 5% versus patrón                    | 160 |
| Figura 106 F'c de concreto con aditivo CCC+CH 1% versus patrón                | 161 |
| Figura 107 F'c de concreto con aditivo CCC+CH 3% versus patrón                | 162 |
| Figura 108 F'c de concreto con aditivo CCC+CH 5% versus patrón                | 164 |
| Figura 109 Tipo de Fallas según la NTP 339.034                                | 177 |
| Figura 110 Resumen de tipo de fallas                                          | 181 |
| Figura 111 Temperatura de muestras patrón y con aditivo                       | 187 |
| Figura 112 Slump de la muestra patrón y con aditivo                           | 192 |
| Figura 113 Temperatura VS slump                                               | 192 |
| Figura 114 Peso unitario de muestras patrón y con aditivo                     | 196 |
| Figura 115 Variación porcentual del peso unitario respecto a la mezcla patrón | 196 |
| Figura 116 % de contenido de aire para muestra patrón y con aditivos          | 199 |
| Figura 117 Variación porcentual del % de aire atrapado                        | 200 |
| Figura 118 Tiempo de Fraguado para mezcla patrón                              | 203 |
| Figura 119 Tiempo de Fraguado para mezcla + CCC 1%                            | 206 |
| Figura 120 Tiempo de Fraguado para mezcla + CCC 3%                            | 209 |
| Figura 121 Tiempo de Fraguado para mezcla + CCC 5%                            | 213 |
| Figura 122 Tiempo de Fraguado para mezcla + CH 1%                             | 216 |
| Figura 123 Tiempo de Fraguado para mezcla + CH 3%                             | 219 |
| Figura 124 Tiempo de Fraguado para mezcla + CH 5%                             | 222 |
| Figura 125 Tiempo de Fraguado para mezcla + CCC+ CH 1%                        | 225 |
| Figura 126 Tiempo de Fraguado para mezcla + CCC+ CH 3%                        | 228 |
| Figura 127 Tiempo de Fraguado para mezcla + CCC+ CH 5%                        | 231 |
| Figura 128 Relación del tiempo de fraguado                                    | 232 |
| Figura 129 Resistencia 7 días                                                 | 235 |

| Figura 130 | Normal Q-Q Plot                                          | 237 |
|------------|----------------------------------------------------------|-----|
| Figura 131 | Resistencia 14 días                                      | 247 |
| Figura 132 | Normal Q-Q plot                                          | 249 |
| Figura 133 | Resistencia 28 días                                      | 259 |
| Figura 134 | Normal Q-Q Plot                                          | 261 |
| Figura 135 | Temperaturas                                             | 272 |
| Figura 136 | Normal Q-Q Plot                                          | 274 |
| Figura 137 | Consistencia (Slump)                                     | 285 |
| Figura 138 | Normal Q-Q Plot                                          | 287 |
| Figura 139 | Peso unitario (KG/M3)                                    | 296 |
| Figura 140 | Normal Q-Q Plot                                          | 298 |
| Figura 141 | Contenido de aire (%)                                    | 309 |
| Figura 142 | Normal Q-Q Plot                                          | 311 |
| Figura 143 | Ubicación del I.E. Gaston Vidal                          | 323 |
| Figura 144 | Ubicación del polideportivo dentro del I.E. Gastón Vidal | 324 |
| Figura 145 | Ubicación de la zapata en estudio                        | 324 |
| Figura 146 | Referencia de cotas y datos en corte                     | 326 |
| Figura 147 | Referencia de cotas y datos en planta                    | 328 |
| Figura 148 | Mezcla de hormigón                                       | 341 |

#### RESUMEN

El presente estudio evaluó la influencia de la adición de ceniza de cascarilla de café (CCC), cáscara de huevo (CH) y su combinación (CCC+CH) en la resistencia a la compresión del concreto f'c=210 kg/cm² para zapatas de un polideportivo en Cusco. A los 7, 14 y 28 días, el tratamiento CCC+CH al 5% mostró la mayor resistencia, con incrementos de hasta 23% respecto a la mezcla patrón, mientras que CCC al 5% obtuvo los valores más bajos. Se evidenció una tendencia ascendente en la resistencia al aumentar la concentración de CH y CCC+CH, y descendente con CCC.

En cuanto a la capacidad de cortante de la zapata, se observó un incremento de 5.64% con CCC+CH al 5% y disminuyendo 9.6% con CCC al 5%. Respecto a la temperatura, la CCC redujo la temperatura del concreto, mientras que CH la aumentó, afectando el asentamiento y la trabajalidad. El peso unitario disminuyó con CCC y aumentó con CH y CCC+CH, correlacionándose con la resistencia a compresión. Un mayor contenido de aire con CCC redujo la resistencia, mientras que CH y CCC+CH lo disminuyeron.

El tiempo de fraguado se incrementó con CCC y se redujo con CH y CCC+CH. Se identificó la falla por cizallamiento inclinado (Tipo 6) como la más deseable, estabilizada con CCC y CCC+CH. En términos económicos, el uso de CCC incrementó los costos hasta un 18.46%, mientras que CH presentó menor impacto, favoreciendo la sostenibilidad.

**Palabras clave:** Resistencia a la compresión, temperatura, peso unitario, consistencia, peso unitario, contenido de aire y tiempo de fraguado.

#### **ABSTRACT**

The present study evaluated the influence of the addition of ash from coffee husk (CCC), eggshell (CH) and their combination (CCC+CH) on the compressive strength of concrete f'c=210 kg/cm² for footings of a sports center in Cusco. At 7, 14 and 28 days, the 5% CCC+CH treatment showed the highest strength, with increases of up to 23% with respect to the standard mix, while 5% CCC obtained the lowest values. There was an upward trend in strength with increasing concentration of CH and CCC+CH, and a downward trend with CCC.

Regarding the shear capacity of the footing, an increase of 5.64% was observed with CCC+CH at 5% and a decrease of 9.6% with CCC at 5%. Regarding temperature, CCC reduced the concrete temperature, while CH increased it, affecting the slump and workability. The unit weight decreased with CCC and increased with CH and CCC+CH, correlating with compressive strength. Higher air content with CCC reduced strength, while CH and CCC+CH decreased it.

Setting time increased with CCC and was reduced with CH and CCC+CH. Inclined shear failure (Type 6) was identified as the most desirable, stabilized with CCC and CCC+CH. In terms of economics, the use of CCC increased costs up to 18.46%, while CH had less impact, favoring sustainability.

**Key words:** compressive strength, temperature, unit weight, consistency, unit weight, air content and setting time.

## INTRODUCCIÓN

Desde la creación del mortero hasta el cemento en sus diferentes presentaciones, este sufrió evoluciones que hasta el día de hoy se siguen dando, esto por ser un material importante para la industria de la construcción para edificios, represas, aeropuertos y muchos otros tipos de estructuras de ingeniería; esta investigación justamente se desarrolla con el fin de estudiar las opciones de reemplazo de materiales para el cemento y su influencia en el comportamiento estructural y físicas, utilizando así componentes orgánicos netos del departamento de Cusco a fin de comprender su comportamiento frente a su resistencia, trabajabilidad, costo e incluso su impacto medio ambiental (Lama Villacorta, 2019).

Si bien es cierto, en la norma NTP 344.088 no se contempla los aditivos orgánicos en cuestión de investigación; sin embargo, aquí optamos por estudiar la ceniza de cascarilla de café, cascara de huevo y la combinación de ambas a porcentajes de 1%, 3% y 5% y su influencia en la resistencia del concreto 210 kg/cm2 y propiedades físicas.

Por ello, la presente investigación se llevó a cabo con el objetivo de analizar el comportamiento del concreto modificado frente a ensayos de resistencia a la compresión, temperatura, peso unitario, consistencia, contenido de aire y tiempo de fraguado. Todos los procedimientos fueron realizados en un laboratorio debidamente certificado, utilizando equipos correctamente calibrados conforme a las normas técnicas establecidas.

## CAPÍTULO I: PLANTEAMIENTO DEL ESTUDIO

## 1.1.Planteamiento y formulación del problema

A nivel mundial, la industria de la construcción enfrenta desafíos significativos relacionados con la durabilidad y sostenibilidad de los materiales empleados. El cemento, como componente estructural principal, está sujeto a problemas de figuración debido a agrietamientos tempranos provocados por esfuerzos de compresión y cambios de temperatura. Para mitigar estos problemas, se utilizan aditivos químicos que mejoran la trabajabilidad y resistencia del cemento, tanto en estado fresco como endurecido. Sin embargo, estos aditivos son costosos y tienen un impacto ambiental negativo considerable, contribuyendo a la contaminación y a la emisión de gases de efecto invernadero debido a los procesos industriales involucrados en su producción.

En América Latina, y en particular en regiones con economías emergentes, la industria de la construcción está en constante crecimiento, impulsada por la urbanización y el desarrollo de infraestructura. Sin embargo, el uso intensivo de aditivos químicos para mejorar las propiedades del cemento plantea problemas económicos y ambientales. Las regiones con abundante producción agrícola y alimentaria generan grandes cantidades de residuos, como la cascarilla de café y la cáscara de huevo, que podrían ser utilizados como aditivos naturales, pero su potencial no ha sido plenamente explorado o implementado.

En Perú, la producción de cemento ha aumentado significativamente en los últimos años debido a la expansión de la industria de la construcción. Este incremento ha llevado a un uso intensivo de aditivos químicos para mejorar la resistencia a la compresión y evitar fisuras en los componentes estructurales. Sin embargo, estos aditivos son costosos y su producción contribuye a la contaminación ambiental. A pesar de los esfuerzos por mejorar la sostenibilidad en la construcción, aún existe una dependencia considerable de aditivos industriales, lo que limita el desarrollo de alternativas más ecológicas y económicas.

A nivel local, la construcción de infraestructuras como polideportivos enfrenta desafíos específicos relacionados con la durabilidad y el costo de los materiales. La utilización de aditivos químicos para incrementar la resistencia del cemento y prevenir fisuras es una práctica común, pero no siempre es económicamente viable ni ambientalmente sostenible. La acumulación de residuos agrícolas y alimentarios, como la cascarilla de café y la cáscara de huevo, representa una oportunidad para desarrollar aditivos naturales que puedan mejorar las propiedades del cemento, reducir costos y disminuir la contaminación.

La presente investigación se centró en la adición de ceniza de la cascarilla de café, junto con la cáscara de huevo para incrementar la resistencia a la compresión para las zapatas de un polideportivo, puesto que hoy en día se utiliza aditivos químicos para incrementar la resistencia y evitar fisuras en estos componentes estructurales.

Molocho Tiquillahuanca, Rodríguez Chumbe (2020), señala que, según los resultados obtenidos en los ensayos de resistencia a la compresión, donde fueron sometidas las probetas con las respectivas adiciones, a los que se incorporó la ceniza de cascarilla de café con un 5%, 10% así como también el 5% de combinación de cascarilla de café y ceniza fueron los resultados que alcanzaron la mayor resistencia, superando a la muestra patrón; así mismo, el diseño óptimo que se obtuvo en los ensayos para un concreto f'c=210 kg/cm2 fue con la adicionando 5% de ceniza de cascarilla de café, ya que este alcanzó 218.5 kg/cm2. Asimismo, Reyes Chaupis Miguel Ángel (2019) manifiesta que la resistencia alcanzada del concreto experimental sustituyendo al 8% con la ceniza de cascara de huevo es de f'c = 214.96 kg/cm2 y el concreto patrón es de f'c = 212.24 kg/cm2 superando en 2.72% respecto al concreto patrón.

Coral( 2019), en su tesis titulada "Comportamiento del concreto con cascarilla de café y posibilidades ante textura y color." sostiene que es posible utilizar la fibra vegetal de la cascarilla de café en la fabricación de concreto arquitectónico. Al realizar mezclas con esta adicción, se logran parámetros positivos en cuanto a resistencia, durabilidad, cohesión entre los materiales y homogeneidad en la pigmentación. Los tratamientos aplicados a la cascarilla, en relación con los demás materiales de la mezcla, permiten obtener resultados similares a los del concreto con agregado convencional, siempre que se sigan correctamente los procedimientos y se realice un curado exhaustivo.

¿Porque utilizar la ceniza de cascarilla de café y cascara de huevo?

Según Hernández (2018), en su artículo titulado "Uso de aditivos naturales en materiales de construcción", indica que el uso de aditivos naturales en materiales de construcción, como el nopal, proteínas y polisacáridos, ha demostrado mejorar propiedades como resistencia y durabilidad en morteros y concretos. En particular, el mucílago de nopal y el extracto de algas han demostrado ser eficaces como inhibidores de la corrosión del acero de refuerzo, brindando una opción sustentable y económica para la industria de la construcción. Estos aditivos no solo contribuyen a la sostenibilidad ambiental, sino que también mejoran la durabilidad de las estructuras, favoreciendo la construcción de obras con mejores propiedades físicas y un impacto ambiental reducido.

El uso de ceniza de cascarilla de café y cáscara de huevo contribuirá a obtener mejores resultados en los esfuerzos de compresión, lo que permitirá ahorro de material típico como es el cemento, además al utilizar aditivos naturales como la ceniza de cascarilla de café y la cáscara de huevo ayuda a reducir los residuos agrícolas y alimentarios, dándoles una segunda vida y evitando su acumulación en

vertederos. Este enfoque también implica menos procesos industriales, lo que se traduce en una menor emisión de gases de efecto invernadero, en comparación con los aditivos artificiales.

## 1.2. Formulación del problema

#### 1.2.1. Problema General

¿En qué medida influye la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas para mejorar la Resistencia a la Compresión del Concreto f'c=210 kg/cm² y las propiedades físicas del concreto fresco, en zapatas de un polideportivo, Cusco 2023?

## 1.2.2. Problemas Específicos

- ¿Cómo influye la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas para mejorar la Resistencia a la Compresión del Concreto f'c=210 kg/cm² a los 7 días, para zapatas de un polideportivo, Cusco 2023?
- ¿Cómo influye la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas para mejorar la Resistencia a la Compresión del Concreto f'c=210 kg/cm² a los 14 días, para zapatas de un polideportivo, Cusco 2023?
- ¿Cómo influye la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas para mejorar la Resistencia a la Compresión del Concreto f'c=210 kg/cm² a los 28 días, para zapatas de un polideportivo, Cusco 2023?
- ¿Cómo influye la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas en las propiedades físicas del concreto fresco, para zapatas de un polideportivo, Cusco 2023?

## 1.2.Objetivos

## 1.2.1. Objetivo General

Determinar la influencia de la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas para mejorar la Resistencia a la Compresión del Concreto f'c=210 kg/cm² y las propiedades físicas del concreto fresco, en zapatas de un polideportivo, Cusco 2023.

## 1.2.2. Objetivos Específicos

 Determinar la influencia de la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas para mejorar la Resistencia a la Compresión del Concreto f'c=210 kg/cm2 a los 7 días, para zapatas de un polideportivo, Cusco 2023.

- Determinar la influencia de la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas para mejorar la Resistencia a la Compresión del Concreto f'c=210 kg/cm2 a los 14 días, para zapatas de un polideportivo, Cusco 2023
- Determinar la influencia de la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas para mejorar la Resistencia a la Compresión del Concreto f'c=210 kg/cm2 a los 28 días, para zapatas de un polideportivo, Cusco 2023.
- Determinar la influencia de la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas en las propiedades físicas del concreto fresco, para zapatas de un polideportivo, Cusco 2023.

## 1.4. Justificación e importancia

#### General

En la ciudad de Cusco, el crecimiento poblacional ha sido constante, alcanzando una población de 1,394,200 habitantes para el año 2024. Dada la naturaleza de la región, que se destaca en los sectores agrícola, ganadero, minero, entre otros, por esta razón surge la proyección y construcción de mayores complejos deportivos, complejos requeridos para el desarrollo deportivo del poblador tanto en áreas comunes de la ciudad como en los centros educativos de nivel básico, secundario y superior; por ello es importante innovar en la tecnología del concreto con materiales que puedan sumar y/o mejorar la resistencia a la compresión del concreto.

#### Teórica

La presente investigación se desarrolló con la finalidad de obtener nuevas teorías del concreto usando ceniza de cascarilla de café y cascara de huevo, específicamente para el concreto con resistencia de 210 kg/cm2; donde se analizara los resultados obtenidos referido a sus características físicomecánicas, luego efectuar también un análisis comparativo entre los resultados obtenidos para cada caso de porcentaje de aditivo aplicado, y seguidamente efectuar un análisis económico para completar la idea de que si es viable o no la utilización de los aditivos en cuestión.

## Metodológica

Esta investigación se llevó a cabo mediante ensayos desarrollado en un laboratorio de mecánica de suelos; donde se determinamos parámetros físicos-mecánicos utilizados para el progreso de la investigación; para esto se inició con la recolección de la materia prima, persiguiendo referencias normativas utilizadas en todo el proceso del desarrollo de la investigación, normativas que demandan ensayos como asentamiento, tiempo de fraguado, resistencia a la compresión, peso unitario, aire atrapado etc. Para al final obtener resultados que puedas ser analizados.

## Práctica

La presente investigación tiene relevancia práctica, ya que se encuentra enfocada en nuevas formas de diseño para mejorar el comportamiento del concreto 210 kg/cm2 en zapatas. Con esta

investigación se resolverán las incógnitas de la influencia que tienen los aditivos en el concreto. Asimismo, servirá para otras en el sentido de los resultados obtenidos tras la aplicación de los porcentajes de los aditivos usados y la interpretación de estos. La aplicación de esta investigación es amplia, ya que la mayoría de los polideportivos requieren zapatas hechas de concreto con aditivos sintéticos. Asimismo, el estudio se llevará a cabo en un laboratorio certificado, donde se realizarán los diversos ensayos descritos en la justificación de la metodología. Con el diseño de la mezcla establecido, se iniciará la recolección de la materia prima proveniente de canteras cercanas a la ciudad de Cusco, tales como Cunyac y Huambutio.

## Económica

Considerando que Cusco es una zona productora de café, es fundamental aprovechar los residuos de este recurso natural en la presente investigación, utilizándolos como aditivos para el concreto y de esta manera usar menos cemento sin alterar y mejorar las propiedades mecánicas del concreto; para ello se consideró dentro de esta investigación el diseño de mezcla el cual nos ayudara a optimizar recurso de costo considerable como el cemento obteniendo así un concreto de calidad, sostenible y económico. Además, al emplear aditivos de fácil adquisición y bajo costo, provenientes de residuos agroindustriales, la investigación se proyecta como una opción económicamente viable.

#### Social

En el presente trabajo de investigación, el uso de aditivos naturales, accesibles y fácilmente adquiribles, contribuirá a mejorar las propiedades del concreto, abriendo espacio para la aplicación de nuevas técnicas de construcción Al utilizar recursos (aditivos) que actualmente son desperdiciados por la industria cafetera y avícola, se promoverá la colaboración entre los sectores de la construcción, el café y la avicultura; el sector beneficiado seria directamente el productor, mejorando su calidad de vida. Esto permitiría el desarrollo de políticas públicas para el proceso de las negociaciones en entre las entidades líneas arriba indicadas; posiblemente estandarizando costos y procedimientos compra y venta.

## **Importancia**

Es importante contar con nuevas alternativas ecológicas de aditivos para el concreto, la cascarilla de café y la cascara de huevo son dos componentes que se puede encontrar en nuestra región, la producción de café en nuestra región del Cusco (Quillabamba) ocupa el 38% de producción de café a nivel nacional, (PONCE, 2018). Asimismo, la cascara de huevo se puede obtener de desechos de la industria alimentaria, de nuestros domicilios, mercados, etc. Como podemos advertir, ambos componentes son sencillos de encontrar en nuestra región.

La presente investigación se enfoca en disminuir el uso de aditivos químicos los cuales contaminan nuestro medio ambiente, así también tener una alternativa ecológica para incrementar la resistencia a la compresión, para luego ser empleada en las zapatas de un polideportivo.

## 1.5. Hipótesis y variable

## 1.5.1. Hipótesis General

Al adicionar la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, estos influyen significativamente en la mejora de la Resistencia a la Compresión del Concreto f'c=210 kg/cm² y las propiedades físicas del concreto fresco, en zapatas de un polideportivo, Cusco 2023.

## 1.5.2. Hipótesis Específica

- Al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, estos influyen significativamente en la mejora de la Resistencia a la Compresión del Concreto f'c=210 kg/cm² a los 7 días, para zapatas de un polideportivo, Cusco 2023.
- Al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, estos influyen significativamente en la mejora de la Resistencia a la Compresión del Concreto f'c=210 kg/cm² a los 14 días, para zapatas de un polideportivo, Cusco 2023.
- Al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, estos influyen significativamente en la mejora de la Resistencia a la Compresión del Concreto f'c=210 kg/cm² a los 28 días, para zapatas de un polideportivo, Cusco 2023.
- Al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, estos influyen significativamente en las propiedades físicas del concreto fresco, para zapatas de un polideportivo, Cusco 2023.

# 1.6. Operacionalización de las variables

|                        | VARIABLE                              | DEFINICIÓN<br>CONCEPTUAL                                                                                                                                                                                                                                   | DEFINICIÓN<br>OPERACIONAL                                                                                                                                                                                                                                                                                                                              | DIMENSIONES                                                                                                                                                                                                                                         | INDICADOR<br>ES                                                                                            | FUENTE                                                    | INSTRUMENTOS                                                                                                                                                |
|------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VARIABLE INDEPENDIENTE | CENIZA DE LA<br>CASCARILLA<br>DE CAFÉ | La ceniza de la cascarilla de café es un material residual de color grisáceo claro que se obtiene de la combustión controlada de la cascarilla de café. La cascarilla de café, también conocida como pergamino o chaff, es la capa exterior que recubre el | Se realizaron 10 diseños de mezcla, en las cuales se incluyeron la dosis de los aditivos sustituyendo al cemento; las dosis que se añadieron fueron para la ceniza de la cascarilla de café (CCC): 1%, 3%, 5%, para la cascara de huevo (CH): 1%, 3%, 5% y para la combinación de ceniza de cascarilla de café + cascara de huevo (CCC+CH): 1%, 3%, 5% | Granulometría: Caracterización del tamaño de las partículas. Humedad: Contenido de agua presente en la ceniza. Relación agua/cemento (A/C): Proporción de agua respecto al cemento, considerando la inclusión del aditivo.  % de dosificación de la | Tamaño medio de partícula (mm)  % de humedad  Relación A/C (numérica)                                      | NTP<br>339.034:2013<br>"Concreto.<br>Diseño de<br>mezcla" | Tamices, Balanza, Probeta graduada, Recipiente de mezclado, Varilla de mezclado, Mezcladora mecánica, Molino de bolas, Horno de secado  Balanza digital con |
|                        |                                       | grano de café después<br>del proceso de tostado<br>y descascarillado. Es<br>un material residual<br>que generalmente se<br>considera un desecho<br>de la industria<br>cafetalera.<br>(IPARRAGUIRRE,<br>2021)                                               |                                                                                                                                                                                                                                                                                                                                                        | ceniza de la cascarilla de<br>café en proporción al peso<br>del cemento                                                                                                                                                                             | sustitución de cemento (al 1%)  % de sustitución del cemento (al 3%)  % de sustitución del cemento (al 5%) | 334.008:2019 "Aditivos para concreto. Requisitos"         | precisión de 0.01<br>gr.                                                                                                                                    |
|                        | CÁSCARA DE<br>HUEVO                   | La cáscara de huevo es<br>una estructura mineral<br>rígida que encapsula y                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                        | <b>Granulometría</b> :<br>Caracterización del                                                                                                                                                                                                       | Tamaño medio<br>de partícula (<br>mm)                                                                      | NTP<br>339.034:2013<br>"Concreto.                         | Tamices, Balanza,<br>Probeta graduada,<br>Recipiente de                                                                                                     |

| VARIABLE                                                                                                                                              | DEFINICIÓN<br>CONCEPTUAL | DEFINICIÓN<br>OPERACIONAL                                                                                                                                                                | DIMENSIONES                                                                         | INDICADOR<br>ES                                                                                          | FUENTE                                                                                              | INSTRUMENTOS                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------|
| protege el contenido del huevo (yema y clara). Es una capa delgada, pero resistente, compuesta principalmente por carbonato de calcio. (VALDES, 2009) |                          | tamaño de las partículas de cáscara triturada.  Humedad: Contenido de agua en la cáscara triturada.  Relación agua/cemento (A/C): Ajuste de la proporción de agua al incluir el aditivo. | % de humedad  Relación A/C (numérica)                                               | Diseño de<br>mezcla"                                                                                     | mezclado, Varilla<br>de mezclado,<br>Mezcladora<br>mecánica, Molino<br>de bolas, Horno de<br>secado |                                                 |
|                                                                                                                                                       |                          |                                                                                                                                                                                          | % de dosificación de la<br>cáscara de huevo en<br>proporción al peso del<br>cemento | % sustitución del cemento ( al 1%)  % sustitución del cemento (al 3%)  % sustitución del cemento (al 5%) | NTP<br>334.008:2019<br>"Aditivos para<br>concreto.<br>Requisitos                                    | Balanza digital con<br>precisión de 0.01<br>gr. |

|          | VARIABLE                                                                     | DEFINICIÓN<br>CONCEPTUAL                                                                                                                                                                                                                                                                                                                                                                                                 | DEFINICIÓN<br>OPERACIONAL                                                                                                                                                                                                                   | DIMENSIONES                                                                                                                            | INDICADOR<br>ES                                                                                                        | FUENTE             | INSTRUMENTOS                                          |
|----------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------|
| VARIABLE | Resistencia a la<br>Compresión del<br>Concreto f'c=210<br>kg/cm <sup>2</sup> | La resistencia a la compresión es la capacidad de un material para resistir una carga que lo comprime. Se define como la máxima carga por unidad de área que un material puede soportar antes de fallar.  En el caso del concreto, la resistencia a la compresión es una de sus propiedades más importantes.  Determina la capacidad del concreto para soportar el peso de la estructura y otras cargas. (PASQUEL, 1998) | Se realizó en total 150 probetas, para los siguientes tratamientos: Mezcla Patrón, Ceniza de cascarilla de café (1%, 3%, 5%), Cascara de huevo (1%, 3%, 5%) y la combinación de ceniza de cascarilla de café y cascara de huevo (1%,3%, 5%) | Tiempo de curado: Periodo de desarrollo de la resistencia en días. Carga soportada: Máxima carga alcanzada en la prueba de compresión. | - f'c (kg/cm²)<br>a 7, 14 y 28<br>días<br>- Tiempo de<br>curado (días)<br>- Carga<br>máxima<br>aplicada (ton<br>o Kgf) | NTP 339.034 - 2008 | Prensa hidráulica y máquina de compresión automática. |

|  | VARIABLE                                                                                                                                   | DEFINICIÓN<br>CONCEPTUAL                                                              | DEFINICIÓN<br>OPERACIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DIMENSIONES        | INDICADOR<br>ES                     | FUENTE                                                                           | INSTRUMENTOS           |
|--|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------|----------------------------------------------------------------------------------|------------------------|
|  | físicas del del concreto fresco aquellas                                                                                                   | Las propiedades físicas<br>del concreto fresco son<br>aquellas que<br>caracterizan su | Temperatura,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Temperatura.       | Temperatura (°C)                    | NTP 339.184<br>- 2018(ASTM<br>C1064)                                             | Termómetro             |
|  |                                                                                                                                            | comportamiento antes de que fragüe y fraguado endurezca. Estas                        | 1 The state of the | Consistencia.      | Asentamiento (plg)                  | NTP 339.035<br>- 2015 (ASTM<br>C143)                                             | Cono de Abrams         |
|  | propiedades son importantes para determinar la trabajabilidad del concreto, su capacidad para ser colocado y moldeado, y su calidad final. |                                                                                       | Peso Unitario.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | kg/m³              | NTP 339.046<br>- 2018(ASTM<br>C136) | -Recipiente de medida -Molde cilíndrico -Balanza -Varilla de compactación -Comba |                        |
|  |                                                                                                                                            |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contenido de aire. | % de aire                           | NTP 339.080 –<br>2017(ASTM<br>C231)                                              | -Olla de<br>Washington |
|  |                                                                                                                                            |                                                                                       | Tiempo de Fraguado.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | minutos            | NTP 339.082<br>- 2011(ASTM<br>C403) | -Aguja de vicat                                                                  |                        |

## CAPÍTULO II: MARCO TEÓRICO

## 2.1. Antecedentes de la investigación

#### 2.1.1. Antecedentes nacionales

Para, Reyes, (2019), en su investigación titulada "Resistencia a compresión de un concreto f´c = 210 kg/cm² al sustituir al cemento en 4%, 6% y 8% por cáscara de huevo" Universidad San Pedro, Huaraz, tuvo como objetivo determinar la resistencia a la compresión del concreto al sustituir el cemento en 4%, 6% y 8% por ceniza de la cáscara de huevo, el diseño de investigación corresponde al experimental y el nivel será Cuasi-Experimental, esto ya que modifica o manipula la cantidad de cemento en 4%, 6% y 8% por la ceniza de cáscara de huevo, que debe ir para ver la posibilidad de mejorar la resistencia del concreto, la muestra nno fue seleccionada de manera aleatoria, sino que son probetas intactas y que son diseñadas y elaboradas teniendo en cuenta el diseño de mezcla de concreto, de acuerdo a los resultados obtenidos por el investigador la resistencia alcanzada del concreto experimental sustituyendo al 8% con la ceniza de cáscara de huevo es de f´c = 214.96 kg/cm² y el concreto patrón es de f´c = 212.24 kg/cm² teniendo como resultado un 2.72% más de resistencia con respecto al concreto patrón.

Para Castro y Alfaro (2019). en su tesis titulada "Análisis comparativo de las propiedades físicas/mecánicas del concreto de resistencias f´c= 210, 280, 350 kg/cm² sustituyendo material cementico por cáscara de huevo" Universidad Privada Antenor Orrego, Trujillo, se planteó como objetivo efectuar una comparación y análisis de las propiedades mecánicas y físicas del concreto agregando cáscara de huevo con materiales de cemento con una resistencia de f´c= 210, 280, 350 kg/cm² en lugar de materiales comunes. Se desarrolló mediante una metodología experimental con muestras de probetas cilíndricas de concreto y utilizando como instrumento el ensayo Slump y resistencia a la tracción por compresión, el autor concluye que la cáscara de huevo en lugar de materiales de cemento alcanzó su resistencia de diseño a los 7 días, lo que demuestra que el sustituto ha desempeñado el papel de promotor de resistencia en la etapa inicial, de acuerdo a los resultados obtenidos que reemplazando que la adición de 15% y 2% son los mejores, de acuerdo a los resultados obtenidos se concluye que la cáscara de huevo es un suplente positivo del cemento.

Para Macedo y Pineda (2021) en su tesis titulada "Influencia de ceniza de Eucalyptus Globulus y cáscara de huevo en la resistencia a Flexión del Concreto F´C = 210 kg/cm², Huaraz, 2021", se planteó como objetivo principal la evaluación de la influencia de la ceniza de Eucalyptus Globulus (CEG) y de la harina de cáscara de huevo (CH) en la resistencia del concreto para la flexión, considerando una resistencia a compresión de 210 kg/cm², se desarrolló mediante la metodología aplicada con un enfoque cuantitativo y diseño tipo experimental, se consideró como muestra a 36 viguetas de concreto: 12 que fueron el concreto patrón y 24 a quienes se le adiciono el CEG y CH.

Se obtuvieron resultados para los 7 días de curado y resulto que el concreto patrón llego a una resistencia a la flexión de 38.62 kg/cm². Al reemplazar el elemento cemento con los aditivos CEG y CH en proporciones de 10%, 20% y 30%, se obtuvo resistencias de 39.14, 33.44 y 17.45 kg/cm², respectivamente, a los 114 dias, el concreto patrón fue constante su resistencia de 38.62 kg/cm², y la muestras con sustitución de cemento por los aditivos del 10%, 20% y 30% obteniendo valores de la resistencia resistencias de 49.50, 39.88 y 30.36 kg/cm², respectivamente. A los 28 días, el concreto patrón llego a alcázar una resistencia de 56.28 kg/cm². Para el caso de los aditivos con sustituciones del 10%, 20% y 30% del elemento cemento por CEG y CH se obtuvo las resistencias de 55.34, 50.01 y 32.85 kg/cm², respectivamente. En conclusión, la sustitución del elemento cemento por CEG y CH en mayores porcentajes hace que disminuya la resistencia a la flexión del concreto.

Para Ballarades y Ramirez (2021) en su tesis titulada "Diseño de concreto empleando cenizas de bagazo de caña de azúcar para mejorar la resistencia a compresión" Tarapoto, se planteó como objetivo principal el diseño de un concreto para una resistencia a la compresión de 210 kg/cm² por medio de la adición de cenizas del bagazo de caña de azúcar (CBCA), esto para poder mejorar la resistencia a la compresión, la metodología del tipo aplicada, así como un diseño del tipo experimental; para el caso de las muestras se hicieron con una población y muestra de 24 probetas del tipo cilíndricas de concreto, se obtuvo resultados de la siguiente manera, mostraron que la CBCA comprende propiedades parecidas o similares al cemento sin alterar el diseño del mismo concreto. Así mismo, la adición de CBCA en las proporciones del 0%, 5%, 10% y 15% aumenta el valor de resistencia del concreto a los 7, 14 y 28 días de curado. Se concluyó que la mejor mezcla se logra con un 5% de CBCA, llegando a una resistencia de 237.3 kg/cm² para los 28 días, en comparación al concreto patrón.

Para Torres (2020) en su tesis titulada "Adición de ceniza de la cascarilla de arroz para mejorar las propiedades de resistencia del concreto" San Martín; se planteó como objetivo principal añadir el aditivo ceniza de cáscara de arroz, esto para poder mejorar las propiedades de resistencia del cemento. El procedimiento aplicado fue el tipo exploratorio, donde se procedió a examinar las propiedades del material y considerando las condiciones y al mismo tiempo controladas para así poder observar su comportamiento frente a factores específicos. Con respecto a los a los resultados obtenidos, se observó que la resistencia a la compresión de los ejemplos con un 2% del aditivo ceniza de cáscara de arroz resulto en valores de 177,66 kg/cm² y 213,82 kg/cm², lo que significa un aumento incremento del 0,64% para este primer diseño y del 1,65% para el segundo diseño de muestra. Esto indicó que el nivel más óptimo de adición de ceniza de cáscara de arroz en la mezcla de cemento es del 2%, aumentando ligeramente su resistencia a la compresión. Se concluyó que las pruebas con un

2% de ceniza de cáscara de arroz mejoraron la resistencia a la compresión y flexibilidad del concreto, determinándose que esta cantidad es adecuada para mejorar estas propiedades del concreto.

#### 2.1.2. Antecedentes internacionales

Para, Coral (2019), en su trabajo de investigación titulado "Comportamiento del concreto con cascarilla de café y posibilidades ante textura y color". Universidad Nacional de Colombia, en este estudio, el objetivo principal que se planteo fue elaluar rendimiento y las propiedades físicas del concreto con agregados orgánicos, como la cascarilla de café. La metodología es experimental, porque la muestra incluye 20 placas de concreto, en concreto ordinario y sustitución de agregado grueso por la cascarilla de café, la resistencia a la compresión y el módulo de ruptura se utilizaron como herramientas de recopilación de datos, en comparación con la mezcla estándar, los resultados de la prueba de resistencia a la compresión entre 48.53 y 73.60% son más bajos, se mejora su asertividad y sedimentación, el rendimiento de reemplazar 1.5% es peor y se obtienen los mejores resultados. La variable de hidróxido de calcio reemplaza 0.5%, considerando que esta variable es la variable más efectiva en relación con el aceite de linaza y la cal agrícola, pero en el porcentaje de reemplazo de cal de 1%, bajo el mismo porcentaje de hidróxido de calcio.

Por su parte De Castro, et al. (2019), en su investigación titulada "Analysis of the coffee peel application over the soilcement bricks properties" Universidade Federal de Labras Brasil, se planteó como objetivo estudiar los efectos de la incorporación de las partículas de la cáscara de café con en el reemplazo parcial del cemento, en relación a la metodología es experimental, teniendo como muestras de ladrillos se utilizaron CP II F-32 y partículas de cáscara de café. Después de que el porcentaje inicial de cemento en la mezcla se definiera como 10%, al café se añadieron cáscaras en relación con el cemento, igual al 5%, 10%, 15% y 20%. Como instrumento ensayo a compresión simple a las pruebas, a las edades de 14, 28 y 56 días teniendo como resultado de que el material producido no se ajustaba a los requisitos normativos para los ladrillos de cemento de suelo, sin embargo, la mecánica las características encontradas allí, indican la posibilidad de uso en construcciones rústicas, como las realizadas con ladrillos de adobe.

Por otro lado, Jhatial, A.A., Sohu, S., & Memon, M.J. (2019), en su investigación titulada "Eggshell powder as partial cement replacement and its effect on the workability and compressive strength of concrete" International Journal of Advanced and Applied Sciences, se plaantteo como objetivo principal estudiar el efecto del polvo de cáscara de huevo como reemplazo parcial del cemento en la trabajabilidad y resistencia a la compresión del concreto, el estudio corresponde al tipo experimental, ya que uso polvo de cascara de huevo en proporciones de 5%, 10% y 15% del peso del cemento para proceder con la evaluación de la trabajabilidad y resistencia a la compresión; obtuvieron resultados

como al añadir el 10% de polvo de cascara de huevo se obtuvo una resistencia a la compresión de 41.5Mpa, demostrando que el polvo de cascara de huevo mejora la trabajabilidad del concreto.

Según Ishak, M.Y., & Zamani, M.N. (2020), en su investigación titulada "Eggshell as the partial replacement of Portland cement in the production of concrete", IOP Conference Series: Materials Science and Engineering, se planteó como objetivo principal evaluar el uso de cáscara de huevo como reemplazo parcial del cemento Portland en la producción de concreto, la metodología corresponde al experimental, sustituye el cemento con cascara de huevo en diferentes proporciones, obteniendo así que al reemplazar el 10% del cemento con cascara de huevo obtuvieron una resistencia de a la resistencia de 42 Mpa, concluyendo que la trabajabilidad del concreto mejora así como su resistencia.

Para Ghazvinian, A., Ashtiani, M.S., & Fallahnejad, H. (2021), en su investigación titulada "Utilization of coffee husk ash as a supplementary cementitious material in concrete", Construction and Building Materials, tiene como objetivo explorar el uso de ceniza de cáscara de café como material cementante suplementario en el concreto, con un método experimental, sustituye parcialmente el cemento con ceniza de cáscara de café en un 10%, y al obtener los resultados se obtuvo que esta adición mejoró la resistencia a la compresión, pues llego a un valor de 30 Mpa.

#### 2.2. Bases Teóricas

#### 2.2.1 Ceniza de la cascarilla de café

Los residuos de café generalmente se consideran un tipo de desecho agrícola. A medida que aumenta el volumen, la disposición de la cascarilla de café se convierte en un problema ambiental, por lo que actualmente se está considerando el reciclaje de las cenizas de la cascarilla de café como aditivo en el concreto.

Esta ceniza contiene óxidos de los minerales que también la poseía la cascarilla de café antes de ser incinerada (IPARRAGUIRRE, 2021). Para dicha incineración se requiere que la cascarilla de café llegue a una temperatura entre 800 a 1000 °C. Asimismo, cabe señalar que esta ceniza contribuye a mejorar la resistencia a la compresión del concreto y a menor cantidad de porcentaje adicionado al concreto se obtiene una mejor trabajabilidad en el estado fresco del concreto; asimismo hay una mejora en la resistencia a la compresión.(MOLOCHO y RODRIGUEZ 2020)

La ceniza funciona de dos formas, como elemento activo e inerte. En la primera forma tiene un rol complementario para con el cemento, reduciendo el calor, grietas y separación de los agregados; de la misma manera contribuye a la resistencia a la erosión por agua de mar y sulfatos. Por otra parte, como elemento inerte, tiene un rol complementario para con los áridos (IPARRAGUIRRE, 2021)

#### 2.2.1.1 Producción de café en el Perú

Según, MINAGRI (2021), el café es el principal artículo de origen agrícola exportado por Perú y ocupa el séptimo lugar a nivel global en términos de exportaciones de café. Además de encabezar las exportaciones agrícolas, se encuentra entre los diez principales productos exportados, luego de minerales, petróleo, gas natural, harina de pescado, entre otros.

Perú se posiciona como el segundo mayor exportador de café orgánico en el mundo, después de México.

El territorio peruano cuenta con 425,416 hectáreas destinadas al cultivo de café, lo que representa el 6% de la extensión agrícola total del país. El potencial de expansión de este cultivo en Perú es aproximadamente de 2 millones de hectáreas.

Las plantaciones de café están distribuidas en 17 regiones, 67 provincias y 338 distritos.

En la actualidad, la producción de café involucra a 223,482 familias de pequeños productores a nivel nacional, siendo el 95% de estos agricultores propietarios de 5 hectáreas o menos destinadas al cultivo de este producto.

Alrededor de un tercio de los empleos agrícolas están vinculados al mercado del café, beneficiando a 2 millones de peruanos que dependen de esta actividad.

El 30% de los productores de café forma parte de alguna organización, y el 20% exporta directamente a través de sus respectivas organizaciones de productores.

El 80% de la exportación se realiza a través de compañías exportadoras, mientras que el 5% de los productores poseen educación superior.

El 3% de los dueños de fincas de café emplea tecnología avanzada, y el 7% tiene acceso a créditos para sus cultivos.

## 2.2.1.2 Producción de café en la Región del Cusco

El café es el segundo producto agrícola más importante de Cusco en términos de producción y volumen de exportación. En el 2011, este sector llego a representar 22,2 % de VBP (valor bruto de producción), lo que representa el 11,1% de la producción nacional de café. (Ministerio de Agricultura, Perú, 2012) El desarrollo del cultivo del café en la Provincia de la Convención se debe a que los suelos son ideales para la producción de café los cuales están entre los 900 y 2700 msnm. Lo que trae como resultado que la producción de café se desarrolle en gran medida y de buena calidad, siendo uno de los principales cultivos de exportación de la región. (Central de Cooperativas Agrarias Cafetaleras).

Un referente nacional a considerar es COCLA, Central de Cooperativas Agrarias Cafetaleras. Se basa en la economía cafetalera de pequeños productores del Perú. Su principal actividad y fuente de ingreso económico, es el café. El Perú es el primer productor mundial de café orgánico y esto repercute notablemente en la economía del país ya que dos millones de peruanos dependen de la actividad cafetalera y 150 mil familias producen café en 14 zonas productoras.(PONCE, 2018)

#### 2.2.1.3 Cascarilla de café

El cisco o cáscara de café además denominada cisco es una capa cartilaginosa que envuelve al café (el color de esta envoltura está en función a la familia y variedad del cultivo) pude ser de fruto rojizo o de color amarillo intenso de alrededor de unos 102 micrómetros de espesor y que pertenece al pergamino(endocarpio) de los frutos, el grano de café se halla alojado suspendido dentro de esta envoltura, es decir este suelto. La extracción de este se obtiene a través del despulpado industrial o mecánico donde se realiza la separación de la cobertura envolvente del grano de café, (RODRIGUEZ, 2017)

#### 2.2.1.4 Obtención de la cascarilla de café

El cafeto es un arbusto o árbol pequeño, perennifolio, de fuste recto que puede alcanzar los 10 metros en estado silvestre; en los cultivos se los mantiene normalmente en tamaño más reducido, alrededor de 3 metros. Las hojas son elípticas, oscuras y coriáceas.

El fruto es una drupa, que se desarrolla en unas 15 semanas a partir de la floración; el endospermo comienza a desarrollarse a partir de la duodécima semana, y acumulará materia sólida en el curso de varios meses, atrayendo casi la totalidad de la energía producida por la fotosíntesis.

#### Recolección del café

En esta etapa se cosechan únicamente los granos que alcanzan el estado de madurez completa, normalmente de color rojo o amarillo, ya que los verdes dañan el sabor de la taza de un café. Todo este proceso se desarrolla de forma manual.

#### Despulpado

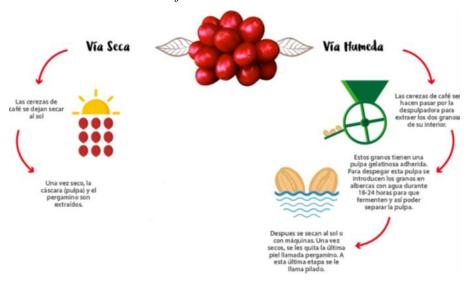
El mismo día de la recolección, los granos de café se despulpan retirando la cereza del grano para que luego obtenga la fermentación: En esta parte del proceso, los granos permanecen en reposo.

#### El lavado

En esta parte se retira con agua limpia los restos de mucílago que quedan en el grano y se eliminan azúcares.

#### El secado

Se exponen los granos de café al calor del sol en un secadero para que el grado de humedad disminuye facilitando su conservación. El grano seco se almacena en sacos limpios elaborados en fique, facilitando su traslado.


#### Trillado artesanal

En este proceso artesanal, se retira la cascarilla del grano llamado pergamino. Este procedimiento también puede desarrollarse de forma industrial

A partir del proceso de la trilla de café pergamino se retira mecánicamente la cascara (pergamino) que cubre la almendra de café (denominada cisco en la trilla), el pergamino ya limpio entra a la máquina trilladora, y es retirada por fricción la cascarilla, obteniéndose la almendra. El cisco que acompaña la almendra, al salir de la trilladora, es succionado mecánicamente; en esta operación se causa la merma por cisco. El monitor de pergamino, es una máquina cribadora compuesta por un conjunto de tres a cuatro mallas, una campana extractora de cisco y polvo residual.

La máquina trilladora está formada por un cilindro en forma hexagonal con superficie labrada, que gira dentro de un cilindro cóncavo estacionario y fraccionado en dos cámaras; en la primera cámara, la fricción elimina entre 60 y 70% de la cascarilla, luego pasa a la segunda cámara (cámara de retrilla) transportado por un elevador de cangilones donde termina de retirarle la cascarilla y pule la superficie de la almendra, eliminándole la cutícula (RODRIGUEZ, 2017)

**Figura 1** *Obtención de la Cascarilla de Café* 



Fuente: https://www.coopronaranjorl.com/nuestro-cultivo/proceso-ciclo/

# Composición Química de la Cascarilla de café

Según la tabla 1, se puede observar la composición química de la cascarilla de café. (SALAZAR, GARCIA & OLAYA, 1984)

**Tabla 1**Composición química de la cascarilla de café

| (Según Willboux (2))                     | Café     | Café      |
|------------------------------------------|----------|-----------|
|                                          | Arábica* | Robusta** |
| (%)                                      | (%)      | (%)       |
| Extracto etéreo                          | 0.40     |           |
| Proteínas totales                        | 1.50     | 2.20      |
| Celulosa bruta                           | 50.20    | 60.20     |
| Hemicelulosa                             | 11.60    | 7.60      |
| Azúcares                                 | 21.30    |           |
| Pentosa                                  | 26.00    |           |
| Cenizas                                  | 1.00     | 3.30      |
| Silicio                                  | 15.70    |           |
| Aluminio (Al 203)                        | 3.40     |           |
| Hierro (Fe <sup>2</sup> O <sup>3</sup> ) | 13.60    |           |
| Calcio                                   | 19.60    |           |
| Magnesio                                 | 12.20    |           |
| Sodio                                    | 3.40     |           |
| Potasio                                  | 18.00    |           |
| Grasas                                   | 0.60     |           |

Fuente: García & Olaya 2011

# 2.2.1.5 Obtención de la ceniza de la cascarilla de café

Se obtuvo la ceniza de la cascarilla de café mediante la incineración de la cascarilla de café, en un horno a 1000°C, el resultado que se obtuvo fue un material de color plomo a blanco, ese color es característico cuando se incinera el 100% de la sustancia.

**Figura 2** *Horno de incineración de la cascarilla de café* 



Fuente: Elaboración Propia

**Figura 3** *Temperatura del Horno (1000°C)* 



Fuente: Elaboración Propia

**Figura 4**Cascarilla de café incinerada



Fuente: Elaboración Propia

Figura 5 Ceniza de cascarilla de café



Fuente: Elaboración Propia

## 2.2.1.6 Propiedades Físicas de la Ceniza de Cascarilla de Café

Las cenizas suelen ser arena o polvo muy fino, fino al tacto, y tienen un tono de raíz desnuda o acuoso, según la cantidad de cobre y carbón sin quemar. Sus características y propiedades pueden verse afectadas por muchos factores: la composición química del carbón, el grado de pulverización, el tipo de caldera, la temperatura de combustión y el sistema de descomposición para la regeneración de los muertos. (VALDES, 2009).

### 2.2.1.7 Propiedades Química de la Ceniza de Cascarilla de Café

La ceniza tiene varias propiedades químicas y es el componente más característico de relación variable, y hay un amplio rango, en el rango de contenido de los cuatro componentes principales: el contenido de óxido de silicio está entre 35% y 60%; contenido de alúmina Entre 10% y 30%; óxido de fierro entre 4% y 20%; óxido de cal entre 1% y 35%.

#### 2.2.2 Cáscara de Huevo

La cáscara constituye la cubierta protectora del huevo, la pared que le defiende de la acción de los agentes externos, y el medio a través del cual pueden realizarse intercambios gaseosos y líquidos con el ambiente que le rodea. La cáscara representa entre el 9-12 % del peso del huevo, lo que haría unos 5-7 gramos, según las razas de donde procede; y se compone principalmente de sustancias minerales, entre las cuales el Carbonato de calcio (94.0%) es una de las más importantes como componente estructural (VALDES, 2009).

#### 2.2.2.1 Obtención de la Cáscara de Huevo

Se recolecto cascaras de huevo para luego ser trituradas en un molino casero, una vez molido manualmente la cascara de huevo, se procedió a molerlo en un molino de laboratorio (Marca: FOSS KN285 KNIFETEC), para obtener la casca de huevo en polvo, así se aseguró que, al momento de añadir en la mezcla de concreto, no genere espacios vacíos.

Figura 6 Molino de Laboratorio



Fuente: Elaboración Propia

**Figura 7** *Proceso de Molienda de la Cáscara de Huevo* 



Fuente: Elaboración Propia

### 2.2.2.2 Propiedades Físicas de la Cáscara de Huevo

La cáscara es porosa (se pueden contar entre 7,000 – 17,000 poros), no es impermeable, y, por lo tanto, esta película actúa como un verdadero revestimiento. La permeabilidad de la cáscara influye en la conservación del huevo y en las modificaciones que éste experimenta. En efecto, la cubierta protectora del huevo presenta numerosos poros que se dejan atravesar de fuera hacia dentro por los microbios, líquidos y gases del ambiente, los cuales pueden comunicar al huevo olor y/o sabor particular. Este conocimiento de que la cáscara no constituye una pared impenetrable debe tenerse muy en cuenta en todas las actividades avícolas, procurando sustraer los huevos de la acción de todos aquellos agentes externos que, por constituir un foco de contaminación, o trasmitir a los alimentos propiedades desagradables, pueden dañar su conservación o sus cualidades, o pueden quedar atrapadas en la porosidad de las cáscaras, por lo que se hace necesario un control biológico constante y procedimientos adecuados para su eliminación. Por otra parte, la cáscara se deja atravesar en sentido contrario por los gases que contiene el huevo en su interior, y ello ocasiona una merma en su peso que ha de tenerse en cuenta (VALDES, 2009).

#### 2.2.2.3 Propiedades Químicas de la Cáscara de Huevo

La cáscara de huevo de gallina químicamente está compuesta de 1,6% de agua, 95,1 % de minerales, de los cuales 93,6% corresponden a carbonato de calcio, 0,8% de carbonato de magnesio y 0,73% de fosfato tricálcico, y finalmente 3,3% de materia orgánica.

El porcentaje de calcio presente en la cáscara de huevo no varía independientemente de la raza, procedencia (patio o industria), ya que la gallina brinda al cascarón la cantidad necesaria de calcio para su correcta formación. Si la ingestión de calcio no satisface las necesidades para la producción de huevos, la gallina extraerá el calcio depositado en sus huesos. (MONTT, 2015)

**Tabla 2**Composición química

| Ensayo          | Análisis | Unidad de medida |
|-----------------|----------|------------------|
| рН              | 12.1     | Ppm              |
| Arsenico        | < 3      | Ppm              |
| Metales pesados | < 20     | Ppm              |
| Mercurio        | 0.025    | Ppm              |
| Selenio         | 0.0055   | Ppm              |
| Plata           | 8.29     | Ppm              |
| Sulfuro         | 0.034    | Ppm              |
| Aluminio        | < 20     | Ppm              |
| Bario           | 30.9     | Ppm              |
| Cadmio          | < 5      | Ppm              |
| Calcio          | 655000   | Ppm              |
| Cobalto         | < 5      | Ppm              |
| Cobre           | < 2.5    | Ppm              |
| Hierro          | 10       | Ppm              |
| Magnesio        | 5440     | Ppm              |
| Fósforo         | 1470     | Ppm              |

Fuente: Manual de Bioquímica de los alimentos.

# 2.2.3 Generalidades del Concreto

Según Neville y Brooks (2010) se puede definir el concreto como "una mezcla uniforme de cemento, agua, agregados y, en su caso, aditivos, que al fraguar adquiere una resistencia mecánica que lo hace idóneo como material de construcción".

En términos más técnicos, el concreto es una composición homogénea y cohesiva que se logra mediante la combinación de cemento Portland, agua, áridos y, ocasionalmente, aditivos. Este

compuesto, tras un proceso de fraguado y endurecimiento, adquiere resistencia mecánica, convirtiéndose en un material versátil y esencial en la construcción de infraestructuras.

Esta definición subraya la naturaleza compuesta y la importancia de los componentes esenciales del concreto, destacando la relevancia de la proporción y la calidad de estos elementos en la obtención de un producto final óptimo en términos de resistencia y durabilidad, aspectos cruciales para su implementación en proyectos de ingeniería civil.

"En términos generales, el concreto y hormigón puede definirse como la mezcla de un material aglutinante(Cemento Portland Hidráulico), un material de relleno(agregado o áridos), agua y eventualmente aditivos, que al endurecerse forma un todo compacto (piedra artificial) y después de cierto tiempo es capaz de soportar grandes esfuerzos de compresión" (SÁNCHEZ DE GUZMÁN, 2001).

#### 2.2.3.1 Componentes del concreto

El cemento portland, los agregados, el agua y el aire se combinan en proporciones adecuadas para formar una estructura conocida como concreto, que busca obtener propiedades de durabilidad y resistencia a la compresión. En ciertos escenarios, adicionalmente, se introducen aditivos para optimizar las características del concreto. La reacción química entre el cemento y el agua se encarga de unir las partículas de los agregados, dando lugar a un material heterogéneo, al que opcionalmente se le pueden agregar aditivos para mejorar o alterar ciertas propiedades (ABANTO, 2009).

### 2.2.3.1.1 Cemento

El tipo de cemento en uso, como se ha indicado previamente, es el cemento portland hidráulico. Este tipo de cemento posee características adhesivas y cohesivas que le confieren la habilidad de unir los agregados o áridos para formar la estructura del concreto. Estas características están determinadas por su composición química, el grado de hidratación, el tamaño de partícula, la rapidez de endurecimiento, la liberación de calor durante la hidratación y la fuerza mecánica que puede alcanzar (SÁNCHEZ DE GUZMÁN, 2001).

Según, (2019), indica que el cemento portland es un tipo de cemento hidráulico obtenido a partir de la molienda del Clinker, compuesto principalmente por silicatos de calcio hidráulicos. Durante el proceso de molienda, es común agregar una o más formas de sulfato de calcio. Este cemento, de textura en polvo fino y tonalidad verdosa, al combinarse con agua, forma una masa (pasta) altamente maleable y plástica. Después de fraguar y endurecer, esta masa adquiere una notable resistencia y durabilidad.

Como el cemento es una mezcla de muchos compuestos, resulta impráctica su representación con una formula química. No obstante, hay cuatro compuestos que constituyen más del 90% del peso del cemento y son:

- a) Silicato tricálcico (3CaO.SiO<sub>2</sub>): C<sub>3</sub>S
- b) Silicato dicálcico (2CaO.SiO<sub>2</sub>): C<sub>2</sub>S
- c) Aluminato Tricálcico (3CaO.Al<sub>2</sub>O<sub>3</sub>): C<sub>3</sub>A
- d) Aluminio ferrita tricálcica (4CaO.Al<sub>2</sub>O<sub>3</sub>.Fe<sub>2</sub>O<sub>3</sub>): C<sub>4</sub>AF

Cada uno de estos cuatro compuestos principales del cemento Portland contribuye al comportamiento del cemento durante la transición de un estado plástico a uno endurecido después de la hidratación. Por ejemplo:

El silicato tricálcico (C<sub>3</sub>S) es responsable de la elevada resistencia inicial del cemento Portland hidratado. La reacción del C<sub>3</sub>S con el agua libera una gran cantidad de calor (calor de hidratación). La rapidez con que la pasta de cemento endurece está directamente relacionada con la liberación de calor durante la hidratación.

El silicato dicálcico ( $C_2S$ ) es el principal factor que influye en la resistencia posterior de la pasta de cemento.

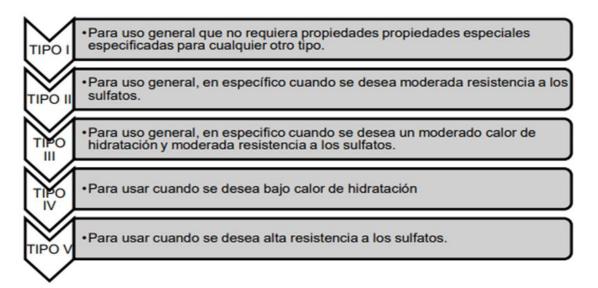
El aluminato tricálcico (C<sub>3</sub>A): Durante el proceso de fabricación del cemento Portland, el yeso agregado se combina con el C<sub>3</sub>A para controlar el tiempo de fraguado.

La aluminoferrita tricálcica ( $C_4AF$ ) es similar al  $C_3A$ , ya que hidrata rápidamente y desarrolla baja resistencia. (ABANTO, 2009).

### 2.2.3.1.2 Tipo de Cemento

**Tabla 3** *Tipos de Cemento* 

| ESPECIFICACIONES                  | NTP         | ASTM       |
|-----------------------------------|-------------|------------|
| CEMENTO PORTLAND                  | NTP 334.009 | ASTM C150  |
| CEMENTO PORTLAND<br>ADICIONADO    | NTP 334.090 | ASTM C595  |
| CEMENTO PORTLAND<br>POR DESEMPEÑO | NTP 334.082 | ASTM C1157 |
| CEMENTO BLANCO                    | NTP 334.082 | ASTM C150  |
| CEMENTO A PEDIDO                  | NTP 334.069 | ASTM C91   |


Nota: Elaboración propia

#### **Cemento Portland**

"El cemento portland es un cemento hidráulico producido mediante la pulverización del Clinker compuesto esencialmente de silicatos de calcio hidráulicos y que contiene generalmente sulfato de calcio y eventualmente caliza como adición durante la molienda." (NTP334.009 2005a)

De acuerdo a la (NTP334.009 2005a) presenta la siguiente clasificación:

Figura 8
Cemento Portland



Nota: La imagen fue extraida en base a (NTP334.009 2005a)

Cemento tipo I: De uso general en la construcción, cuando en las mismas no se especifican la utilización de los otros 4 tipos de cemento. Se emplea en obras que no requieren propiedades especiales. El cemento portland Tipo I se fabrica mediante la molienda conjunta de Clinker Tipo I y yeso, que brindan mayor resistencia inicial y menores tiempos de fraguado.

Cemento tipo II: Se utiliza en obras de concreto en general y cuando se espera un ataque moderado de los sulfatos o cuando se requiere un calor de hidratación moderado, para lograr este tipo de características se regulan la cantidad máxima de silicato tricálcico (C3S) y aluminato tricálcico (C3A), este cemento alcanza una resistencia similar al cemento Tipo I pero requiere más tiempo de fraguado.

Cemento tipo III: Este desarrolla una alta resistencia en un tiempo menor, en 7 días tiene la misma resistencia que un concreto tipo I o II en 28 días. Para lograr este rápido fraguado se aumentan las cantidades de silicato tricálcico (C3S) y aluminato tricálcico (C3A).

Cemento tipo IV: Este es un cemento de secado lento por lo que no genera gran cantidad de calor de hidratación siendo ideal para estructuras que no requieran una alta resistencia inicial, como por ejemplo presas. Para lograr esto se regulan las cantidades de silicato tricálcico (C3S) y aluminato

tricálcico (C3A), ya que estos son los elementos que se encargan de fraguado inicial por lo que liberan la mayor cantidad de calor de hidratación.

Cemento tipo V: Este es un cemento con gran resistencia al ataque de sulfatos, por lo que es muy utilizado en estructuras hidráulicas expuestas a aguas con gran concentración de álcalis o estructuras expuestas a agua de mar. Para lograr esto se reduce la cantidad de aluminato tricálcico (C3A) ya que este es el componente más vulnerable a los sulfatos.(ABANTO, 2009)

### 2.2.3.1.3 Propiedades del Cemento

Según, Abanto (2009), la finura o superficie específica: Una de las etapas del proceso de fabricación del cemento es la molienda del Clinker con el yeso. La hidratación de los granos de cemento ocurre desde el interior, por lo que el área superficial constituye el material de hidratación. Al reducir el espesor de esta capa aumenta la velocidad de hidratación lo que posteriormente conlleva a una menor resistencia a la fisura. En definitiva, el tamaño de los granos definirá la posterior resistencia a fisura del cemento.

Asimismo, definimos como firmeza la capacidad que tiene el cemento de conservar su volumen después de fraguar. Esta propiedad puede verse afectada por la presencia de cantidades excesivas de cal libre.

## 2.2.3.1.4 Cemento Portland Tipo I

Según (NTP334.009 2005a), el Cemento Pórtland = Clinker Pórtland + Yeso

El cemento Pórtland es un polvo muy fino de color verdoso. Al mezclarlo con agua forma una masa (pasta) muy plástica y moldeable que luego de fraguar y endurecer, adquiere gran resistencia y durabilidad.

Las principales materias primas necesarias para la fabricación de un cemento Pórtland son:

- a. Materiales calcáreos: Deben tener un adecuado contenido de carbonato de calcio (Co3Ca) que será entre 60% a 80%, y no deberá tener más de 1.5% de magnesia. Aquí tenemos a las margas, cretas v calizas en general estos materiales suministran el óxido de calcio o cal.
- b. Materiales arcillosos: Deben contener sílice en cantidad entre 60% y 70%. Estos materiales proveen el dióxido de silicio o sílice y también el óxido de aluminio o alúmina, aquí tenemos a las pizarras, esquistos y arcillas en general.
- c. Minerales de fierro: Suministran el óxido férrico en pequeñas cantidades. En algunos casos éstos vienen con la arcilla.
- d. Yeso: Aporta el sulfato de calcio.

Nota: El yeso se añade al Clinker para controlar (retardar y regular) la fragua. Sin el yeso, el cemento fraguaría muy rápidamente debido a la hidratación violenta del aluminato tricálcico y el ferro aluminato tetracálcico.

**Figura 9** *Bolsa de Cemento Portland tipo I* 



Fuente: Cementos Yura

Según, Yura (2022), las especificaciones técnicas del cemento portland tipo I son las siguientes:

| REQUERIMIENTOS QUÍMICOS                 | CEMENTO PORTLAND<br>YURA TIPO I | NORMA TÉCNICA<br>NTP 334.009 - ASTM C150 |  |  |
|-----------------------------------------|---------------------------------|------------------------------------------|--|--|
| Óxido de Magnesio, MgO, %               | 2.0 - 4.0                       | 6.00 Máximo                              |  |  |
| Trióxido de Azufre, SO <sub>3</sub> , % | 1.8 - 2.5                       | 3.00 Máximo                              |  |  |
| Pérdida por Ignición o al Fuego, P.F %  | 0.1 - 2.5                       | 3.00 Máximo                              |  |  |
| Residuo Insoluble, R.I. %               | < 1.5                           | 1.50 Máximo                              |  |  |

| REQUERIMIENTOS FÍSICOS                         | CEMENTO PORTLAND<br>YURA TIPO I | NORMA TÉCNICA<br>NTP 334.009 - ASTM C150 |
|------------------------------------------------|---------------------------------|------------------------------------------|
| Peso específico (gr/cm³)                       | 3.10 - 3.15                     | -                                        |
| Finura (Superficie específica - blaine), cm²/g | 3000 - 3700                     | 2600 mínimo                              |
| Expansión en autoclave, %                      | 0.0 - 0.2                       | 0.80 máximo                              |
| Tiempo de Fraguado Vicat Inicial, minutos      | 140 - 190                       | 45 - 375                                 |
| Contenido de aire del mortero, %               | 4 - 8                           | 12.00 máximo                             |
| Resistencia a la compresión, Kgf/cm²           |                                 | Mínimo                                   |
| 03 días                                        | 250 - 350                       | 122                                      |
| 07 días                                        | 310 - 420                       | 194                                      |
| 28 días                                        | 400 - 470                       | 286                                      |

 $\textbf{Fuente:} \ \underline{\text{https://www.yura.com.pe/wp-content/uploads/ficha-tecnica-yura-tipo-1.pdf} \\$ 

## 2.2.3.1.5 Agua

El agua desempeña un papel crucial en la elaboración del concreto, estando asociada con la resistencia, manejabilidad y características del concreto una vez que ha fraguado.(ABANTO, 2009)

El análisis de las propiedades del agua que se va a utilizar en la mezcla de concreto adquiere una relevancia significativa debido a su función en la reacción química con el material cementante (cemento) para lograr:

a. La creación de un gel: este gel se define como la parte sólida de la pasta resultante de la reacción química entre el cemento y el agua durante la hidratación. El gel se estructura como una agregación porosa de partículas sólidas interconectadas que forman una red que contiene un material amorfo. Este gel juega un papel crucial en el comportamiento del concreto, especialmente en sus resistencias mecánicas y módulo de elasticidad. Los dos silicatos de calcio, que representan cerca del 75% del peso del cemento Portland, reaccionan con el agua para crear dos nuevos compuestos: hidróxido de calcio e hidrato de silicato de calcio. Este último es el componente cementante más fundamental en el concreto. Las propiedades ingenieriles del concreto, como fraguado, endurecimiento, resistencia y estabilidad dimensional, dependen en gran medida del gel de hidrato de silicato de calcio, siendo esencial en la estructura del concreto.

b. En estado fresco, facilita una manipulación y colocación adecuadas del concreto.

c. En estado endurecido, la convierte en un producto con las propiedades y características deseadas. Es esencial comprender la velocidad de reacción entre el cemento y el agua, ya que determina el tiempo de fraguado y endurecimiento. La reacción inicial debe ser lo suficientemente lenta como para permitir el transporte y la colocación adecuada del concreto. Sin embargo, una vez que el concreto ha sido colocado y finalizado, un endurecimiento rápido es deseable. El yeso, añadido en el molino de cemento durante la molienda del Clinker, regula la velocidad inicial de hidratación del cemento Portland. Otros factores que influyen en esta velocidad incluyen la finura de la molienda, aditivos, cantidad de agua añadida y temperatura de los materiales en el momento de la mezcla.

d. Durante el curado del concreto, el incremento en la resistencia sigue ocurriendo mientras haya cemento sin hidratar, siempre que el concreto se mantenga húmedo o tenga una humedad relativa superior a aproximadamente el 80%, y la temperatura del concreto sea favorable. Cuando la humedad relativa en el concreto desciende a aproximadamente el 80%, o la temperatura desciende por debajo del punto de congelación, la hidratación y el aumento de resistencia prácticamente se detienen. Si el concreto se vuelve a saturar después de un período de secado, la hidratación se reanuda y la resistencia vuelve a aumentar. No obstante, es preferible aplicar un curado húmedo al concreto de

manera continua desde su colocación hasta que alcance la calidad deseada, dado que resulta difícil restaurar el concreto una vez que ha perdido la humedad adecuada.(LAMA, 2019)

Según, NTP 339.088 (2019), el agua que ha de ser empleada en la preparación del concreto deberá cumplir con los requisitos de la Norma NTP 339.088 y ser, de preferencia potable. No existen criterios uniformes en cuanto a los límites permisibles para las sales y sustancias presentes en el agua que va. a emplearse. La Norma Peruana NTP 339.088 considera aptas para la preparación y curado del concreto, aquellas aguas cuyas propiedades y contenidos de sustancias disueltas están comprendidos dentro de los siguientes límites:

**Tabla 4** *L*ímites permisibles para el agua de mezcla y curado según la norma NTP 339.088

| DESCRIPCIÓN                               | LIMITE PERMISIBLE |        |  |  |
|-------------------------------------------|-------------------|--------|--|--|
| Sólidos en suspensión (residuo insoluble) | 5000 ppm          | Máximo |  |  |
| Materia Orgánica                          | 3 ppm             | Máximo |  |  |
| Alcalinidad (NaCHCO <sub>3</sub> )        | 1000 ppm          | Máximo |  |  |
| Sulfatos (ión SO4)                        | 600 ppm           | Máximo |  |  |
| Cloruros(ión Cl-)                         | 1000 ppm          | Máximo |  |  |
| рН                                        | 5 a 8             | Máximo |  |  |

### **2.2.3.1.6** Agregados

"Los agregados son materiales inertes del concreto que son conglomerados por pasta de agua y cemento, para formar la estructura resistente. Ocupa próximamente alrededor de las ¾ partes del volumen total del concreto.

- a) El peso unitario suelto del agregado fino según la NTP 400.017, indica el intervalo de 1400 kg/m³ a 1600 kg/m³.
- b) El peso unitario suelto del agregado grueso según la norma NTP 400.017, indica el intervalo de  $1500~{\rm kg/m^3}$  a  $1600~{\rm kg/m^3}$ .
- c) Los agregados utilizados en la elaboración del concreto de peso normal (2300 kg/m³) deben cumplir con la norma NTP. 400.037 o de la norma ASTM C-33. Los agregados utilizados en concretos que son sometidos a procesos de congelación y deshielo y no cumplan con el acápite 5.2.2 de la NTP 400.037 podrán ser utilizados si un concreto de propiedades comparables, preparado con agregado del mismo origen, ha demostrado un comportamiento satisfactorio cuando estuvo sometido

a condiciones de intemperismo similares a las que se esperan."(NORMA E.060 CONCRETO ARMADO, 2019).

La norma establece en su apéndice la información de husos granulométricos considerados óptimos, para determinar la proporción de agregados finos y gruesos en el diseño de mezclas, para obtener concretos trabajables y compactos.

# Agregado fino

"Es el agregado proveniente de la desintegración natural o artificial, que pasa el tamiz normalizado 9,5 mm (3/8 in) y queda retenido en el tamiz normalizado 75 μm (No.200); deberá cumplir con los límites establecidos en la presente norma"

**Tabla 5** *Requerimiento de granulometría de Agregado fino.* 

| TAMIZ             | PORCENTAJE QUE PASA |
|-------------------|---------------------|
| 9.5 mm (3/8 pulg) | 100                 |
| 4.75 mm (N° 4)    | 95 a 100            |
| 2.36 mm (N° 8)    | 80 a 100            |
| 1.18 mm (N° 16)   | 50 a 85             |
| 600 μm (N° 30)    | 25 a 60             |
| 300 μm (N° 50)    | 5 a 30              |
| 150 μm (N° 100)   | 0 a 10              |
| 75 μm (N° 200)    | 0 a 3 <sub>AB</sub> |

A.- Para concreto no sujeto a la abrasión, el límite para el material más fino que el tamiz 75  $\mu$ m (N° 200) debe ser máximo 5%.

Nota: El presente cuadro se recabó de la (NTP400.037 2018)

B.- Para agregado fino artificial u otros reciclados, si el material más fino que el tamiz 75  $\mu m$  (N° 200) consiste en polvo de trituración, esencialmente libre de arcilla o esquistos, este límite debe ser 5% para concreto sujeto a abrasión y máximo 7% para concreto no sujeto a abrasión.

"El agregado fino no debe tener más del 45% que pasa en alguna malla y retenida en la siguiente malla consecutiva y su módulo de finura no debe ser menor de 2.3 ni mayor de 3.1." (NTP400.037 2018)

**Tabla 6** *Límites de sustancias nocivas en el agregado fino.* 

| CARACTERÍSTICAS                              |      | REQUISITO | UNIDAD         |
|----------------------------------------------|------|-----------|----------------|
|                                              | MIN  | MAX       |                |
| Módulo de finura                             | 2.3  | 3.1       | N.A.           |
| Pasante de la malla N° 200                   | N.A. | 5         | %              |
| Cloruros solubles                            | N.A. | 1000      | ppm            |
| Sulfatos solubles                            | N.A. | 12000     | ppm            |
| Terrones de arcilla y partículas deleznables | N.A. | 3         | %              |
| Impurezas orgánicas                          | N.A. | 3         | Plato de Color |
| Inalterabilidad por sulfato de magnesio      | N.A. | 15        | %              |

Nota: El presente cuadro se recabo de la (NTP400.037 2018)

#### Agregado grueso

El tamaño máximo nominal (TMN) del agregado grueso según (Norma E.060 Concreto Armado 2019) no debe ser mayor a:

- a. Un quinto de la menor separación entre las caras del encofrado.
- b. Un tercio del espesor de la losa, de ser el caso.
- c. Tres cuartos del espaciamiento mínimo libre entre las barras o alambres individuales de refuerzo, paquetes de barras, tendones individuales, paquetes de tendones o ductos.
- "Estas restricciones se pueden obviar si se demuestra que la trabajabilidad y los procedimientos de compactación son tales que el concreto se puede colocar sin la formación de vacíos o cangrejeras".(Norma E.060 Concreto Armado 2019) del reglamento nacional de Edificaciones

| Huso | Tamaño máximo<br>Nominal               | PORCENTAJE QUE PASA POR LOS TAMICES NORMALIZADOS |                    |                  |                    |                  |                      |                     |                      |                      |                     |                  |                    |                    |                   |
|------|----------------------------------------|--------------------------------------------------|--------------------|------------------|--------------------|------------------|----------------------|---------------------|----------------------|----------------------|---------------------|------------------|--------------------|--------------------|-------------------|
|      | Nominai                                | 100 mm<br>(4 in.)                                | 90 mm<br>(3 ½ in.) | 75 mm<br>(3 in.) | 63 mm<br>(2 ½ in.) | 50 mm<br>(2 in.) | 37.5 mm<br>(1 ½ in.) | 25.0 mm<br>( 1 in.) | 19.0 mm<br>(3/4 in.) | 12.5 mm<br>(1/2 in.) | 9.5 mm<br>(3/8 in.) | 4.75 mm<br>(N°4) | 2.36 mm<br>( N° 8) | 1.18 mm<br>(N° 16) | 300 um<br>(N° 50) |
| 1    | 90 mm a 37.5 mm<br>(3 ½ a 1 ½ in.)     | 100                                              | 90 a 100           | -                | 25 a 60            | -                | 0 a 15               | -                   | 0 a 5                | -                    | -                   | -                | -                  | -                  | -                 |
| 2    | 63 mm a 37.5 mm<br>(2 ½ a 1 ½ in.)     | -                                                | -                  | 100              | 90 a 100           | 35 a 70          | 0 a 15               | -                   | 0 a 5                | -                    | -                   | -                | -                  | -                  | -                 |
| 3    | 50 mm a 25 mm<br>(2 a 1 in.)           | -                                                | -                  | -                | 100                | 90 a 100         | 35 a 70              | 0 a 15              | -                    | 0 a 5                | -                   | -                | -                  | -                  | -                 |
| 357  | 50 mm a 4.75 mm<br>(2 in. a N°4)       | -                                                | -                  | -                | 100                | 95 a 100         | -                    | 35 a 70             | -                    | 10 a 30              | -                   | 0 a 5            | -                  | -                  | -                 |
| 4    | 37.5 mm a 19 mm (1 ½ in. a ¾ in.)      | -                                                | -                  | -                | -                  | 100              | 90 a 100             | 20 a 55             | 0 a 15               | -                    | 0 a 5               | -                | -                  | -                  | -                 |
| 467  | 37.5 mm a 4.75 mm<br>(1 ½ in. a N° 4 ) | -                                                | -                  | -                | -                  | 100              | 95 a 100             | -                   | 35 a 70              | -                    | 10 a 30             | 0 a 5            | -                  | -                  | -                 |
| 5    | 25 mm a 12.5 mm<br>(1 a ½ in.)         | -                                                | -                  | -                | -                  | -                | 100                  | 90 a 100            | 20 a 55              | 0 a 10               | 0 a 5               | -                | -                  | -                  | -                 |
| 56   | 25 mm a 9.5 mm<br>(1 a 3/8 in.)        | -                                                | -                  | -                | -                  | -                | 100                  | 90 a 100            | 40 a 85              | 10 a 40              | 0 a 15              | 0 a 5            | -                  | -                  | -                 |
| 57   | 25 mm. a 4.75 mm<br>(1 in. a N°4 )     | -                                                | -                  | -                | -                  | -                | 100                  | 95 a 100            | -                    | 25 a 60              | -                   | 0 a 10           | 0 a 5              | -                  | -                 |
| 6    | 19 mm a 9.5 mm (3/4 a 3/8 in.)         | -                                                | -                  | -                | -                  | -                | -                    | 100                 | 90 a 100             | 20 a 55              | 0 a 15              | 0 a 5            | -                  | -                  | -                 |

| Huso | Tamaño máximo<br>Nominal                 | PORCENTAJE QUE PASA POR LOS TAMICES NORMALIZADOS |   |   |   |   |                  |                   |                      |                     |                  |                    |                    |                   |       |
|------|------------------------------------------|--------------------------------------------------|---|---|---|---|------------------|-------------------|----------------------|---------------------|------------------|--------------------|--------------------|-------------------|-------|
|      | 1 (0.11.11.11)                           |                                                  |   |   |   |   | 25.0 mm ( 1 in.) | 19.0 mm (3/4 in.) | 12.5 mm<br>(1/2 in.) | 9.5 mm<br>(3/8 in.) | 4.75 mm<br>(N°4) | 2.36 mm<br>( N° 8) | 1.18 mm<br>(N° 16) | 300 um<br>(N° 50) |       |
| 67   | 19 mm a 4 mm<br>(3/4 in. a N°4)          | -                                                | - | - | - | - | -                | 100               | 90 a 100             | -                   | 20 a 55          | 0 a 10             | 0 a 5              | -                 | -     |
| 7    | 12.5 mm a 4.75 mm<br>(1/2 in a N°4)      | -                                                | - | - | - | - | -                | -                 | 100                  | 90 a 100            | 40 a 70          | 0 a 15             | 0 a 5              | -                 | -     |
| 8    | 9.5 mm a 2.36 mm<br>(3/8 in. a N°8)      | -                                                | - | - | - | - | -                | -                 | -                    | 100                 | 85 a 100         | 10 a 30            | 0 a 10             | 0 a 5             | -     |
| 89   | 12.5 mm a 9.5 mm<br>(1/2 in. a 3/8 in. ) | -                                                | - | - | - | - | -                | -                 | -                    | 100                 | 90 a 100         | 20 a 55            | 5 a 30             | 0 a 10            | 0 a 5 |
| 9    | 4.75 mm a 1.18 mm<br>(N° 4 a N° 16)      | -                                                | - | - | - | - | -                | -                 | -                    | -                   | 100              | 85 a 100           | 10 a 40            | 0 a 10            | 0 a 5 |

FUENTE: Norma Técnica Peruana NTP 400.37

### 2.2.3.1.6.1 Propiedades Físicas del Agregado

## - Extracción de muestras: (NTP 400.010)

La práctica de recoger muestras de agregados provenientes de una cantera, con el propósito de llevar a cabo análisis de laboratorio, es un procedimiento esencial en la supervisión de la calidad para la selección de los materiales utilizados en la fabricación del concreto. Este paso es crucial, ya que la representatividad de las muestras influye directamente en la exactitud de los resultados, reflejando así las características físicas y mecánicas del material total proveniente de la cantera que se está investigando.

## Agregado fino (cantera Cunyac)

La cantera de Cunyac se encuentra en la meseta conocida como Altiplano, situada en la región del Cusco. Esta cantera está en la ruta Cusco – Abancay, en estrecha proximidad al puente Cunyac que cruza el río Apurímac. El material agregado se extrae de las orillas del río Apurímac, específicamente de la cantera ubicada en la Hacienda Monterrico, propiedad de la familia Segovia. Esta cantera se encuentra aproximadamente a 3 km después del puente Cunyac y a unos 99 km de la ciudad de Cusco.

Figura 10 Ubicación de la cantera Cunyac



Fuente: https://www.bibliocad.com/es/biblioteca/plano-de-cantera-peru\_53189/

Figura 11 Ubicación satelital de la cantera Cunyac



Fuente: Google Earth

La Cantera Cunyac, se encuentra ubicado por el trayecto CuscoAbancay, aproximadamente está a 3 km después del puente Cunyac y a 2 horas aproximadamente de la ciudad de Cusco.

**Figura 12** *Trayecto de Cusco a la cantera de Cunyac* 



Fuente: Google Earth

Figura 13
Cantera Cunyac



Fuente: Elaboración Propia

# - Agregado Grueso (Cantera Vicho)

Se encuentra en el Km. 09 de la Ruta Cusco – San Salvador, en la margen izquierda al Sur Este de la ciudad del Cusco.

**Figura 14** *Ubicación de la Cantera Vicho (con referencia al distrito de Huacarpay)* 

| CANTERA VICHO    |                  |  |  |  |  |
|------------------|------------------|--|--|--|--|
| Departamento     | Cusco            |  |  |  |  |
| Provincia        | Calca            |  |  |  |  |
| Distrito         | San Salvador     |  |  |  |  |
| Altitud Promedio | 2934 - 3020 msnm |  |  |  |  |

Tabla 5: Ubicación de la Cantera Vicho Elaboracion propia, 2018.

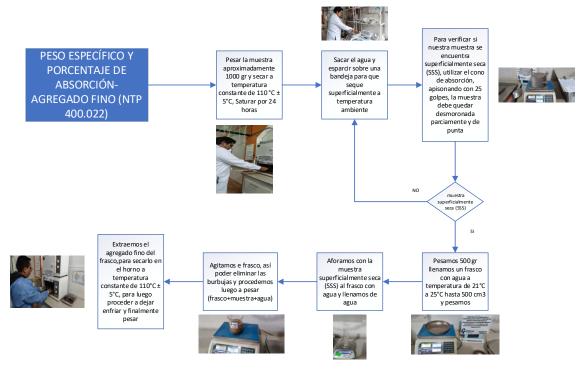


Fuente: Google Earth

El tiempo estimado de desplazamiento es de aproximadamente 1 hora y 20 minutos desde la ciudad de Cusco, específicamente desde la Ciudad Universitaria de Perayoc. La cantera en evaluación cuenta con una excelente accesibilidad a Cusco y sus alrededores para el transporte del material de

subbase. Está conectada a la ciudad a través de la carretera interprovincial pavimentada Cusco − San Salvador. La ruta es la siguiente: Cusco (Ciudad Universitaria de Perayoc) → Saylla → Tipon → Desvío Huacarpay − San Salvador → Huambutio → Cantera Vicho.

Figura 15
Cantera Vicho




Fuente: Elaboración Propia

**Figura 16**Procedimiento para determinar el peso específico y % de absorción del agregado fino

# Peso específico

# Agregado Fino



Fuente: Elaboración Propia

Las ecuaciones para el cálculo del peso específico:

Peso específico seco al horno = 
$$\frac{A}{(B+S-C)}$$
 (1)

Peso específico saturado superficialmente seca (SSD) = 
$$\frac{S}{(B+S-C)}$$
 (2)

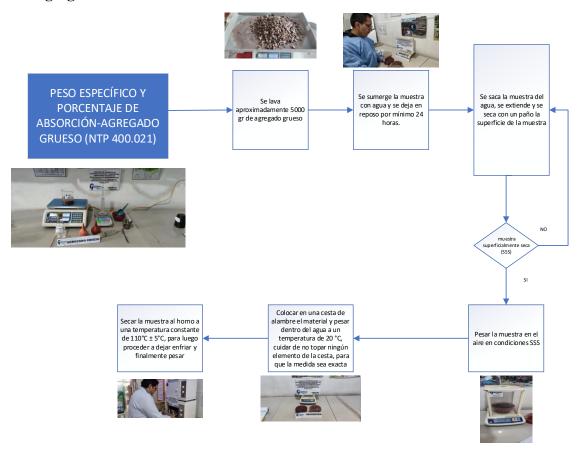
Peso específico aparente = 
$$\frac{A}{(B+A-C)}$$
 (3)

La ecuación para el cálculo del porcentaje de absorción:

$$Absorción \% (Ab) = 100 * \frac{(S-A)}{A}$$
 (4)

A= masa de la muestra seca al horno (gr)

B= masa del picnómetro llenado de agua hasta la marca de calibración (gr)


C= masa del picnómetro lleno de la muestra y el agua hasta la marca de calibración (gr)

S= masa de la muestra de saturado superficialmente seca (gr)

#### Figura 17

Procedimiento para determinar el peso específico y % de absorción del agregado grueso

## Agregado Grueso



Fuente: Elaboración Propia

La ecuación para el cálculo del peso específico del agregado grueso es:

Peso Especifico del agregado grueso = 
$$Pe_{AG} = \frac{A}{B-C}$$
 (5)

Dónde:

 $Pe_{AG}$  = Peso específico del agregado grueso

A= Peso en el aire de muestra secada al horno (gr)

B= Peso en el aire de la muestra (gr)

C= Peso en el agua de la mezcla (gr)

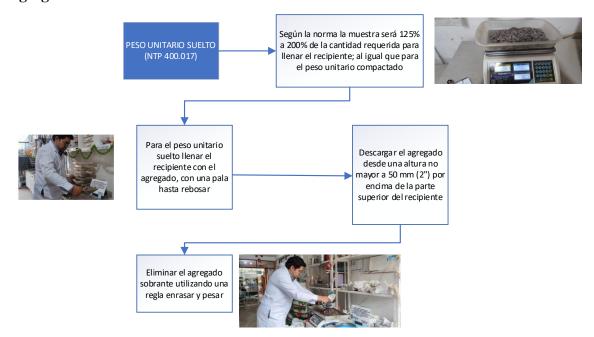
La ecuación para el cálculo del porcentaje de absorción

Absorcion %(Ab) del agregado grueso = 
$$100 * \frac{(B-A)}{A}$$
 (6)

Dónde:

Ab% = Porcentaje de Absorción (%)

A= Peso en el aire de muestra secada al horno (gr)


B= Peso en el aire de la muestra SSS(gr)

#### Figura 18

Procedimiento para determinar el peso unitario suelto del agregado

#### Peso unitario suelto

### Agregado Fino



Fuente: Elaboración Propia

La ecuación para encontrar el peso unitario suelto es la siguiente:

$$P.U.S. = \frac{A - B}{V} \tag{7}$$

Dónde: (P.U.S.) = Peso Unitario Suelto (Kg/m<sup>3</sup>)

A = Peso del recipiente de medida más el Agregado compactado (Kg)

B = Peso del recipiente de medida (Kg)

V = Volumen de la medida (m<sup>3</sup>)

### Agregado Grueso

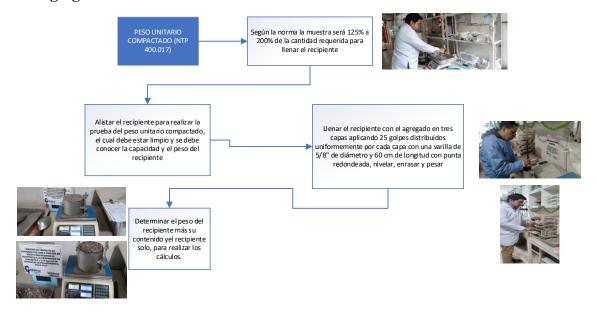

El procedimiento para realizar el peso unitario suelto del agregado grueso se sigue los mismos pasos que para el agregado fino.

Figura 19

Procedimiento para determinar el peso unitario compactado del agregado

# - Peso unitario Compactado

# - Agregado Fino



Fuente: Elaboración Propia

La ecuación para encontrar el peso unitario compactado es la siguiente:

$$P.U.C. = \frac{A - B}{V} \tag{8}$$

Dónde:

(P.U.C.) = Peso Unitario Compactado (Kg/m<sup>3</sup>)

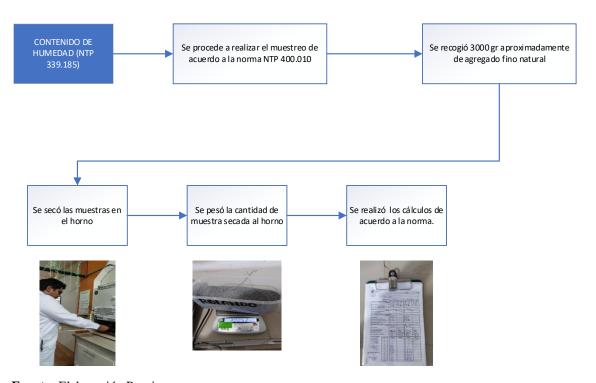
A = Peso del recipiente de medida más el Agregado compactado (Kg)

B = Peso del recipiente de medida (Kg)

V = Volumen de la medida (m<sup>3</sup>)

# Agregado Grueso

El procedimiento para realizar el peso unitario suelto del agregado grueso se sigue los mismos pasos que para el agregado fino.


#### Contenido de Humedad

### Agregado Fino

Los agregados consisten en materiales sólidos y espacios vacíos que pueden contener agua o no. Para determinar el contenido de humedad, se hace referencia a la norma NTP 339.185 y a estándares internacionales como ASTM C 70, C 127, C 128 y C 566, que son utilizados para regular el control de agua neta en la elaboración de la mezcla de concreto.

El contenido de humedad en un agregado varía de manera continua según las condiciones ambientales. Por este motivo, en este estudio se ha medido el contenido de humedad en cada ocasión en que se ha llevado a cabo la mezcla. Este aspecto es crucial para precisar la cantidad adecuada de agua en la mezcla y no afectar la proporción entre agua y cemento.

**Figura 20** *Procedimiento para determinar el contenido de humedad del agregado* 



Fuente: Elaboración Propia

$$CH_{Af} = \frac{100(Pw - Ps)}{Ps} \tag{9}$$

Dónde:

 $CH_{Af}$ = Contenido total de humedad total evaporable de la muestra (%)

Pw= Peso Húmedo de la muestra original (gr)

Ps= Peso seco de la muestra (gr)

Agregado Grueso

El propósito de este análisis es calcular el contenido de humedad evaporable esencial para el diseño

de la mezcla. Los agregados suelen contener cierto nivel de humedad, el cual guarda relación con la

porosidad, dependiendo del tamaño de los poros, su permeabilidad y el volumen total de poros. Este

procedimiento sigue las directrices establecidas en la norma NTP 339.185. En el caso de los

agregados gruesos, se realizan cuatro etapas de evaluación, que se detallan a continuación:

- Completamente desecado: Secado en un horno a 110°C hasta alcanzar un peso constante de los

agregados (generalmente durante 24 horas).

Parcialmente desecado: Se logra exponiendo los agregados al aire ambiente.

- Saturado y superficialmente desecado (SSS): En este estado, los poros de los agregados están

llenos de agua, pero la superficie está seca. Este estado se logra típicamente en el laboratorio.

- Totalmente húmedo: Los agregados están saturados de agua y también tienen agua libre en su

superficie.

El contenido de humedad en los agregados se puede determinar mediante la utilización de la

siguiente fórmula:

$$\%W = \frac{Po - Ps}{Po} * 100 \tag{10}$$

Donde:

W: Contenido de humedad (%)

Po: Peso natural de la muestra (gr)

Ps: Peso seco de la muestra (gr).

- Análisis Granulométrico

Agregado Fino

La granulometría del agregado fino al igual que el agregado grueso tiene como finalidad determinar

la gradación de los agregados las cuales se usarán al cumplir la distribución de tamaño de sus

partículas exigidos en la norma NTP 400.037, NTP 400.012 y ASTM C 33, el agregado fino depende

de la trabajabilidad de la mezcla, el tamaño máximo del agregado grueso. Se sabe que la relación

agua-cemento se mantiene constante y la relación entre el agregado fino y el agregado grueso se

eligen siguiendo el método de diseño de mezcla elegida. Para la verificación de calidad de los

agregados finos debe cumplir con los límites del uso según la tabla 7 especificado en la norma NTP

400.037.

65

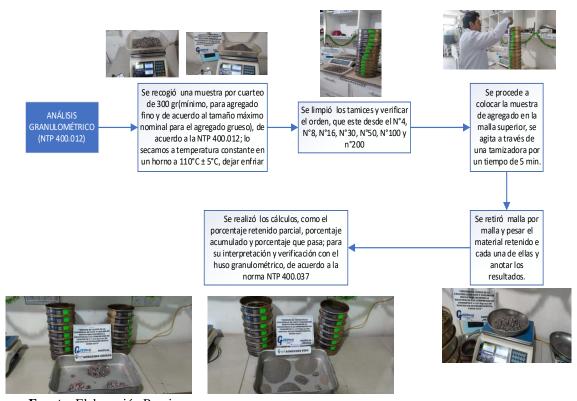
**Tabla 7** *Límites de la granulometría del agregado fino.* 

| Tamiz | Abertura (mm) | Normativa N.T.P. 400.037<br>(porcentaje que pasa-<br>acumulativo) |          |  |  |  |
|-------|---------------|-------------------------------------------------------------------|----------|--|--|--|
|       | _             | Inferior                                                          | Superior |  |  |  |
| 3/8"  | 9.50          | 100                                                               | 100      |  |  |  |
| N°4   | 4.75          | 95                                                                | 100      |  |  |  |
| N°8   | 2.36          | 80                                                                | 100      |  |  |  |
| N°16  | 1.18          | 50                                                                | 85       |  |  |  |
| N°30  | 0.60          | 25                                                                | 60       |  |  |  |
| N°50  | 0.30          | 5                                                                 | 30       |  |  |  |
| N°100 | 0.15          | 0                                                                 | 10       |  |  |  |

Fuente: Adaptado de la Norma Técnica Peruana 400.037

El porcentaje indicado en las mallas  $N^{\circ}50$  y  $N^{\circ}100$  se puede reducir a 5% y 0% respectivamente.

# - Agregado Grueso


**Tabla 8** *Tamices para agregado grueso y cantidad mínimo de la muestra* 

| Tamaño de tamices |      | Cantidad de muestra de ensayo, mínimo kg (lb) |
|-------------------|------|-----------------------------------------------|
| (mm)              | pulg |                                               |
| 9.5               | 3/8  | 1(2)                                          |
| 12.5              | 1/2  | 2(4)                                          |
| 19.0              | 3/4  | 5(11)                                         |
| 25.0              | 1    | 10(22)                                        |
| 37.5              | 1 ½  | 15(33)                                        |
| 50.0              | 2    | 20(44)                                        |
| 63.0              | 2 ½  | 35(77)                                        |
| 75.0              | 3    | 60(130)                                       |

| Tamaño de tamices |       | Cantidad de muestra de ensayo, mínimo kg (lb) |
|-------------------|-------|-----------------------------------------------|
| (mm)              | pulg  |                                               |
| 90.0              | 3 1/2 | 100(220)                                      |
| 100.0             | 4     | 150(330)                                      |
| 125.0             | 5     | 300(600)                                      |

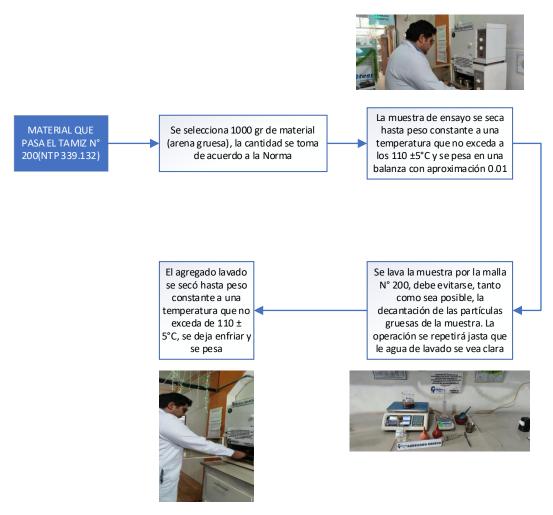
Fuente: Adaptado de la Norma Técnica Peruana 400.012(2001)

Figura 21 Procedimiento para determinar el análisis granulométrico del agregado



Fuente: Elaboración Propia

Los análisis granulométricos es la representación de un valor numérico a la "distribución volumétrica de las partículas por tamaños. La cual se concreta haciendo pasar una muestra representativa de agregados en una fila de tamices ordenados con diferentes tamaños de abertura, de menor a mayor en forma ascendente según a la norma" (400.037, 2015) y la norma NTP 400.012 ó ASTM C33, se tiene los límites establecidos en la norma mencionada los mismos que están sujetos exclusivamente


del tamaño máximo nominal del agregado. La tabla 8 se aprecia las aberturas de tamices para agregado grueso establecido en la norma.

# Pasantes malla n°200 por lavado (NTP 400.018)

# Agregado Fino

El objetivo es determinar la cantidad de polvo o materiales deleznables que pasan por lavado con agua en el tamiz  $N^{\circ}$  200 (75  $\mu m$ ) de un agregado especificado en la norma NTP 400.018. Se separan la arcilla, los agregados muy finos y materiales solubles en el agua de la superficie del agregado ensayado.

**Figura 22** *Procedimiento para determinar el material que pasa por el tamiz n.*°200



Fuente: Elaboración Propia

### - Módulo de Fineza: (NTP 400.011)

#### Agregado Fino

El módulo de fineza es un factor empírico que permite estimar que tan fino o grueso es un material en este caso la arena y la formula está dada por la siguiente ecuación:

$$MF_{Af} = \frac{\sum \% \ acumulados \ (N^{\circ}4, N^{\circ}8, N^{\circ}16, N^{\circ}30, N^{\circ}\ 50, N^{\circ}\ 100 \ y \ N^{\circ}200)}{100} \eqno(11)$$

Dónde:

MF AF: Módulo de fineza del agregado fino (arena gruesa).

# Agregado Grueso

El tamaño máximo nominal de las partículas se refiere al tamaño más grande de las partículas permitido por el tamiz de mayor abertura según la normativa establecida. Este tamaño máximo nominal se aplica generalmente al agregado grueso exclusivamente.

El tamaño máximo se define como la abertura más pequeña en un tamiz por la cual puede pasar la totalidad del agregado. En términos prácticos, representa la dimensión más grande de la partícula presente en el material.

El módulo de fineza es un factor basado en la experiencia que proporciona una estimación de la fineza o grosor de un material, como la piedra chancada en este caso. La fórmula para calcularlo es la siguiente:

$$MG_{AG} = \frac{\sum \% \ acumulados \ (1",3/4",1/2",3/8",N^{\circ}4,N^{\circ}8,N^{\circ}16,N^{\circ}50,N^{\circ}200)}{100}$$
 (12)

Dónde:

MG AG = Módulo de fineza del agregado grueso (piedra chancada)

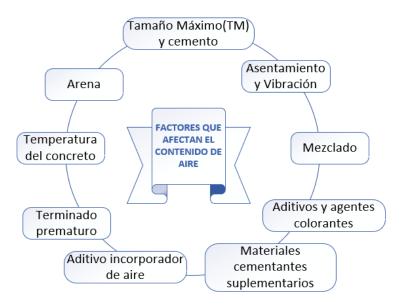
## 2.2.3.1.7 Aire

"Hasta hace algunos años, se consideraba que el concreto estaba constituido solamente por agregados, agua y cemento. No obstante, cuando la mezcla es colocada en la formaleta y no es sometida a un proceso de compactación, o este presenta deficiencias, queda una serie de huecos que atrapan aire naturalmente. En el concreto endurecido, comúnmente son conocidos como "hormigueros" por su distribución, tamaño y semejanza con estos." "A mediados de los años 30, por casualidad, fueron descubiertos los beneficios que aportan las burbujas de aire que son introducidas en la mezcla por ciertos agentes, especialmente para la resistencia a los ciclos de hielo y deshielo. Esto ocasionó su estudio, desarrollo y empleo en el concreto, a tal punto que hoy representa uno de sus grandes avances. A estas burbujas actualmente se conocen como aire incluido o incorporado." "Tanto el aire atrapado, como el incluido, influyen de manera determinante en las propiedades del

concreto. Por ello la tecnología del concreto hoy lo admite y lo trata como un elemento constitutivo." (MATALLANA, 2019)

El aire presente de forma natural en el concreto aporta características no deseadas. En primer lugar, su cantidad es variable y se distribuye de manera desigual y aleatoria, generando formaciones irregulares de formas y tamaños diversos conocidos como "hormigueros", que afectan negativamente la estética de la estructura. En segundo lugar, reduce la densidad del concreto, disminuyendo así su resistencia a las fuerzas mecánicas. En tercer lugar, aumenta la permeabilidad del concreto, lo que facilita la penetración de líquidos, vapores y gases, comprometiendo su durabilidad. En cuarto lugar, el acero de refuerzo no queda completamente envuelto por el mortero, lo que reduce la eficiencia de la interacción entre los dos materiales; además, el acero queda expuesto a la corrosión debido a la falta de recubrimiento.

Por lo tanto, la compactación adecuada de la mezcla es un proceso crucial, ya que permite expulsar el aire atrapado, reajustar la disposición del concreto y garantizar que el acero quede completamente cubierto y protegido por el mortero. La cantidad de aire atrapado varía y está directamente relacionada con el grado de compactación. Según investigaciones experimentales del ACI, el porcentaje promedio aproximado de aire atrapado en la mezcla es inversamente proporcional al Tamaño Máximo Nominal (TMN) del agregado, es decir, a medida que este aumenta, la cantidad de aire atrapado disminuye, como se ilustra en la Tabla 9.


**Tabla 9**Cantidad aproximada de aire atrapado según TMN (Tamaño Máximo Nominal)

| Tamaño Máximo Nominal |       | % Promedio aproximado de aire atrapado |
|-----------------------|-------|----------------------------------------|
| (mm)                  | Pulg. |                                        |
| 9.5                   | 3/8   | 2.7                                    |
| 12.5                  | 1/2   | 2.5                                    |
| 19.0                  | 3/4   | 2.0                                    |
| 25.0                  | 1     | 1.7                                    |
| 37.5                  | 1 ½   | 1.5                                    |
| 50.0                  | 2     | 1.0                                    |
| 75.0                  | 3     | 0.3                                    |
| 150.0                 | 6     | 0.2                                    |

Fuente: (Matallana Rodríguez 2019)

Varios análisis han identificado diversos elementos que influyen en la cantidad de aire presente en la mezcla. Entre estos factores se encuentran el tamaño máximo de las partículas, la cantidad y tipo de cemento, la composición de la arena, el asentamiento, el grado de compactación, la temperatura durante la preparación del concreto, el procedimiento de mezclado, el acabado prematuro, así como la presencia de colorantes y aditivos que incorporan aire.(MATALLANA, 2019)

**Figura 23** *Factores que afectan el contenido del aire* 



Fuente: (Matallana Rodríguez 2019)

### 2.2.3.1.8 Aditivos

Un aditivo es definido, tanto por el Comité 116R del ACI como por la Norma ASTM C 125, como "un material que, no siendo agua, agregado, cemento hidráulico, o fibra de refuerzo, es empleado como un ingrediente del mortero o concreto, y es añadido a la tanda inmediatamente antes o durante su mezclado".(TORRES, 2004)

Nuestra Norma Técnica Peruana NTP 339.086 define los aditivos como sustancias que se añaden a los componentes básicos del concreto con el fin de alterar alguna de sus propiedades. Estos aditivos se incorporan típicamente durante el proceso de mezclado del concreto con el objetivo de:

- Modificar una o varias propiedades según la NTP, para adaptarse mejor a las necesidades del proyecto.
- Facilitar la manipulación y colocación del concreto al mejorar su trabajabilidad.
- Optimizar el rendimiento durante la preparación, transporte y colocación del concreto.

 Lograr una mayor eficiencia y resultados superiores mediante ajustes en la composición o proporciones de la mezcla.

La normativa establece para cada tipo de aditivo los requisitos necesarios para evaluar las alteraciones que este pueda generar en alguna de las siguientes propiedades del concreto:

- a. Cantidad de agua requerida.
- b. Tiempo de fraguado.
- c. Resistencia a la compresión.
- d. Resistencia a la flexión.
- e. Deformación por contracción.
- f. Durabilidad (inalterabilidad).

Estas propiedades se evalúan mediante la comparación de los resultados obtenidos con un concreto de composición y características similares pero sin aditivos, conocido como concreto de control o concreto patrón.(TORRES, 2004)

#### 2.2.3.2 Propiedades del Concreto

El concreto se clasifica como una roca artificial que presenta dos etapas claramente diferenciadas: su estado fresco y endurecido. La fase fresca, aunque temporal, juega un papel fundamental en el desarrollo de todas las propiedades presentes en el estado endurecido, con un énfasis particular en la resistencia y la durabilidad. Esencialmente, el proceso de fraguado y las condiciones de la mezcla en su estado fresco sientan las bases para las características finales y la calidad del concreto endurecido, incluyendo su capacidad de soportar cargas y su longevidad en condiciones de servicio.(MATALLANA, 2019)

Las combinaciones de concreto deben cumplir con ciertos requisitos esenciales:

- La mezcla fresca debe poseer la plasticidad, textura y cohesión adecuadas para garantizar su colocación apropiada en los moldes. Es crucial que esta mezcla esté exenta de segregación y presente una exudación mínima para asegurar una colocación uniforme.
- En su estado endurecido, la mezcla de concreto debe mostrar propiedades específicas de acuerdo con el uso previsto para la estructura en cuestión. Estas propiedades incluyen resistencia mecánica, durabilidad y otras características particulares relevantes para su función y entorno.
- Además, se debe considerar que el costo por unidad cúbica de concreto endurecido sea el mínimo
  posible sin comprometer la calidad deseada. En otras palabras, se busca lograr un equilibrio óptimo
  entre la economía y la calidad en la composición y preparación del concreto.(TORRES, 2004)

## 2.2.3.2.1 Propiedades del Concreto Fresco

El concreto, en su estado inicial, exhibe una textura plástica que gradualmente se transforma a medida que comienza el proceso de endurecimiento, adquiriendo progresivamente las características de un material sólido. La transición entre estos dos estados se denomina fraguado y es un proceso crucial en la construcción con concreto.

A lo largo del tiempo, ha existido un constante interés en investigar y entender las propiedades del concreto. La tendencia actual es la definición de requisitos específicos para el concreto que van más allá de simplemente garantizar una cierta resistencia. Estos requisitos buscan asegurar la durabilidad frente a exposiciones específicas y también abordan otras características particulares, como la densidad (ya sea ligero, normal o alta), la permeabilidad al agua, la resistencia a la penetración de cloruros, entre otros. Por lo tanto, comprender a fondo estas propiedades es fundamental en la tecnología del concreto, ya que influyen de manera significativa en el diseño de la mezcla y en el desempeño estructural en su conjunto.(MATALLANA, 2019)

**Figura 24** *Principales propiedades del concreto fresco* 



## Trabajabilidad

La trabajabilidad del concreto se define como su capacidad para ser fácilmente mezclado, manipulado y colocado utilizando los medios de compactación disponibles. Este aspecto crucial está influenciado por varios factores, que incluyen:

- Las dimensiones de la estructura.
- La presencia de refuerzos en la sección.
- Los métodos empleados para la colocación.

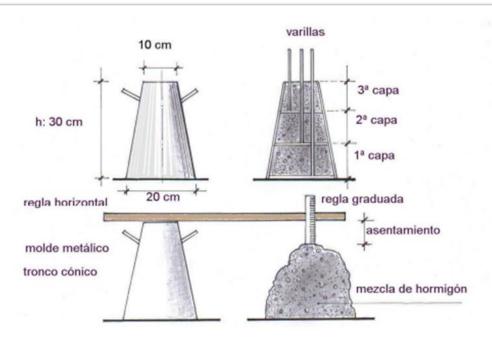
La trabajabilidad aumenta cuando:

- Se añade más agua (aunque esto puede afectar la resistencia).
- Hay una mayor proporción de finos (aunque esto también puede afectar la resistencia).
- Los agregados tienen una forma redondeada.
- Se incrementa la cantidad de cemento.
- Se utilizan fluidificantes o plastificantes.

En esencia, la trabajabilidad se refiere a la habilidad del concreto fresco para ser mezclado, transportado, colocado, compactado y acabado sin segregación alguna. Diversos factores influyen en la trabajabilidad del concreto:

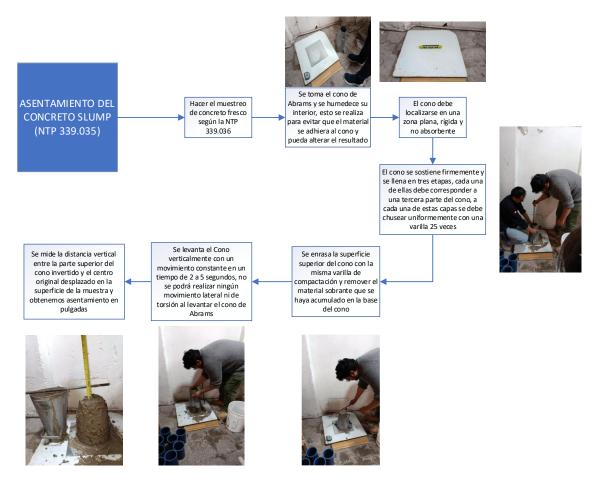
- El contenido de agua en la mezcla: una mayor cantidad de agua aumenta la trabajabilidad, pero disminuye la resistencia a la compresión debido a una mayor relación agua/cemento.
- La cantidad de cemento: la trabajabilidad aumenta con la cantidad y finura del cemento en la mezcla.
- Los aditivos: la adición de aditivos plastificantes mejora la trabajabilidad del concreto.
- La forma y tamaño de los encofrados y el método de compactación.
- En estructuras con secciones reducidas y una alta concentración de refuerzo, se requiere una alta trabajabilidad (mezclas plásticas). Para evaluar la trabajabilidad, se realiza una prueba de consistencia del concreto, ya que no existe un método estándar para cuantificar esta propiedad.(ABANTO, 2009)

#### Consistencia del Concreto


Está definido por el grado de humedad de la mezcla, se verifica el agua usada en la mezcla del concreto.

Prueba de consistencia del concreto

Método de ensayo de revenimiento o Slump Test, NTP 339.035. Es utilizado para determinar el comportamiento del concreto fresco. Este ensayo, desarrollada por Duft Abrams, fue adoptada en 1921 por el ASTM y revisada finalmente en 1978.


Realizado los procedimientos, se mide el asentamiento del concreto fresco, se determina la diferencia de altura entre el molde y la altura superior del espécimen. (ABANTO, 2009)

**Figura 25** *Procedimiento para medir el asentamiento* 



Fuente: (Abanto 2009)

Figura 26
Procedimiento para medir el asentamiento del concreto (slump)

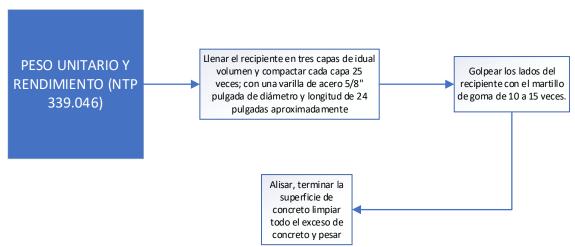


**Tabla 10** *Clases de mezclas según su asentamiento* 

| CONSISTENCIA | SLUMP   | TRABAJABILIDAD  | METODO DE<br>COMPACTACIÓN |
|--------------|---------|-----------------|---------------------------|
| Seca         | 0" a 2" | Poco trabajable | Vibración normal          |
| Plástica     | 3" a 4" | Trabajable      | Vibración ligera chuseado |
| Fluida       | > 5"    | Muy trabajable  | Chuseado                  |

Fuente: (Abanto 2009)

#### Peso Unitario


La prueba fue ejecutada siguiendo las pautas de la Norma Técnica Peruana (NTP) 339.046, revisada en 2013. De acuerdo con esta normativa específica, el propósito de esta prueba es determinar el volumen del concreto producido, con el objetivo de verificar la correcta proporción y rendimiento de los materiales. Se trata de una herramienta fundamental para evaluar el rendimiento de la mezcla, el contenido de cemento y la presencia de aire. El peso por unidad de volumen del concreto fresco proporciona una evaluación inmediata sobre la calidad de la distribución de tamaños de partículas y la compactación del concreto, representando un medio esencial para supervisar la eficacia de los componentes del concreto.(RODRIGUEZ, 2017).

**Figura 27** *Ensayo de peso unitario de concreto fresco* 



Fuente: Elaboración propia

**Figura 28** *Procedimiento para determinar el peso unitario y rendimiento del concreto* 



El peso unitario del concreto fresco se encontró dividiendo la masa neta del concreto sobre el volumen del molde, a continuación, la fórmula usada:

$$Pu = \frac{Mc - Mm}{Vm} \tag{13}$$

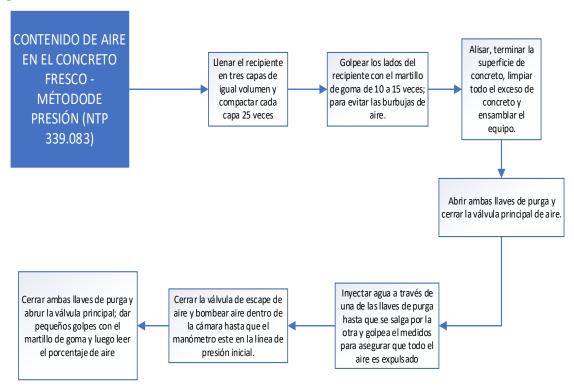
Dónde:

Pu = Peso unitario del concreto fresco (Kg/m3)

Mc = Masa del molde lleno de concreto (Kg)

Mm = Masa del molde vacío (Kg)

Vm = Volumen del molde (m3)


#### Contenido de Aire

Existe en todos los tipos de concreto y se encuentra en los poros no saturables de los agregados. Esto crea burbujas entre las partes del concreto, ya sea debido al aire atrapado en la mezcla o por la inclusión de aire.(ABANTO, 2009)

**Figura 29** *Ensayo de aire atrapado* 

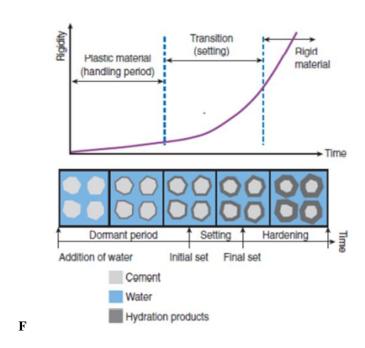


**Figura 30**Procedimiento para determinar el contenido de aire en el concreto fresco-método de presión

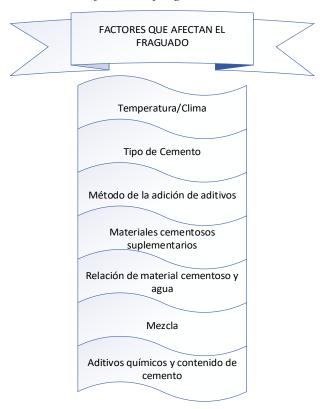


#### Tiempo de Fraguado

Es el cambio del estado plástico del concreto al endurecido debido a la regulación de los tiempos de mezclado, transporte, colocación y compactación.(PASQUEL, 1998)

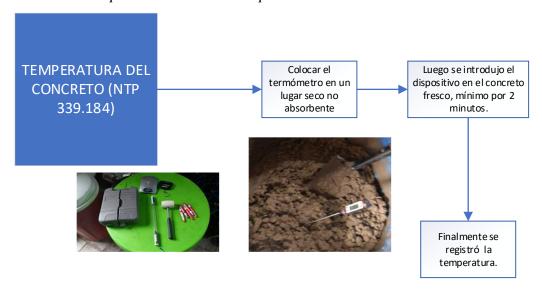

## Fraguado inicial

Situación temporal de duración variable que da inicio al endurecimiento y al proceso químico de desarrollo de la pasta de cemento, que puede sufrir deformaciones si se le aplica una carga (mezclado, vibrado, etc.). Proceso que indica la vida útil y el estado del plástico durante el proceso constructivo.


# Fraguado final

Situación final que indica la consolidación y el endurecimiento resistente de la pasta de cemento, para lo cual se necesita una gran cantidad de energía de deformación.

**Figura 31** *Proceso de fraguado del concreto* 




**Figura 32**Factores de afectan el fraguado



## - Temperatura del concreto (NTP 339.184)

**Figura 33** *Procedimiento para determinar la temperatura del concreto.* 



Fuente: Elaboración propia

## 2.2.3.2.2 Propiedades del Concreto Endurecidos

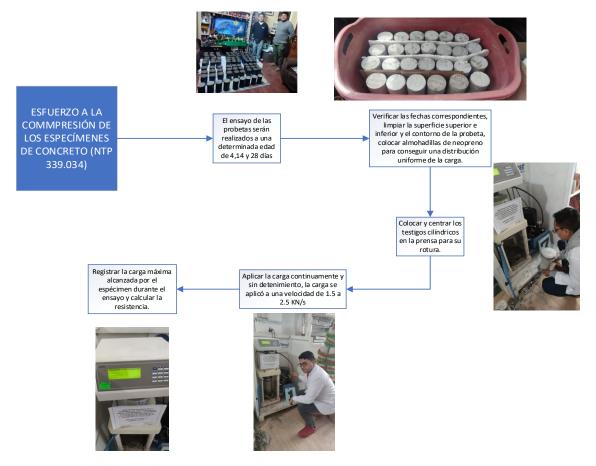
#### Resistencia a la Compresión

La resistencia del concreto es su capacidad para soportar esfuerzos y cargas, mostrando una mayor capacidad de resistencia a la compresión en comparación con la tracción.

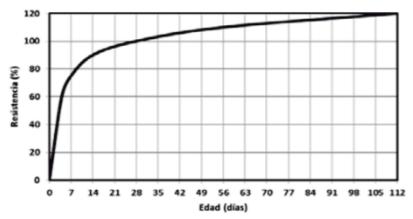
Diversos factores afectan esta resistencia, principalmente la proporción de agua y cemento en la masa del concreto. Otros elementos como la temperatura, el tiempo, el tipo y la calidad de los agregados y el tipo de cemento también influyen en esta propiedad. El proceso de curado es esencial para lograr una buena resistencia, ya que impacta en la hidratación adecuada del concreto.

Por lo general, los concretos convencionales tienen resistencias a la compresión que varían entre 100 kg/cm² y 400 kg/cm², pero se han logrado resistencias superiores a 700 kg/cm² sin la adición de aditivos.

Los polímeros, definidos como aglutinantes sintéticos, se integran a la mezcla del concreto para obtener resistencias aún mayores, alcanzando alrededor de 1,500 kg/cm². Se prevé que en el futuro se puedan lograr resistencias aún mayores(PASQUEL, 1998).


Para calcular la resistencia a la compresión de los testigos cilíndricos, se divide la carga máxima alcanzada en el ensayo por el área de la sección transversal del testigo (NTP334.009 2005b).

La resistencia a la compresión de los testigos cilíndricos se promedia a partir de tres o más ensayos realizados en dimensiones de 150 mm de diámetro y 300 mm de altura, realizados a los 28 días.


Se considera una resistencia a la compresión favorable cuando:

- El promedio de tres ensayos consecutivos a los 28 días es mayor o igual a f'c.
- Ninguna prueba individual tiene una resistencia menor a f'c en más de 35 kg/cm² cuando f'c es igual o menor a 350 kg/cm².
- Ninguna prueba individual tiene una resistencia menor a 0.10f'c cuando f'c es mayor a 350 kg/cm² (E-060, 2009).

**Figura 34**Procedimiento para determinar el esfuerzo a la compresión de los especímenes de concreto



**Figura 35**Desarrollo aproximado de la resistencia del concreto con la edad



Fuente: (Matallana Rodríguez 2019)

**Tabla 11**Desarrollo aproximado de la resistencia a la compresión del concreto con la edad asumiendo 100% a 28 días

| EDAD (días) | % RESISTENCIA RESPECTO A LA DE 28 DÍAS |                                    |
|-------------|----------------------------------------|------------------------------------|
| 1           | 10                                     |                                    |
| 3           | 40                                     |                                    |
| 7           | 70                                     | Fuente: (Matallana Rodríguez 2019) |
| 14          | 90                                     | ruente. (Matanana Rounguez 2019)   |
| 28          | 100                                    |                                    |
| 56          | 110                                    |                                    |
| 90          | 120                                    |                                    |
| 180         | 125                                    |                                    |

# CAPÍTULO III: METODOLOGÍA

# 3.1 Método, tipo o alcance de la investigación:

### a) Método general

#### Método: Científico

El método clasificado es científico experimental, ya que nuestra investigación implica la realización de una serie de pruebas para muestras y concreto fresco y endurecido y todo ello en el laboratorio; así, a partir de los resultados que obtengamos en los ensayos, se buscará soluciones o conclusiones que contribuyan a tratar el problema de investigación planteado.

#### Tipo (Según su aplicación): Aplicada

Esta investigación se considera como aplicada, esto ya que se debe transferencia conocimientos del tipo teóricos a la práctica, en un contexto de aplicación en campo, con el fin de mejorar el bienestar humano y/o contribuir al beneficio de la sociedad en su conjunto.

### Nivel (Según su fin): Explicativo - Correlacional

Esta investigación se caracterizará por ser de nivel explicativo correlacional, puesto que se centrará en la identificación de las causas que generan efectos específicos; también describir la razón detrás de los efectos observados en el proceso de la investigativo, y se establecerá una relación entre las variables para luego obtener así resultados estadísticos y determinar la correlación entre estas.

Según Hernández Sampieri en su obra "Metodología de Investigación", el nivel explicativo busca comprender las causas identificadas por medio del análisis experimental, interpretando y explicando los resultados y todos ellos en función de las variables estudiadas.(HERNANDEZ, 2014)

Con respecto al alcance correlacional, el autor líneas arriba también indica que se enfoca en analizar la relación o grado de asociación entre dos o más variables dentro de una misma muestra, para mostrar así el vínculo existente entre ellas con respecto a los resultados obtenidos.

## 3.2 Materiales y métodos:

## b) Método especifico

#### **Enfoque cuantitativo**

El enfoque cuantitativo persigue un proceso secuencial y de comprobación. Este inicia con la identificación de una problemática, secundado por la definición de los objetivos y variables. Seguidamente, aplicamos una metodología basada en teorías que respalden las conclusiones que se obtuvieron a través de la medición de variables; así, las conclusiones son comparadas con las hipótesis planteadas en un inicio y sustentadas estadísticamente con el análisis de los resultados que se obtuvieron.

# **Cuasi experimental**

Se clasifica como un diseño cuasiexperimental debido a que en el estudio se manejarán variables que no son asignadas aleatoriamente; en su lugar, se constituirán grupos integrales según las necesidades de la investigación, los cuales funcionarán como grupos experimentales.

# Población y muestra

#### Población

Nuestra población está comprendida por 150 probetas de concreto.

## Muestra

La presente investigación la muestra corresponde a 150 unidades de testigos cilíndricos de 4" de diámetro.

**Tabla 12** *Muestras de concreto patrón* 

| Muestras de Concreto Patrón |                                                                    |  |  |    |
|-----------------------------|--------------------------------------------------------------------|--|--|----|
| Edad de testigo             | Muestra de Concreto Patrón (Diseño f'c= 210 kg/cm²)<br>NTP 339.183 |  |  |    |
| 7                           |                                                                    |  |  | 5  |
| 14                          |                                                                    |  |  | 5  |
| 28                          |                                                                    |  |  | 5  |
|                             |                                                                    |  |  | 15 |

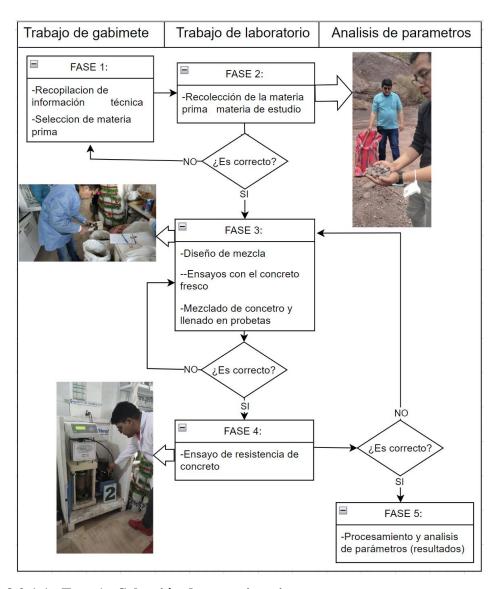
**Tabla 13** *Muestras incorporando ceniza de cascarilla de café* 

| Muestras con la adición de Ceniza de Cascarilla de Café |                                                                   |    |    |       |
|---------------------------------------------------------|-------------------------------------------------------------------|----|----|-------|
| Edad de testigo                                         | Muestra de Concreto + CCC (Diseño f'c= 210 kg/cm²)<br>NTP 339.183 |    |    |       |
|                                                         | 1%                                                                | 3% | 5% | Total |
| 7                                                       | 5                                                                 | 5  | 5  | 15    |
| 14                                                      | 5                                                                 | 5  | 5  | 15    |
| 28                                                      | 5                                                                 | 5  | 5  | 15    |
|                                                         |                                                                   |    |    | 45    |

**Tabla 14** *Muestras incorporando y cascara de huevo* 

| Muestras con la adición de Cascara de Huevo |                                                                  |    |    |       |
|---------------------------------------------|------------------------------------------------------------------|----|----|-------|
| Edad de testigo                             | Muestra de Concreto + CH (Diseño f'c= 210 kg/cm²)<br>NTP 339.183 |    |    |       |
|                                             | 1%                                                               | 3% | 5% | Total |
| 7                                           | 5                                                                | 5  | 5  | 15    |
| 14                                          | 5                                                                | 5  | 5  | 15    |
| 28                                          | 5                                                                | 5  | 5  | 15    |
|                                             |                                                                  |    |    | 45    |

**Tabla 15** *Muestras incorporando ceniza de cascarilla de café y cascara de huevo* 


| Muestras con la adición de Ceniza de Cascarilla de Café + Cascara de Huevo |                                                                      |    |    |       |
|----------------------------------------------------------------------------|----------------------------------------------------------------------|----|----|-------|
| Edad de testigo                                                            | Muestra de Concreto + CCC+CH (Diseño f'c= 210 kg/cm²)<br>NTP 339.183 |    |    |       |
|                                                                            | 1%                                                                   | 3% | 5% | Total |
| 7                                                                          | 5                                                                    | 5  | 5  | 15    |
| 14                                                                         | 5                                                                    | 5  | 5  | 15    |
| 28                                                                         | 5                                                                    | 5  | 5  | 15    |
|                                                                            |                                                                      |    |    | 45    |

**Grupo de control:** Para este grupo, se considera un plan de mezcla con una resistencia f´c = 210 kg/cm² sin aditivos alguno; así mismo, al ser este nuestro grupo de control se aplica para la prueba con tiempo de fraguado a los 7, 14 y 28 días con 15 probetas de 4" x 8".

**Grupo experimental:** Para este grupo, se tomaron 09 planes de mezcla con una resistencia f'c = 210 kg/cm<sup>2</sup>; donde se incorpora de los aditivos ceniza de cascarilla de café, cascara de huevo y la combinación de ambos; así mismo, al ser este nuestros grupos experimentales se aplica para la prueba con tiempo de fraguado a los 7, 14 y 28 días con 135 probetas de 4" x 8".

# 3.2.1. Procedimiento

Esta investigación se efectuará bajo las siguientes fases:



3.2.1.1. Fase 1 - Selección de materia prima

# A) Cemento

Para la investigación se utilizó el Cemento Portland Tipo I, debido a la gran demanda en la ciudad de Cusco y por sus propiedades en construcciones de uso general sin restricción.

**Figura 36** *Bolsa de Cemento Portland tipo I* 



Fuente: Cementos Yura

# B) Agregados

# Agregado fino

Para la investigación se utilizó agregado de la cantera denominada Cunyac, esta cantera está en la ruta Cusco — Abancay, en estrecha proximidad al puente Cunyac que cruza el río Apurímac, específicamente de la cantera ubicada en la Hacienda Monterrico a una altitud de 1900 m.s.n.m.

**Figura 37** *Ubicación de la cantera Cunyac* 



Fuente: https://www.bibliocad.com/es/biblioteca/plano-de-cantera-peru\_53189/

**Figura 38** *Ubicación satelital de la cantera Cunyac* 



Fuente: Google Earth

La Cantera Cunyac, se está a 3 km después del puente Cunyac y a 2 horas aproximadamente de la ciudad de Cusco.

**Figura 39** *Trayecto de Cusco a la cantera de Cunyac* 



Fuente: Google Earth

# Agregado grueso

Para la investigación se utilizó Piedra Chancada procedente del Km. 09 de la Ruta Cusco – San Salvador al Sur Este de la ciudad del Cusco, distrito San Salvador, provincia Calca, departamento Cusco, a una altitud entre 2934 – 3020 m.s.n.m.

**Figura 40** *Ubicación de la Cantera Vicho (con referencia al distrito de Huacarpay)* 



Fuente: Google Earth

Figura 41 Cantera Vicho



Figura 42
Cantera Vicho



# C) Agua

Para la investigación se utilizó el agua de la misma ciudad de Cusco, el agua potable de la captación es de la laguna de Piuray y está ubicada en el distrito Chinchero a 3754 m.s.n.m.

**Figura 43** *Ubicación de lalaguna de Piuray* 



Fuente: Google Earth

# D) Aditivos

Para la presente investigación se utilizó 2 aditivos orgánicos, los cuales son: Ceniza de la cascarilla de café y cáscara de Huevo

# Ceniza de la cascarilla de café

Incineración de la cascarilla de café, en un horno a 1000°C

**Figura 44** *Quemado de cascarilla de café* 



Fuente: Elaboración Propia

# Cáscara de Huevo

Triturado de la cascara de huevo en un molino de laboratorio (Marca: FOSS KN285 KNIFETEC), para obtener la casca de huevo en polvo.

Figura 45 Molienda de cascara de huevo



**Figura 46** *Análisis de composición química de la ceniza de cascarilla de café* 

| ANÁLISIS QUÍMICO DE LA CENIZA DE<br>CASCARILLA DE CAFÉ |       |  |  |
|--------------------------------------------------------|-------|--|--|
| SiO <sub>2</sub> (%)                                   | 27.20 |  |  |
| CaO (%)                                                | 39.20 |  |  |
| MgO (%)                                                | 15.80 |  |  |
| Fe <sub>2</sub> O <sub>3</sub> (%)                     | 9.10  |  |  |
| Al <sub>2</sub> O <sub>3</sub> (%)                     | 2.40  |  |  |

Fuente: Departamento académico de química - UNSAAC

**Figura 47** *Análisis de composición química de la cascara de huevo* 

| ANÁLISIS QUÍMICO DE LA CASCARA<br>DE HUEVO |       |  |  |
|--------------------------------------------|-------|--|--|
| SiO <sub>2</sub> (%)                       | 0.01  |  |  |
| CaCO <sub>3</sub> (%)                      | 93.60 |  |  |
| MgCO <sub>3</sub> (%)                      | 0.96  |  |  |
| Fe <sub>2</sub> O <sub>3</sub> (%)         | 0.12  |  |  |
| Al <sub>2</sub> O <sub>3</sub> (%)         | 0.00  |  |  |

Fuente: Departamento académico de química - UNSAAC

# 3.2.1.2. Fase 2 – Recolección de la materia prima y Trabajo de laboratorio

#### 3.2.1.2.1. Cemento

Tomando como referencia la NTP 334.009, se usó el cemento portland Andino Tipo I; ya que este tipo de cemento es bastante comercial en la zona de Cusco proveniente de la planta de YURA desde el departamento de Arequipa, también se cuenta con las características físicas para el diseño de mezcla pues estos datos son facilitados por el proveedor.

## **3.2.1.2.2.** Agregados

En este apartado se determinará las propiedades tanto del agregado fino (Arena) y grueso (Piedra Chancada), estas propiedades son tanto físicas como químicas específicamente tales como:

- Peso específico
- Análisis granulométrico
- peso unitario suelto y compactado
- contenido de humedad y absorción

Tomando como referencia la NTP Y la ASTM se realizó el diseño de mezcla ya que en tales normas se indica el adecuado proceso para la obtención de los resultados.

## A. Extracción y preparación de muestras

Según la NTP 400.010, nos muestra y detalla la forma en la cual se debe realizar el muestreo, así como las cantidades, ya que esto dependerá de la cantera, las condiciones del material etc. todo esto a fin de determinar si se procede o no con la extracción del material.

## B. Reducción de muestras de agregados a tamaño de ensayo

Según la NTP 400.043 donde se indica el procedimiento para esta parte de muestreo hasta tener una representativa para proceder con los ensayos de laboratorio.

Figura 48
Muestreo del agregado fino



Fuente: Elaboración propia

**Figura 49** *Muestreo del agregado fino* 



Fuente: Elaboración propia

# C. Peso específico y absorción

El peso específico del agregado, que define su densidad promedio y se emplea en el cálculo del volumen en la mezcla, es evaluado en términos de volumen absoluto.

La absorción, por otro lado, reviste una significancia crucial al determinar el cambio de masa del agregado ante la absorción de agua a través de sus poros. Esta característica no solo es esencial para el agregado en sí, sino también para la composición general del concreto.

# Agregado fino

Para llevar a cabo este ensayo, se tomará en cuenta la NTP 400.022, donde nos da los valores del peso específico y la absorción del agregado fino que será utilizado en el presente trabajo de investigación.

# Agregado grueso

Para realizar este ensayo, se ha adoptado como punto de referencia la norma NTP 400.021, la cual nos permitirá determinar el peso específico del agregado grueso y su absorción, elementos fundamentales para el trabajo con el agregado en cuestión.

**Tabla 16** *Peso mínimo de la muestra de ensayo* 

| Tamaño máximo<br>nominal mm(pulg) | Peso mínimo de la<br>muestra de ensayo Kg<br>(lb) |
|-----------------------------------|---------------------------------------------------|
| 12,5 (1/2) o menos                | 2 (4,4)                                           |
| 19,0 (3/4)                        | 3 (6,6)                                           |
| 25,0 (1)                          | 4 (8,8)                                           |
| 37,5 (1 1/2)                      | 5 (11)                                            |
| 50 (2)                            | 8 (18)                                            |
| 63 (2 1/2)                        | 12 (26)                                           |
| 75 (3)                            | 18 (40)                                           |
| 90 (3 1/2)                        | 25 (55)                                           |
| 100 (4)                           | 40 (88)                                           |
| 112 (4 1/2)                       | 50 (110)                                          |
| 125 (5)                           | 75 (165)                                          |
| 150 (6)                           | 125 (276)                                         |

**Fuente:** NTP 400.021

Figura 50

Muestreo para determinar absorción de agregado



# D. Peso unitario (Puc-Pus)

El ensayo de peso unitario se llevó a cabo siguiendo las directrices de la norma NTP 400.017, la cual detalla el procedimiento para determinar la densidad de masa del agregado fino y grueso, así como la cantidad de vacíos presentes. Estos valores pueden obtenerse tanto para el peso unitario seco como compactado.

Figura 51 Muestreo del agregado fino



Fuente: Elaboración propia

**Figura 52** *Muestreo del agregado fino* 



**Figura 53** *Muestreo del agregado fino* 



Figura 54 Muestreo del agregado fino



Fuente: Elaboración propia

# E. Contenido de humedad

El ensayo de contenido de humedad para el presente proyecto de investigación se realizó en base a la NTP 339.185, este ensayo nos muestra el porcentaje de humedad superficial y contenida en los poros de los agregados el cual nos ayuda a realizar correcciones para nuestras tandas de agregado para el diseño de mezclas.

**Figura 55** *Muestreo del agregado fino* 



**Figura 56** *Muestreo del agregado fino* 



Fuente: Elaboración propia

# F. Análisis granulométrico

El análisis granulométrico de los agregados es esencial para nuestra mezcla de concreto, ya que este ensayo revela la distribución de tamaños de los materiales propuestos como agregados a través de un tamizado controlado. Este proceso se lleva a cabo siguiendo los parámetros y procedimientos establecidos en la norma NTP 400.012, la cual ha sido la guía de referencia para los ensayos realizados en el presente proyecto de investigación

**Figura 57** *Proceso de granulometría con tamices* 



# G. Pasante de finos por malla N°200 (Método por lavado)

El ensayo de pasante de finos por la malla N°200 por el método o de Lavado es de importancia para nuestro proyecto de investigación puesto que nos da a conocer si los agregados que estamos utilizando no tiene muchas partículas finas y arcillas que perjudiquen nuestro diseño de mezclas y por ende nuestro concreto, es así que teniendo en cuenta esas consideraciones se realizó este ensayo en base a la NTP 400.018.

Figura 58
Cantidad mínima de la muestra

| Tamaño máximo nominal del agregado | Cantidad mínima, g |
|------------------------------------|--------------------|
| 4,75 mm (No. 4) o más pequeño      | 300                |
| 9,5 mm (3/8 pulg)                  | 1 000              |
| 19 mm (3/4 pulg)                   | 2 500              |
| 37,5 mm (1 ½ pulg) o más grande    | 5 000              |

**Fuente:** NTP 400.018

## 3.2.1.2.3. Agua

Para la investigación se utilizó el agua de la misma ciudad de Cusco, el agua potable de la captación es de la laguna de Piuray y está ubicada en el distrito Chinchero a 3754 m.s.n.m. esta agua es potable apta para el consumo humano, así como para la elaboración de concreto ya que cumple con los requisitos de calidad según la NTP 339.088.

#### 3.2.1.2.4. Aditivos

Los aditivos empleados son orgánicos, y para esta investigación se tomará en cuenta la norma NTP 334.088; así mismo, en el apartado 3.6.1 punto "D" se muestra el análisis químico que se le hizo en el laboratorio de la escuela profesional de Ingeniería Química de la Universidad Nacional San Antonio Abad del Cusco.

#### 3.2.1.3. Fase 3 – Diseño de mezcla

Para el diseño de mezclas se utilizó el método ACI 211, se realizaron 10 diseños de las cuales una de ellas se utilizó como concreto patrón, y 9 con los aditivos usando los aditivos ceniza de cascarilla de café, cascara de huevo y la combinación de ambos en los porcentajes 1%, 3%, 5%.

Las mezclas vienen de la siguiente forma:

- Mezcla patrón sin aditivo
- Mezcla incorporando 1% de ceniza de cascarilla de café
- Mezcla incorporando 3% de ceniza de cascarilla de café
- Mezcla incorporando 5% de ceniza de cascarilla de café
- Mezcla incorporando 1% de cascara de huevo
- Mezcla incorporando 3% de cascara de huevo
- Mezcla incorporando 5% de cascara de huevo
- Mezcla incorporando 1% de ceniza de cascarilla de café y cascara de huevo
- Mezcla incorporando 3% de ceniza de cascarilla de café y cascara de huevo
- Mezcla incorporando 5% de ceniza de cascarilla de café y cascara de huevo

**Figura 59**Cantidades corregidas por humedad y absorción

| Cantidades Corregidas por Humedad y Absorción |   |                         |  |
|-----------------------------------------------|---|-------------------------|--|
| Agua = 221.00 lts                             |   |                         |  |
| Cemento                                       | = | $387.00 \text{ kg/m}^3$ |  |
| Grueso = $1016.00 \text{ kg/m}^3$             |   |                         |  |
| Fino $= 614.00 \text{ kg/m}^3$                |   |                         |  |

Cabe indicar que utilizamos el método ACI-211 puesto que es un método muy utilizado como punto de partida e iniciar el diseño de mezcla; así mismo, este contempla ábacos y tablas que puedes ser usados de manera práctica, permitiéndote así la reformulación del diseño y alcanzar la excelencia en el diseño en cuestión.

## 3.2.1.4. Fase 4 – Proceso de vaciado del concreto

Esta fase es crucial para el desarrollo de la presente investigación, ya que se debe seleccionar los materiales a emplear con cuidado. Es fundamental considerar la posible inclusión de aditivos, así como elegir el equipo mezclador adecuado según el diseño de la mezcla y la cantidad a producir. También se prestar atención a estos procedimientos, ya que incluso los más pequeños detalles pueden tener un impacto significativo en la uniformidad de la mezcla y en la realización de los ensayos correspondientes.

**Figura 60** *Medición de peso de agregados* 





# 3.2.1.4.1. Capacidad de mezcladora

La mezcla se llevó a cabo en un entorno de laboratorio para simular el proceso de premezclado. Para ello, se empleó un mezclador basculante con una capacidad de 80 litros y una eficiencia del 40%. Las mezclas se realizaron en lotes, siguiendo los protocolos establecidos para los ensayos de concreto fresco.

#### 3.2.1.4.2. Secuencia de mezclado

No hay una normativa específica que indique la secuencia y tiempo de mezclado. Sin embargo, existen investigaciones y parámetros generales que proporcionan orientación al respecto, como la NTP 339.114 y la ASTM C94, donde estas normativas describen el proceso y el mezclado general para el premezclado, recomendando velocidades de entre 70 y 100 rpm. También, la NTP 339.183 indica parámetros básicos para el mezclado y muestreo en laboratorio. Por lo tanto, se tuvo en cuenta estos criterios y por ello seguimos el proceso de mezclado convencional de acuerdo con las normativas establecidas para los ensayos de laboratorio.

**Figura 61** *Mezclado de agregados* 





3.2.1.5. Fase 5 – Ensayo de concreto fresco

# **3.2.1.5.1.** Temperatura

En esta fase se medirá la temperatura de la mezcla de concreto, persiguiendo las pautas indicadas en las normativas NTP 339.184 y ASTM C1064, se utilizó un termómetro digital con una precisión de  $\pm 0.5$ °C. en las imágenes líneas abajo mostramos el proceso llevado a cabo en realización de este ensayo.

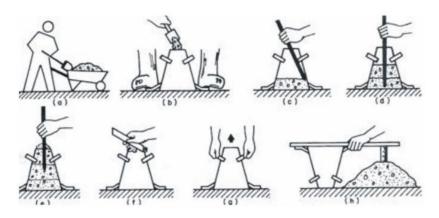
**Figura 62** *Ensayo de medición de temperatura* 





**Figura 63** *Ensayo de medición de temperatura* 






Fuente: Elaboración propia.

# **3.2.1.5.2.** Asentamiento

Este ensayo de asentamiento permite determinar la facilidad con la cual el concreto puede colocarse, compactarse y acabado. Por lo tanto, el ensayo de asentamiento se utiliza para evaluar la consistencia de la mezcla y como tal se llevó a cabo siguiendo las pautas de la normativa NTP 339.035 y la norma ASTM C143.

**Figura 64** *Ensayo de asentamiento* 



### **Fuente:**

https://www.eis.unl.edu.ar/z/adjuntos/1384/Ensayo de consistencia de hormig%C3%B3n y confecci%C3%B3n de probetas.pdf

**Figura 65** *Ensayo de asentamiento* 



Fuente: Elaboración propia

# **3.2.1.5.3.** Peso unitario

El peso unitario ayuda a determinar densidad del concreto, el cual guarda una relación con el rendimiento del concreto. Para llevar a cabo estas pruebas, se siguieron las directrices establecidas en la NTP 339.046 y la norma ASTM C138.

**Figura 66**Capacidad de los recipientes de medición.

| Tamaño máximo<br>nominal del agregado |      | Capacidad del<br>recipiente de medición<br>(A) |     |
|---------------------------------------|------|------------------------------------------------|-----|
| pulg.                                 | mm   | pie <sup>3</sup>                               | L   |
| 1                                     | 25   | 0.2                                            | 6   |
| 1 ½                                   | 37.5 | 0.4                                            | 11  |
| 2                                     | 50   | 0.5                                            | 14  |
| 3                                     | 75   | 1.0                                            | 28  |
| 4 1/2                                 | 112  | 2.5                                            | 70  |
| 6                                     | 150  | 3.5                                            | 100 |

(A)Tamaños indicados de recipientes de medición que se usarán para ensayar concreto que contiene agregados de tamaño máximo nominal igual o mas pequeños que los listados. El volumen real del recipiente será por lo menos 95% del volumen nominal listado.

**Fuente:** NTP 339.046

**Figura 67** *Ensayo de peso unitario* 



Fuente: Elaboración propia

# 3.2.1.5.4. Contenido de aire atrapado – Método de presión

La determinación del contenido de aire en el concreto fresco se realiza persiguiendo lo establecido en la NTP 339.080 y la norma ASTM C23 para el método de presión. En esta parte se hallan los vacíos dejados por el concreto exceptuando los vacíos del agregado.

**Figura 68** *Ensayo de contenido de aire* 



**Figura 69** *Ensayo de contenido de aire* 



Fuente: Elaboración propia

# 3.2.1.5.5. Tiempo de fraguado

La evaluación del tiempo de fraguado consiste en el análisis de los cambios en la resistencia a la penetración versus tiempo, y considerando siempre el contexto e influencias medio ambientales como la temperatura de la mezcla y componentes. En este ensayo se trabajó siguiendo lo indicado en la NTP 339.082 y ASTM C 403. A continuación, se muestra imágenes del proceso del ensayo.

**Figura 70** *Ensayo de tiempo de fraguado* 



## 3.2.1.5.6. Extracción de especímenes

En este ensayo se preparó el material en laboratorio para luego fabricar los especímenes en muestras cilíndricas, seguidamente evaluar su resistencia a la compresión. Este ensayo se realizó en condiciones propias de un laboratorio, siguiendo así lo indicado en la NTP 339.183, que se usó como referencia para esta investigación. A continuación, imágenes del procedimiento del ensayo.

**Figura 71** *Elaboración de testigos* 



#### 3.2.1.5.7. Fase 6 – Ensayo de concreto endurecido

En el proceso de endurecimiento del concreto, este comprende un cambio a nivel molecular, donde este pasa de un estado plástico a sólido, este efecto sucede debido al proceso físicos y químicos de sus componentes. Una de las cualidades más importantes del concreto es su resistencia, la cual será discutida en este contexto.

#### 3.2.1.5.8. Curado de especímenes

El curado de las muestras consiste someter las muestras a condiciones específicas de humedad y temperatura, permitiendo la hidratación del cemento y así lograr propiedades deseables como durabilidad, permeabilidad y resistencia. En este proceso se debe mantener las muestras en un ambiente húmedo o deben estar sumergidas en agua durante periodos de 7, 14 o 28 días. Para este proceso de curado se siguieron los procedimientos e indicaciones establecidas en la normativa NTP 339.183.

**Figura 72** *Curado de probetas* 



Fuente: Elaboración propia

#### 3.2.1.5.9. Ensayo de resistencia a la compresión

Una vez se haya efectuado el correcto curado de los especímenes según lo establecido en la normativa NTP 339.183 y en condiciones de laboratorio, se procedió con el ensayo de resistencia a compresión. Este ensayo consiste en la aplicación de una carga vertical sobre el cilindro de concreto a ensayar. Los criterios de procedimientos se obtuvieron de la NTP 339.034 y ASTM C39.

**Figura 73** *Ensayo de resistencia a la compresión* 



#### 3.2.2. Técnica de análisis de datos

Para el proceso y análisis de los datos y parámetros, en esta investigación se utilizaron equipos de laboratorio, el software Excel, siempre considerando las variables tanto cuantitativas como cualitativas.

# CAPÍTULO IV RESULTADOS Y DISCUSIÓN

#### 4.1 Presentación de resultados

#### 4.1.1 Diseño de mezcla

#### 4.1.1.1 Análisis Granulométrico

La granulometría es un proceso mecánico que determina la distribución por tamaño de las partículas en una muestra de material granular. Este conocimiento es fundamental para diversos fines, como la clasificación del material, el control de calidad en la producción de agregados y la evaluación de las propiedades geotécnicas de un suelo. Dicho procedimiento se realiza según la NTP 339.128.

#### Agregado Fino

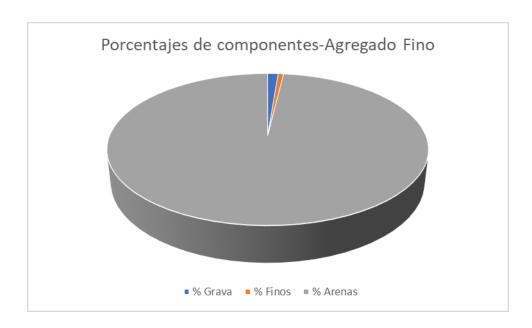
El agregado fino que se utilizó en la presente investigación fue tomado de la cantera de Cunyac, para lo cual se extrajo la muestra en un saco en una cantidad de 25 kg, para luego ser trasladada al laboratorio, donde se hizo el respectivo muestreo, se analizó una muestra de 1118.62 gr, para lo cual según la NTP 339.128 se hizo el respectivo tamizaje, dándonos como resultado lo siguiente:

**Tabla 17** *Ensayo – Análisis granulométrico* 

| TAMIZ#  | Abertura (mm) | Peso ret.<br>(gr) | Peso ret.<br>Correg.<br>(gr) | %RET.  | %RET.<br>ACUM. | %PASANTE |        | ES NTP<br>0.037 |
|---------|---------------|-------------------|------------------------------|--------|----------------|----------|--------|-----------------|
| 3/8''   | 9.53          | 0.00              | 0.00                         | 0.00   | 0.00           | 100.00   | 100.00 | 100.00          |
| #4      | 4.75          | 13.60             | 14.05                        | 1.26   | 1.26           | 98.74    | 95.00  | 100.00          |
| #8      | 2.36          | 64.80             | 65.25                        | 5.83   | 7.09           | 92.91    | 80.00  | 100.00          |
| #16     | 1.18          | 133.40            | 133.85                       | 11.97  | 19.06          | 80.94    | 50.00  | 85.00           |
| #30     | 0.59          | 262.70            | 263.15                       | 23.52  | 42.58          | 57.42    | 25.00  | 60.00           |
| #50     | 0.30          | 397.50            | 397.95                       | 35.58  | 78.15          | 21.85    | 5.00   | 30.00           |
| #100    | 0.15          | 168.10            | 168.55                       | 15.07  | 93.22          | 6.78     | 0.00   | 10.00           |
| #200    | 0.07          | 68.12             | 68.57                        | 6.13   | 99.35          | 0.65     |        |                 |
| CAZUELA | < 0.07        | 7.24              | 7.24                         | 0.65   | 100.00         | 0.00     |        |                 |
|         |               | 1115.46           |                              | 100.00 | 241.36         |          |        |                 |

**Tabla 18** *Análisis de ensayos* 

| error        | 3.16 | gr. |
|--------------|------|-----|
|              | 0.28 | %   |
| CORRECCIÓN = | 0.5  |     |

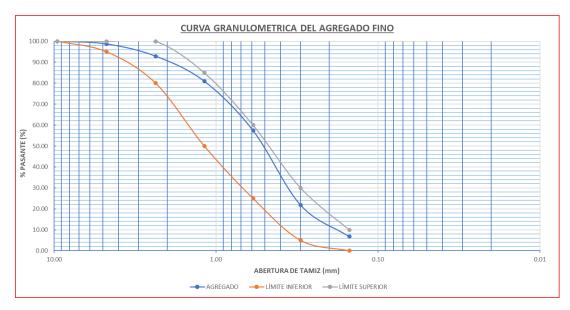

Figura 74

Curva granulométrica del agregado fino



En la curva granulométrica del agregado fino, se puede observar que el porcentaje retenido comienza desde el tamiz # 4, cabe señalar que nuestro módulo de finura para el agregado grueso es de MF= 2.41. Asimismo, se observa en la siguiente figura 75, que nuestro agregado fino tiene un porcentaje muy el elevado el % de arenas.

**Figura 75** *Porcentajes de componentes-Agregado fino* 




**Tabla 19** *Porcentaje de componentes* 

| % Grava | % Finos | % Arenas |
|---------|---------|----------|
| 1.26    | 0.65    | 98.10    |

Asimismo, cabe señalar que el agregado fino está dentro de los límites que indica la NTP 4000.037, lo cual indica que el agregado fino está bien gradado. Así podemos observar en la siguiente figura nº 76

**Figura 76**Curva granulométrica del agregado fino

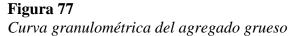


#### Agregado Grueso

El agregado grueso el cual utilizamos para nuestra presente investigación, fue extraído de la cantera de Vicho para lo cual se extrajo la muestra en un saco en una cantidad de 25 kg, para luego ser trasladada al laboratorio, donde se hizo el respectivo muestreo, analizando una muestra de 5323.03 gr, para lo cual según la NTP 339.128 se hizo el respectivo tamizaje, dándonos como resultado lo siguiente:

**Tabla 20**Agregado Grueso

| Muestra = | 5323.03          | gr                |                              |       |                |          |        |                  |
|-----------|------------------|-------------------|------------------------------|-------|----------------|----------|--------|------------------|
| TAMIZ#    | Abertura<br>(mm) | Peso ret.<br>(gr) | Peso ret.<br>Correg.<br>(gr) | %RET. | %RET.<br>ACUM. | %PASANTE |        | ES NTP<br>HUSO 7 |
| 2"        | 50.8             | 0                 | 0                            | 0     | 0              | 100.00   |        |                  |
| 1 1/2"    | 38.1             | 0                 | 0.00                         | 0.00  | 0.00           | 100.00   |        |                  |
| 1"        | 25.4             | 0                 | 0.00                         | 0.00  | 0.00           | 100.00   |        |                  |
| 3/4"      | 19.05            | 0                 | 0.00                         | 0.00  | 0.00           | 100.00   | 100.00 | 100.00           |
| 1/2"      | 12.7             | 359.3             | 360.04                       | 6.76  | 6.76           | 93.24    | 90.00  | 100.00           |
| 3/8"      | 9.53             | 2564.3            | 2565.04                      | 48.19 | 54.95          | 45.05    | 40.00  | 70.00            |
| #4        | 4.75             | 1997.5            | 1998.24                      | 37.54 | 92.49          | 7.51     | 0.00   | 15.00            |
| #8        | 2.36             | 397.4             | 398.14                       | 7.48  | 99.97          | 0.03     | 0.00   | 5.00             |
| #16       | 1.18             | 0.54              | 1.28                         | 0.02  | 99.99          | 0.01     |        |                  |
| CAZUELA   | < 0.07           | 0.3               | 0.30                         | 0.01  | 100.00         | 0.00     |        |                  |


100.00

647.41

**Tabla 21**Agregado grueso

| error           | 3.69 gr. |
|-----------------|----------|
|                 | 0.07 %   |
| CORRECCIÓN<br>= | 0.738    |

5319.34





En la curva granulométrica del agregado fino, se puede observar que el porcentaje retenido comienza desde el tamiz ½", lo cual nos señala que el Tamaño Máximo Nominal de nuestro agregado grueso es de ½ ", cabe señalar que nuestro módulo de finura para el agregado grueso es de MF= 6.47. Asimismo, podemos observar en la siguiente figura 78, en nuestro agregado fino tiene un porcentaje muy el elevado de gravas.

**Figura 78** *Porcentaje de componentes-Agregado Grueso* 



| % Grava | % Finos | % Arena |
|---------|---------|---------|
| 92.49   | 0       | 7.51    |

También podemos indicar que nuestro agregado grueso está dentro de los límites que indica la NTP 4000.037, para lo cual elegimos el huso n° 7, con lo cual nos indica que nuestro agregado grueso está bien gradado. Así podemos observar en la siguiente figura N° 79

**Figura 79**Curva granulométrica del agregado grueso



#### 4.1.1.2 Contenido de Humedad

**% Contenido de humedad** = [ (Peso Muestra Natural-Peso de Muestra Seca) /Peso de Muestra Seca]\*100

## Agregado fino

**Tabla 22** *Agregado fino* 

| Peso o Volumen       | Ensayo 1 | Ensayo 2 | Unidad |
|----------------------|----------|----------|--------|
| Peso del Molde       | 11.29    | 11.61    | gr.    |
| Peso Muestra Natural | 60.97    | 61.33    | gr.    |
| Peso Muestra seca    | 59.60    | 59.98    | gr.    |
| Humedad              | 2.29     | 2.25     | %      |
| Promedio             |          | 2.27%    |        |

Según la NTP 400.019, en la cual indica que el agregado fino debe tener un máximo de 5% de humedad, para nuestro caso la humedad promedio hallada es de 2.27 % inferior a 5%, por consiguiente, estamos cumpliendo lo que indica la norma.

#### Agregado Grueso

**Tabla 23** *Agregado grueso* 

| Peso o Volumen       | Ensayo 1 | Ensayo 2 | Unidad |
|----------------------|----------|----------|--------|
| Peso del Molde       | 11.34    | 11.49    | gr.    |
| Peso Muestra Natural | 86.44    | 83.42    | gr.    |
| Peso Muestra seca    | 85.18    | 82.40    | gr.    |
| Humedad              | 1.48     | 1.24     | %      |
| Promedio             |          | 1.36 %   |        |

Según la NTP 400.022, en la cual indica que el agregado grueso debe tener un máximo de 4% de humedad, para nuestro caso la humedad promedio hallada es de 1.36 % inferior a 4%, por consiguiente, estamos cumpliendo lo que indica la norma.

#### 4.1.1.3 Peso Unitario Suelto

Para calcular el peso unitario suelto y compactado del agregado, nos basamos en la norma NTP 400.17

**Peso Unitario Suelto =** Peso de la Muestra /Volumen del Molde

#### Agregado Fino

**Tabla 24**Agregado fino

| Peso o Volumen                                                  | Ensayo 1 | Ensayo 2 | Ensayo 3       | Unidad             |
|-----------------------------------------------------------------|----------|----------|----------------|--------------------|
| Peso de la Muestra + Molde                                      | 9642     | 9584     | 9613           | gr.                |
| Peso del Molde                                                  | 6100     | 6100     | 6100           | gr.                |
| Peso de la Muestra                                              | 3542     | 3484.161 | 3513           | gr.                |
| Volumen del Molde                                               | 2105     | 2105     | 2105           | cm <sup>3</sup> .  |
| Peso Unitario Suelto                                            | 1.68     | 1.66     | 1.67           | gr/cm <sup>3</sup> |
| <b>Promedio</b> $1.67 \text{ gr/cm}^3 = 1668.95 \text{ kg/m}^3$ |          |          | n <sup>3</sup> |                    |

**Tabla 25** *Agregado Grueso* 

| Peso o<br>Volumen                | Ensayo 1                                        | Ensayo 2 | Ensayo 3 | Unidad             |
|----------------------------------|-------------------------------------------------|----------|----------|--------------------|
| Peso de la<br>Muestra +<br>Molde | 9488                                            | 9432     | 9460     | gr.                |
| Peso del Molde                   | 6100                                            | 6100     | 6100     | gr.                |
| Peso de la<br>Muestra            | 3388.38                                         | 3332     | 3360     | gr.                |
| Volumen del<br>Molde             | 2105                                            | 2105     | 2105     | cm <sup>3</sup> .  |
| Peso Unitario<br>Suelto          | 1.61                                            | 1.58     | 1.60     | gr/cm <sup>3</sup> |
| Promedio                         | $1.60 \text{ gr/cm}^3 = 1596.26 \text{ kg/m}^3$ |          |          |                    |

Según la norma NTP 400.019, para un agregado fino el límite de peso unitario suelto esta entre 1500 kg/m³- 1700 kg/m³, asimismo para el agregado grueso los límites de peso unitario suelto están entre 1400 kg/m³-1600 kg/m³; como podemos observar en nuestros resultados, estamos dentro de los límites permitidos.

# 4.1.1.4 Peso Unitario Compactado

Para calcular el peso unitario compactado del agregado, se tomará en cuenta la norma NTP 400.17.

**Peso Unitario Compactado** = Peso de la Muestra /Volumen del Molde

**Tabla 26** Agregado fino

| Peso o<br>Volumen                | Ensayo 1                                        | Ensayo 2 | Ensayo 3 | Unidad             |  |
|----------------------------------|-------------------------------------------------|----------|----------|--------------------|--|
| Peso de la<br>Muestra +<br>Molde | 9873                                            | 9823.635 | 9922.365 | gr.                |  |
| Peso del Molde                   | 6100                                            | 6100     | 6100     | gr.                |  |
| Peso de la<br>Muestra            | 3773                                            | 3723.635 | 3822.365 | gr.                |  |
| Volumen del<br>Molde             | 2105                                            | 2105     | 2105     | cm <sup>3</sup> .  |  |
| Peso Unitario<br>Suelto          | 1.79                                            | 1.77     | 1.82     | gr/cm <sup>3</sup> |  |
| Promedio                         | $1.79 \text{ gr/cm}^3 = 1792.47 \text{ kg/m}^3$ |          |          |                    |  |

**Tabla 27** *Agregado Grueso* 

| Peso o Volumen                | Ensayo 1                                        | Ensayo 2 | Ensayo 3 | Unidad             |  |  |
|-------------------------------|-------------------------------------------------|----------|----------|--------------------|--|--|
| Peso de la Muestra<br>+ Molde | 9674                                            | 9625.63  | 9722.37  | gr.                |  |  |
| Peso del Molde                | 6100                                            | 6100     | 6100     | gr.                |  |  |
| Peso de la Muestra            | 3574                                            | 3525.63  | 3622.37  | gr.                |  |  |
| Volumen del Molde             | 2105                                            | 2105     | 2105     | cm <sup>3</sup> .  |  |  |
| Peso Unitario<br>Suelto       | 1.70                                            | 1.67     | 1.72     | gr/cm <sup>3</sup> |  |  |
| Promedio                      | $1.70 \text{ gr/cm}^3 = 1697.93 \text{ kg/m}^3$ |          |          |                    |  |  |

Según la norma NTP 400.019 nos indica que para un agregado fino el límite de peso unitario suelto esta entre 1800 kg/m³- 2000 kg/m³, asimismo para el agregado grueso los límites de peso unitario suelto están entre 1600 kg/m³-1800 kg/m³; cómo se puede observar en nuestros resultados, estamos dentro de los límites permitidos.

# 4.1.1.5 Peso Específico y Absorción

La Norma Técnica Peruana (NTP) 400.022 establece el método de ensayo normalizado para determinar el peso específico y la absorción del agregado grueso. La norma NTP 400.021 es similar, pero se aplica al agregado fino.(NTP 400.022 2018)

**Peso específico** (gr/cm<sup>3</sup>) = Peso de muestra seca (gr) / Volumen de la muestra (cm<sup>3</sup>)

**Absorción** (%) = [ (peso saturado – peso seco) / peso seco] \* 100

Agregado Fino

**Tabla 28**Peso específico del Agregado Fino

| Agregado Fino                     | Ensayo 1 | Unidad            |
|-----------------------------------|----------|-------------------|
| Peso de Muestra Seca              | 177.84   | gr.               |
| Peso (fiola +muestra<br>sss+agua) | 715.00   | gr.               |
| Peso (fiola+agua)                 | 602.00   | gr.               |
| Volumen de la muestra             | 71.48    | cm <sup>3</sup>   |
| Peso específico                   | 2.488    | g/cm <sup>3</sup> |

**Tabla 29** *Absorción del Agregado Fino* 

| Agregado Fino                            | Ensayo 1 | Ensayo 2 | Unidad |
|------------------------------------------|----------|----------|--------|
| Peso Muestra seca                        | 177.84   | 182.84   | gr.    |
| Peso Muestra<br>Saturada superf.<br>Seca | 184.48   | 189.68   | gr.    |
| Absorción                                | 3.73     | 3.74     | %      |
| Promedio                                 | 3.74 %   |          |        |

# Agregado Grueso

**Tabla 30** *Peso específico del Agregado Grueso* 

| Agregado Fino                            | Ensayo 1 | Unidad            |
|------------------------------------------|----------|-------------------|
| Peso canastilla sumergida                | 1156.00  | gr.               |
| Peso de Muestra Sat. Sup.<br>Seca        | 1775.60  | gr.               |
| Peso (canastilla +muestra )<br>sumergida | 2262.00  | gr.               |
| Peso muestra seca                        | 1749.80  | gr.               |
| Volumen de la muestra                    | 669.60   | cm <sup>3</sup>   |
| Peso especifico                          | 2.613    | g/cm <sup>3</sup> |

**Tabla 31** *Absorción del Agregado Grueso* 

| Agregado Fino                            | Ensayo 1 | Ensayo 2 | Unidad |
|------------------------------------------|----------|----------|--------|
| Peso Muestra seca                        | 174.98   | 177.73   | gr.    |
| Peso Muestra<br>Saturada superf.<br>Seca | 177.56   | 180.35   | gr.    |
| Absorción                                | 1.47     | 1.48     | %      |
| Promedio                                 | 1.48 %   |          |        |

Según la norma NTP 400.019 para el agregado fino se tiene un rango de Peso específico que varía de 2.40 g/cm³ – 2.90 g/cm³ y para la absorción tenemos un rango de 1% a 5%, los resultados hallados están dentro de dichos rangos, con resultados de 2.488 g/cm³ y 3.74 % respectivamente. Cabe señalar también que en la norma NTP 400.022 para el agregado grueso se tiene un rango de Peso específico que varía de 2.50 g/cm³ – 2.90 g/cm³ y para la absorción se tiene un rango de 0.5% a 3%, los resultados hallados están dentro de dichos rangos, con resultados de 2.613 g/cm³ y 1.48 % respectivamente.

#### 4.1.1.6 Diseño de mezcla patrón

Para la determinación del diseño de mezcla para un concreto de f'c= 210 kg/cm² se tomó como referencia el método del Comité 211 del ACI teniendo los siguientes datos de entrada:

**Tabla 32**Descripción de mezcla de patrón

| DESCRIPCIÓN                                 | VALOR                     |
|---------------------------------------------|---------------------------|
| Resistencia Requerida                       | 210.00 kg/cm <sup>2</sup> |
| Peso específico del cemento                 | 2.85 gr/cm <sup>3</sup>   |
| Consistencia de la mezcla                   | Plástica                  |
| Conoce la desviación estándar               | No                        |
| Aire incorporado                            | No                        |
| Baja permeabilidad y congelación y deshielo | No                        |
| Exposición a sulfatos                       | No                        |

Características del Agregado

**Tabla 33**Agregado fino

| Agregado Fino           |                          |  |  |
|-------------------------|--------------------------|--|--|
| Peso Específico de masa | 2.49 gr/cm <sup>3</sup>  |  |  |
| Absorción               | 3.74%                    |  |  |
| Humedad                 | 2.27%                    |  |  |
| Módulo de fineza        | 2.410                    |  |  |
| Peso Unitario suelto    | $1668.95 \text{ kg/m}^3$ |  |  |
| Peso Compactado         | $1792.47 \text{ kg/m}^3$ |  |  |

**Tabla 34**Agregado grueso

| Agregado Grueso                    |                           |  |
|------------------------------------|---------------------------|--|
| Peso Específico de masa 2.61 gr/cm |                           |  |
| Absorción                          | 1.48%                     |  |
| Humedad                            | 1.36%                     |  |
| Tamaño máximo Nominal              | 1/2                       |  |
| Peso Unitario suelto               | $1596.26 \text{ kg/m}^3$  |  |
| Peso Compactado                    | 1697.93 kg/m <sup>3</sup> |  |
| Módulo de Fineza                   | 6.470                     |  |
| Perfil del Agregado                | anguloso                  |  |

Resistencia promedio (f 'cr) =  $294.00 \text{ kg/cm}^2$ 

**Tabla 35** *Diseño de mezcla patrón* 

| Diseño de mezcla patrón ( f'c = 210.00 kg/cm²) |                          |  |
|------------------------------------------------|--------------------------|--|
| Material                                       | Proporción en peso (kg)  |  |
| Cemento                                        | $387.00 \text{ kg/m}^3$  |  |
| Agregado<br>fino                               | $611.00 \text{ kg/m}^3$  |  |
| Agregado<br>grueso                             | $1014.00 \text{ kg/m}^3$ |  |
| Agua                                           | 226 lt/m <sup>3</sup>    |  |

**Tabla 36** *La proporción en peso seria* 

| CEMENTO | AGREGADO<br>FINO | AGREGADO<br>GRUESO | AGUA |
|---------|------------------|--------------------|------|
| 387     | 611.00           | 1014               | 226  |
| 387     | 387              | 387                | 387  |
| 1       | 1.6              | 2.6                | 0.58 |

La proporción en volumen (1pie<sup>3</sup>) seria:

| CEMENTO            | AGREGADO<br>FINO     | AGREGADO<br>GRUESO   | AGUA     |
|--------------------|----------------------|----------------------|----------|
| 1 pie <sup>3</sup> | 1.4 pie <sup>3</sup> | 2.4 pie <sup>3</sup> | 24.65 lt |

Para 15 probetas tendremos

**Tabla 37** *Diseño de mezcla patrón* 

| Diseño de mezcla patrón ( f'c = 210.00 kg/cm²) |                         |  |
|------------------------------------------------|-------------------------|--|
| Material                                       | Proporción en peso (kg) |  |
| Cemento                                        | 9.60 kg                 |  |
| Agregado<br>fino                               | 15.10 kg                |  |
| Agregado<br>grueso                             | 25.10 kg                |  |
| Agua                                           | 5.6 lt                  |  |

#### Dosificación de diseño de mezcla de concreto con adición de ceniza de cascarilla de café

Para la dosificación del diseño de mezcla de concreto con ceniza de cascarilla de café (CCC) se reemplazará 1%, 3%, 5% de CCC al peso de cemento. Tal como se puede observar en la siguiente tabla N° 38:

**Tabla 38**Diseño de Mezcla patrón con adición de CCC

| Diseño de mezcle<br>(CCC) | a patrón f'c 210 kạ            | g/cm² con adición o                         | de Ceniza de Casca                         | arilla de Café                             |
|---------------------------|--------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|
| Material                  | Mezcla Patrón<br>(15 probetas) | Mezcla Patrón<br>+ 1% CCC<br>( 15 probetas) | Mezcla Patrón<br>+ 3% CCC<br>(15 probetas) | Mezcla Patrón<br>+ 5% CCC<br>(15 probetas) |
| Cemento                   | 9.60 kg                        | 9.504 kg                                    | 9.312 kg                                   | 9.12 kg                                    |
| Agregado fino             | 15.10 kg                       | 15.10 kg                                    | 15.10 kg                                   | 15.10 kg                                   |
| Agregado<br>grueso        | 25.10 kg                       | 25.10 kg                                    | 25.10 kg                                   | 25.10 kg                                   |
| Agua                      | 5.6 lt                         | 5.6 lt                                      | 5.6 lt                                     | 5.6 lt                                     |
| Aditivo (CCC)             | 0 kg                           | 0.096 kg                                    | 0.288 kg                                   | 0.48 kg                                    |

#### Dosificación de diseño de mezcla de concreto con adición de cascara de huevo

Para la dosificación del diseño de mezcla de concreto con cáscara de huevo (CH) se reemplazará 1%, 3%, 5% de CCC al peso de cemento. Tal como se puede observar en la siguiente tabla N° 39:

**Tabla 39**Diseño de Mezcla patrón con adición de CH

Diseño de mezcla patrón f'c 210 kg/cm² con adición de Cáscara de Huevo (CH)

| Material           | Mezcla Patrón<br>(15 probetas) | Mezcla Patrón<br>+ 1% CH<br>( 15 probetas) | Mezcla Patrón<br>+ 3% CH<br>(15 probetas) | Mezcla Patrón<br>+ 5% CH<br>(15 probetas) |
|--------------------|--------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|
| Cemento            | 9.60 kg                        | 9.504 kg                                   | 9.312 kg                                  | 9.12 kg                                   |
| Agregado fino      | 15.10 kg                       | 15.10 kg                                   | 15.10 kg                                  | 15.10 kg                                  |
| Agregado<br>grueso | 25.10 kg                       | 25.10 kg                                   | 25.10 kg                                  | 25.10 kg                                  |
| Agua               | 5.6 lt                         | 5.6 lt                                     | 5.6 lt                                    | 5.6 lt                                    |
| Aditivo (CH)       | 0 kg                           | 0.096 kg                                   | 0.288 kg                                  | 0.48 kg                                   |

# Dosificación de diseño de mezcla de concreto con adición de ceniza de cascarilla de café y cascara de huevo

Para la dosificación del diseño de mezcla de concreto con ceniza de la cascarilla de café + cáscara de huevo (CCC+CH) se reemplazará 1%, 3%, 5% de CCC+CH al peso de cemento. Tal como se puede observar en la siguiente tabla N° 40:

**Tabla 40**Diseño de Mezcla patrón con adición de CCC+CH

Diseño de mezcla patrón f'c 210 kg/cm² con adición de Ceniza de Cascarilla de Café + cáscara de huevo (CCC+CH)

| Material           | Mezcla Patrón<br>(15 probetas) | Mezcla Patrón<br>+ 1% CH<br>( 15 probetas) | Mezcla Patrón<br>+ 3% CH<br>(15 probetas) | Mezcla Patrón<br>+ 5% CH<br>(15 probetas) |
|--------------------|--------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|
| Cemento            | 9.60 kg                        | 9.504 kg                                   | 9.312 kg                                  | 9.12 kg                                   |
| Agregado fino      | 15.10 kg                       | 15.10 kg                                   | 15.10 kg                                  | 15.10 kg                                  |
| Agregado<br>grueso | 25.10 kg                       | 25.10 kg                                   | 25.10 kg                                  | 25.10 kg                                  |
| Agua               | 5.6 lt                         | 5.6 lt                                     | 5.6 lt                                    | 5.6 lt                                    |
| Aditivo (CCC)      | 0 kg                           | 0.048 kg                                   | 0.144 kg                                  | 0.24 kg                                   |
| Aditivo (CH)       | 0 kg                           | 0.048 kg                                   | 0.144 kg                                  | 0.24 kg                                   |

#### 4.1.2 Pruebas de concreto endurecido

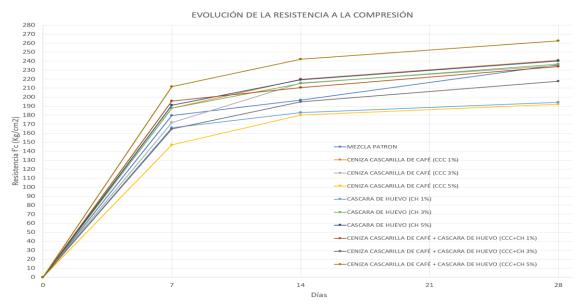
# 4.1.2.1 Resistencia a la Compresión

Para esta investigación se consideró un diseño de mezcla patrón con resistencia de 210 Kg/cm²; así mismo, se trabajó con 150 muestras desde la mezcla patrón, ceniza de cascarilla de café (al 1%, 3% y 5%), cascara de huevo (al 1%, 3% y 5%) y la combinación de la ceniza de cascarilla de café más cascara de huevo ((al 1%, 3% y 5%); todo esto persiguiendo los lineamientos de la NTP 339.034 y 339.183 para los periodos de tiempo de 7, 14 y 28 días.

En la siguiente tabla mostramos los resultados obtenidos de la resistencia para todas las mezclas a los 7, 14 y 28 días.

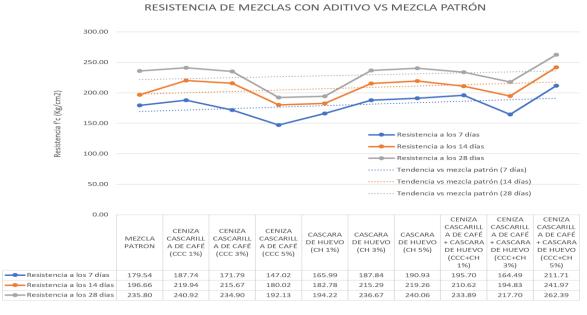
**Tabla 41** *Resistencia a la compresión a los 7, 14 y 28 días para todas las muestras* 

|                                         | ABREVIA  |                                 |                                  |                                  |
|-----------------------------------------|----------|---------------------------------|----------------------------------|----------------------------------|
| DENOMINACIÓN                            | TURA     | f'c A LOS 7<br>DÍAS<br>(Kg/cm²) | f'c A LOS<br>14 DÍAS<br>(Kg/cm²) | f'c A LOS<br>28 DÍAS<br>(Kg/cm²) |
| MEZCLA PATRON (P1)                      | P1       | 192.90                          | 191.37                           | 227.78                           |
| MEZCLA PATRON (P2)                      | P2       | 168.07                          | 216.70                           | 243.06                           |
| MEZCLA PATRON (P3)                      | Р3       | 175.71                          | 177.23                           | 236.82                           |
| MEZCLA PATRON (P4)                      | P4       | 171.35                          | 183.30                           | 240.64                           |
| MEZCLA PATRON (P5)                      | P5       | 189.66                          | 214.72                           | 230.71                           |
| CENIZA CASCARILLA DE CAFÉ<br>(CCC 1%-1) | CCC 1%-1 | 195.19                          | 213.01                           | 231.98                           |
| CENIZA CASCARILLA DE CAFÉ<br>(CCC 1%-2) | CCC 1%-2 | 182.84                          | 228.16                           | 243.57                           |
| CENIZA CASCARILLA DE CAFÉ<br>(CCC 1%-3) | CCC 1%-3 | 182.20                          | 215.94                           | 222.18                           |
| CENIZA CASCARILLA DE CAFÉ<br>(CCC 1%-4) | CCC 1%-4 | 185.75                          | 214.60                           | 254.14                           |
| CENIZA CASCARILLA DE CAFÉ<br>(CCC 1%-5) | CCC 1%-5 | 192.74                          | 227.99                           | 252.74                           |


|                                         | ADDEVIA         | EDAD                            |                                  |                                  |  |  |
|-----------------------------------------|-----------------|---------------------------------|----------------------------------|----------------------------------|--|--|
| DENOMINACIÓN                            | ABREVIA<br>TURA | f'c A LOS 7<br>DÍAS<br>(Kg/cm²) | f'c A LOS<br>14 DÍAS<br>(Kg/cm²) | f'c A LOS<br>28 DÍAS<br>(Kg/cm²) |  |  |
| CENIZA CASCARILLA DE CAFÉ<br>(CCC 3%-1) | CCC 3%-1        | 172.78                          | 214.80                           | 222.05                           |  |  |
| CENIZA CASCARILLA DE CAFÉ<br>(CCC 3%-2) | CCC 3%-2        | 172.27                          | 212.38                           | 237.71                           |  |  |
| CENIZA CASCARILLA DE CAFÉ<br>(CCC 3%-3) | CCC 3%-3        | 170.23                          | 219.51                           | 245.10                           |  |  |
| CENIZA CASCARILLA DE CAFÉ<br>(CCC 3%-4) | CCC 3%-4        | 171.28                          | 209.74                           | 240.96                           |  |  |
| CENIZA CASCARILLA DE CAFÉ<br>(CCC 3%-5) | CCC 3%-5        | 172.38                          | 221.93                           | 228.67                           |  |  |
| CENIZA CASCARILLA DE CAFÉ<br>(CCC 5%-1) | CCC 5%-1        | 155.08                          | 161.06                           | 184.36                           |  |  |
| CENIZA CASCARILLA DE CAFÉ<br>(CCC 5%-2) | CCC 5%-2        | 146.29                          | 168.19                           | 204.35                           |  |  |
| CENIZA CASCARILLA DE CAFÉ<br>(CCC 5%-3) | CCC 5%-3        | 139.80                          | 190.35                           | 185.89                           |  |  |
| CENIZA CASCARILLA DE CAFÉ<br>(CCC 5%-4) | CCC 5%-4        | 150.71                          | 190.85                           | 199.90                           |  |  |
| CENIZA CASCARILLA DE CAFÉ<br>(CCC 5%-5) | CCC 5%-5        | 143.23                          | 189.62                           | 186.15                           |  |  |
| CASCARA DE HUEVO (CH 1%-1)              | CH 1%-1         | 158.90                          | 188.18                           | 195.57                           |  |  |
| CASCARA DE HUEVO (CH 1%-2)              | CH 1%-2         | 170.49                          | 178.76                           | 188.31                           |  |  |
| CASCARA DE HUEVO (CH 1%-3)              | СН 1%-3         | 167.05                          | 152.02                           | 197.35                           |  |  |
| CASCARA DE HUEVO (CH 1%-4)              | CH 1%-4         | 168.95                          | 202.92                           | 199.13                           |  |  |
| CASCARA DE HUEVO (CH 1%-5)              | CH 1%-5         | 164.57                          | 192.00                           | 190.73                           |  |  |
| CASCARA DE HUEVO (CH 3%-1)              | СН 3%-1         | 191.37                          | 207.92                           | 229.95                           |  |  |
| CASCARA DE HUEVO (CH 3%-2)              | СН 3%-2         | 188.18                          | 215.94                           | 240.64                           |  |  |
| CASCARA DE HUEVO (CH 3%-3)              | СН 3%-3         | 183.35                          | 217.85                           | 240.13                           |  |  |

|                                                                  |                 | EDAD                            |                                  |                                  |
|------------------------------------------------------------------|-----------------|---------------------------------|----------------------------------|----------------------------------|
| DENOMINACIÓN                                                     | ABREVIA<br>TURA | f'c A LOS 7<br>DÍAS<br>(Kg/cm²) | f'c A LOS<br>14 DÍAS<br>(Kg/cm²) | f'c A LOS<br>28 DÍAS<br>(Kg/cm²) |
| CASCARA DE HUEVO (CH 3%-4)                                       | СН 3%-4         | 185.66                          | 214.54                           | 241.02                           |
| CASCARA DE HUEVO (CH 3%-5)                                       | СН 3%-5         | 190.62                          | 220.21                           | 231.60                           |
| CASCARA DE HUEVO (CH 5%-1)                                       | СН 5%-1         | 186.40                          | 220.14                           | 239.75                           |
| CASCARA DE HUEVO (CH 5%-2)                                       | СН 5%-2         | 183.98                          | 222.69                           | 230.97                           |
| CASCARA DE HUEVO (CH 5%-3)                                       | СН 5%-3         | 192.77                          | 209.45                           | 233.51                           |
| CASCARA DE HUEVO (CH 5%-4)                                       | СН 5%-4         | 194.41                          | 227.83                           | 254.27                           |
| CASCARA DE HUEVO (CH 5%-5)                                       | CH 5%-5         | 197.11                          | 216.20                           | 241.79                           |
| CENIZA CASCARILLA DE CAFÉ +<br>CASCARA DE HUEVO (CCC+CH<br>1%-1) | CCC+CH<br>1%-1  | 200.28                          | 202.32                           | 240.13                           |
| CENIZA CASCARILLA DE CAFÉ +<br>CASCARA DE HUEVO (CCC+CH<br>1%-2) | CCC+CH<br>1%-2  | 195.44                          | 216.32                           | 244.21                           |
| CENIZA CASCARILLA DE CAFÉ +<br>CASCARA DE HUEVO (CCC+CH<br>1%-3) | CCC+CH<br>1%-3  | 193.02                          | 212.12                           | 215.94                           |
| CENIZA CASCARILLA DE CAFÉ +<br>CASCARA DE HUEVO (CCC+CH<br>1%-4) | CCC+CH<br>1%-4  | 197.66                          | 209.07                           | 240.90                           |
| CENIZA CASCARILLA DE CAFÉ +<br>CASCARA DE HUEVO (CCC+CH<br>1%-5) | CCC+CH<br>1%-5  | 192.12                          | 213.27                           | 228.29                           |
| CENIZA CASCARILLA DE CAFÉ +<br>CASCARA DE HUEVO (CCC+CH<br>3%-1) | CCC+CH<br>3%-1  | 165.14                          | 203.34                           | 212.12                           |
| CENIZA CASCARILLA DE CAFÉ +<br>CASCARA DE HUEVO (CCC+CH<br>3%-2) | CCC+CH<br>3%-2  | 159.79                          | 186.02                           | 223.58                           |
| CENIZA CASCARILLA DE CAFÉ +<br>CASCARA DE HUEVO (CCC+CH<br>3%-3) | CCC+CH<br>3%-3  | 167.43                          | 193.66                           | 214.54                           |

| DENOMINACIÓN                                                     | ABREVIA<br>TURA | f'c A LOS 7<br>DÍAS<br>(Kg/cm²) | f'c A LOS<br>14 DÍAS<br>(Kg/cm²) | f'c A LOS<br>28 DÍAS<br>(Kg/cm²) |
|------------------------------------------------------------------|-----------------|---------------------------------|----------------------------------|----------------------------------|
| CENIZA CASCARILLA DE CAFÉ +<br>CASCARA DE HUEVO (CCC+CH<br>3%-4) | CCC+CH<br>3%-4  | 166.56                          | 192.77                           | 215.56                           |
| CENIZA CASCARILLA DE CAFÉ +<br>CASCARA DE HUEVO (CCC+CH<br>3%-5) | CCC+CH<br>3%-5  | 163.55                          | 198.37                           | 222.69                           |
| CENIZA CASCARILLA DE CAFÉ +<br>CASCARA DE HUEVO (CCC+CH<br>5%-1) | CCC+CH<br>5%-1  | 212.76                          | 232.75                           | 257.83                           |
| CENIZA CASCARILLA DE CAFÉ +<br>CASCARA DE HUEVO (CCC+CH<br>5%-2) | CCC+CH<br>5%-2  | 209.83                          | 248.66                           | 264.07                           |
| CENIZA CASCARILLA DE CAFÉ +<br>CASCARA DE HUEVO (CCC+CH<br>5%-3) | CCC+CH<br>5%-3  | 213.39                          | 240.13                           | 257.32                           |
| CENIZA CASCARILLA DE CAFÉ +<br>CASCARA DE HUEVO (CCC+CH<br>5%-4) | CCC+CH<br>5%-4  | 210.56                          | 240.64                           | 266.62                           |
| CENIZA CASCARILLA DE CAFÉ +<br>CASCARA DE HUEVO (CCC+CH<br>5%-5) | CCC+CH<br>5%-5  | 211.99                          | 247.64                           | 266.11                           |


A continuación, se muestra la evolución de los resultados de la resistencia a la compresión; este grafico resulta de la comparación de la resistencia promedio de cada tipo de muestra versus los días (7, 14 y 28 días).

**Figura 80** *Evolución de la resistencia a la compresión* 



A continuación, se muestra una gráfica donde se compara las resistencias promedio obtenidas de cada diseño de mezcla y su tendencia respecto a la resistencia de la mezcla patrón.

**Figura 81**Comparativo de resistencia entre mezcla con aditivo y patrón



Fuente: Elaboración propia


A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo ceniza de cascarilla de café al 1% (CCC 1%) versus las resistencias de cada muestra patrón, esto para la edad de 7 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 108.79% con respecto a la mezcla patrón.

**Tabla 42** Variación porcentual de la resistencia

|                                         |             |                        | 7 DÍAS                            |                   |
|-----------------------------------------|-------------|------------------------|-----------------------------------|-------------------|
| DENOMINACIÓN                            | ABREVIATURA | PATRÓN f'c<br>(Kg/cm²) | C° CON<br>ADITIVO f'c<br>(Kg/cm²) | VARIACIÓN<br>EN % |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 1%-1) | CCC 1%-1    | 192.90                 | 195.19                            | 101.19%           |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 1%-2) | CCC 1%-2    | 168.07                 | 182.84                            | 108.79%           |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 1%-3) | CCC 1%-3    | 175.71                 | 182.20                            | 103.70%           |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 1%-4) | CCC 1%-4    | 171.35                 | 185.75                            | 108.40%           |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 1%-5) | CCC 1%-5    | 189.66                 | 192.74                            | 101.62%           |

**Figura 82**F'c de concreto con aditivo ceniza de cascarilla de café al 1% versus patrón

RESISTENCIA DE CONCRETO CON ADITIVO CCC 1% VS PATRÓN (7 DÍAS)



Fuente: Elaboración propia

A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo ceniza de cascarilla de café al 3% (CCC 3%) versus las resistencias de cada muestra patrón, esto para la edad de 7 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 102.50% con respecto a la mezcla patrón.

**Tabla 43** *Variación porcentual de la resistencia* 

| _                                       |             | 7 DÍAS                 |                                   |                   |  |
|-----------------------------------------|-------------|------------------------|-----------------------------------|-------------------|--|
| DENOMINACIÓN                            | ABREVIATURA | PATRÓN f'c<br>(Kg/cm²) | C° CON<br>ADITIVO f'c<br>(Kg/cm²) | VARIACIÓN<br>EN % |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 3%-1) | CCC 3%-1    | 192.90                 | 172.78                            | 89.57%            |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 3%-2) | CCC 3%-2    | 168.07                 | 172.27                            | 102.50%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 3%-3) | CCC 3%-3    | 175.71                 | 170.23                            | 96.88%            |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 3%-4) | CCC 3%-4    | 171.35                 | 171.28                            | 99.96%            |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 3%-5) | CCC 3%-5    | 189.66                 | 172.38                            | 90.89%            |  |

Figura 83

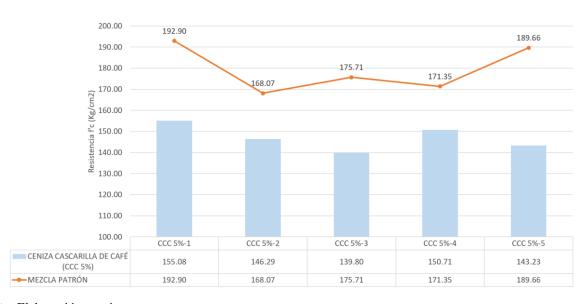
F'c de concreto con aditivo ceniza de cascarilla de café al 3% versus patrón

RESISTENCIA DE CONCRETO CON ADITIVO CCC 3%VS PATRÓN (7 DÍAS)



Fuente: Elaboración propia

A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo ceniza de cascarilla de café al 5% (CCC 5%) versus las resistencias de cada muestra patrón,


esto para la edad de 7 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 87.96% con respecto a la mezcla patrón.

**Tabla 44** *Variación porcentual de la resistencia* 

|                                         |             |                        | 7 DÍAS                            |                   |
|-----------------------------------------|-------------|------------------------|-----------------------------------|-------------------|
| DENOMINACIÓN                            | ABREVIATURA | PATRÓN f'c<br>(Kg/cm²) | C° CON<br>ADITIVO f'c<br>(Kg/cm²) | VARIACIÓN<br>EN % |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 5%-1) | CCC 5%-1    | 192.90                 | 155.08                            | 80.40%            |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 5%-2) | CCC 5%-2    | 168.07                 | 146.29                            | 87.05%            |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 5%-3) | CCC 5%-3    | 175.71                 | 139.80                            | 79.57%            |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 5%-4) | CCC 5%-4    | 171.35                 | 150.71                            | 87.96%            |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 5%-5) | CCC 5%-5    | 189.66                 | 143.23                            | 75.52%            |

Fuente: Elaboración propia

**Figura 84**F'c de concreto con aditivo ceniza de cascarilla de café al 3% versus patrón



RESISTENCIA DE CONCRETO CON ADITIVO CCC 5%VS PATRÓN (7 DÍAS)

A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo cascara de huevo al 1% (CH 1%) versus las resistencias de cada muestra patrón, esto para la edad de 7 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 101.44% con respecto a la mezcla patrón.

**Tabla 45** *Variación porcentual de la resistencia* 

|                               |             |                        | 7 DÍAS                            |                   |
|-------------------------------|-------------|------------------------|-----------------------------------|-------------------|
| DENOMINACIÓN                  | ABREVIATURA | PATRON f'c<br>(Kg/cm²) | C° CON<br>ADITIVO f'c<br>(Kg/cm²) | VARIACIÓN<br>EN % |
| CASCARA DE HUEVO<br>(CH 1%-1) | СН 1%-1     | 192.90                 | 158.90                            | 82.38%            |
| CASCARA DE HUEVO<br>(CH 1%-2) | СН 1%-2     | 168.07                 | 170.49                            | 101.44%           |
| CASCARA DE HUEVO<br>(CH 1%-3) | СН 1%-3     | 175.71                 | 167.05                            | 95.07%            |
| CASCARA DE HUEVO<br>(CH 1%-4) | СН 1%-4     | 171.35                 | 168.95                            | 98.60%            |
| CASCARA DE HUEVO<br>(CH 1%-5) | СН 1%-5     | 189.66                 | 164.57                            | 86.77%            |

Fuente: Elaboración propia

**Figura 85** *F'c de concreto con aditivo cascara de huevo al 1% versus patrón* 

RESISTENCIA DE CONCRETO CON ADITIVO CH 1%VS PATRÓN (7 DÍAS)



A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo cascara de huevo al 3% (CH 3%) versus las resistencias de cada muestra patrón, esto para la edad de 7 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 111.97% con respecto a la mezcla patrón.

**Tabla 46**Variación porcentual de la resistencia


|                               |             | 7 DÍAS                 |                                   |                   |  |  |
|-------------------------------|-------------|------------------------|-----------------------------------|-------------------|--|--|
| DENOMINACIÓN                  | ABREVIATURA | PATRÓN f'c<br>(Kg/cm²) | C° CON<br>ADITIVO f'c<br>(Kg/cm²) | VARIACIÓN<br>EN % |  |  |
| CASCARA DE HUEVO<br>(CH 3%-1) | СН 3%-1     | 192.90                 | 191.37                            | 99.21%            |  |  |
| CASCARA DE HUEVO<br>(CH 3%-2) | СН 3%-2     | 168.07                 | 188.18                            | 111.97%           |  |  |
| CASCARA DE HUEVO<br>(CH 3%-3) | СН 3%-3     | 175.71                 | 183.35                            | 104.35%           |  |  |
| CASCARA DE HUEVO<br>(CH 3%-4) | СН 3%-4     | 171.35                 | 185.66                            | 108.35%           |  |  |
| CASCARA DE HUEVO<br>(CH 3%-5) | СН 3%-5     | 189.66                 | 190.62                            | 100.50%           |  |  |

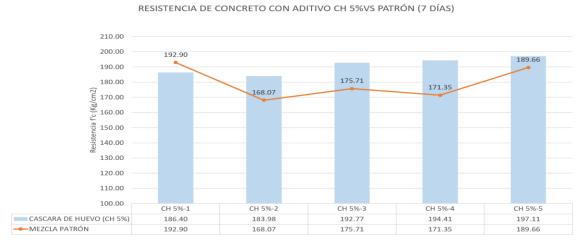
Fuente: Elaboración propia

Figura 86

F'c de concreto con aditivo cascara de huevo al 3% versus patrón

RESISTENCIA DE CONCRETO CON ADITIVO CH 3%VS PATRÓN (7 DÍAS)




A continuación, mostramos el comparativo entre la resistencia de cada una de las mezclas con el aditivo cascara de huevo al 5% (CH 5%) versus las resistencias de cada muestra patrón, esto para la edad de 7 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 113.46% con respecto a la mezcla patrón.

**Tabla 47** *Variación porcentual de la resistencia* 

|                               |                 | 7 DÍAS                 |                                   |                    |  |
|-------------------------------|-----------------|------------------------|-----------------------------------|--------------------|--|
| DENOMINACIÓN                  | ABREVIA<br>TURA | PATRÓN f'c<br>(Kg/cm²) | C° CON<br>ADITIVO f'c<br>(Kg/cm²) | VARIACI<br>ÓN EN % |  |
| CASCARA DE HUEVO (CH<br>5%-1) | CH 5%-1         | 192.90                 | 186.40                            | 96.63%             |  |
| CASCARA DE HUEVO (CH<br>5%-2) | CH 5%-2         | 168.07                 | 183.98                            | 109.47%            |  |
| CASCARA DE HUEVO (CH<br>5%-3) | CH 5%-3         | 175.71                 | 192.77                            | 109.71%            |  |
| CASCARA DE HUEVO (CH<br>5%-4) | CH 5%-4         | 171.35                 | 194.41                            | 113.46%            |  |
| CASCARA DE HUEVO (CH<br>5%-5) | CH 5%-5         | 189.66                 | 197.11                            | 103.93%            |  |

Fuente: Elaboración propia

**Figura 87**F'c de concreto con aditivo cascara de huevo al 5% versus patrón

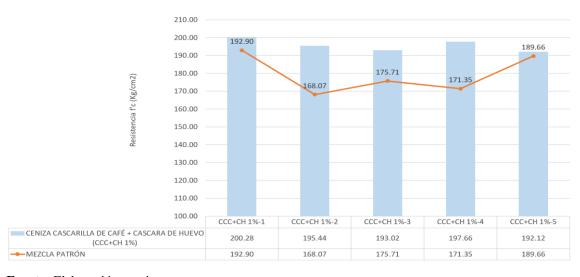


Fuente: Elaboración propia

A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo ceniza de cascarilla de café y cascara de huevo al 1% (CCC+CH 1%) versus las resistencias

de cada muestra patrón, esto para la edad de 7 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 116.29% con respecto a la mezcla patrón.

**Tabla 48** *Variación porcentual de la resistencia* 


|                                                                  |             | 7 DÍAS                    |                                   |                   |
|------------------------------------------------------------------|-------------|---------------------------|-----------------------------------|-------------------|
| DENOMINACIÓN                                                     | ABREVIATURA | PATRÓN<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO<br>f'c (Kg/cm²) | VARIACIÓN<br>EN % |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-1) | ССС+СН 1%-1 | 192.90                    | 200.28                            | 103.83%           |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-2) | CCC+CH 1%-2 | 168.07                    | 195.44                            | 116.29%           |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-3) | CCC+CH 1%-3 | 175.71                    | 193.02                            | 109.86%           |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-4) | CCC+CH 1%-4 | 171.35                    | 197.66                            | 115.35%           |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-5) | CCC+CH 1%-5 | 189.66                    | 192.12                            | 101.30%           |

Fuente: Elaboración propia

Figura 88

F'c de concreto con aditivo CCC+CH al 1% versus patrón

RESISTENCIA DE CONCRETO CON ADITIVOS CCC+CH 1%VS PATRÓN (7 DÍAS)




A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo ceniza de cascarilla de café y cascara de huevo al 3% (CCC+CH 3%) versus las resistencias de cada muestra patrón, esto para la edad de 7 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 97.21% con respecto a la mezcla patrón.

**Tabla 49**Variación porcentual de la resistencia

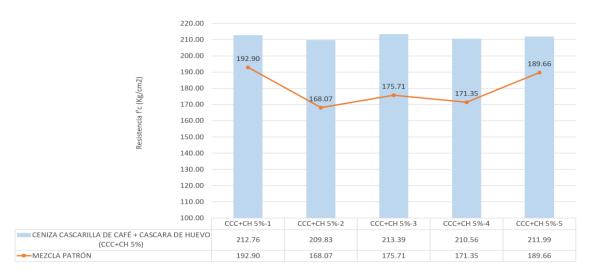
| DENOMINACIÓN                                                     | ABREVIATURA | 7 DÍAS                    |                                   |                   |
|------------------------------------------------------------------|-------------|---------------------------|-----------------------------------|-------------------|
|                                                                  |             | PATRÓN<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO f'c<br>(Kg/cm²) | VARIACIÓN<br>EN % |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 3%-1) | ССС+СН 3%-1 | 192.90                    | 165.14                            | 85.61%            |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 3%-2) | ССС+СН 3%-2 | 168.07                    | 159.79                            | 95.08%            |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 3%-3) | ССС+СН 3%-3 | 175.71                    | 167.43                            | 95.29%            |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 3%-4) | ССС+СН 3%-4 | 171.35                    | 166.56                            | 97.21%            |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 3%-5) | ССС+СН 3%-5 | 189.66                    | 163.55                            | 86.23%            |

**Figura 89**F'c de concreto con aditivo CCC+CH al 3% versus patrón

RESISTENCIA DE CONCRETO CON ADITIVOS CCC+CH 3% VS PATRÓN (7 DÍAS)



Fuente: Elaboración propia


A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo ceniza de cascarilla de café y cascara de huevo al 5% (CCC+CH 5%) versus las resistencias de cada muestra patrón, esto para la edad de 7 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 121.45% con respecto a la mezcla patrón.

**Tabla 50** Variación porcentual de la resistencia

|                                                                  |             | 7 DÍAS                    |                                   |                   |
|------------------------------------------------------------------|-------------|---------------------------|-----------------------------------|-------------------|
| DENOMINACIÓN                                                     | ABREVIATURA | PATRÓN<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO f'c<br>(Kg/cm²) | VARIACIÓN<br>EN % |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-1) | ССС+СН 5%-1 | 192.90                    | 212.76                            | 110.30%           |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-2) | CCC+CH 5%-2 | 168.07                    | 209.83                            | 87.13%            |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-3) | ССС+СН 5%-3 | 175.71                    | 213.39                            | 121.45%           |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-4) | ССС+СН 5%-4 | 171.35                    | 210.56                            | 97.52%            |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-5) | ССС+СН 5%-5 | 189.66                    | 211.99                            | 111.77%           |

**Figura 90**F'c de concreto con aditivo CCC+CH al 5% versus patrón

RESISTENCIA DE CONCRETO CON ADITIVOS CCC+CH 5% VS PATRÓN (7 DÍAS)



Fuente: Elaboración propia

A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo ceniza de cascarilla de café al 1% (CCC 1%) versus las resistencias de cada muestra patrón, esto para la edad de 14 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 121.84% con respecto a la mezcla patrón.

**Tabla 51** *Variación porcentual de la resistencia* 

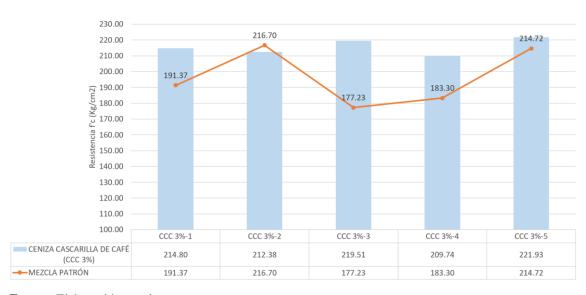
| DENOMINACIÓN                            | ABREVIATURA | 14 DÍAS                   |                                      |                   |
|-----------------------------------------|-------------|---------------------------|--------------------------------------|-------------------|
|                                         |             | PATRÓN<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO<br>f'c<br>(Kg/cm²) | VARIACIÓN<br>en % |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 1%-1) | CCC 1%-1    | 191.37                    | 213.01                               | 111.31%           |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 1%-2) | CCC 1%-2    | 216.70                    | 228.16                               | 105.29%           |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 1%-3) | CCC 1%-3    | 177.23                    | 215.94                               | 121.84%           |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 1%-4) | CCC 1%-4    | 183.30                    | 214.60                               | 117.08%           |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 1%-5) | CCC 1%-5    | 214.72                    | 227.99                               | 106.18%           |

Figura 91

F'c de concreto con aditivo CCC 1% versus patrón

RESISTENCIA DE CONCRETO CON ADITIVO CCC 1% VS PATRÓN (14 DÍAS)




A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo ceniza de cascarilla de café al 3% (CCC 3%) versus las resistencias de cada muestra patrón, esto para la edad de 14 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 123.85% con respecto a la mezcla patrón.

**Tabla 52** *Variación porcentual de la resistencia* 

|                                         |             | 14 DÍAS                   |                                                                                                                               |                   |  |
|-----------------------------------------|-------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| DENOMINACIÓN                            | ABREVIATURA | PATRÓN<br>f'c<br>(Kg/cm²) | f'c (Kg/cm²)     ADITIVO f'c (Kg/cm²)     VARIACI en %       191.37     214.80     112.249       216.70     212.38     98.00% | VARIACIÓN<br>en % |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 3%-1) | CCC 3%-1    | 191.37                    | 214.80                                                                                                                        | 112.24%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 3%-2) | CCC 3%-2    | 216.70                    | 212.38                                                                                                                        | 98.00%            |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 3%-3) | CCC 3%-3    | 177.23                    | 219.51                                                                                                                        | 123.85%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 3%-4) | CCC 3%-4    | 183.30                    | 209.74                                                                                                                        | 114.43%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 3%-5) | CCC 3%-5    | 214.72                    | 221.93                                                                                                                        | 103.36%           |  |

**Figura 92** F'c de concreto con aditivo CCC 3% versus patrón

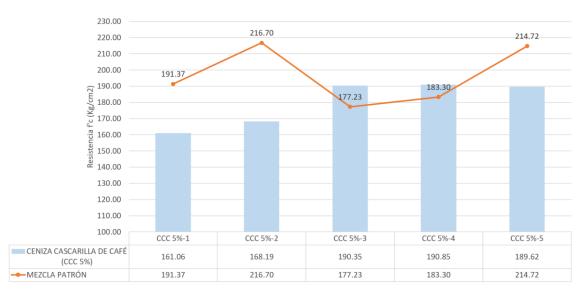
RESISTENCIA DE CONCRETO CON ADITIVO CCC 3% VS PATRÓN (14 DÍAS)



Fuente: Elaboración propia

A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo ceniza de cascarilla de café al 5% (CCC 5%) versus las resistencias de cada muestra patrón,

esto para la edad de 14 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 107.40% con respecto a la mezcla patrón.


**Tabla 53** *Variación porcentual de la resistencia* 

|                                         |             | 14 DÍAS                   |                                      |                   |  |
|-----------------------------------------|-------------|---------------------------|--------------------------------------|-------------------|--|
| DENOMINACIÓN                            | ABREVIATURA | PATRÓN<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO<br>f'c<br>(Kg/cm²) | VARIACIÓN<br>en % |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 5%-1) | CCC 5%-1    | 191.37                    | 161.06                               | 84.17%            |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 5%-2) | CCC 5%-2    | 216.70                    | 168.19                               | 77.61%            |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 5%-3) | CCC 5%-3    | 177.23                    | 190.35                               | 107.40%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 5%-4) | CCC 5%-4    | 183.30                    | 190.85                               | 104.12%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 5%-5) | CCC 5%-5    | 214.72                    | 189.62                               | 88.31%            |  |

Fuente: Elaboración propia

**Figura 93** *F'c de concreto con aditivo CCC 5% versus patrón* 

RESISTENCIA DE CONCRETO CON ADITIVO CCC 5% VS PATRÓN (14 DÍAS)



Fuente: Elaboración propia

A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo cascara de huevo al 1% (CH 1%) versus las resistencias de cada muestra patrón, esto para la

edad de 14 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 110.70% con respecto a la mezcla patrón.


**Tabla 54** *Variación porcentual de la resistencia* 

|                               |             | 14 DÍAS                   |                                      |                   |  |
|-------------------------------|-------------|---------------------------|--------------------------------------|-------------------|--|
| DENOMINACIÓN                  | ABREVIATURA | PATRÓN<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO<br>f'c<br>(Kg/cm²) | VARIACIÓN<br>en % |  |
| CASCARA DE HUEVO (CH<br>1%-1) | СН 1%-1     | 191.37                    | 188.18                               | 98.34%            |  |
| CASCARA DE HUEVO (CH<br>1%-2) | СН 1%-2     | 216.70                    | 178.76                               | 82.49%            |  |
| CASCARA DE HUEVO (CH<br>1%-3) | СН 1%-3     | 177.23                    | 152.02                               | 85.78%            |  |
| CASCARA DE HUEVO (CH<br>1%-4) | СН 1%-4     | 183.30                    | 202.92                               | 110.70%           |  |
| CASCARA DE HUEVO (CH<br>1%-5) | СН 1%-5     | 214.72                    | 192.00                               | 89.42%            |  |

Fuente: Elaboración propia

**Figura 94**F'c de concreto con aditivo CH 1% versus patrón

RESISTENCIA DE CONCRETO CON ADITIVO CH 1% VS PATRÓN (14 DÍAS)



Fuente: Elaboración propia

A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo cascara de huevo al 3% (CH 3%) versus las resistencias de cada muestra patrón, esto para la

edad de 14 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 122.92% con respecto a la mezcla patrón

**Tabla 55** *Variación porcentual de la resistencia* 

|                               |             | 14 DÍAS                   |                                      |                   |  |
|-------------------------------|-------------|---------------------------|--------------------------------------|-------------------|--|
| DENOMINACIÓN                  | ABREVIATURA | PATRÓN<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO<br>f'c<br>(Kg/cm²) | VARIACIÓN<br>en % |  |
| CASCARA DE HUEVO (CH<br>3%-1) | СН 3%-1     | 191.37                    | 207.92                               | 108.65%           |  |
| CASCARA DE HUEVO (CH<br>3%-2) | СН 3%-2     | 216.70                    | 215.94                               | 99.65%            |  |
| CASCARA DE HUEVO (CH<br>3%-3) | СН 3%-3     | 177.23                    | 217.85                               | 122.92%           |  |
| CASCARA DE HUEVO (CH<br>3%-4) | СН 3%-4     | 183.30                    | 214.54                               | 117.05%           |  |
| CASCARA DE HUEVO (CH<br>3%-5) | СН 3%-5     | 214.72                    | 220.21                               | 102.56%           |  |

Fuente: Elaboración propia

**Figura 95** *F'c de concreto con aditivo CH 3% versus patrón* 

RESISTENCIA DE CONCRETO CON ADITIVO CH 3% VS PATRÓN (14 DÍAS)



A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo cascara de huevo al 5% (CH 5%) versus las resistencias de cada muestra patrón, esto para la edad de 14 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 124.30% con respecto a la mezcla patrón.

**Tabla 56**Variación porcentual de la resistencia

|                               |             | 14 DÍAS                   |                                      |                   |  |
|-------------------------------|-------------|---------------------------|--------------------------------------|-------------------|--|
| DENOMINACIÓN                  | ABREVIATURA | PATRÓN<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO<br>f'c<br>(Kg/cm²) | VARIACIÓN<br>en % |  |
| CASCARA DE HUEVO (CH<br>5%-1) | СН 5%-1     | 191.37                    | 220.14                               | 115.04%           |  |
| CASCARA DE HUEVO (CH<br>5%-2) | СН 5%-2     | 216.70                    | 222.69                               | 102.76%           |  |
| CASCARA DE HUEVO (CH<br>5%-3) | СН 5%-3     | 177.23                    | 209.45                               | 118.18%           |  |
| CASCARA DE HUEVO (CH<br>5%-4) | СН 5%-4     | 183.30                    | 227.83                               | 124.30%           |  |
| CASCARA DE HUEVO (CH<br>5%-5) | СН 5%-5     | 214.72                    | 216.20                               | 100.69%           |  |

Fuente: Elaboración propia

**Figura 96**F'c de concreto con aditivo CH 5% versus patrón

RESISTENCIA DE CONCRETO CON ADITIVO CH 5% VS PATRÓN (14 DÍAS)



A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo ceniza de cascarilla de café y cascara de huevo al 1% (CCC + CH 1%) versus las resistencias de cada muestra patrón, esto para la edad de 14 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 119.68% con respecto a la mezcla patrón.

**Tabla 57** *Variación porcentual de la resistencia* 

|                                                                  |             | 14 DÍAS                   |                                      |                   |  |
|------------------------------------------------------------------|-------------|---------------------------|--------------------------------------|-------------------|--|
| DENOMINACIÓN                                                     | ABREVIATURA | PATRÓN<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO<br>f'c<br>(Kg/cm²) | VARIACIÓN<br>en % |  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 1%-1) | ССС+СН 1%-1 | 191.37                    | 202.32                               | 105.72%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 1%-2) | ССС+СН 1%-2 | 216.70                    | 216.32                               | 99.82%            |  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 1%-3) | ССС+СН 1%-3 | 177.23                    | 212.12                               | 119.68%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 1%-4) | CCC+CH 1%-4 | 183.30                    | 209.07                               | 114.06%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 1%-5) | CCC+CH 1%-5 | 214.72                    | 213.27                               | 99.32%            |  |

Figura 97  $F'c\ de\ concreto\ con\ aditivo\ CCC+CH\ 1\%\ versus\ patr\'on$  resistencia de concreto con aditivo ccc+ch 1% vs patr\'on (14 días)



A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo ceniza de cascarilla de café y cascara de huevo al 3% (CCC + CH 3%) versus las resistencias de cada muestra patrón, esto para la edad de 14 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 109.27% con respecto a la mezcla patrón.

**Tabla 58** *Variación porcentual de la resistencia* 

|                                                                  |             | 14 DÍAS                   |                                      |                   |  |
|------------------------------------------------------------------|-------------|---------------------------|--------------------------------------|-------------------|--|
| DENOMINACIÓN                                                     | ABREVIATURA | PATRÓN<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO<br>f'c<br>(Kg/cm²) | VARIACIÓN<br>en % |  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 3%-1) | ССС+СН 3%-1 | 191.37                    | 203.34                               | 106.25%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 3%-2) | CCC+CH 3%-2 | 216.70                    | 186.02                               | 85.84%            |  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 3%-3) | CCC+CH 3%-3 | 177.23                    | 193.66                               | 109.27%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 3%-4) | ССС+СН 3%-4 | 183.30                    | 192.77                               | 105.17%           |  |

**Figura 98** *F'c de concreto con aditivo CCC+CH 3% versus patrón* 

RESISTENCIA DE CONCRETO CON ADITIVO CCC+CH 3% VS PATRÓN (14 DÍAS)



Fuente: Elaboración propia

A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo ceniza de cascarilla de café y cascara de huevo al 5% (CCC + CH 5%) versus las resistencias de cada muestra patrón, esto para la edad de 14 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 135.49% con respecto a la mezcla patrón.

**Tabla 59**Variación porcentual de la resistencia

|                                                                  |             | 14 DÍAS                   |                                      |                   |  |
|------------------------------------------------------------------|-------------|---------------------------|--------------------------------------|-------------------|--|
| DENOMINACIÓN                                                     | ABREVIATURA | PATRON<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO<br>f'c<br>(Kg/cm²) | VARIACIÓN<br>en % |  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 5%-1) | ССС+СН 5%-1 | 191.37                    | 232.75                               | 121.62%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 5%-2) | ССС+СН 5%-2 | 216.70                    | 248.66                               | 113.24%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 5%-3) | ССС+СН 5%-3 | 177.23                    | 240.13                               | 135.49%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 5%-4) | ССС+СН 5%-4 | 183.30                    | 240.64                               | 103.42%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO (CCC+CH 5%-5) | ССС+СН 5%-5 | 214.72                    | 247.64                               | 115.33%           |  |

**Figura 99**F'c de concreto con aditivo CCC+CH 5% versus patrón

RESISTENCIA DE CONCRETO CON ADITIVO CCC+CH 5% VS PATRÓN (14 DÍAS)

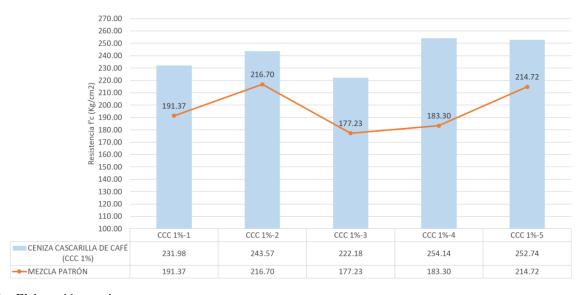


Fuente: Elaboración propia

A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo ceniza de cascarilla de café al 1% (CCC 1%) versus las resistencias de cada muestra patrón,

esto para la edad de 14 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 109.55% con respecto a la mezcla patrón.

**Tabla 60**Variación porcentual de la resistencia


|                                         |             | 28 DÍAS                   |                                   |                   |  |
|-----------------------------------------|-------------|---------------------------|-----------------------------------|-------------------|--|
| DENOMINACIÓN                            | ABREVIATURA | PATRON<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO<br>f'c (Kg/cm²) | VARIACIÓN<br>en % |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 1%-1) | CCC 1%-1    | 227.78                    | 231.98                            | 101.84%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 1%-2) | CCC 1%-2    | 243.06                    | 243.57                            | 100.21%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 1%-3) | CCC 1%-3    | 236.82                    | 222.18                            | 93.82%            |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 1%-4) | CCC 1%-4    | 240.64                    | 254.14                            | 105.61%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 1%-5) | CCC 1%-5    | 230.71                    | 252.74                            | 109.55%           |  |

Fuente: Elaboración propia

Figura 100

F'c de concreto con aditivo CCC 1% versus patrón

RESISTENCIA DE CONCRETO CON ADITIVO CCC 1% VS PATRÓN (28 DÍAS)



Fuente: Elaboración propia

A continuación, mostramos el comparativo entre la resistencia de cada una de las mezclas con el aditivo ceniza de cascarilla de café al 3% (CCC 3%) versus las resistencias de cada muestra patrón,

esto para la edad de 14 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 103.49% con respecto a la mezcla patrón.

**Tabla 61**Variación porcentual de la resistencia

|                                         |             | 28 DÍAS                   |                                   |                   |  |
|-----------------------------------------|-------------|---------------------------|-----------------------------------|-------------------|--|
| DENOMINACIÓN                            | ABREVIATURA | PATRON<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO<br>f'c (Kg/cm²) | VARIACIÓN<br>en % |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 3%-1) | CCC 3%-1    | 227.78                    | 222.05                            | 97.48%            |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 3%-2) | CCC 3%-2    | 243.06                    | 237.71                            | 97.80%            |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 3%-3) | CCC 3%-3    | 236.82                    | 245.10                            | 103.49%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 3%-4) | CCC 3%-4    | 240.64                    | 240.96                            | 100.13%           |  |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 3%-5) | CCC 3%-5    | 230.71                    | 228.67                            | 99.12%            |  |

Fuente: Elaboración propia

**Figura 101**F'c de concreto con aditivo CCC 3% versus patrón

RESISTENCIA DE CONCRETO CON ADITIVO CCC 3% VS PATRÓN (28 DÍAS)

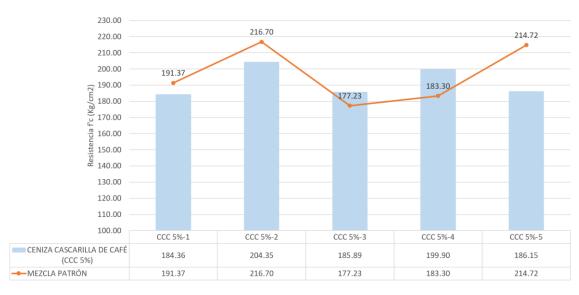


Fuente: Elaboración propia

A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo ceniza de cascarilla de café al 5% (CCC 5%) versus las resistencias de cada muestra patrón,

esto para la edad de 14 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 84.08% con respecto a la mezcla patrón.

**Tabla 62** Variación porcentual de la resistencia


|                                         |             | 28 DÍAS                   |                                   |                   |
|-----------------------------------------|-------------|---------------------------|-----------------------------------|-------------------|
| DENOMINACIÓN                            | ABREVIATURA | PATRON<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO<br>f'c (Kg/cm²) | VARIACIÓN<br>en % |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 5%-1) | CCC 5%-1    | 227.78                    | 184.36                            | 80.94%            |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 5%-2) | CCC 5%-2    | 243.06                    | 204.35                            | 84.08%            |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 5%-3) | CCC 5%-3    | 236.82                    | 185.89                            | 78.49%            |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 5%-4) | CCC 5%-4    | 240.64                    | 199.90                            | 83.07%            |
| CENIZA CASCARILLA DE<br>CAFÉ (CCC 5%-5) | CCC 5%-5    | 230.71                    | 186.15                            | 80.68%            |

Fuente: Elaboración propia

Figura 102

F'c de concreto con aditivo CCC 5% versus patrón

RESISTENCIA DE CONCRETO CON ADITIVO CCC 5% VS PATRÓN (28 DÍAS)

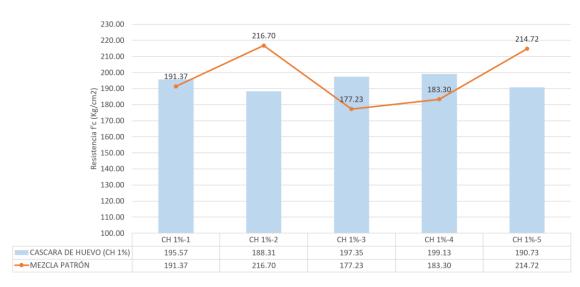


Fuente: Elaboración propia

A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo cascara de huevo al 1% (CH 1%) versus las resistencias de cada muestra patrón, esto para la

edad de 14 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 85.86% con respecto a la mezcla patrón.

**Tabla 63** *Variación porcentual de la resistencia* 


|                               |             | 28 DÍAS                   |                                   |                   |  |
|-------------------------------|-------------|---------------------------|-----------------------------------|-------------------|--|
| DENOMINACIÓN                  | ABREVIATURA | PATRON<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO<br>f'c (Kg/cm²) | VARIACIÓN<br>en % |  |
| CASCARA DE HUEVO<br>(CH 1%-1) | СН 1%-1     | 227.78                    | 195.57                            | 85.86%            |  |
| CASCARA DE HUEVO<br>(CH 1%-2) | СН 1%-2     | 243.06                    | 188.31                            | 77.48%            |  |
| CASCARA DE HUEVO<br>(CH 1%-3) | СН 1%-3     | 236.82                    | 197.35                            | 83.33%            |  |
| CASCARA DE HUEVO<br>(CH 1%-4) | СН 1%-4     | 240.64                    | 199.13                            | 82.75%            |  |
| CASCARA DE HUEVO<br>(CH 1%-5) | СН 1%-5     | 230.71                    | 190.73                            | 82.67%            |  |

Fuente: Elaboración propia

Figura 103

F'c de concreto con aditivo CH 1% versus patrón

RESISTENCIA DE CONCRETO CON ADITIVO CH 1% VS PATRÓN (28 DÍAS)

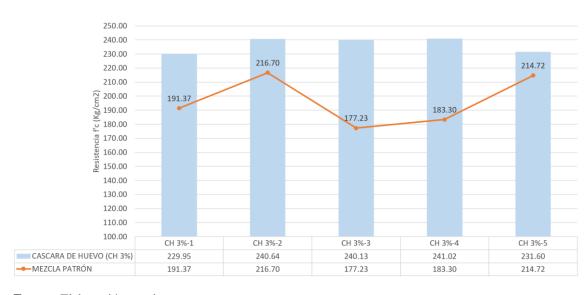


Fuente: Elaboración propia

A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo cascara de huevo al 3% (CH 3%) versus las resistencias de cada muestra patrón, esto para la

edad de 14 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 101.40% con respecto a la mezcla patrón.

**Tabla 64**Variación porcentual de la resistencia


|                               |             |                           | 28 DÍAS                           |                   |
|-------------------------------|-------------|---------------------------|-----------------------------------|-------------------|
| DENOMINACIÓN                  | ABREVIATURA | PATRON<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO<br>f'c (Kg/cm²) | VARIACIÓN<br>en % |
| CASCARA DE HUEVO<br>(CH 3%-1) | СН 3%-1     | 227.78                    | 229.95                            | 100.95%           |
| CASCARA DE HUEVO<br>(CH 3%-2) | СН 3%-2     | 243.06                    | 240.64                            | 99.00%            |
| CASCARA DE HUEVO<br>(CH 3%-3) | СН 3%-3     | 236.82                    | 240.13                            | 101.40%           |
| CASCARA DE HUEVO<br>(CH 3%-4) | СН 3%-4     | 240.64                    | 241.02                            | 100.16%           |
| CASCARA DE HUEVO<br>(CH 3%-5) | СН 3%-5     | 230.71                    | 231.60                            | 100.39%           |

Fuente: Elaboración propia

Figura 104

F'c de concreto con aditivo CH 3% versus patrón

RESISTENCIA DE CONCRETO CON ADITIVO CH 3% VS PATRÓN (28 DÍAS)



Fuente: Elaboración propia

A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo cascara de huevo al 5% (CH 5%) versus las resistencias de cada muestra patrón, esto para la

edad de 14 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 105.66% con respecto a la mezcla patrón.

**Tabla 65**Variación porcentual de la resistencia

|                               |             |                           | 28 DÍAS                           |                   |
|-------------------------------|-------------|---------------------------|-----------------------------------|-------------------|
| DENOMINACIÓN                  | ABREVIATURA | PATRÓN<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO<br>f'c (Kg/cm²) | VARIACIÓN<br>en % |
| CASCARA DE HUEVO<br>(CH 5%-1) | СН 5%-1     | 227.78                    | 239.75                            | 105.25%           |
| CASCARA DE HUEVO<br>(CH 5%-2) | СН 5%-2     | 243.06                    | 230.97                            | 95.02%            |
| CASCARA DE HUEVO<br>(CH 5%-3) | СН 5%-3     | 236.82                    | 233.51                            | 98.60%            |
| CASCARA DE HUEVO<br>(CH 5%-4) | СН 5%-4     | 240.64                    | 254.27                            | 105.66%           |
| CASCARA DE HUEVO<br>(CH 5%-5) | СН 5%-5     | 230.71                    | 241.79                            | 104.80%           |

Fuente: Elaboración propia

**Figura 105** *F'c de concreto con aditivo CH 5% versus patrón* 

RESISTENCIA DE CONCRETO CON ADITIVO CH 5% VS PATRÓN (28 DÍAS)



Fuente: Elaboración propia

A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo ceniza de cascarilla de café y cascara de huevo al 1% (CCC+CH 1%) versus las resistencias de cada muestra patrón, esto para la edad de 14 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 105.42% con respecto a la mezcla patrón.

**Tabla 66**Variación porcentual de la resistencia

|                                                                  |             |                           | 28 DÍAS                           |                   |
|------------------------------------------------------------------|-------------|---------------------------|-----------------------------------|-------------------|
| DENOMINACIÓN                                                     | ABREVIATURA | PATRÓN<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO<br>f'c (Kg/cm²) | VARIACIÓN<br>en % |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-1) | CCC+CH 1%-1 | 227.78                    | 240.13                            | 105.42%           |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-2) | CCC+CH 1%-2 | 243.06                    | 244.21                            | 100.47%           |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-3) | CCC+CH 1%-3 | 236.82                    | 215.94                            | 91.18%            |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-4) | CCC+CH 1%-4 | 240.64                    | 240.90                            | 100.11%           |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-5) | CCC+CH 1%-5 | 230.71                    | 228.29                            | 98.95%            |

Figura 106

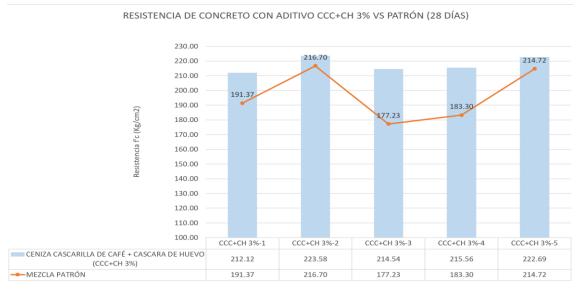
F'c de concreto con aditivo CCC+CH 1% versus patrón

RESISTENCIA DE CONCRETO CON ADITIVO CCC+CH 1% VS PATRÓN (28 DÍAS)



Fuente: Elaboración propia

A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo ceniza de cascarilla de café y cascara de huevo al 3% (CCC+CH 3%) versus las resistencias


de cada muestra patrón, esto para la edad de 14 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 96.52% con respecto a la mezcla patrón.

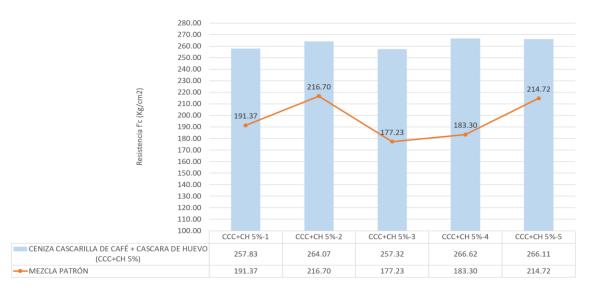
**Tabla 67** *Variación porcentual de la resistencia* 

|                                                                  |             |                           | 28 DÍAS                           |                   |
|------------------------------------------------------------------|-------------|---------------------------|-----------------------------------|-------------------|
| DENOMINACIÓN                                                     | ABREVIATURA | PATRÓN<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO<br>f'c (Kg/cm²) | VARIACIÓN<br>en % |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 3%-1) | ССС+СН 3%-1 | 227.78                    | 212.12                            | 93.12%            |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 3%-2) | ССС+СН 3%-2 | 243.06                    | 223.58                            | 91.99%            |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 3%-3) | ССС+СН 3%-3 | 236.82                    | 214.54                            | 90.59%            |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 3%-4) | ССС+СН 3%-4 | 240.64                    | 215.56                            | 89.58%            |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 3%-5) | ССС+СН 3%-5 | 230.71                    | 222.69                            | 96.52%            |

Fuente: Elaboración propia

**Figura 107**F'c de concreto con aditivo CCC+CH 3% versus patrón




A continuación, se muestra el comparativo entre la resistencia de cada una de las mezclas con el aditivo ceniza de cascarilla de café y cascara de huevo al 5% (CCC+CH 5%) versus las resistencias de cada muestra patrón, esto para la edad de 14 días en ambos casos. Se observa que la mezcla con aditivo alcanza una resistencia máxima de hasta un 115.34% con respecto a la mezcla patrón.

**Tabla 68**Variación porcentual de la resistencia

|                                                                  |             | 28 DÍAS                   |                                   |                   |
|------------------------------------------------------------------|-------------|---------------------------|-----------------------------------|-------------------|
| DENOMINACIÓN                                                     | ABREVIATURA | PATRÓN<br>f'c<br>(Kg/cm²) | C° CON<br>ADITIVO<br>f'c (Kg/cm²) | VARIACIÓN<br>en % |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-1) | CCC+CH 5%-1 | 227.78                    | 257.83                            | 113.19%           |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-2) | CCC+CH 5%-2 | 243.06                    | 264.07                            | 106.71%           |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-3) | CCC+CH 5%-3 | 236.82                    | 257.32                            | 108.66%           |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-4) | ССС+СН 5%-4 | 240.64                    | 266.62                            | 101.61%           |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-5) | CCC+CH 5%-5 | 230.71                    | 266.11                            | 115.34%           |

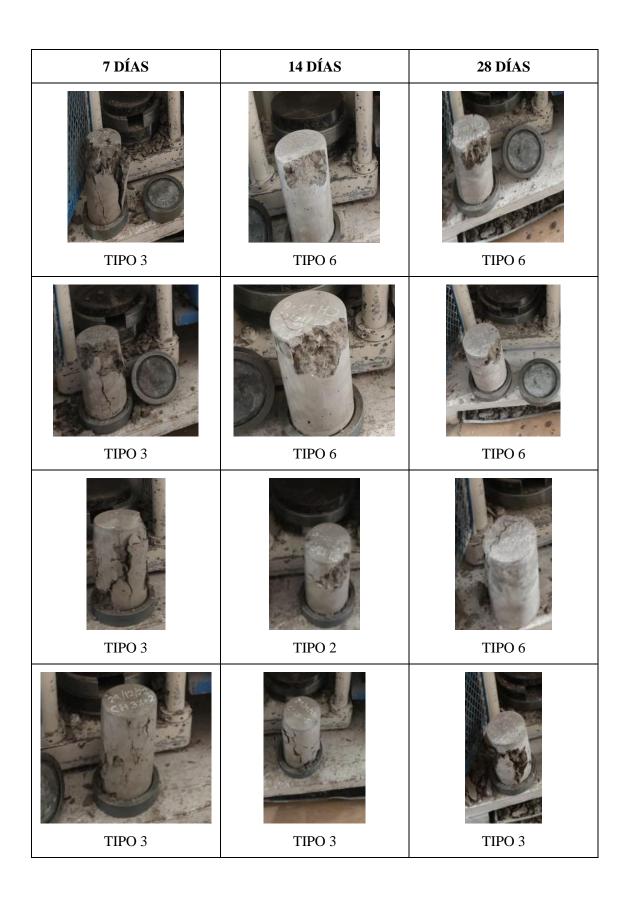
**Figura 108**F'c de concreto con aditivo CCC+CH 5% versus patrón

RESISTENCIA DE CONCRETO CON ADITIVO CCC+CH 5% VS PATRÓN (28 DÍAS)



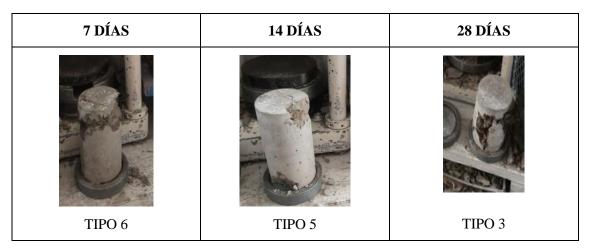
Fuente: Elaboración propia

# 4.1.2.2 Tipo de fallas


#### **MEZCLA PATRÓN**

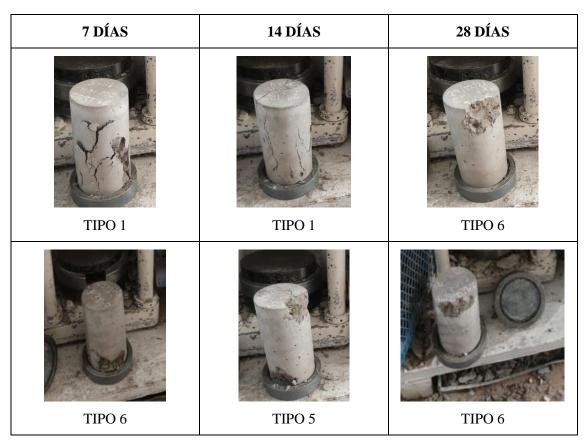
| 7 DÍAS | 14 DÍAS | 28 DÍAS |
|--------|---------|---------|
|        |         |         |
| TIPO 6 | TIPO 6  | TIPO 6  |
| TIPO 6 | TIPO 1  | TIPO 3  |
| TIPO 6 | TIPO 1  | TIPO 3  |



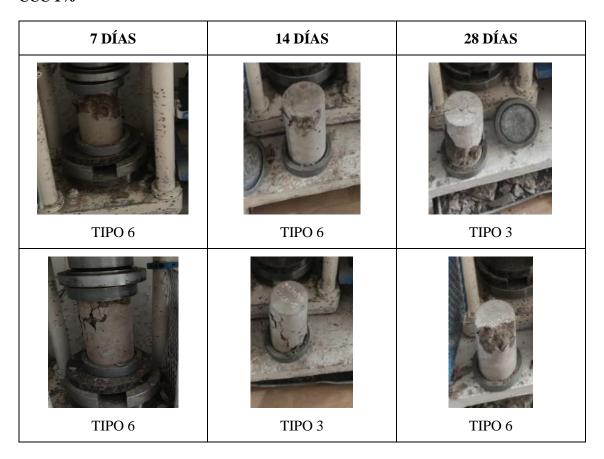

# CH 1%

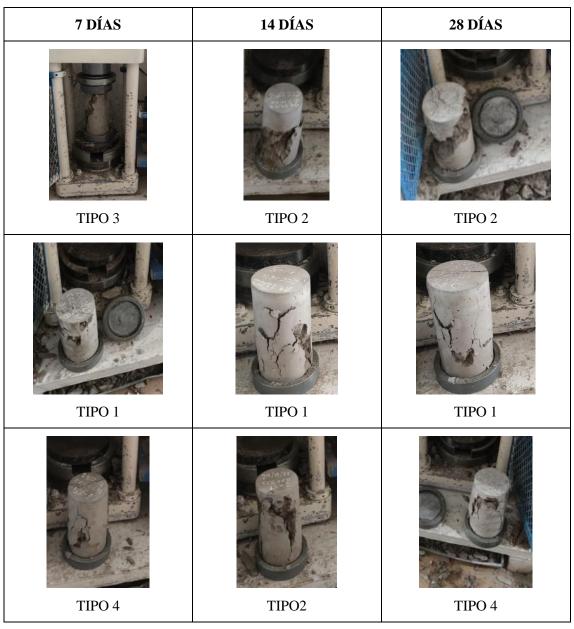
| 7 DÍAS | 14 DÍAS | 28 DÍAS |
|--------|---------|---------|
|        |         |         |
| TIPO 3 | TIPO 6  | TIPO 3  |




#### **CH 3%**

| 7 DÍAS | 14 DÍAS | 28 DÍAS |
|--------|---------|---------|
| TIPO 2 | TIPO 2  | TIPO 6  |
| TIPO 3 | TIPO 6  | TIPO 3  |
| TIPO 6 | TIPO 2  | TIPO 2  |
| TIPO 6 | TIPO 2  | TIPO 2  |





# **CH 5%**

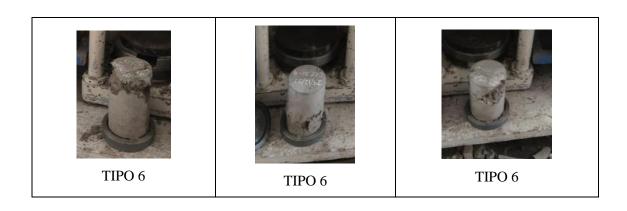




#### **CCC 1%**

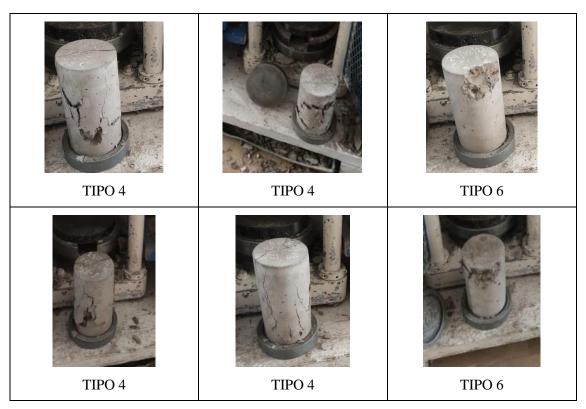





# CCC3%

| 7 DÍAS | 14 DÍAS   | 28 DÍAS |
|--------|-----------|---------|
|        | 541 V 152 |         |
| TIPO 6 | TIPO 6    | TIPO 6  |




# **CCC 5%**

| 7 DÍAS | 14 DÍAS | 28 DÍAS |
|--------|---------|---------|
| TIPO 6 | TIPO 6  | TIPO 6  |
| TIPO 6 | TIPO 6  | TIPO 4  |
| TIPO 6 | TIPO 6  | TIPO 6  |
| TIPO 6 | TIPO 6  | TIPO 4  |



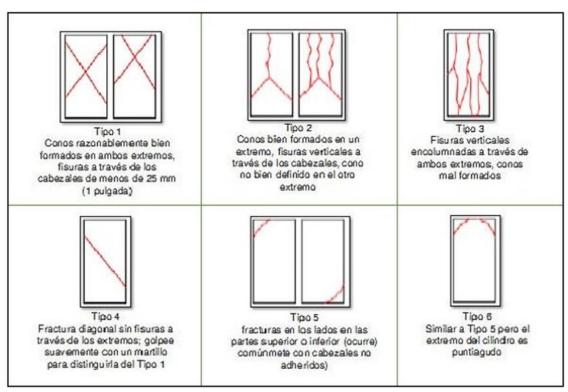
#### **CCC+CH 1%**

| 7 DÍAS | 14 DÍAS | 28 DÍAS |
|--------|---------|---------|
| TIPO 6 | TIPO 4  | TIPO 6  |
| TIPO 4 | TIPO 4  | TIPO 4  |
| TIPO 4 | TIPO 6  | TIPO 6  |



# CCC+CH3%

| 7 DÍAS | 14 DÍAS | 28 DÍAS |
|--------|---------|---------|
| TIPO 6 | TIPO 4  | TIPO 6  |
| TIPO 6 | TIPO 4  | TIPO 6  |
|        |         |         |
| TIPO 6 | TIPO 5  | TIPO 6  |




#### CCC+CH5%

| 7 DÍAS | 14 DÍAS | 28 DÍAS |
|--------|---------|---------|
|        |         |         |
| TIPO 4 | TIPO 3  | TIPO 4  |



**Figura 109** *Tipo de Fallas según la NTP 339.034* 



**Fuente:** NTP 339.034

| MEZCLA PATRÓN |         |         |
|---------------|---------|---------|
| 7 DÍAS        | 14 DÍAS | 28 DÍAS |
| Tipo 6        | Tipo 6  | Tipo 6  |
| Tipo 6        | Tipo 1  | Tipo 3  |
| Tipo 2        | Tipo 2  | Tipo 6  |
| Tipo 3        | Tipo 2  | Tipo 3  |
| Tipo 5        | Tipo 6  | Tipo 6  |

| CH 1%  | CASCARA DE HUEVO<br>AL 1% |         |
|--------|---------------------------|---------|
| 7 DÍAS | 14 DÍAS                   | 28 DÍAS |
| Tipo 3 | Tipo 6                    | Tipo 3  |
| Tipo 3 | Tipo 6                    | Tipo 6  |
| Tipo 3 | Tipo 6                    | Tipo 6  |

| Tipo 3 | Tipo 2 | Tipo 6 |
|--------|--------|--------|
| Tipo 3 | Tipo 3 | Tipo 3 |

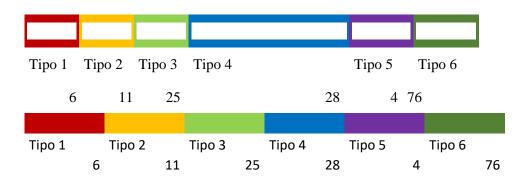
| CH 3%  | CASCARA DE HUEVO<br>AL 3% |        |
|--------|---------------------------|--------|
| 7 DÍAS | 14 DÍAS 28 DÍAS           |        |
| Tipo 2 | Tipo 6                    | Tipo 3 |
| Tipo 3 | Tipo 6                    | Tipo 6 |
| Tipo 6 | Tipo 6                    | Tipo 6 |
| Tipo 6 | Tipo 2                    | Tipo 6 |
| Tipo 6 | Tipo 3                    | Tipo 3 |

| CH 5%  | CASCARA DE HUEVO<br>AL 5% |        |
|--------|---------------------------|--------|
| 7 DÍAS | 14 DÍAS 28 DÍAS           |        |
| Tipo 3 | Tipo 2                    | Tipo 6 |
| Tipo 6 | Tipo 4                    | Tipo 3 |
| Tipo 6 | Tipo 3                    | Tipo 2 |
| Tipo 1 | Tipo 1                    | Tipo 6 |
| Tipo 6 | Tipo 5                    | Tipo 6 |

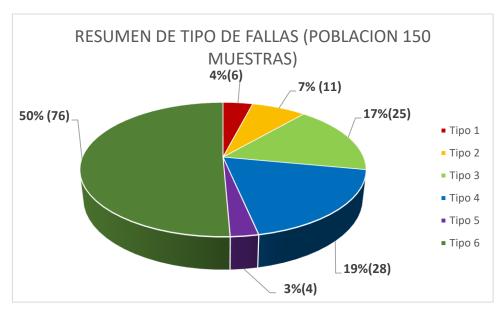
| CCC 1% | CENIZA DE CASCARILLA DE CAFÉ<br>AL 1% |            |
|--------|---------------------------------------|------------|
| 7 DÍAS | 14 DÍAS                               | 28<br>DÍAS |
| Tipo 6 | Tipo 6                                | Tipo 3     |
| Tipo 6 | Tipo 3                                | Tipo 6     |
| Tipo 3 | Tipo 2                                | Tipo 2     |
| Tipo 1 | Tipo 1                                | Tipo 1     |

| Tipo 4 | Tipo 2 | Tipo 4 |
|--------|--------|--------|
|        |        |        |

| CCC 3% | CENIZA DE CASCARILLA DE CAFÉ<br>AL 3% |            |
|--------|---------------------------------------|------------|
| 7 DÍAS | 14 DÍAS                               | 28<br>DÍAS |
| Tipo 6 | Tipo 6                                | Tipo 6     |
| Tipo 6 | Tipo 6                                | Tipo 4     |
| Tipo 6 | Tipo 4                                | Tipo 3     |
| Tipo 4 | Tipo 6                                | Tipo 6     |
| Tipo 5 | Tipo 6                                | Tipo 4     |


| CCC 5% | CENIZA DE CASCARILLA DE CAFÉ<br>AL 5% |            |
|--------|---------------------------------------|------------|
| 7 DÍAS | 14 DÍAS                               | 28<br>DÍAS |
| Tipo 6 | Tipo 6                                | Tipo 6     |
| Tipo 6 | Tipo 6                                | Tipo 4     |
| Tipo 6 | Tipo 6                                | Tipo 6     |
| Tipo 6 | Tipo 6                                | Tipo 4     |
| Tipo 6 | Tipo 6                                | Tipo 6     |

| CCC +CH<br>1% | CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE<br>HUEVO AL 1% |            |
|---------------|----------------------------------------------------------|------------|
| 7 DÍAS        | 14 DÍAS                                                  | 28<br>DÍAS |
| Tipo 6        | Tipo 4                                                   | Tipo 6     |
| Tipo 4        | Tipo 4                                                   | Tipo 4     |
| Tipo 4        | Tipo 6                                                   | Tipo 6     |


| Tipo 4 | Tipo 4 | Tipo 6 |
|--------|--------|--------|
| Tipo 4 | Tipo 4 | Tipo 6 |

| CCC +CH<br>3% | CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE<br>HUEVO AL 3% |            |
|---------------|----------------------------------------------------------|------------|
| 7 DÍAS        | 14 DÍAS                                                  | 28<br>DÍAS |
| Tipo 6        | Tipo 4                                                   | Tipo 6     |
| Tipo 6        | Tipo 5                                                   | Tipo 6     |
| Tipo 6        | Tipo 6                                                   | Tipo 6     |
| Tipo 3        | Tipo 3                                                   | Tipo 4     |
| Tipo 6        | Tipo 6                                                   | Tipo 4     |

| CCC +CH<br>5% | CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE<br>HUEVO AL 5% |            |
|---------------|----------------------------------------------------------|------------|
| 7 DÍAS        | 14 DÍAS                                                  | 28<br>DÍAS |
| Tipo 4        | Tipo 3                                                   | Tipo 4     |
| Tipo 4        | Tipo 6                                                   | Tipo 6     |
| Tipo 4        | Tipo 4                                                   | Tipo 6     |
| Tipo 4        | Tipo 4                                                   | Tipo 6     |
| Tipo 6        | Tipo 6                                                   | Tipo 6     |



**Figura 110** *Resumen de tipo de fallas* 



### Interpretación técnica de las fallas observadas según NTP 339.034

La NTP 339.034 clasifica los tipos de fallas en ensayos de compresión, describiendo cómo se comportan las mezclas ante la carga aplicada. A continuación, se realiza la interpretación técnica según los tipos de fallas encontrados en los distintos ensayos.

#### MEZCLA PATRÓN

- 7 días: Predominancia de Tipo 6 (falla por cizallamiento inclinado) y aparición aislada de Tipo 2 y
   Tipo 5.
- Observación: Las mezclas comienzan a desarrollar resistencia, pero presentan heterogeneidad inicial.
- 14 días: Se identifica Tipo 1 (falla vertical) en una muestra, señal de debilidad estructural.
- **28 días**: Predominio de **Tipo 6**, indicando mejor comportamiento de resistencia final.

**Conclusión:** La mezcla patrón presenta fallas iniciales dispersas, pero se estabiliza hacia **Tipo 6** en 28 días, mostrando un buen desarrollo de resistencia a largo plazo.

# CH 1% y CÁSCARA DE HUEVO AL 1%

- 7 días: Predomina Tipo 3 (cono de cizallamiento lateral), indicando un bajo desarrollo inicial de la resistencia.
- **14 días**: Transición hacia **Tipo 6**, reflejando mejora en cohesión y resistencia.
- 28 días: Dominio de Tipo 6 con persistencia de Tipo 3, señal de mejora parcial de resistencia.

Conclusión: La adición de Cáscara de Huevo al 1% mejora progresivamente la resistencia, pero la presencia de Tipo 3 indica algunas debilidades.

## CH 3% y CÁSCARA DE HUEVO AL 3%

- 7 días: Presencia de Tipo 2 y Tipo 3, señal de menor cohesión inicial.
- 14 días: Mayor presencia de Tipo 6, mostrando consolidación estructural.
- 28 días: Dominio de Tipo 6, con algunas ocurrencias de Tipo 3.

Conclusión: La adición de 3% de Cáscara de Huevo contribuye significativamente a la estabilidad, con predominio de Tipo 6.

## CH 5% y CÁSCARA DE HUEVO AL 5%

- 7 días: Aparición de Tipo 1 y Tipo 3, mostrando deficiencias iniciales en resistencia.
- 14 días: Se presenta Tipo 4 (falla mixta), lo cual denota un desarrollo estructural en transición.
- **28 días**: Predominio de **Tipo 6**, señal de buena resistencia final.

Conclusión: La adición de 5% de Cáscara de Huevo enfrenta problemas iniciales, pero logra una mejora considerable hacia el final.

## CCC 1%, 3%, y 5% (CENIZA DE CASCARILLA DE CAFÉ)

- 1. **CCC 1%**:
- 7 días: Predominio de Tipo 6.
- 14 días: Variación entre Tipo 6 y Tipo 2, mostrando menor estabilidad intermedia.
- **28 días:** Persistencia de **Tipo 2 y Tipo 4**, indicando debilidades en el desarrollo.
- 2. CCC 3%:
- 7 días y 14 días: Alta presencia de Tipo 6, lo cual refleja buen desempeño inicial.
- **28 días:** Aparece **Tipo 4**, señal de falla mixta en algunas muestras.
- 3. CCC 5%:

o Predominio absoluto de **Tipo 6**, mostrando **excelente desempeño** estructural en todas las etapas.

Conclusión: La Ceniza de Cascarilla de Café al 3% y 5% demuestra ser una excelente adición, logrando estabilidad temprana (Tipo 6) y consistencia a largo plazo.

### CCC + CH (CENIZA DE CASCARILLA DE CAFÉ + CÁSCARA DE HUEVO)

- 1. **CCC + CH 1%**:
- 7 y 14 días: Mezcla de Tipo 4 y Tipo 6, mostrando progreso gradual en cohesión.
- **28 días:** Predominio de **Tipo 6**, indicando mejora significativa.
- 2. **CCC + CH 3%**:
- 7 días: Alta presencia de Tipo 6.
- 14 días: Aparición de Tipo 5 (colapso parcial), señal de variabilidad.
- **28 días:** Consolidación con predominio de **Tipo 6**.
- 3. **CCC** + **CH 5**%:
- **7 días:** Predominio de **Tipo 4** (falla mixta).
- 14 días: Variación con Tipo 3 y Tipo 6, mostrando etapas de transición.
- **28 días:** Alta estabilidad con **Tipo 6** dominante.

Conclusión: La combinación de Ceniza de Cascarilla de Café + Cáscara de Huevo al 5% presenta la mejor estabilidad final, con Tipo 6 predominante en 28 días.

#### CONCLUSIÓN GENERAL

- Tipo 6 (falla por cizallamiento inclinado) es la más deseada, ya que indica un buen desarrollo de resistencia y cohesión.
- 2. Adiciones de **Ceniza de Cascarilla de Café** (**CCC**) al **3% y 5%** presentan los mejores resultados, estabilizando las fallas en **Tipo 6** desde etapas tempranas.
- 3. La combinación de CCC + CH al 5% ofrece un desempeño óptimo, con una transición clara hacia Tipo 6 en 28 días.

#### 4.1.3 Pruebas de concreto fresco

#### 4.1.3.1 Temperatura

La toma de temperatura es de gran importancia, para ello se registró la temperatura del concreto. Este procedimiento se llevó a cabo persiguiendo los protocolos establecidos por la NTP, y se aplicó a los todos los diseños de mezcla; así mismo, la toma de temperatura se hizo en orden, comenzando

por nuestra mezcla patrón el cual no contiene aditivo alguno, seguidamente se tomó la temperatura a las mezclas con contenido de ceniza de cascarilla de café, cascara de huevo y mezcla de ambos, para cada una de sus presentaciones en los porcentajes de 1%, 3% y 5% respectivamente.

**Tabla 69** *Temperatura del concreto para 50 muestras* 

| DENOMINACIÓN                    | ABREVIATURA | TEMPERATURA<br>(°C) | PROMEDIO<br>(°C) |
|---------------------------------|-------------|---------------------|------------------|
| MEZCLA PATRÓN                   | P1          | 16.10               |                  |
| MEZCLA PATRÓN                   | P2          | 16.80               |                  |
| MEZCLA PATRÓN                   | Р3          | 16.40               | 17.26            |
| MEZCLA PATRÓN                   | P4          | 17.20               |                  |
| MEZCLA PATRÓN                   | P5          | 19.80               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ 1% | CCC 1%-1    | 15.80               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ 1% | CCC 1%-2    | 16.30               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ 1% | CCC 1%-3    | 18.80               | 17.52            |
| CENIZA CASCARILLA DE<br>CAFÉ 1% | CCC 1%-4    | 17.10               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ 1% | CCC 1%-5    | 19.60               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ 3% | CCC 3%-1    | 19.10               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ 3% | CCC 3%-2    | 15.30               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ 3% | CCC 3%-3    | 22.00               | 18.00            |
| CENIZA CASCARILLA DE<br>CAFÉ 3% | CCC 3%-4    | 17.30               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ 3% | CCC 3%-5    | 16.30               |                  |

| DENOMINACIÓN                                          | ABREVIATURA | TEMPERATURA<br>(°C) | PROMEDIO<br>(°C) |
|-------------------------------------------------------|-------------|---------------------|------------------|
| CENIZA CASCARILLA DE<br>CAFÉ 5%                       | CCC 5%-1    | 17.60               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ 5%                       | CCC 5%-2    | 18.30               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ 5%                       | CCC 5%-3    | 19.10               | 18.12            |
| CENIZA CASCARILLA DE<br>CAFÉ 5%                       | CCC 5%-4    | 16.30               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ 5%                       | CCC 5%-5    | 19.30               |                  |
| CASCARA DE HUEVO 1%                                   | CH 1%-1     | 16.90               |                  |
| CASCARA DE HUEVO 1%                                   | CH 1%-2     | 18.00               |                  |
| CASCARA DE HUEVO 1%                                   | СН 1%-3     | 19.00               | 18.78            |
| CASCARA DE HUEVO 1%                                   | CH 1%-4     | 19.50               |                  |
| CASCARA DE HUEVO 1%                                   | CH 1%-5     | 20.50               |                  |
| CASCARA DE HUEVO 3%                                   | СН 3%-1     | 18.90               |                  |
| CASCARA DE HUEVO 3%                                   | СН 3%-2     | 18.90               |                  |
| CASCARA DE HUEVO 3%                                   | СН 3%-3     | 18.10               | 18.56            |
| CASCARA DE HUEVO 3%                                   | СН 3%-4     | 18.70               |                  |
| CASCARA DE HUEVO 3%                                   | СН 3%-5     | 18.20               |                  |
| CASCARA DE HUEVO 5%                                   | CH 5%-1     | 19.50               |                  |
| CASCARA DE HUEVO 5%                                   | CH 5%-2     | 18.10               |                  |
| CASCARA DE HUEVO 5%                                   | CH 5%-3     | 18.90               | 18.00            |
| CASCARA DE HUEVO 5%                                   | CH 5%-4     | 17.00               |                  |
| CASCARA DE HUEVO 5%                                   | CH 5%-5     | 16.50               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO 1% | CCC+CH 1%-1 | 16.10               | 17.32            |

| DENOMINACIÓN                                          | ABREVIATURA | TEMPERATURA<br>(°C) | PROMEDIO<br>(°C) |
|-------------------------------------------------------|-------------|---------------------|------------------|
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO 1% | CCC+CH 1%-2 | 17.50               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO 1% | CCC+CH 1%-3 | 17.80               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO 1% | CCC+CH 1%-4 | 16.10               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO 1% | CCC+CH 1%-5 | 19.10               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO 3% | CCC+CH 3%-1 | 18.30               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO 3% | CCC+CH 3%-2 | 18.50               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO 3% | CCC+CH 3%-3 | 18.90               | 18.18            |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO 3% | CCC+CH 3%-4 | 19.30               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO 3% | CCC+CH 3%-5 | 15.90               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO 5% | CCC+CH 5%-1 | 19.90               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO 5% | CCC+CH 5%-2 | 20.10               | 20.30            |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO 5% | CCC+CH 5%-3 | 21.30               |                  |

| DENOMINACIÓN                                          | ABREVIATURA | TEMPERATURA<br>(°C) | PROMEDIO<br>(°C) |
|-------------------------------------------------------|-------------|---------------------|------------------|
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO 5% | CCC+CH 5%-4 | 21.90               |                  |
| CENIZA CASCARILLA DE<br>CAFÉ + CASCARA DE<br>HUEVO 5% | ССС+СН 5%-5 | 18.30               |                  |

**Figura 111** *Temperatura de muestras patrón y con aditivo* 



Fuente: Elaboración propia.

Al efectuar la medición se encontraron varias medidas de temperatura del concreto; apreciándose así que estas varían desde 15.18°C hasta los 21.9°C, teniendo el valor mínimo la mezcla con ceniza de cascarilla de café al 1% y el valor máximo ceniza cascarilla de café + cascara de huevo al 5%. Cabe indicar que esta toma de medidas se efectuó desde las 8:00am en la ciudad de Cusco y la variación de temperatura del medio ambiente es considerable.

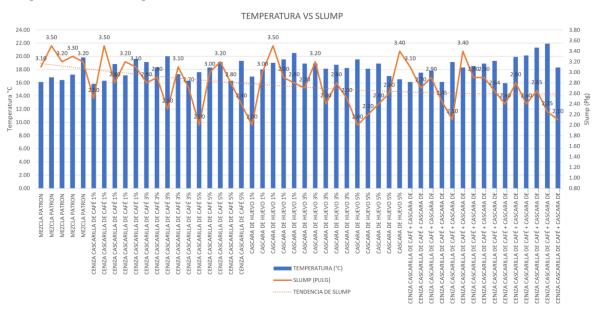
### **4.1.3.2** Consistencia (slump)

La importancia de la consistencia como ensayo es de importancia para este tema de investigación. Por tal razón se efectuó la prueba de pérdida de asentamiento en orden, comenzando por nuestra mezcla patrón el cual no contiene aditivo alguno, seguida de las mezclas con contenido de ceniza de cascarilla de café, cascara de huevo y mezcla de ambos, para cada una de sus presentaciones en los porcentajes de 1%, 3% y 5% respectivamente.

**Tabla 70**Consistencia del concreto para 50 muestras

| DENOMINACIÓN                       | ABREVIATURA | SLUMP<br>(Pulgadas) |      | PROMEDIO<br>(Pulgadas) |
|------------------------------------|-------------|---------------------|------|------------------------|
| MEZCLA PATRÓN                      | P1          | 3.10                | 7.87 |                        |
| MEZCLA PATRÓN                      | P2          | 3.50                | 8.89 |                        |
| MEZCLA PATRÓN                      | Р3          | 3.20                | 8.13 | 3.26                   |
| MEZCLA PATRÓN                      | P4          | 3.30                | 8.38 |                        |
| MEZCLA PATRÓN                      | P5          | 3.20                | 8.13 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ 1% | CCC 1%-1    | 2.50                | 6.35 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ 1% | CCC 1%-2    | 3.50                | 8.89 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ 1% | CCC 1%-3    | 2.80                | 7.11 | 3.02                   |
| CENIZA<br>CASCARILLA DE<br>CAFÉ 1% | CCC 1%-4    | 3.20                | 8.13 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ 1% | CCC 1%-5    | 3.10                | 7.87 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ 3% | CCC 3%-1    | 2.80                | 7.11 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ 3% | CCC 3%-2    | 2.90                | 7.37 | 2.76                   |
| CENIZA<br>CASCARILLA DE<br>CAFÉ 3% | CCC 3%-3    | 2.30                | 5.84 | 2.70                   |
| CENIZA<br>CASCARILLA DE<br>CAFÉ 3% | CCC 3%-4    | 3.10                | 7.87 |                        |

| DENOMINACIÓN                       | ABREVIATURA | SLUMP<br>(Pulgadas) |      | PROMEDIO<br>(Pulgadas) |
|------------------------------------|-------------|---------------------|------|------------------------|
| CENIZA<br>CASCARILLA DE<br>CAFÉ 3% | CCC 3%-5    | 2.70                | 6.86 | •                      |
| CENIZA<br>CASCARILLA DE<br>CAFÉ 5% | CCC 5%-1    | 2.00                | 5.08 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ 5% | CCC 5%-2    | 3.00                | 7.62 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ 5% | CCC 5%-3    | 3.20                | 8.13 | 2.68                   |
| CENIZA<br>CASCARILLA DE<br>CAFÉ 5% | CCC 5%-4    | 2.80                | 7.11 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ 5% | CCC 5%-5    | 2.40                | 6.10 |                        |
| CASCARA DE<br>HUEVO 1%             | СН 1%-1     | 2.00                | 5.08 |                        |
| CASCARA DE<br>HUEVO 1%             | СН 1%-2     | 3.00                | 7.62 |                        |
| CASCARA DE<br>HUEVO 1%             | СН 1%-3     | 3.50                | 8.89 | 2.84                   |
| CASCARA DE<br>HUEVO 1%             | СН 1%-4     | 2.90                | 7.37 |                        |
| CASCARA DE<br>HUEVO 1%             | СН 1%-5     | 2.80                | 7.11 |                        |
| CASCARA DE<br>HUEVO 3%             | СН 3%-1     | 2.70                | 6.86 |                        |
| CASCARA DE<br>HUEVO 3%             | СН 3%-2     | 3.20                | 8.13 | 2.52                   |
| CASCARA DE<br>HUEVO 3%             | СН 3%-3     | 2.40                | 6.10 | 2.72                   |
| CASCARA DE<br>HUEVO 3%             | СН 3%-4     | 2.80                | 7.11 |                        |


| DENOMINACIÓN                                             | ABREVIATURA | SLUMP<br>(Pulgadas) |      | PROMEDIO<br>(Pulgadas) |
|----------------------------------------------------------|-------------|---------------------|------|------------------------|
| CASCARA DE<br>HUEVO 3%                                   | СН 3%-5     | 2.50                | 6.35 | •                      |
| CASCARA DE<br>HUEVO 5%                                   | СН 5%-1     | 2.00                | 5.08 |                        |
| CASCARA DE<br>HUEVO 5%                                   | СН 5%-2     | 2.20                | 5.59 |                        |
| CASCARA DE<br>HUEVO 5%                                   | СН 5%-3     | 2.40                | 6.10 | 2.52                   |
| CASCARA DE<br>HUEVO 5%                                   | СН 5%-4     | 2.60                | 6.60 |                        |
| CASCARA DE<br>HUEVO 5%                                   | СН 5%-5     | 3.40                | 8.64 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ + CASCARA<br>DE HUEVO 1% | CCC+CH 1%-1 | 3.10                | 7.87 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ + CASCARA<br>DE HUEVO 1% | CCC+CH 1%-2 | 2.70                | 6.86 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ + CASCARA<br>DE HUEVO 1% | CCC+CH 1%-3 | 2.90                | 7.37 | 2.65                   |
| CENIZA<br>CASCARILLA DE<br>CAFÉ + CASCARA<br>DE HUEVO 1% | CCC+CH 1%-4 | 2.45                | 6.22 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ + CASCARA<br>DE HUEVO 1% | CCC+CH 1%-5 | 2.10                | 5.33 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ + CASCARA<br>DE HUEVO 3% | CCC+CH 3%-1 | 3.40                | 8.64 | 2.85                   |
| CENIZA<br>CASCARILLA DE                                  | CCC+CH 3%-2 | 2.90                | 7.37 |                        |

| DENOMINACIÓN                                             | ABREVIATURA | SLUMP<br>(Pulgadas) |      | PROMEDIO<br>(Pulgadas) |
|----------------------------------------------------------|-------------|---------------------|------|------------------------|
| CAFÉ + CASCARA<br>DE HUEVO 3%                            |             |                     |      |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ + CASCARA<br>DE HUEVO 3% | ССС+СН 3%-3 | 2.90                | 7.37 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ + CASCARA<br>DE HUEVO 3% | CCC+CH 3%-4 | 2.64                | 6.71 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ + CASCARA<br>DE HUEVO 3% | CCC+CH 3%-5 | 2.40                | 6.10 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ + CASCARA<br>DE HUEVO 5% | CCC+CH 5%-1 | 2.80                | 7.11 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ + CASCARA<br>DE HUEVO 5% | CCC+CH 5%-2 | 2.40                | 6.10 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ + CASCARA<br>DE HUEVO 5% | CCC+CH 5%-3 | 2.65                | 6.73 | 2.44                   |
| CENIZA<br>CASCARILLA DE<br>CAFÉ + CASCARA<br>DE HUEVO 5% | CCC+CH 5%-4 | 2.25                | 5.72 |                        |
| CENIZA<br>CASCARILLA DE<br>CAFÉ + CASCARA<br>DE HUEVO 5% | CCC+CH 5%-5 | 2.10                | 5.33 |                        |

**Figura 112**Slump de la muestra patrón y con aditivo



Figura 113 Temperatura VS slump



Según los resultados obtenidos se observa tener un slump máximo de 3.5 plg. para la muestra patrón, muestra de ceniza de cascarilla y cascara de huevo al 1%; así mismo, un slump mínimo de 2.0 plg. para la muestra de ceniza de cascarilla de café al 5%, cascara de huevo al 1% y 5%.

#### 4.1.3.3 Peso Unitario

Para determinar el peso unitario se consideró lo estipulado en la NTP y se efectuó para Este trabajo se efectuó en orden, comenzando por nuestra mezcla patrón el cual no contiene aditivo alguno, seguida de las mezclas con contenido de ceniza de cascarilla de café, cascara de huevo y mezcla de ambos, para cada una de sus presentaciones en los porcentajes de 1%, 3% y 5% respectivamente.

**Tabla 71** *Peso unitario para 50 muestras* 

| DENOMINACIÓN                 | PESO<br>UNITARIO<br>(kg/m³) | PROMEDIO (kg/m³) |
|------------------------------|-----------------------------|------------------|
| MEZCLA PATRÓN                | 2269.53                     |                  |
| MEZCLA PATRÓN                | 2265.63                     |                  |
| MEZCLA PATRÓN                | 2343.75                     | 2292.19          |
| MEZCLA PATRÓN                | 2265.63                     |                  |
| MEZCLA PATRÓN                | 2316.41                     |                  |
| CENIZA CASCARILLA DE CAFÉ 1% | 2277.34                     |                  |
| CENIZA CASCARILLA DE CAFÉ 1% | 2304.69                     |                  |
| CENIZA CASCARILLA DE CAFÉ 1% | 2203.13                     | 2273.44          |
| CENIZA CASCARILLA DE CAFÉ 1% | 2210.94                     |                  |
| CENIZA CASCARILLA DE CAFÉ 1% | 2371.09                     |                  |
| CENIZA CASCARILLA DE CAFÉ 3% | 2250.00                     |                  |
| CENIZA CASCARILLA DE CAFÉ 3% | 2277.34                     |                  |
| CENIZA CASCARILLA DE CAFÉ 3% | 2304.69                     | 2246.09          |
| CENIZA CASCARILLA DE CAFÉ 3% | 2199.22                     |                  |
| CENIZA CASCARILLA DE CAFÉ 3% | 2199.22                     |                  |
| CENIZA CASCARILLA DE CAFÉ 5% | 2226.56                     | 2204.69          |

| DENOMINACIÓN                                       | PESO<br>UNITARIO<br>(kg/m³) | PROMEDIO (kg/m³) |
|----------------------------------------------------|-----------------------------|------------------|
| CENIZA CASCARILLA DE CAFÉ 5%                       | 2226.56                     |                  |
| CENIZA CASCARILLA DE CAFÉ 5%                       | 2203.13                     |                  |
| CENIZA CASCARILLA DE CAFÉ 5%                       | 2171.88                     |                  |
| CENIZA CASCARILLA DE CAFÉ 5%                       | 2195.31                     |                  |
| CASCARA DE HUEVO 1%                                | 2277.34                     |                  |
| CASCARA DE HUEVO 1%                                | 2277.34                     |                  |
| CASCARA DE HUEVO 1%                                | 2300.78                     | 2305.47          |
| CASCARA DE HUEVO 1%                                | 2332.03                     |                  |
| CASCARA DE HUEVO 1%                                | 2339.84                     |                  |
| CASCARA DE HUEVO 3%                                | 2332.03                     |                  |
| CASCARA DE HUEVO 3%                                | 2371.09                     |                  |
| CASCARA DE HUEVO 3%                                | 2265.63                     | 2310.16          |
| CASCARA DE HUEVO 3%                                | 2277.34                     |                  |
| CASCARA DE HUEVO 3%                                | 2304.69                     |                  |
| CASCARA DE HUEVO 5%                                | 2308.59                     |                  |
| CASCARA DE HUEVO 5%                                | 2382.81                     |                  |
| CASCARA DE HUEVO 5%                                | 2371.09                     | 2339.06          |
| CASCARA DE HUEVO 5%                                | 2300.78                     |                  |
| CASCARA DE HUEVO 5%                                | 2332.03                     |                  |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 1% | 2304.69                     |                  |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 1% | 2332.03                     | 2316.41          |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 1% | 2308.59                     | <i>23</i> 10.41  |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 1% | 2304.69                     |                  |

| DENOMINACIÓN                                       | PESO<br>UNITARIO<br>(kg/m³) | PROMEDIO (kg/m³) |
|----------------------------------------------------|-----------------------------|------------------|
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 1% | 2332.03                     |                  |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 3% | 2242.19                     |                  |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 3% | 2226.56                     |                  |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 3% | 2203.13                     | 2231.25          |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 3% | 2242.19                     |                  |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 3% | 2242.19                     |                  |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 5% | 2382.81                     |                  |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 5% | 2308.59                     |                  |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 5% | 2343.75                     | 2348.44          |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 5% | 2371.09                     |                  |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 5% | 2335.94                     |                  |

**Figura 114** *Peso unitario de muestras patrón y con aditivo* 



**Figura 115**Variación porcentual del peso unitario respecto a la mezcla patrón



VARIACIÓN PORCENTUAL DEL PESO UNITARIO RESPECTO A LA MEZCLA PATRÓN

Fuente: Elaboración propia

Al obtener los pesos unitarios de las 50 muestras, se halló que el mayor peso unitario es de 2382.81 kg/m³ correspondiente para la mezcla de cascara de huevo al 5% y ceniza de cascarilla de café +

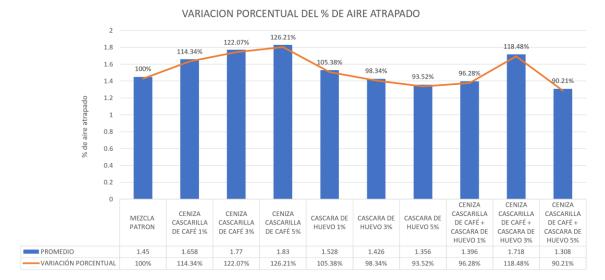
cascara de huevo; así mismo, se halló un valor mínimo de 2171.88 kg/m³ para la mezcla de ceniza de cascarilla de café al 5%.

### 4.1.3.4 Contenido de aire

En esta investigación se vio importante efectuar la prueba de aire atrapado ya que nuestro concreto contiene varios tipos de componente incluido los aditivos (ceniza de cascarilla de café, cascara de huevo y la combinación de ambos) así como las condiciones medio ambientales en Cusco. así se procedió siguiendo los lineamientos de la NTP 339.46 para todos los diseños de mezcla y 50 muestras.

**Tabla 72** % de aire atrapado para 50 muestras

| DENOMINACIÓN                 | % CONTENIDO 1 DE AIRE | PROMEDIO(%) |
|------------------------------|-----------------------|-------------|
| MEZCLA PATRÓN                | 1.40                  |             |
| MEZCLA PATRÓN                | 1.45                  |             |
| MEZCLA PATRÓN                | 1.42                  | 1.45        |
| MEZCLA PATRÓN                | 1.50                  |             |
| MEZCLA PATRÓN                | 1.48                  |             |
| CENIZA CASCARILLA DE CAFÉ 1% | 1.62                  |             |
| CENIZA CASCARILLA DE CAFÉ 1% | 1.65                  |             |
| CENIZA CASCARILLA DE CAFÉ 1% | 1.70                  | 1.66        |
| CENIZA CASCARILLA DE CAFÉ 1% | 1.72                  |             |
| CENIZA CASCARILLA DE CAFÉ 1% | 1.60                  |             |
| CENIZA CASCARILLA DE CAFÉ 3% | 1.72                  |             |
| CENIZA CASCARILLA DE CAFÉ 3% | 1.70                  |             |
| CENIZA CASCARILLA DE CAFÉ 3% | 1.82                  | 1.77        |
| CENIZA CASCARILLA DE CAFÉ 3% | 1.81                  |             |
| CENIZA CASCARILLA DE CAFÉ 3% | 1.80                  |             |
| CENIZA CASCARILLA DE CAFÉ 5% | 1.90                  | 1.83        |


| CENIZA CASCARILLA DE CAFÉ 5%                       | 1.60 |      |
|----------------------------------------------------|------|------|
| CENIZA CASCARILLA DE CAFÉ 5%                       | 1.92 |      |
| CENIZA CASCARILLA DE CAFÉ 5%                       | 1.80 |      |
| CENIZA CASCARILLA DE CAFÉ 5%                       | 1.93 |      |
| CASCARA DE HUEVO 1%                                | 1.59 |      |
| CASCARA DE HUEVO 1%                                | 1.50 |      |
| CASCARA DE HUEVO 1%                                | 1.55 | 1.53 |
| CASCARA DE HUEVO 1%                                | 1.51 |      |
| CASCARA DE HUEVO 1%                                | 1.49 |      |
| CASCARA DE HUEVO 3%                                | 1.40 |      |
| CASCARA DE HUEVO 3%                                | 1.49 |      |
| CASCARA DE HUEVO 3%                                | 1.45 | 1.43 |
| CASCARA DE HUEVO 3%                                | 1.39 |      |
| CASCARA DE HUEVO 3%                                | 1.40 |      |
| CASCARA DE HUEVO 5%                                | 1.35 |      |
| CASCARA DE HUEVO 5%                                | 1.40 |      |
| CASCARA DE HUEVO 5%                                | 1.38 | 1.36 |
| CASCARA DE HUEVO 5%                                | 1.30 |      |
| CASCARA DE HUEVO 5%                                | 1.35 |      |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 1% | 1.55 |      |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 1% | 1.40 |      |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 1% | 1.35 | 1.40 |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 1% | 1.38 |      |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 1% | 1.30 |      |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 3% | 1.72 | 1.72 |

| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 3% | 1.68 |      |
|----------------------------------------------------|------|------|
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 3% | 1.70 |      |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 3% | 1.80 |      |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 3% | 1.69 |      |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 5% | 1.26 |      |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 5% | 1.30 |      |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 5% | 1.25 | 1.31 |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 5% | 1.41 |      |
| CENIZA CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO 5% | 1.32 |      |

**Figura 116** % de contenido de aire para muestra patrón y con aditivos



Figura 117
Variación porcentual del % de aire atrapado

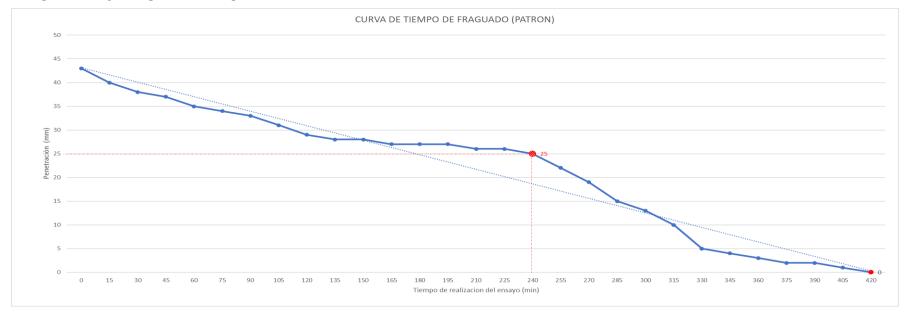


Se encontró un valor máximo de 1.8% para la mezcla de ceniza de cascarilla de café al 5%; así mismo, un valor mínimo de 1.25% para la mezcla de ceniza de cascarilla de café + cascara de huevo.

### 4.1.3.5 Tiempo de Fraguado

### 4.1.3.5.1 Tiempo de Fraguado para mezcla patrón

**Tabla 73** *Tiempo de Fraguado para mezcla patrón* 


| N° PRUEBA                     | 1       | 2            | 3            | 4            | 5            | 6            | 7            | 8            | 9            | 10           | 11           | 12           | 13           | 14           | 15           |
|-------------------------------|---------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| HORA DE<br>REALIZACIÓ<br>N    | 10:00:0 | 10:15:0<br>0 | 10:30:0<br>0 | 10:45:0<br>0 | 11:00:0<br>0 | 11:15:0<br>0 | 11:30:0<br>0 | 11:45:0<br>0 | 12:00:0<br>0 | 12:15:0<br>0 | 12:30:0<br>0 | 12:45:0<br>0 | 13:00:0<br>0 | 13:15:0<br>0 | 13:30:0<br>0 |
| TIEMPO DE<br>MEZCLA<br>(min)  | 0       | 15           | 30           | 45           | 60           | 75           | 90           | 105          | 120          | 135          | 150          | 165          | 180          | 195          | 210          |
| LECTURA<br>INICIAL Li<br>(mm) | 0       | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| LECTURA<br>FINAL Lf<br>(mm)   | 43      | 40           | 38           | 37           | 35           | 34           | 33           | 31           | 29           | 28           | 28           | 27           | 27           | 27           | 26           |
| PENETRACIÓ<br>N =Lf -Li       | 43      | 40           | 38           | 37           | 35           | 34           | 33           | 31           | 29           | 28           | 28           | 27           | 27           | 27           | 26           |

| N° PRUEBA                     | 16           | 17           | 18           | 19           | 20           | 21           | 22           | 23           | 24           | 25           | 26           | 27           | 28           | 29           | 30           |
|-------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| HORA DE<br>REALIZACIÓ<br>N    | 13:45:0<br>0 | 14:00:0<br>0 | 14:15:0<br>0 | 14:30:0<br>0 | 14:45:0<br>0 | 15:00:0<br>0 | 15:15:0<br>0 | 15:30:0<br>0 | 15:45:0<br>0 | 16:00:0<br>0 | 16:15:0<br>0 | 16:30:0<br>0 | 16:45:0<br>0 | 17:00:0<br>0 | 17:15:0<br>0 |
| TIEMPO DE<br>MEZCLA<br>(min)  | 225          | 240          | 255          | 270          | 285          | 300          | 315          | 330          | 345          | 360          | 375          | 390          | 405          | 420          | 435          |
| LECTURA<br>INICIAL Li<br>(mm) | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| LECTURA<br>FINAL Lf<br>(mm)   | 26           | 25           | 22           | 19           | 15           | 13           | 10           | 5            | 4            | 3            | 2            | 2            | 1            | 0            |              |
| PENETRACIÓ<br>N =Lf -Li       | 26           | 25           | 22           | 19           | 15           | 13           | 10           | 5            | 4            | 3            | 2            | 2            | 1            | 0            |              |

**Tabla 74** *Tiempo de fraguado* 

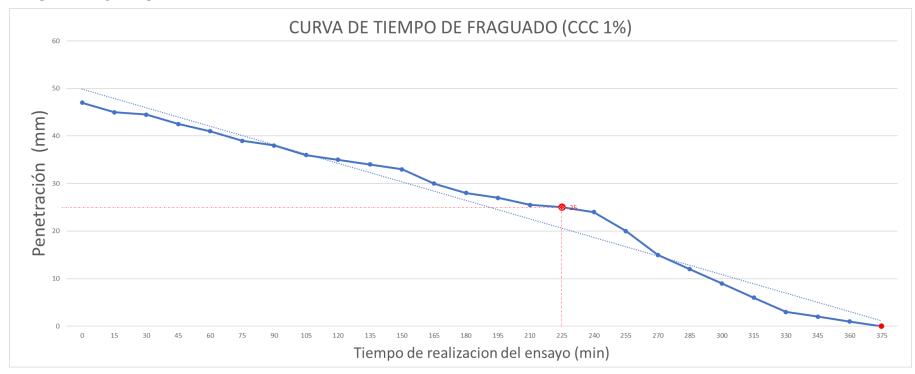
|                          | PENETRACIÓN (mm) TIEMPO (min) |     |
|--------------------------|-------------------------------|-----|
| FRAGUADO INICIAL         | 25                            | 240 |
| FRAGUADO FINAL           | 0                             | 420 |
| TIEMPO DE FRAGUADO (min) | 180                           |     |

**Figura 118** *Tiempo de Fraguado para mezcla patrón* 



# 4.1.3.5.2 Tiempo de Fraguado para mezcla + CCC 1%

**Tabla 75** *Tiempo de Fraguado para mezcla + CCC 1%* 


| N° PRUEBA                     | 1       | 2            | 3            | 4       | 5            | 6            | 7            | 8            | 9            | 10           | 11           | 12           | 13           | 14           | 15           |
|-------------------------------|---------|--------------|--------------|---------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| HORA DE<br>REALIZACIÓ<br>N    | 10:00:0 | 10:15:0<br>0 | 10:30:0<br>0 | 10:45:0 | 11:00:0<br>0 | 11:15:0<br>0 | 11:30:0<br>0 | 11:45:0<br>0 | 12:00:0<br>0 | 12:15:0<br>0 | 12:30:0<br>0 | 12:45:0<br>0 | 13:00:0<br>0 | 13:15:0<br>0 | 13:30:0<br>0 |
| TIEMPO DE<br>MEZCLA<br>(min)  | 0       | 15           | 30           | 45      | 60           | 75           | 90           | 105          | 120          | 135          | 150          | 165          | 180          | 195          | 210          |
| LECTURA<br>INICIAL Li<br>(mm) | 0       | 0            | 0            | 0       | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| LECTURA FINAL Lf (mm)         | 47      | 45           | 44.5         | 42.5    | 41           | 39           | 38           | 36           | 35           | 34           | 33           | 30           | 28           | 27           | 26           |
| PENETRACIÓ<br>N =Lf -Li       | 47      | 45           | 44.5         | 42.5    | 41           | 39           | 38           | 36           | 35           | 34           | 33           | 30           | 28           | 27           | 26           |

| N° PRUEBA                     | 16           | 17           | 18           | 19           | 20           | 21           | 22           | 23           | 24           | 25           | 26           | 27           | 28           | 29           | 30           |
|-------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| HORA DE<br>REALIZACIO<br>N    | 13:45:0<br>0 | 14:00:0<br>0 | 14:15:0<br>0 | 14:30:0<br>0 | 14:45:0<br>0 | 15:00:0<br>0 | 15:15:0<br>0 | 15:30:0<br>0 | 15:45:0<br>0 | 16:00:0<br>0 | 16:15:0<br>0 | 16:30:0<br>0 | 16:45:0<br>0 | 17:00:0<br>0 | 17:15:0<br>0 |
| TIEMPO DE<br>MEZCLA<br>(min)  | 225          | 240          | 255          | 270          | 285          | 300          | 315          | 330          | 345          | 360          | 375          | 390          | 405          | 420          | 435          |
| LECTURA<br>INICIAL Li<br>(mm) | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| LECTURA<br>FINAL Lf<br>(mm)   | 25.5         | 25           | 24           | 20           | 15           | 12           | 9            | 6            | 3            | 2            | 1            | 0            |              |              |              |
| PENETRACIÓ<br>N =Lf -Li       | 25.5         | 25           | 24           | 20           | 15           | 12           | 9            | 6            | 3            | 2            | 1            | 0            |              |              |              |

**Tabla 76** *Tiempo de fraguado* 

|                             | PENETRACIÓN (mm) | TIEMPO (min) |
|-----------------------------|------------------|--------------|
| FRAGUADO INICIAL            | 25               | 240          |
| FRAGUADO FINAL              | 0                | 390          |
| TIEMPO DE FRAGUADO<br>(min) | 150              |              |

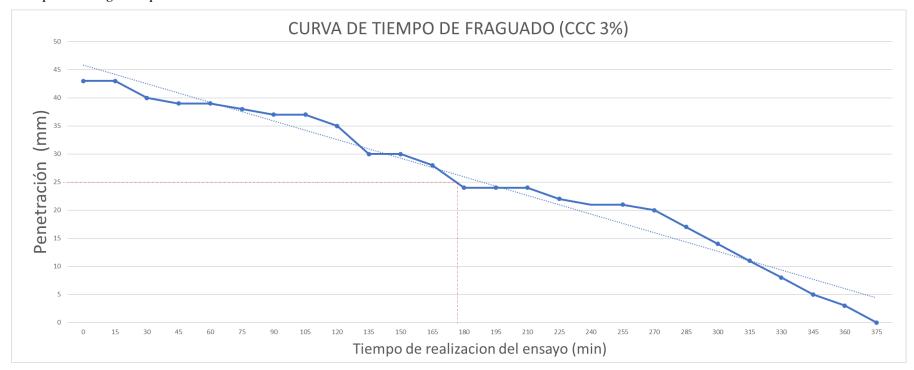
Figura 119
Tiempo de Fraguado para mezcla + CCC 1%



# 4.1.3.5.3 Tiempo de Fraguado para mezcla + CCC 3%

**Tabla 77** *Tiempo de Fraguado para mezcla + CCC 3%* 

| N° PRUEBA                     | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       |
|-------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| HORA DE<br>REALIZACIÓN        | 10:00:00 | 10:15:00 | 10:30:00 | 10:45:00 | 11:00:00 | 11:15:00 | 11:30:00 | 11:45:00 | 12:00:00 | 12:15:00 | 12:30:00 | 12:45:00 | 13:00:00 | 13:15:00 | 13:30:00 |
| TIEMPO DE<br>MEZCLA (min)     | 0        | 15       | 30       | 45       | 60       | 75       | 90       | 105      | 120      | 135      | 150      | 165      | 180      | 195      | 210      |
| LECTURA<br>INICIAL Li<br>(mm) | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| LECTURA<br>FINAL Lf (mm)      | 43       | 43       | 40       | 39       | 39       | 38       | 37       | 37       | 35       | 30       | 30       | 28       | 24       | 24       | 24       |
| PENETRACIÓN<br>=Lf -Li        | 43       | 43       | 40       | 39       | 39       | 38       | 37       | 37       | 35       | 30       | 30       | 28       | 24       | 24       | 24       |


| N° PRUEBA                  | 16       | 17       | 18       | 19       | 20       | 21       | 22       | 23       | 24       | 25       | 26       |
|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| HORA DE<br>REALIZACIÓN     | 13:45:00 | 14:00:00 | 14:15:00 | 14:30:00 | 14:45:00 | 15:00:00 | 15:15:00 | 15:30:00 | 15:45:00 | 16:00:00 | 16:15:00 |
| TIEMPO DE<br>MEZCLA (min)  | 225      | 240      | 255      | 270      | 285      | 300      | 315      | 330      | 345      | 360      | 375      |
| LECTURA INICIAL<br>Li (mm) | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |

| LECTURA FINAL<br>Lf (mm) | 22 | 21 | 21 | 20 | 17 | 14 | 11 | 8 | 5 | 3 | 0 |
|--------------------------|----|----|----|----|----|----|----|---|---|---|---|
| PENETRACIÓN =Lf<br>-Li   | 22 | 21 | 21 | 20 | 17 | 14 | 11 | 8 | 5 | 3 | 0 |

**Tabla 78** *Tiempo de fraguado* 

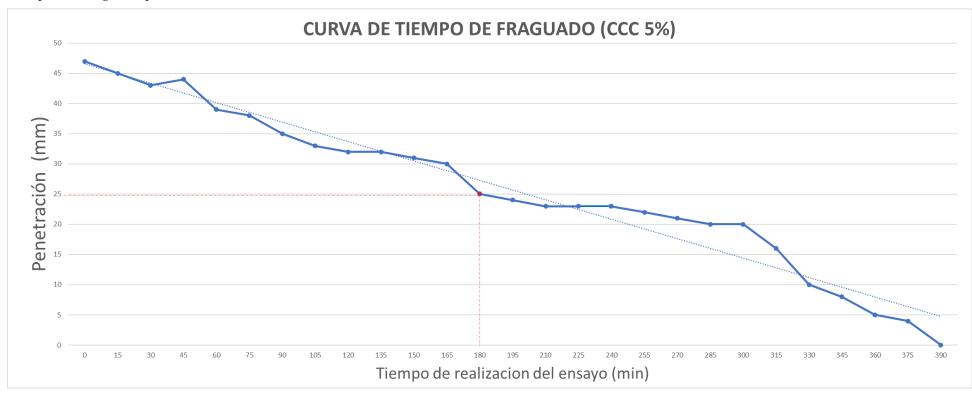
|                          | PENETRACIÓN (mm) | TIEMPO (min) |
|--------------------------|------------------|--------------|
| FRAGUADO INICIAL         | 25               | 176.25       |
| FRAGUADO FINAL           | 0                | 375          |
| TIEMPO DE FRAGUADO (min) | 198.75           | ;            |

**Figura 120**Tiempo de Fraguado para mezcla + CCC 3%



# 4.1.3.5.4 Tiempo de Fraguado para mezcla + CCC 5%

**Tabla 79** *Tiempo de Fraguado para mezcla + CCC 5%* 


| N° PRUEBA                     | 1       | 2            | 3            | 4            | 5            | 6            | 7            | 8            | 9       | 10           | 11           | 12           | 13           | 14           | 15      |
|-------------------------------|---------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|--------------|--------------|--------------|--------------|--------------|---------|
| HORA DE<br>REALIZACIÓ<br>N    | 10:00:0 | 10:15:0<br>0 | 10:30:0<br>0 | 10:45:0<br>0 | 11:00:0<br>0 | 11:15:0<br>0 | 11:30:0<br>0 | 11:45:0<br>0 | 12:00:0 | 12:15:0<br>0 | 12:30:0<br>0 | 12:45:0<br>0 | 13:00:0<br>0 | 13:15:0<br>0 | 13:30:0 |
| TIEMPO DE<br>MEZCLA<br>(min)  | 0       | 15           | 30           | 45           | 60           | 75           | 90           | 105          | 120     | 135          | 150          | 165          | 180          | 195          | 210     |
| LECTURA<br>INICIAL Li<br>(mm) | 0       | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0       | 0            | 0            | 0            | 0            | 0            | 0       |
| LECTURA<br>FINAL Lf<br>(mm)   | 47      | 45           | 43           | 44           | 39           | 38           | 35           | 33           | 32      | 32           | 31           | 30           | 25           | 24           | 23      |
| PENETRACIÓ<br>N =Lf -Li       | 47      | 45           | 43           | 44           | 39           | 38           | 35           | 33           | 32      | 32           | 31           | 30           | 25           | 24           | 23      |

| N° PRUEBA                  | 16       | 17       | 18       | 19       | 20       | 21       | 22       | 23       | 24       | 25       | 26       | 27       |
|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| HORA DE<br>REALIZACIÓN     | 13:45:00 | 14:00:00 | 14:15:00 | 14:30:00 | 14:45:00 | 15:00:00 | 15:15:00 | 15:30:00 | 15:45:00 | 16:00:00 | 16:15:00 | 16:30:00 |
| TIEMPO DE<br>MEZCLA (min)  | 225      | 240      | 255      | 270      | 285      | 300      | 315      | 330      | 345      | 360      | 375      | 390      |
| LECTURA INICIAL<br>Li (mm) | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| LECTURA FINAL<br>Lf (mm)   | 23       | 23       | 22       | 21       | 20       | 20       | 16       | 10       | 8        | 5        | 4        | 0        |
| PENETRACIÓN =Lf<br>-Li     | 23       | 23       | 22       | 21       | 20       | 20       | 16       | 10       | 8        | 5        | 4        | 0        |

**Tabla 80** *Tiempo de fraguado* 

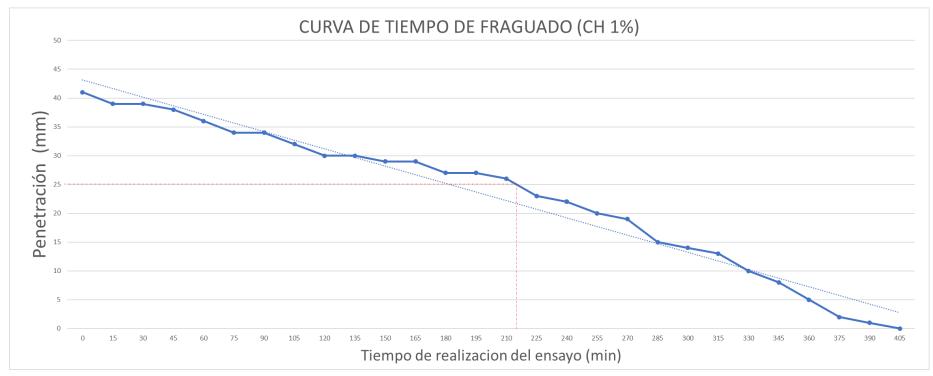
|                          | PENETRACIÓN (mm) | TIEMPO (min) |
|--------------------------|------------------|--------------|
| FRAGUADO INICIAL         | 25               | 180          |
| FRAGUADO FINAL           | 0                | 390          |
| TIEMPO DE FRAGUADO (min) | 210              |              |

**Figura 121**Tiempo de Fraguado para mezcla + CCC 5%



# 4.1.3.5.5 Tiempo de Fraguado para mezcla + CH 1%

**Tabla 81** *Tiempo de Fraguado para mezcla + CH 1%* 


| N° PRUEBA                     | 1       | 2            | 3            | 4            | 5            | 6            | 7            | 8            | 9            | 10           | 11           | 12           | 13           | 14           | 15      |
|-------------------------------|---------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|
| HORA DE<br>REALIZACIÓ<br>N    | 10:00:0 | 10:15:0<br>0 | 10:30:0<br>0 | 10:45:0<br>0 | 11:00:0<br>0 | 11:15:0<br>0 | 11:30:0<br>0 | 11:45:0<br>0 | 12:00:0<br>0 | 12:15:0<br>0 | 12:30:0<br>0 | 12:45:0<br>0 | 13:00:0<br>0 | 13:15:0<br>0 | 13:30:0 |
| TIEMPO DE<br>MEZCLA<br>(min)  | 0       | 15           | 30           | 45           | 60           | 75           | 90           | 105          | 120          | 135          | 150          | 165          | 180          | 195          | 210     |
| LECTURA<br>INICIAL Li<br>(mm) | 0       | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0       |
| LECTURA<br>FINAL Lf (mm)      | 41      | 39           | 39           | 38           | 36           | 34           | 34           | 32           | 30           | 30           | 29           | 29           | 27           | 27           | 26      |
| PENETRACIÓ<br>N =Lf -Li       | 41      | 39           | 39           | 38           | 36           | 34           | 34           | 32           | 30           | 30           | 29           | 29           | 27           | 27           | 26      |

| N° PRUEBA                     | 16       | 17       | 18       | 19       | 20       | 21       | 22       | 23       | 24       | 25       | 26       | 27       | 28       |
|-------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| HORA DE<br>REALIZACIÓN        | 13:45:00 | 14:00:00 | 14:15:00 | 14:30:00 | 14:45:00 | 15:00:00 | 15:15:00 | 15:30:00 | 15:45:00 | 16:00:00 | 16:15:00 | 16:30:00 | 16:45:00 |
| TIEMPO DE<br>MEZCLA (min)     | 225      | 240      | 255      | 270      | 285      | 300      | 315      | 330      | 345      | 360      | 375      | 390      | 405      |
| LECTURA<br>INICIAL Li<br>(mm) | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| LECTURA<br>FINAL Lf (mm)      | 23       | 22       | 20       | 19       | 15       | 14       | 13       | 10       | 8        | 5        | 2        | 1        | 0        |
| PENETRACIÓN<br>=Lf -Li        | 23       | 22       | 20       | 19       | 15       | 14       | 13       | 10       | 8        | 5        | 2        | 1        | 0        |

**Tabla 82** *Tiempo de fraguado* 

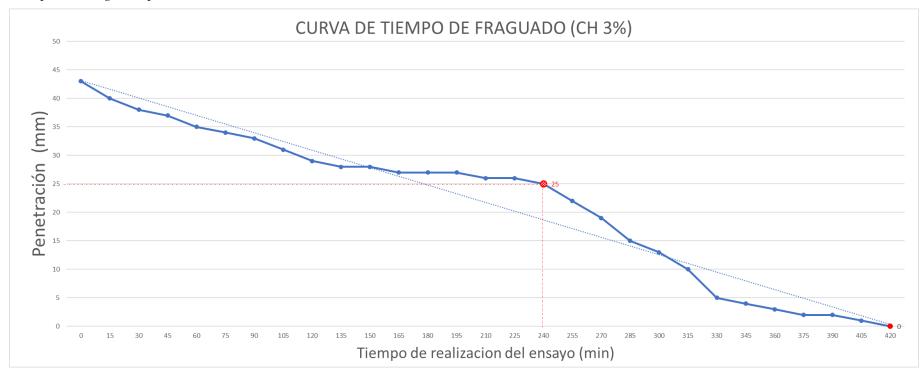
|                    | PENETRACIÓN (mm) | TIEMPO (min) |
|--------------------|------------------|--------------|
| FRAGUADO INICIAL   | 25               | 215          |
| FRAGUADO FINAL     | 0                | 405          |
| TIEMPO DE FRAGUADO | 190              |              |

**Figura 122** *Tiempo de Fraguado para mezcla + CH 1%* 



# 4.1.3.5.6 Tiempo de Fraguado para mezcla + CH 3%

**Tabla 83** *Tiempo de Fraguado para mezcla + CH 3%* 


| N° PRUEBA                     | 1       | 2            | 3            | 4            | 5            | 6            | 7            | 8            | 9            | 10           | 11           | 12           | 13      | 14           | 15      |
|-------------------------------|---------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|--------------|---------|
| HORA DE<br>REALIZACIÓ<br>N    | 10:00:0 | 10:15:0<br>0 | 10:30:0<br>0 | 10:45:0<br>0 | 11:00:0<br>0 | 11:15:0<br>0 | 11:30:0<br>0 | 11:45:0<br>0 | 12:00:0<br>0 | 12:15:0<br>0 | 12:30:0<br>0 | 12:45:0<br>0 | 13:00:0 | 13:15:0<br>0 | 13:30:0 |
| TIEMPO DE<br>MEZCLA<br>(min)  | 0       | 15           | 30           | 45           | 60           | 75           | 90           | 105          | 120          | 135          | 150          | 165          | 180     | 195          | 210     |
| LECTURA<br>INICIAL Li<br>(mm) | 0       | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0       | 0            | 0       |
| LECTURA<br>FINAL Lf<br>(mm)   | 41      | 39           | 39           | 38           | 36           | 34           | 34           | 32           | 30           | 30           | 29           | 29           | 27      | 27           | 26      |
| PENETRACIÓ<br>N =Lf -Li       | 41      | 39           | 39           | 38           | 36           | 34           | 34           | 32           | 30           | 30           | 29           | 29           | 27      | 27           | 26      |

| N° PRUEBA                  | 16       | 17       | 18       | 19       | 20       | 21       | 22       | 23       | 24       | 25       | 26       | 27       | 28       |
|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| HORA DE<br>REALIZACIÓN     | 13:45:00 | 14:00:00 | 14:15:00 | 14:30:00 | 14:45:00 | 15:00:00 | 15:15:00 | 15:30:00 | 15:45:00 | 16:00:00 | 16:15:00 | 16:30:00 | 16:45:00 |
| TIEMPO DE<br>MEZCLA (min)  | 225      | 240      | 255      | 270      | 285      | 300      | 315      | 330      | 345      | 360      | 375      | 390      | 405      |
| LECTURA<br>INICIAL Li (mm) | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| LECTURA<br>FINAL Lf (mm)   | 23       | 25       | 24       | 24       | 20       | 20       | 16       | 10       | 8        | 5        | 2        | 1        | 0        |
| PENETRACIÓN<br>=Lf -Li     | 23       | 25       | 24       | 24       | 20       | 20       | 16       | 10       | 8        | 5        | 2        | 1        | 0        |

**Tabla 84** *Tiempo de fraguado* 

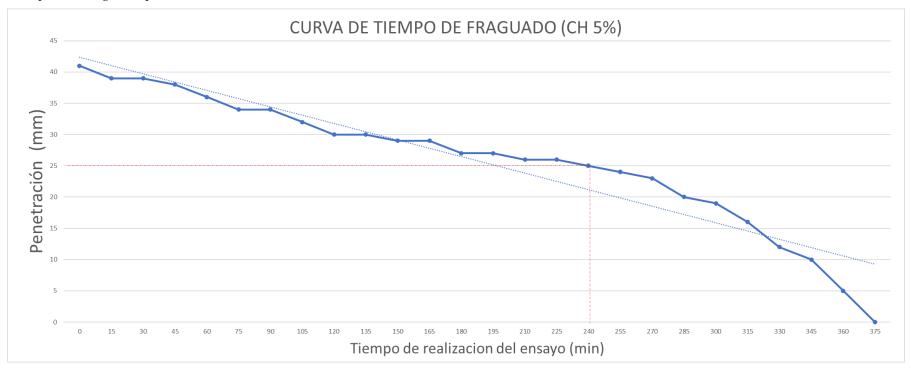
|                          | PENETRACIÓN (mm) | TIEMPO (min) |
|--------------------------|------------------|--------------|
| FRAGUADO INICIAL         | 25               | 240          |
| FRAGUADO FINAL           | 0                | 405          |
| TIEMPO DE FRAGUADO (min) | 165              |              |

**Figura 123** *Tiempo de Fraguado para mezcla + CH 3%* 



# 4.1.3.5.7 Tiempo de Fraguado para mezcla + CH 5%

**Tabla 85** *Tiempo de Fraguado para mezcla + CH 5%* 


| N° PRUEBA                     | 1       | 2            | 3            | 4            | 5            | 6            | 7            | 8            | 9       | 10           | 11           | 12           | 13           | 14           | 15      |
|-------------------------------|---------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|--------------|--------------|--------------|--------------|--------------|---------|
| HORA DE<br>REALIZACIÓ<br>N    | 10:00:0 | 10:15:0<br>0 | 10:30:0<br>0 | 10:45:0<br>0 | 11:00:0<br>0 | 11:15:0<br>0 | 11:30:0<br>0 | 11:45:0<br>0 | 12:00:0 | 12:15:0<br>0 | 12:30:0<br>0 | 12:45:0<br>0 | 13:00:0<br>0 | 13:15:0<br>0 | 13:30:0 |
| TIEMPO DE<br>MEZCLA<br>(min)  | 0       | 15           | 30           | 45           | 60           | 75           | 90           | 105          | 120     | 135          | 150          | 165          | 180          | 195          | 210     |
| LECTURA<br>INICIAL Li<br>(mm) | 0       | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0       | 0            | 0            | 0            | 0            | 0            | 0       |
| LECTURA<br>FINAL Lf<br>(mm)   | 41      | 39           | 39           | 38           | 36           | 34           | 34           | 32           | 30      | 30           | 29           | 29           | 27           | 27           | 26      |
| PENETRACIÓ<br>N =Lf -Li       | 41      | 39           | 39           | 38           | 36           | 34           | 34           | 32           | 30      | 30           | 29           | 29           | 27           | 27           | 26      |

| N° PRUEBA                  | 16       | 17       | 18       | 19       | 20       | 21       | 22       | 23       | 24       | 25       | 26       |
|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| HORA DE<br>REALIZACIÓN     | 13:45:00 | 14:00:00 | 14:15:00 | 14:30:00 | 14:45:00 | 15:00:00 | 15:15:00 | 15:30:00 | 15:45:00 | 16:00:00 | 16:15:00 |
| TIEMPO DE<br>MEZCLA (min)  | 225      | 240      | 255      | 270      | 285      | 300      | 315      | 330      | 345      | 360      | 375      |
| LECTURA<br>INICIAL Li (mm) | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| LECTURA FINAL<br>Lf (mm)   | 26       | 25       | 24       | 23       | 20       | 19       | 16       | 12       | 10       | 5        | 0        |
| PENETRACIÓN<br>=Lf -Li     | 26       | 25       | 24       | 23       | 20       | 19       | 16       | 12       | 10       | 5        | 0        |

**Tabla 86** *Tiempo de fraguado* 

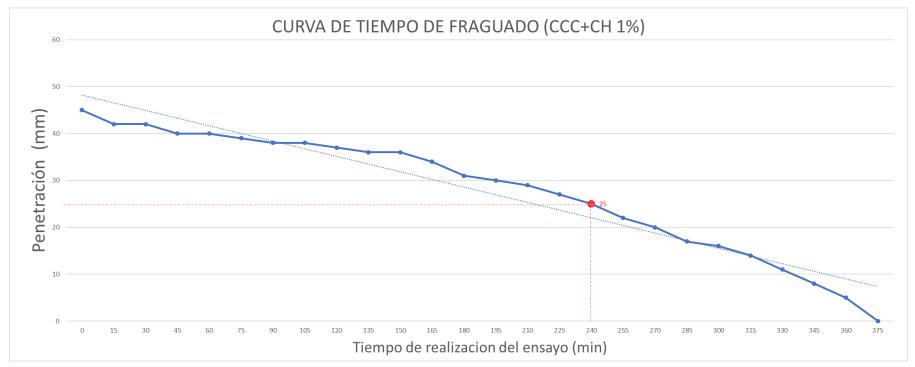
|                          | PENETRACIÓN (mm) | TIEMPO (min) |
|--------------------------|------------------|--------------|
| FRAGUADO INICIAL         | 25               | 240          |
| FRAGUADO FINAL           | 0                | 375          |
| TIEMPO DE FRAGUADO (min) | 135              |              |

**Figura 124** *Tiempo de Fraguado para mezcla + CH 5%* 



# 4.1.3.5.8 Tiempo de Fraguado para mezcla + CCC+ CH 1%

**Tabla 87** *Tiempo de Fraguado para mezcla + CCC+ CH 1%* 


| N° PRUEBA                     | 1       | 2            | 3            | 4            | 5            | 6            | 7            | 8            | 9       | 10           | 11           | 12           | 13           | 14           | 15      |
|-------------------------------|---------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|--------------|--------------|--------------|--------------|--------------|---------|
| HORA DE<br>REALIZACIÓ<br>N    | 10:00:0 | 10:15:0<br>0 | 10:30:0<br>0 | 10:45:0<br>0 | 11:00:0<br>0 | 11:15:0<br>0 | 11:30:0<br>0 | 11:45:0<br>0 | 12:00:0 | 12:15:0<br>0 | 12:30:0<br>0 | 12:45:0<br>0 | 13:00:0<br>0 | 13:15:0<br>0 | 13:30:0 |
| TIEMPO DE<br>MEZCLA<br>(min)  | 0       | 15           | 30           | 45           | 60           | 75           | 90           | 105          | 120     | 135          | 150          | 165          | 180          | 195          | 210     |
| LECTURA<br>INICIAL Li<br>(mm) | 0       | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0       | 0            | 0            | 0            | 0            | 0            | 0       |
| LECTURA<br>FINAL Lf<br>(mm)   | 45      | 42           | 42           | 40           | 40           | 39           | 38           | 38           | 37      | 36           | 36           | 34           | 31           | 30           | 29      |
| PENETRACIÓ<br>N =Lf -Li       | 45      | 42           | 42           | 40           | 40           | 39           | 38           | 38           | 37      | 36           | 36           | 34           | 31           | 30           | 29      |

| N° PRUEBA                     | 16       | 17       | 18       | 19       | 20       | 21       | 22       | 23       | 24       | 25       | 26       |
|-------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| HORA DE<br>REALIZACIÓN        | 13:45:00 | 14:00:00 | 14:15:00 | 14:30:00 | 14:45:00 | 15:00:00 | 15:15:00 | 15:30:00 | 15:45:00 | 16:00:00 | 16:15:00 |
| TIEMPO DE<br>MEZCLA (min)     | 225      | 240      | 255      | 270      | 285      | 300      | 315      | 330      | 345      | 360      | 375      |
| LECTURA<br>INICIAL Li<br>(mm) | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| LECTURA<br>FINAL Lf (mm)      | 27       | 25       | 22       | 20       | 17       | 16       | 14       | 11       | 8        | 5        | 0        |
| PENETRACIÓN<br>=Lf -Li        | 27       | 25       | 22       | 20       | 17       | 16       | 14       | 11       | 8        | 5        | 0        |

**Tabla 88** *Tiempo de fraguado* 

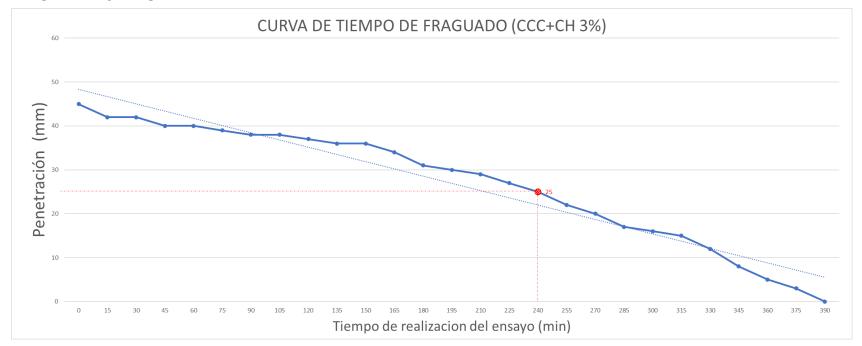
|                          | PENETRACIÓN (mm) | TIEMPO (min) |
|--------------------------|------------------|--------------|
| FRAGUADO INICIAL         | 25               | 240          |
| FRAGUADO FINAL           | 0                | 375          |
| TIEMPO DE FRAGUADO (min) | 135              |              |

Figura 125 Tiempo de Fraguado para mezcla + CCC+ CH 1%



4.1.3.5.9 Tiempo de Fraguado para mezcla + CCC+ CH 3%

**Tabla 89** *Tiempo de Fraguado para mezcla + CCC+ CH 3%* 


| N° PRUEBA                     | 1            | 2            | 3            | 4            | 5            | 6            | 7            | 8            | 9            | 10           | 11           | 12           | 13           | 14           | 15      |
|-------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|
| HORA DE<br>REALIZACIÓ<br>N    | 10:00:0<br>0 | 10:15:0<br>0 | 10:30:0<br>0 | 10:45:0<br>0 | 11:00:0<br>0 | 11:15:0<br>0 | 11:30:0<br>0 | 11:45:0<br>0 | 12:00:0<br>0 | 12:15:0<br>0 | 12:30:0<br>0 | 12:45:0<br>0 | 13:00:0<br>0 | 13:15:0<br>0 | 13:30:0 |
| TIEMPO DE<br>MEZCLA<br>(min)  | 0            | 15           | 30           | 45           | 60           | 75           | 90           | 105          | 120          | 135          | 150          | 165          | 180          | 195          | 210     |
| LECTURA<br>INICIAL Li<br>(mm) | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0       |
| LECTURA<br>FINAL Lf<br>(mm)   | 45           | 42           | 42           | 40           | 40           | 39           | 38           | 38           | 37           | 36           | 36           | 34           | 31           | 30           | 29      |
| PENETRACIÓ<br>N =Lf -Li       | 45           | 42           | 42           | 40           | 40           | 39           | 38           | 38           | 37           | 36           | 36           | 34           | 31           | 30           | 29      |

| N° PRUEBA                  | 16       | 17       | 18       | 19       | 20       | 21       | 22       | 23       | 24       | 25       | 26       | 27       |
|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| HORA DE<br>REALIZACIÓN     | 13:45:00 | 14:00:00 | 14:15:00 | 14:30:00 | 14:45:00 | 15:00:00 | 15:15:00 | 15:30:00 | 15:45:00 | 16:00:00 | 16:15:00 | 16:30:00 |
| TIEMPO DE<br>MEZCLA (min)  | 225      | 240      | 255      | 270      | 285      | 300      | 315      | 330      | 345      | 360      | 375      | 390      |
| LECTURA<br>INICIAL Li (mm) | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| LECTURA<br>FINAL Lf (mm)   | 27       | 25       | 22       | 20       | 17       | 16       | 15       | 12       | 8        | 5        | 3        | 0        |
| PENETRACIÓN<br>=Lf -Li     | 27       | 25       | 22       | 20       | 17       | 16       | 15       | 12       | 8        | 5        | 3        | 0        |

**Tabla 90** *Tiempo de fraguado* 

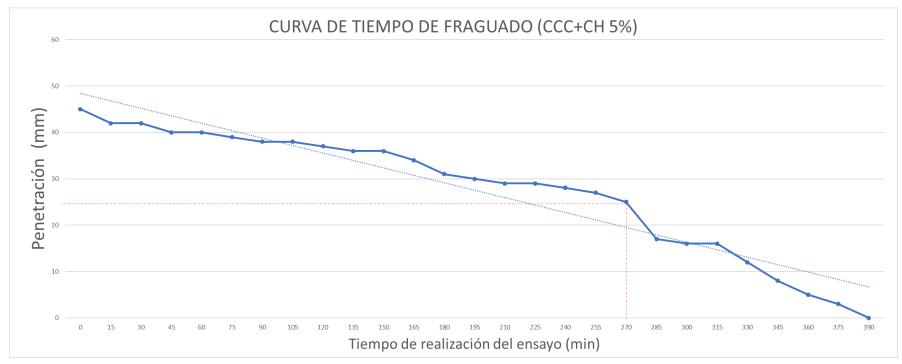
|                          | PENETRACIÓN (mm) | TIEMPO (min) |
|--------------------------|------------------|--------------|
| FRAGUADO INICIAL         | 25               | 240          |
| FRAGUADO FINAL           | 0                | 390          |
| TIEMPO DE FRAGUADO (min) | 150              |              |

Figura 126 Tiempo de Fraguado para mezcla + CCC+ CH 3%



# 4.1.3.5.10 Tiempo de Fraguado para mezcla + CCC+ CH 5%

**Tabla 91**Tiempo de Fraguado para mezcla + CCC+ CH 5%


| N° PRUEBA                     | 1       | 2            | 3            | 4            | 5            | 6            | 7            | 8            | 9       | 10           | 11           | 12           | 13      | 14           | 15      |
|-------------------------------|---------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|--------------|--------------|--------------|---------|--------------|---------|
| HORA DE<br>REALIZACIÓ<br>N    | 10:00:0 | 10:15:0<br>0 | 10:30:0<br>0 | 10:45:0<br>0 | 11:00:0<br>0 | 11:15:0<br>0 | 11:30:0<br>0 | 11:45:0<br>0 | 12:00:0 | 12:15:0<br>0 | 12:30:0<br>0 | 12:45:0<br>0 | 13:00:0 | 13:15:0<br>0 | 13:30:0 |
| TIEMPO DE<br>MEZCLA<br>(min)  | 0       | 15           | 30           | 45           | 60           | 75           | 90           | 105          | 120     | 135          | 150          | 165          | 180     | 195          | 210     |
| LECTURA<br>INICIAL Li<br>(mm) | 0       | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0       | 0            | 0            | 0            | 0       | 0            | 0       |
| LECTURA<br>FINAL Lf<br>(mm)   | 45      | 42           | 42           | 40           | 40           | 39           | 38           | 38           | 37      | 36           | 36           | 34           | 31      | 30           | 29      |
| PENETRACIÓ<br>N =Lf -Li       | 45      | 42           | 42           | 40           | 40           | 39           | 38           | 38           | 37      | 36           | 36           | 34           | 31      | 30           | 29      |

| N° PRUEBA                  | 16       | 17       | 18       | 19       | 20       | 21       | 22       | 23       | 24       | 25       | 26       | 27       |
|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| HORA DE<br>REALIZACIÓN     | 13:45:00 | 14:00:00 | 14:15:00 | 14:30:00 | 14:45:00 | 15:00:00 | 15:15:00 | 15:30:00 | 15:45:00 | 16:00:00 | 16:15:00 | 16:30:00 |
| TIEMPO DE MEZCLA (min)     | 225      | 240      | 255      | 270      | 285      | 300      | 315      | 330      | 345      | 360      | 375      | 390      |
| LECTURA INICIAL Li<br>(mm) | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| LECTURA FINAL Lf (mm)      | 29       | 28       | 27       | 25       | 17       | 16       | 16       | 12       | 8        | 5        | 3        | 0        |
| PENETRACIÓN =Lf -Li        | 29       | 28       | 27       | 25       | 17       | 16       | 16       | 12       | 8        | 5        | 3        | 0        |

**Tabla 92** *Tiempo de fraguado* 

|                          | PENETRACIÓN (mm) | TIEMPO (min) |
|--------------------------|------------------|--------------|
| FRAGUADO INICIAL         | 25               | 270          |
| FRAGUADO FINAL           | 0                | 390          |
| TIEMPO DE FRAGUADO (min) | 120              |              |

**Figura 127** *Tiempo de Fraguado para mezcla + CCC+ CH 5%* 



En resumen, en la siguiente tabla se observa que la relación del tiempo de fraguado se incrementa al aumentar el porcentaje de la caniza de la cascarilla de café, por otra parte, el tiempo de fraguado disminuye al aumentar el porcentaje de la cascara de huevo y en la combinación de la ceniza de la cascarilla de café con la cascara de huevo al 5% se observa que tiene el menor tiempo de fraguado. lo comentado se puede observar en el siguiente gráfico.

**Tabla 93** *Relación del tiempo de fraguado* 

| TRATAMIENTO  | TIEMPO DE FRAGUADO<br>(min) |
|--------------|-----------------------------|
| Patrón       | 180                         |
| CCC 1%       | 150                         |
| CCC 3%       | 198.75                      |
| CCC 5 %      | 210                         |
| CH 1%        | 190                         |
| СН 3%        | 165                         |
| CH 5 %       | 135                         |
| CCC + CH 1%  | 135                         |
| CCC + CH 3%  | 150                         |
| CCC + CH 5 % | 120                         |

**Figura 128** *Relación del tiempo de fraguado* 



#### Prueba de Hipótesis

## Hipótesis general:

Para el contraste en la hipótesis general, de la indagación: "la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, influye significativamente en la mejora de la Resistencia a la Compresión del Concreto f'c=210 kg/cm² y las propiedades físicas del concreto fresco, en zapatas de un polideportivo, Cusco 2023", donde se empleó un método estadístico; en grupos al azar, para diseños experimentales en el estudio de variables.

## Hipótesis específicas:

## Prueba de Hipótesis para la Resistencia a la Compresión a los 7 días

Considerando la hipótesis planteada: "Al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, influye significativamente en la mejora de la Resistencia a la Compresión del Concreto f'c=210 kg/cm² a los 7 días, para zapatas de un polideportivo, Cusco 2023."

**Tabla 94** *Resistencia a la compresión* 

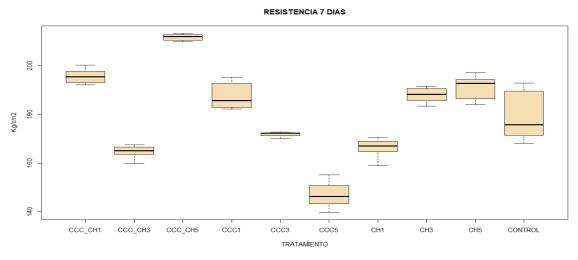
| RESISTENCIA A LA COMPRESIÓN (kg/cm²) |          |        |  |  |  |  |
|--------------------------------------|----------|--------|--|--|--|--|
|                                      | P        | 179.54 |  |  |  |  |
|                                      | CCC1%    | 187.74 |  |  |  |  |
|                                      | CCC3%    | 171.74 |  |  |  |  |
|                                      | CCC5%    | 147.02 |  |  |  |  |
| 7 DÍAS                               | CH1%     | 165.99 |  |  |  |  |
| / DIAS                               | СН3%     | 187.84 |  |  |  |  |
|                                      | CH5%     | 190.93 |  |  |  |  |
|                                      | CCC+CH1% | 195.7  |  |  |  |  |
|                                      | CCC+CH3% | 164.49 |  |  |  |  |
|                                      | CCC+CH5% | 211.71 |  |  |  |  |

Para un nivel de significancia  $\alpha = 0.05$ ;

**Ho:** La resistencia a la compresión a los 7 días; al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, no tiene diferencias significativas.

**Ha:** La resistencia a la compresión a los 7 días; al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, tiene diferencias significativas.

Para resolver la hipótesis, a continuación, se hará el estudio estadístico con la ayuda del programa R Studio, para lo cual en el siguiente cuadro mostraremos la nomenclatura utilizada:


**Tabla 95** *Nomenclatura utilizada* 

| NOMENCLATURA | DESCRIPCIÓN                                                                    |
|--------------|--------------------------------------------------------------------------------|
| PATRON_7R    | PATRÓN A LOS 7 DÍAS                                                            |
| CCC1_7R      | CENIZA DE CASCARILLA DE CAFÉ AL 1% A LOS 7 DÍAS                                |
| CCC3_7R      | CENIZA DE CASCARILLA DE CAFÉ AL 3% A LOS 7 DÍAS                                |
| CCC5_7R      | CENIZA DE CASCARILLA DE CAFÉ AL 5% A LOS 7 DÍAS                                |
| CH1_7R       | CASCARA DE HUEVO AL 1% A LOS 7 DÍAS                                            |
| CH3_7R       | CASCARA DE HUEVO AL 3% A LOS 7 DÍAS                                            |
| CH5_7R       | CASCARA DE HUEVO AL 5% A LOS 7 DÍAS                                            |
| CCC_CH1_7R   | CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 1% A<br>LOS 7 DÍAS          |
| CCC_CH3_7R   | CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 3% A LOS 7 DÍAS             |
| CCC_CH5_7R   | CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 5% A LOS 7 DÍAS             |
| TRATCONTROL  | TRATAMIENTO PATRÓN A LOS 7 DÍAS                                                |
| TRATCCC1     | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ AL 1% A LOS 7 DÍAS                    |
| TRATCCC3     | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ AL 3% A LOS 7 DÍAS                    |
| TRATCCC5     | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ AL 3% A LOS 7 DÍAS                    |
| TRATCH1      | TRATAMIENTO CASCARA DE HUEVO AL 1% A LOS 7 DÍAS                                |
| TRATCH3      | TRATAMIENTO CASCARA DE HUEVO AL 3% A LOS 7 DÍAS                                |
| TRATCH5      | TRATAMIENTO CASCARA DE HUEVO AL 5% A LOS 7 DÍAS                                |
| TRATCCC_CH1  | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 1% A LOS 7 DÍAS |
| TRATCCC_CH3  | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 3% A LOS 7 DÍAS |
| TRATCCC_CH5  | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 5% A LOS 7 DÍAS |

**Tabla 96**Datos descriptivos

| DATOS DESCRIPTIVOS |      |   |        |       |        |        |        |  |  |  |
|--------------------|------|---|--------|-------|--------|--------|--------|--|--|--|
|                    | vars | n | mean   | sd    | median | min    | max    |  |  |  |
| PATRON_7R          | 1    | 5 | 179.54 | 11.12 | 175.71 | 168.07 | 192.9  |  |  |  |
| CCC1_7R            | 1    | 5 | 187.74 | 5.9   | 185.75 | 182.2  | 195.19 |  |  |  |
| CCC3_7R            | 1    | 5 | 171.79 | 1.03  | 172.27 | 170.23 | 172.78 |  |  |  |
| CCC5_7R            | 1    | 5 | 147.02 | 6.03  | 146.29 | 139.8  | 155.08 |  |  |  |
| CH1_7R             | 1    | 5 | 165.99 | 4.54  | 167.05 | 158.9  | 170.49 |  |  |  |
| CH3_7R             | 1    | 5 | 187.84 | 3.36  | 188.18 | 183.35 | 191.37 |  |  |  |
| CH5_7R             | 1    | 5 | 190.93 | 5.53  | 192.77 | 183.98 | 197.11 |  |  |  |
| CCC_CH1_7R         | 1    | 5 | 195.7  | 3.35  | 195.44 | 192.12 | 200.28 |  |  |  |
| CCC_CH3_7R         | 1    | 5 | 164.49 | 3.01  | 165.14 | 159.79 | 167.43 |  |  |  |
| CCC_CH5_7R         | 1    | 5 | 211.71 | 1.49  | 211.99 | 209.83 | 213.39 |  |  |  |

**Figura 129** *Resistencia 7 días* 



## - PATRON\_7R:

Tiene una media de 179.54 kg/cm² y una mediana de 175.71 kg/cm², con una desviación estándar de 11.12, lo que demuestra una asimetría en la distribución con respecto a las demás desviaciones. Asimismo, tiene un rango de valores que oscila entre 168.07 y 192.9 kg/cm².

## - CCC1\_7R:

Tiene una media de 187.74 kg/cm², con una desviación estándar de 5.9. Su distribución esta más concentrada cerca de la media, ya que la desviación estándar es relativamente baja con respecto a la desviación estándar del tratamiento PATRON\_7R, además su rango de valores varia de 182.2 a 195.19 kg/cm²

#### CCC3 7R:

La media es 171.79 kg/cm<sup>2</sup>, con una desviación estándar de 1.03. La mediana es cercana a la media, y por consiguiente tiene una distribución simétrica, además su rango de valores es estrecho, de 170.23 a 172.78 kg/cm<sup>2</sup>.

#### CCC5\_7R:

La media es de 147.02 kg/cm², con una desviación estándar de 6.03, la desviación estándar relativamente alta lo cual indica que los valores están más dispersos alrededor de la media, además su rango de valores varía de 139.8 a 155.08 kg/cm².

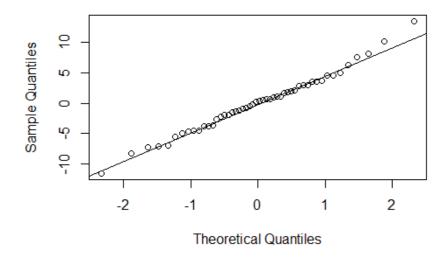
#### - CH1\_7R, CH3\_7R, CH5\_7R:

En estas variables, observamos valores medios y desviaciones estándar similares, alrededor de 165.99, 187.84, y 190.93 kg/cm² respectivamente.

La distribución está cerca de la normalidad, ya que las desviaciones estándar no son muy altas y las medias son cercanas a las medianas, además los rangos de valores son diferentes para cada variable, lo que indica variabilidad en los datos.

#### CCC\_CH1\_7R, CCC\_CH3\_7R, CCC\_CH5\_7R:

Estas variables muestran medias de 195.7, 164.49 y 211.71 kg/cm<sup>2</sup> respectivamente.


Sus desviaciones estándar son relativamente bajas, indicando una concentración de datos alrededor de la media, además los rangos de valores son estrechos en comparación con otras variables.

**Tabla 97**Shapiro-Wilk normality test

| Shapiro-Wilk normality test |         |         |  |  |  |  |  |  |
|-----------------------------|---------|---------|--|--|--|--|--|--|
|                             | W       | p-value |  |  |  |  |  |  |
| PATRON_7R                   | 0.88574 | 0.3361  |  |  |  |  |  |  |
| CCC1_7R                     | 0.87314 | 0.2794  |  |  |  |  |  |  |
| CCC3_7R                     | 0.90372 | 0.4308  |  |  |  |  |  |  |
| CCC5_7R                     | 0.98257 | 0.9479  |  |  |  |  |  |  |
| CH1_7R                      | 0.93113 | 0.6041  |  |  |  |  |  |  |
| CH3_7R                      | 0.94231 | 0.6823  |  |  |  |  |  |  |
| CH5_7R                      | 0.92755 | 0.5798  |  |  |  |  |  |  |
| CCC_CH1_7R                  | 0.95391 | 0.7651  |  |  |  |  |  |  |
| CCC_CH3_7R                  | 0.92748 | 0.5793  |  |  |  |  |  |  |
| CCC_CH5_7R                  | 0.9473  | 0.7179  |  |  |  |  |  |  |

Figura 130
Normal Q-Q Plot

# Normal Q-Q Plot



Para discutir la normalidad de los datos utilizando los resultados del test de Shapiro-Wilk, analizaremos los valores de "p" (p-value) obtenidos junto con el estadístico W. El test de Shapiro-Wilk se utiliza para evaluar si una muestra de datos proviene de una distribución normal.

# - PATRON\_7R:

El valor p es 0.3361 y el estadístico W es 0.88574.

Dado que el valor p es mayor que el nivel de significancia típico (0.05), por lo tanto, los valores tienen una distribución normal.

#### - CCC1\_7R:

El valor p es 0.2794 y el estadístico W es 0.87314.

el valor p es mayor que 0.05, lo que sugiere que los datos tienen una distribución normal.

- CCC3\_7R, CCC5\_7R, CH1\_7R, CH3\_7R, CH5\_7R, CCC\_CH1\_7R, CCC\_CH3\_7R, CCC\_CH5\_7R:

En todos estos casos, los valores p son mayores que 0.05, lo que indica que tiene una distribución normal. Asimismo, los valores de W son todos cercanos a 1.

En resumen, según los resultados del test de Shapiro-Wilk, podemos considerar que los datos son normales para todos los casos presentados.

#### Tabla 98

Prueba de homogeneidad

# PRUEBA DE HOMOGENEIDAD DE VARIANZA "BARTLERR, Y LEVENNE PARA DATOS DIA 7"

Bartlett's Test p-value = 0.002209

Levene's Test p-value = 0.0285 \*

Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' '

1

#### Bartlett Test:

El valor p obtenido es 0.002209.

Como el valor p es menor que el nivel de significancia comúnmente utilizado (0.05), rechazamos la hipótesis nula de homogeneidad de varianzas. Esto sugiere que al menos una de las poblaciones tiene una varianza diferente de las otras.

#### Levene's Test:

El valor p obtenido es 0.0285.

Al igual que el test de Bartlett, el valor p es menor que 0.05, lo que sugiere que las varianzas son heterogéneas entre los grupos.

**Tabla 99** homogeneidad entre grupos

| Coefficients: |          |            |           |                  |  |  |  |  |  |
|---------------|----------|------------|-----------|------------------|--|--|--|--|--|
|               | Estimate | Std. Error | t value   | <b>Pr</b> (> t ) |  |  |  |  |  |
| (Intercept)   | 195.704  | 2.37       | 82.573 <  | 2E-16 ***        |  |  |  |  |  |
| TRATCCC_CH3   | -31.21   | 3.352      | -9.311    | 1.45E-11 ***     |  |  |  |  |  |
| TRATCCC_CH5   | 16.002   | 3.352      | 4.774     | 2.42E-05 ***     |  |  |  |  |  |
| TRATCCC1      | -7.96    | 3.352      | -2.375    | 0.0224 *         |  |  |  |  |  |
| TRATCCC3      | -23.916  | 3.352      | -7.135    | 1.22E-08 ***     |  |  |  |  |  |
| TRATCCC5      | -48.682  | 3.352      | -14.524 < | 2.00E-16 ***     |  |  |  |  |  |
| TRATCH1       | -29.712  | 3.352      | -8.865    | 5.54E-11 ***     |  |  |  |  |  |
| TRATCH3       | -7.868   | 3.352      | -2.347    | 0.0239 *         |  |  |  |  |  |
| TRATCH5       | -4.77    | 3.352      | -1.423    | 0.1625           |  |  |  |  |  |
| TRATCONTROL   | -16.166  | 3.352      | -4.823    | 2.08E-05 ***     |  |  |  |  |  |

Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' '1

Residual standard error: 5.3 on 40 degrees of freedom

Multiple R-squared: 0.9321,

F-statistic: 61 on 9 and 40 DF, p-value: < 2.2e-16

#### Coeficientes:

- TRATCCC\_CH3, TRATCCC\_CH5, TRATCCC1, TRATCCC3, TRATCCC5, TRATCH1, TRATCH3, TRATCH5, TRATCONTROL: Estos son los coeficientes de los diferentes tratamientos. Cada coeficiente representa el cambio esperado en la variable de respuesta cuando se compara con el tratamiento de referencia (TRATCONTROL). TRATCCC\_CH3 tiene un coeficiente de -31.210, lo que sugiere que cuando se aplica este tratamiento en lugar del TRATCONTROL, se espera una disminución de aproximadamente 31.210 unidades en la variable de respuesta.
- Significancia estadística:
- Los tratamientos TRATCCC\_CH3, TRATCCC\_CH5, TRATCCC3, TRATCCC5, TRATCH1 tienen alta diferencia estadística significativa.

- **TRATCCC1, TRATCH3** tienen diferencia estadística considerable con un nivel de confianza del 95% (p < 0.05), mientras que **TRATCONTROL** también es significativo.
- R-cuadrado ajustado (coeficiente de determinación ajustado):
- El valor del R-cuadrado ajustado es 0.9168, lo que significa que aproximadamente el 91.68% de la variabilidad en la variable de respuesta puede explicarse por los tratamientos incluidos en el modelo.
- Un valor alto de R-cuadrado ajustado sugiere que el modelo es capaz de explicar una gran proporción de la variabilidad observada en los datos.
- F-statistic:
- El valor F es 61 con 9 y 40 grados de libertad, y el valor p asociado es menor que 2.2e-16 (esencialmente cero), lo que indica que el modelo en su conjunto es altamente significativo.
- Esto sugiere que al menos uno de los tratamientos tiene un efecto significativo en la variable de respuesta.

En conclusión, el análisis de regresión múltiple sugiere que los diferentes tratamientos tienen un efecto significativo en la variable de respuesta, y el modelo en su conjunto es estadísticamente significativo para predecir la variable de respuesta.

**Tabla 100** *Análisis de la varianza* 

| ANALISIS DE VARIANZA |            |               |                     |         |   |          |     |  |  |  |
|----------------------|------------|---------------|---------------------|---------|---|----------|-----|--|--|--|
| anova(MODE           | ELO1)      |               |                     |         |   |          |     |  |  |  |
| Analysis of V        | 'ariance ' | Γable         |                     |         |   |          |     |  |  |  |
| Response: RE         | ESIST      |               |                     |         |   |          |     |  |  |  |
|                      | Df         | Sum Sq        | Mean Sq             | F value |   | Pr(>F)   |     |  |  |  |
| TRAT                 | 9          | 15419.5       | 1713.28             | 61.001  | < | 2.20E-16 | *** |  |  |  |
| Residuals            | 40         | 1123.4        | 28.09               |         |   |          |     |  |  |  |
|                      |            |               |                     |         |   |          |     |  |  |  |
| Signif. codes:       | 0 '***     | 0.001 '**' 0. | 01 '*' 0.05 '.' 0.1 | 1''1    |   |          |     |  |  |  |

Los resultados del análisis de varianza (ANOVA) proporcionan información importante sobre la relación entre la variable de respuesta (RESIST) y el factor de tratamiento (TRAT). Aquí está la discusión de los resultados:

- Tabla de análisis de varianza:

•Pr(>F) (Valor p): El valor p asociado con el valor F es esencialmente cero (< 2.2e-16), lo que indica que el efecto de al menos uno de los tratamientos en la variable de respuesta es estadísticamente significativo.

#### Interpretación:

- •La hipótesis nula del ANOVA es que no hay efecto significativo de los tratamientos sobre la variable de respuesta (RESIST). La hipótesis alternativa es que al menos un tratamiento tiene un efecto significativo.
- •El valor p muy bajo (< 0.001) indica que la hipótesis nula debe ser rechazada, lo que significa que al menos un tratamiento tiene un efecto significativo en la variable de respuesta.

#### Significancia estadística:

•La notación de asteriscos (\*\*\*) indica que el efecto de TRAT es altamente significativo (p < 0.001), lo que sugiere que hay al menos un tratamiento que tiene un efecto significativo en la variable de respuesta.

En conclusión, los resultados del análisis de varianza sugieren que hay al menos un tratamiento que tiene un efecto significativo en la variable de respuesta (RESIST).

**Tabla 101** *Comparación de medidas* 

# COMPARACION DE MEDIAS prueba de tukey

W<-TukeyHSD(MODELO1)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = RESIST ~ TRAT, data = DIA7)

|                 | diff    | lwr       | upr         | p adj     |
|-----------------|---------|-----------|-------------|-----------|
| CCC_CH3-CCC_CH1 | -31.21  | -42.43114 | -19.9888597 | 0         |
| CCC_CH5-CCC_CH1 | 16.002  | 4.78086   | 27.2231403  | 0.000915  |
| CCC1-CCC_CH1    | -7.96   | -19.18114 | 3.2611403   | 0.3670096 |
| CCC3-CCC_CH1    | -23.916 | -35.13714 | -12.6948597 | 0.0000005 |
| CCC5-CCC_CH1    | -48.682 | -59.90314 | -37.4608597 | 0         |
| CH1-CCC_CH1     | -29.712 | -40.93314 | -18.4908597 | 0         |
| CH3-CCC_CH1     | -7.868  | -19.08914 | 3.3531403   | 0.382898  |

| CH5-CCC_CH1     | -4.77   | -15.99114 | 6.4511403   | 0.912545  |
|-----------------|---------|-----------|-------------|-----------|
| CONTROL-CCC_CH1 | -16.166 | -27.38714 | -4.9448597  | 0.000788  |
| CCC_CH5-CCC_CH3 | 47.212  | 35.99086  | 58.4331403  | 0         |
| CCC1-CCC_CH3    | 23.25   | 12.02886  | 34.4711403  | 0.000001  |
| CCC3-CCC_CH3    | 7.294   | -3.92714  | 18.5151403  | 0.4885874 |
| CCC5-CCC_CH3    | -17.472 | -28.69314 | -6.2508597  | 0.0002358 |
| CH1-CCC_CH3     | 1.498   | -9.72314  | 12.7191403  | 0.9999848 |
| СН3-ССС_СН3     | 23.342  | 12.12086  | 34.5631403  | 0.0000009 |
| CH5-CCC_CH3     | 26.44   | 15.21886  | 37.6611403  | 0         |
| CONTROL-CCC_CH3 | 15.044  | 3.82286   | 26.2651403  | 0.0021664 |
| CCC1-CCC_CH5    | -23.962 | -35.18314 | -12.7408597 | 0.0000005 |
| CCC3-CCC_CH5    | -39.918 | -51.13914 | -28.6968597 | 0         |
| CCC5-CCC_CH5    | -64.684 | -75.90514 | -53.4628597 | 0         |
| CH1-CCC_CH5     | -45.714 | -56.93514 | -34.4928597 | 0         |
| CH3-CCC_CH5     | -23.87  | -35.09114 | -12.6488597 | 0.0000005 |
| CH5-CCC_CH5     | -20.772 | -31.99314 | -9.5508597  | 0.0000104 |
| CONTROL-CCC_CH5 | -32.168 | -43.38914 | -20.9468597 | 0         |
| CCC3-CCC1       | -15.956 | -27.17714 | -4.7348597  | 0.0009541 |
| CCC5-CCC1       | -40.722 | -51.94314 | -29.5008597 | 0         |
| CH1-CCC1        | -21.752 | -32.97314 | -10.5308597 | 0.0000041 |
| CH3-CCC1        | 0.092   | -11.12914 | 11.3131403  | 1         |
| CH5-CCC1        | 3.19    | -8.03114  | 14.4111403  | 0.9933966 |
| CONTROL-CCC1    | -8.206  | -19.42714 | 3.0151403   | 0.3262725 |
| CCC5-CCC3       | -24.766 | -35.98714 | -13.5448597 | 0.0000002 |
| CH1-CCC3        | -5.796  | -17.01714 | 5.4251403   | 0.7726296 |
| СН3-ССС3        | 16.048  | 4.82686   | 27.2691403  | 0.0008775 |
| CH5-CCC3        | 19.146  | 7.92486   | 30.3671403  | 0.0000487 |
| CONTROL-CCC3    | 7.75    | -3.47114  | 18.9711403  | 0.4037558 |

| CH1-CCC5     | 18.97   | 7.74886   | 30.1911403 | 0.0000576 |
|--------------|---------|-----------|------------|-----------|
| CH3-CCC5     | 40.814  | 29.59286  | 52.0351403 | 0         |
| CH5-CCC5     | 43.912  | 32.69086  | 55.1331403 | 0         |
| CONTROL-CCC5 | 32.516  | 21.29486  | 43.7371403 | 0         |
| СН3-СН1      | 21.844  | 10.62286  | 33.0651403 | 0.0000037 |
| CH5-CH1      | 24.942  | 13.72086  | 36.1631403 | 0.0000002 |
| CONTROL-CH1  | 13.546  | 2.32486   | 24.7671403 | 0.007936  |
| СН5-СН3      | 3.098   | -8.12314  | 14.3191403 | 0.9946602 |
| CONTROL-CH3  | -8.298  | -19.51914 | 2.9231403  | 0.3117315 |
| CONTROL-CH5  | -11.396 | -22.61714 | -0.1748597 | 0.0439525 |

**Tabla 102**Valor Critico de la varianza

Alpha: 0.05; DF Error: 40

Critical Value of Studentized Range: 4.734513

Minimun Significant Difference: 11.22114

Treatments with the same letter are not significantly different.

|         | RESIST  | GROUPS |
|---------|---------|--------|
| CCC_CH5 | 211.706 | a      |
| CCC_CH1 | 195.704 | b      |
| СН5     | 190.934 | b      |
| СНЗ     | 187.836 | bc     |
| CCC1    | 187.744 | bc     |
| CONTROL | 179.538 | cd     |
| CCC3    | 171.788 | de     |
| CH1     | 165.992 | e      |
| CCC_CH3 | 164.494 | e      |
| CCC5    | 147.022 | f      |

La prueba de Tukey, también conocida como comparación múltiple de medias de Tukey, es una herramienta estadística utilizada para determinar si existen diferencias significativas entre las medias de múltiples grupos. Los resultados proporcionados por esta prueba se utilizan para comparar todas las combinaciones posibles de medias y determinar si son significativamente diferentes entre sí. A continuación, se discuten los resultados obtenidos:

- Para la comparación entre CCC\_CH3 y CCC\_CH1, la diferencia en las medias es -31.210, lo que significa que la media de CCC\_CH3 es 31.210 unidades más baja que la de CCC\_CH1. Esta diferencia es estadísticamente significativa con un valor de p ajustado de 0.0000000.
- Para la comparación entre CCC\_CH5 y CCC\_CH1, la diferencia en las medias es 16.002, lo que significa que la media de CCC\_CH5 es 16.002 unidades más alta que la de CCC\_CH1. Esta diferencia también es estadísticamente significativa con un valor de p ajustado de 0.0009150.
- Para la comparación entre CH5 y CH1, la diferencia en las medias es 24.942, lo que significa que la media de CH5 es 24.942 unidades más alta que la de CH1. Esta diferencia es significativa con un valor de p ajustado de 0.0000002, lo que indica que hay una diferencia significativa entre estas dos medias.

Los resultados de la prueba de Tukey muestran diferencias significativas entre las medias de los diferentes tratamientos. Estas diferencias son importantes para comprender mejor cómo cada tratamiento afecta la variable de respuesta y para tomar decisiones basadas en evidencia en futuros análisis o experimentos.

Asimismo, podemos observar en los grupos formados con la prueba de TUKEY lo siguiente:

- CCC\_CH5 tiene el promedio de resistencia más alto (211.706) y es significativamente diferente de todos los demás grupos. Asimismo, el tratamiento CCC5 tiene un promedio de resistencia (147.022) y también es significativamente diferente con la letra "f".
- CCC\_CH1, CH5, CH3 (marcados con "b" y "bc") forman el siguiente grupo. No son estadísticamente diferentes entre sí, pero sí lo son de los grupos con valores promedio más bajos (marcados con "d", "e" y "f").
- La tendencia continúa con CCC1 y CONTROL (marcados con "bc" y "cd") formando otro grupo, seguido de CCC3 y CH1 (marcados con "de" y "e").
- CCC\_CH3 y CCC5 (marcados con "e" y "f") tienen los promedios de resistencia más bajos y son significativamente diferentes de todos los demás grupos.

Por consiguiente, después de realizar el análisis estadístico, nos quedamos con la hipótesis alterna la cual es "La resistencia a la compresión a los 7 días; al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, tiene diferencias significativas."

#### Prueba de Hipótesis para la Resistencia a la Compresión a los 14 días:

Considerando la hipótesis planteada: "Al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, influye significativamente en la mejora de la Resistencia a la Compresión del Concreto f'c=210 kg/cm² a los 14 días, para zapatas de un polideportivo, Cusco 2023."

**Tabla 103** *Resistencia a la compresión* 

| RESISTENCIA A LA COMPRESIÓN<br>(kg/cm2) |          |        |  |  |
|-----------------------------------------|----------|--------|--|--|
|                                         | P        | 196.66 |  |  |
|                                         | CCC1%    | 219.94 |  |  |
|                                         | CCC3%    | 215.67 |  |  |
|                                         | CCC5%    | 180.02 |  |  |
| 14 DIAS                                 | CH1%     | 182.78 |  |  |
| 14 DIAS                                 | СН3%     | 215.29 |  |  |
|                                         | CH5%     | 219.26 |  |  |
|                                         | CCC+CH1% | 210.62 |  |  |
|                                         | CCC+CH3% | 194.83 |  |  |
|                                         | CCC+CH5% | 241.97 |  |  |

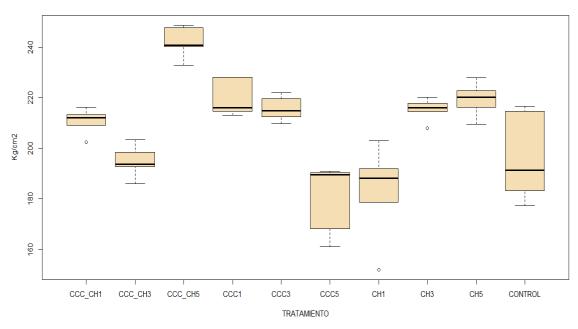
Para un nivel de significancia  $\alpha = 0.05$ ;

**Ho:** La resistencia a la compresión a los 14 días; al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, no tiene diferencias significativas.

**Ha:** La resistencia a la compresión a los 14 días; al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, tiene diferencias significativas.

Para resolver la hipótesis, a continuación, se hará el estudio estadístico con la ayuda del programa R Studio, para lo cual en el siguiente cuadro mostraremos la nomenclatura utilizada:

**Tabla 104** *Nomenclatura utilizada* 


| NOMENCLATURA | DESCRIPCIÓN                                                                        |
|--------------|------------------------------------------------------------------------------------|
| PATRON_14R   | PATRÓN A LOS 14 DÍAS                                                               |
| CCC1_14R     | CENIZA DE CASCARILLA DE CAFÉ AL 1% A LOS 14 DÍAS                                   |
| CCC3_14R     | CENIZA DE CASCARILLA DE CAFÉ AL 3% A LOS 14 DÍAS                                   |
| CCC5_14R     | CENIZA DE CASCARILLA DE CAFÉ AL 5% A LOS 14 DÍAS                                   |
| CH1_14R      | CASCARA DE HUEVO AL 1% A LOS 14 DÍAS                                               |
| CH3_14R      | CASCARA DE HUEVO AL 3% A LOS 14 DÍAS                                               |
| CH5_14R      | CASCARA DE HUEVO AL 5% A LOS 14 DÍAS                                               |
| CCC_CH1_14R  | CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 1% A LOS 14 DÍAS                |
| CCC_CH3_14R  | CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 3% A LOS 14 DÍAS                |
| CCC_CH5_14R  | CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 5% A LOS 14 DÍAS                |
| TRATCONTROL  | TRATAMIENTO PATRÓN A LOS 14 DÍAS                                                   |
| TRATCCC1     | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ AL 1% A LOS 14 DÍAS                       |
| TRATCCC3     | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ AL 3% A LOS 14 DÍAS                       |
| TRATCCC5     | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ AL 3% A LOS 14 DÍAS                       |
| TRATCH1      | TRATAMIENTO CASCARA DE HUEVO AL 1% A LOS 14 DÍAS                                   |
| ткатсн3      | TRATAMIENTO CASCARA DE HUEVO AL 3% A LOS 14 DÍAS                                   |
| TRATCH5      | TRATAMIENTO CASCARA DE HUEVO AL 5% A LOS 14 DÍAS                                   |
| TRATCCC_CH1  | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO AL 1% A LOS 14 DÍAS |
| TRATCCC_CH3  | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO AL 3% A LOS 14 DÍAS |
| TRATCCC_CH5  | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO AL 5% A LOS 14 DÍAS |

**Tabla 105**Datos descriptivos

| DATOS DESCRIPTIVOS |      |   |        |       |        |        |        |
|--------------------|------|---|--------|-------|--------|--------|--------|
|                    | vars | n | mean   | sd    | median | min    | max    |
| PATRON_14R         | 1    | 5 | 196.66 | 18.11 | 191.37 | 177.23 | 216.7  |
| CCC1_14R           | 1    | 5 | 219.94 | 7.5   | 215.94 | 213.01 | 228.16 |
| CCC3_14R           | 1    | 5 | 215.67 | 5.02  | 214.8  | 209.74 | 221.93 |
| CCC5_14R           | 1    | 5 | 180.01 | 14.28 | 189.62 | 161.06 | 190.85 |
| CH1_14R            | 1    | 5 | 182.78 | 19.25 | 188.18 | 152.02 | 202.92 |
| CH3_14R            | 1    | 5 | 215.29 | 4.64  | 215.94 | 207.92 | 220.21 |
| CH5_14R            | 1    | 5 | 219.26 | 6.92  | 220.14 | 209.45 | 227.83 |
| CCC_CH1_14R        | 1    | 5 | 210.62 | 5.32  | 212.12 | 202.32 | 216.32 |
| CCC_CH3_14R        | 1    | 5 | 194.83 | 6.48  | 193.66 | 186.02 | 203.34 |
| CCC_CH5_14R        | 1    | 5 | 241.96 | 6.46  | 240.64 | 232.75 | 248.66 |

**Figura 131** *Resistencia 14 días* 





#### - PATRON 14R:

Tiene una media de 196.66 kg/cm² y una mediana de 191.37 kg/cm², con una desviación estándar de 18.11, lo que demuestra una asimetría en la distribución con respecto a las demás desviaciones. Asimismo, tiene un rango de valores que oscila entre 177.23 y 216.7 kg/cm².

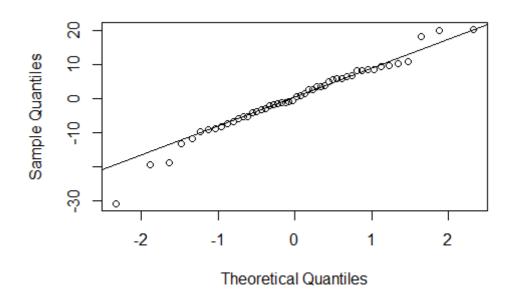
#### - CCC1\_14R, CCC3\_14R, CCC5\_14R:

Estas variables representan diferentes condiciones o tratamientos, y muestran diferentes patrones de medias y dispersiones, en el caso de CCC1\_14R tiene una media de alrededor de 219.94 kg/cm² con una desviación estándar de aproximadamente 7.5, mientras que CCC5\_14R tiene una media más baja de alrededor de 180.01 kg/cm² con una desviación estándar de aproximadamente 14.28, la cual indica una asimetría en su dispersión para este tratamiento. Para el caso de CCC3\_14R tiene una media intermedia de aproximadamente 215.67 kg/cm² con una desviación estándar de alrededor de 5.02, este último tratamiento y con el tratamiento CCC1\_14R muestran una simetría en su distribución.

#### - CH1\_14R, CH3\_14R, CH5\_14R:

El tratamiento CH1\_14R tiene una media de 182.78 kg/cm² con una desviación estándar de alrededor de 19.25, lo que indica una mayor variabilidad en comparación con las otras variables. Con respecto al tratamiento CH5\_14R tiene la media mayor entre estas tres variables, con un valor de 219.26 kg/cm².

### - CCC\_CH1\_14R, CCC\_CH3\_14R, CCC\_CH5\_14R:


Las desviaciones estándares de los tratamientos CCC\_CH1\_14R, CCC\_CH3\_14R, CCC\_CH5\_14R, son 5.32, 6.48, 6.46 respectivamente, lo cual nos indica que sus valores se encuentran alrededor de sus respectivas medias. Además, el tratamiento CCC\_CH5\_14R tiene la mayor media entre todos los tratamientos, con un valor de 241.96 kg/cm².

**Tabla 106** Shapiro-Wilk normality test

| Shapiro-Wilk normality test |         |         |  |  |  |
|-----------------------------|---------|---------|--|--|--|
|                             | W       | p-value |  |  |  |
| PATRON_14R                  | 0.87179 | 0.2737  |  |  |  |
| CCC1_14R                    | 0.78662 | 0.06276 |  |  |  |
| CCC3_14R                    | 0.95838 | 0.7966  |  |  |  |
| CCC5_14R                    | 0.77543 | 0.05033 |  |  |  |
| CH1_14R                     | 0.92496 | 0.5624  |  |  |  |
| CH3_14R                     | 0.93436 | 0.6264  |  |  |  |
| CH5_14R                     | 0.99151 | 0.9847  |  |  |  |
| CCC_CH1_14R                 | 0.9418  | 0.6787  |  |  |  |
| CCC_CH3_14R                 | 0.98383 | 0.954   |  |  |  |
| CCC_CH5_14R                 | 0.91842 | 0.5198  |  |  |  |

Figura 132
Normal Q-Q plot

# Normal Q-Q Plot



Para discutir la normalidad de los datos utilizando los resultados del test de Shapiro-Wilk, analizaremos los valores de "p" (p-value) obtenidos junto con el estadístico W. El test de Shapiro-Wilk se utiliza para evaluar si una muestra de datos proviene de una distribución normal.

#### - PATRON 14R:

El valor p obtenido del test de Shapiro-Wilk para PATRON\_14R es 0.2737, lo que indica que no hay evidencia suficiente para rechazar la hipótesis nula de normalidad. Por consiguiente, la variable PATRON\_14R tiene una distribución normal.

- CCC1\_14R, CCC3\_14R, CCC5\_14R, CH1\_14R, CH3\_14R, CH5\_14R, CCC\_CH1\_14R, CCC\_CH3\_14R, CCC\_CH5\_14R:

Para estas variables, los valores p son mayores que 0.05 en la mayoría de los casos, lo que sugiere que no hay suficiente evidencia para rechazar la hipótesis nula de normalidad para estas variables.

Sin embargo, en algunos casos, como CCC1\_14R (p = 0.06276) y CCC5\_14R (p = 0.05033), los valores p están cerca del umbral de significancia del 5%. Esto indica que podría haber cierta incertidumbre sobre la normalidad de estos datos, pero no se puede concluir definitivamente que no sean normales.

En resumen, según los resultados del test de Shapiro-Wilk, podemos considerar que los datos son normales para todos los casos presentados.

**Tabla 107** prueba de homogeneidad

# PRUEBA DE HOMOGENEIDAD DE VARIANZA "BARTLERR, Y LEVENNE PARA DATOS DIA 14"

| Bartlett's Test | p-value = $0.01594$ |
|-----------------|---------------------|
| Levene's Test   | p-value = 0.2436    |

Los resultados obtenidos de las pruebas de homogeneidad de varianzas (Bartlett y Levene) proporcionan información importante sobre la igualdad de varianzas entre los diferentes tratamientos o grupos. Aquí está la discusión de los resultados:

#### Bartlett's Test:

El valor p obtenido del test de Bartlett es 0.01594, que es menor que el nivel de significancia comúnmente utilizado de 0.05. Esto indica que hay evidencia significativa para rechazar la hipótesis nula de igualdad de varianzas entre los grupos. En otras palabras, las varianzas de al menos un par de grupos son diferentes.

#### Levene's Test:

El valor p obtenido del test de Levene es 0.2436, el cual es mayor que 0.05, esto indica que no hay suficiente evidencia para rechazar la hipótesis nula de igualdad de varianzas.

En resumen, las pruebas realizadas nos indican que al menos hay un tratamiento con varianzas no homogéneas.

**Tabla 108** *Varianzas no homogéneas* 

| Coefficients: |          |            |         |                  |     |  |  |
|---------------|----------|------------|---------|------------------|-----|--|--|
|               | Estimate | Std. Error | t value | <b>Pr</b> (> t ) |     |  |  |
| (Intercept)   | 210.62   | 4.828      | 43.629  | < 2.00E-16       | *** |  |  |
| TRATCCC_CH3   | -15.788  | 6.827      | -2.313  | 0.02598          | *   |  |  |
| TRATCCC_CH5   | 31.344   | 6.827      | 4.591   | 4.31E-05         | *** |  |  |
| TRATCCC1      | 9.32     | 6.827      | 1.365   | 0.17984          |     |  |  |
| TRATCCC3      | 5.052    | 6.827      | 0.74    | 0.46363          |     |  |  |
| TRATCCC5      | -30.606  | 6.827      | -4.483  | 6.05E-05         | *** |  |  |
| TRATCH1       | -27.844  | 6.827      | -4.078  | 0.00021          | *** |  |  |
| TRATCH3       | 4.672    | 6.827      | 0.684   | 0.49772          |     |  |  |
| TRATCH5       | 8.642    | 6.827      | 1.266   | 0.2129           |     |  |  |
| TRATCONTROL   | -13.956  | 6.827      | -2.044  | 0.04756          | *   |  |  |

---

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' '1

Residual standard error: 10.79 on 40 degrees of freedom

Multiple R-squared: 0.7778,

F-statistic: 15.55 on 9 and 40 DF, p-value: 1.675e-10

Los resultados del análisis de varianza (ANOVA) muestran la relación entre la variable respuesta (RESIST) y el factor tratamiento (TRAT) para los datos del día 14. Aquí está la discusión de los resultados:

## Coefficients (Coeficientes):

Los coeficientes proporcionan información sobre la relación entre cada nivel del factor tratamiento y la respuesta. Se observa que los coeficientes para los diferentes tratamientos varían en términos de su magnitud y significancia estadística.

El tratamiento TRATCCC\_CH5 tiene un coeficiente positivo significativo (31.344) con un valor p muy bajo (4.31e-05), lo que indica que este tratamiento tiene un efecto significativamente positivo en la respuesta en comparación con el tratamiento de referencia.

Por otro lado, el tratamiento TRATCH1 tiene un coeficiente negativo significativo (-27.844) con un valor p muy bajo (0.00021), lo que sugiere un efecto negativo significativo en comparación con el tratamiento de referencia.

#### Multiple R-squared (R-cuadrado múltiple):

El coeficiente de determinación múltiple (R-cuadrado múltiple) es 0.7778, lo que significa que alrededor del 77.78% de la variabilidad en la respuesta se explica por el modelo.

#### F-statistic (Estadístico F):

El estadístico F es 15.55 con 9 y 40 grados de libertad para el numerador y el denominador, respectivamente. El valor p asociado con este estadístico es muy bajo (1.675e-10), lo que sugiere que al menos uno de los tratamientos tiene un efecto significativo en la respuesta.

En resumen, el análisis de varianza indica que el factor tratamiento tiene un efecto significativo en la respuesta. Algunos tratamientos tienen efectos significativamente positivos o negativos en comparación con el tratamiento de referencia.

**Tabla 109** *Análisis de la varianza* 

| ANALSIS DE VARIANZA |                            |        |         |         |          |     |  |
|---------------------|----------------------------|--------|---------|---------|----------|-----|--|
| Anova (MOD)         | ELO1)                      |        |         |         |          |     |  |
| Analysis of Va      | Analysis of Variance Table |        |         |         |          |     |  |
| Response: RESIST    |                            |        |         |         |          |     |  |
|                     | Df                         | Sum Sq | Mean Sq | F value | Pr(>F)   |     |  |
| TRAT                | 9                          | 16312  | 1812.41 | 15.554  | 1.68E-10 | *** |  |
| Residuals           | 40                         | 4661   | 116.53  |         |          |     |  |

---

Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' '1

Los resultados del análisis de varianza (ANOVA) muestran que existe una diferencia significativa en la resistencia entre los diferentes tratamientos (TRAT). Esto se indica por el valor extremadamente bajo del p-valor (< 0.001), lo que significa que hay al menos un tratamiento que afecta significativamente la resistencia. La estadística F también es alta (F value = 15.554), lo que refuerza la evidencia de que hay diferencias significativas entre los tratamientos en términos de su efecto en la resistencia.

El ANOVA divide la variabilidad total de la variable de respuesta (RESIST) en dos componentes: la variabilidad explicada por los tratamientos (Sum Sq para TRAT) y la variabilidad no explicada, es

decir, el error residual (Sum Sq para Residuals). En este caso, la mayoría de la variabilidad total (aproximadamente el 77%) se explica por los tratamientos, lo que sugiere que los tratamientos tienen un impacto significativo en la resistencia observada.

En resumen, los resultados del ANOVA indican que hay al menos un tratamiento que tiene un efecto significativo en la resistencia, lo que justifica una mayor exploración de las diferencias entre los tratamientos y su impacto en la variable de respuesta.

**Tabla 110**Comparación de medidas

#### COMPARACIÓN DE MEDIAS prueba de tukey

W<-TukeyHSD(MODELO1)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = RESIST ~ TRAT, data = DIA14)

|                 | diff    | lwr        | upr        | p adj     |
|-----------------|---------|------------|------------|-----------|
| CCC_CH3-CCC_CH1 | -15.788 | -38.644022 | 7.0680222  | 0.4035586 |
| CCC_CH5-CCC_CH1 | 31.344  | 8.487978   | 54.2000222 | 0.0015931 |
| CCC1-CCC_CH1    | 9.32    | -13.536022 | 32.1760222 | 0.9306845 |
| CCC3-CCC_CH1    | 5.052   | -17.804022 | 27.9080222 | 0.9990159 |
| CCC5-CCC_CH1    | -30.606 | -53.462022 | -7.7499778 | 0.0022013 |
| CH1-CCC_CH1     | -27.844 | -50.700022 | -4.9879778 | 0.007147  |
| CH3-CCC_CH1     | 4.672   | -18.184022 | 27.5280222 | 0.9994715 |
| CH5-CCC_CH1     | 8.642   | -14.214022 | 31.4980222 | 0.9555806 |
| CONTROL-CCC_CH1 | -13.956 | -36.812022 | 8.9000222  | 0.5748528 |
| CCC_CH5-CCC_CH3 | 47.132  | 24.275978  | 69.9880222 | 0.0000011 |
| CCC1-CCC_CH3    | 25.108  | 2.251978   | 47.9640222 | 0.0215134 |
| CCC3-CCC_CH3    | 20.84   | -2.016022  | 43.6960222 | 0.100015  |
| CCC5-CCC_CH3    | -14.818 | -37.674022 | 8.0380222  | 0.4922607 |
| CH1-CCC_CH3     | -12.056 | -34.912022 | 10.8000222 | 0.7515212 |
| СН3-ССС_СН3     | 20.46   | -2.396022  | 43.3160222 | 0.1131191 |

| CH5-CCC_CH3     | 24.43   | 1.573978   | 47.2860222  | 0.0279205 |
|-----------------|---------|------------|-------------|-----------|
| CONTROL-CCC_CH3 | 1.832   | -21.024022 | 24.6880222  | 0.9999998 |
| CCC1-CCC_CH5    | -22.024 | -44.880022 | 0.8320222   | 0.0670832 |
| CCC3-CCC_CH5    | -26.292 | -49.148022 | -3.4359778  | 0.0134772 |
| CCC5-CCC_CH5    | -61.95  | -84.806022 | -39.0939778 | 0         |
| CH1-CCC_CH5     | -59.188 | -82.044022 | -36.3319778 | 0         |
| CH3-CCC_CH5     | -26.672 | -49.528022 | -3.8159778  | 0.0115628 |
| CH5-CCC_CH5     | -22.702 | -45.558022 | 0.1540222   | 0.0528368 |
| CONTROL-CCC_CH5 | -45.3   | -68.156022 | -22.4439778 | 0.0000026 |
| CCC3-CCC1       | -4.268  | -27.124022 | 18.5880222  | 0.9997461 |
| CCC5-CCC1       | -39.926 | -62.782022 | -17.0699778 | 0.0000316 |
| CH1-CCC1        | -37.164 | -60.020022 | -14.3079778 | 0.0001141 |
| CH3-CCC1        | -4.648  | -27.504022 | 18.2080222  | 0.9994929 |
| CH5-CCC1        | -0.678  | -23.534022 | 22.1780222  | 1         |
| CONTROL-CCC1    | -23.276 | -46.132022 | -0.4199778  | 0.0429409 |
| CCC5-CCC3       | -35.658 | -58.514022 | -12.8019778 | 0.0002284 |
| CH1-CCC3        | -32.896 | -55.752022 | -10.0399778 | 0.0007994 |
| СН3-ССС3        | -0.38   | -23.236022 | 22.4760222  | 1         |
| СН5-СССЗ        | 3.59    | -19.266022 | 26.4460222  | 0.9999396 |
| CONTROL-CCC3    | -19.008 | -41.864022 | 3.8480222   | 0.176633  |
| CH1-CCC5        | 2.762   | -20.094022 | 25.6180222  | 0.9999936 |
| СН3-ССС5        | 35.278  | 12.421978  | 58.1340222  | 0.0002718 |
| CH5-CCC5        | 39.248  | 16.391978  | 62.1040222  | 0.0000434 |
| CONTROL-CCC5    | 16.65   | -6.206022  | 39.5060222  | 0.3313726 |
| СН3-СН1         | 32.516  | 9.659978   | 55.3720222  | 0.0009475 |
| СН5-СН1         | 36.486  | 13.629978  | 59.3420222  | 0.0001561 |
| CONTROL-CH1     | 13.888  | -8.968022  | 36.7440222  | 0.5814175 |
| СН5-СН3         | 3.97    | -18.886022 | 26.8260222  | 0.9998601 |

| CONTROL-CH3 | -18.628 | -41.484022 | 4.2280222 | 0.197112 |
|-------------|---------|------------|-----------|----------|
| CONTROL-CH5 | -22.598 | -45.454022 | 0.2580222 | 0.054832 |

**Tabla 111**Valor Critico de la varianza

Alpha: 0.05; DF Error: 40

Critical Value of Studentized Range: 4.734513

Minimun Significant Difference: 22.85602

Treatments with the same letter are not significantly different.

|         | RESIST  | GROUPS |
|---------|---------|--------|
| CCC_CH5 | 241.964 | a      |
| CCC1    | 219.94  | ab     |
| СН5     | 219.262 | abc    |
| CCC3    | 215.672 | bcd    |
| СН3     | 215.292 | bcd    |
| CCC_CH1 | 210.62  | bcd    |
| CONTROL | 196.664 | cde    |
| CCC_CH3 | 194.832 | de     |
| СН1     | 182.776 | e      |
| CCC5    | 180.014 | e      |

Los resultados de la prueba de Tukey muestran las diferencias significativas entre los diferentes tratamientos en términos de su efecto sobre la resistencia. En esta tabla, las diferencias significativas se indican por los valores p ajustados (p adj) en comparación con un nivel de significancia de 0.05.

La comparación entre CCC\_CH5 y CCC\_CH1 tiene un valor p ajustado de 0.0015931, lo que indica una diferencia significativa en la resistencia entre estos dos tratamientos.

La comparación entre CCC5 y CCC\_CH1 tiene un valor p ajustado de 0.0022013, lo que también sugiere una diferencia significativa en la resistencia entre estos dos tratamientos.

Por otro lado, algunas comparaciones no muestran diferencias significativas en la resistencia:

la comparación entre CCC\_CH3 y CCC\_CH1 tiene un valor p ajustado de 0.4035586, lo que indica que no hay una diferencia significativa en la resistencia entre estos dos tratamientos.

En resumen, la prueba de Tukey proporciona una manera útil de identificar qué tratamientos difieren significativamente en términos de su efecto en la resistencia, lo que ayuda a comprender mejor cómo cada tratamiento afecta la variable de interés y permite tomar decisiones informadas sobre qué tratamientos pueden ser más efectivos en una situación dada.

Los resultados del análisis de varianza (ANOVA) indican que existen diferencias estadísticamente significativas entre los grupos en cuanto a los valores de RESIST. Esto lo podemos deducir por la presencia de letras diferentes al lado de los valores promedio de cada tratamiento. Los tratamientos con la misma letra ("a", "ab", etc.) no son estadísticamente diferentes entre sí a un nivel de significancia predefinido (generalmente alfa = 0.05).

Observando los resultados, vemos que CCC\_CH5 obtuvo el promedio más alto (241.964) y es significativamente diferente de la mayoría de los otros grupos (marcado con "a"). Le siguen CCC1, CH5, CCC3 y CH3 (marcados con "ab", "abc", y "bcd") que forman un grupo con rendimiento similar. El CONTROL y los tratamientos CCC\_CH3, CH1 y CCC5 (marcados con "cde" y "e") mostraron los promedios más bajos y no son estadísticamente diferentes entre sí.

Por consiguiente, después de realizar el análisis estadístico, nos quedamos con la hipótesis alterna la cual es "La resistencia a la compresión a los 14 días; al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, tiene diferencias significativas."

#### Prueba de Hipótesis para la Resistencia a la Compresión a los 28 días:

Considerando la hipótesis planteada: "Al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, influye significativamente en la mejora de la Resistencia a la Compresión del Concreto f'c=210 kg/cm² a los 28 días, para zapatas de un polideportivo, Cusco 2023."

**Tabla 112** *Resistencia a la compresión* 

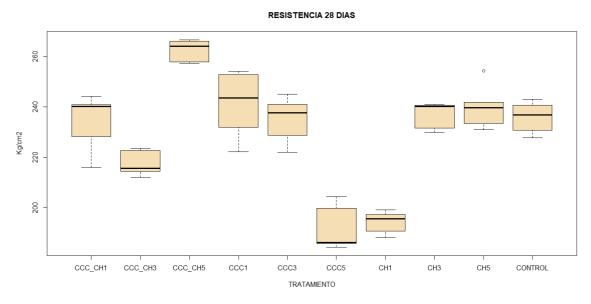
|         | ESISTENCIA A L<br>MPRESIÓN (kg/cı |        |
|---------|-----------------------------------|--------|
|         | P                                 | 235.8  |
|         | CCC1%                             | 240.92 |
|         | CCC3%                             | 234.9  |
|         | CCC5%                             | 192.13 |
| 28 DÍAS | CH1%                              | 194.22 |
| 26 DIAS | СН3%                              | 236.67 |
|         | СН5%                              | 240.06 |
|         | CCC+CH1%                          | 233.89 |
|         | CCC+CH3%                          | 217.7  |
|         | CCC+CH5%                          | 262.39 |

Para un nivel de significancia  $\alpha = 0.05$ ;

**Ho:** La resistencia a la compresión a los 28 días; al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, no tiene diferencias significativas.

**Ha:** La resistencia a la compresión a los 28 días; al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, tiene diferencias significativas.

Para resolver la hipótesis, a continuación, se hará el estudio estadístico con la ayuda del programa R Studio, para lo cual en el siguiente cuadro mostraremos la nomenclatura utilizada:


**Tabla 113** *Nomenclatura utilizada* 

| NOMENCLATURA | DESCRIPCIÓN                                                                     |
|--------------|---------------------------------------------------------------------------------|
| PATRON_28R   | PATRÓN A LOS 28 DÍAS                                                            |
| CCC1_28R     | CENIZA DE CASCARILLA DE CAFÉ AL 1% A LOS 28 DÍAS                                |
| CCC3_28R     | CENIZA DE CASCARILLA DE CAFÉ AL 3% A LOS 28 DÍAS                                |
| CCC5_28R     | CENIZA DE CASCARILLA DE CAFÉ AL 5% A LOS 28 DÍAS                                |
| CH1_28R      | CASCARA DE HUEVO AL 1% A LOS 28 DÍAS                                            |
| CH3_28R      | CASCARA DE HUEVO AL 3% A LOS 28 DÍAS                                            |
| CH5_28R      | CASCARA DE HUEVO AL 5% A LOS 28 DÍAS                                            |
| CCC_CH1_28R  | CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 1%<br>A LOS 28 DÍAS          |
| CCC_CH3_28R  | CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 3% A LOS 28 DÍAS             |
| CCC_CH5_28R  | CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 5%<br>A LOS 28 DÍAS          |
| TRATCONTROL  | TRATAMIENTO PATRÓN A LOS 28 DÍAS                                                |
| TRATCCC1     | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ AL 1% A LOS 28 DÍAS                    |
| TRATCCC3     | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ AL 3% A LOS 28 DÍAS                    |
| TRATCCC5     | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ AL 3% A LOS 28 DÍAS                    |
| TRATCH1      | TRATAMIENTO CASCARA DE HUEVO AL 1% A LOS 28 DÍAS                                |
| TRATCH3      | TRATAMIENTO CASCARA DE HUEVO AL 3% A LOS 28 DÍAS                                |
| TRATCH5      | TRATAMIENTO CASCARA DE HUEVO AL 5% A LOS 28 DÍAS                                |
| TRATCCC_CH1  | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 1% A LOS 28 DÍAS |
| TRATCCC_CH3  | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 3% A LOS 28 DÍAS |
| TRATCCC_CH5  | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 5% A LOS 28 DÍAS |

**Tabla 114**Datos descriptivos

|             | D    | AT | OS DESC | RIPTIV | OS     |        |        |
|-------------|------|----|---------|--------|--------|--------|--------|
|             | vars | n  | mean    | sd     | median | min    | max    |
| PATRON_28R  | 1    | 5  | 235.8   | 6.47   | 236.82 | 227.78 | 243.06 |
| CCC1_28R    | 1    | 5  | 240.92  | 13.72  | 243.57 | 222.18 | 254.14 |
| CCC3_28R    | 1    | 5  | 234.9   | 9.39   | 237.71 | 222.05 | 245.1  |
| CCC5_28R    | 1    | 5  | 192.13  | 9.28   | 186.15 | 184.36 | 204.35 |
| CH1_28R     | 1    | 5  | 194.22  | 4.55   | 195.57 | 188.31 | 199.13 |
| CH3_28R     | 1    | 5  | 236.67  | 5.42   | 240.13 | 229.95 | 241.02 |
| CH5_28R     | 1    | 5  | 240.06  | 9.09   | 239.75 | 230.97 | 254.27 |
| CCC_CH1_28R | 1    | 5  | 233.89  | 11.71  | 240.13 | 215.94 | 244.21 |
| CCC_CH3_28R | 1    | 5  | 217.7   | 5.13   | 215.56 | 212.12 | 223.58 |
| CCC_CH5_28R | 1    | 5  | 262.39  | 4.5    | 264.07 | 257.32 | 266.62 |

**Figura 133** *Resistencia 28 días* 



El análisis descriptivo proporciona una visión general de las características de los datos, lo cual es fundamental para comprender la naturaleza de los datos y para realizar inferencias adecuadas. Aquí hay una discusión de los resultados obtenidos en R Studio:

#### - PATRON\_28R:

La variable tiene una media de aproximadamente 235.8, con una desviación estándar de alrededor de 6.47. Asimismo, el rango de valores oscila entre 227.78 y 243.06.

#### - CCC1\_28R:

La media es de aproximadamente 240.92, con una desviación estándar más alta que la del primer conjunto de datos (13.72), lo que indica una mayor dispersión de los datos alrededor de la media. Asimismo, el rango de valores es más amplio, variando entre 222.18 y 254.14.

#### - CCC3 28R:

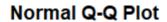
La media es de alrededor de 234.9, con una desviación estándar de 9.39. Asimismo, el rango de valores es similar al del primer conjunto de datos, con valores entre 222.05 y 245.1.

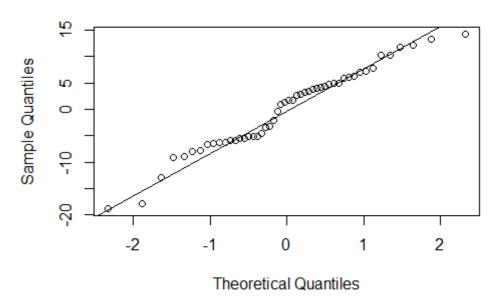
#### - CCC5 28R:

La media es de aproximadamente 192.13, con una desviación estándar de 9.28. Asimismo, los datos tienen un rango más estrecho en comparación con los conjuntos de datos anteriores, variando entre 184.36 y 204.35.

#### - CH1\_28R, CH3\_28R y CH5\_28R:

Cada uno de estos conjuntos de datos muestra una media y una desviación estándar características, con valores en torno a 194.22, 236.67 y 240.06 respectivamente, de igual forma sus desviaciones estándares son 4.55, 5.42, 9.09 respectivamente


#### - CCC\_CH1\_28R, CCC\_CH3\_28R y CCC\_CH5\_28R:


Cada uno de estos conjuntos de datos muestra una media y una desviación estándar características, con valores en torno a 233.89, 217.7 y 262.39 respectivamente, de igual forma sus desviaciones estándares son 11.71, 5.13 y 4.5 respectivamente, tal como se puede apreciar el tratamiento CCC\_CH1\_28R muestra la mayor desviación estándar, lo cual indica una mayor dispersión entre sus datos.

**Tabla 115** Prueba de Shapiro - Wilk

| Shapiro-Wilk normality test |         |         |  |  |  |
|-----------------------------|---------|---------|--|--|--|
|                             | W       | p-value |  |  |  |
| PATRON_28R                  | 0.94122 | 0.67468 |  |  |  |
| CCC1_28R                    | 0.91573 | 0.5028  |  |  |  |
| CCC3_28R                    | 0.94836 | 0.7255  |  |  |  |
| CCC5_28R                    | 0.80577 | 0.09023 |  |  |  |
| CH1_28R                     | 0.93257 | 0.614   |  |  |  |
| CH3_28R                     | 0.77436 | 0.04926 |  |  |  |
| CH5_28R                     | 0.92487 | 0.5618  |  |  |  |
| CCC_CH1_28R                 | 0.86962 | 0.2649  |  |  |  |
| CCC_CH3_28R                 | 0.8733  | 0.28    |  |  |  |
| CCC_CH5_28R                 | 0.82547 | 0.1286  |  |  |  |

Figura 134 Normal Q-Q Plot





Para discutir la normalidad de los datos utilizando los resultados del test de Shapiro-Wilk, analizaremos los valores de "p" (p-value) obtenidos junto con el estadístico W. El test de Shapiro-Wilk se utiliza para evaluar si una muestra de datos proviene de una distribución normal.

#### - PATRON\_28R:

El valor de W es 0.94122 con un p-valor de 0.67468, lo que indica que no hay suficiente evidencia para rechazar la hipótesis nula de normalidad. Por lo tanto, los datos en PATRON\_28R siguen una distribución normal.

#### CCC1 28R:

El valor de W es 0.91573 con un p-valor de 0.5028, lo que sugiere que no hay suficiente evidencia para rechazar la hipótesis nula de normalidad. Por lo tanto, los datos en CCC1\_28R también siguen una distribución normal.

#### - CCC3 28R:

El valor de W es 0.94836 con un p-valor de 0.7255, lo que indica que no hay suficiente evidencia para rechazar la hipótesis nula de normalidad. Por lo tanto, los datos en CCC3\_28R también parecen provenir de una distribución normal.

#### - CCC5\_28R:

El valor de W es 0.80577 con un p-valor de 0.09023, lo que sugiere que hay cierta evidencia para rechazar la hipótesis nula de normalidad a un nivel de significancia del 0.05. Esto sugiere que los datos en CCC5\_28R pueden no seguir una distribución normal.

#### - CH1\_28R, CH3\_28R y CH5\_28R:

Para CH1\_28R, CH3\_28R y CH5\_28R, los valores de W son 0.93257, 0.77436 y 0.92487 respectivamente y los p-valores son 0.614, 0.04926 y 0.5618 respectivamente, los cuales indican que tienen una distribución normal.

#### CCC\_CH1\_28R, CCC\_CH3\_28R y CCC\_CH5\_28R:

Para estos conjuntos de datos, los resultados del test de Shapiro-Wilk muestran que no hay suficiente evidencia para rechazar la hipótesis nula de normalidad, ya que los p-valores son mayores que el nivel de significancia de 0.05.

En resumen, la mayoría de los conjuntos siguen una distribución normal, excepto CH3\_28R, donde podría haber cierta desviación de la normalidad. Sin embargo, es importante tener en cuenta que el test de Shapiro-Wilk puede ser sensible al tamaño de la muestra.

#### Tabla 116

#### Prueba de homogeneidad

# PRUEBA DE HOMOGENEIDAD DE VARIANZA "BARTLERR, Y LEVENNE PARA DATOS DIA 7"

Bartlett's Test p-value = 0.03172

Levene's Test p-value = 0.04701

#### - Bartlett's Test:

El valor p obtenido del test de Bartlett es 0.03172, que es menor que el nivel de significancia comúnmente utilizado de 0.05. Esto indica que hay evidencia significativa para rechazar la hipótesis nula de igualdad de varianzas entre los grupos. En otras palabras, las varianzas de al menos un par de grupos son diferentes.

#### Levene's Test:

El valor p obtenido es 0.04701.

Al igual que el test de Bartlett, el valor p es menor que 0.05, lo que sugiere que la varianza en al menos un tratamiento es diferente.

**Tabla 117** *Tratamientos diferentes* 

|             | Co       | efficients: |          |                  |     |
|-------------|----------|-------------|----------|------------------|-----|
|             | Estimate | Std.Error   | t value  | <b>Pr</b> (> t ) |     |
| (Intercept) | 233.894  | 3.796       | 61.608 < | 2.00E-16         | *** |
| TRATCCC_CH3 | -16.196  | 5.369       | -3.017   | 0.00443          | **  |
| TRATCCC_CH5 | 28.496   | 5.369       | 5.307    | 4.42E-06         | *** |
| TRATCCC1    | 7.028    | 5.369       | 1.309    | 0.19801          |     |
| TRATCCC3    | 1.004    | 5.369       | 0.187    | 0.85261          |     |
| TRATCCC5    | -41.764  | 5.369       | -7.779   | 1.58E-09         | *** |
| TRATCH1     | -39.676  | 5.369       | -7.39    | 5.41E-09         | *** |
| TRATCH3     | 2.774    | 5.369       | 0.517    | 0.60823          |     |
| TRATCH5     | 6.164    | 5.369       | 1.148    | 0.25776          |     |
| TRATCONTROL | 1.908    | 5.369       | 0.355    | 0.72418          |     |
|             |          |             |          |                  |     |

---

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.489 on 40 degrees of freedom

Multiple R-squared: 0.8803,

F-statistic: 32.68 on 9 and 40 DF, p-value: 1.063e-15

Los resultados obtenidos del modelo aditivo (DCA) realizado en R Studio muestran lo siguiente:

#### Coeficientes:

TRATCCC\_CH3, TRATCCC\_CH5, TRATCCC1, TRATCCC3, TRATCCC5, TRATCH1, TRATCH3, TRATCH5, TRATCONTROL: Estos son los coeficientes de los diferentes tratamientos. Cada coeficiente representa el cambio esperado en la variable de respuesta cuando se compara con el tratamiento de referencia (TRATCONTROL). En el caso del TRATCCC5 tiene un coeficiente de -41.764, lo que sugiere que cuando se aplica este tratamiento en lugar del TRATCONTROL, se espera una disminución de aproximadamente 41.764 unidades en la variable de respuesta. Asimismo, para el TRATCCC\_CH5 tiene un coeficiente de 28.496, lo cual sugiere que

cuando se aplica este tratamiento en lugar del TRATCONTROL, se espera un aumento de aproximadamente 28.496 unidades en la variable de respuesta

#### Significancia estadística:

Los códigos de significancia indican el nivel de significancia de la relación entre cada nivel del factor TRAT y la resistencia. Los asteriscos (\*) se utilizan para indicar los niveles de significancia, donde \*\*\* representa p < 0.001, \*\* para p < 0.01, y \* para p < 0.05.

#### R-cuadrado ajustado (coeficiente de determinación ajustado):

Representan la proporción de varianza en la variable dependiente que es explicada por el modelo. En este caso, el R-cuadrado múltiple es 0.8803, lo que indica que el modelo explica aproximadamente el 88.03% de la variabilidad en la resistencia. El R-cuadrado ajustado tiene en cuenta el número de predictores en el modelo y es ligeramente más bajo, lo que indica un ajuste ligeramente más conservador del modelo.

#### F-statistic:

El valor F y su p-value asociado se utilizan para evaluar la significancia global del modelo. En este caso, el valor F es 32.68 con un p-value extremadamente bajo (1.063e-15), lo que indica que al menos uno de los coeficientes del modelo es significativamente diferente de cero. Por lo tanto, el modelo en su conjunto es significativo.

En resumen, los resultados del modelo aditivo indican que hay diferencias significativas en la resistencia entre los diferentes niveles del factor TRAT. El modelo explica una cantidad significativa de la variabilidad en la resistencia y es estadísticamente significativo en general.

**Tabla 118** Análisis de varianza

| munsis ac   | varianz,a  |         |              |            |          |     |
|-------------|------------|---------|--------------|------------|----------|-----|
|             |            | AN      | ALSIS DE VAI | RIANZA     |          |     |
| anova(MOI   | DELO1)     |         |              |            |          |     |
| Analysis of | Variance ' | Table   |              |            |          |     |
| Response: I | RESIST     |         |              |            |          |     |
|             | Df         | Sum     | Sq Mean      | Sq F value | Pr(>F)   |     |
| TRAT        | 9          | 21199.3 | 2355.47      | 32.685     | 1.06E-15 | *** |

Residuals 40 2882.7 72.07

Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '. '0.1 ' '1

**Df** (**Grados de libertad**): Hay dos fuentes de variabilidad en el ANOVA: TRAT y Residuos. Los grados de libertad para TRAT son 9, lo que indica que hay 10 niveles diferentes del factor TRAT en

el modelo. Los grados de libertad para los residuos son 40, que es el número total de observaciones menos el número de niveles del factor TRAT.

**Sum Sq (Suma de cuadrados)**: La suma de cuadrados es una medida de la variabilidad total explicada por cada fuente de variación. Para TRAT, la suma de cuadrados es 21199.3, lo que indica la cantidad total de variación explicada por las diferencias entre los niveles del factor TRAT. Para los residuos, la suma de cuadrados es 2882.7, que representa la variación no explicada por el modelo.

**Mean Sq (Media de cuadrados**): Es la suma de cuadrados dividida por los grados de libertad correspondientes. Representa la variabilidad promedio dentro de cada fuente de variación. En este caso, la media de cuadrados para TRAT es 2355.47 y para los residuos es 72.07.

**F value**: Es la relación entre la varianza explicada por el modelo (TRAT) y la varianza no explicada (residuos). Es una medida de la significancia del modelo. En este caso, el valor F es 32.685.

**Pr**(>**F**): Es el valor p asociado al valor F. Indica la probabilidad de observar un valor F tan extremo como el observado si la verdadera diferencia entre los grupos fuera cero. En este caso, el valor p es extremadamente bajo (1.063e-15), lo que indica que la diferencia entre los grupos es estadísticamente significativa.

En resumen, el análisis de varianza confirma que hay diferencias significativas en la resistencia entre los diferentes niveles del factor TRAT. La variable TRAT es un predictor significativo de la resistencia en el modelo.

**Tabla 119** *Comparación de medias* 

#### **COMPARACIÓN DE MEDIAS prueba de tukey**

W<-TukeyHSD(MODELO1)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = RESIST ~ TRAT, data = DIA28)

|                 | diff    | lwr         | upr        | p adj     |
|-----------------|---------|-------------|------------|-----------|
| CCC_CH3-CCC_CH1 | -16.196 | -34.1704841 | 1.778484   | 0.108326  |
| CCC_CH5-CCC_CH1 | 28.496  | 10.5215159  | 46.470484  | 0.0001752 |
| CCC1-CCC_CH1    | 7.028   | -10.9464841 | 25.002484  | 0.9456874 |
| CCC3-CCC_CH1    | 1.004   | -16.9704841 | 18.978484  | 1         |
| CCC5-CCC_CH1    | -41.764 | -59.7384841 | -23.789516 | 0.0000001 |

| CH1-CCC_CH1                                                                                                     | -39.676                                                                                               | -57.6504841                                                                                                                                        | -21.701516                                                                                                                                      | 0.0000002                                                             |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| CH3-CCC_CH1                                                                                                     | 2.774                                                                                                 | -15.2004841                                                                                                                                        | 20.748484                                                                                                                                       | 0.9999479                                                             |
| CH5-CCC_CH1                                                                                                     | 6.164                                                                                                 | -11.8104841                                                                                                                                        | 24.138484                                                                                                                                       | 0.9759973                                                             |
| CONTROL-CCC_CH1                                                                                                 | 1.908                                                                                                 | -16.0664841                                                                                                                                        | 19.882484                                                                                                                                       | 0.9999979                                                             |
| CCC_CH5-CCC_CH3                                                                                                 | 44.692                                                                                                | 26.7175159                                                                                                                                         | 62.666484                                                                                                                                       | 0                                                                     |
| CCC1-CCC_CH3                                                                                                    | 23.224                                                                                                | 5.2495159                                                                                                                                          | 41.198484                                                                                                                                       | 0.0035038                                                             |
| CCC3-CCC_CH3                                                                                                    | 17.2                                                                                                  | -0.7744841                                                                                                                                         | 35.174484                                                                                                                                       | 0.0707222                                                             |
| CCC5-CCC_CH3                                                                                                    | -25.568                                                                                               | -43.5424841                                                                                                                                        | -7.593516                                                                                                                                       | 0.0009493                                                             |
| CH1-CCC_CH3                                                                                                     | -23.48                                                                                                | -41.4544841                                                                                                                                        | -5.505516                                                                                                                                       | 0.0030462                                                             |
| CH3-CCC_CH3                                                                                                     | 18.97                                                                                                 | 0.9955159                                                                                                                                          | 36.944484                                                                                                                                       | 0.0313738                                                             |
| CH5-CCC_CH3                                                                                                     | 22.36                                                                                                 | 4.3855159                                                                                                                                          | 40.334484                                                                                                                                       | 0.0055877                                                             |
| CONTROL-CCC_CH3                                                                                                 | 18.104                                                                                                | 0.1295159                                                                                                                                          | 36.078484                                                                                                                                       | 0.0471172                                                             |
| CCC1-CCC_CH5                                                                                                    | -21.468                                                                                               | -39.4424841                                                                                                                                        | -3.493516                                                                                                                                       | 0.0089554                                                             |
| CCC3-CCC_CH5                                                                                                    | -27.492                                                                                               | -45.4664841                                                                                                                                        | -9.517516                                                                                                                                       | 0.0003145                                                             |
|                                                                                                                 |                                                                                                       |                                                                                                                                                    |                                                                                                                                                 |                                                                       |
| CCC5-CCC_CH5                                                                                                    | -70.26                                                                                                | -88.2344841                                                                                                                                        | -52.285516                                                                                                                                      | 0                                                                     |
| CCC5-CCC_CH5                                                                                                    | -70.26<br>-68.172                                                                                     | -88.2344841<br>-86.1464841                                                                                                                         | -52.285516<br>-50.197516                                                                                                                        | 0                                                                     |
| _                                                                                                               |                                                                                                       |                                                                                                                                                    |                                                                                                                                                 |                                                                       |
| CH1-CCC_CH5                                                                                                     | -68.172                                                                                               | -86.1464841                                                                                                                                        | -50.197516                                                                                                                                      | 0                                                                     |
| CH1-CCC_CH5 CH3-CCC_CH5                                                                                         | -68.172<br>-25.722                                                                                    | -86.1464841<br>-43.6964841                                                                                                                         | -50.197516<br>-7.747516                                                                                                                         | 0<br>0.0008697                                                        |
| CH1-CCC_CH5 CH3-CCC_CH5 CH5-CCC_CH5                                                                             | -68.172<br>-25.722<br>-22.332                                                                         | -86.1464841<br>-43.6964841<br>-40.3064841                                                                                                          | -50.197516<br>-7.747516<br>-4.357516                                                                                                            | 0<br>0.0008697<br>0.0056719<br>0.0005301                              |
| CH1-CCC_CH5 CH3-CCC_CH5 CH5-CCC_CH5 CONTROL-CCC_CH5                                                             | -68.172<br>-25.722<br>-22.332<br>-26.588                                                              | -86.1464841<br>-43.6964841<br>-40.3064841<br>-44.5624841                                                                                           | -50.197516<br>-7.747516<br>-4.357516<br>-8.613516                                                                                               | 0<br>0.0008697<br>0.0056719<br>0.0005301                              |
| CH1-CCC_CH5 CH3-CCC_CH5 CH5-CCC_CH5 CONTROL-CCC_CH5 CCC3-CCC1                                                   | -68.172<br>-25.722<br>-22.332<br>-26.588<br>-6.024                                                    | -86.1464841<br>-43.6964841<br>-40.3064841<br>-44.5624841<br>-23.9984841                                                                            | -50.197516<br>-7.747516<br>-4.357516<br>-8.613516<br>11.950484                                                                                  | 0<br>0.0008697<br>0.0056719<br>0.0005301<br>0.9793586                 |
| CH1-CCC_CH5 CH3-CCC_CH5 CH5-CCC_CH5 CONTROL-CCC_CH5 CCC3-CCC1 CCC5-CCC1                                         | -68.172<br>-25.722<br>-22.332<br>-26.588<br>-6.024<br>-48.792                                         | -86.1464841<br>-43.6964841<br>-40.3064841<br>-44.5624841<br>-23.9984841<br>-66.7664841<br>-64.6784841                                              | -50.197516<br>-7.747516<br>-4.357516<br>-8.613516<br>11.950484<br>-30.817516                                                                    | 0 0.0008697 0.0056719 0.0005301 0.9793586 0 0                         |
| CH1-CCC_CH5 CH3-CCC_CH5 CH5-CCC_CH5 CONTROL-CCC_CH5 CCC3-CCC1 CCC5-CCC1 CH1-CCC1                                | -68.172<br>-25.722<br>-22.332<br>-26.588<br>-6.024<br>-48.792<br>-46.704                              | -86.1464841<br>-43.6964841<br>-40.3064841<br>-44.5624841<br>-23.9984841<br>-66.7664841<br>-64.6784841                                              | -50.197516<br>-7.747516<br>-4.357516<br>-8.613516<br>11.950484<br>-30.817516<br>-28.729516                                                      | 0 0.0008697 0.0056719 0.0005301 0.9793586 0 0                         |
| CH1-CCC_CH5 CH3-CCC_CH5 CH5-CCC_CH5 CONTROL-CCC_CH5 CCC3-CCC1 CCC5-CCC1 CH1-CCC1 CH3-CCC1                       | -68.172<br>-25.722<br>-22.332<br>-26.588<br>-6.024<br>-48.792<br>-46.704<br>-4.254                    | -86.1464841<br>-43.6964841<br>-40.3064841<br>-44.5624841<br>-23.9984841<br>-66.7664841<br>-64.6784841<br>-22.2284841                               | -50.197516<br>-7.747516<br>-4.357516<br>-8.613516<br>11.950484<br>-30.817516<br>-28.729516<br>13.720484                                         | 0 0.0008697 0.0056719 0.0005301 0.9793586 0 0 0 0.9983234             |
| CH1-CCC_CH5 CH3-CCC_CH5 CH5-CCC_CH5 CONTROL-CCC_CH5 CCC3-CCC1 CCC5-CCC1 CH1-CCC1 CH3-CCC1 CH5-CCC1              | -68.172<br>-25.722<br>-22.332<br>-26.588<br>-6.024<br>-48.792<br>-46.704<br>-4.254<br>-0.864          | -86.1464841<br>-43.6964841<br>-40.3064841<br>-44.5624841<br>-23.9984841<br>-66.7664841<br>-64.6784841<br>-22.2284841<br>-18.8384841                | -50.197516<br>-7.747516<br>-4.357516<br>-8.613516<br>11.950484<br>-30.817516<br>-28.729516<br>13.720484<br>17.110484<br>12.854484               | 0 0.0008697 0.0056719 0.0005301 0.9793586 0 0 0 0.9983234             |
| CH1-CCC_CH5 CH3-CCC_CH5 CH5-CCC_CH5 CONTROL-CCC_CH5 CCC3-CCC1 CCC5-CCC1 CH1-CCC1 CH3-CCC1 CH5-CCC1 CONTROL-CCC1 | -68.172<br>-25.722<br>-22.332<br>-26.588<br>-6.024<br>-48.792<br>-46.704<br>-4.254<br>-0.864<br>-5.12 | -86.1464841<br>-43.6964841<br>-40.3064841<br>-44.5624841<br>-23.9984841<br>-66.7664841<br>-64.6784841<br>-22.2284841<br>-18.8384841<br>-23.0944841 | -50.197516<br>-7.747516<br>-4.357516<br>-8.613516<br>11.950484<br>-30.817516<br>-28.729516<br>13.720484<br>17.110484<br>12.854484<br>-24.793516 | 0 0.0008697 0.0056719 0.0005301 0.9793586 0 0 0 0.9983234 1 0.9933017 |

| CH5-CCC3     | 5.16   | -12.8144841 | 23.134484 | 0.992916  |
|--------------|--------|-------------|-----------|-----------|
| CONTROL-CCC3 | 0.904  | -17.0704841 | 18.878484 | 1         |
| CH1-CCC5     | 2.088  | -15.8864841 | 20.062484 | 0.9999954 |
| CH3-CCC5     | 44.538 | 26.5635159  | 62.512484 | 0         |
| CH5-CCC5     | 47.928 | 29.9535159  | 65.902484 | 0         |
| CONTROL-CCC5 | 43.672 | 25.6975159  | 61.646484 | 0         |
| СН3-СН1      | 42.45  | 24.4755159  | 60.424484 | 0         |
| СН5-СН1      | 45.84  | 27.8655159  | 63.814484 | 0         |
| CONTROL-CH1  | 41.584 | 23.6095159  | 59.558484 | 0.0000001 |
| СН5-СН3      | 3.39   | -14.5844841 | 21.364484 | 0.9997246 |
| CONTROL-CH3  | -0.866 | -18.8404841 | 17.108484 | 1         |
| CONTROL-CH5  | -4.256 | -22.2304841 | 13.718484 | 0.9983173 |

**Tabla 120**Valor Critico de la varianza

**Alpha: 0.05 ; DF Error: 40** 

Critical Value of Studentized Range: 4.734513

Minimun Significant Difference: 17.97448

Treatments with the same letter are not significantly different.

|         | RESIST  | GROUPS |
|---------|---------|--------|
| CCC_CH5 | 262.39  | a      |
| CCC1    | 240.922 | b      |
| СН5     | 240.058 | b      |
| СН3     | 236.668 | b      |
| CONTROL | 235.802 | b      |
| CCC3    | 234.898 | bc     |
| CCC_CH1 | 233.894 | bc     |
| CCC_CH3 | 217.698 | c      |
| СН1     | 194.218 | d      |
| CCC5    | 192.13  | d      |

El análisis de comparación de medias realizado con la prueba de Tukey-HSD proporciona información sobre las diferencias entre los niveles del factor TRAT en cuanto a la variable de respuesta RESIST. Aquí está la discusión de los resultados obtenidos:

- Se comparan los diferentes niveles del factor TRAT entre sí para identificar diferencias significativas en la resistencia. Cada comparación proporciona la diferencia promedio entre los niveles, así como un intervalo de confianza del 95% para esa diferencia.
- La columna "diff" muestra las diferencias promedio entre los niveles del factor TRAT. Por ejemplo,
   "CCC\_CH3-CCC\_CH1" indica la diferencia promedio entre los niveles CCC\_CH3 y CCC\_CH1.
- La columna "lwr" y "upr" proporciona el intervalo de confianza del 95% para la diferencia promedio.
   Si el intervalo de confianza no incluye cero, se considera que la diferencia es estadísticamente significativa.

- La columna "p adj" muestra los valores de p ajustados para corregir la inflación del error de tipo I debido a múltiples comparaciones. Un valor de p menor que el nivel de significancia (generalmente 0.05) indica que la diferencia es estadísticamente significativa.
- "CCC\_CH5-CCC\_CH1" tiene una diferencia promedio de 28.496 con un intervalo de confianza del 95% (10.521, 46.470) y un valor p ajustado de 0.0001752. Esto sugiere que hay una diferencia significativa en la resistencia entre CCC\_CH5 y CCC\_CH1.

El análisis de varianza (ANOVA) revela diferencias estadísticamente significativas entre los grupos en cuanto a los valores de RESIST. Esto se debe a la presencia de distintas letras al lado de los promedios de cada tratamiento. Los grupos con la misma letra ("a", "b", etc.) no son estadísticamente diferentes entre sí a un nivel de significancia predefinido (generalmente alfa = 0.05).

De acuerdo con los resultados, CCC\_CH5 presenta el promedio más alto (262.390) y difiere significativamente de la mayoría de los otros grupos (marcado con "a"). Le sigue un grupo formado por CCC1, CH5, CH3, y CONTROL (marcados con "b") que no muestran diferencias estadísticas entre ellos y exhiben un rendimiento similar. Los grupos CCC3, CCC\_CH1, CCC\_CH3, CH1 y CCC5 (marcados con "bc", "c", y "d") presentaron promedios más bajos.

Los resultados sugieren un efecto significativo de los tratamientos sobre la variable RESIST. CCC\_CH5 se destaca como el tratamiento más efectivo, seguido por un grupo intermedio con rendimiento similar. El CONTROL y otros tratamientos mostraron efectos menores.

En resumen, los resultados de la prueba de Tukey-HSD muestran diferencias significativas en la resistencia entre varios pares de niveles del factor TRAT. Esto sugiere que el factor TRAT tiene un efecto significativo en la resistencia medida.

Por consiguiente, después de realizar el análisis estadístico, nos quedamos con la hipótesis alterna la cual es "La resistencia a la compresión a los 28 días; al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, tiene diferencias significativas."

#### Prueba de Hipótesis para las Propiedades del concreto fresco:

Considerando la hipótesis planteada: "Al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, influye significativamente en la mejora de las propiedades del concreto fresco, para zapatas de un polideportivo, Cusco 2023."

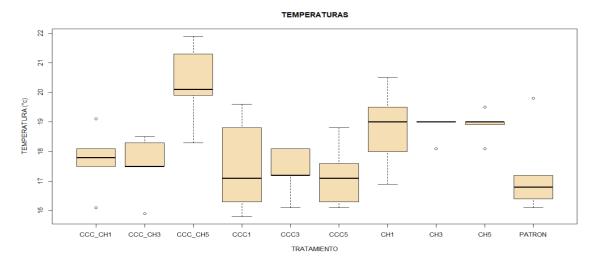
Para un nivel de significancia  $\alpha = 0.05$ ;

**Ho:** Las propiedades del concreto fresco; al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, no tiene diferencias significativas.

**Ha:** Las propiedades del concreto fresco; al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, tiene diferencias significativas.

Para resolver la hipótesis, a continuación, se hará el estudio estadístico con la ayuda del programa R Studio, para lo cual en el siguiente cuadro mostraremos la nomenclatura utilizada:

**Tabla 121** *Nomenclatura utilizada* 


| NOMENCLATURA | DESCRIPCIÓN                                                          |
|--------------|----------------------------------------------------------------------|
| PATRÓN       | PATRÓN                                                               |
| CCC1         | CENIZA DE CASCARILLA DE CAFÉ AL 1%                                   |
| CCC3         | CENIZA DE CASCARILLA DE CAFÉ AL 3%                                   |
| CCC5         | CENIZA DE CASCARILLA DE CAFÉ AL 5%                                   |
| СН1          | CASCARA DE HUEVO AL 1%                                               |
| СН3          | CASCARA DE HUEVO AL 3%                                               |
| СН5          | CASCARA DE HUEVO AL 5%                                               |
| CCC_CH1      | CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL<br>1%             |
| CCC_CH3      | CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 3%                |
| CCC_CH5      | CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 5%                |
| TRATCONTROL  | TRATAMIENTO PATRÓN                                                   |
| TRATCCC1     | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ AL 1%                       |
| TRATCCC3     | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ AL 3%                       |
| TRATCCC5     | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ AL 3%                       |
| TRATCH1      | TRATAMIENTO CASCARA DE HUEVO AL 1%                                   |
| TRATCH3      | TRATAMIENTO CASCARA DE HUEVO AL 3%                                   |
| TRATCH5      | TRATAMIENTO CASCARA DE HUEVO AL 5%                                   |
| TRATCCC_CH1  | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO AL 1% |
| TRATCCC_CH3  | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ + CASCARA<br>DE HUEVO AL 3% |
| TRATCCC_CH5  | TRATAMIENTO CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 5%    |

#### Prueba de Hipótesis para Temperatura en el concreto fresco:

**Tabla 122**Datos descriptivos

| DATOS DESCRIPTIVOS |      |   |       |      |        |        |      |  |  |
|--------------------|------|---|-------|------|--------|--------|------|--|--|
|                    | vars | n | mean  | sd   | median | min    | máx. |  |  |
| PATRÓN             | 1    | 5 | 17.26 | 1.48 | 16.1   | 168.07 | 19.8 |  |  |
| CCC1               | 1    | 5 | 17.52 | 1.63 | 15.8   | 182.2  | 19.6 |  |  |
| CCC3               | 1    | 5 | 17.34 | 0.83 | 16.1   | 170.23 | 18.1 |  |  |
| CCC5               | 1    | 5 | 17.18 | 1.09 | 16.1   | 139.8  | 18.8 |  |  |
| СН1                | 1    | 5 | 18.78 | 1.38 | 16.9   | 158.9  | 20.5 |  |  |
| СН3                | 1    | 5 | 18.82 | 0.4  | 18.1   | 183.35 | 19   |  |  |
| СН5                | 1    | 5 | 18.9  | 0.5  | 18.1   | 183.98 | 19.5 |  |  |
| CCC_CH1            | 1    | 5 | 17.72 | 1.09 | 16.1   | 192.12 | 19.1 |  |  |
| CCC_CH3            | 1    | 5 | 17.54 | 1.02 | 15.9   | 159.79 | 18.5 |  |  |
| CCC_CH5            | 1    | 5 | 20.3  | 1.39 | 18.3   | 209.83 | 21.9 |  |  |

**Figura 135** *Temperaturas* 



#### Media:

La media de todas las variables está entre 17.18 y 20.3. Las variables con las medias más altas son CH3 (18.82), CH5 (18.9) y CCC\_CH5 (20.3). Las variables con las medias más bajas son PATRÓN (17.26) y CCC5 (17.18).

#### Desviación estándar:

La desviación estándar varía entre 0.4 (**CH3**) y 1.63 (**CCC1**). Las variables con las desviaciones estándar más altas son **CCC1** (1.63), **CH1** (1.38) y **CCC CH1** (1.09). Las variables con las desviaciones estándar más bajas son **CH3** (0.4) y **CCC\_CH3** (1.02).

#### Mediana:

La mediana de todas las variables está entre 16.1 y 18.3. Las variables con las medianas más altas son CCC\_CH5 (18.3), CH3 (18.1) y CH5 (18.1). Las variables con las medianas más bajas son PATRÓN (16.1) y CCC5 (16.1).

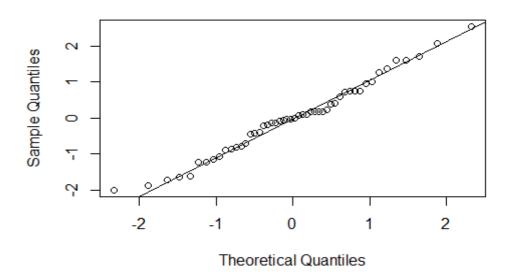
#### Valores mínimo y máximo:

Los valores mínimo y máximo varían considerablemente entre las variables. El valor mínimo más bajo es 168.07 (**PATRÓN**) y el valor máximo más alto es 209.83 (**CCC\_CH5**).

#### Interpretación:

Los resultados sugieren que hay una gran variabilidad en las variables medidas. Algunas variables, como **CH3** y **CH5**, tienen medias y medianas altas, lo que indica que la mayoría de los valores se encuentran en el extremo superior del rango. Otras variables, como **PATRÓN** y **CCC5**, tienen medias y medianas bajas, lo que indica que la mayoría de los valores se encuentran en el extremo inferior del rango.

Las desviaciones estándar también varían considerablemente entre las variables. Las variables con desviaciones estándar altas, como **CCC1** y **CH1**, tienen una mayor dispersión de valores alrededor de la media. Las variables con desviaciones estándar bajas, como **CH3** y **CCC\_CH3**, tienen una menor dispersión de valores alrededor de la media.


Los valores mínimo y máximo también proporcionan información sobre la distribución de los datos. Las variables con valores mínimos bajos, como **PATRÓN**, pueden tener valores atípicos que sesgan la media hacia abajo. Las variables con valores máximos altos, como **CCC\_CH5**, pueden tener valores atípicos que sesgan la media hacia arriba.

**Tabla 123** Shapiro - Wilk

| Shapiro-Wilk normality test |              |         |  |  |
|-----------------------------|--------------|---------|--|--|
|                             | $\mathbf{W}$ | p-value |  |  |
| PATRÓN                      | 0.80375      | 0.0869  |  |  |
| CCC1                        | 0.92471      | 0.5608  |  |  |
| CCC3                        | 0.87543      | 0.2891  |  |  |
| CCC5                        | 0.93616      | 0.639   |  |  |
| CH1                         | 0.98965      | 0.9784  |  |  |
| СН                          | 0.55218      | 0.0001  |  |  |
| CH5                         | 0.89345      | 0.3748  |  |  |
| CCC_CH1                     | 0.96747      | 0.8588  |  |  |
| CCC_CH3                     | 0.88044      | 0.3113  |  |  |
| CCC_CH5                     | 0.96085      | 0.8139  |  |  |

Figura 136 Normal Q-Q Plot

### Normal Q-Q Plot



El test de normalidad de Shapiro-Wilk se utiliza para evaluar si una muestra de datos proviene de una distribución normal. Los resultados obtenidos con R Studio muestran los valores de la estadística W y los valores p correspondientes para cada variable. Aquí hay una discusión de estos resultados:

#### PATRÓN:

El valor p (0.08692) sugiere que no hay suficiente evidencia para rechazar la hipótesis nula de normalidad al nivel de significancia del 0.05. Aunque el valor p es mayor que 0.05, está relativamente cerca, lo que indica una ligera desviación de la normalidad.

#### CCC1:

Con un valor p de 0.5608, no hay evidencia suficiente para rechazar la hipótesis nula de normalidad para la variable CCC1. Esto sugiere que los datos podrían provenir de una distribución normal.

#### - CCC3:

Al igual que CCC1, el valor p (0.2891) para CCC3 no proporciona suficiente evidencia para rechazar la hipótesis nula de normalidad.

#### CCC5:

Similar a CCC1 y CCC3, el valor p (0.639) sugiere que no hay suficiente evidencia para rechazar la hipótesis nula de normalidad para CCC5.

#### CH1:

Con un valor p de 0.9784, no hay evidencia para rechazar la hipótesis nula de normalidad para CH1. Los datos parecen seguir una distribución normal.

#### - CH3:

El valor p (0.000131) es significativamente menor que 0.05, lo que indica que hay evidencia suficiente para rechazar la hipótesis nula de normalidad. Esto sugiere que los datos para CH3 no siguen una distribución normal.

#### - CH5:

Con un valor p de 0.3748, no hay suficiente evidencia para rechazar la hipótesis nula de normalidad para CH5.

#### - CCC\_CH1, CCC\_CH3, CCC\_CH5:

Para estas variables, los valores p son mayores que 0.05, lo que sugiere que no hay suficiente evidencia para rechazar la hipótesis nula de normalidad.

En resumen, la mayoría de las variables (PATRÓN, CCC1, CCC3, CCC5, CH1, CH5, CCC\_CH1, CCC\_CH3, CCC\_CH5) no muestran evidencia suficiente para rechazar la hipótesis nula de normalidad, mientras que la variable CH3 muestra evidencia de desviación de la normalidad. Esto implica que, en general, los datos pueden considerarse aproximadamente normales para la mayoría de las variables, excepto para CH3, donde la distribución puede ser significativamente diferente de una distribución normal. Es importante considerar estos resultados al interpretar y analizar los datos.

#### Tabla 124

Prueba de homogeneidad

# PRUEBA DE HOMOGENEIDAD DE VARIANZA "BARTLERR, Y LEVENNE PARA TEMPERATURA"

Bartlett's Test p-value = 0.3034

Levene's Test p-value = 0.4954

Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' '
1

La prueba de homogeneidad de varianza es una herramienta importante en estadística para determinar si las varianzas de dos o más grupos son iguales. En este caso, se realizaron dos pruebas, la prueba de Bartlett y la prueba de Levene, para evaluar la homogeneidad de varianza para los datos de temperatura.

- Prueba de Bartlett:
- El valor p obtenido para la prueba de Bartlett es 0.3034.
- Dado que el valor p es mayor que el nivel de significancia comúnmente utilizado de 0.05, no hay suficiente evidencia para rechazar la hipótesis nula de homogeneidad de varianza.
- Esto sugiere que, según la prueba de Bartlett, las varianzas de los grupos de temperatura son estadísticamente iguales.
- Prueba de Levene:
- El valor p obtenido para la prueba de Levene es 0.4954.
- Similar a la prueba de Bartlett, el valor p de la prueba de Levene es mayor que 0.05, lo que indica que no hay suficiente evidencia para rechazar la hipótesis nula de homogeneidad de varianza.
- Esto implica que, según la prueba de Levene, las varianzas de los grupos de temperatura son estadísticamente similares.

En resumen, tanto la prueba de Bartlett como la prueba de Levene sugieren que no hay diferencias significativas en las varianzas entre los grupos de temperatura. Por lo tanto, podemos concluir que los datos de temperatura cumplen con el supuesto de homogeneidad de varianza, lo que es importante para la aplicación de ciertos análisis estadísticos, como el análisis de varianza (ANOVA) y algunas pruebas de comparación de medias.

**Tabla 125** *Coeficientes* 

|             | Coef                                 | ficients: |        |             |  |  |  |  |  |
|-------------|--------------------------------------|-----------|--------|-------------|--|--|--|--|--|
|             | Estimate Std. Error t value Pr(> t ) |           |        |             |  |  |  |  |  |
| (Intercept) | 17.72                                | 0.514     | 34.476 | <2e-16 ***  |  |  |  |  |  |
| TRATCCC_CH3 | -0.18                                | 0.7269    | -0.248 | 8.06E-01    |  |  |  |  |  |
| TRATCCC_CH5 | 2.58                                 | 0.7269    | 3.549  | 1.00E-03 ** |  |  |  |  |  |
| TRATCCC1    | -0.2                                 | 0.7269    | -0.275 | 0.785       |  |  |  |  |  |
| TRATCCC3    | -0.38                                | 0.7269    | -0.523 | 6.04E-01    |  |  |  |  |  |
| TRATCCC5    | -0.54                                | 0.7269    | -0.743 | 4.62E-01    |  |  |  |  |  |
| TRATCH1     | 1.06                                 | 0.7269    | 1.458  | 1.53E-01    |  |  |  |  |  |
| TRATCH3     | 1.1                                  | 0.7269    | 1.513  | 0.138       |  |  |  |  |  |
| TRATCH5     | 1.18                                 | 0.7269    | 1.623  | 0.112       |  |  |  |  |  |
| TRATCONTROL | -0.46                                | 0.7269    | -0.633 | 5.30E-01    |  |  |  |  |  |

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.149 on 40 degrees of freedom

Multiple R-squared: 0.47,

F-statistic: 3.942 on 9 and 40 DF, p-value: < 0.001176

Los resultados obtenidos en R Studio corresponden a un análisis de regresión lineal donde se están evaluando los coeficientes de diferentes tratamientos (TRAT) sobre una variable de interés. Aquí hay una discusión detallada de estos resultados:

- Intercepto (Intercept):
- El intercepto tiene un valor de 17.72 con un error estándar de 0.514.
- El valor t es 34.476 y el valor p es prácticamente cero (<2e-16), lo que indica que el intercepto es significativamente diferente de cero.
- Esto sugiere que cuando todas las variables explicativas son cero, el valor medio de la variable de interés (dependiente) es 17.72.
- Coeficientes de los tratamientos (TRAT):

- Cada coeficiente de tratamiento representa el cambio en la variable de respuesta asociada con un cambio unitario en el tratamiento, manteniendo todas las demás variables constantes.
- Los coeficientes para los diferentes tratamientos varían entre -0.54 y 2.58.
- Algunos tratamientos tienen valores de p significativamente bajos, como TRATCCC\_CH5 (p = 0.001) y TRATCH1 (p = 0.153), lo que sugiere que estos tratamientos tienen efectos significativos en la variable de interés.
- Otros tratamientos, como TRATCCC\_CH3, TRATCCC1, TRATCCC3, TRATCONTROL, tienen valores de p más altos, lo que indica que estos tratamientos no son significativamente diferentes de cero en términos de efecto sobre la variable de interés.
- Residual standard error:
- El error estándar residual es 1.149, lo que indica la dispersión de los residuos alrededor de la línea de regresión.
- Esto significa que, en promedio, las observaciones reales se desvían del valor predicho por la regresión en aproximadamente 1.149 unidades.
- Coeficiente de determinación (R-cuadrado):
- El coeficiente de determinación (R-cuadrado) es 0.47, lo que significa que el modelo de regresión explica aproximadamente el 47% de la variabilidad total de la variable de interés.
- Este valor sugiere que el modelo tiene un ajuste moderado, pero aún queda una parte significativa de la variabilidad no explicada por el modelo.
- Estadística F y valor p:
- La estadística F es 3.942 con un valor de p muy bajo (< 0.001176), lo que indica que al menos uno de los coeficientes de regresión es significativamente diferente de cero.
- Esto respalda la validez global del modelo de regresión.

En resumen, estos resultados sugieren que algunos tratamientos tienen efectos significativos en la variable de interés, mientras que otros no son estadísticamente diferentes de cero. El modelo de regresión parece tener un ajuste moderado, pero aún deja una parte considerable de la variabilidad de la variable de respuesta sin explicar. Es importante considerar estos resultados en el contexto del estudio y realizar una interpretación adecuada de los coeficientes significativos.

#### ANÁLISIS DE VARIANZA

Anova (MODELO1)

Analysis of Variance Table

Response: TEMPERATURA

|           | Df | Sum    | Sq Mean | Sq F value | Pr(>F)   |    |
|-----------|----|--------|---------|------------|----------|----|
| TRAT      | 9  | 46.859 | 5.2066  | 3.9417     | 1.18E-03 | ** |
| Residuals | 40 | 52.836 | 1.3209  |            |          |    |

---

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' '1

El análisis de varianza (ANOVA) es una herramienta estadística utilizada para determinar si hay diferencias significativas entre los grupos de una variable independiente con respecto a una variable dependiente. En este caso, los resultados obtenidos por R Studio muestran un ANOVA realizado sobre un modelo llamado MODELO1 con la variable dependiente TEMPERATURA y la variable independiente TRAT. Aquí hay una discusión de estos resultados:

- Interpretación de los resultados:
- La variable TRAT tiene 9 grados de libertad, lo que indica que hay 9 niveles o tratamientos en la variable independiente TRAT.
- La suma de cuadrados para TRAT es 46.859, y la media de cuadrados es 5.2066.
- La suma de cuadrados para residuos es 52.836, y la media de cuadrados es 1.3209.
- La estadística de prueba F para TRAT es 3.9417.
- El valor p asociado con TRAT es muy bajo (<0.001), lo que indica que hay diferencias significativas entre al menos algunos de los tratamientos en términos de su efecto sobre la variable dependiente TEMPERATURA.
  - Conclusión:
  - Según el análisis de varianza, la variable TRAT tiene un efecto significativo en la variable dependiente TEMPERATURA.
  - Esto sugiere que al menos uno de los tratamientos tiene un efecto diferente en la resistencia en comparación con los demás tratamientos.

 Es importante realizar pruebas de comparaciones múltiples, como pruebas post-hoc, para identificar específicamente qué tratamientos difieren entre sí.

En resumen, los resultados del análisis de varianza indican que hay diferencias significativas entre los tratamientos en términos de su efecto sobre la variable dependiente RESIST. Esto proporciona información importante para comprender cómo diferentes tratamientos pueden influir en la resistencia en el contexto del estudio.

**Tabla 127** *Comparación de medidas* 

#### COMPARACIÓN DE MEDIAS prueba de tukey

W<-TukeyHSD(MODELO1)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = TEMP ~ TRAT, data = DATOS)

|                 | diff  | lwr       | upr       | p adj     |
|-----------------|-------|-----------|-----------|-----------|
| CCC_CH3-CCC_CH1 | -0.18 | -2.613466 | 2.2534659 | 0.9999999 |
| CCC_CH5-CCC_CH1 | 2.58  | 0.1465341 | 5.0134659 | 0.0300937 |
| CCC1-CCC_CH1    | -0.2  | -2.633466 | 2.2334659 | 0.9999998 |
| CCC3-CCC_CH1    | -0.38 | -2.813466 | 2.0534659 | 0.9999425 |
| CCC5-CCC_CH1    | -0.54 | -2.973466 | 1.8934659 | 0.998985  |
| CH1-CCC_CH1     | 1.06  | -1.373466 | 3.4934659 | 0.9002066 |
| CH3-CCC_CH1     | 1.1   | -1.333466 | 3.5334659 | 0.8788583 |
| CH5-CCC_CH1     | 1.18  | -1.253466 | 3.6134659 | 0.8289198 |
| CONTROL-CCC_CH1 | -0.46 | -2.893466 | 1.9734659 | 0.9997194 |
| CCC_CH5-CCC_CH3 | 2.76  | 0.3265341 | 5.1934659 | 0.0156173 |
| CCC1-CCC_CH3    | -0.02 | -2.453466 | 2.4134659 | 1         |
| CCC3-CCC_CH3    | -0.2  | -2.633466 | 2.2334659 | 0.9999998 |
| CCC5-CCC_CH3    | -0.36 | -2.793466 | 2.0734659 | 0.9999636 |
| СН1-ССС_СН3     | 1.24  | -1.193466 | 3.6734659 | 0.7856494 |
| СН3-ССС_СН3     | 1.28  | -1.153466 | 3.7134659 | 0.7544114 |

## COMPARACIÓN DE MEDIAS prueba de tukey

W<-TukeyHSD(MODELO1)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = TEMP ~ TRAT, data = DATOS)

|                 | diff  | lwr       | upr       | p adj     |
|-----------------|-------|-----------|-----------|-----------|
| CH5-CCC_CH3     | 1.36  | -1.073466 | 3.7934659 | 0.6873993 |
| CONTROL-CCC_CH3 | -0.28 | -2.713466 | 2.1534659 | 0.9999958 |
| CCC1-CCC_CH5    | -2.78 | -5.213466 | -0.346534 | 0.0144912 |
| CCC3-CCC_CH5    | -2.96 | -5.393466 | -0.526534 | 0.0072746 |
| CCC5-CCC_CH5    | -3.12 | -5.553466 | -0.686534 | 0.0038613 |
| CH1-CCC_CH5     | -1.52 | -3.953466 | 0.9134659 | 0.5439555 |
| CH3-CCC_CH5     | -1.48 | -3.913466 | 0.9534659 | 0.5801902 |
| CH5-CCC_CH5     | -1.4  | -3.833466 | 1.0334659 | 0.6522329 |
| CONTROL-CCC_CH5 | -3.04 | -5.473466 | -0.606534 | 0.0053118 |
| CCC3-CCC1       | -0.18 | -2.613466 | 2.2534659 | 0.9999999 |
| CCC5-CCC1       | -0.34 | -2.773466 | 2.0934659 | 0.9999776 |
| CH1-CCC1        | 1.26  | -1.173466 | 3.6934659 | 0.7702489 |
| CH3-CCC1        | 1.3   | -1.133466 | 3.7334659 | 0.7381708 |
| CH5-CCC1        | 1.38  | -1.053466 | 3.8134659 | 0.6699213 |
| CONTROL-CCC1    | -0.26 | -2.693466 | 2.1734659 | 0.9999978 |
| CCC5-CCC3       | -0.16 | -2.593466 | 2.2734659 | 1         |
| CH1-CCC3        | 1.44  | -0.993466 | 3.8734659 | 0.6163883 |
| СН3-СССЗ        | 1.48  | -0.953466 | 3.9134659 | 0.5801902 |
| CH5-CCC3        | 1.56  | -0.873466 | 3.9934659 | 0.507986  |
| CONTROL-CCC3    | -0.08 | -2.513466 | 2.3534659 | 1         |
| CH1-CCC5        | 1.6   | -0.833466 | 4.0334659 | 0.4725617 |

### COMPARACIÓN DE MEDIAS prueba de tukey

W<-TukeyHSD(MODELO1)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = TEMP ~ TRAT, data = DATOS)

|              | diff  | lwr       | upr       | p adj     |
|--------------|-------|-----------|-----------|-----------|
| CH3-CCC5     | 1.64  | -0.793466 | 4.0734659 | 0.4379362 |
| CH5-CCC5     | 1.72  | -0.713466 | 4.1534659 | 0.3719428 |
| CONTROL-CCC5 | 0.08  | -2.353466 | 2.5134659 | 1         |
| СН3-СН1      | 0.04  | -2.393466 | 2.4734659 | 1         |
| СН5-СН1      | 0.12  | -2.313466 | 2.5534659 | 1         |
| CONTROL-CH1  | -1.52 | -3.953466 | 0.9134659 | 0.5439555 |
| СН5-СН3      | 0.08  | -2.353466 | 2.5134659 | 1         |
| CONTROL-CH3  | -1.56 | -3.993466 | 0.8734659 | 0.507986  |
| CONTROL-CH5  | -1.64 | -4.073466 | 0.7934659 | 0.4379362 |

Tabla 128

#### Valor Critico de la varianza

Alpha: 0.05; DF Error: 40

Critical Value of Studentized Range: 4.734513

Minimun Significant Difference: 2.433466

Treatments with the same letter are not significantly

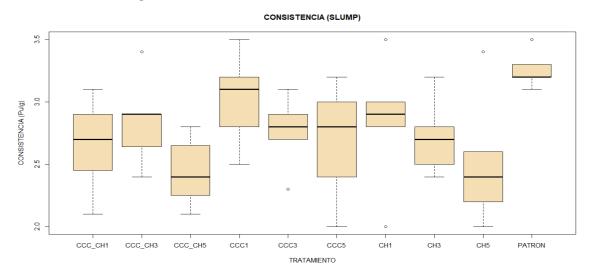
different.

|         | TEMPERATURA | GROUPS |
|---------|-------------|--------|
| CCC_CH5 | 20.3        | a      |
| СН5     | 18.9        | ab     |
| СН3     | 18.82       | ab     |
| СН1     | 18.78       | ab     |
| CCC_CH1 | 17.72       | b      |
| CCC_CH3 | 17.54       | b      |
| CCC1    | 17.52       | b      |
| CCC3    | 17.34       | b      |
| PATRON  | 17.26       | b      |
| CCC5    | 17.18       | b      |

El análisis de comparación de medias utilizando la prueba de Tukey es una herramienta útil para determinar si existen diferencias significativas entre los grupos en un experimento. En este caso, los datos obtenidos en R Studio muestran los resultados de la prueba de Tukey aplicada a un modelo llamado MODELO1 con la variable dependiente TEMP y la variable independiente TRAT. Aquí está la discusión de estos resultados:

- Interpretación de los resultados:
- Cada fila de la tabla representa una comparación entre dos tratamientos diferentes.
- La columna "diff" muestra la diferencia en las medias entre los tratamientos comparados.
- Las columnas "lwr" y "upr" muestran los límites inferior y superior del intervalo de confianza del 95% para la diferencia de medias.
- La columna "p adj" muestra el valor p ajustado para tener en cuenta múltiples comparaciones.
- Diferencias significativas:

- Las comparaciones con un valor p menor que el nivel de significancia (0.05) indican diferencias significativas entre los tratamientos.
- Por ejemplo, la comparación entre CCC\_CH5 y CCC\_CH1 tiene un valor p de 0.0300937, lo que indica una diferencia significativa entre estos tratamientos.
- Por el contrario, las comparaciones con un valor p mayor que 0.05 no son estadísticamente significativas y no se puede rechazar la hipótesis nula de igualdad de medias.
- Los tratamientos se clasificaron en grupos utilizando letras (a, b, etc.), donde los tratamientos que comparten la misma letra no son significativamente diferentes entre sí.
- Los tratamientos se enumeran junto con sus respectivas medias de temperatura.
- Los tratamientos CCC\_CH5, CH5 y CH3 tienen la letra 'a', lo que significa que no son significativamente diferentes entre sí en términos de su efecto en la temperatura.
- Los tratamientos CCC\_CH1, CCC\_CH3, CCC1, CCC3, PATRÓN y CCC5 tienen la letra 'b', lo que sugiere que tampoco son significativamente diferentes entre sí, pero son diferentes del grupo 'a'.
- Las letras asignadas a cada tratamiento se basan en la comparación de las diferencias entre sus medias y el valor crítico de la diferencia mínima significativa.
- Conclusiones:
- Algunas comparaciones muestran diferencias significativas entre los tratamientos, lo que sugiere que ciertos tratamientos tienen un efecto diferente en la variable de interés en comparación con otros tratamientos.
- CCC\_CH5 muestra diferencias significativas con CCC\_CH1, CCC\_CH3 y CCC\_CH5, lo que indica
  que este tratamiento es diferente de estos tratamientos en términos de su efecto en la variable de
  interés.
- Sin embargo, otras comparaciones, como CH1-CCC\_CH1, CH3-CCC\_CH1 y CH5-CCC\_CH1, no muestran diferencias significativas, lo que sugiere que estos tratamientos pueden ser similares en términos de su efecto en la variable de interés.


En resumen, la prueba de Tukey proporciona información útil sobre las diferencias significativas entre los tratamientos en términos de su efecto en la variable de interés. Estos resultados son importantes para comprender mejor la relación entre los tratamientos y la variable de respuesta en el estudio.

#### Prueba de Hipótesis para Consistencia en el concreto fresco:

**Tabla 129**Datos descriptivos

| DATOS DESCRIPTIVOS |      |   |      |      |        |     |     |  |
|--------------------|------|---|------|------|--------|-----|-----|--|
|                    | vars | n | mean | sd   | median | min | max |  |
| PATRÓN             | 1    | 5 | 3.26 | 0.15 | 3.2    | 3.1 | 3.5 |  |
| CCC1               | 1    | 5 | 3.02 | 0.38 | 3.1    | 2.5 | 3.5 |  |
| CCC3               | 1    | 5 | 2.76 | 0.3  | 2.8    | 2.3 | 3.1 |  |
| CCC5               | 1    | 5 | 2.68 | 0.48 | 2.8    | 2   | 3.2 |  |
| CH1                | 1    | 5 | 2.84 | 0.54 | 2.9    | 2   | 3.5 |  |
| СНЗ                | 1    | 5 | 2.72 | 0.31 | 2.7    | 2.4 | 3.2 |  |
| CH5                | 1    | 5 | 2.52 | 0.54 | 2.4    | 2   | 3.4 |  |
| CCC_CH1            | 1    | 5 | 2.65 | 0.39 | 2.7    | 2.1 | 3.1 |  |
| CCC_CH3            | 1    | 5 | 2.85 | 0.37 | 2.9    | 2.4 | 3.4 |  |
| CCC_CH5            | 1    | 5 | 2.44 | 0.29 | 2.4    | 2.1 | 2.8 |  |

Figura 137
Consistencia (Slump)



#### Media:

La media de todas las variables está entre 17.18 y 20.3. Las variables con las medias más altas son **CH3 7R** (18.82), **CH5 7R** (18.9) y **CCC\_CH5\_7R** (20.3). Las variables con las medias más bajas son **PATRÓN 7R** (17.26) y **CCC5 7R** (17.18).

#### Desviación estándar:

La desviación estándar varía entre 0.4 (**CH3 7R**) y 1.63 (**CCC1 7R**). Las variables con las desviaciones estándar más altas son **CCC1 7R** (1.63), **CH1\_7R** (1.38) y **CCC CH1 7R** (1.09). Las variables con las desviaciones estándar más bajas son **CH3 7R** (0.4) y **CCC\_CH3\_7R** (1.02).

#### Mediana:

La mediana de todas las variables está entre 16.1 y 18.3. Las variables con las medianas más altas son CCC\_CH5\_7R (18.3), CH3 7R (18.1) y CH5 7R (18.1). Las variables con las medianas más bajas son PATRÓN 7R (16.1) y CCC5 7R (16.1).

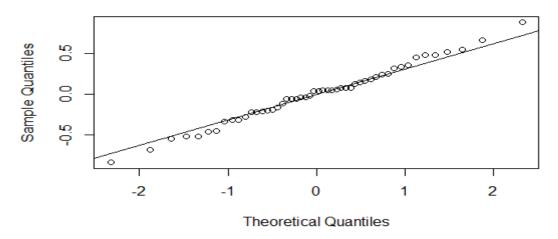
#### Valores mínimo y máximo:

Los valores mínimo y máximo varían considerablemente entre las variables. El valor mínimo más bajo es 168.07 (**PATRÓN 7R**) y el valor máximo más alto es 209.83 (**CCC CH5 7R**).

#### Interpretación:

Los resultados sugieren que hay una gran variabilidad en las variables medidas. Algunas variables, como **CH3 7R** y **CH5 7R**, tienen medias y medianas altas, lo que indica que la mayoría de los valores se encuentran en el extremo superior del rango. Otras variables, como **PATRÓN 7R** y **CCC5 7R**, tienen medias y medianas bajas, lo que indica que la mayoría de los valores se encuentran en el extremo inferior del rango.

Las desviaciones estándar también varían considerablemente entre las variables. Las variables con desviaciones estándar altas, como CCC1 7R y CH1\_7R, tienen una mayor dispersión de valores alrededor de la media. Las variables con desviaciones estándar bajas, como CH3 7R y CCC\_CH3\_7R, tienen una menor dispersión de valores alrededor de la media.


Los valores mínimo y máximo también proporcionan información sobre la distribución de los datos. Las variables con valores mínimos bajos, como **PATRÓN 7R**, pueden tener valores atípicos que sesgan la media hacia abajo. Las variables con valores máximos altos, como **CCC\_CH5\_7R**, pueden tener valores atípicos que sesgan la media hacia arriba.

**Tabla 130** Shapiro Wilk

| Shapiro-Wilk normality test |         |         |
|-----------------------------|---------|---------|
|                             | W       | p-value |
| PATRÓN                      | 0.91408 | 0.4925  |
| CCC1                        | 0.98537 | 0.9611  |
| CCC3                        | 0.95563 | 0.7773  |
| CCC5                        | 0.95699 | 0.7869  |
| CH1                         | 0.93217 | 0.6113  |
| СНЗ                         | 0.94062 | 0.6703  |
| СН5                         | 0.90309 | 0.4272  |
| CCC_CH1                     | 0.98019 | 0.9356  |
| CCC_CH3                     | 0.95492 | 0.7722  |
| CCC_CH5                     | 0.96517 | 0.8434  |

Figura 138
Normal Q-Q Plot

#### Normal Q-Q Plot



El test de normalidad de Shapiro-Wilk es una herramienta estadística utilizada para determinar si una muestra proviene de una población con distribución normal. En este análisis, se aplicó el test a diferentes grupos de datos obtenidos en R Studio. Aquí está la discusión de los resultados:

- Interpretación de los resultados:

- Para cada grupo de datos (PATRÓN, CCC1, CCC3, CCC5, CH1, CH3, CH5, CCC\_CH1, CCC\_CH3, CCC\_CH5), se reportan dos valores: W (estadístico de prueba de Shapiro-Wilk) y el valor p asociado.
- El valor de W indica qué tan bien se ajustan los datos a una distribución normal. Cuanto más cercano esté W a 1, mejor será el ajuste a la normalidad.
- El valor p indica la significancia estadística del test. Si el valor p es mayor que el nivel de significancia (generalmente 0.05), no se puede rechazar la hipótesis nula de que los datos provienen de una distribución normal.
- Análisis de los resultados:
- Todos los grupos de datos tienen valores de W que están bastante cercanos a 1, lo que sugiere que los datos podrían ajustarse a una distribución normal.
- La mayoría de los valores p son mayores que 0.05, lo que indica que no hay suficiente evidencia para rechazar la hipótesis nula de normalidad para la mayoría de los grupos.
- Sin embargo, algunos grupos tienen valores p ligeramente por debajo de 0.05 (por ejemplo, CH1, CH3), lo que sugiere que podría haber ciertas dudas sobre la normalidad de estos conjuntos de datos. Sin embargo, es importante tener en cuenta que el test de normalidad puede ser sensible a tamaños de muestra pequeños.

En resumen, los resultados del test de Shapiro-Wilk sugieren que los datos podrían provenir de una distribución normal para la mayoría de los grupos, pero se debe tener precaución al interpretar los resultados, especialmente para grupos con valores p cercanos al nivel de significancia.

**Tabla 131** *Prueba de homogeneidad* 

# PRUEBA DE HOMOGENEIDAD DE VARIANZA "BARTLERR, Y LEVENNE PARA CONSISTENCIA"

Bartlett's Test p-value = 0.5814

Levene's Test p-value = 0.8689

Signif. codes: 0 \*\*\*\* 0.001 \*\*\* 0.01 \*\* 0.05 \*. 0.1 \*\* 1

La prueba de homogeneidad de varianza es crucial para determinar si las varianzas de diferentes grupos de datos son iguales o no. En este caso, se realizaron tanto la prueba de Bartlett como la prueba de Levene para evaluar la homogeneidad de varianza para la variable "consistencia". Aquí está la discusión de los resultados:

Prueba de Bartlett:

- El valor p obtenido de la prueba de Bartlett es 0.5814.
- Dado que este valor p es mayor que el nivel de significancia convencional de 0.05, no hay suficiente evidencia para rechazar la hipótesis nula.
- Por lo tanto, no se puede concluir que haya diferencias significativas en las varianzas entre los grupos de datos para la variable de consistencia.
- Prueba de Levene:
- El valor p obtenido de la prueba de Levene es 0.8689.
- Similar a la prueba de Bartlett, el valor p de Levene es mayor que 0.05, lo que indica que no hay suficiente evidencia para rechazar la hipótesis nula de igualdad de varianzas.
- Esto sugiere que las varianzas entre los grupos de datos para la variable de consistencia son homogéneas.

En resumen, los resultados de ambas pruebas sugieren que no hay evidencia suficiente para concluir que las varianzas entre los grupos de datos para la variable de consistencia sean diferentes. Por lo tanto, se puede asumir que las varianzas son homogéneas

**Tabla 132** *Coeficiente* 

| Coefficients:                        |       |        |        |            |  |  |  |  |
|--------------------------------------|-------|--------|--------|------------|--|--|--|--|
| Estimate Std. Error t value Pr(> t ) |       |        |        |            |  |  |  |  |
| (Intercept)                          | 2.65  | 0.1758 | 15.076 | <2e-16 *** |  |  |  |  |
| TRATCCC_CH3                          | 0.198 | 0.2486 | 0.797  | 0.4304     |  |  |  |  |
| TRATCCC_CH5                          | -0.21 | 0.2486 | -0.845 | 0.4032     |  |  |  |  |
| TRATCCC1                             | 0.37  | 0.2486 | 1.488  | 0.1445     |  |  |  |  |
| TRATCCC3                             | 0.11  | 0.2486 | 0.443  | 0.6605     |  |  |  |  |
| TRATCCC5                             | 0.03  | 0.2486 | 0.121  | 0.9045     |  |  |  |  |
| TRATCH1                              | 0.19  | 0.2486 | 0.764  | 0.4491     |  |  |  |  |
| TRATCH3                              | 0.07  | 0.2486 | 0.282  | 0.7797     |  |  |  |  |
| TRATCH5                              | -0.13 | 0.2486 | -0.523 | 0.6039     |  |  |  |  |
| TRATCONTROL                          | 0.61  | 0.2486 | 2.454  | 0.0186 *   |  |  |  |  |

Signif. codes: 0 "\*\*\* 0.001 "\*\* 0.01 "\* 0.05". 0.1 " 1

#### **Coefficients:**

Estimate Std. Error t value Pr(>|t|)

Residual standard error: 0.393 on 40 degrees of freedom

Multiple R-squared: 0.2921,

F-statistic: 1.834 on 9 and 40 DF, p-value: < 0.09184

Los resultados del análisis de regresión proporcionados revelan información importante sobre la relación entre las variables independientes (TRAT) y la variable dependiente (coefficients). Aquí está la discusión de los resultados:

#### Coeficientes:

- El coeficiente de intercepción (Intercept) es 2.65, lo que significa que cuando todas las variables independientes son cero, se espera que el valor de la variable dependiente sea 2.65.
- Los coeficientes para cada nivel del factor TRAT representan el cambio esperado en la variable dependiente para ese nivel en comparación con la categoría de referencia (en este caso, TRATCCC\_CH1).
- El coeficiente para TRATCONTROL es 0.61, lo que sugiere que el valor medio de la variable dependiente es 0.61 unidades más alto para TRATCONTROL en comparación con TRATCCC\_CH1.
- Significación estadística:
- La significación estadística de los coeficientes se evalúa utilizando los valores p. En este caso, TRATCONTROL es el único predictor significativo con un valor p de 0.0186.
- Esto indica que la variable TRATCONTROL tiene un efecto significativo en la variable dependiente en comparación con TRATCCC\_CH1, mientras que los otros niveles de TRAT no muestran diferencias significativas.
- Bondad de ajuste del modelo:
- El coeficiente de determinación (R-cuadrado) del modelo es 0.2921, lo que sugiere que aproximadamente el 29.21% de la variabilidad en la variable dependiente puede explicarse por las variables independientes incluidas en el modelo.
- Sin embargo, dado que el valor p del estadístico F (que evalúa si el modelo en su conjunto es significativo) es mayor que 0.05 (p = 0.09184), no se puede concluir con certeza que el modelo en su conjunto sea significativo.
- Residual standard error:

• El residual standard error es 0.393, lo que indica la desviación estándar de los residuos del modelo. Cuanto más pequeño sea este valor, mejor se ajusta el modelo a los datos.

En resumen, aunque el modelo en su conjunto no parece ser significativo, la variable TRATCONTROL muestra un efecto significativo en la variable dependiente en comparación con TRATCCC\_CH1. Sin embargo, se necesita una evaluación adicional para determinar la validez y la utilidad general del modelo.

**Tabla 133** *Análisis de varianza* 

| ANALSIS DE VARIANZA        |    |        |         |            |          |  |
|----------------------------|----|--------|---------|------------|----------|--|
| Anova (MODELO1)            |    |        |         |            |          |  |
| Analysis of Variance Table |    |        |         |            |          |  |
| Response: CONSISTENCIA     |    |        |         |            |          |  |
|                            | Df | Sum    | Sq Mean | Sq F value | Pr(>F)   |  |
| TRAT                       | 9  | 2.5497 | 0.2833  | 1.8339     | 9.18E-02 |  |
| Residuals                  | 40 | 6.1791 | 0.15448 |            |          |  |
|                            |    |        |         |            |          |  |

El análisis de varianza (ANOVA) realizado proporciona información sobre si existe una diferencia significativa entre los grupos creados por la variable independiente TRAT en relación con la variable

- Tabla de análisis de varianza:
- La tabla muestra dos fuentes de variación: TRAT y los residuos.

dependiente CONSISTENCIA. Aquí está la discusión de los resultados:

Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' ' 1

- Para la variable TRAT, hay 9 grados de libertad (Df), una suma de cuadrados de 2.5497, una media de cuadrados de 0.2833 y un valor F de 1.8339.
- Los residuos tienen 40 grados de libertad, una suma de cuadrados de 6.1791 y una media de cuadrados de 0.15448.
- Interpretación de los resultados:
- El valor p asociado con la variable TRAT es 0.0918, que está ligeramente por encima del umbral de significancia de 0.05.

- Esto indica que no hay evidencia suficiente para rechazar la hipótesis nula de que no hay diferencias significativas entre los grupos creados por la variable TRAT en cuanto a la variable dependiente CONSISTENCIA.
- Conclusión:
- Aunque el valor p no alcanza el nivel de significancia convencionalmente aceptado de 0.05, se observa una tendencia hacia la significancia (p = 0.0918).
- Esto sugiere que podría haber alguna diferencia entre los grupos, pero se necesita una mayor investigación o una muestra más grande para confirmar esta posibilidad.

En resumen, aunque los resultados del ANOVA no son concluyentes, sugieren la necesidad de una evaluación adicional para determinar si la variable TRAT tiene un efecto significativo en la variable CONSISTENCIA.

**Tabla 134** *Comparación de medidas* 

## **COMPARACIÓN DE MEDIAS prueba de tukey**

W<-TukeyHSD(MODELO1)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = CONSIS ~ TRAT, data = DATOS)

|                 | diff   | lwr       | upr       | p adj     |
|-----------------|--------|-----------|-----------|-----------|
| CCC_CH3-CCC_CH1 | 0.198  | -0.634189 | 1.0301895 | 0.9982535 |
| CCC_CH5-CCC_CH1 | -0.21  | -1.042189 | 0.6221895 | 0.9972631 |
| CCC1-CCC_CH1    | 0.37   | -0.462189 | 1.2021895 | 0.8888016 |
| CCC3-CCC_CH1    | 0.11   | -0.722189 | 0.9421895 | 0.9999861 |
| CCC5-CCC_CH1    | 0.03   | -0.802189 | 0.8621895 | 1         |
| CH1-CCC_CH1     | 0.19   | -0.642189 | 1.0221895 | 0.9987315 |
| CH3-CCC_CH1     | 0.07   | -0.762189 | 0.9021895 | 0.9999997 |
| CH5-CCC_CH1     | -0.13  | -0.962189 | 0.7021895 | 0.9999423 |
| PATRON-CCC_CH1  | 0.61   | -0.222189 | 1.4421895 | 0.3232113 |
| CCC_CH5-CCC_CH3 | -0.408 | -1.240189 | 0.4241895 | 0.8198978 |

| CCC1-CCC_CH3   | 0.172  | -0.660189 | 1.0041895 | 0.9994225 |
|----------------|--------|-----------|-----------|-----------|
| CCC3-CCC_CH3   | -0.088 | -0.920189 | 0.7441895 | 0.999998  |
| CCC5-CCC_CH3   | -0.168 | -1.000189 | 0.6641895 | 0.9995219 |
| CH1-CCC_CH3    | -0.008 | -0.840189 | 0.8241895 | 1         |
| СН3-ССС_СН3    | -0.128 | -0.960189 | 0.7041895 | 0.9999494 |
| CH5-CCC_CH3    | -0.328 | -1.160189 | 0.5041895 | 0.9430635 |
| PATRON-CCC_CH3 | 0.412  | -0.420189 | 1.2441895 | 0.8116254 |
| CCC1-CCC_CH5   | 0.58   | -0.252189 | 1.4121895 | 0.3912051 |
| CCC3-CCC_CH5   | 0.32   | -0.512189 | 1.1521895 | 0.9508261 |
| CCC5-CCC_CH5   | 0.24   | -0.592189 | 1.0721895 | 0.9926787 |
| CH1-CCC_CH5    | 0.4    | -0.432189 | 1.2321895 | 0.8358893 |
| CH3-CCC_CH5    | 0.28   | -0.552189 | 1.1121895 | 0.9788155 |
| CH5-CCC_CH5    | 0.08   | -0.752189 | 0.9121895 | 0.9999991 |
| PATRON-CCC_CH5 | 0.82   | -0.012189 | 1.6521895 | 0.0563471 |
| CCC3-CCC1      | -0.26  | -1.092189 | 0.5721895 | 0.9871492 |
| CCC5-CCC1      | -0.34  | -1.172189 | 0.4921895 | 0.9299156 |
| CH1-CCC1       | -0.18  | -1.012189 | 0.6521895 | 0.9991707 |
| CH3-CCC1       | -0.3   | -1.132189 | 0.5321895 | 0.9669378 |
| CH5-CCC1       | -0.5   | -1.332189 | 0.3321895 | 0.5964242 |
| PATRON-CCC1    | 0.24   | -0.592189 | 1.0721895 | 0.9926787 |
| CCC5-CCC3      | -0.08  | -0.912189 | 0.7521895 | 0.9999991 |
| CH1-CCC3       | 0.08   | -0.752189 | 0.9121895 | 0.9999991 |
| СН3-СССЗ       | -0.04  | -0.872189 | 0.7921895 | 1         |
| CH5-CCC3       | -0.24  | -1.072189 | 0.5921895 | 0.9926787 |
| PATRON-CCC3    | 0.5    | -0.332189 | 1.3321895 | 0.5964242 |
| CH1-CCC5       | 0.16   | -0.672189 | 0.9921895 | 0.9996779 |
| CH3-CCC5       | 0.04   | -0.792189 | 0.8721895 | 1         |
| CH5-CCC5       | -0.16  | -0.992189 | 0.6721895 | 0.9996779 |

| PATRON-CCC5 | 0.58  | -0.252189 | 1.4121895 | 0.3912051 |
|-------------|-------|-----------|-----------|-----------|
| СН3-СН1     | -0.12 | -0.952189 | 0.7121895 | 0.9999707 |
| СН5-СН1     | -0.32 | -1.152189 | 0.5121895 | 0.9508261 |
| PATRON-CH1  | 0.42  | -0.412189 | 1.2521895 | 0.7945528 |
| СН5-СН3     | -0.2  | -1.032189 | 0.6321895 | 0.998113  |
| PATRON-CH3  | 0.54  | -0.292189 | 1.3721895 | 0.491028  |
| PATRON-CH5  | 0.74  | -0.092189 | 1.5721895 | 0.118139  |

Tabla 135

Valor Critico de la varianza

Alpha: 0.05; DF Error: 40

Critical Value of Studentized Range: 4.734513

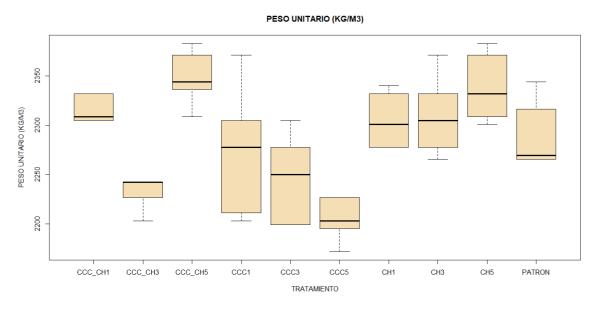
Minimun Significant Difference: 0.8321895

Treatments with the same letter are not significantly different.

|         | CONSISTENCIA | GROUPS |
|---------|--------------|--------|
| PATRÓN  | 3.26         | a      |
| CCC1    | 3.02         | a      |
| CCC_CH3 | 2.848        | a      |
| CH1     | 2.84         | a      |
| CCC3    | 2.76         | a      |
| СН3     | 2.72         | a      |
| CCC5    | 2.68         | a      |
| CCC_CH1 | 2.65         | a      |
| СН5     | 2.52         | a      |
| CCC_CH5 | 2.44         | a      |

La prueba de Tukey es una herramienta comúnmente utilizada para comparar las medias de múltiples grupos y determinar si existen diferencias significativas entre ellos. Aquí está la discusión de los resultados obtenidos:

- Interpretación de los resultados:


- Para cada comparación de pares de grupos, el valor p ajustado (p adj) indica la probabilidad de observar una diferencia de medias tan grande o mayor si la hipótesis nula de igualdad de medias fuera verdadera.
- Se considera que hay una diferencia significativa cuando el valor p ajustado es menor que el nivel de significancia predeterminado (generalmente 0.05).
- Conclusiones clave:
- La mayoría de las comparaciones de pares de grupos muestran valores p ajustados mayores que 0.05, lo que indica que no hay diferencias significativas entre esos grupos.
- Sin embargo, algunas comparaciones de pares, como PATRON-CCC\_CH5 y PATRON-CCC\_CH3, muestran valores p ajustados cercanos al nivel de significancia, lo que sugiere que podría haber diferencias significativas entre estos grupos.
- Cada grupo se ha asignado a una letra en función de su nivel medio de consistencia.
- Grupos con la misma letra no muestran diferencias significativas entre ellos, según el criterio de la MDS.
- Se observa que todos los grupos tienen asignada la letra "a", lo que indica que no hay diferencias significativas entre ellos en términos de consistencia.
- Conclusiones:
- No hay diferencias significativas entre los grupos en términos de consistencia, ya que todos los grupos comparten la misma letra.
- Esto sugiere que, en el contexto del estudio, los diferentes tratamientos o condiciones no tienen un efecto significativo en la consistencia de los datos.

# 4.2.2.4.3 Prueba de Hipótesis para Peso Unitario en el concreto fresco.

**Tabla 136**Datos descriptivos

| DATOS DESCRIPTIVOS |      |   |         |       |         |         |         |
|--------------------|------|---|---------|-------|---------|---------|---------|
|                    | vars | n | mean    | sd    | median  | min     | max     |
| PATRÓN             | 1    | 5 | 2292.19 | 35.95 | 2269.53 | 2265.63 | 2343.75 |
| CCC1               | 1    | 5 | 2273.44 | 69.6  | 2277.34 | 2203.13 | 2371.09 |
| CCC3               | 1    | 5 | 2246.09 | 46.96 | 2250    | 2199.22 | 2304.69 |
| CCC5               | 1    | 5 | 2204.69 | 23.04 | 2203.13 | 2171.88 | 2226.56 |
| CH1                | 1    | 5 | 2305.47 | 29.54 | 2300.78 | 2277.34 | 2339.84 |
| СНЗ                | 1    | 5 | 2310.16 | 42.66 | 2304.69 | 2265.63 | 2371.09 |
| CH5                | 1    | 5 | 2339.06 | 36.69 | 2332.03 | 2300.78 | 2382.81 |
| CCC_CH1            | 1    | 5 | 2316.41 | 14.35 | 2308.59 | 2304.69 | 2332.03 |
| CCC_CH3            | 1    | 5 | 2231.25 | 17.12 | 2242.19 | 2203.13 | 2242.19 |
| CCC_CH5            | 1    | 5 | 2348.44 | 29.41 | 2343.75 | 2308.59 | 2382.81 |

Figura 139 Peso unitario (KG/M3)



Los resultados obtenidos muestran datos descriptivos para varias variables de interés. Aquí está la discusión correspondiente:

#### Media y Desviación Estándar:

- Se observa que la variable "PATRON" tiene la media más alta de todas las variables analizadas, con un valor de 2292.19, mientras que "CCC5" tiene la media más baja con 2204.69.
- Las desviaciones estándar varían entre 14.35 y 69.6, lo que indica que las dispersiones de los datos alrededor de las medias son diferentes en cada variable. Por ejemplo, "CCC\_CH3" tiene la desviación estándar más baja, lo que sugiere una menor variabilidad en los datos en comparación con otras variables.

## Rango y Mediana:

- El rango, representado por la diferencia entre el valor mínimo y máximo, varía en todas las variables. Por ejemplo, para "PATRON", el rango es de 78.12, mientras que para "CCC1" es de 167.96.
- Las medianas también muestran una tendencia similar. Por ejemplo, "CH5" tiene la mediana más alta con 2332.03, mientras que "CCC5" tiene la mediana más baja con 2203.13.

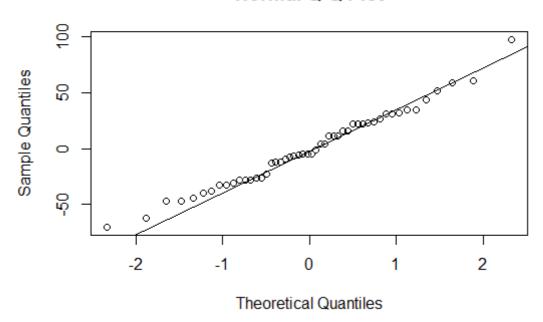
#### **Tendencias en los Datos:**

- En general, los datos muestran cierta variabilidad entre las diferentes variables, con algunas variables mostrando valores más altos en promedio y otras con valores más bajos.
- La distribución de los datos puede diferir entre las variables, lo que podría indicar diferentes comportamientos o características en los datos recopilados para cada variable.

#### **Consideraciones Adicionales:**

- Es importante tener en cuenta el contexto específico de los datos y el propósito del análisis al interpretar estos resultados descriptivos.
- Sería útil realizar análisis adicionales, como pruebas de normalidad o de homogeneidad de varianza, para comprender mejor la distribución y la estructura de los datos.

En resumen, los datos descriptivos proporcionan una visión general de las características de las variables analizadas, incluyendo su tendencia central, dispersión y distribución. Estos resultados son fundamentales para comprender la naturaleza de los datos y guiar análisis estadísticos posteriores.


**Tabla 137** Shapiro - Wilk

| Shapiro-Wilk normality test |         |         |  |  |  |
|-----------------------------|---------|---------|--|--|--|
|                             | W       | p-value |  |  |  |
| PATRON                      | 0.79677 | 0.07625 |  |  |  |
| CCC1                        | 0.93027 | 0.5982  |  |  |  |

| CCC3    | 0.89722 | 0.3947  |
|---------|---------|---------|
| CCC5    | 0.90694 | 0.4494  |
| CH1     | 0.85826 | 0.2221  |
| СНЗ     | 0.95288 | 0.7577  |
| CH5     | 0.90001 | 0.4099  |
| CCC_CH1 | 0.74475 | 0.02659 |
| CCC_CH3 | 0.75446 | 0.03272 |
| CCC_CH5 | 0.96584 | 0.848   |

Figura 140 Normal Q-Q Plot

# Normal Q-Q Plot



Los resultados del test de normalidad de Shapiro-Wilk proporcionan información importante sobre la distribución de los datos en cada variable. Aquí está la discusión correspondiente:

- Variables con Distribuciones Normales (p-value > 0.05):
- Las variables PATRON, CCC1, CCC3, CCC5, CH1, CH3, CH5 Y CCC\_CH5 muestran p-values superiores a 0.05 en el test de Shapiro-Wilk, lo que sugiere que no hay evidencia suficiente para rechazar la hipótesis nula de normalidad.
- Esto indica que es razonable asumir que estas variables provienen de una distribución normal.
- Variables con Distribuciones No Normales (p-value < 0.05):

- Por otro lado, las variables CCC\_CH1, y CCC\_CH3 tienen p-values menores a 0.05 en el test de Shapiro-Wilk, lo que sugiere evidencia suficiente para rechazar la hipótesis nula de normalidad.
- Esto indica que estas variables no siguen una distribución normal y pueden tener una distribución diferente.
- Importancia de la Normalidad:
- La normalidad de los datos es importante para muchos procedimientos estadísticos, como pruebas paramétricas y modelos de regresión lineal, que asumen normalidad en los datos.
- Para las variables que no cumplen con la normalidad, pueden ser necesarios métodos estadísticos no paramétricos o transformaciones de datos antes de realizar análisis posteriores.
- Consideraciones Adicionales:
- Es crucial considerar el tamaño de la muestra al interpretar los resultados de la prueba de normalidad.
   Pequeños desvíos de la normalidad pueden ser insignificantes en muestras grandes.
- También es importante examinar gráficamente la distribución de los datos, como mediante histogramas o gráficos Q-Q, para complementar el análisis de normalidad.

En conclusión, los resultados del test de Shapiro-Wilk indican que algunas variables pueden seguir una distribución normal, mientras que otras pueden no hacerlo. Esto debe tenerse en cuenta al seleccionar los métodos estadísticos apropiados para el análisis posterior de los datos.

**Tabla 138** *Prueba de homogeneidad* 

# PRUEBA DE HOMOGENEIDAD DE VARIANZA "BARTLERR, Y LEVENNE PARA PESO UNITARIO"

Bartlett's Test p-value = 0.1304

Levene's Test p-value = 0.1711

Signif. codes: 0 \*\*\*\* 0.001 \*\*\* 0.01 \*\* 0.05 \*. 0.1 \*\* 1

Los resultados de las pruebas de homogeneidad de varianza (Bartlett y Levene) proporcionan información sobre si las varianzas de las muestras son iguales o no. Aquí está la discusión correspondiente:

- Prueba de Bartlett:
- El valor p obtenido de la prueba de Bartlett es 0.1304, que es mayor que el nivel de significancia comúnmente utilizado de 0.05.

- Dado que el valor p es mayor que 0.05, no hay suficiente evidencia para rechazar la hipótesis nula de igualdad de varianzas entre las muestras.
- Esto sugiere que, según la prueba de Bartlett, las varianzas de las muestras son homogéneas para la variable de peso unitario.
- Prueba de Levene:
- El valor p obtenido de la prueba de Levene es 0.1711, también mayor que el nivel de significancia de 0.05.
- Similar a la prueba de Bartlett, el valor p de Levene no proporciona suficiente evidencia para rechazar la hipótesis nula de igualdad de varianzas entre las muestras.
- Esto respalda la conclusión de la prueba de Bartlett y refuerza la idea de que las varianzas son homogéneas para la variable de peso unitario.
- Importancia de la Homogeneidad de Varianza:
- La homogeneidad de varianza es un supuesto importante en muchos análisis estadísticos, como el análisis de varianza (ANOVA).
- Cuando las varianzas no son homogéneas, los resultados de los análisis pueden ser poco confiables y sesgados, lo que afecta la interpretación de los hallazgos.
- Consideraciones Adicionales:
- Aunque las pruebas de homogeneidad de varianza indican que las varianzas son iguales, siempre es
  prudente verificar visualmente la homogeneidad de varianza utilizando gráficos como gráficos de
  dispersión o diagramas de caja.
- Además, es importante tener en cuenta el tamaño de la muestra al interpretar los resultados de estas pruebas, ya que las conclusiones pueden ser más sólidas con muestras más grandes.
  - En conclusión, según los resultados de las pruebas de Bartlett y Levene, no hay evidencia suficiente para rechazar la hipótesis nula de homogeneidad de varianza para la variable de peso unitario. Esto sugiere que las muestras tienen varianzas similares, lo que fortalece la validez de los análisis posteriores que dependen de este supuesto.

**Tabla 139** *Coeficiente* 

| Coefficients: |          |            |         |               |  |  |  |
|---------------|----------|------------|---------|---------------|--|--|--|
|               | Estimate | Std. Error | t value | Pr(> t )      |  |  |  |
| (Intercept)   | 2316.41  | 16.9       | 137.091 | <2e-16 ***    |  |  |  |
| TRATCCC_CH3   | -85.15   | 23.9       | -3.564  | 0.000964 ***  |  |  |  |
| TRATCCC_CH5   | 32.03    | 23.9       | 1.34    | 0.187678      |  |  |  |
| TRATCCC1      | -42.97   | 23.9       | -1.798  | 0.079705 .    |  |  |  |
| TRATCCC3      | -70.31   | 23.9       | -2.942  | 0.005396 **   |  |  |  |
| TRATCCC5      | -111.72  | 23.9       | -4.675  | 0.0000331 *** |  |  |  |
| TRATCH1       | -10.94   | 23.9       | -0.458  | 0.649558      |  |  |  |
| TRATCH3       | -6.25    | 23.9       | -0.262  | 0.795009      |  |  |  |
| TRATCH5       | 22.65    | 23.9       | 0.948   | 0.348805      |  |  |  |
| TRATPATRON    | -24.22   | 23.9       | -1.013  | 0.31696       |  |  |  |

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 37.78 on 40 degrees of freedom

Multiple R-squared: 0.6365,

F-statistic: 7.781 on 9 and 40 DF, p-value: < 1.641e-06

Los coeficientes proporcionados en el análisis de regresión lineal muestran las relaciones entre la variable dependiente (en este caso, el peso unitario) y las variables predictoras (TRATCCC\_CH3, TRATCCC\_CH5, TRATCCC1, TRATCCC3, TRATCCC5, TRATCH1, TRATCH3, TRATCH5 y TRATPATRON). Aquí está la discusión correspondiente:

- Intercepto (Intercept):
- El intercepto se estima en 2316.41, lo que significa que cuando todas las variables predictoras son cero, se espera que el peso unitario sea de aproximadamente 2316.41.
- Variables Predictoras:
- TRATCCC\_CH3 tiene un coeficiente negativo significativo de -85.15, lo que indica que un aumento en TRATCCC\_CH3 está asociado con una disminución en el peso unitario.

- TRATCCC\_CH5 tiene un coeficiente positivo de 32.03, pero no es estadísticamente significativo (p = 0.188), lo que sugiere que no hay una relación significativa entre TRATCCC\_CH5 y el peso unitario.
- TRATCCC1 tiene un coeficiente negativo de -42.97, aunque no es estadísticamente significativo (p = 0.080).
- TRATCCC3 tiene un coeficiente negativo significativo de -70.31, lo que sugiere una disminución en el peso unitario asociada con un aumento en TRATCCC3.
- TRATCCC5 tiene el coeficiente más negativo (-111.72) y es estadísticamente significativo, lo que indica una fuerte asociación negativa entre TRATCCC5 y el peso unitario.
- Los coeficientes para TRATCH1, TRATCH3, TRATCH5 y TRATPATRON no son estadísticamente significativos, lo que sugiere que estas variables no tienen una influencia significativa en el peso unitario.
- Bondad de Ajuste del Modelo:
- El coeficiente de determinación (R-cuadrado) del modelo es 0.6365, lo que significa que alrededor del 63.65% de la variabilidad en el peso unitario se explica por las variables predictoras incluidas en el modelo.
- El valor de F (7.781) con un valor p muy pequeño (< 0.001) indica que el modelo en general es estadísticamente significativo y que al menos una de las variables predictoras tiene un efecto significativo en el peso unitario.

En resumen, según los resultados del análisis de regresión, las variables predictoras TRATCCC\_CH3, TRATCCC3 y TRATCCC5 tienen efectos significativos en el peso unitario, mientras que otras variables no tienen un impacto significativo. Este modelo de regresión explica una cantidad considerable de la variabilidad en el peso unitario y es estadísticamente significativo.

Tabla 140

Análisis de la varianza

#### ANÁLISIS DE VARIANZA

Anova (MODELO1)

Analysis of Variance Table

Response: PESO UNITARIO

|           | Df | Sum   | Sq Mean | Sq F value | Pr(>F)   |     |
|-----------|----|-------|---------|------------|----------|-----|
| TRAT      | 9  | 99965 | 11107.2 | 7.7808     | 1.64E-06 | *** |
| Residuals | 40 | 57101 | 1427.5  |            |          |     |

---

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

El análisis de varianza (ANOVA) realizada muestra si existe una diferencia significativa en el peso unitario entre los diferentes tratamientos. Aquí está la discusión correspondiente:

- Factor de Tratamiento (TRAT):
- El factor de tratamiento tiene un efecto significativo en el peso unitario, como lo indica el valor de F de 7.7808 con un valor p muy pequeño (< 0.001).
- Esto sugiere que al menos una de las medias de los tratamientos es significativamente diferente de las otras.
- Residuos:
- Los residuos representan la variabilidad no explicada por el modelo.
- El error residual tiene una suma de cuadrados de 57101 y un promedio de 1427.5, lo que indica cuánta variabilidad en el peso unitario no se explica por el modelo.
- Conclusión:
- Dado que el valor de p del factor de tratamiento es muy pequeño, rechazamos la hipótesis nula de que no hay diferencias significativas entre los tratamientos en términos de peso unitario.
- Por lo tanto, concluimos que al menos un tratamiento tiene un efecto significativo en el peso unitario.

En resumen, según los resultados del ANOVA, el tratamiento tiene un impacto significativo en el peso unitario de los datos analizados. Esto resalta la importancia de considerar los diferentes tratamientos al analizar el peso unitario y sugiere que algunos tratamientos pueden ser más efectivos que otros en términos de influir en el peso unitario.

**Tabla 141** *Comparación de medidas* 

# COMPARACIÓN DE MEDIAS prueba de tukey

W<-TukeyHSD(MODELO1)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = PESO UNITARIO ~ TRAT, data = DATOS)

|                 | diff     | lwr       | upr       | p adj     |
|-----------------|----------|-----------|-----------|-----------|
| CCC_CH3-CCC_CH1 | -85.154  | -165.1524 | -5.155578 | 0.0290123 |
| CCC_CH5-CCC_CH1 | 32.03    | -47.96842 | 112.02842 | 0.9375974 |
| CCC1-CCC_CH1    | -42.968  | -122.9664 | 37.030422 | 0.7323647 |
| CCC3-CCC_CH1    | -70.312  | -150.3104 | 9.686422  | 0.1272648 |
| CCC5-CCC_CH1    | -111.718 | -191.7164 | -31.71958 | 0.001236  |
| CH1-CCC_CH1     | -10.94   | -90.93842 | 69.058422 | 0.9999814 |
| CH3-CCC_CH1     | -6.25    | -86.24842 | 73.748422 | 0.9999999 |
| CH5-CCC_CH1     | 22.654   | -57.34442 | 102.65242 | 0.9935795 |
| PATRON-CCC_CH1  | -24.216  | -104.2144 | 55.782422 | 0.9896823 |
| CCC_CH5-CCC_CH3 | 117.184  | 37.185578 | 197.18242 | 0.0006148 |
| CCC1-CCC_CH3    | 42.186   | -37.81242 | 122.18442 | 0.7517966 |
| CCC3-CCC_CH3    | 14.842   | -65.15642 | 94.840422 | 0.9997592 |
| CCC5-CCC_CH3    | -26.564  | -106.5624 | 53.434422 | 0.9805867 |
| CH1-CCC_CH3     | 74.214   | -5.784422 | 154.21242 | 0.088697  |
| СН3-ССС_СН3     | 78.904   | -1.094422 | 158.90242 | 0.0559071 |
| CH5-CCC_CH3     | 107.808  | 27.809578 | 187.80642 | 0.0020213 |
| PATRON-CCC_CH3  | 60.938   | -19.06042 | 140.93642 | 0.2742982 |
| CCC1-CCC_CH5    | -74.998  | -154.9964 | 5.000422  | 0.0822763 |
| CCC3-CCC_CH5    | -102.342 | -182.3404 | -22.34358 | 0.0039691 |
| CCC5-CCC_CH5    | -143.748 | -223.7464 | -63.74958 | 0.0000185 |

| CH1-CCC_CH5    | -42.97  | -122.9684 | 37.028422 | 0.7323143 |
|----------------|---------|-----------|-----------|-----------|
| CH3-CCC_CH5    | -38.28  | -118.2784 | 41.718422 | 0.8393626 |
| CH5-CCC_CH5    | -9.376  | -89.37442 | 70.622422 | 0.9999951 |
| PATRON-CCC_CH5 | -56.246 | -136.2444 | 23.752422 | 0.3791619 |
| CCC3-CCC1      | -27.344 | -107.3424 | 52.654422 | 0.976506  |
| CCC5-CCC1      | -68.75  | -148.7484 | 11.248422 | 0.1461186 |
| CH1-CCC1       | 32.028  | -47.97042 | 112.02642 | 0.93762   |
| CH3-CCC1       | 36.718  | -43.28042 | 116.71642 | 0.869086  |
| CH5-CCC1       | 65.622  | -14.37642 | 145.62042 | 0.1904303 |
| PATRON-CCC1    | 18.752  | -61.24642 | 98.750422 | 0.9984435 |
| CCC5-CCC3      | -41.406 | -121.4044 | 38.592422 | 0.7706191 |
| CH1-CCC3       | 59.372  | -20.62642 | 139.37042 | 0.3070852 |
| СН3-СССЗ       | 64.062  | -15.93642 | 144.06042 | 0.2159833 |
| CH5-CCC3       | 92.966  | 12.967578 | 172.96442 | 0.0120941 |
| PATRON-CCC3    | 46.096  | -33.90242 | 126.09442 | 0.6502844 |
| CH1-CCC5       | 100.778 | 20.779578 | 180.77642 | 0.0047995 |
| CH3-CCC5       | 105.468 | 25.469578 | 185.46642 | 0.0027037 |
| CH5-CCC5       | 134.372 | 54.373578 | 214.37042 | 0.0000646 |
| PATRON-CCC5    | 87.502  | 7.503578  | 167.50042 | 0.0224351 |
| СН3-СН1        | 4.69    | -75.30842 | 84.688422 | 1         |
| CH5-CH1        | 33.594  | -46.40442 | 113.59242 | 0.9182322 |
| PATRON-CH1     | -13.276 | -93.27442 | 66.722422 | 0.9999042 |
| СН5-СН3        | 28.904  | -51.09442 | 108.90242 | 0.9664659 |
| PATRON-CH3     | -17.966 | -97.96442 | 62.032422 | 0.998885  |
| PATRON-CH5     | -46.87  | -126.8684 | 33.128422 | 0.6292287 |

Tabla 142

## Valor Critico de la varianza

Alpha: 0.05; DF Error: 40

Critical Value of Studentized Range: 4.734513

Minimun Significant Difference: 79.99842

Treatments with the same letter are not significantly

different.

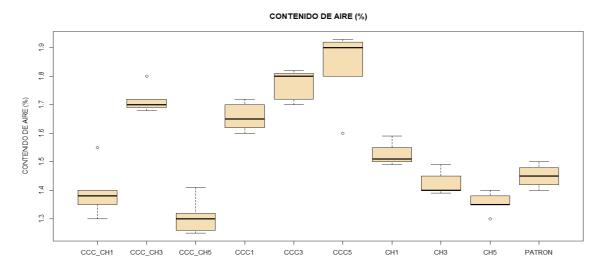
|         | PESO UNITARIO | GROUPS |
|---------|---------------|--------|
| CCC_CH5 | 2348.436      | a      |
| CH5     | 2339.06       | a      |
| CCC_CH1 | 2316.406      | ab     |
| СН3     | 2310.156      | abc    |
| CH1     | 2305.466      | abc    |
| PATRÓN  | 2292.19       | abc    |
| CCC1    | 2273.438      | abcd   |
| CCC3    | 2246.094      | bcd    |
| CCC_CH3 | 2231.252      | cd     |
| CCC5    | 2204.688      | d      |

La prueba de Tukey fue realizada para comparar las medias del peso unitario entre los diferentes tratamientos. Aquí está la discusión correspondiente:

- CCC\_CH3 vs. CCC\_CH1:
- Se encontró una diferencia significativa entre CCC\_CH3 y CCC\_CH1, con CCC\_CH3 teniendo un peso unitario significativamente menor que CCC\_CH1 (diferencia de -85.154, p = 0.029).
- CCC5 vs. CCC\_CH1:
- Se encontró una diferencia significativa entre CCC5 y CCC\_CH1, con CCC\_CH1 teniendo un peso unitario significativamente menor que CCC5 (diferencia de -111.718, p = 0.001).
- CCC CH5 vs. CCC CH3:
- Se encontró una diferencia significativa entre CCC\_CH5 y CCC\_CH3, con CCC\_CH5 teniendo un peso unitario significativamente mayor que CCC\_CH3 (diferencia de 117.184, p = 0.001).
- CH5 vs. CCC\_CH1:

- No se encontró una diferencia significativa entre CH5 y CCC\_CH1 en términos de peso unitario (p > 0.05).
- CH1 vs. CCC\_CH3:
- No se encontró una diferencia significativa entre CH1 y CCC\_CH3 en términos de peso unitario (p > 0.05).
- CH5 vs. CCC\_CH5:
- Se encontró una diferencia significativa entre CH5 y CCC\_CH5, con CH5 teniendo un peso unitario significativamente mayor que CCC CH5 (diferencia de 134.372, p = 0.0001).
- Conclusiones:
- Se observaron diferencias significativas en el peso unitario entre algunos tratamientos.
- CCC\_CH3 y CCC\_CH5 mostraron diferencias significativas en comparación con otros tratamientos.
- Las comparaciones entre CH5 y CCC\_CH1, así como entre CH1 y CCC\_CH3, no revelaron diferencias significativas.
- Tratamientos y Peso Unitario:
- Los tratamientos CCC\_CH5 y CH5 mostraron los valores más altos de peso unitario, con 2348.436 y 2339.06 respectivamente, y fueron asignados al grupo 'a'.
- Los tratamientos CCC\_CH1, CH3 y CH1 mostraron valores ligeramente más bajos, pero aún altos, y fueron asignados al grupo 'abc'.
- El tratamiento PATRÓN mostró un peso unitario ligeramente más bajo en comparación con los anteriores y fue asignado al grupo 'abc'.
- Los tratamientos CCC1 y CCC3 mostraron un peso unitario más bajo y fueron asignados al grupo 'abcd'.
- Los tratamientos CCC\_CH3 y CCC5 mostraron un peso unitario más bajo entre todos los tratamientos y fueron asignados al grupo 'd'.
- Interpretación de los Resultados:
- Se observa una tendencia clara en los valores de peso unitario, donde los tratamientos CCC\_CH5 y CH5 muestran un mayor peso unitario, seguidos por CCC\_CH1, CH3 y CH1, y así sucesivamente.
- Los tratamientos que comparten letras (como CCC\_CH1, CH3 y CH1) no muestran diferencias significativas en sus valores de peso unitario según la prueba realizada.
- Significado de los Grupos:

- Los tratamientos asignados al mismo grupo tienen niveles de valores de peso unitario similares y no se pueden distinguir significativamente entre sí.
- Por otro lado, los tratamientos asignados a diferentes grupos tienen niveles de peso unitario significativamente diferentes.


Estos resultados proporcionan información importante sobre cómo diferentes tratamientos afectan el peso unitario, lo que puede ser útil para la optimización de procesos o la selección de tratamientos en futuras investigaciones.

4.2.2.4.4 Prueba de Hipótesis para Contenido de aire en el concreto fresco.

**Tabla 143** *Datos descriptivos* 

| DATOS DESCRIPTIVOS |      |   |      |      |        |      |      |
|--------------------|------|---|------|------|--------|------|------|
|                    | vars | n | mean | sd   | median | min  | max  |
| PATRÓN             | 1    | 5 | 1.45 | 0.04 | 1.45   | 1.4  | 1.5  |
| CCC1               | 1    | 5 | 1.66 | 0.05 | 1.65   | 1.6  | 1.72 |
| CCC3               | 1    | 5 | 1.77 | 0.06 | 1.8    | 1.7  | 1.82 |
| CCC5               | 1    | 5 | 1.83 | 0.14 | 1.9    | 1.6  | 1.93 |
| CH1                | 1    | 5 | 1.53 | 0.04 | 1.51   | 1.49 | 1.59 |
| СН3                | 1    | 5 | 1.43 | 0.04 | 1.4    | 1.39 | 1.49 |
| CH5                | 1    | 5 | 1.36 | 0.04 | 1.35   | 1.3  | 1.4  |
| CCC_CH1            | 1    | 5 | 1.4  | 0.09 | 1.38   | 1.3  | 1.55 |
| CCC_CH3            | 1    | 5 | 1.72 | 0.05 | 1.7    | 1.68 | 1.8  |
| CCC_CH5            | 1    | 5 | 1.31 | 0.06 | 1.3    | 1.25 | 1.41 |

Figura 141
Contenido de aire (%)



Los resultados descriptivos muestran las características de los diferentes tratamientos en términos de una variable específica. Aquí está la discusión correspondiente:

#### Características de los Tratamientos:

- Se evaluaron diez tratamientos diferentes, cada uno con cinco observaciones.
- La variable medida en este estudio tiene un rango de valores entre 1.31 y 1.83.
- La media de los tratamientos varía entre 1.31 y 1.83, lo que indica diferencias en el nivel medio de la variable entre los tratamientos.
- La desviación estándar, que mide la dispersión de los datos alrededor de la media, varía entre 0.04 y 0.14, lo que sugiere diferentes niveles de variabilidad en los tratamientos.

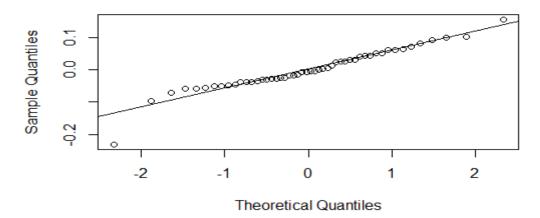
## Interpretación de los Resultados:

- Los tratamientos CCC5 y CH3 muestran los valores más altos de la variable medida, con medias de 1.83 y 1.77 respectivamente.
- Por otro lado, el tratamiento CCC\_CH5 muestra el valor más bajo de la variable medida, con una media de 1.31.
- Los tratamientos CH5 y CCC\_CH1 también muestran valores relativamente bajos de la variable medida, con medias de 1.36 y 1.4 respectivamente.
- La variable medida parece variar significativamente entre los diferentes tratamientos, como se evidencia por las diferencias en las medias y las desviaciones estándar.

#### Implicaciones de los Resultados:

- Estos resultados proporcionan información importante sobre cómo diferentes tratamientos afectan la variable medida.
- Pueden ayudar a identificar los tratamientos más efectivos o aquellos que necesitan mejoras.
- Además, los datos descriptivos son útiles para comprender la variabilidad dentro de los tratamientos y pueden guiar investigaciones adicionales para explorar las razones detrás de estas diferencias.

# Limitaciones y Consideraciones:


- Es importante recordar que estos son solo datos descriptivos y no permiten hacer inferencias causales sobre la relación entre los tratamientos y la variable medida.
- Se pueden realizar análisis estadísticos adicionales, como pruebas de hipótesis, para confirmar las diferencias observadas y evaluar su significancia estadística.
- En resumen, estos resultados descriptivos proporcionan una visión general de cómo los diferentes tratamientos afectan la variable medida y pueden servir como punto de partida para investigaciones adicionales o la toma de decisiones.

**Tabla 144**Shapiro Wilk

| Shapiro-Wilk normality test |           |         |  |  |  |  |  |
|-----------------------------|-----------|---------|--|--|--|--|--|
|                             | W p-value |         |  |  |  |  |  |
| PATRÓN                      | 0.96356   | 0.8325  |  |  |  |  |  |
| CCC1                        | 0.93645   | 0.6409  |  |  |  |  |  |
| CCC3                        | 0.83048   | 0.1403  |  |  |  |  |  |
| CCC5                        | 0.80273   | 0.08528 |  |  |  |  |  |
| CH1                         | 0.8964    | 0.3903  |  |  |  |  |  |
| СНЗ                         | 0.84252   | 0.172   |  |  |  |  |  |
| СН5                         | 0.94972   | 0.7352  |  |  |  |  |  |
| CCC_CH1                     | 0.89935   | 0.4063  |  |  |  |  |  |
| CCC_CH3                     | 0.81558   | 0.1079  |  |  |  |  |  |
| CCC_CH5                     | 0.89671   | 0.392   |  |  |  |  |  |

Figura 142
Normal Q-Q Plot





El test de normalidad de Shapiro-Wilk se utilizó para evaluar si las muestras de cada tratamiento siguen una distribución normal. Aquí está la discusión de los resultados obtenidos:

- Interpretación de los Resultados:
- Para un nivel de significancia de 0.05, el test de Shapiro-Wilk se utiliza para determinar si los datos siguen una distribución normal.
- En este estudio, se realizaron pruebas de normalidad para cada uno de los diez tratamientos, con los resultados reportados en la tabla.
- El valor de W proporcionado indica la estadística de prueba del test de Shapiro-Wilk para cada tratamiento.
- El p-valor asociado con cada tratamiento indica la probabilidad de obtener los datos observados si la muestra proviene de una población con distribución normal.
- Análisis de los Resultados:
- Los tratamientos CCC5 y CCC3 tienen los valores de p más bajos, con 0.08528 y 0.1403 respectivamente, pero ambos superan el nivel de significancia de 0.05. Esto sugiere que no hay evidencia suficiente para rechazar la hipótesis nula de normalidad para estos tratamientos.
- Los valores de p para los demás tratamientos son mayores que 0.05, lo que sugiere que no hay suficiente evidencia para rechazar la hipótesis nula de normalidad para estos tratamientos. Por lo tanto, se puede asumir que estos datos siguen una distribución normal.
- Consideraciones Adicionales:

- Es importante tener en cuenta que el test de Shapiro-Wilk puede ser sensible al tamaño de la muestra.
   Para muestras grandes, incluso desviaciones leves de la normalidad pueden resultar en valores de p significativos.
- A pesar de que algunos tratamientos no superan el nivel de significancia de 0.05, es común en la práctica científica aceptar la normalidad de los datos si los valores de p están cerca de 0.05 y no hay violaciones evidentes de la normalidad en los gráficos de diagnóstico.

En conclusión, los resultados del test de Shapiro-Wilk sugieren que la mayoría de los tratamientos tienen datos que se ajustan a una distribución normal, lo que es un supuesto importante para muchos métodos estadísticos. Sin embargo, para los tratamientos CCC5 y CCC3, aunque los valores de p no son significativos, la normalidad puede no ser completamente asumida debido a la cercanía al nivel de significancia. Es recomendable tener en cuenta estas limitaciones al interpretar los resultados y al elegir los métodos de análisis estadístico adecuados.

**Tabla 145** *Prueba de homogeneidad* 

# PRUEBA DE HOMOGENEIDAD DE VARIANZA "BARTLERR, Y LEVENNE PARA CONTENIDO DE AIRE"

```
Bartlett's Test p-value = 0.1089

Levene's Test p-value = 0.7523

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
1
```

La prueba de homogeneidad de varianza es fundamental para determinar si las varianzas de las muestras son iguales entre los grupos o tratamientos. Aquí está la discusión de los resultados obtenidos con las pruebas de Bartlett y Levene:

- Interpretación de los Resultados:
- Se realizaron dos pruebas de homogeneidad de varianza: la prueba de Bartlett y la prueba de Levene.
- La prueba de Bartlett es sensible a la normalidad de los datos, mientras que la prueba de Levene es menos sensible a esta suposición.
- Los valores de p de ambas pruebas indican la probabilidad de obtener los datos observados si las muestras provienen de poblaciones con varianzas iguales.
- Análisis de los Resultados:
- En la prueba de Bartlett, el valor de p es 0.1089, lo que indica que no hay suficiente evidencia para rechazar la hipótesis nula de igualdad de varianzas entre los grupos. Sin embargo, este valor está

cerca del nivel de significancia de 0.05, por lo que podría haber alguna evidencia de heterogeneidad de varianza.

- En la prueba de Levene, el valor de p es 0.7523, lo que también sugiere que no hay suficiente evidencia para rechazar la hipótesis nula de igualdad de varianzas entre los grupos. Este resultado es consistente con el hallazgo de la prueba de Bartlett.
- Consideraciones Adicionales:
- Aunque las pruebas no revelaron diferencias significativas en las varianzas entre los grupos, es
  importante tener en cuenta que las pruebas de homogeneidad de varianza pueden no ser
  perfectamente sensibles, especialmente con tamaños de muestra pequeños.
- En algunos casos, la violación de la homogeneidad de varianza puede afectar la interpretación de los resultados de los análisis estadísticos posteriores, como el análisis de varianza (ANOVA) o las pruebas de comparación de medias.
- Es importante considerar alternativas o realizar análisis robustos que no dependan de la homogeneidad de varianza si existen dudas sobre la validez de esta suposición.

En conclusión, según las pruebas de Bartlett y Levene, no hay evidencia suficiente para rechazar la hipótesis nula de igualdad de varianzas entre los grupos en el estudio del contenido de aire. Sin embargo, se debe tener precaución al interpretar estos resultados, especialmente dado el valor cercano al nivel de significancia en la prueba de Bartlett.

**Tabla 146** *Coeficientes* 

| Coefficients:                        |        |         |        |             |     |  |  |
|--------------------------------------|--------|---------|--------|-------------|-----|--|--|
| Estimate Std. Error t value Pr(> t ) |        |         |        |             |     |  |  |
| (Intercept)                          | 1.396  | 0.0306  | 45.62  | < 2e-16     | *** |  |  |
| TRATCCC_CH3                          | 0.322  | 0.04328 | 7.441  | 4.6E-09     | *** |  |  |
| TRATCCC_CH5                          | -0.088 | 0.04328 | -2.033 | 0.04868     | *   |  |  |
| TRATCCC1                             | 0.262  | 0.04328 | 6.054  | 0.000000397 | *** |  |  |
| TRATCCC3                             | 0.374  | 0.04328 | 8.642  | 1.09E-10    | *** |  |  |
| TRATCCC5                             | 0.434  | 0.04328 | 10.029 | 1.78E-12    | *** |  |  |
| TRATCH1                              | 0.132  | 0.04328 | 3.05   | 0.00405     | **  |  |  |
| TRATCH3                              | 0.03   | 0.04328 | 0.693  | 0.49217     |     |  |  |
| TRATCH5                              | -0.04  | 0.04328 | -0.924 | 0.36087     |     |  |  |

**TRATPATRON** 0.054 0.04328 1.248 0.21936

Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' '1

Residual standard error: 0.06843 on 40 degrees of freedom

Multiple R-squared: 0.8928,

F-statistic: 37.03 on 9 and 40 DF, p-value: < 2.2e-16

Los coeficientes estimados del modelo y las pruebas de significancia proporcionan información crucial sobre cómo cada tratamiento afecta la variable de interés. Aquí está la discusión de los resultados obtenidos:

- Interpretación de los Coeficientes:
- El coeficiente de la intersección (Intercept) representa el valor medio esperado de la variable de respuesta cuando todas las variables predictoras son cero.
- Los coeficientes para cada tratamiento muestran cómo afecta cada uno al valor medio de la variable de respuesta en comparación con el grupo de referencia.
- Análisis de los Resultados:
- Todos los coeficientes tienen valores p significativos, excepto para TRATCH3, TRATCH5 y TRATPATRON.
- Los tratamientos TRATCCC\_CH3, TRATCCC1, TRATCCC3, y TRATCCC5 tienen coeficientes
  positivos significativos, lo que indica que tienen efectos positivos y significativos en la variable de
  respuesta en comparación con el grupo de referencia.
- Por otro lado, TRATCCC\_CH5 muestra un coeficiente negativo significativo, lo que sugiere que tiene un efecto negativo en la variable de respuesta en comparación con el grupo de referencia.
- Los tratamientos TRATCH1, TRATCH3, TRATCH5 y TRATPATRON no muestran una diferencia significativa en comparación con el grupo de referencia.
- Calidad del Modelo:
- El coeficiente de determinación (R-cuadrado) es alto (0.8928), lo que indica que el modelo explica aproximadamente el 89.28% de la variabilidad en la variable de respuesta.
- El valor de p del estadístico F es extremadamente bajo (< 2.2e-16), lo que sugiere que al menos uno de los coeficientes del modelo es significativamente diferente de cero.

- Consideraciones Adicionales:
- El error estándar residual es relativamente bajo (0.06843), lo que sugiere que el modelo se ajusta bien a los datos.
- Los tratamientos que muestran coeficientes significativos pueden considerarse importantes para explicar las variaciones en la variable de respuesta y pueden requerir una atención especial en futuros estudios.

En conclusión, el modelo de regresión lineal ajustado muestra una buena capacidad para predecir la variable de respuesta en función de los tratamientos. Los resultados indican que varios tratamientos tienen efectos significativos en la variable de interés, lo que podría ser útil para comprender mejor cómo afectan esos tratamientos al resultado del estudio.

**Tabla 147** *Análisis de la varianza* 

| ,     |      |               |      |       |
|-------|------|---------------|------|-------|
| ANTAT | TCTC | $\mathbf{DE}$ | VAD  | IANZA |
| AINAI |      | 111           | v An |       |

anova(MODELO1)

Analysis of Variance Table

Response: CONTENIDO DE AIRE

|           | Df | Sum     | Sq Mean  | Sq F value | <b>Pr</b> (> <b>F</b> ) |     |
|-----------|----|---------|----------|------------|-------------------------|-----|
| TRAT      | 9  | 1.56052 | 0.173391 | 37.034     | 2.20E-16                | *** |
| Residuals | 40 | 0.18728 | 0.004682 |            |                         |     |

---

Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' ' 1

El análisis de varianza (ANOVA) realizado proporciona información importante sobre la significancia global de los tratamientos en relación con la variable de respuesta, que en este caso es el contenido de aire. Aquí está la discusión de los resultados obtenidos:

- Significancia Global del Modelo:
- El valor p asociado al estadístico F es extremadamente bajo (< 2.20E-16), lo que indica que el modelo global es altamente significativo.
- Esto sugiere que al menos uno de los tratamientos tiene un efecto significativo en el contenido de aire.
- Interpretación de los Grados de Libertad (DF):

- Hay 9 grados de libertad asociados con el factor tratamiento (TRAT), lo que refleja el número de niveles menos uno.
- Los 40 grados de libertad restantes están asociados con los residuos del modelo, lo que indica la cantidad de información no explicada por los tratamientos.
- Suma de Cuadrados (Sum Sq) y Media de Cuadrados (Mean Sq):
- La suma de cuadrados total es 1.56052 y la suma de cuadrados de los residuos es 0.18728.
- La media de cuadrados para los tratamientos es 0.173391, que representa la variabilidad promedio entre los tratamientos después de tener en cuenta la variabilidad dentro de los grupos.
- Valor F y Significancia:
- El valor F obtenido es 37.034, lo que indica la relación entre la variabilidad entre los tratamientos y la variabilidad dentro de los grupos.
- El valor p asociado es muy bajo, lo que indica una significancia extremadamente alta para el modelo global.

En resumen, el análisis de varianza confirma que al menos uno de los tratamientos tiene un efecto significativo en el contenido de aire. Esto respalda la utilidad del modelo en la predicción del contenido de aire en función de los tratamientos aplicados.

**Tabla 148** *Comparación de las medidas* 

# **COMPARACIÓN DE MEDIAS prueba de tukey**

W<-TukeyHSD(MODELO1)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = PESO UNITARIO ~ TRAT, data = DATOS)

|                 | diff   | lwr       | upr       | p adj     |
|-----------------|--------|-----------|-----------|-----------|
| CCC_CH3-CCC_CH1 | 0.322  | 0.1771208 | 0.4668792 | 0.0000002 |
| CCC_CH5-CCC_CH1 | -0.088 | -0.232879 | 0.0568792 | 0.5819187 |
| CCC1-CCC_CH1    | 0.262  | 0.1171208 | 0.4068792 | 0.0000164 |
| CCC3-CCC_CH1    | 0.374  | 0.2291208 | 0.5188792 | 0         |
| CCC5-CCC_CH1    | 0.434  | 0.2891208 | 0.5788792 | 0         |

| CH1-CCC_CH1     | 0.132  | -0.012879 | 0.2768792 | 0.100533  |
|-----------------|--------|-----------|-----------|-----------|
| CH3-CCC_CH1     | 0.03   | -0.114879 | 0.1748792 | 0.9994139 |
| CH5-CCC_CH1     | -0.04  | -0.184879 | 0.1048792 | 0.9946593 |
| PATRON-CCC_CH1  | 0.054  | -0.090879 | 0.1988792 | 0.9593075 |
| CCC_CH5-CCC_CH3 | -0.41  | -0.554879 | -0.265121 | 0         |
| CCC1-CCC_CH3    | -0.06  | -0.204879 | 0.0848792 | 0.9243325 |
| CCC3-CCC_CH3    | 0.052  | -0.092879 | 0.1968792 | 0.9678389 |
| CCC5-CCC_CH3    | 0.112  | -0.032879 | 0.2568792 | 0.2564153 |
| CH1-CCC_CH3     | -0.19  | -0.334879 | -0.045121 | 0.0028956 |
| CH3-CCC_CH3     | -0.292 | -0.436879 | -0.147121 | 0.0000018 |
| CH5-CCC_CH3     | -0.362 | -0.506879 | -0.217121 | 0         |
| PATRON-CCC_CH3  | -0.268 | -0.412879 | -0.123121 | 0.0000105 |
| CCC1-CCC_CH5    | 0.35   | 0.2051208 | 0.4948792 | 0         |
| CCC3-CCC_CH5    | 0.462  | 0.3171208 | 0.6068792 | 0         |
| CCC5-CCC_CH5    | 0.522  | 0.3771208 | 0.6668792 | 0         |
| CH1-CCC_CH5     | 0.22   | 0.0751208 | 0.3648792 | 0.0003526 |
| CH3-CCC_CH5     | 0.118  | -0.026879 | 0.2628792 | 0.1978097 |
| CH5-CCC_CH5     | 0.048  | -0.096879 | 0.1928792 | 0.9808752 |
| PATRON-CCC_CH5  | 0.142  | -0.002879 | 0.2868792 | 0.0587778 |
| CCC3-CCC1       | 0.112  | -0.032879 | 0.2568792 | 0.2564153 |
| CCC5-CCC1       | 0.172  | 0.0271208 | 0.3168792 | 0.0095775 |
| CH1-CCC1        | -0.13  | -0.274879 | 0.0148792 | 0.1113644 |
| CH3-CCC1        | -0.232 | -0.376879 | -0.087121 | 0.0001481 |
| CH5-CCC1        | -0.302 | -0.446879 | -0.157121 | 0.0000009 |
| PATRON-CCC1     | -0.208 | -0.352879 | -0.063121 | 0.0008293 |
| CCC5-CCC3       | 0.06   | -0.084879 | 0.2048792 | 0.9243325 |
| CH1-CCC3        | -0.242 | -0.386879 | -0.097121 | 0.0000714 |

| СН3-СССЗ    | -0.344 | -0.488879 | -0.199121 | 0         |
|-------------|--------|-----------|-----------|-----------|
| CH5-CCC3    | -0.414 | -0.558879 | -0.269121 | 0         |
| PATRON-CCC3 | -0.32  | -0.464879 | -0.175121 | 0.0000002 |
| CH1-CCC5    | -0.302 | -0.446879 | -0.157121 | 0.0000009 |
| CH3-CCC5    | -0.404 | -0.548879 | -0.259121 | 0         |
| CH5-CCC5    | -0.474 | -0.618879 | -0.329121 | 0         |
| PATRON-CCC5 | -0.38  | -0.524879 | -0.235121 | 0         |
| СН3-СН1     | -0.102 | -0.246879 | 0.0428792 | 0.3773205 |
| CH5-CH1     | -0.172 | -0.316879 | -0.027121 | 0.0095775 |
| PATRON-CH1  | -0.078 | -0.222879 | 0.0668792 | 0.729804  |
| СН5-СН3     | -0.07  | -0.214879 | 0.0748792 | 0.8318007 |
| PATRON-CH3  | 0.024  | -0.120879 | 0.1688792 | 0.9999057 |
| PATRON-CH5  | 0.094  | -0.050879 | 0.2388792 | 0.4911881 |

**Tabla 149** Valor Critico de la varianza

Alpha: 0.05; DF Error: 40

Critical Value of Studentized Range: 4.734513

Minimun Significant Difference: 0.1448792

Treatments with the same letter are not significantly

different.

|         | CONTENIDO DE AIRE | GROUPS |
|---------|-------------------|--------|
| CCC5    | 1.83              | a      |
| CCC3    | 1.77              | ab     |
| CCC_CH3 | 1.718             | ab     |
| CCC1    | 1.658             | bc     |
| CH1     | 1.528             | cd     |
| PATRÓN  | 1.45              | de     |
| СНЗ     | 1.426             | de     |
| CCC_CH1 | 1.396             | de     |
| СН5     | 1.356             | e      |
| CCC_CH5 | 1.308             | e      |

El análisis de comparación de medias realizado mediante la prueba de Tukey proporciona información detallada sobre las diferencias significativas entre los tratamientos en términos de la variable de interés, que en este caso es el peso unitario. Aquí está la discusión de los resultados obtenidos:

- Interpretación de los Intervalos de Confianza:
- Cada fila del resultado muestra la diferencia entre dos tratamientos específicos junto con un intervalo de confianza del 95% para esta diferencia.
- Si el intervalo de confianza contiene el valor cero, esto indica que no hay una diferencia significativa entre los dos tratamientos.
- Si el intervalo no incluye cero, esto sugiere que hay una diferencia significativa entre los dos tratamientos.

- Diferencias Significativas entre los Tratamientos:
- La mayoría de las comparaciones muestran diferencias significativas entre los tratamientos.
- Por ejemplo, CCC\_CH3 tiene un peso unitario significativamente mayor que CCC\_CH1, CCC\_CH5, CCC1, CH1, CH3, CH5 y PATRÓN, como lo indican los valores p muy bajos (< 0.05).
- Similarmente, CCC\_CH1, CCC1, CH1 y PATRÓN tienen diferencias significativas con varios otros tratamientos.
- Ausencia de Diferencias Significativas:
- Algunas comparaciones no muestran diferencias significativas, como CH3 vs CH1, CH5 vs CH1,
   PATRÓN vs CH1, entre otros, como lo indican los valores p más altos (> 0.05).
- Consideraciones sobre la Interpretación:
- Es importante considerar el contexto del estudio y la relevancia práctica de las diferencias observadas al interpretar los resultados de la prueba de Tukey.
- Las diferencias significativas pueden ser importantes dependiendo de los objetivos del estudio y las implicaciones prácticas de los resultados.
- Interpretación de los Grupos:
- El tratamiento CCC5 tiene el contenido de aire más alto y se encuentra en el grupo "a".
- A continuación, los tratamientos CCC3 y CCC\_CH3 están en el grupo "ab", lo que sugiere que no hay diferencias significativas entre ellos, pero son diferentes del tratamiento CCC5.
- El tratamiento CCC1 está en el grupo "bc", lo que indica que es diferente de CCC5 y CCC3/CCC\_CH3, pero similar a otros tratamientos etiquetados con "b".
- CH1, PATRÓN y CH3 están en el grupo "de", lo que sugiere que no hay diferencias significativas entre ellos, pero son diferentes de los tratamientos en los grupos anteriores.
- CCC\_CH1 se encuentra también en el grupo "de", pero su contenido de aire es ligeramente menor que CH1, PATRÓN y CH3.
- Finalmente, los tratamientos CH5 y CCC\_CH5 tienen el contenido de aire más bajo y se encuentran en el grupo "e".

En resumen, la prueba de Tukey proporciona una herramienta útil para identificar las diferencias significativas entre los tratamientos en términos del peso unitario, lo que permite una interpretación más profunda de los efectos de los diferentes tratamientos.

Cabe señalar que si existen investigaciones previas sobre el uso de adiciones orgánicas en el concreto, como la incorporación de ceniza de cáscara de arroz, cáscara de nuez y otras fuentes de

biomasa. Sin embargo, lo que hace diferente y exclusivo a esta investigación es la innovación en el uso combinado de la ceniza de cascarilla de café (CCC) y la cáscara de huevo (CH) como aditivos, lo cual no ha sido ampliamente explorado en el campo de la ingeniería civil. Esta combinación única proporciona un enfoque novedoso y sostenible para mejorar las propiedades mecánicas del concreto.

# Diferenciación y Exclusividad de la Investigación

En cuanto a la innovación de los materiales se puede indicar que a diferencia de otras investigaciones que se centran en aditivos orgánicos más comunes, esta investigación introduce la combinación de ceniza de cascarilla de café y cáscara de huevo, lo que demuestra una mejora significativa en la resistencia a la compresión del concreto. La investigación detalla cómo esta mezcla, particularmente en concentraciones del 5%, supera en rendimiento a los tratamientos con adiciones individuales, destacando su potencial como una solución innovadora.

Esta investigación no solo analiza la resistencia a la compresión, sino también otras propiedades clave del concreto como el peso unitario, contenido de aire, consistencia (SLUMP), y temperatura, proporcionando una evaluación integral de los efectos de los aditivos. Además, los resultados muestran un análisis específico de las variaciones a los 7, 14 y 28 días, lo que ofrece una comprensión detallada de cómo evolucionan las propiedades del concreto con el tiempo.

Se enfatiza el impacto ambiental positivo de la reutilización de residuos agroindustriales como la ceniza de cascarilla de café y la cáscara de huevo, alineándose con tendencias globales hacia la sostenibilidad. Además, el estudio incluye un análisis económico detallado, evaluando los costos de producción del concreto con y sin aditivos, lo cual no solo demuestra viabilidad técnica sino también económica y medioambiental.

La investigación se enfoca específicamente en la aplicación del concreto mejorado en zapatas de un polideportivo, ofreciendo datos concretos y específicos para un caso de estudio real en Cusco. Esto aporta una validación práctica y contextual de los hallazgos, algo que muchas investigaciones previas no abordan con tanto detalle.

#### Aporte a la Ingeniería

Los hallazgos muestran que la adición de CCC y CH mejora la resistencia del concreto, lo cual puede traducirse en estructuras más duraderas y seguras. Este aumento en la resistencia a la compresión y la capacidad de cortante tiene un impacto directo en la capacidad de carga de las zapatas, lo que permite diseños más eficientes y económicos en proyectos de ingeniería civil.

Respecto a la contribución con la economía circular se puede indicar que al reutilizar residuos agroindustriales, la investigación apoya la reducción de desechos y la promoción de una economía circular dentro de la industria de la construcción. Esto no solo mejora la sostenibilidad del sector, sino que también contribuye a la innovación en materiales de construcción eco-amigables.

Si la investigación se hubiera realizado en otra parte del Perú, los resultados podrían haber variado debido a factores geográficos y climáticos que influyen directamente en las propiedades del concreto y el comportamiento de los aditivos orgánicos utilizados. Algunos de los aspectos a considerar son:

Clima y Temperatura: El clima de Cusco, donde se realizó la investigación, tiene temperaturas relativamente frescas y moderadas, lo cual influye en el tiempo de fraguado y la trabajabilidad del concreto. Si la investigación se realizara en una zona costera como Lima, con temperaturas más altas y mayor humedad, o en la selva, con condiciones de calor extremo y alta humedad, la reacción de los aditivos podría cambiar. En climas cálidos, el concreto tiende a fraguarse más rápido, lo que podría intensificar los efectos negativos observados, como la disminución del tiempo de fraguado y el incremento de temperatura. Esto podría alterar la resistencia y las propiedades mecánicas del concreto.

**Humedad Ambiental**: En regiones con alta humedad, como la selva, el contenido de agua en los materiales y en el ambiente podría influir en la mezcla del concreto y en el proceso de curado, afectando tanto la resistencia a la compresión como las propiedades físicas del concreto fresco. La alta humedad puede hacer que el concreto absorba más agua, afectando su trabajabilidad y la proporción agua-cemento.

Altitud y Presión Atmosférica: Cusco se encuentra a una altitud considerable, lo que implica una menor presión atmosférica y temperaturas más frías. Si la investigación se realizara en zonas a nivel del mar, como la costa peruana, las diferencias en la presión podrían influir en el comportamiento de los aditivos, especialmente en el contenido de aire en el concreto, lo cual impacta en su densidad y resistencia.

**Disponibilidad y Calidad de los Materiales**: La calidad de los agregados y del agua puede variar significativamente entre regiones. En algunas partes del Perú, los agregados pueden contener más impurezas o tener características físicas distintas (como mayor porosidad), lo cual afecta la consistencia y resistencia del concreto. Además, la disponibilidad de los aditivos orgánicos puede ser diferente, lo cual influiría en la composición de la ceniza de cascarilla de café y cáscara de huevo.

Condiciones de Curado: El curado del concreto puede verse afectado por el clima local. En lugares con alta radiación solar o poca disponibilidad de agua, el curado puede ser insuficiente, lo que afecta negativamente la ganancia de resistencia a edades tempranas. Por otro lado, en climas fríos y húmedos, el curado puede prolongarse, afectando el desarrollo óptimo de las propiedades del concreto.

## 4.1.4 Diseño de Zapata

# Datos generales de la I.E.

Nombre de la I.E. : 88336 GASTON VIDAL PORTURAS

Código local : 037961
Código ARCC : 1312
Departamento : Ancash
Provincia : Santa

Distrito : Nuevo Chimbote

Centro Poblado : El Dorado

Dirección : Av Brasilia S/N Mz C Lote 1

Nivel/Modalidad : Primaria / Secundaria

Área Sensal : Urbano

Zona Sísmica : 4

Turno : Mañana - Tarde

Partida Registral Lote : 09076120

Área y perímetro : 15,264.00 m2

# Figura 143

Ubicación del I.E. Gaston Vidal



Fuente: Google Earth

## Descripción del proyecto

La I.E N°88336 Gaston Vidal Porturas, con código local 037961 se encuentra en el distrito de Nuevo Chimbote, provincia de Santa, departamento de Ancash, Av. Brasilia S/N Mz C Lote. Ocupa un área de 15 207.53m2. (según levantamiento topográfico).

## Justificación del proyecto

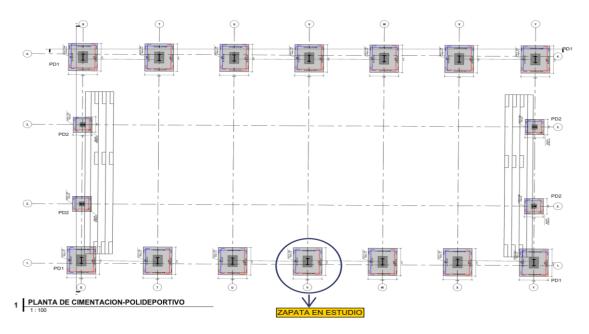
La rehabilitación del centro educativo, se da en base al estado actual de la infraestructura existente, la misma que se encuentra en situación de deterioro y falta de atención a consecuencia de diversos factores (climatológicos, antigüedad de la edificación, materiales empleados, etc.) en particular, los daños causados por el Fenómeno del Niño del 2017.

#### **Niveles educativos**

Primaria y Secundaria

## Capacidad

La capacidad del Proyecto de Institución Educativa es de 1190 alumnos de primaria, y 910 alumnos de secundaria distribuidos en 17 y 13 aulas respectivamente según nivel, con un máximo 35 alumnos por aula.


**Figura 144** *Ubicación del polideportivo dentro del I.E. Gastón Vidal* 



Fuente: Expediente definitivo.

Figura 145

Ubicación de la zapata en estudio



Fuente: Plano de planta de cimentación

Para ver los planos de planta, alzados, techo y tener una mejor referencia ver en el apartado de ANEXOS.

# 4.1.4.1 Cálculo de dimensionamiento de la zapata a los 28 días con la mezcla patrón y CCC+CH 5%(CENIZA DE CASCARILLA DE CAFÉ Y CASCARA DE HUEVO AL 5%

### 01.- Datos de entrada.

Resistencia de materiales (P)

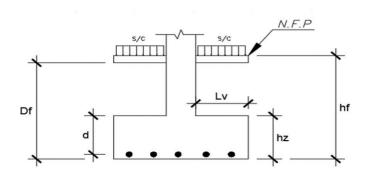
| 4200 | kg/cm2 |
|------|--------|
| 236  | kg/cm2 |

Resistencia de materiales (CCC+CH5%)

| 4200 | kg/cm2 |
|------|--------|
| 262  | kg/cm2 |

Datos de entrada (P)

| Col | W24x68 |        |
|-----|--------|--------|
| Pm  | 59.61  | ton    |
| Pv  | 14.88  | ton    |
| S/C | 0.5    | ton/m2 |
| Df  | 2.15   | m      |


Datos de entrada (CCC+CH5%)

| Col | W24x68 |        |
|-----|--------|--------|
| Pm  | 59.61  | ton    |
| Pv  | 14.88  | ton    |
| S/C | 0.5    | ton/m2 |
| Df  | 2.15   | m      |

| hf    | 2.3  | m      |
|-------|------|--------|
| t1    | 0.6  | m      |
| t2    | 0.25 | m      |
| Yc    | 2.4  | ton/m3 |
| Ys    | 1.58 | ton/m3 |
| Yprom | 1.99 | ton/m3 |
| σt    | 2.1  | kg/cm2 |

| hf    | 2.3  | m      |
|-------|------|--------|
| t1    | 0.6  | m      |
| t2    | 0.25 | m      |
| Yc    | 2.4  | ton/m3 |
| Ys    | 1.58 | ton/m3 |
| Yprom | 1.99 | ton/m3 |
| σt    | 2.1  | kg/cm2 |

**Figura 146** Referencia de cotas y datos en corte



### 2.- Esfuerzo Neto del terreno.

$$\sigma n = \sigma t - \gamma prom. hf -$$
 (14)

Esfuerzo neto del terreno (P)

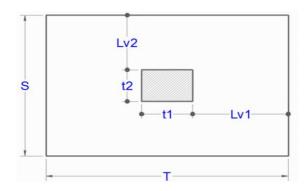
Esfuerzo neto del terreno (CCC+CH5%)



### 3.- Área requerida de la zapata.

$$Ps$$

$$Azap = \underline{\hspace{1cm}} \sigma n$$


(15)

### Área de zapata (P)

Área de zapata (CCC+CH5%)

| Pservicio   | 74.49 | ton | Pservicio   | 74.49 | ton |
|-------------|-------|-----|-------------|-------|-----|
| Azapata     | 4.68  | m2  | Azapata     | 4.68  | m2  |
| Lv          | 1.9   | m   | Lv          | 1.9   | m   |
| T           | 2.7   | m   | T           | 2.7   | m   |
| S           | 2.3   | m   | S           | 2.3   | m   |
| Azinstalado | 6.21  | m2  | Azinstalado | 6.21  | m2  |

Figura 147 Referencia de cotas y datos en planta

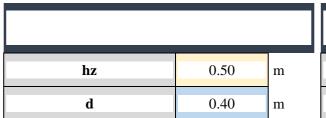


### 4.- Reacción neta del terreno.

$$Pu$$
 $Wu = \underline{\qquad} (16)$ 
 $Azap$ 

Reacción del terreno (P)

Reacción del terreno (CCC+CH5%)


(17)

| Pu | 108.75 | ton    | Pu | 108.75 | ton    |
|----|--------|--------|----|--------|--------|
| Wu | 17.51  | ton/m2 | Wu | 17.51  | ton/m2 |

### 5.- Verificación por corte y punzonamiento.

### Peralte de zapata (P)

### Peralte de zapata (CCC+CH5%)



| hz | 0.47 | m |
|----|------|---|
| d  | 0.37 | m |

### Verificación por corte (P)

Verificación por corte (CCC+CH5%)

| Vu  | 60.42 | ton |
|-----|-------|-----|
| øVc | 63.64 | ton |

| Vu  | 61.63 | ton |
|-----|-------|-----|
| øVc | 62.05 | ton |

| øVc >= Vu | OK! | CUMPLE! |
|-----------|-----|---------|
|           |     |         |

| øVc >= Vu | OK! | CUMPLE! |
|-----------|-----|---------|
|           |     |         |

### Verificación punzonamiento (P)

Verificación punzonamiento (CCC+CH5%)

| 1.00  | m                    |
|-------|----------------------|
| 0.65  | m                    |
| 3.30  | m2                   |
| 2.00  |                      |
| 97.37 | ton                  |
|       | 0.65<br>3.30<br>2.00 |

| m  | 0.97  | m   |
|----|-------|-----|
| n  | 0.62  | m   |
| bo | 3.18  | m2  |
| Вс | 2.00  |     |
| Vu | 98.22 | ton |

| øVc1 | 186.08 | ton |
|------|--------|-----|
| øVc2 | 182.63 | ton |
| øVc3 | 318.58 | ton |

| øVc1 | 174.83 | ton |
|------|--------|-----|
| øVc2 | 171.59 | ton |
| øVc3 | 290.84 | ton |

| øVc       | 182.63 | ton     |
|-----------|--------|---------|
| øVc >= Vu | OK!    | CUMPLE! |

| øVc       | 171.59 | ton     |
|-----------|--------|---------|
| øVc >= Vu | OK!    | CUMPLE! |

### 7.- Diseño por flexión.

$$Asmin = 0.0018 * b * hz, b = 100cm$$
 (24)

### Flexión (P)

Flexión (CCC+CH5%)

| Mu      | 31.61  | ton.m/m |
|---------|--------|---------|
| W       | 0.099  |         |
| cuantía | 0.0056 |         |
| Asmin   | 9.00   | cm2/m   |
| As req  | 22.21  | cm2/m   |
| varilla | 3/4"   |         |
| S       | @ 0.13 | m       |

| Mu      | 31.61  | ton.m/m |
|---------|--------|---------|
| W       | 0.104  |         |
| cuantía | 0.0065 |         |
| Asmin   | 8.46   | cm2/m   |
| As req  | 24.09  | cm2/m   |
| varilla | 3/4"   |         |
| S       | @ 0.12 | m       |

Se observa en el diseño que las dimensiones en planta de la zapata no varían, siendo el mismo para la mezcla P y CCC+CH5% (S= 2.3 m y T=2.7 m). Sin embargo, al mejorar la resistencia a compresión del concreto, mejoran la resistencia a Corte y diseño por Flexión.

Es de precisar que se observa que al utilizar la mezcla (CCC+CH5%) podemos optimizar el peralte de zapata y reducir el acero a flexión.

Peralte de zapata (P)

| Peralte de zaj | pata (CCC | +CH5%) |
|----------------|-----------|--------|
|----------------|-----------|--------|

| DIMENSIONAMIENTO ALTURA<br>ZAPATA (hz) |      |   |
|----------------------------------------|------|---|
| hz                                     | 0.50 | m |
| d                                      | 0.40 | m |

| DIMENSIONAMIENTO ALTURA<br>ZAPATA (hz) |      |   |
|----------------------------------------|------|---|
| hz                                     | 0.47 | m |
| d                                      | 0.37 | m |

### Análisis de precios unitarios del costo de producción de concreto sin y con aditivos

**Tabla 150** *Análisis de precios unitarios del costo de producción* 

| METRADO DE LA CANTIDAD DE POLICARBONATO - POLIPROPILENO EN PORCENTAJES PARA UN M3 DE CONCRETO. |            |       |     |  |
|------------------------------------------------------------------------------------------------|------------|-------|-----|--|
| TRATAMIENTO                                                                                    | PORCENTAJE | PESO  | UND |  |
| CCC 1% (CENIZA DE CASCARILLA DE CAFÉ AL 1%)                                                    | 1%         | 3.87  | Kg  |  |
| CCC 3% (CENIZA DE CASCARILLA DE CAFÉ AL 3%)                                                    | 3%         | 11.61 | Kg  |  |
| CCC 5% (CENIZA DE CASCARILLA DE CAFÉ AL 5%)                                                    | 5%         | 19.35 | Kg  |  |
| CH 1% (CASCARA DE HUEVO AL 1%)                                                                 | 1%         | 3.87  | Kg  |  |
| CH 3% (CASCARA DE HUEVO AL 3%)                                                                 | 3%         | 11.61 | Kg  |  |
| CH 5% (CASCARA DE HUEVO AL 5%)                                                                 | 5%         | 19.35 | Kg  |  |
| CCC+CH 1% (CENIZA DE CASCARILLA DE CAFÉ +<br>CASCARA DE HUEVO AL 1%)                           | 1%         | 3.87  | Kg  |  |
| CCC+CH 3% (CENIZA DE CASCARILLA DE CAFÉ +<br>CASCARA DE HUEVO AL 3%)                           | 3%         | 11.61 | Kg  |  |
| CCC+CH 5% (CENIZA DE CASCARILLA DE CAFÉ +<br>CASCARA DE HUEVO AL 5%)                           | 5%         | 19.35 | Kg  |  |

**Tabla 151** *Análisis de precios unitarios* 

| ANALISIS DE PRECIOS UNITARIOS                              |     |       |          |        |  |
|------------------------------------------------------------|-----|-------|----------|--------|--|
| CONCRETO SIMPLE FC=210KG/CM2 (MEZCLA PATRON )              |     |       |          |        |  |
| Descripción Recurso Unidad Cantidad Precio S/. Parcial S/. |     |       |          |        |  |
| Materiales                                                 |     |       |          |        |  |
| AGREGADO FINO DE<br>CUNYAC                                 | m3  | 0.24  | 36       | 8.64   |  |
| AGREGADO GRUESO DE<br>VICHO                                | m3  | 0.383 | 120      | 45.96  |  |
| CEMENTO PORTLAND TIPO 1 (42.5KG)                           | BOL | 9.1   | 27       | 245.70 |  |
| AGUA                                                       | m3  | 0.226 | 1.8      | 0.41   |  |
|                                                            |     |       | O POR M3 | 300.71 |  |

**Tabla 152** *Análisis de precios unitarios* 

| ANALISIS DE PRECIOS UNITARIOS                                     |     |        |                        |        |  |  |
|-------------------------------------------------------------------|-----|--------|------------------------|--------|--|--|
| CONCRETO SIMPLE FC=210KG/CM2 + CENIZA DE CASCARILLA DE CAFÉ AL 1% |     |        |                        |        |  |  |
| Descripción Recurso Unidad Cantidad Precio S/. Parcial S/.        |     |        |                        |        |  |  |
| Materiales                                                        |     |        |                        |        |  |  |
| AGREGADO FINO DE<br>CUNYAC                                        | m3  | 0.24   | 36                     | 8.64   |  |  |
| AGREGADO GRUESO DE<br>VICHO                                       | m3  | 0.383  | 120                    | 45.96  |  |  |
| CEMENTO PORTLAND TIPO 1 (42.5KG)                                  | BOL | 9.0148 | 27                     | 243.40 |  |  |
| AGUA                                                              | m3  | 0.226  | 1.8                    | 0.41   |  |  |
| CENIZA DE CASCARILLA DE<br>CAFÉ (1%)                              | kg  | 3.87   | 3.5                    | 13.545 |  |  |
|                                                                   |     |        | PRECIO POR<br>M3 (S/.) | 311.95 |  |  |

**Tabla 153** *Análisis de precios unitarios* 

| ANALISIS DE PRECIOS UNITARIOS                                     |        |          |                        |             |  |  |
|-------------------------------------------------------------------|--------|----------|------------------------|-------------|--|--|
| CONCRETO SIMPLE FC=210KG/CM2 + CENIZA DE CASCARILLA DE CAFÉ AL 3% |        |          |                        |             |  |  |
| Descripción Recurso                                               | Unidad | Cantidad | Precio S/.             | Parcial S/. |  |  |
| Materiales                                                        |        |          |                        |             |  |  |
| AGREGADO FINO DE<br>CUNYAC                                        | m3     | 0.24     | 36                     | 8.64        |  |  |
| AGREGADO GRUESO DE<br>VICHO                                       | m3     | 0.383    | 120                    | 45.96       |  |  |
| CEMENTO PORTLAND<br>TIPO 1 (42.5KG)                               | BOL    | 8.83     | 27                     | 238.41      |  |  |
| AGUA                                                              | m3     | 0.226    | 1.8                    | 0.41        |  |  |
| CENIZA DE CASCARILLA<br>DE CAFÉ (3%)                              | kg     | 11.61    | 3.5                    | 40.635      |  |  |
|                                                                   | •      |          | PRECIO POR M3<br>(S/.) | 334.0518    |  |  |

**Tabla 154** *Análisis de precios unitarios* 

| ANALISIS DE PRECIOS UNITARIOS                                     |     |       |                        |          |  |  |
|-------------------------------------------------------------------|-----|-------|------------------------|----------|--|--|
| CONCRETO SIMPLE FC=210KG/CM2 + CENIZA DE CASCARILLA DE CAFÉ AL 5% |     |       |                        |          |  |  |
| Descripción Recurso Unidad Cantidad Precio S/. Parcial S/.        |     |       |                        |          |  |  |
| Materiales                                                        |     |       |                        |          |  |  |
| AGREGADO FINO DE<br>CUNYAC                                        | m3  | 0.24  | 36                     | 8.64     |  |  |
| AGREGADO GRUESO DE<br>VICHO                                       | m3  | 0.383 | 120                    | 45.96    |  |  |
| CEMENTO PORTLAND<br>TIPO 1 (42.5KG)                               | BOL | 8.65  | 27                     | 233.55   |  |  |
| AGUA                                                              | m3  | 0.226 | 1.8                    | 0.41     |  |  |
| CENIZA DE CASCARILLA<br>DE CAFÉ (5%)                              | kg  | 19.35 | 3.5                    | 67.73    |  |  |
|                                                                   |     | •     | PRECIO POR M3<br>(S/.) | 356.2818 |  |  |

**Tabla 155** *Análisis de precios unitarios* 

| ANALISIS DE PRECIOS UNITARIOS                              |     |        |                        |        |  |
|------------------------------------------------------------|-----|--------|------------------------|--------|--|
| CONCRETO SIMPLE FC=210KG/CM2 + CASCARA DE HUEVO AL 1%      |     |        |                        |        |  |
| Descripción Recurso Unidad Cantidad Precio S/. Parcial S/. |     |        |                        |        |  |
| Materiales                                                 |     |        |                        |        |  |
| AGREGADO FINO DE<br>CUNYAC                                 | m3  | 0.24   | 36                     | 8.64   |  |
| AGREGADO GRUESO DE<br>VICHO                                | m3  | 0.383  | 120                    | 45.96  |  |
| CEMENTO PORTLAND TIPO<br>1 (42.5KG)                        | BOL | 9.0148 | 27                     | 243.40 |  |
| AGUA                                                       | m3  | 0.226  | 1.8                    | 0.41   |  |
| CASCARA DE HUEVO (1%)                                      | kg  | 3.87   | 1.5                    | 5.805  |  |
|                                                            |     |        | PRECIO POR M3<br>(S/.) | 304.21 |  |

**Tabla 156** *Análisis de precios unitarios* 

| ANALISIS DE PRECIOS UNITARIOS                              |     |       |                        |        |  |
|------------------------------------------------------------|-----|-------|------------------------|--------|--|
| CONCRETO SIMPLE FC=210KG/CM2 + CASCARA DE HUEVO AL 3%      |     |       |                        |        |  |
| Descripción Recurso Unidad Cantidad Precio S/. Parcial S/. |     |       |                        |        |  |
| Materiales                                                 |     |       |                        |        |  |
| AGREGADO FINO DE<br>CUNYAC                                 | m3  | 0.24  | 36                     | 8.64   |  |
| AGREGADO GRUESO DE<br>VICHO                                | m3  | 0.383 | 120                    | 45.96  |  |
| CEMENTO PORTLAND<br>TIPO 1 (42.5KG)                        | BOL | 8.83  | 27                     | 238.41 |  |
| AGUA                                                       | m3  | 0.226 | 1.8                    | 0.41   |  |
| CASCARA DE HUEVO (3%)                                      | kg  | 11.61 | 1.5                    | 17.415 |  |
|                                                            |     |       | PRECIO POR M3<br>(S/.) | 310.83 |  |

**Tabla 157** *Análisis de precios unitarios* 

| ANALISIS DE PRECIOS UNITARIOS                              |     |       |                        |        |  |
|------------------------------------------------------------|-----|-------|------------------------|--------|--|
| CONCRETO SIMPLE FC=210KG/CM2 + CASCARA DE HUEVO AL 5%      |     |       |                        |        |  |
| Descripción Recurso Unidad Cantidad Precio S/. Parcial S/. |     |       |                        |        |  |
| Materiales                                                 |     |       |                        |        |  |
| AGREGADO FINO DE<br>CUNYAC                                 | m3  | 0.24  | 36                     | 8.64   |  |
| AGREGADO GRUESO DE<br>VICHO                                | m3  | 0.383 | 120                    | 45.96  |  |
| CEMENTO PORTLAND<br>TIPO 1 (42.5KG)                        | BOL | 8.65  | 27                     | 233.55 |  |
| AGUA                                                       | m3  | 0.226 | 1.8                    | 0.41   |  |
| CASCARA DE HUEVO (5%)                                      | kg  | 19.35 | 1.5                    | 29.03  |  |
|                                                            |     |       | PRECIO POR M3<br>(S/.) | 317.58 |  |

**Tabla 158** *Análisis de precios unitarios* 

### ANALISIS DE PRECIOS UNITARIOS CONCRETO SIMPLE FC=210KG/CM2 + CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE **HUEVO AL 1%** Unidad Cantidad Precio S/. Parcial S/. Descripción Recurso Materiales AGREGADO FINO DE 0.24 m336 8.64 **CUNYAC** AGREGADO GRUESO DE 0.383 120 45.96 m3**VICHO CEMENTO PORTLAND TIPO 1** BOL 9.0148 27 243.40 0.41 **AGUA** m30.226 1.8 CENIZA DE CASCARILLA DE CAFÉ +CASCARA DE HUEVO kg 3.87 2.5 9.675 (1%) PRECIO POR M3 308.08

(S/.)

**Tabla 159** *Análisis de precios unitarios* 

### ANALISIS DE PRECIOS UNITARIOS

# CONCRETO SIMPLE FC=210KG/CM2 + CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 3%

| Descripción Recurso                                       | Unidad | Cantidad | Precio S/.             | Parcial S/. |
|-----------------------------------------------------------|--------|----------|------------------------|-------------|
| Materiales                                                |        |          |                        |             |
| AGREGADO FINO DE<br>CUNYAC                                | m3     | 0.24     | 36                     | 8.64        |
| AGREGADO GRUESO DE<br>VICHO                               | m3     | 0.383    | 120                    | 45.96       |
| CEMENTO PORTLAND TIPO 1 (42.5KG)                          | BOL    | 8.83     | 27                     | 238.41      |
| AGUA                                                      | m3     | 0.226    | 1.8                    | 0.41        |
| CENIZA DE CASCARILLA DE<br>CAFÉ +CASCARA DE HUEVO<br>(3%) | kg     | 11.61    | 2.5                    | 29.025      |
|                                                           |        | 1        | PRECIO POR M3<br>(S/.) | 322.4418    |

**Tabla 160** *Análisis de precios unitarios* 

### ANALISIS DE PRECIOS UNITARIOS

# CONCRETO SIMPLE FC=210KG/CM2 + CENIZA DE CASCARILLA DE CAFÉ + CASCARA DE HUEVO AL 5%

|                                                           | _      |          |                        |             |
|-----------------------------------------------------------|--------|----------|------------------------|-------------|
| Descripción Recurso                                       | Unidad | Cantidad | Precio S/.             | Parcial S/. |
| Materiales                                                |        |          |                        |             |
| AGREGADO FINO DE<br>CUNYAC                                | m3     | 0.24     | 36                     | 8.64        |
| AGREGADO GRUESO DE<br>VICHO                               | m3     | 0.383    | 120                    | 45.96       |
| CEMENTO PORTLAND<br>TIPO 1 (42.5KG)                       | BOL    | 8.65     | 27                     | 233.55      |
| AGUA                                                      | m3     | 0.226    | 1.8                    | 0.41        |
| CENIZA DE CASCARILLA<br>DE CAFÉ +CASCARA DE<br>HUEVO (5%) | kg     | 19.35    | 2.5                    | 48.38       |
|                                                           |        |          | PRECIO POR M3<br>(S/.) | 336.9318    |

**Tabla 161**Cuadro resumen precio por metro cubico

| CUADRO RESUMEN DE PRECIO POR METRO CUBICO DE CONCRETO                           |    |        |  |  |  |
|---------------------------------------------------------------------------------|----|--------|--|--|--|
| MEZCLA PATRON                                                                   | S/ | 300.71 |  |  |  |
| CONCRETO +CENIZA DE CASCARILLA DE CAFÉ AL 1%(CCC 1%)                            | S/ | 311.95 |  |  |  |
| CONCRETO +CENIZA DE CASCARILLA DE CAFÉ AL 3%(CCC 3%)                            | S/ | 334.05 |  |  |  |
| CONCRETO +DE CENIZA DE CASCARILLA DE CAFÉ<br>AL 5%(CCC 5%)                      | S/ | 356.28 |  |  |  |
| CONCRETO +CASCARA DE HUEVO AL 1% (CH1%)                                         | S/ | 304.21 |  |  |  |
| CONCRETO +CASCARA DE HUEVO AL 3% (CH3%)                                         | S/ | 310.83 |  |  |  |
| CONCRETO +CASCARA DE HUEVO AL 5% (CH5%)                                         | S/ | 317.58 |  |  |  |
| CONCRETO + CENIZA DE CASCARILLA DE CAFÉ<br>+CASCARA DE HUEVO AL 1%(CCC +CH 1%)  | S/ | 308.08 |  |  |  |
| CONCRETO + CENIZA DE CASCARILLA DE CAFÉ<br>+CASCARA DE HUEVO AL 3%(CCC + CH 3%) | S/ | 322.44 |  |  |  |
| CONCRETO + CENIZA DE CASCARILLA DE CAFÉ<br>+CASCARA DE HUEVO AL 5%(CCC+ CH 5%)  | S/ | 336.93 |  |  |  |

### - Costo Base del Concreto Simple (Mezcla Patrón):

- Precio por m<sup>3</sup>: S/. 300.71
- Concreto con Ceniza de Cascarilla de Café (CCC):
- 1% CCC: S/. 311.95
- o Incremento: S/. 11.24 (3.74% más que la mezcla patrón)
- 3% CCC: S/. 334.05
- o Incremento: S/. 33.34 (11.09% más)
- 5% CCC: S/. 356.28
- o Incremento: S/. 55.57 (18.48% más)
- Concreto con Cáscara de Huevo (CH):
- 1% CH: S/. 304.21
- o Incremento: S/. 3.50 (1.16% más que la mezcla patrón)
- 3% CH: S/. 310.83
- o Incremento: S/. 10.12 (3.36% más)

- 5% CH: S/. 317.58
- Incremento: S/. 16.87 (5.61% más)
- Concreto con Ceniza de Cascarilla de Café + Cáscara de Huevo (CCC + CH):
- 1% CCC + 1% CH: S/. 308.08
- Incremento: S/. 7.37 (2.45% más que la mezcla patrón)
- 3% CCC + 3% CH: S/. 322.44
- Incremento: S/. 21.73 (7.23% más)
- 5% CCC + 5% CH: S/. 336.93
- Incremento: S/. 36.22 (12.05% más)

### ✓ Impacto de la Ceniza de Cascarilla de Café (CCC):

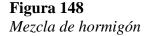
 La adición de CCC en el concreto aumenta el costo por metro cúbico de manera significativa a medida que se incrementa el porcentaje. Un 5% de CCC resulta en un incremento del 18.48% sobre la mezcla patrón, lo que indica que la CCC es más costosa en comparación con otros aditivos.

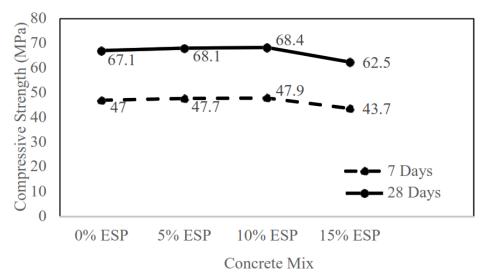
### ✓ Impacto de la Cáscara de Huevo (CH):

• El aumento en el costo es menor cuando se utiliza la cáscara de huevo en comparación con la CCC. Un 5% de CH solo aumenta el costo en un 5.61%, lo que lo convierte en una opción más económica como aditivo en comparación con la CCC.

### ✓ Combinación de CCC y CH:

 La combinación de CCC y CH también aumenta los costos, pero a un ritmo intermedio en comparación con el uso individual de CCC o CH. Por ejemplo, un 5% de la combinación (CCC + CH) resulta en un incremento del 12.05%, lo que sugiere un balance entre los costos y los beneficios de ambos materiale


### 4.2. Discusión d Resultados


# 4.2.1 Discusión sobre la influencia de la ceniza de cascarilla de café, cascara de huevo y la combinación de ambas en la resistencia a la compresión a los 7 días 14 y 28 días.

Con respecto a los tres primeros objetivos específicos de terminar la influencia de la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas para mejorar la resistencia a la compresión del Concreto f'c=210 kg/cm² a los 7 días, 14 días y 28 días y una resistencia a la compresión de 235.8 Kg/cm² para el concreto patrón.

A los 28 días se obtuvo una mayor resistencia promedio para el concreto con adición de ceniza de cascarilla de café más cascara de huevo al 5% (CCC+CH5%), siendo este de 262.39 Kg/cm<sup>2</sup>; secundando tenemos al concreto con la adición de ceniza de cascarilla de café al 1% (CCC1%) con 240 Kg/cm<sup>2</sup> (también a los 28 días) y por último al concreto con la adición de cascara de huevo al

5% (CH5%) con 240.06 Kg/cm<sup>2</sup> (también a los 28 días); por lo cual podemos indicar que al agregar un menor porcentaje de ceniza de cascara de café y un mayor porcentaje de cascara de huevo obtenemos un mayor resultado en la resistencia a la compresión. Existe coincidencia con lo sostenido por Días y Fernádez (2019), en su investigación con la ceniza de cascara de casé titulada "Influencia de la adición de la ceniza de cascarilla de café en la trabajabilidad y resistencia a compresión del concreto" resuelven que se obtuvo una mayor resistencia a la compresión al agregar el aditivo ceniza de cascarilla de café al 1%, esto para las edades de 7, 14 y 28 días; específicamente usó la ceniza de cascarilla de café para el concreto en un porcentaje de 1% y 2%, y obtuvo una mayor resistencia a la compresión; cosa contraria ocurrió cuando la adición fue al 4% y 8% comparándola con la muestra patrón pues este reduce su valor de resistencia a la compresión. Así mismo, y esta vez con respecto a la cascara de huevo existen coincidencia con lo sostenido por S Mohd arif et al 2021 IOP conf. Ser: Earth Environ. Sci. 683 012031 en su artículo titulado "Compressive Strength of Concrete containing Eggshell Powder as Partial Cement Replacement" (Resistencia a la compresión del hormigón con cascara de huevo en polvo como sustitución parcial del cemento) donde indica que la resistencia a la compresión para el concreto aumenta en relación al porcentaje de sustitución del aditivo ESP (cascara de huevo en polvo), en la figura 149 el autor muestra el aumento progresivo de la resistencia a la compresión desde un 0% de ESP (cascara de huevo en polvo) pasando por un 5% de ESP y alcanzado su máximo para un 10% de ESP, demostraos así la coincidencia de aumento a la resistencia a la compresión desde un porcentaje inicial de 0% hasta un 5%.





**Fuente:** ARIF, S. Mohd, et al. Compressive strength of concrete containing eggshell powder as partial cement replacement. En IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021. p. 012031. Sin embargo, discrepamos con Cubas y Davila (2022) en su investigación titulada "Influencia del concreto 210 kg/cm², Adicionando cascarilla de huevo triturada, en la ciudad de Jaén – Perú 2021" donde indican que los resultados obtenidos a los 28 días con la adición de cascarilla de huevo

triturada al 1% alcanza una resistencia de 267.3 kg/cm², con la adición de 1.5% de cascara de huevo triturada alcanza una resistencia de 321.0 kg/cm² y con la adición al el 2.5% de cascarilla de huevo triturada alcanza una resistencia de 234.3 kg/cm².

### Con respecto a la tendencia de aumento y/o disminución de la resistencia a la compresión a los 7 días, para el caso de la ceniza de cascarilla de café tiende a disminuir por cuando se agregó más aditivo, teniendo así una resistencia de 187.74 Kg/cm<sup>2</sup> para la adición de ceniza de cascarilla de café al 1% (CCC1%), seguidamente la resistencia disminuye a 171.74 Kg/cm<sup>2</sup> con la adición de ceniza de cascarilla de café al 3% (CCC3%) y disminuye aún más a una resistencia de 147.02 Kg/cm<sup>2</sup> con la adición de ceniza de cascarilla de café al 5% (CCC5%), en promedio está por debajo de la resistencia patrón que es de 179.54 Kg/cm<sup>2</sup>. Por otro lado, la tendencia es contraria (en aumento) para los aditivos de cascara de huevo (CH) y la combinación de ceniza de cascarilla de café más cascara de huevo (CCC+CH); es así que la resistencia para la cascara de huevo en 1, 3 y 5% aumentan progresivamente desde 165.99 Kg/cm<sup>2</sup>, 187.84 Kg/cm<sup>2</sup> hasta 190.93 Kg/cm<sup>2</sup> respectivamente, en promedio está por encima de la resistencia patrón que es de 179.54 Kg/cm<sup>2</sup> y para la combinación de ceniza de cascarilla de café y cascara de huevo (CCC+CH) en 1, 3 y 5% se obtuvieron resistencias de 195.7 Kg/cm<sup>2</sup>, 164.49 Kg/cm<sup>2</sup> hasta 211.71 Kg/cm<sup>2</sup> respectivamente, teniendo una única baja con CCC+CH3% (ceniza de cascara de café más cascara de huevo al 3%) pero en promedio también está por encima de la resistencia patrón que es de 179.54 Kg/cm<sup>2</sup>. Existen coincidencia con lo sostenido por Ansari, M. M., Kumar, M. D., Charles, J. M., & Vani, G. (2016) en su artículo titulado "Replacement of cement using eggshell powder" (Sustitución del cemento por cascara de huevo en polvo) donde demuestra que a los 7 días y la adición de cascara de huevo en polvo desde 0, 10 y

**Tabla 162** *Resultado de la resistencia a la compresión con conversión de N/mm2* 

15% aumenta la resistencia a la compresión (ver tabla 167).

| PERCENTAGE OF<br>ESP ADDED | TRIAL N° | COMPRESSIVE<br>STRENGTH ON<br>7th day N/mm2 | COMPRESSIVE<br>STRENGTH ON<br>7th day Kg/cm2 |
|----------------------------|----------|---------------------------------------------|----------------------------------------------|
|                            | 1        | 18.49                                       | 188.55                                       |
| 0%                         | 2        | 17.32                                       | 176.65                                       |
|                            | 3        | 18.65                                       | 190.18                                       |
|                            | 1        | 22.08                                       | 225.15                                       |
| 10%                        | 2        | 20.81                                       | 212.20                                       |
|                            | 3        | 21.44                                       | 218.63                                       |

|     | 1 | 24.00 | 244.73 |
|-----|---|-------|--------|
| 15% | 2 | 22.50 | 229.44 |
|     | 3 | 23.6  | 240.65 |

**Fuente:** ANSARI, M. Mohamed, et al. Replacement of cement using eggshell powder. SSRG International Journal of Civil Engineering, 2016, vol. 3, no 3, p. 1-3.

Con respecto a la tendencia de aumento o disminución de la resistencia a la compresión a los

# **14 días**, para el caso de la ceniza de cascarilla de café tiende a disminuir por cuando se agregó más aditivo, teniendo así una resistencia de 219.94 Kg/cm² para la adición de ceniza de cascarilla de café al 1% (CCC1%), seguidamente la resistencia disminuye a 215.67 Kg/cm² con la adición de ceniza de cascarilla de café al 3% (CCC3%) y disminuye aún más a una resistencia de 180.02 Kg/cm² con la adición de ceniza de cascarilla de café al 5% (CCC5%), en promedio está por encima de la resistencia patrón que es de 196.66 Kg/cm². Por otro lado, la tendencia es contraria (en aumento) para los aditivos de cascara de huevo (CH) y la combinación de ceniza de cascarilla de café más cascara de huevo (CCC+CH); es así que la resistencia para la cascara de huevo en 1, 3 y 5% aumentan progresivamente desde 182.78 Kg/cm², 215.29 Kg/cm² hasta 219.26 Kg/cm² respectivamente, en promedio está por encima de la resistencia patrón que es de 196.66 Kg/cm² y para la combinación

de ceniza de cascarilla de café y cascara de huevo (CCC+CH) en 1, 3 y 5% se obtuvieron resistencias de 210.62 Kg/cm<sup>2</sup>, 194.83 Kg/cm<sup>2</sup> y 241.97 Kg/cm<sup>2</sup> respectivamente teniendo una única baja con CCC+CH3% (ceniza de cascara de café más cascara de huevo al 3%) pero en promedio también está

por encima de la resistencia patrón que es de 196.66 Kg/cm<sup>2</sup>.

Con respecto a la tendencia de aumento o disminución de la resistencia a la compresión a los 28 días, para el caso de la ceniza de cascarilla de café tiende a disminuir por cuando se agregó más aditivo, teniendo así una resistencia de 240.92 Kg/cm² para la adición de ceniza de cascarilla de café al 1% (CCC1%), seguidamente la resistencia disminuye a 234.9 Kg/cm² con la adición de ceniza de cascarilla de café al 3% (CCC3%) y disminuye aún más a una resistencia de 192.13 Kg/cm² con la adición de ceniza de cascarilla de café al 5% (CCC5%), en promedio está por debajo de la resistencia patrón que es de 235.8 Kg/cm². Por otro lado, la tendencia es contraria (en aumento) para los aditivos de cascara de huevo (CH) y la combinación de ceniza de cascarilla de café más cascara de huevo (CCC+CH); es así que la resistencia para la cascara de huevo en 1, 3 y 5% aumentan progresivamente desde 194.22 Kg/cm², 236.67 Kg/cm² hasta 240.06 Kg/cm² respectivamente, en promedio está por debajo de la resistencia patrón que es de 235.8 Kg/cm² y para la combinación de ceniza de cascarilla de café más cascara de huevo (CCC+CH) en 1, 3 y 5% se obtuvieron resistencias de 233.89 Kg/cm², 217.7 Kg/cm² y 262.39 Kg/cm² respectivamente teniendo una única baja con CCC+CH3% (ceniza de cascara de café más cascara de huevo al 3%) pero en promedio también está por encima de la resistencia patrón que es de 235.8 Kg/cm².

# 4.2.2 Discusión sobre la influencia de la ceniza de cascarilla de café, cascara de huevo y la combinación de ambas en las propiedades físicas del concreto fresco

### Temperatura

De los resultados de temperatura se observó que se encuentran dentro del espectro que determina el reglamento nacional de edificaciones, el cual debe estar entre los 10°C y 30°C, esto a fin de garantizar la calidad del concreto por un tema de temperatura; luego, los valores de temperatura promedio obtenidas son desde un mínimo de 17.18°C para el tratamiento de concreto con aditivo de ceniza de cascarilla de café al 5% y un máximo promedio de 20.30°C para el tratamiento de concreto con aditivo de ceniza de cascarilla de café más cascara de huevo al 5%; este último valor de temperatura máxima se puede explicar debido a la energía calorífica emitida por la hidratación alcanzada en la mezcla.

### Slump

Al igual que el punto anterior, la prueba del slump fue aplicado a todos los tratamiento, donde se detectó un máximo valor promedio de 3.26" para el caso del concreto patrón, y un mínimo valor promedio de 2.44" para caso del concreto con cascara de ceniza de café más cascara de huevo al 5% (CH5%), esto muestra que a mayor adición de aditivos el slump tiende a disminuir haciendo más trabajable el concreto; es coincide con lo sustentado por B.W.Chong O. Rokiah, P.J. Ramadhansyah, S.I. Doh, Xiaofeng Li en su artículo titulado "Properties of concrete with eggshell powder" (Propiedades del hormigón con polvo de cascara de huevo) concluye que la cascarad e huevo reduce la trabajabilidad del concreto, lo cual se debe a la elevada absorción de agua por parte de la cascara de huevo en la fase inicial de la colada.

### Peso unitario

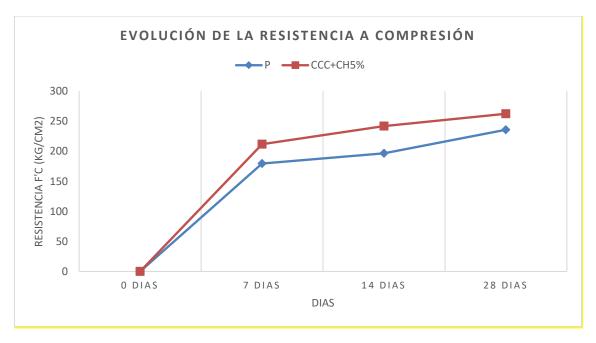
Al efectuar el cálculo del peso unitario se encontró un máximo valor promedio de 2348.44 Kg/m³ para el tratamiento de concreto con ceniza de cascarilla de café más cascara de huevo al 5% (CCC+CH5%) y un promedio mínimo de 2204.69 Kg/m³ para el tratamiento de concreto ceniza de cascarilla de café al 5% (CCC5%); este último valor se encuentra fuera del espectro normado por la NTP 339.046 y la ASTM c 180, ya que el rango estandarizado es desde los 2240 Kg/m³ hasta los 2460 Kg/m³, esto hace notar la desventaja de trabajar con la cascara de ceniza de café que reduce el peso unitario. Estos resultados coinciden con Días y Fernández (2019) que indican la disminución del peso unitario del concreto al incrementar la adición de la ceniza de cascarilla de café.

### Contenido de aire

Con respecto al contenido de aire, se abstuvo un mínimo porcentaje de contenido de aire para el tratamiento de concreto con ceniza de cascarilla de café más cascara de huevo al 5% (CCC+CH5%) con 1.31 y un máximo porcentaje de contenido de aire para el tratamiento de concreto con ceniza de

cascarilla de café al 5% (CCC5%) con 1.83%; esto demuestra que a mayor uso de ceniza de cascarilla de café la tendencia de contenido de aire aumenta. Este resultado coincide con Días y Fernándes (2019) que sostienen que el contenido de aire del concreto fresco aumenta a medida que aumenta el porcentaje de la ceniza de cascarilla de café (CCC).

### Tiempo de fraguado


Para el tiempo de fraguado se obtuvo un máximo valor de 210 minutos para el tratamiento de concreto con ceniza de cascarilla de café al 5% (CCC5%) y un mínimo valor de 120 minutos para el tratamiento de concreto con ceniza de cascarilla de café más cascara de huevo al 5% (CCC+CH5%); esto da a entender que a mayor adición de ceniza de cascarilla de café el tiempo de fraguado es mayor, cosa contraria ocurre con la adición combinada de la ceniza de cascarilla de café más huevo. Este resultado de la creciente de tiempo de fraguado con la adición de la ceniza de cascarilla de café coincide con lo sostenido por Gedefaw, A., Worku Yifru, B., Endale, S. A., Habtegebreal, B. T., & Yehualaw, M. D. (2022) en su artículo titulado "Experimental investigation on the effects of coffee husk ash as partial replacement of cement on concrete properties" (Investigación experimental sobre los efectos de la ceniza de cascarilla de café como reemplazo parcial del cemento en las propiedades del concreto), donde sostienen que el tiempo de fraguado del concreto muestra una tendencia creciente. El aumento de la ceniza de cascarilla de café reduce considerablemente la hidratación del cemento en la mezcla puesto que la ceniza de cascarilla de café contiene una mínima cantidad de CaO (oxido de calcio) a comparación del cemento

# 4.2.3 Discusión sobre la influencia de la ceniza de cascarilla de café, cascara de huevo y la combinación de ambas en el diseño de una zapata para un polideportivo.

Según el capítulo 5 de la Norma E.060 del Reglamento Nacional de Edificaciones, la resistencia a la compresión del concreto (F'c) para el diseño, debe basarse en los resultados de ensayos realizados a los 28 días. Por consiguiente, los cálculos serán realizados con los valores obtenidos a la edad de 28 días del concreto.

Se presenta la evolución de la resistencia a la compresión entre la mezcla patrón (P) y la mezcla con la adición de ceniza de cascarilla de café más cascara de huevo a una concentración de 5% (CCC+CH5%), a los 7, 14 y 28 días, con la finalidad de observar la mejora en la resistencia a la compresión a distintas edades del concreto. Se muestran los valores finales de diseño entre ambas mezclas de concreto.

|          | EVOLUCIÓN DE LA RESISTENCIA A<br>COMPRESIÓN (Kg/cm2) |        |         |         |
|----------|------------------------------------------------------|--------|---------|---------|
|          | 0 DÍAS                                               | 7 DÍAS | 14 DÍAS | 28 DÍAS |
| P        | 0                                                    | 179.54 | 196.66  | 235.8   |
| CCC+CH5% | 0                                                    | 211.71 | 241.97  | 262.39  |



Dimensiones de zapata - Peralte

| hz | 0.40 | m |
|----|------|---|
| d  | 0.30 | m |

Resistencia de materiales (P)

| Fy  | 4200 | kg/cm2 |
|-----|------|--------|
| f'c | 236  | kg/cm2 |

Resistencia de materiales (CCC+CH5%)

| Fy  | 4200 | kg/cm2 |
|-----|------|--------|
| f'c | 262  | kg/cm2 |

### Valores de Cortante Nominal (P)

| øVc1 | 122.64 | ton |
|------|--------|-----|
| øVc2 | 120.37 | ton |
| øVc3 | 188.19 | ton |
|      |        | l)  |

| øVc | 120.37 | ton |
|-----|--------|-----|
| øve | 120.57 | ton |

### *Valores de Cortante Nominal* (CCC+CH5%)

| øVc1 | 129.27 | ton |
|------|--------|-----|
| øVc2 | 126.88 | ton |
| øVc3 | 198.37 | ton |

| øVc          | 126.88 | ton |
|--------------|--------|-----|
| <i>p</i> , c |        |     |

Se observa que la resistencia a corte del concreto de la mezcla (CCC+CH5%) es superior en 5.4% a la resistencia a corte del concreto de la mezcla Patrón.

Los resultados obtenidos del estudio evidencian que la incorporación de un 5% de ceniza de cascarilla de café (CCC) y cáscara de huevo (CH) como aditivo parcial al cemento portland en la mezcla de concreto mejora notablemente su comportamiento mecánico, en particular su resistencia a la compresión. Este efecto es consistente con estudios previos que han documentado el potencial puzolánico de residuos agroindustriales ricos en óxidos de calcio y sílice (Hossain et al., 2016; Medina et al., 2020), los cuales contribuyen a la formación de productos cementantes secundarios que densifican la matriz del concreto.

En esta investigación, el concreto con adición (CCC+CH5%) alcanzó una resistencia a la compresión de 262 kg/cm² a los 28 días, superando al concreto convencional que registró 236 kg/cm², lo que representa una mejora del orden del 11%. Esta diferencia permitió optimizar el diseño estructural de la zapata sin alterar las dimensiones en planta (S = 2.3 m y T = 2.7 m), manteniendo constante la carga de servicio.

Una de las repercusiones fue la reducción del peralte de la zapata de 0.50 m a 0.47 m, lo cual conlleva una disminución en el volumen de concreto y, por ende, en el costo de los materiales. Asimismo, se observó una disminución en la cuantía de acero requerida para resistir flexión, lo que tiene implicancias directas en los costos de armado y en la sostenibilidad del diseño. Esta eficiencia estructural sin sacrificar seguridad ha sido resaltada en otros trabajos similares con materiales alternativos (González & Zapata, 2018).

Es importante indicar que tanto la verificación por corte como por punzonamiento cumplió con los criterios normativos en ambas mezclas, lo que valida la integridad del diseño bajo el marco del Reglamento Nacional de Edificaciones (RNE) y estándares internacionales como el ACI 318.

Desde una perspectiva ambiental, el uso de estos residuos representa una estrategia de valorización que reduce la demanda de cemento portland, cuya producción es altamente emisora de CO<sub>2</sub>

(Scrivener et al., 2018). Además, al tratarse de subproductos de la agroindustria, su incorporación en materiales de construcción representa un aporte directo a los principios de economía circular y sostenibilidad.

### CAPÍTULO V

### CONCLUSIONES Y RECOMENDACIONES

### 5.1 Conclusiones

En resumen, los aditivos como la ceniza de la cascarilla de café, cascara de huevo y la combinación de ambos, influyen de una manera significativa en la resistencia a la compresión del concreto en un estado endurecido, a los 7, 14 28 días; asimismo, existe también una influencia significativa en las propiedades físicas del concreto fresco a excepción de la propiedad de consistencia (SLUMP).

### CONCLUSIÓN 01:

De acuerdo al primer objetivo: Determinar la influencia de la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas para mejorar la Resistencia a la Compresión del Concreto f'c=210 kg/cm² a los 7 días, para zapatas de un polideportivo, Cusco 2023. Para los 7 días de entre los nueve tratamientos se observa la existencia de diferencia significativa, ya que el concreto con la adición de ceniza de cascarilla de café más cascara de huevo a una concentración de 5% (CCC+CH5%) alcanza su mayor resistencia con un valor de 211.71 Kg/cm², superando así en un 17.9% a la resistencia de la mezcla patrón que fue de 179.54 Kg/cm². Por otro lado, el tratamiento de concreto con ceniza de cascarilla de café a una concentración del 5% alcanzo su mínimo valor de 147.02 Kg/cm², quedando así en un 18.1% por debajo de la resistencia de la mezcla patrón que fue de 179.54 Kg/cm². También cabe indicar que, para esta edad de tratamiento, la tendencia de la resistencia es en promedio de subida cuando la concentración de cascara de huevo (CC) y la combinación de ceniza de cascarilla de café más cascara de huevo (CCC+CH) aumentan, esto considerando que en el tratamiento CCC+CH3% existe una única baja que no afecta a la tendencia de subida de la resistencia del concreto; sin embargo, la tendencia de la resistencia es de bajada cuando la concentración de ceniza de cascarilla de cascarilla de café (CCC) aumentan.

### **CONCLUSIÓN 02:**

De acuerdo al segundo objetivo: Determinar la influencia de la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas para mejorar la Resistencia a la Compresión del Concreto f'c=210 kg/cm² a los 14 días, para zapatas de un polideportivo, Cusco 2023. Para los 14 días de entre los nueve tratamientos se observa la existencia de diferencia significativa, ya que el concreto con la adición de ceniza de cascarilla de café más cascara de huevo a una concentración de 5% (CCC+CH5%) alcanza su mayor resistencia con un valor de 241.97 Kg/cm², superando así en un 23% a la resistencia de la mezcla patrón que fue de 196.66 Kg/cm². Por otro lado, el tratamiento de concreto con ceniza de cascarilla de café a una concentración del 5% alcanzo su mínimo valor de 180.02 Kg/cm², quedando así en un 8.46 % por debajo de la resistencia de la mezcla patrón que fue

de 196.66 Kg/cm2. También cabe indicar que al igual que la conclusión especifica 1, para esta edad de tratamiento, la tendencia de la resistencia es en promedio de subida cuando la concentración de cascara de huevo (CH) y la combinación de ceniza de cascarilla de café más cascara de huevo (CCC+CH) aumentan, esto considerando también que en el tratamiento CCC+CH3% existe una única baja que no afecta a la tendencia de subida de la resistencia del concreto; sin embargo, la tendencia de la resistencia es de bajada cuando la concentración de ceniza de cascarilla de café (CCC) aumentan.

### CONCLUSIÓN 03:

De acuerdo al tercer objetivo: Determinar la influencia de la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas para mejorar la Resistencia a la Compresión del Concreto f'c=210 kg/cm<sup>2</sup> a los 28 días, para zapatas de un polideportivo, Cusco 2023. Para los 28 días de entre los nueve tratamientos se observa la existencia de diferencia significativa, una vez más el concreto con la adición de ceniza de cascarilla de café más cascara de huevo a una concentración de 5% (CCC+CH5%) alcanza su mayor resistencia con un valor de 262.39 Kg/cm2, superando así en un 11% a la resistencia de la mezcla patrón que fue de 235.8 Kg/cm<sup>2</sup>. Por otro lado, y también una vez más el tratamiento de concreto con ceniza de cascarilla de café a una concentración del 5% alcanzo su mínimo valor de 192.13 Kg/cm<sup>2</sup>, quedando así en un 19% por debajo de la resistencia de la mezcla patrón que fue de 235.8 Kg/cm<sup>2</sup>. Una vez más cabe indicar que al igual que la conclusión especifica 1 y 2, para esta edad de tratamiento, la tendencia de la resistencia es en promedio de subida cuando la concentración de cascara de huevo (CH) y la combinación de ceniza de cascarilla de café más cascara de huevo (CCC+CH) aumentan, esto considerando también que en el tratamiento CCC+CH3% existe una única baja que no afecta a la tendencia de subida de la resistencia del concreto; sin embargo, la tendencia de la resistencia es de bajada cuando la concentración de ceniza de cascarilla de café (CCC) aumentan.

El análisis comparativo del dimensionamiento de la zapata con concreto convencional (mezcla patrón) y con la adición de un 5% de ceniza de cascarilla de café y cáscara de huevo (CCC+CH5%) evidencia mejoras significativas en el comportamiento mecánico del concreto. A pesar de que las dimensiones en planta de la zapata se mantienen constantes para ambas mezclas (S = 2.3 m y T = 2.7 m), el concreto con adición presentó un incremento en la resistencia a la compresión (f'c = 262 kg/cm²), superando al concreto convencional (f'c = 236 kg/cm²).

Como resultado, se observó una optimización del diseño estructural: se logró reducir el peralte de la zapata (de 0.50 m a 0.47 m) y disminuir la cuantía de refuerzo de acero para flexión, lo cual implica beneficios tanto estructurales como económicos. Asimismo, las verificaciones por corte y punzonamiento cumplieron satisfactoriamente en ambas mezclas, sin comprometer la seguridad estructural.

### **CONCLUSIÓN 04:**

### **Temperatura:**

En cuanto a la temperatura del concreto fresco, se observa que, si existe diferencia significativa en nuestros resultados formándose dos grupos, de los cuales los tratamientos CCC+CH al 5%, CH al 1%, CH al 3%, CH al 5%; forman parte del grupo "a". Por otro lado, los tratamientos PATRON, CCC+CH al 1%, CCC+CH al 3%, CCC al 1%, 3%, 5%, pertenecen al grupo "b". Cabe señalar que a mayor porcentaje de CCC (Ceniza de Cascarilla de Café) la temperatura disminuye, teniendo una máxima diferencia de 0.34°C en comparación con la concentración entre 1% y 5% y una diferencia de 0.08°C en comparación con el patrón. Lo opuesto acurre con la adición de la CH (Cascara de Huevo), el cual, al momento de añadir mayor porcentaje, la temperatura se incrementa en 0.12°C con respecto a la concentración de 1% y 5% y 1.64°C con respecto a la mezcla patrón. De igual forma en el tratamiento de CCC+CH (Ceniza de cascarilla de café y Cascara de Huevo) la temperatura sufre un incremento a medida que se le aumenta de concentración a este tratamiento, teniendo un incremento de 2.58°C con respecto a 1% y 5% de concentración y 3.04°C con respecto al patrón. Estos incrementos y disminuciones antes mencionadas se relacionan también al incremento y disminución de la resistencia a la compresión.

A medida que la temperatura del concreto se incrementa, se produce una pérdida de asentamiento que generalmente se compensa de manera inadvertida mediante la adición de agua en el sitio de la obra. En condiciones de temperaturas más elevadas, se requiere una mayor cantidad de agua para mantener un asentamiento constante.

La adición de agua sin incrementar la cantidad de cemento resulta en una mayor relación aguacemento, lo que reduce la resistencia en todas las edades y afecta negativamente otras propiedades del concreto endurecido. Además, las altas temperaturas por sí solas tienen un efecto adverso sobre la resistencia del concreto a edades avanzadas, incluso sin la adición de agua.

Compensar el aumento de agua con la adición de cemento puede ser ineficaz para lograr las propiedades deseadas, ya que el aumento de cemento incrementa aún más la temperatura del concreto y, por ende, la demanda de agua.

En el caso de la adición de la ceniza de cascarilla de café y la cascara de huevo no sufren una diferencia muy grande de temperatura y por consiguiente no va tener mayor repercusión en cuanto a la trabajabilidad del concreto fresco, ni tampoco al momento de hacer el vaciado en la estructura de la zapata del polideportivo.

### Consistencia (SLUMP):

Con respecto a la propiedad de la consistencia del concreto fresco, no se encuentra diferencia significativa en la adición de la CCC, CH, CCC+CH al concreto fresco, todos los tratamientos

pertenecen a un solo grupo. Sin embargo, al analizar los resultados obtenidos, se observa que al añadir CCC (Ceniza de cascarilla de café), a mayor porcentaje de concentración disminuye el slump en 0.34" entre la concentración del 1 y 5%; asimismo disminuye en 0.58" con respecto a la mezcla patrón. De igual forma sucede con la adición de CH (Cascara de huevo), la cual incrementado su concentración disminuye también el slump en 0.32" entre 1% y 5% y 0.74" con respecto a la mezcla patrón. Finalmente, de igual manera al añadir CCC+CH (Ceniza de Cascarilla de Café y Cascara de huevo) incrementando su concentración también disminuye el slump en 0.21" entre la concentración del 1% y 5%; asimismo 0.82" con respecto a la mezcla patrón. Los resultados encontrados nos indican que al incrementar los porcentajes de concentración de los diferentes tratamientos obtenemos una mayor consistencia, teniendo un resultado menor del slump.

### Peso unitario:

Con respecto al peso unitario del concreto fresco se encontró diferencia significativa, en las cuales se formaron 4 grupos, los tratamientos pertenecientes al grupo "a" son (CCC+CH 5%, CH 5%, CCC+CH 1%, CH3%, CH 1%, PATRON, CCC 1%), los tratamientos pertenecientes al grupo "b" (CCC+CH 1%, CH3%, CH 1%, PATRON, CCC 1%, CCC 3%), los tratamientos pertenecientes al grupo "c" ( CH3%, CH 1%, PATRON, CCC 1%, CCC 3%, CCC+CH 3%) y los tratamientos pertenecientes al grupo "d" (CCC 1%, CCC 3%, CCC+CH 3%, CCC 5%). Cabe señalar que al incrementar la concentración de CCC (Ceniza de cascarilla de café) a 1%, 3% y 5% disminuye en 68.75 kg/m³ con respecto a la mezcla patrón. Caso contrario pasa al adicionar CH (Cascara de huevo) y la combinación de CCC+CH (Ceniza de cascarilla de café + Cascara de huevo) los cuales al incrementar la concentración también incrementan el peso unitario del concreto fresco, este incremento es de 33.59 y 32.03 kg/m³ respectivamente entre la concentración del 1 y 5%; el incremento con respecto a la mezcla patrón es de 46.87 y 56.25 respectivamente. Esta propiedad del concreto fresco va relacionada con la resistencia a la compresión, la cual sigue a la misma tendencia.

El peso unitario del concreto fresco está estrechamente relacionado con su resistencia a la compresión, un factor crucial en la construcción de zapatas. En términos generales, un mayor peso unitario indica una mayor densidad del concreto, lo que se traduce en menos vacíos internos y una mayor resistencia. Los agregados densos y bien compactados contribuyen significativamente a esta resistencia, mientras que un exceso de agua puede reducir tanto el peso unitario como la resistencia debido al aumento de vacíos. Para asegurar la resistencia adecuada del concreto en zapatas, es esencial un diseño de mezcla preciso y pruebas de control de calidad que verifiquen el peso unitario y la resistencia a la compresión según las normativas de construcción.

### Contenido de aire:

Con referente al contenido de aire del concreto fresco si hay diferencia significativa, formando 5 grupos, los tratamientos pertenecientes al grupo "a" son (CCC 5%, CCC 3%, CCC+CH 3%), los tratamientos pertenecientes al grupo "b" son (CCC 3%, CCC+CH 3%, CCC 1%), los tratamientos pertenecientes al grupo "c" son (CCC 1%, CH 1%), los tratamientos pertenecientes al grupo "d" son (CH 1%, PATRON, CH 3%, CCC+CH 1%) y los tratamientos pertenecientes al grupo "e" son ( PATRON, CH 3%, CCC+CH 1%, CH 5%, CCC+CH 5%). Es preciso indicar que a mayor concentración del tratamiento de CCC (Ceniza de Cascarilla de café), incrementa el porcentaje de aire a razón de 26.2% por encima del valor de la mezcla patrón; caso contrario pasa con la adición de la Cascara de huevo (CH) y la combinación de Ceniza de cascarilla de café + Cascara de huevo (CCC+CH), en los cuales se puede observar que a mayor sea la concentración, disminuye el contenido de aire, esta disminución es del 6.2% y 9.7% por debajo del valor del contenido de aire de la mezcla patrón. Para el caso de menor contenido de aire, generalmente resulta en un concreto más denso, por lo tanto, implica mayor resistencia a la compresión; sin embargo, este puede ser propenso a daños por ciclos de congelación y descongelación, pues el aire atrapado actúa como una válvula de alivio; para el caso de mayor contenido de aire, este mayor contenido reduce la densidad del concreto, provocando una disminución de la resistencia a la compresión.

### Tiempo de fraguado:

Con respecto al tiempo de fraguado no se pudo analizar si hubo una diferencia significativa, puesto que para realizar dicho análisis estadístico se debe tener de tres a más datos y nosotros únicamente obtuvimos un solo dato. Pero cabe precisar que la tendencia de tiempo de fraguado se incrementa al incrementar la concentración del tratamiento de ceniza de cascarilla de café, teniendo 30 minutos por encima del tiempo de fraguado de la mezcla patrón; de forma contraria en el tratamiento de la combinación de la ceniza de cascarilla de café y cascara de huevo (CCC+CH) al incrementar la concentración disminuye el tiempo de fraguado, llegando a disminuir 60 minutos con respecto al tiempo de fraguado de la mezcla patrón. Asimismo, se llega a disminuir el tiempo de fraguado al incrementar la concentración de la Cascara de huevo (CH) en 45 minutos con respecto al tiempo de fraguado de la mezcla patrón. Un menor tiempo de fraguado puede afectar a la resistencia del concreto, ya que puede llevar a un desarrollo insuficiente del mismo; así mismo, también podría afectar aumentando la posibilidad de contracción y fisuras debido a la rápida perdida de humedad.

### Análisis de costo del concreto con y sin aditivos:

El empleo de ceniza de cascarilla de café (CCC) en el concreto incrementa los costos unitarios de producción, con valores que oscilan entre S/. 311.95 para un 1% de CCC y hasta S/. 356.28 para un 5%, lo que representa un aumento del 3.74% al 18.46% en comparación con el concreto base (S/. 300.71). Por otro lado, la incorporación de cáscara de huevo (CH) es más económica, con precios

que varían entre S/. 304.21 para un 1% y S/. 317.58 para un 5%, aumentando los costos en un rango del 1.16% al 5.61%. La combinación de CCC y CH proporciona un costo intermedio, oscilando entre S/. 308.08 y S/. 336.93, lo que equivale a un incremento del 2.44% al 12.04%. Este balance podría ser más adecuado según los requisitos técnicos del concreto y las restricciones presupuestarias. Además, la utilización de estos aditivos naturales no solo mejora la sostenibilidad al reducir la dependencia de aditivos sintéticos, sino que también promueve la gestión de residuos orgánicos, con un impacto ambiental positivo al reciclar subproductos agroindustriales.

### **5.2 Recomendaciones**

- De acuerdo a los resultados obtenidos la combinación de la Ceniza de la Cascarilla de café + Cascara de huevo al 5%, nos dio un resultado superior en cuanto a la resistencia a la compresión del concreto, en comparación con el valor de nuestra mezcla patrón, por tal motivo se recomienda hacer estudios con mayor porcentaje de concentración de dicha mezcla para evaluar tanto el comportamiento de la resistencia a la compresión como las propiedades del concreto fresco.
- Se emplearon desperdicios orgánicos como la cascarilla de café y la cáscara de huevo, obtenidos de diversos lugares como viviendas, restaurantes e industrias alimentarias. Se sugiere extender la investigación a otros residuos orgánicos, como la cáscara de papa, las cáscaras de frutas y los restos de tubérculos comúnmente generados en hogares y establecimientos gastronómicos.
- Se sugiere expandir el alcance del estudio para abarcar la evaluación de la resistencia a la flexión y torsión del concreto endurecido, utilizando los aditivos investigados en este trabajo. Esta extensión permitirá una comprensión más completa de las propiedades mecánicas del concreto modificado y proporcionará datos adicionales sobre su desempeño en situaciones de carga variadas, lo que podría ser de gran utilidad en la práctica de ingeniería civil y la construcción de estructuras resistentes y duraderas.
- Se recomienda ampliar significativamente el número de ensayos realizados, aumentando el número de probetas por tratamiento a más de 5. Esta medida tiene como objetivo enriquecer nuestra población de investigación, permitiendo una evaluación estadística más robusta y confiable. Al incrementar el tamaño muestral, se fortalecerá la validez de nuestros resultados y se obtendrá una comprensión más profunda de las tendencias y variaciones dentro de los tratamientos analizados. Esto contribuirá a generar conclusiones más sólidas y generalizables, aumentando la calidad y relevancia de nuestra investigación.
- Se recomienda ampliar la evaluación del uso de polvo de cáscara de café en la investigación, dado su potencial beneficio económico. La incineración de la cáscara de café puede aumentar los costos, por lo tanto, explorar alternativas como el uso de su polvo puede ofrecer una solución más rentable. Además, investigar el rendimiento y las propiedades del polvo de cáscara de café proporcionará una comprensión más completa de su viabilidad como material en diversas aplicaciones, lo que podría abrir nuevas oportunidades en términos de sostenibilidad y eficiencia económica en la gestión de residuos orgánicos.
- Se recomienda aplicar esta investigación, pero para otro tipo de elementos estructurales tales como: columnas, vigas, losas, placas, etc. Puesto que estos se encuentran sometidos y con mayor intensidad a otros tipos de esfuerzos como son la flexión, torsión, tracción.

- Se recomienda efectuar investigaciones a un nivel químico con el fin de entender del porqué del comportamiento de los aditivos dentro del concreto, del porqué de las reacciones que se obtuvieron en los ensayos de temperatura, consistencia, peso unitario, etc.
- Se recomienda optimizar el diseño de mezclas aplicando otros métodos al margen ACI y/o afinando los métodos ya usados a fin de determinar con mayor exactitud la dosificación correcta de los aditivos.
- Se sugiere realizar una investigación similar para resistencias mayores a 210 kg/cm², incorporando los mismos aditivos como cenizas de cascarilla de café, cáscara de huevo y la combinación de ambos.
- Se recomienda llevar a cabo un análisis de costo-beneficio al reemplazar el cemento por los aditivos, con el fin de verificar si existe un ahorro económico, especialmente en el caso hipotético de desear industrializar este tipo de concreto.

### REFERENCIAS BIBLIOGRÁFICAS

- ABANTO, F., 2009. *Tecnología del Concreto*. 2nd. S.l.: Angewandte Chemie International Edition.
- ABANTO, F., 2009. Tecnología del Concreto. 2nd. S.l.: s.n. ISBN 9786123020606.
- CASTRO, David. y ALFARO, J., 2019. Análisis comparativo de Las propiedades físicasmecánicas del concreto de resistencias F´C= 210, 280, 350 Kg/Cm2 sustituyendo material cementicio por cáscara de huevo. S.l.: Universidad Privada Antenor Orrego.
- CORAL, J., 2019. Comportamiento del concreto con cascarilla de café y posibilidades ante textura y color. S.l.: Universidad Nacional.
- DE CASTRO, E., SILVA, L., MENDES, M., MENDES, R., CORNELIO, A., RIBEIRO, C., CUIMARAES, J. y RABELO, G., 2019. Analysis of the Coffee Peel Application Over the Soil-Cement Bricks. *Coffee Science*, vol. 14, no. 1, DOI 10.25186/cs. v14i1.1503.
- HERNANDEZ, Roberto., 2014. *Metodología de la investigación*. 6. Mexico: McGraw-Hill. August, vol. 6. ISBN 978-602-1018-18-7.
- IPARRAGUIRRE, R., 2021. Influencia de la adición de la ceniza de la cascarilla de café en las propiedades del concreto f'c=210 kg/cm2, Oxapampa-2021. S.l.: Universidad César Valejo.
- LAMA, Carlos., 2019. Resistencia a la compresión del concreto f'c=210 kg/cm2 con sustitución del cemento por un 5% de cenizas cáscara de maní y 15% arcilla de Cuenca-Casma-2017. Universidad San Pedro.
- MATALLANA, Ricardo., 2019. *El Concreto: Fundamentos y nuevas tecnologías*. Medellin, Colombia: Constructora Conconcreto. ISBN 978-958-57497-3-3.
- MATALLANA RODRÍGUEZ, R., 2019. *El Concreto Fundamentos Y Nuevas Tecnologías*. 1. Medellin, Colombia: Conconcreto. ISBN 9789585749733.
- MINAGRI, 2021. Situación actual del café en el país. 2021. S.l.: MINAGRI.
- MOHAMED, G. y DJAMILA, B., 2018. Properties of dune sand concrete containing coffee waste. *MATEC Web of Conferences*, vol. 149,
- MOLOCHO, Jhenfer. y RODRIGUEZ, D., 2020. Adición de la cascarilla de café y sus cenizas para mejorar la resistencia a la compresión del concreto f´c=210 kg/cm2, en las viviendas económicas de Moyobamba 2020. S.l.: Universidad César Vallejo. ISBN 000000344128.
- MONTT, Betzabé., 2015. Efecto de la inmovilización de anhidrasa carbónica en la membrana de la cáscara de huevo de gallina, sobre la cristalización de carbonato de calcio. S.l.: Universidad de Chile.
- NEVILLE, A. y BROOKS, J.J., 2010. *Concrete technology*. 2nd. S.l.: s.n. ISBN 978-0-273-73219-8.

- NORMA E.060 CONCRETO ARMADO, 2019. E.060-concreto-armado-sencico. *Norma E.060 Concreto Armado*,
- NORMAE.060 CONCRETO ARMADO, 2019. E.060-Concreto-armado-sencico. *Norma E.060 Concreto Armado*,
- NTP 400.022, 2018. Agregados, método de ensayo normalizado para la densidad, la densidad relativa (peso específico) y la absorción del agregado fino. *Resolucion Ministerial*,
- NTP334.009, 2005a. Norma Técnica Peruana NTP 334.009. 2005. S.l.: s.n.
- NTP334.009, 2005b. Norma Técnica Peruana NTP 334.009. 2005. S.l.: El Peruano.
- NTP339.088, 2019. Norma Técnica Peruana NTP 339.088 Concreto. Agua de mezcla utilizada en l producción de concreto de cemento Portland. *El peruano*,
- NTP400.037, 2018. Norma Técnica Peruana NTP 400.037 Agregados para concreto. *Resolución Ministerial*,
- PASQUEL, O., 1998. *Tópicos de tecnología del concreto en el Perú*. Segunda Ed. Perú: Colegio de Ingenieros del Perú. ISBN 0-05-113451-9.
- PONCE, S., 2018. *Centro de Difusión del Café en Quillabamba, Cusco* [en línea]. S.l.: Universidad Peruana de Ciencias Aplicadas. Disponible en: https://alicia.concytec.gob.pe/vufind/Record/UUPC\_d0d11cdd320e7f64a2caeabedbb 170cb.
- REYES, M., 2019. Resistencia a la compresión de un concreto f'c=210 kg/cm2 al sustituir al cemento en 4%, 6% y 8% por cascara de huevo. S.l.: Universidad San Pedro.
- RODRIGUEZ, N., 2017. Diseño de concreto F'C=250 kg/cm2 reforzado con cascarilla de café en la ciudad de Jaén. S.l.: Universidad Nacional de Cajamarca.
- SALAZAR, Jaime., GARCIA, Carlos. y OLAYA, Julio., 1984. Dosificación de hormigones ligeros con cascarilla de café. *Universidad Nacional de Colombia*, no. 1, ISSN 0120-5609.
- SÁNCHEZ DE GUZMÁN, D., 2001. *Tecnología del concreto y del mortero*. Quinta. S.l.: Brandar Editores LTDA.
- TORRES, Ana., 2004. Curso Básico de Tecnología del Concreto. Perú: s.n.
- VALDES, Jesús., 2009. La cáscara de huevo: ¿Desecho o valor agregado para la salud humana y la producción avícola?, vol. 1,
- YURA, C., 2022. Ficha Técnica de Cemento Portland Tipo I. 2022. S.l.: Seace.

### **ANEXOS**

### MATRIZ DE CONSISTENCIA

# ADICIÓN DE LA CENIZA DE LA CASCARILLA DE CAFÉ Y CÁSCARA DE HUEVO PARA MEJORAR LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO f'c=210 kg/cm2 EN ZAPATAS DE UN POLIDEPORTIVO, CUSCO- 2023

| Problema General                                                           | Objetivos                                                                 | Hipótesis                                                                   | Variables                                |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------|
| Problema Principal:                                                        | Objetivo Principal:                                                       | Hipótesis Principal:                                                        | Variable Independiente:                  |
| ¿En qué medida influye la adición de la ceniza de cascarilla               | adición de la ceniza de                                                   | cascarilla de café, cáscara de                                              | Ceniza de Cascarilla de<br>Café (CCC)    |
| de café, cáscara de huevo y la combinación de ambas para                   | cascarilla de café, cáscara de huevo y la combinación de                  | huevo y la combinación de ambas, estos influyen                             | Cascara de Huevo (CH)                    |
| mejorar la Resistencia a la                                                | ambas para mejorar la                                                     | significativamente en la mejora                                             | <b>Dimensiones:</b>                      |
| Compresión del Concreto f'c=210 kg/cm² y las propiedades                   | Resistencia a la Compresión del Concreto f'c=210 kg/cm <sup>2</sup> y las | de la Resistencia a la Compresión del Concreto f'c=210 kg/cm <sup>2</sup> y | Diseño de Mezcla.                        |
| físicas del concreto fresco, en                                            | propiedades físicas del concreto                                          | las propiedades físicas del                                                 | % de dosificación                        |
| zapatas de un polideportivo,<br>Cusco 2023?                                | fresco, en zapatas de un polideportivo, Cusco 2023.                       | concreto fresco, en zapatas de un polideportivo, Cusco 2023.                | Variable Dependiente:                    |
| Problemas Específicos:                                                     | Objetivos Específicos:                                                    | Hipótesis Específicos:                                                      | Resistencia a la compresión del concreto |
| ¿Cómo influye la adición de la                                             |                                                                           |                                                                             | endurecido                               |
| ceniza de cascarilla de café,<br>cáscara de huevo y la                     | adición de la ceniza de cascarilla de café, cáscara de                    | café, cáscara de huevo y la combinación de ambas, estos                     | Propiedades Físicas del concreto fresco. |
| combinación de ambas para<br>mejorar la Resistencia a la                   | huevo y la combinación de<br>ambas para mejorar la                        | influyen significativamente en la mejora de la Resistencia a la             | Dimensiones:                             |
| Compresión del Concreto                                                    | Resistencia a la Compresión del                                           | Compresión del Concreto                                                     | Ensayo de la resistencia a               |
| f'c=210 kg/cm <sup>2</sup> a los 7 días, para zapatas de un polideportivo, | Concreto f'c=210 kg/cm <sup>2</sup> a los 7 días, para zapatas de un      |                                                                             | la compresión (Kg/cm²)                   |
| Cusco 2023?                                                                | polideportivo, Cusco 2023.                                                | Cusco 2023.                                                                 | Temperatura                              |

- ¿Cómo influye la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas para mejorar la Resistencia a la Compresión del Concreto f'c=210 kg/cm² a los 14 días, para zapatas de un polideportivo, Cusco 2023?
- ¿Cómo influye la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas para mejorar la Resistencia a la Compresión del Concreto f'c=210 kg/cm² a los 28 días, para zapatas de un polideportivo, Cusco 2023?
- ¿Cómo influye la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas en las propiedades físicas del concreto fresco, para zapatas de un polideportivo, Cusco 2023?

Determinar la influencia de la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas para mejorar la Resistencia a la Compresión del Concreto f'c=210 kg/cm² a los 14 días, para zapatas de un polideportivo, Cusco 2023

Determinar la influencia de la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas para mejorar la Resistencia a la Compresión del Concreto f'c=210 kg/cm² a los 28 días, para zapatas de un polideportivo, Cusco 2023.

Determinar la influencia de la adición de la ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas en las propiedades físicas del concreto fresco, para zapatas de un polideportivo, Cusco 2023.

Al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, estos influyen significativamente en la mejora de la Resistencia a la Compresión del Concreto f'c=210 kg/cm² a los 14 días, para zapatas de un polideportivo, Cusco 2023.

Al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, estos influyen significativamente en la mejora de la Resistencia a la Compresión del Concreto f'c=210 kg/cm2 a los 28 días, para zapatas de un polideportivo, Cusco 2023.

Al añadir ceniza de cascarilla de café, cáscara de huevo y la combinación de ambas, estos influyen significativamente en las propiedades físicas del concreto fresco, para zapatas de un polideportivo, Cusco 2023.

Consistencia

Peso unitario.

Contenido de aire

Tiempo de fraguado

# **DISEÑO DE MEZCLA DE CONCRETO**

# PROYECTO:

"ADICIÓN DE CENIZA DE LA CASCARILLA DE CAFÉ Y CASCARA DE HUEVO PARA MEJORAR LA RESISTENCIA A LA COMPRESIÓN DE CONCRETO FC=210 KG/CM2 EN ZAPATAS DE UN POLIDEPORTIVO, CUSCO 2023"

# **UBICACIÓN:**

Localiz.

Distrito

Provincia

Region

CUSCO

CUSCO

CUSCO

CUSCO

# **SOLICITA:**

MAKLIBER RONALD ALFARO YANQUE LEONARD MENDOZA CHUCTAYA

# **CANTERAS:**

Agregado 1 Agregado Fino: PROPORCIONADO POR EL SOLICITANTE

Agregado 2 Agregado Grueso: PROPORCIONADO POR EL SOLICITANTE

**CEMENTO:** 

YURA Cemento Portland - Tipo I

**RESISTENCIA:** 

F'c = 210 Kg/cm<sup>2</sup>



**DICIEMBRE DEL 2022** 



NTP-339.128 - ASTM-D4318

CODIGO : REVISADO :

PAGINA:

Fecha: DICIEMBRE DEL 2022

Solicita:

2

Proyecto : "ADICIÓN DE CENIZA DE LA CASCARILLA DE CAFÉ Y CASCARA DE

HUEVO PARA MEJORAR LA RESISTENCIA A LA COMPRESIÓN DE

CONCRETO FC=210 KG/CM2 EN ZAPATAS DE UN POLIDEPORTIVO,

Ubicación : CUSCO - CUSCO - CUSCO

Cantera : Agregado Fino: PROPORCIONADO POR EL SOLICITANTE

Extraccion: Proporcionado por el Solicitante Resp. Lab.: A.A.A.

MUESTRA : 1 Codigo : A-01 Clasificacion Agregado Fino

# CONTENIDO DE AGUA (HUMEDAD)

2.81 %

| Peso o Volumen       | Ensayo 1 | Ensayo 2 | Unidad |
|----------------------|----------|----------|--------|
| Peso del Molde       | 11.29    | 11.61    | gr.    |
| Peso Muestra Natural | 60.97    | 61.33    | gr.    |
| Peso Muestra seca    | 59.60    | 59.98    | gr.    |
| Humedad              | 2.84     | 2.79     | %      |

# **PESO UNITARIO SUELTO**

1,668.95 Kg/m3

| Peso o Volumen          | Ensayo 1 | Ensayo 2 | Ensayo 3 | Unidad |
|-------------------------|----------|----------|----------|--------|
| Peso de Muestra + Molde | 9642     | 9584     | 9613     | gr.    |
| Peso de Molde           | 6100     | 6100     | 6100     | gr.    |
| Peso de la Muestra      | 3542     | 3484.161 | 3513     | gr.    |
| Volumen del Molde       | 2105     | 2105     | 2105     | cm3    |
| Peso unitario suelto    | 1.68     | 1.66     | 1.67     | gr/cm3 |

Peso unitario suelto promedio

1.67 gr/cm3

# PESO UNITARIO COMPACTADO

1,792.47 kg/m3

| Peso o Volumen          | Ensayo 1 | Ensayo 2 | Ensayo 3 | Unidad |
|-------------------------|----------|----------|----------|--------|
| Peso de Muestra + Molde | 9873     | 9823.635 | 9922.365 | gr.    |
| Peso de Molde           | 6100     | 6100     | 6100     | gr.    |
| Peso de la Muestra      | 3773     | 3723.635 | 3822.365 | gr.    |
| Volumen del Molde       | 2105     | 2105     | 2105     | cm3    |
| Peso unitario suelto    | 1.79     | 1.77     | 1.82     | gr/cm3 |

Peso unitario suelto promedio

1.79 gr/cm3

# **ABSORCION**

3.74 %

| AGREGADO FINO                      | Ensayo 1 | Ensayo 2 | Unidad |
|------------------------------------|----------|----------|--------|
| Peso Muestra seca                  | 177.84   | 182.84   | gr.    |
| Peso Muestra Saturada superf. seca | 184.48   | 189.68   | gr.    |
| Absorcion                          | 3.73     | 3.74     | %      |

# **PESO ESPECIFICO SECO**

2.48797 gr/cm3

| AGREGADO FINO                 | Ensayo 1 | Unidad |
|-------------------------------|----------|--------|
| Peso de Muestra Seca          | 177.84   | gr.    |
| Peso (fiola+muestra sss+agua) | 715.00   | gr.    |
| Peso (fiola + agua)           | 602.00   | gr.    |
| Volumen de la muestra         | 71.48    | cm3    |
| Peso especifico               | 2.488    | g/cm3  |

ibelando Abarca Ancori INGENIERO CIVIL CIP. 63816



NTP-339.128 - ASTM-D4318

| CODIGO:    |  |
|------------|--|
| REVISADO : |  |

3 PAGINA:

0

: "ADICIÓN DE CENIZA DE LA CASCARILLA DE CAFÉ Y CASCARA DE HUEVO Proyecto

PARA MEJORAR LA RESISTENCIA A LA COMPRESIÓN DE CONCRETO

FC=210 KG/CM2 EN ZAPATAS DE UN POLIDEPORTIVO, CUSCO 2023"

Ubicación : CUSCO - CUSCO - CUSCO

: Agregado Fino: PROPORCIONADO POR EL SOLICITANTE Cantera

Extraccion: Proporcionado por el Solicitante

Resp. Lab.: A.A.A.

Fecha: DICIEMBRE DEL 2022

Solicita:

Codigo : **A-01** MUESTRA: Clasificacion Agregado Fino


**GRANULOMETRIA** 1,118.62 g.

| TAMIZ#  | Abertura<br>(mm) | Peso <u>ret</u> .<br>(gr) | Peso ret.<br>Correg. (gr) | %RET.  | %RET.<br>ACUM. | %PASANTE |        | ES NTP<br>.037 |
|---------|------------------|---------------------------|---------------------------|--------|----------------|----------|--------|----------------|
| 3/8"    | 9.53             | 0.00                      | 0.00                      | 0.00   | 0.00           | 100.00   | 100.00 | 100.00         |
| #4      | 4.75             | 13.60                     | 14.05                     | 1.26   | 1.26           | 98.74    | 95.00  | 100.00         |
| #8      | 2.36             | 64.80                     | 65.25                     | 5.83   | 7.09           | 92.91    | 80.00  | 100.00         |
| #16     | 1.18             | 133.40                    | 133.85                    | 11.97  | 19.06          | 80.94    | 50.00  | 85.00          |
| #30     | 0.59             | 262.70                    | 263.15                    | 23.52  | 42.58          | 57.42    | 25.00  | 60.00          |
| #50     | 0.30             | 397.50                    | 397.95                    | 35.58  | 78.15          | 21.85    | 5.00   | 30.00          |
| #100    | 0.15             | 168.10                    | 168.55                    | 15.07  | 93.22          | 6.78     | 0.00   | 10.00          |
| #200    | 0.07             | 68.12                     | 68.57                     | 6.13   | 99.35          | 0.65     |        |                |
| CAZUELA | <0.07            | 7.24                      | 7.24                      | 0.65   | 100.00         | 0.00     |        |                |
|         |                  | 1115.46                   |                           | 100.00 | 241.36         |          |        |                |

| error | 3.16 | gr. |
|-------|------|-----|
|       | 0.28 | %   |

| CORRECCION = | 0.5 |
|--------------|-----|
|--------------|-----|

MF = 2.41





NTP-339.128 - ASTM-D4318

CODIGO : \_\_\_\_\_

PAGINA:

Proyecto: "ADICIÓN DE CENIZA DE LA CASCARILLA DE CAFÉ Y CASCARA DE

HUEVO PARA MEJORAR LA RESISTENCIA A LA COMPRESIÓN DE

CONCRETO FC=210 KG/CM2 EN ZAPATAS DE UN POLIDEPORTIVO,

Ubicación : CUSCO - CUSCO - CUSCO

Cantera : Agregado Grueso: PROPORCIONADO POR EL SOLICITANTE

Extraccion: Proporcionado por el Solicitante

Fecha: DICIEMBRE DEL 2022

Resp. Lab.: A.A.A.

Solicita:

MUESTRA: 2 Codigo: A-02 Clasificacion Agregado Grueso

# **CONTENIDO DE AGUA (HUMEDAD)**

1.57 %

| Peso o Volumen       | Ensayo 1 | Ensayo 2 | Unidad |
|----------------------|----------|----------|--------|
| Peso del Molde       | 11.34    | 11.49    | gr.    |
| Peso Muestra Natural | 86.44    | 83.42    | gr.    |
| Peso Muestra seca    | 85.18    | 82.40    | gr.    |
| Humedad              | 1.71     | 1.44     | %      |

# **PESO UNITARIO SUELTO**

1,596.26 kg/m3

| Peso o Volumen          | Ensayo 1 | Ensayo 2 | Ensayo 3 | Unidad |
|-------------------------|----------|----------|----------|--------|
| Peso de Muestra + Molde | 9488     | 9432     | 9460     | gr.    |
| Peso de Molde           | 6100     | 6100     | 6100     | gr.    |
| Peso de la Muestra      | 3388.38  | 3332     | 3360     | gr.    |
| Volumen del Molde       | 2105     | 2105     | 2105     | cm3    |
| Peso unitario suelto    | 1.61     | 1.58     | 1.60     | gr/cm3 |

Peso unitario suelto promedio

1.60 gr/cm3

# PESO UNITARIO COMPACTADO

1,697.93 kg/m3

| Peso o Volumen          | Ensayo 1 | Ensayo 2 | Ensayo 3 | Unidad |
|-------------------------|----------|----------|----------|--------|
| Peso de Muestra + Molde | 9674     | 9625.63  | 9722.37  | gr.    |
| Peso de Molde           | 6100     | 6100     | 6100     | gr.    |
| Peso de la Muestra      | 3574     | 3525.63  | 3622.37  | gr.    |
| Volumen del Molde       | 2105     | 2105     | 2105     | cm3    |
| Peso unitario suelto    | 1.70     | 1.67     | 1.72     | gr/cm3 |

Peso unitario suelto promedio

1.70 gr/cm3

## **ABSORCION**

1.48 %

| AGREGADO GRUESO                    | Ensayo 1 | Ensayo 2 | Unidad |
|------------------------------------|----------|----------|--------|
| Peso Muestra seca                  | 174.98   | 177.73   | gr.    |
| Peso Muestra Saturada superf. seca | 177.56   | 180.35   | gr.    |
| Absorcion                          | 1.47     | 1.48     | %      |

# **PESO ESPECIFICO SECO**

 $2.61320 \quad \mathsf{gr/cm3}$ 

| AGREGADO GRUESO                     | Ensayo 1 | Unidad |
|-------------------------------------|----------|--------|
| Peso canastilla sumergida           | 1156.00  | gr.    |
| Peso de Muestra Sat. Sup. Seca      | 1775.60  | gr.    |
| Peso (canastilla+muestra) sumergida | 2262.00  | gr.    |
| Peso muestra seca                   | 1749.80  | gr.    |
| Volumen de la muestra               | 669.60   | cm3    |
| Peso especifico                     | 2.613    | g/cm3  |

INGENIERO CIVIL
CIP. 63816



NTP-339.128 - ASTM-D4318

| CODIGO:    |  |
|------------|--|
| REVISADO : |  |

5 PAGINA:

0

: "ADICIÓN DE CENIZA DE LA CASCARILLA DE CAFÉ Y CASCARA DE HUEVO Proyecto

PARA MEJORAR LA RESISTENCIA A LA COMPRESIÓN DE CONCRETO

FC=210 KG/CM2 EN ZAPATAS DE UN POLIDEPORTIVO, CUSCO 2023"

Ubicación : CUSCO - CUSCO - CUSCO

: Agregado Grueso: PROPORCIONADO POR EL SOLICITANTE Cantera

: Proporcionado por el Solicitante Extraccion

Fecha: **DICIEMBRE DEL 2022** 

Resp. Lab.: A.A.A.

Solicita:

MUESTRA: Codigo : **A-02**  Clasificacion Agregado Grueso

# **GRANULOMETRIA**

5,323.03 g.

| TAMIZ#  | Abertura (mm) | Peso ret. (gr) | Peso ret. Correg. (gr) | %RET.  | %RET. ACUM. | %PASANTE | LÍMITES NTP | 400.037 HUSO 7 |
|---------|---------------|----------------|------------------------|--------|-------------|----------|-------------|----------------|
| 2"      | 50.8          | 0              | 0                      | 0      | 0           | 100.00   |             |                |
| 1 1/2"  | 38.1          | 0              | 0.00                   | 0.00   | 0.00        | 100.00   |             |                |
| 1"      | 25.4          | 0              | 0.00                   | 0.00   | 0.00        | 100.00   |             |                |
| 3/4"    | 19.05         | 0              | 0.00                   | 0.00   | 0.00        | 100.00   | 100.00      | 100.00         |
| 1/2"    | 12.7          | 359.3          | 360.04                 | 6.76   | 6.76        | 93.24    | 90.00       | 100.00         |
| 3/8"    | 9.53          | 2564.3         | 2565.04                | 48.19  | 54.95       | 45.05    | 40.00       | 70.00          |
| #4      | 4.75          | 1997.5         | 1998.24                | 37.54  | 92.49       | 7.51     | 0.00        | 15.00          |
| #8      | 2.36          | 397.4          | 398.14                 | 7.48   | 99.97       | 0.03     | 0.00        | 5.00           |
| #16     | 1.18          | 0.54           | 1.28                   | 0.02   | 99.99       | 0.01     |             |                |
| CAZUELA | <0.07         | 0.3            | 0.30                   | 0.01   | 100.00      | 0.00     |             |                |
|         |               | 5319.34        |                        | 100.00 | 647.41      |          |             |                |

| error | 3.69 | gr. |
|-------|------|-----|
|       | 0.07 | %   |

| MF = 6.47 |
|-----------|
|-----------|

Abylardo Abarca Ancori INGENIERO CIVIL CIP. 63816

CORRECCION = 0.738



# **MODULO DE FINEZA**

PROYECTO:

"ADICIÓN DE CENIZA DE LA CASCARILLA DE CAFÉ Y CASCARA DE HUEVO PARA MEJORAR LA RESISTENCIA A LA COMPRESIÓN DE CONCRETO FC=210 KG/CM2 EN ZAPATAS DE UN POLIDEPORTIVO. CUSCO 2023"


Solicita

# AGREGADO: Agregado Fino: PROPORCIONADO POR EL SOLICITANTE

| TAMIZ#  | Abertura<br>(mm) | Peso <u>ret</u> .<br>(gr) | Peso <u>ret</u> . <u>Correg</u> .<br>(gr) | %RET.  | %RET.<br>ACUM. |
|---------|------------------|---------------------------|-------------------------------------------|--------|----------------|
| 3/8"    | 9.53             | 0.00                      | 0.00                                      | 0.00   | 0.00           |
| #4      | 4.75             | 13.60                     | 14.05                                     | 1.26   | 1.26           |
| #8      | 2.36             | 64.80                     | 65.25                                     | 5.83   | 7.09           |
| #16     | 1.18             | 133.40                    | 133.85                                    | 11.97  | 19.06          |
| #30     | 0.59             | 262.70                    | 263.15                                    | 23.52  | 42.58          |
| #50     | 0.30             | 397.50                    | 397.95                                    | 35.58  | 78.15          |
| #100    | 0.15             | 168.10                    | 168.55                                    | 15.07  | 93.22          |
| #200    | 0.07             | 68.12                     | 68.57                                     | 6.13   | 99.35          |
| CAZUELA | <0.07            | 7.24                      | 7.24                                      | 0.65   | 100.00         |
|         |                  | 1115.46                   |                                           | 100.00 | 241.36         |

### AGREGADO: Agregado Grueso: PROPORCIONADO POR EL SOLICITANTE

| TAMIZ#  | Abertura (mm | Peso ret. (gr) | Peso ret. Correg. (gr) | %RET.  | %RET. ACUM. | %PASANTE |
|---------|--------------|----------------|------------------------|--------|-------------|----------|
| 2"      | 50.8         | 0              | 0                      | 0      | 0           | 100.00   |
| 1 1/2"  | 38.1         | 0              | 0.00                   | 0.00   | 0.00        | 100.00   |
| 1"      | 25.4         | 0              | 0.00                   | 0.00   | 0.00        | 100.00   |
| 3/4"    | 19.05        | 0              | 0.00                   | 0.00   | 0.00        | 100.00   |
| 1/2"    | 12.7         | 359.3          | 360.04                 | 6.76   | 6.76        | 93.24    |
| 3/8"    | 9.53         | 2564.3         | 2565.04                | 48.19  | 54.95       | 45.05    |
| #4      | 4.75         | 1997.5         | 1998.24                | 37.54  | 92.49       | 7.51     |
| #8      | 2.36         | 397.4          | 398.14                 | 7.48   | 99.97       | 0.03     |
| #16     | 1.18         | 0.54           | 1.28                   | 0.02   | 99.99       | 0.01     |
| CAZUELA | <0.07        | 0.3            | 0.30                   | 0.01   | 100.00      | 0.00     |
|         |              | 5319.34        |                        | 100.00 | 647.41      |          |





INGENIERO CIVIL

# **METODO ACI**

PROYECTO: "ADICIÓN DE CENIZA DE LA CASCARILLA DE CAFÉ Y CASCARA DE HUEVO PARA MEJORAR LA RESISTENCIA A LA COMPRESIÓN DE CONCRETO FC=210 KG/CM2 EN ZAPATAS DE UN POLIDEPORTIVO, CUSCO 2023"

# DATOS DE ENTRADA

- 1 Conoce la desviación estandar
- 2.- Desviación estandar
- 3.- N° de ensayos
- 4.- Resistencia Requerida

| NO            |
|---------------|
| 0.00 kg/cm2   |
| 0             |
| 210.00 kg/cm2 |

- 5.- Consitencia de la Mezcla
- 6.- Aire Incorporado
- 7.- Contenido de aire Incorporado
- 8.- Peso especifico del Cemento

| Plástica         |
|------------------|
| NO               |
| Exposición suave |
| 2.85             |

# CONDICIONES ESPECIALES DEL CONCRETO

- Baja Permeabilidad y Congelación Y deshielo
- Exposición a Sulfatos

| N  | 0 |
|----|---|
| N( | 0 |

|            | No Aplica |
|------------|-----------|
| 1500-10000 | No Aplica |

| Agregado Fino           |               |  |  |  |  |  |  |
|-------------------------|---------------|--|--|--|--|--|--|
| Peso Especifico de masa | 2.49 gr/cm3   |  |  |  |  |  |  |
| Absorción               | 3.74%         |  |  |  |  |  |  |
| Humedad                 | 2.27%         |  |  |  |  |  |  |
| Módulo de fineza        | 2.410         |  |  |  |  |  |  |
| Peso Unitario suelto    | 1668.95 kg/m3 |  |  |  |  |  |  |
| Peso Compactado         | 1792.47 kg/m3 |  |  |  |  |  |  |

| Agregado Grueso         |               |  |  |  |  |  |  |
|-------------------------|---------------|--|--|--|--|--|--|
| Peso Especifico de masa | 2.61 gr/cm3   |  |  |  |  |  |  |
| Absorción               | 1.48%         |  |  |  |  |  |  |
| Humedad                 | 1.36%         |  |  |  |  |  |  |
| Tamaño máximo Nominal   | 1/2           |  |  |  |  |  |  |
| Peso Unitario suelto    | 1596.26 kg/m3 |  |  |  |  |  |  |
| Peso Compactado         | 1697.93 kg/m3 |  |  |  |  |  |  |
| Módulo de Fineza        | 6.470         |  |  |  |  |  |  |
| Perfil del Agregado     | anguloso      |  |  |  |  |  |  |

- 1. Especificaciones Técnicas
- 2. Elección de la Resitencia Promedio (f'cr)
- 2.1 Cálculo de la Desviación estandar (S)

NO especifica - Desviación estandar modificada (Ss)

Número Ensayos Factor Modificación (Emplear tabla 5.3) Ss Sx(Emplear tabla 5.3)

2.2 Calculo de la resistencia promedio Requerida (f'cr)

- Por Resistencia a la Compresión Por durabilidad (Condicines Espesciales) Tabla 6.2 Por durabilidad (Exposición a Sulfatos) Tabla 6.3

- Elegimos la Mayor

- Cuando hay datos disponibles

f'cr = f'c + 1.34(Ss) FALSO f'cr = f'c + 2.33-35Ss - Elejimos la mayor

- Cuando No hay datos disponibles

f'cr = 210<=f.c<=350 f'c + 84

rdo Abarca Ancori INGENIERO CIVIL CIP. 63816

No Especifica

210.00 kg/cm2

No Especifica

No Especifica

210.00 kg/cm2

No hay datos

No hay datos

No hay datos

294.000 kg/cm2

# **MEZCLA DE CONCRETO**

Proyecto: "ADICIÓN DE CENIZA DE LA CASCARILLA DE CAFÉ Y CASCARA DE HUEVO PARA

MEJORAR LA RESISTENCIA A LA COMPRESIÓN DE CONCRETO FC=210 KG/CM2

EN ZAPATAS DE UN POLIDEPORTIVO, CUSCO 2023"

Solicita:

0

# 3. Elección del Asentamiento (SLUMP)



4. Selección del Tamaño Maximo Nominal

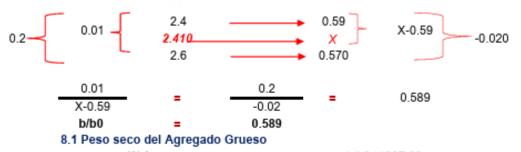
- TMN = 1/2 "

5. Estimación de agua de mezclado y contenido de aire

- Cantidad de Agua = Tabla 5.1 = 216.00 lts
- Volumen de agua = 216/1000 = 0.216 m3
- Cantidad aproximada de aire = Tabla 5.1 = 2.50 %
- Volumen de aire = 2.5/100 = 0.025 m3

6. Elección de la relación agua/cemento (a/c)




Elejimos la mayor

| X-0.62<br>b/b0 | =                 | -0.07<br><b>0.558</b> | <b>=</b> 0.558 |   |               |
|----------------|-------------------|-----------------------|----------------|---|---------------|
|                | el a/c<br>cilidad | U.556<br>=            | Tabla 6.1      | = | 0.558         |
|                | tel a/c           | =                     | Tabla 6.2      | = | No Epecifica  |
|                | lel a/c           | =                     | Tabla 6.3      | = | No Especifica |

# 7. Calculo del contenido de Cemento

- Contenido de Cemento = 216/0.558 = 387.000 kg/m3 - Volumen de Cemento = 387/(2.85x1000) = 0.136 m3 - Factor Cemento = 387/42.5 = 9.11 bol

# 8. Estimación del contenido de agregado grueso y agregado fino



INJERIO Abarca Ancori INJENIERO CIVIL CIP. 63816

0.558

- W Ag. = b/b0 \*1697.93 = 1000.000 kg/m3 - V. Ag = 1000/(2.6132 x1000) = 0.383 m3

# 8.2 Volumen del Agregado Fino

- V. Af = 1 - (V. Ag+V.Ai+V.Agr) = 0.240 m3 - W. Af = 0.24 x 2.48797 x 1000 = 597.000 kg/m3

# 9 Ajustes Por humedad y Absorción

# 9.1 Cantidades Absolutas de Mezclas.

- Agua = 216.00 lts - Cemento = 387.000 kg/m3 - A. grueso = 1000.000 kg/m3 - A.Fino = 597.000 kg/m3

# 9.2 Cantidades de Agregados Húmedos.

- W.Agh = 1000(1+ 0.0136) = 1014.000 kg/m3 - W.Afh = 597(1+0.0227) = 611.000 kg/m3

# 9.3 Agua Efectiva

- A. en Ag. = 1000(0.0136-0.0148) = -1.00 lts - A. en Af. = 597(0.0227-0.0374) = -9.00 lts - A. Efect. = 216-(x+y) = 226.00 lts

# 9.4 Cantidades Corregidas por Humedad y Absorción

- Agua = 226.00 lts - Cemento = 387.000 kg/m3 - A. grueso = 1014.000 kg/m3 - A.Fino = 611.000 kg/m3

# 10. Cálculo de Proporciones en Peso.

# 10.1. Calculo de las Proporciones en peso.

| <ul> <li>Cemento</li> </ul> | = | Cemento/Cemento     | = | 1    |
|-----------------------------|---|---------------------|---|------|
| - A.fino                    | = | A.Fino/Cemento      | = | 1.6  |
| - A. grueso                 | = | A. grueso/Cemento   | = | 2.6  |
| - Agua                      | = | Agua/(Cemento/42.5) | = | 24.8 |

# 11. Cálculo de cantidades por tanda.

1 bolsa de Cemento = 1 pie3

 Cemento
 =
 1x42.5
 =
 42.5 kg/bolsa

 A.fino
 =
 42.5 x1.6
 =
 68.00 kg/bolsa

 A.grueso
 =
 42.5 x2.6
 =
 110.50 kg/bolsa

 Agua
 =
 24.80 lts/bolsa

# 12. Cantidad en peso para las 15 Probetas:

N° Muestras: 15 b= 0.10 m h= 0.20 m Volumen= 0.0016 m3 Volumen= 0.0247 m3

Para 1 probeta.

Para 15 probetas mas desperdicio (5%).

- Agua = 5.60 Its 12.5 % - Cemento = 9.60 kg

- A. grueso = 25.10 kg - A. Fino = 15.10 kg 55.40 kg

> Abylando Abarca Ancori INGENIERO CIVIL CIP. 63816

# RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILINDRICOS

# "ADICIÓN DE LA CENIZA DE LA CASCARILLA DE CAFÉ Y CASCARA DE HUEVO PARA MEJORAR LA RESISTENCIA A LA COMPRESION DEL CONCRETO FC=210, EN ZAPATAS DE UN POLIDEPORTIVO, CUSCO 2023" 7 DÍAS



ABELARDO ABARCA ANCORI INGENIERO CIVIL

**CUSCO, ENERO DEL 2023** 

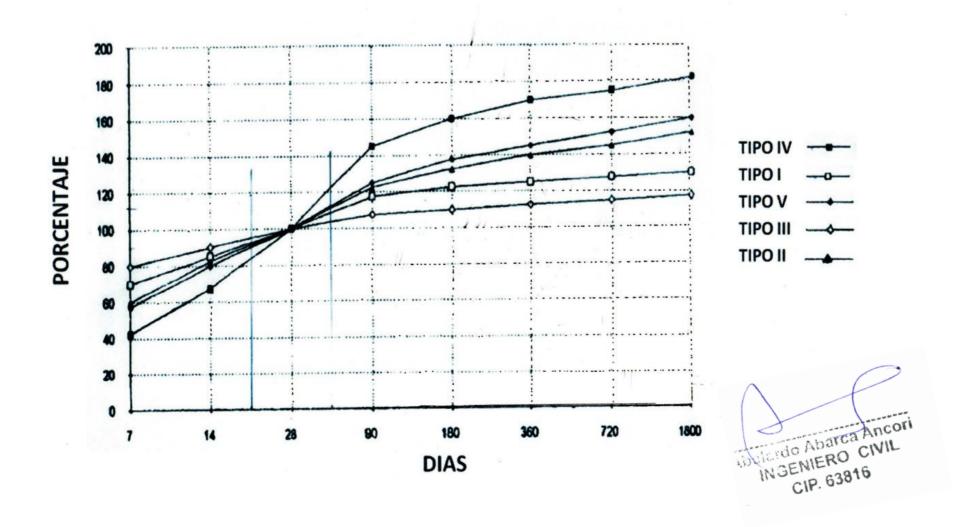


| GECTEST PERÜ |            | RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILINDRICOS  MTC E 704 - 2000                                                                               | CODIGO :<br>REVISION :<br>FECHA :<br>PAGINA : |            |
|--------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------|
| Proyecto     | MEJORAR LA | LA CENIZA DE LA CASCARILLA DE CAFÉ Y CASCARA DE HUEVO PARA<br>RESISTENCIA A LA COMPRESION DEL CONCRETO FC=210, EN ZAPATAS DE<br>DRTIVO, CUSCO 2023" |                                               | r de Z     |
| Ubicación    | : CUSCO    |                                                                                                                                                     | Fecha:                                        | ENERO 2023 |
| Distrito     | : CUSCO    |                                                                                                                                                     | Motivo :                                      |            |
| Provincia    | : CUSCO    |                                                                                                                                                     | Resp. Lab.:                                   | C.S.T.     |
| Región       | : CUSCO    |                                                                                                                                                     | Esp. Geot.:                                   | A.A.A.     |

# 2.-DATOS DE LA MUESTRA O ESPECIMEN

**DESCRIPICION:** 

15 BRIQUETAS DE CONCRETO - 4" diam.


78.54 AREA:

 $cm^2$ 

3.-ENSAYOS REALIZADOS

| Item. | Nom. Briq. | Descripción                          | Fecha de<br>Moldeo | Fecha de<br>Rotura | Edad<br>Dias | % de<br>Resistencia<br>Nominal | Resistencia<br>de Diseño<br>kg/cm² | Resistencia kg | AREA (CM2) | Resistencia de la<br>briqueta kg/cm² | % Resistencia<br>Hallada |
|-------|------------|--------------------------------------|--------------------|--------------------|--------------|--------------------------------|------------------------------------|----------------|------------|--------------------------------------|--------------------------|
| 1     | P1         | MEZCLA PATRON (P1)                   | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 15150          | 78.54      | 192.90                               | 91.85                    |
| 2     | P2         | MEZCLA PATRON (P2)                   | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 13200          | 78.54      | 168.07                               | 80.03                    |
| 3     | Р3         | MEZCLA PATRON (P3)                   | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 13800          | 78.54      | 175.71                               | 83.67                    |
| 4     | P4         | MEZCLA PATRON (P4)                   | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 13458          | 78.54      | 171.35                               | 81.60                    |
| 5     | P5         | MEZCLA PATRON (P5)                   | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 14896          | 78.54      | 189.66                               | 90.31                    |
| 6     | CCC 1%-1   | CENIZA CASCARILLA DE CAFÉ (CCC 1%-1) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 15330          | 78.54      | 195.19                               | 92.95                    |
| 7     | CCC 1%-2   | CENIZA CASCARILLA DE CAFÉ (CCC 1%-2) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 14360          | 78.54      | 182.84                               | 87.07                    |
| 8     | CCC 1%-3   | CENIZA CASCARILLA DE CAFÉ (CCC 1%-3) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 14310          | 78.54      | 182.20                               | 86.76                    |
| 9     | CCC 1%-4   | CENIZA CASCARILLA DE CAFÉ (CCC 1%-4) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 14589          | 78.54      | 185.75                               | 88.45                    |
| 10    | CCC 1%-5   | CENIZA CASCARILLA DE CAFÉ (CCC 1%-5) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 15138          | 78.54      | 192.74                               | 91.78                    |
| 11    | CCC 3%-1   | CENIZA CASCARILLA DE CAFÉ (CCC 3%-1) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 13570          | 78.54      | 172.78                               | 82.28                    |
| 12    | CCC 3%-2   | CENIZA CASCARILLA DE CAFÉ (CCC 3%-2) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 13530          | 78.54      | 172.27                               | 82.03                    |
| 13    | CCC 3%-3   | CENIZA CASCARILLA DE CAFÉ (CCC 3%-3) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 13370          | 78.54      | 170.23                               | 81.06                    |
| 14    | CCC 3%-4   | CENIZA CASCARILLA DE CAFÉ (CCC 3%-4) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 13452          | 78.54      | 171.28                               | 81.56                    |
| 15    | CCC 3%-5   | CENIZA CASCARILLA DE CAFÉ (CCC 3%-5) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 13539          | 78.54      | 172.38                               | 82.09                    |
| 16    | CCC 5%-1   | CENIZA CASCARILLA DE CAFÉ (CCC 5%-1) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 12180          | 78.54      | 155.08                               | 73.85                    |
| 17    | CCC 5%-2   | CENIZA CASCARILLA DE CAFÉ (CCC 5%-2) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 11490          | 78.54      | 146.29                               | 69.66                    |
| 18    | CCC 5%-3   | CENIZA CASCARILLA DE CAFÉ (CCC 5%-3) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 10980          | 78.54      | 139.80                               | 66.57                    |
| 19    | CCC 5%-4   | CENIZA CASCARILLA DE CAFÉ (CCC 5%-4) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 11837          | 78.54      | 150.71                               | 71.77                    |
| 20    | CCC 5%-5   | CENIZA CASCARILLA DE CAFÉ (CCC 5%-5) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 11249          | 78.54      | 143.23                               | 68.20                    |
| 21    | CH 1%-1    | CASCARA DE HUEVO (CH 1%-1)           | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 12480          | 78.54      | 158.90                               | 75.67                    |
| 22    | CH 1%-2    | CASCARA DE HUEVO (CH 1%-2)           | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 13390          | 78.54      | 170.49                               | 81.18                    |
| 23    | CH 1%-3    | CASCARA DE HUEVO (CH 1%-3)           | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 13120          | 78.54      | 167.05                               | 79.55                    |
| 24    | CH 1%-4    | CASCARA DE HUEVO (CH 1%-4)           | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 13269          | 78.54      | 168.95                               | 80.45                    |
| 25    | CH 1%-5    | CASCARA DE HUEVO (CH 1%-5)           | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 12925          | 78.54      | 164.57                               | 78.36                    |

# DESARROLLO DE LA RESISTENCIA DEL CONCRETO SEGÚN EL TIPO DE CEMENTO DESARROLLO DE LA RESISTENCIA EN % DE RESISTENCIA 28 DIAS

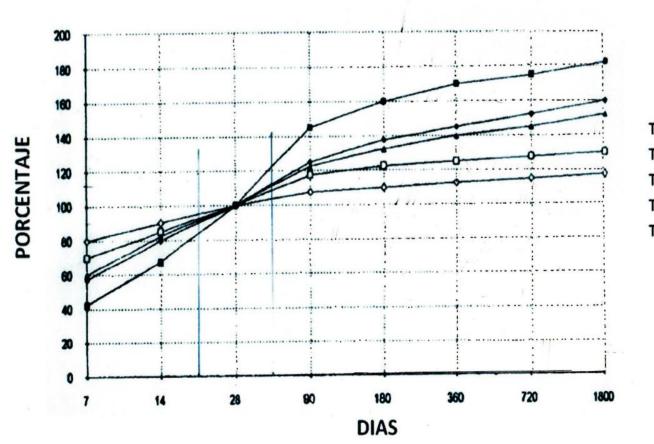


|           |              | RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILINDRICOS                                                                                                 | CODIGO :    |            |
|-----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|
|           | G            | MTC E 704 - 2000                                                                                                                                    | REVISION:   |            |
|           | GEOTEST PERÚ |                                                                                                                                                     | FECHA:      |            |
|           |              |                                                                                                                                                     | PAGINA:     | 2.4-2      |
| Proyecto  | MEJORAR LA   | LA CENIZA DE LA CASCARILLA DE CAFÉ Y CASCARA DE HUEVO PARA<br>RESISTENCIA A LA COMPRESION DEL CONCRETO FC=210, EN ZAPATAS DE<br>ORTIVO, CUSCO 2023" |             | 2 de 2     |
| Ubicación | : CUSCO      |                                                                                                                                                     | Fecha :     | ENERO 2023 |
| Distrito  | : CUSCO      |                                                                                                                                                     | Motivo :    |            |
| Provincia | : CUSCO      |                                                                                                                                                     | Resp. Lab.: | C.S.T.     |
| Región    | : CUSCO      |                                                                                                                                                     | Esp. Geot.: | A.A.A.     |

# 2.-DATOS DE LA MUESTRA O ESPECIMEN

**DESCRIPICION:** 

15 BRIQUETAS DE CONCRETO - 4" diam.


AREA:

 $cm^2$ 78.54

# 3.-ENSAYOS REALIZADOS

| Item. | Nom. Brig.  | Descripción                                                   | Fecha de<br>Moldeo | Fecha de<br>Rotura | Edad<br>Dias | % de<br>Resistencia<br>Nominal | Resistencia<br>de Diseño<br>kg/cm² | Resistencia kg | AREA (CM2) | Resistencia de la<br>briqueta kg/cm² | % Resistencia<br>Hallada |
|-------|-------------|---------------------------------------------------------------|--------------------|--------------------|--------------|--------------------------------|------------------------------------|----------------|------------|--------------------------------------|--------------------------|
| 26    | CH 3%-1     | CASCARA DE HUEVO (CH 3%-1)                                    | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 15030          | 78.54      | 191.37                               | 91.13                    |
| 27    | CH 3%-2     |                                                               |                    | 06/01/2023         | 7            | 70                             | 210                                | 14780          | 78.54      | 188.18                               | 89.61                    |
| 28    | CH 3%-3     | CASCARA DE HUEVO (CH 3%-3)                                    | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 14400          | 78.54      | 183.35                               | 87.31                    |
| 29    | CH 3%-4     | CASCARA DE HUEVO (CH 3%-4)                                    | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 14582          | 78.54      | 185.66                               | 88.41                    |
| 30    | CH 3%-5     | CASCARA DE HUEVO (CH 3%-5)                                    | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 14971          | 78.54      | 190.62                               | 90.77                    |
| 31    | CH 5%-1     | CASCARA DE HUEVO (CH 5%-1)                                    | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 14640          | 78.54      | 186.40                               | 88.76                    |
| 32    |             |                                                               |                    |                    |              |                                |                                    |                |            |                                      |                          |
| 33    | CH 5%-2     | CASCARA DE HUEVO (CH 5%-2)                                    | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 14450          | 78.54      | 183.98                               | 87.61                    |
| 34    | CH 5%-3     | CASCARA DE HUEVO (CH 5%-3)                                    | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 15140          | 78.54      | 192.77                               | 91.79                    |
|       | CH 5%-4     | CASCARA DE HUEVO (CH 5%-4)                                    | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 15269          | 78.54      | 194.41                               | 92.58                    |
| 35    | CH 5%-5     | CASCARA DE HUEVO (CH 5%-5)                                    | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 15481          | 78.54      | 197.11                               | 93.86                    |
| 36    | CCC+CH 1%-1 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-1) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 15730          | 78.54      | 200.28                               | 95.37                    |
| 37    |             | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-2) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 15350          | 78.54      | 195.44                               | 93.07                    |
| 38    | CCC+CH 1%-3 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-3) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 15160          | 78.54      | 193.02                               | 91.92                    |
| 39    |             | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-4) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 15524          | 78.54      | 197.66                               | 94.12                    |
| 40    | CCC+CH 1%-5 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-5) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 15089          | 78.54      | 192.12                               | 91.49                    |
| 41    | CCC+CH 3%-1 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 3%-1) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 12970          | 78.54      | 165.14                               | 78.64                    |
| 42    | CCC+CH 3%-2 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 3%-2) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 12550          | 78.54      | 159.79                               | 76.09                    |
| 43    | CCC+CH 3%-3 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 3%-3) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 13150          | 78.54      | 167.43                               | 79.73                    |
| 44    | CCC+CH 3%-4 | (CCC+CH 3%-4)                                                 | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 13082          | 78.54      | 166.56                               | 79.32                    |
| 45    | CCC+CH 3%-5 | (CCC+CH 3%-5)                                                 | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 12845          | 78.54      | 163.55                               | 77.88                    |
| 46    | CCC+CH 5%-1 | (CCC+CH 5%-1) CCC+CH 5%-1)                                    | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 16710          | 78.54      | 212.76                               | 101.31                   |
| 47    | CCC+CH 5%-2 | (CCC+CH 5%-2)                                                 | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 16480          | 78.54      | 209.83                               | 99.92                    |
| 48    | CCC+CH 5%-3 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-3) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 16760          | 78.54      | 213.39                               | 101.62                   |
| 49    | CCC+CH 5%-4 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-4) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 16537          | 78.54      | 210.56                               | 100.26                   |
| 50    | CCC+CH 5%-5 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-5) | 30/12/2022         | 06/01/2023         | 7            | 70                             | 210                                | 16650          | 78.54      | 211.99                               | 100.95                   |

# DESARROLLO DE LA RESISTENCIA DEL CONCRETO SEGÚN EL TIPO DE CEMENTO DESARROLLO DE LA RESISTENCIA EN % DE RESISTENCIA 28 DIAS

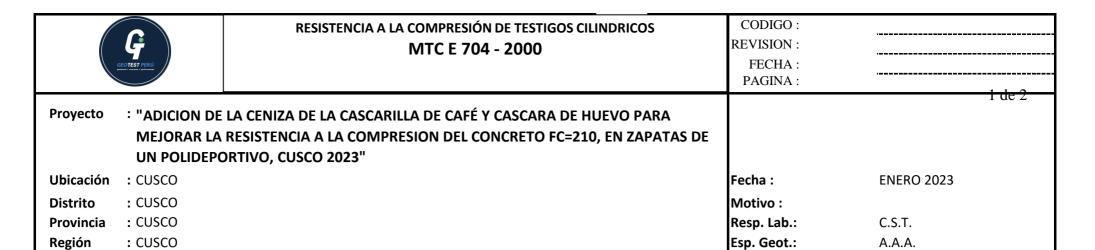


TIPO IV -TIPO I TIPO V TIPO III -TIPO II

INGENIERO CIVIL
CIP. 63816

Laboratorio Especialista en Geotecnia

# RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILINDRICOS


# "ADICIÓN DE LA CENIZA DE LA CASCARILLA DE CAFÉ Y CASCARA DE HUEVO PARA MEJORAR LA RESISTENCIA A LA COMPRESION DEL CONCRETO FC=210, EN ZAPATAS DE UN POLIDEPORTIVO, CUSCO 2023" 14 DÍAS



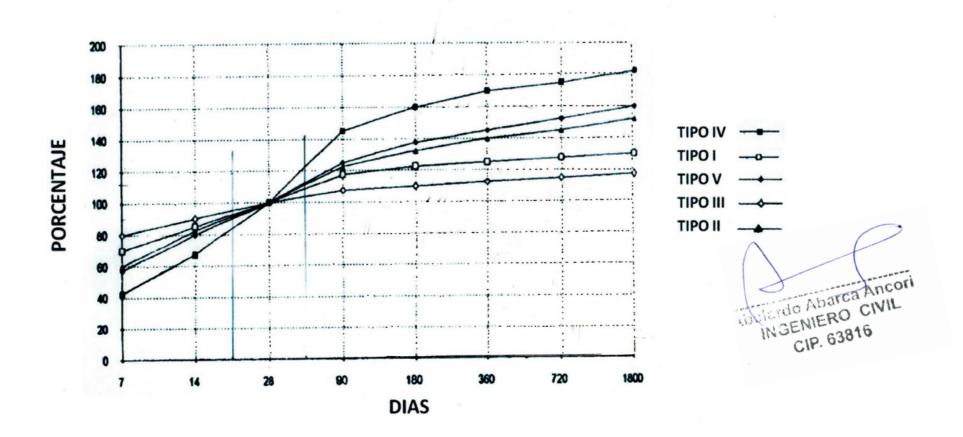
ABELARDO ABARCA ANCORI INGENIERO CIVIL

**CUSCO, ENERO DEL 2023** 





# 2.-DATOS DE LA MUESTRA O ESPECIMEN


**DESCRIPICION:** 15 BRIQUETAS DE CONCRETO - 4" diam.

> 78.54  $cm^2$ AREA:

3.-ENSAYOS REALIZADOS

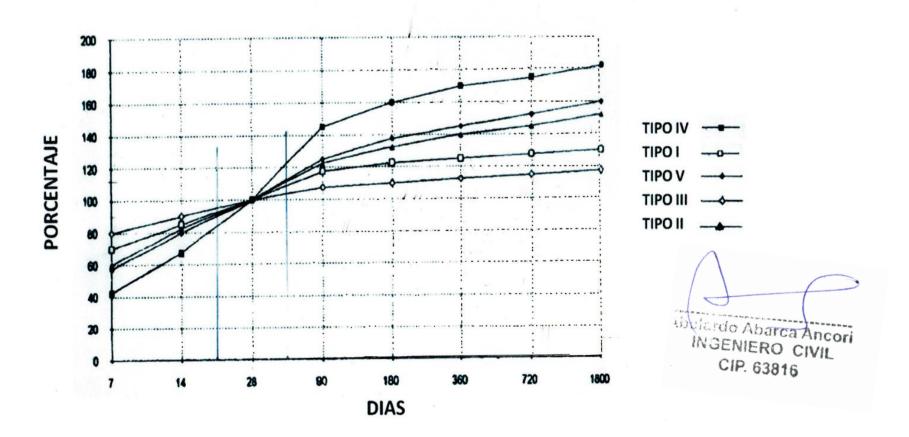
|       | Non- Bris           | Donain i fa                                                               | Fecha de             | Fecha de             | Edad       | % de<br>Resistencia | Resistencia<br>de Diseño | Basistanaia ka          | ADEA (CAAS)         | Resistencia de la         | % Resistencia    |
|-------|---------------------|---------------------------------------------------------------------------|----------------------|----------------------|------------|---------------------|--------------------------|-------------------------|---------------------|---------------------------|------------------|
| Item. | Nom. Briq.          | Descripción MEZCLA PATRON (P6)                                            | Moldeo<br>30/12/2022 | Rotura<br>14/01/2023 | Dias<br>14 | Nominal<br>85       | kg/cm²<br>210            | Resistencia kg<br>15030 | AREA (CM2)<br>78.54 | briqueta kg/cm²<br>191.37 | Hallada<br>91.13 |
| 2     | P7                  |                                                                           |                      |                      |            |                     |                          |                         |                     | 216.70                    |                  |
| 3     |                     | MEZCLA PATRON (P7)                                                        | 30/12/2022           | 14/01/2023           | 14<br>14   | 85<br>85            | 210                      | 17020                   | 78.54<br>78.54      | 177.23                    | 103.19           |
| 4     | P8                  | MEZCLA PATRON (P8) MEZCLA PATRON (P9)                                     | 30/12/2022           | 14/01/2023           | 14         | 85                  | 210<br>210               | 13920<br>14396          | 78.54               | 183.30                    | 84.40<br>87.28   |
| 5     | P10                 | i i                                                                       | , ,                  |                      |            |                     | 210                      |                         |                     |                           |                  |
| 6     |                     | MEZCLA PATRON (P10)                                                       | 30/12/2022           | 14/01/2023           | 14         | 85                  |                          | 16864                   | 78.54               | 214.72                    | 102.25           |
| 7     | CCC 1%-6            | CENIZA CASCARILLA DE CAFÉ (CCC 1%-6) CENIZA CASCARILLA DE CAFÉ (CCC 1%-7) | 30/12/2022           | 14/01/2023           | 14<br>14   | 85<br>85            | 210<br>210               | 16730<br>17920          | 78.54<br>78.54      | 213.01<br>228.16          | 101.43           |
| 8     | CCC 1%-7            | CENIZA CASCARILLA DE CAFÉ (CCC 1%-7)                                      | 30/12/2022           | 14/01/2023           | 14         | 85                  | 210                      | 16960                   | 78.54               | 215.94                    | 102.83           |
| 9     |                     | CENIZA CASCARILLA DE CAFÉ (CCC1%-9)                                       | 30/12/2022           | 14/01/2023           | 14         | 85                  |                          |                         |                     | 215.54                    |                  |
| 10    | CCC 1%-9            | CENIZA CASCARILLA DE CAFÉ (CCC1%-9)                                       |                      |                      |            |                     | 210<br>210               | 16855                   | 78.54               | 214.60                    | 102.19           |
| 11    | CCC 1%-10           | CENIZA CASCARILLA DE CAFÉ (CCC 1%-10)                                     | 30/12/2022           | 14/01/2023           | 14<br>14   | 85<br>85            |                          | 17906                   | 78.54               |                           | 108.56           |
| 12    | CCC 3%-6            | CENIZA CASCARILLA DE CAFÉ (CCC 3%-6)                                      | 30/12/2022           | 14/01/2023           | 14         | 85                  | 210<br>210               | 16870<br>16680          | 78.54<br>78.54      | 214.80                    | 102.28           |
| 13    | CCC 3%-7            | CENIZA CASCARILLA DE CAFÉ (CCC3%-8)                                       | 30/12/2022           | 14/01/2023           | 14         | 85                  | 210                      | 17240                   | 78.54               | 219.51                    | 104.53           |
| 14    | CCC 3%-8            | CENIZA CASCARILLA DE CAFÉ (CCC3%-9)                                       | 30/12/2022           | 14/01/2023           | 14         | 85                  | 210                      | 16473                   | 78.54               | 209.74                    | 99.88            |
| 15    | CCC 3%-9            | CENIZA CASCARILLA DE CAFÉ (CCC3%-9)                                       | 30/12/2022           | 14/01/2023           | 14         | 85                  | 210                      | 17430                   | 78.54               | 209.74                    | 105.68           |
| 16    | CCC 5%-10           | CENIZA CASCARILLA DE CAFÉ (CCC 5%-6)                                      | 30/12/2022           | 14/01/2023           | 14         | 85                  | 210                      | 12650                   | 78.54               | 161.06                    | 76.70            |
| 17    | CCC 5%-7            | CENIZA CASCARILLA DE CAFÉ (CCC 5%-0)                                      | 30/12/2022           | 14/01/2023           | 14         | 85                  | 210                      | 13210                   | 78.54               | 168.19                    | 80.09            |
| 18    | CCC 5%-7            | CENIZA CASCARILLA DE CAFÉ (CCC5%-8)                                       | 30/12/2022           | 14/01/2023           | 14         | 85                  | 210                      | 14950                   | 78.54               | 190.35                    | 90.64            |
| 19    | CCC 5%-8            | CENIZA CASCARILLA DE CAFÉ (CCC5%-9)                                       | 30/12/2022           | 14/01/2023           | 14         | 85                  | 210                      | 14989                   | 78.54               | 190.85                    | 90.88            |
| 20    | CCC 5%-10           | CENIZA CASCARILLA DE CAFÉ (CCC5%-10)                                      | 30/12/2022           | 14/01/2023           | 14         | 85                  | 210                      | 14893                   | 78.54               | 189.62                    | 90.30            |
| 21    | CH 1%-6             | CASCARA DE HUEVO (CH1%-6)                                                 | 30/12/2022           | 14/01/2023           | 14         | 85                  | 210                      | 14780                   | 78.54               | 188.18                    | 89.61            |
| 22    | CH 1%-7             | CASCARA DE HUEVO (CH1%-7)                                                 | 30/12/2022           | 14/01/2023           | 14         | 85                  | 210                      | 14040                   | 78.54               | 178.76                    | 85.12            |
| 23    | CH 1%-7             | CASCARA DE HUEVO (CH1%-7)                                                 | 30/12/2022           | 14/01/2023           | 14         | 85                  | 210                      | 11940                   | 78.54               | 152.02                    | 72.39            |
| 24    | CH 1%-8             | CASCARA DE HUEVO (CH1%-9)                                                 | 30/12/2022           | 14/01/2023           | 14         | 85                  | 210                      | 15937                   | 78.54               | 202.92                    | 96.63            |
| 25    | CH 1%-9<br>CH 1%-10 | CASCARA DE HUEVO (CH1%-5)                                                 | 30/12/2022           | 14/01/2023           | 14         | 85                  | 210                      | 15080                   | 78.54               | 192.00                    | 91.43            |

# DESARROLLO DE LA RESISTENCIA DEL CONCRETO SEGÚN EL TIPO DE CEMENTO DESARROLLO DE LA RESISTENCIA EN % DE RESISTENCIA 28 DIAS



| GECTEST PERÚ JAMES I J |            | RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILINDRICOS  MTC E 704 - 2000                                                                               | CODIGO :<br>REVISION :<br>FECHA :<br>PAGINA : |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------|
| Proyecto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MEJORAR LA | LA CENIZA DE LA CASCARILLA DE CAFÉ Y CASCARA DE HUEVO PARA<br>RESISTENCIA A LA COMPRESION DEL CONCRETO FC=210, EN ZAPATAS DE<br>DRTIVO, CUSCO 2023" |                                               | 2 de 2     |
| Ubicación                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : CUSCO    |                                                                                                                                                     | Fecha :                                       | ENERO 2023 |
| Distrito                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : CUSCO    |                                                                                                                                                     | Motivo :                                      |            |
| Provincia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : CUSCO    |                                                                                                                                                     | Resp. Lab.:                                   | C.S.T.     |
| Región                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | : CUSCO    |                                                                                                                                                     | Esp. Geot.:                                   | A.A.A.     |

# 2.-DATOS DE LA MUESTRA O ESPECIMEN


**DESCRIPICION:** 15 BRIQUETAS DE CONCRETO - 4" diam.

AREA:  $78.54 \text{ cm}^2$ 

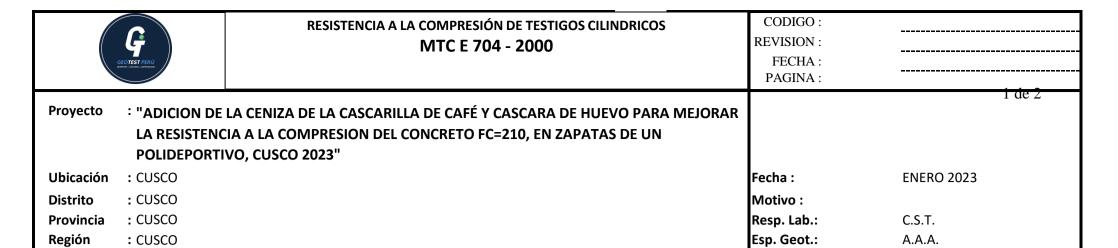
# 3.-ENSAYOS REALIZADOS

| Item. | Nom. Brig.       | Descripción                                                    | Fecha de<br>Moldeo | Fecha de<br>Rotura | Edad<br>Dias | % de<br>Resistencia<br>Nominal | Resistencia<br>de Diseño<br>kg/cm² | Resistencia kg | AREA (CM2) | Resistencia de la<br>briqueta kg/cm² | % Resistencia<br>Hallada |
|-------|------------------|----------------------------------------------------------------|--------------------|--------------------|--------------|--------------------------------|------------------------------------|----------------|------------|--------------------------------------|--------------------------|
| 26    | CH 3%-6          | CASCARA DE HUEVO (CH1%-6)                                      | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 16330          | 78.54      | 207.92                               | 99.01                    |
| 27    | CH 3%-7          | CASCARA DE HUEVO (CH1%-7)                                      | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 16960          | 78.54      | 215.94                               | 102.83                   |
| 28    | CH 3%-8          | CASCARA DE HUEVO (CH1%-8)                                      | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 17110          | 78.54      | 217.85                               | 103.74                   |
| 29    | CH 3%-9          | CASCARA DE HUEVO (CH1%-9)                                      | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 16850          | 78.54      | 214.54                               | 102.16                   |
| 30    | CH 3%-10         | CASCARA DE HUEVO (CH1%-10)                                     | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 17295          | 78.54      | 220.21                               | 104.86                   |
| 31    | CH 5%-6          | CASCARA DE HUEVO (CH3%-6)                                      | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 17290          | 78.54      | 220.14                               | 104.83                   |
| 32    | CH 5%-7          | CASCARA DE HUEVO (CH3%-7)                                      | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 17490          | 78.54      | 222.69                               | 106.04                   |
| 33    | CH 5%-8          | CASCARA DE HUEVO (CH3%-8)                                      | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 16450          | 78.54      | 209.45                               | 99.74                    |
| 34    | CH 5%-9          | CASCARA DE HUEVO (CH3%-9)                                      | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 17894          | 78.54      | 227.83                               | 108.49                   |
| 35    | CH 5%-10         | CASCARA DE HUEVO (CH3%-10)                                     | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 16980          | 78.54      | 216.20                               | 102.95                   |
| 36    | CCC+CH 1%-6      | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-6)  | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 15890          | 78.54      | 202.32                               | 96.34                    |
| 37    | CCC+CH 1%-7      | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-7)  | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 16990          | 78.54      | 216.32                               | 103.01                   |
| 38    | CCC+CH 1%-8      | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-8)  | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 16660          | 78.54      | 212.12                               | 101.01                   |
| 39    | CCC+CH 1%-9      | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-9)  | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 16420          | 78.54      | 209.07                               | 99.55                    |
| 40    | CCC+CH 1%-<br>10 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-10) | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 16750          | 78.54      | 213.27                               | 101.56                   |
| 41    | CCC+CH 3%-6      | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 3%-6)  | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 15970          | 78.54      | 203.34                               | 96.83                    |
| 42    | CCC+CH 3%-7      | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 3%-7)  | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 14610          | 78.54      | 186.02                               | 88.58                    |
| 43    | CCC+CH 3%-8      | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 3%-8)  | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 15210          | 78.54      | 193.66                               | 92.22                    |
| 44    | CCC+CH 3%-9      | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 3%-9)  | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 15140          | 78.54      | 192.77                               | 91.79                    |
| 45    | CCC+CH 3%-<br>10 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 3%-10) | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 15580          | 78.54      | 198.37                               | 94.46                    |
| 46    | CCC+CH 5%-6      | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-6)  | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 18280          | 78.54      | 232.75                               | 110.83                   |
| 47    | CCC+CH 5%-7      | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-7)  | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 19530          | 78.54      | 248.66                               | 118.41                   |
| 48    | CCC+CH 5%-8      | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-8)  | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 18860          | 78.54      | 240.13                               | 114.35                   |
| 49    |                  | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-9)  | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 18900          | 78.54      | 240.64                               | 114.59                   |
| 50    | CCC+CH 5%-<br>10 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-10) | 30/12/2022         | 14/01/2023         | 14           | 85                             | 210                                | 19450          | 78.54      | 247.64                               | 117.93                   |

# DESARROLLO DE LA RESISTENCIA DEL CONCRETO SEGÚN EL TIPO DE CEMENTO DESARROLLO DE LA RESISTENCIA EN % DE RESISTENCIA 28 DIAS



# RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILINDRICOS


# "ADICIÓN DE LA CENIZA DE LA CASCARILLA DE CAFÉ Y CASCARA DE HUEVO PARA MEJORAR LA RESISTENCIA A LA COMPRESION DEL CONCRETO FC=210, EN ZAPATAS DE UN POLIDEPORTIVO, CUSCO 2023" 28 DÍAS



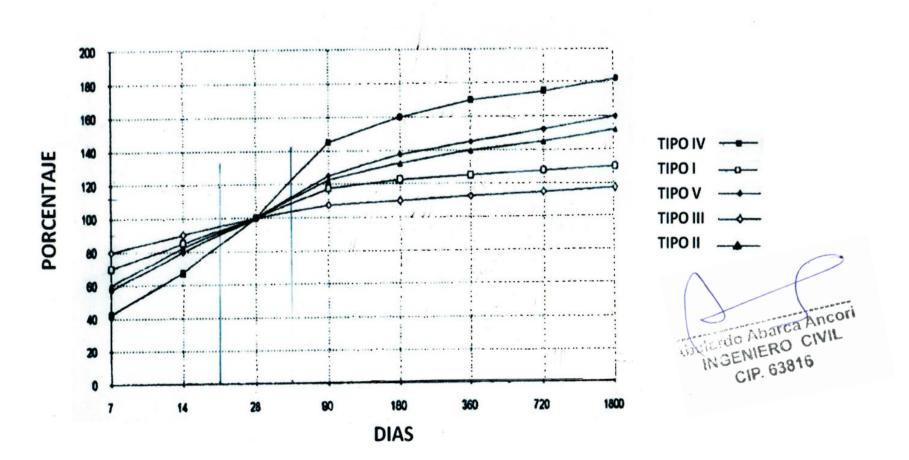
ABELARDO ABARCA ANCORI INGENIERO CIVIL

**CUSCO, ENERO DEL 2023** 





# 2.-DATOS DE LA MUESTRA O ESPECIMEN


**DESCRIPICION:** 15 BRIQUETAS DE CONCRETO - 4" diam.

> cm<sup>2</sup> 78.54 AREA:

| 3ENS | 3ENSAYOS REALIZADOS |  |        |  |  |  |  |  |  |
|------|---------------------|--|--------|--|--|--|--|--|--|
|      |                     |  | $\neg$ |  |  |  |  |  |  |

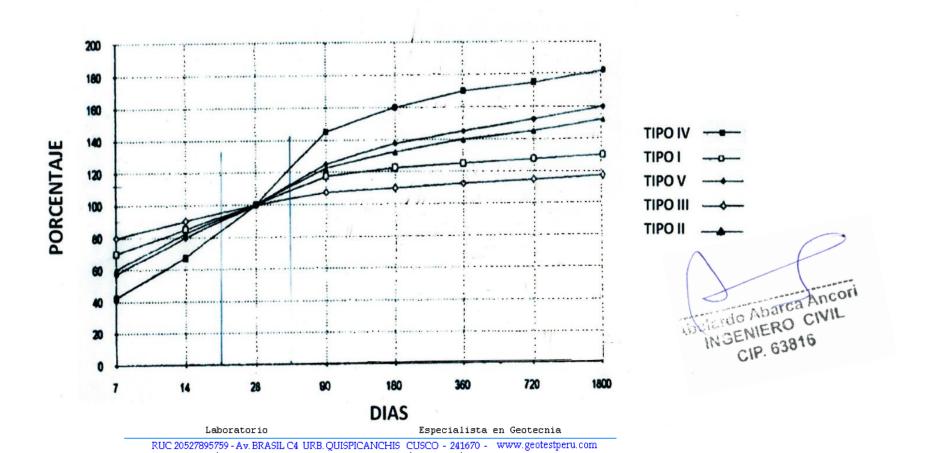
| Item. | Nom. Briq. | Descripción                           | Fecha de<br>Moldeo | Fecha de<br>Rotura | Edad<br>Dias | % de<br>Resistencia<br>Nominal | Resistencia de<br>Diseño kg/cm² | Resistencia kg | AREA (CM2) | Resistencia de la<br>briqueta kg/cm² | % Resistencia<br>Hallada |
|-------|------------|---------------------------------------|--------------------|--------------------|--------------|--------------------------------|---------------------------------|----------------|------------|--------------------------------------|--------------------------|
| 1     | P11        | MEZCLA PATRON (P11)                   | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 17890          | 78.54      | 227.78                               | 108.47                   |
| 2     | P12        | MEZCLA PATRON (P12)                   | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 19090          | 78.54      | 243.06                               | 115.74                   |
| 3     | P13        | MEZCLA PATRON (P13)                   | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 18600          | 78.54      | 236.82                               | 112.77                   |
| 4     | P14        | MEZCLA PATRON (P14)                   | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 18900          | 78.54      | 240.64                               | 114.59                   |
| 5     | P15        | MEZCLA PATRON (P15)                   | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 18120          | 78.54      | 230.71                               | 109.86                   |
| 6     | CCC 1%-11  | CENIZA CASCARILLA DE CAFÉ (CCC 1%-11) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 18220          | 78.54      | 231.98                               | 110.47                   |
| 7     | CCC 1%-12  | CENIZA CASCARILLA DE CAFÉ (CCC 1%-12) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 19130          | 78.54      | 243.57                               | 115.99                   |
| 8     | CCC 1%-13  | CENIZA CASCARILLA DE CAFÉ (CCC 1%-13) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 17450          | 78.54      | 222.18                               | 105.80                   |
| 9     | CCC 1%-14  | CENIZA CASCARILLA DE CAFÉ (CCC 1%-14) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 19960          | 78.54      | 254.14                               | 121.02                   |
| 10    | CCC 1%-15  | CENIZA CASCARILLA DE CAFÉ (CCC 1%-15) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 19850          | 78.54      | 252.74                               | 120.35                   |
| 11    | CCC 3%-11  | CENIZA CASCARILLA DE CAFÉ (CCC 3%-11) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 17440          | 78.54      | 222.05                               | 105.74                   |
| 12    | CCC 3%-12  | CENIZA CASCARILLA DE CAFÉ (CCC 3%-12) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 18670          | 78.54      | 237.71                               | 113.20                   |
| 13    | CCC 3%-13  | CENIZA CASCARILLA DE CAFÉ (CCC 3%-13) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 19250          | 78.54      | 245.10                               | 116.71                   |
| 14    | CCC 3%-14  | CENIZA CASCARILLA DE CAFÉ (CCC 3%-14) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 18925          | 78.54      | 240.96                               | 114.74                   |
| 15    | CCC 3%-15  | CENIZA CASCARILLA DE CAFÉ (CCC 3%-15) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 17960          | 78.54      | 228.67                               | 108.89                   |
| 16    | CCC 5%-11  | CENIZA CASCARILLA DE CAFÉ (CCC 5%-11) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 14480          | 78.54      | 184.36                               | 87.79                    |
| 17    | CCC 5%-12  | CENIZA CASCARILLA DE CAFÉ (CCC 5%-12) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 16050          | 78.54      | 204.35                               | 97.31                    |
| 18    | CCC 5%-13  | CENIZA CASCARILLA DE CAFÉ (CCC 5%-13) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 14600          | 78.54      | 185.89                               | 88.52                    |
| 19    | CCC 5%-14  | CENIZA CASCARILLA DE CAFÉ (CCC 5%-14) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 15700          | 78.54      | 199.90                               | 95.19                    |
| 20    | CCC 5%-15  | CENIZA CASCARILLA DE CAFÉ (CCC 5%-15) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 14620          | 78.54      | 186.15                               | 88.64                    |
| 21    | CH 1%-11   | CASCARA DE HUEVO (CH 1%-11)           | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 15360          | 78.54      | 195.57                               | 93.13                    |
| 22    | CH 1%-12   | CASCARA DE HUEVO (CH 1%-12)           | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 14790          | 78.54      | 188.31                               | 89.67                    |
| 23    | CH 1%-13   | CASCARA DE HUEVO (CH 1%-13)           | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 15500          | 78.54      | 197.35                               | 93.98                    |
| 24    | CH 1%-14   | CASCARA DE HUEVO (CH 1%-14)           | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 15640          | 78.54      | 199.13                               | 94.83                    |
| 25    | CH 1%-15   | CASCARA DE HUEVO (CH 1%-15)           | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 14980          | 78.54      | 190.73                               | 90.82                    |

# DESARROLLO DE LA RESISTENCIA DEL CONCRETO SEGÚN EL TIPO DE CEMENTO DESARROLLO DE LA RESISTENCIA EN % DE RESISTENCIA 28 DIAS



|           | GEOTEST PERÚ | RESISTENCIA A LA COMPRESIÓN DE TESTIGOS CILINDRICOS  MTC E 704 - 2000                                                                               | CODIGO :<br>REVISION :<br>FECHA :<br>PAGINA : |            |
|-----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------|
| Proyecto  | MEJORAR LA   | LA CENIZA DE LA CASCARILLA DE CAFÉ Y CASCARA DE HUEVO PARA<br>RESISTENCIA A LA COMPRESION DEL CONCRETO FC=210, EN ZAPATAS DE<br>ORTIVO, CUSCO 2023" |                                               | 2 de 2     |
| Ubicación | : CUSCO      |                                                                                                                                                     | Fecha :                                       | ENERO 2023 |
| Distrito  | : CUSCO      |                                                                                                                                                     | Motivo :                                      |            |
| Provincia | : CUSCO      |                                                                                                                                                     | Resp. Lab.:                                   | C.S.T.     |
| Región    | : CUSCO      |                                                                                                                                                     | Esp. Geot.:                                   | A.A.A.     |

# 2.-DATOS DE LA MUESTRA O ESPECIMEN


**DESCRIPICION:** 15 BRIQUETAS DE CONCRETO - 4" diam.

AREA: 78.54 cm<sup>2</sup>

# 3.-ENSAYOS REALIZADOS

| Item. | Nom. Brig.       | Descripción                                                    | Fecha de<br>Moldeo | Fecha de<br>Rotura | Edad<br>Dias | % de<br>Resistencia<br>Nominal | Resistencia de<br>Diseño kg/cm² | Resistencia kg | AREA (CM2) | Resistencia de la<br>briqueta kg/cm² | % Resistencia<br>Hallada |
|-------|------------------|----------------------------------------------------------------|--------------------|--------------------|--------------|--------------------------------|---------------------------------|----------------|------------|--------------------------------------|--------------------------|
| 26    | CH 3%-11         | CASCARA DE HUEVO (CH 3%-11)                                    | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 18060          | 78.54      | 229.95                               | 109.50                   |
| 27    | CH 3%-12         | CASCARA DE HUEVO (CH 3%-12)                                    | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 18900          | 78.54      | 240.64                               | 114.59                   |
| 28    | CH 3%-13         | CASCARA DE HUEVO (CH 3%-13)                                    | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 18860          | 78.54      | 240.13                               | 114.35                   |
| 29    | CH 3%-14         | CASCARA DE HUEVO (CH 3%-14)                                    | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 18930          | 78.54      | 241.02                               | 114.77                   |
| 30    | CH 3%-15         | CASCARA DE HUEVO (CH 3%-15)                                    | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 18190          | 78.54      | 231.60                               | 110.29                   |
| 31    | CH 5%-11         | CASCARA DE HUEVO (CH 5%-11)                                    | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 18830          | 78.54      | 239.75                               | 114.17                   |
| 32    | CH 5%-12         | CASCARA DE HUEVO (CH 5%-12)                                    | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 18140          | 78.54      | 230.97                               | 109.98                   |
| 33    | CH 5%-13         | CASCARA DE HUEVO (CH 5%-13)                                    | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 18340          | 78.54      | 233.51                               | 111.20                   |
| 34    | CH 5%-14         | CASCARA DE HUEVO (CH 5%-14)                                    | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 19970          | 78.54      | 254.27                               | 121.08                   |
| 35    | CH 5%-15         | CASCARA DE HUEVO (CH 5%-15)                                    | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 18990          | 78.54      | 241.79                               | 115.14                   |
| 30    | CCC+CH 1%-<br>11 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-11) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 18860          | 78.54      | 240.13                               | 114.35                   |
| 3/    | CCC+CH 1%-<br>12 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-12) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 19180          | 78.54      | 244.21                               | 116.29                   |
| 38    | CCC+CH 1%-<br>13 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-13) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 16960          | 78.54      | 215.94                               | 102.83                   |
| 39    | CCC+CH 1%-<br>14 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 1%-14) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 18920          | 78.54      | 240.90                               | 114.71                   |
| 40    | CCC+CH 1%-<br>15 | (CCC+CH 1%-15)                                                 | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 17930          | 78.54      | 228.29                               | 108.71                   |
| 41    | CCC+CH 3%-<br>11 | (CCC+CH 3%-11)                                                 | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 16660          | 78.54      | 212.12                               | 101.01                   |
| 42    | CCC+CH 3%-<br>12 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 3%-12) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 17560          | 78.54      | 223.58                               | 106.47                   |
| 43    | CCC+CH 3%-<br>13 | (CCC+CH 3%-13)                                                 | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 16850          | 78.54      | 214.54                               | 102.16                   |
| 44    | CCC+CH 3%-<br>14 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 3%-14) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 16930          | 78.54      | 215.56                               | 102.65                   |
| 45    | CCC+CH 3%-<br>15 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 3%-15) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 17490          | 78.54      | 222.69                               | 106.04                   |
| 46    | CCC+CH 5%-<br>11 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-11) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 20250          | 78.54      | 257.83                               | 122.78                   |
| 47    | CCC+CH 5%-<br>12 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-12) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 20740          | 78.54      | 264.07                               | 125.75                   |
| 48    | CCC+CH 5%-<br>13 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-13) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 20210          | 78.54      | 257.32                               | 122.53                   |
| 49    | CCC+CH 5%-<br>14 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-14) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 20940          | 78.54      | 266.62                               | 126.96                   |
| 50    | CCC+CH 5%-<br>15 | CENIZA CASCARILLA DE CAFÉ + CASCARA DE HUEVO<br>(CCC+CH 5%-15) | 30/12/2022         | 27/01/2023         | 28           | 100                            | 210                             | 20900          | 78.54      | 266.11                               | 126.72                   |

# DESARROLLO DE LA RESISTENCIA DEL CONCRETO SEGÚN EL TIPO DE CEMENTO DESARROLLO DE LA RESISTENCIA EN % DE RESISTENCIA 28 DIAS





# CERTIFICADO DE CALIBRACIÓN Nº LFP - 119 - 2022

Página : 1 de 2

Expediente

: T 161-2022

Fecha de emisión

: 2022-03-31

1. Solicitante

: GEOTEST PERU S.A.C.

Dirección

: AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI

CUSCO - CUSCO

2. Descripción del Equipo

: MÁQUINA DE ENSAYO UNIAXIAL

(PRENSA DE CONCRETO)

Marca de Prensa

: ELE

Modelo de Prensa

: ACCU-TEK 250

Serie de Prensa

: 08080000014

Capacidad de Prensa

: 250000 lbs

Bomba Hidraulica

: ELÉCTRICA

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precision S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO - CUSCO

29 - MARZO - 2022

# 4. Método de Calibración

La Calibracion se realizó de acuerdo a la norma ASTM E4

# 5. Trazabilidad

| INSTRUMENTO    | MARCA           | CERTIFICADO O<br>INFORME | TRAZABILIDAD      |  |  |
|----------------|-----------------|--------------------------|-------------------|--|--|
| CELDA DE CARGA | AEP TRANSDUCERS | INF-LE 090-2020          | UNIVERSIDAD       |  |  |
| INDICADOR      | AEP TRANSDUCERS | 1141-FE 090-2020         | CATÓLICA DEL PERÚ |  |  |

# 6. Condiciones Ambientales

| C - 60, 46     | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura °C | 26,4    | 26,5  |
| Humedad %      | 64      | 64    |

# 7. Resultados de la Medición

Los errores de la prensa se encuentran en la página siguiente.

# 8. Observaciones

Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.



Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106



CERTIFICADO DE CALIBRACIÓN Nº LFP - 119 - 2022

Página : 2 de 2

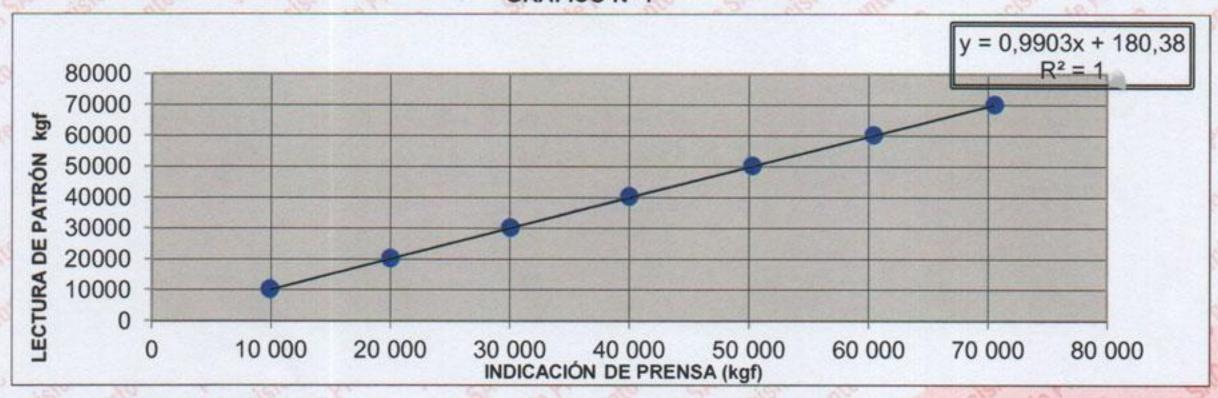
# TABLA Nº 1

| SISTEMA<br>DIGITAL | SE      | RIES DE VERIF | ICACIÓN (kgf)  |                | PROMEDIO   | ERROR   | RPTBLD  |
|--------------------|---------|---------------|----------------|----------------|------------|---------|---------|
| "A"<br>kgf         | SERIE 1 | SERIE 2       | ERROR (1)<br>% | ERROR (2)<br>% | "B"<br>kgf | Ep<br>% | Rp<br>% |
| 10000              | 9958    | 9988          | 0,42           | 0,12           | 9972,7     | 0,27    | -0,30   |
| 20000              | 20039   | 20041         | -0,20          | -0,21          | 20040,2    | -0,20   | -0,01   |
| 30000              | 30071   | 30142         | -0,24          | -0,47          | 30106,2    | -0,35   | -0,24   |
| 40000              | 39928   | 40164         | 0,18           | -0,41          | 40046,2    | -0,12   | -0,59   |
| 50000              | 50377   | 50233         | -0,75          | -0,47          | 50304,8    | -0,61   | 0,29    |
| 60000              | 60472   | 60383         | -0,79          | -0,64          | 60427,4    | -0,71   | 0,15    |
| 70000              | 70620   | 70494         | -0,89          | -0,71          | 70557,1    | -0,79   | 0,18    |

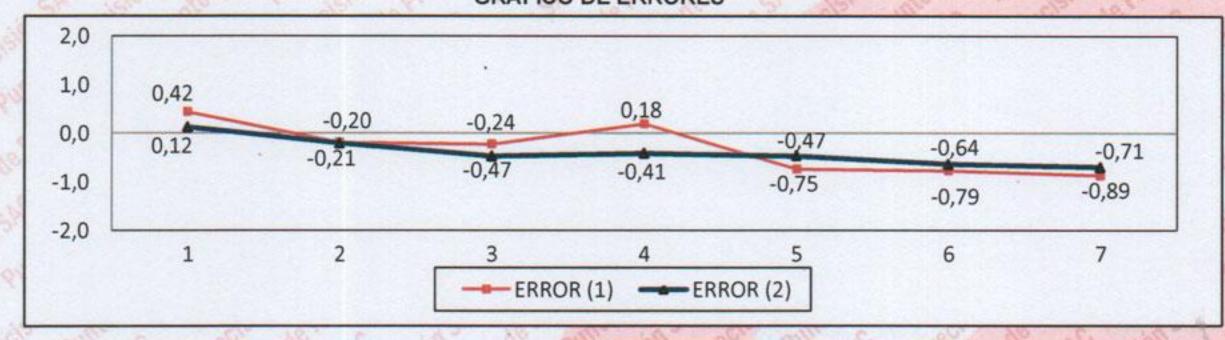
# NOTAS SOBRE LA CALIBRACIÓN

- 1.- Ep y Rp son el Error Porcentual y la Repetibilidad definidos en la citada Norma:
  - Ep=  $((A-B)/B)^*$  100 Rp = Error(2) Error(1)
- 2.- La norma exige que Ep y Rp no excedan el 1,0 %
- 3.- Coeficiente Correlación :

 $R^2 = 1$ 


Ecuación de ajuste

y = 0.9903x + 180.38


Donde: x: Lectura de la pantalla

y: Fuerza promedio (kgf)

# GRÁFICO Nº 1



# GRÁFICO DE ERRORES



PUNTO DE PRECISIÓN SAC

FIN DEL DOCUMENTO



# CERTIFICADO DE CALIBRACIÓN Nº LL - 317 - 2022

Página : 1 de 1

El Equipo de medición con el modelo y

número de serie abajo, Indicados ha sido calibrado probado y verificado usando

patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante

le corresponde disponer en su momento la ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento del instrumento de medición o

Punto de Precisión S.A.C no se responsabiliza

de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una

incorrecta interpretación de los resultados de la

reglamentaciones vigentes.

calibración aquí declarados.

Expediente Fecha de Emisión : 2022-03-08

: T 071-2022

: GEOTEST PERU S.A.C

Dirección

: AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO -

2. Instrumento de Medición : TAMIZ

Tamiz N°

: 2 pula

Diametro de Tamiz

: 8 pulg

Marca

: GRAN TEST

Serie

: 8280

Materia

: BRONCE

Color

: DORADO

Código de Identificación

: NO INDICA

3. Lugar y fecha de Calibración

AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO - CUSCO

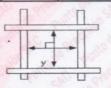
05 - MARZO - 2022

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

| M | INSTRUMENTO | MARCA  | CERTIFICADO      | TRAZABILIDAD |
|---|-------------|--------|------------------|--------------|
|   | PIE DE REY  | INSIZE | TC - 9991 - 2020 | INACAL - DM  |


6. Condiciones Ambientales

| 00, 60,        | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura °C | 16,1    | 16,2  |
| Humedad %      | 48      | 48    |

### 7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

| MEDIDAS TOMADAS  mm |       |       |       |  |   |       |       |       |       | PROMEDIO | ESTÁNDAR | ERROR | DESVIACIÓN<br>ESTANDAR<br>MÁXIMA<br>mm | DESVIACIÓN<br>ESTANDAR<br>mm |
|---------------------|-------|-------|-------|--|---|-------|-------|-------|-------|----------|----------|-------|----------------------------------------|------------------------------|
| 50,56               | 50,48 | 50,86 | 50,53 |  |   | 50,91 | 50,52 | 50,43 | 50,48 | 100 M    |          | - Sh  | 90° 011                                | - AUST                       |
| 50,53               | 49,71 | 50,56 | 50,91 |  | 9 | 100   |       |       |       | 50,48    | 50,00    | 0,48  | 2 P                                    | 0,364                        |







Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

FIN DEL DOCUMENTO



# CERTIFICADO DE CALIBRACIÓN Nº LL - 318 - 2022

Página: 1 de 1

El Equipo de medición con el modelo y

número de serie abajo. Indicados ha sido calibrado probado y verificado usando

patrones certificados con trazabilidad a la

Los resultados son válidos en el momento y en

las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la

ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento

del instrumento de medición o a

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una

incorrecta interpretación de los resultados de la

reglamentaciones vigentes.

calibración aquí declarados

Dirección de Metrología del INACAL y otros.

Expediente

: T 071-2022

Fecha de Emisión

: 2022-03-08

1. Solicitante

: GEOTEST PERU S.A.C

Dirección

: AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO -

2. Instrumento de Medición

: TAMIZ

Tamiz N°

: 1 ½ pulg

Diametro de Tamiz

: 8 pulg

Marca

: GRAN TEST

Serie

: 7881

Material

: BRONCE

Color

: DORADO

Código de Identificación

: NO INDICA

3. Lugar y fecha de Calibración

AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO - CUSCO

05 - MARZO - 2022

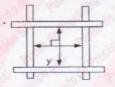
4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando

como referencia la norma ASTM E 11-09.

5. Trazabilidad

| INSTRUMENTO | MARCA  | CERTIFICADO      | TRAZABILIDAD |
|-------------|--------|------------------|--------------|
| PIE DE REY  | INSIZE | TC - 9991 - 2020 | INACAL - DM  |


6. Condiciones Ambientales

| C ACM          | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura °C | 16,1    | 16,2  |
| Humedad %      | 48      | 48    |

### 7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09

| 8. Resu         | Itados | Tille | 0     | 200   | 76.   | 2     | Part . | 70    | all la | 175      | 0117     | -     | (*)                              | The Sta                |
|-----------------|--------|-------|-------|-------|-------|-------|--------|-------|--------|----------|----------|-------|----------------------------------|------------------------|
| MEDIDAS TOMADAS |        |       |       |       |       |       |        |       |        | PROMEDIO | ESTÁNDAR | ERROR | DESVIACIÓN<br>ESTANDAR<br>MÁXIMA | DESVIACIÓN<br>ESTANDAR |
|                 | (30)   | 96    |       | m     | m     |       |        |       |        | mm       | mm       | mm    | mm                               | mm                     |
| 38,57           | 38,54  | 38,59 | 38,58 | 38,02 | 37,81 | 38,57 | 37,81  | 38,46 | 38,54  | 38.35    | 37.50    | 0.85  | 20                               | 0.303                  |
| 38,02           | 38,57  | 37,81 | 38,57 | 38,46 | 38,57 | 38,46 | 38,02  | 38,54 | 38,57  |          | 37,30    | 0,05  | Shader                           | 0,303                  |







Jefe de/Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

FIN DEL DOCUMENTO





# CERTIFICADO DE CALIBRACIÓN Nº LL - 319 - 2022

Página: 1 de 2

El Equipo de medición con el modelo y

número de serie abajo. Indicados ha sido calibrado probado y verificado usando

patrones certificados con trazabilidad a la

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante

le corresponde disponer en su momento la ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

instrumento de medición

reglamentaciones vigentes.

calibración aquí declarados.

Dirección de Metrología del INACAL y otros.

Expediente Fecha de Emisión

: T 071-2022 : 2022-03-08

1. Solicitante

: GEOTEST PERU S.A.C

Dirección

: AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO -

CUSCO

2. Instrumento de Medición : TAMIZ

Tamiz N°

: 1 pulg

Diametro de Tamiz

: 8 pula

Marca

: GRAN TEST

Serie

: 8309

Material

: BRONCE

Color

: DORADO

Código de Identificación

: NO INDICA

# 3. Lugar y fecha de Calibración

AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO - CUSCO

05 - MARZO - 2022

# 4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

# 5. Trazabilidad

| INSTRUMENTO | MARCA  | CERTIFICADO      | TRAZABILIDAD |
|-------------|--------|------------------|--------------|
| PIE DE REY  | INSIZE | TC - 9991 - 2020 | INACAL - DM  |

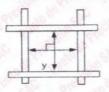
# 6. Condiciones Ambientales

| 2.00           | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura °C | 16,1    | 16,2  |
| Humedad %      | 48      | 48    |

### 7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

PUNTO DE PRECISIÓN SAC




CERTIFICADO DE CALIBRACIÓN Nº LL - 319 - 2022

Página : 2 de 2

### 8. Resultados

| MEDIDAS TOMADAS mm |       |       |       |       |       |       |       |       | PROMEDIO | ESTÁNDAR<br>mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ERROR    | DESVIACIÓN<br>ESTANDAR<br>MÁXIMA<br>mm | DESVIACIÓN<br>ESTANDAR<br>mm |             |
|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------|------------------------------|-------------|
| 25,57              | 25,55 | 25,52 | 25,74 |       | 25,50 | 25,68 | 25,45 | 25,55 | 25,68    | ic spin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | in sel                                 | ill blech                    | Brillia Phi |
| 25,68              | 25,45 | 25,74 | 25,52 | 25,71 | 25,68 | 25,74 | 25,68 | 25,71 | 25,45    | The second secon | 05.00    | 0.04                                   | to an in Shi                 | 0.440       |
| 25,71              | 25,74 | 25,71 | 25,55 | 25,45 | 25,52 | 25,71 | 25,74 | 25,55 | 25,74    | 25,61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25,00    | 0,61                                   | racio <sup>22</sup> to       | 0,110       |
| 25,68              | 25,45 | 25,55 | 25,68 | 25,74 | 25,45 | 25,55 | 25,52 | 25,45 | 25,71    | mto de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S. S. S. | The de                                 | bann, FR                     | III. Bloggi |





FIN DEL DOCUMENTO







# CERTIFICADO DE CALIBRACIÓN Nº LL - 320 - 2022

Página: 1 de 2

Expediente : T 071-2022 Fecha de Emisión : 2022-03-08

1. Solicitante : GEOTEST PERU S.A.C

Dirección : AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO -

CUSCO

2. Instrumento de Medición : TAMIZ

Tamiz N° : 3/4 pulg

Diametro de Tamiz : 8 pulg

Marca : GRAN TEST

Serie : 8614

Material : BRONCE

Color : DORADO

Código de Identificación : NO INDICA

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

### 3. Lugar y fecha de Calibración

AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO - CUSCO 05 - MARZO - 2022

### 4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

# 5. Trazabilidad

| INSTRUMENTO | MARCA  | CERTIFICADO      | TRAZABILIDAD |
|-------------|--------|------------------|--------------|
| PIE DE REY  | INSIZE | TC - 9991 - 2020 | INACAL - DM  |

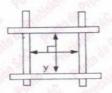
### 6. Condiciones Ambientales

| aun c          | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura °C | 16,1    | 16,2  |
| Humedad %      | 48      | 48    |

### 7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

PUNTO DE PRECISIÓN S A C




CERTIFICADO DE CALIBRACIÓN Nº LL - 320 - 2022

Página : 2 de 2

# 8. Resultados

| MEDIDAS TOMADAS  mm |       |       |       |       |       |       |       |       | PROMEDIO | ESTÁNDAR<br>mm | ERROR              | DESVIACIÓN<br>ESTANDAR<br>MÁXIMA<br>mm | DESVIACIÓN<br>ESTANDAR<br>mm |             |
|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------------|--------------------|----------------------------------------|------------------------------|-------------|
| 18,91               | 18,92 | 19,46 | 19,45 | 19,52 | 19,49 | 18,79 | 19,37 | 19,28 | 19,28    | C din          | 110                | offic icit                             | us blocks                    | billy ch    |
| 19,28               | 19,28 | 19,45 | 19,49 | 18,79 | 19,37 | 18,91 | 19,52 | 18,91 | 19,49    | Shiep.         |                    | biles                                  | 10 go 10 210                 | acisinii ar |
| 19,37               | 19,52 | 19,28 | 19,37 | 19,28 | 19,28 | 19,45 | 19,49 | 18,79 | 18,91    | 19,25          | 19,00              | 0,25                                   | 0,446                        | 0,261       |
| 19,45               | 19,45 | 19,49 | 19,52 | 18,91 | 19,37 | 18,79 | 18,91 | 19,28 | 19,45    | Williams of    | S CONTRACTOR       | Into die                               | briu. "It's                  | IL SPEC     |
| 19,28               | 19,52 | 19,37 | 18,79 | 19,45 | 19,28 | 19,49 | 19,37 | 18,91 | 18,79    | Ar. Callylon   | A PARTY CONTRACTOR | 1411 57                                | 76 bile                      | in a si     |





FIN DEL DOCUMENTO







# CERTIFICADO DE CALIBRACIÓN Nº LL - 321 - 2022

Página: 1 de 2

El Equipo de medición con el modelo y

número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante

le corresponde disponer en su momento la ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento del instrumento de medición o a

Punto de Precisión S.A.C no se responsabiliza

de los perjuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

reglamentaciones vigentes.

calibración aquí declarados

Dirección de Metrología del INACAL y otros.

Expediente : T 071-2022 Fecha de Emisión : 2022-03-08

1. Solicitante : GEOTEST PERU S.A.C

Dirección : AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO -

CUSCO

2. Instrumento de Medición : TAMIZ

Tamiz N° : 1/2 pulg

Diametro de Tamiz : 8 pulg

Marca : GRAN TEST

Serie : 7919

Material : BRONCE

Color : DORADO

Código de Identificación : NO INDICA

3. Lugar y fecha de Calibración

AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO - CUSCO

05 - MARZO - 2022

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

| INSTRUMENTO | MARCA  | CERTIFICADO      | TRAZABILIDAD |
|-------------|--------|------------------|--------------|
| PIE DE REY  | INSIZE | TC - 9991 - 2020 | INACAL - DM  |

6. Condiciones Ambientales

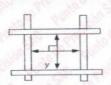
| 101, 500       | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura °C | 16,2    | 16,3  |
| Humedad %      | 49      | 49    |

7. Observaciones

PUNTO DE

PRECISIÓN

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.




CERTIFICADO DE CALIBRACIÓN Nº LL - 321 - 2022

Página: 2 de 2

# 8. Resultados

|        | MEDIDAS TOMADAS |       |       |       |       |       |       |       |       | PROMEDIO                                  | ESTÁNDAR |         | DESVIACIÓN<br>ESTANDAR<br>MÁXIMA | DESVIACIÓN<br>ESTANDAR |
|--------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------------------------------------------|----------|---------|----------------------------------|------------------------|
| all Ye |                 |       |       | m     | m     |       |       |       |       | mm                                        | mm       | mm      | mm                               | mm                     |
| 12,44  | 12,54           | 12,61 | 12,65 | 12,46 | 12,69 | 12,38 | 12,56 | 12,81 | 12,46 | To Stipu.                                 |          | 100     | M. Star                          | day 24                 |
| 12,69  | 12,46           | 12,54 | 12,44 | 12,69 | 12,46 | 12,44 | 12,69 | 12,44 | 12,69 | 18 818 "C                                 |          | Sales   | 10 20 514                        | Secretary or           |
| 12,69  | 12,54           | 12,69 | 12,46 | 12,44 | 12,54 | 12,69 | 12,54 | 12,46 | 12,44 | 12.56                                     | 12,50    | 0,06    | 0.302                            | 0,108                  |
| 12,69  | 12,44           | 12,69 | 12,56 | 12,69 | 12,44 | 12,69 | 12,56 | 12,44 | 12,54 | 12,56                                     | 12,50    | 0,00    | 0,302                            | 0,108                  |
| 12,46  | 12,56           | 12,56 | 12,54 | 12,69 | 12,46 | 12,44 | 12,69 | 12,54 | 12,56 | S. C. |          | -ion Sh | " An bar                         | 10 2 1611 57           |
| 12,54  | 12,69           | 12,69 | 12,46 | 12,44 | 12,54 | 12,69 | 12,44 | 12,69 | 12,46 | go, brigg                                 |          | in b.   | CIC .                            | Plante To E            |





FIN DEL DOCUMENTO







# CERTIFICADO DE CALIBRACIÓN Nº LL - 322 - 2022

Página: 1 de 2

El Equipo de medición con el modelo y

número de serie abajo. Indicados ha sido

calibrado probado y verificado usando

patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la

ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

del instrumento de medición reglamentaciones vigentes.

calibración aquí declarados.

Expediente
Fecha de Emisión

: T 071-2022 : 2022-03-08

1. Solicitante

: GEOTEST PERU S.A.C

Dirección

; AV. BRASIL MZA, C LOTE. 4 URB. QUISPICANCHI - CUSCO -

CUSCO

2. Instrumento de Medición

: TAMIZ

Tamiz N°

: 3/8 pulg

Diametro de Tamiz

: 8 pulg

Marca

: GRAN TEST

Serie

: 11037

Material

: BRONCE

Color

: DORADO

Código de Identificación

: NO INDICA

3. Lugar y fecha de Calibración

AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO - CUSCO

05 - MARZO - 2022

### 4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

# 5. Trazabilidad

|   | I GENERALING |        | All the second s |              |   |
|---|--------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---|
|   | INSTRUMENTO  | MARCA  | CERTIFICADO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TRAZABILIDAD |   |
| 1 | PIE DE REY   | INSIZE | TC - 9991 - 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INACAL - DM  | 7 |

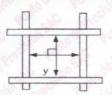
### 6. Condiciones Ambientales

| angola Ollus   | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura °C | 16,2    | 16,3  |
| Humedad %      | 49      | 49    |

# 7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

PUNTO DE PRECISIÓN SA C




CERTIFICADO DE CALIBRACIÓN Nº LL - 322 - 202

Página : 2 de 2

# 8. Resultados

| MEDIDAS TOMADAS mm |      |                    |      |      |      |      |      |       | PROMEDIO | ESTÁNDAR      | 1000    | DESVIACIÓN<br>ESTANDAR<br>MÁXIMA | DESVIACIÓN<br>ESTANDAR |           |
|--------------------|------|--------------------|------|------|------|------|------|-------|----------|---------------|---------|----------------------------------|------------------------|-----------|
| CAY                | 200  | THE REAL PROPERTY. | GAL. | m    | m    | 0.00 |      | Jely. |          | mm            | mm      | mm                               | mm                     | mm        |
| 9,39               | 9,55 | 9,60               | 9,27 | 9,61 | 9,28 | 9,39 | 9,62 | 9,42  | 9,62     | bleg.         |         | 618pm                            | 1000 500               | a sline   |
| 9,62               | 9,42 | 9,27               | 9,62 | 9,27 | 9,42 | 9,62 | 9,42 | 9,27  | 9,42     | Con Ship      | and and | 60                               | estición de            | 160 60    |
| 9,27               | 9,62 | 9,61               | 9,39 | 9,62 | 9,55 | 9,39 | 9,27 | 9,62  | 9,27     | There is been |         | No ste                           | billip.                | The Block |
| 9,55               | 9,61 | 9,42               | 9,61 | 9,27 | 9,39 | 9,62 | 9,61 | 9,42  | 9,55     | 9,47          | 9,50    | -0,03                            | 0,237                  | 0,136     |
| 9,62               | 9,39 | 9,27               | 9,39 | 9,62 | 9,61 | 9,42 | 9,62 | 9,27  | 9,42     | ge bruit      | 200 99  | gam bi                           | Marke .                |           |
| 9,27               | 9,42 | 9,62               | 9,55 | 9,39 | 9,42 | 9,39 | 9,55 | 9,61  | 9,27     | SAC NEPT      |         | Sec. 1                           | lets and g             |           |
| 9,55               | 9,62 | 9,27               | 9,42 | 9,61 | 9,62 | 9,27 | 9,61 | 9,62  | 9,42     | Outlo C       | 10000   | ge blir                          | 0 (61)                 |           |





FIN DEL DOCUMENTO







# CERTIFICADO DE CALIBRACIÓN Nº LL - 322 - 2022

Página: 1 de 2

El Equipo de medición con el modelo y

número de serie abajo. Indicados ha sido

calibrado probado y verificado usando

patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la

ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

del instrumento de medición reglamentaciones vigentes.

calibración aquí declarados.

Expediente
Fecha de Emisión

: T 071-2022 : 2022-03-08

1. Solicitante

: GEOTEST PERU S.A.C

Dirección

: AV. BRASIL MZA, C LOTE. 4 URB. QUISPICANCHI - CUSCO -

CUSCO

2. Instrumento de Medición

: TAMIZ

Tamiz N°

: 3/8 pulg

Diametro de Tamiz

: 8 pulg

Marca

: GRAN TEST

Serie

: 11037

Material

: BRONCE

Color

: DORADO

Código de Identificación

: NO INDICA

3. Lugar y fecha de Calibración

AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO - CUSCO

05 - MARZO - 2022

### 4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

## 5. Trazabilidad

| INSTRUMENTO | MARCA  | CERTIFICADO      | TRAZABILIDAD |
|-------------|--------|------------------|--------------|
| PIE DE REY  | INSIZE | TC - 9991 - 2020 | INACAL - DM  |

### 6. Condiciones Ambientales

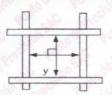
| Secie Office   | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura °C | 16,2    | 16,3  |
| Humedad %      | 49      | 49    |

# 7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.








CERTIFICADO DE CALIBRACIÓN Nº LL - 322 - 202

Página: 2 de 2

# 8. Resultados

| MEDIDAS TOMADAS |      |                    |      |      |      |      |      | PROMEDIO | ESTÁNDAR | 1000          | DESVIACIÓN<br>ESTANDAR<br>MÁXIMA | DESVIACIÓN<br>ESTANDAR |            |             |
|-----------------|------|--------------------|------|------|------|------|------|----------|----------|---------------|----------------------------------|------------------------|------------|-------------|
| CAY             | 200  | THE REAL PROPERTY. | GAL. | m    | m    | 0.00 |      | Jely.    |          | mm            | mm                               | mm                     | mm         | mm          |
| 9,39            | 9,55 | 9,60               | 9,27 | 9,61 | 9,28 | 9,39 | 9,62 | 9,42     | 9,62     | bleg.         |                                  | 618pm                  | ode shi    | recision pu |
| 9,62            | 9,42 | 9,27               | 9,62 | 9,27 | 9,42 | 9,62 | 9,42 | 9,27     | 9,42     | Con Ship      |                                  | 60                     |            |             |
| 9,27            | 9,62 | 9,61               | 9,39 | 9,62 | 9,55 | 9,39 | 9,27 | 9,62     | 9,27     | There is been |                                  | No ste                 | billip.    | The Block   |
| 9,55            | 9,61 | 9,42               | 9,61 | 9,27 | 9,39 | 9,62 | 9,61 | 9,42     | 9,55     | 9,47          | 9,50                             | -0,03                  | 0,237      | 0,136       |
| 9,62            | 9,39 | 9,27               | 9,39 | 9,62 | 9,61 | 9,42 | 9,62 | 9,27     | 9,42     | ge bruit      |                                  | gam bi                 |            |             |
| 9,27            | 9,42 | 9,62               | 9,55 | 9,39 | 9,42 | 9,39 | 9,55 | 9,61     | 9,27     | SAC NEPT      |                                  | Sec. 1                 | lets and g |             |
| 9,55            | 9,62 | 9,27               | 9,42 | 9,61 | 9,62 | 9,27 | 9,61 | 9,62     | 9,42     | Outlo C       | 10000                            | ge blir                | 0 (61)     |             |





FIN DEL DOCUMENTO







# CERTIFICADO DE CALIBRACIÓN Nº LL - 323 - 2022

Página: 1 de 2

El Equipo de medición con el modelo y

número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la

Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante

le corresponde disponer en su momento la ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento instrumento de medición

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

reglamentaciones vigentes.

calibración aquí declarados.

Expediente Fecha de Emisión : T 071-2022 : 2022-03-08

1. Solicitante

: GEOTEST PERU S.A.C

Dirección

: AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO -

2. Instrumento de Medición : TAMIZ

Tamiz N°

: 1/4 pulg

Diametro de Tamiz

: 8 pulg

Marca

: GRAN TEST

Serie

: 9061

Material

: BRONCE

Color

: DORADO

Código de Identificación

: NO INDICA

3. Lugar y fecha de Calibración AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO - CUSCO

05 - MARZO - 2022

### 4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

## 5. Trazabilidad

| INSTRUMENTO | MARCA  | CERTIFICADO      | TRAZABILIDAD |
|-------------|--------|------------------|--------------|
| PIE DE REY  | INSIZE | TC - 9991 - 2020 | INACAL - DM  |

# 6. Condiciones Ambientales

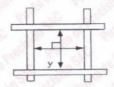
| aulli c        | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura °C | 16,2    | 16,3  |
| Humedad %      | 49      | 49    |

# 7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) Las variaciones no exceden a la variación máxima permisible según la norma ASTM E11-09.

PUNTO DE PRECISIÓN SAC






CERTIFICADO DE CALIBRACIÓN Nº LL - 323 - 2022

Página: 2 de 2

### 8. Resultados

| MEDIDAS TOMADAS |      |      |      |      |      |      |      |      | PROMEDIO | ESTÁNDAR   | ERROR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DESVIACIÓN<br>ESTANDAR<br>MÁXIMA | DESVIACIÓN<br>ESTANDAR |         |
|-----------------|------|------|------|------|------|------|------|------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------|---------|
|                 | CVE  | 5 0  |      | m    | m    |      |      |      |          | mm         | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mm                               | mm                     | mm      |
| 6,12            | 6,55 | 6,20 | 6,61 | 6,58 | 6,38 | 6,27 | 6,52 | 6,14 | 6,61     | ac aside   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an dist                          | 0,167                  | 0,191   |
| 6,61            | 6,38 | 6,20 | 6,61 | 6,12 | 6,20 | 6,38 | 6,61 | 6,55 | 6,20     | o prosec   | 6,30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sho an                           |                        |         |
| 6,12            | 6,55 | 6,58 | 6,38 | 6,20 | 6,38 | 6,61 | 6,55 | 6,38 | 6,12     | citi Short |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S.                               |                        |         |
| 6,20            | 6,12 | 6,20 | 6,12 | 6,55 | 6,61 | 6,58 | 6,12 | 6,55 | 6,61     | 6,40       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10                             |                        |         |
| 6,61            | 6,38 | 6,55 | 6,61 | 6,20 | 6,20 | 6,38 | 6,55 | 6,20 | 6,38     | 0,40       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,10                             |                        |         |
| 6,58            | 6,12 | 6,61 | 6,55 | 6,38 | 6,58 | 6,55 | 6,38 | 6,55 | 6,12     | al year    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                        |         |
| 6,38            | 6,61 | 6,12 | 6,58 | 6,61 | 6,20 | 6,12 | 6,58 | 6,61 | 6,38     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | all act                          |                        |         |
| 6,12            | 6,20 | 6,61 | 6,61 | 6,38 | 6,55 | 6,61 | 6,38 | 6,55 | 6,12     |            | The same of the sa | Se ber                           |                        | - de la |





FIN DEL DOCUMENTO







# CERTIFICADO DE CALIBRACIÓN Nº LL - 324 - 2022

Página: 1 de 2

0

El Equipo de medición con el modelo y

número de serie abajo. Indicados ha sido calibrado probado y verificado usando

patrones certificados con trazabilidad a la

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante

le corresponde disponer en su momento la ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento instrumento de medición

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

reglamentaciones vigentes.

calibración aquí declarados.

Dirección de Metrología del INACAL y otros.

Expediente Fecha de Emisión : T 071-2022 : 2022-03-08

1. Solicitante

: GEOTEST PERU S.A.C

Dirección

: AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO -

CUSCO

2. Instrumento de Medición : TAMIZ

Tamiz N°

Diametro de Tamiz

: 8 pulg

Marca

: GRAN TEST

Serie

: 2890

Material

: BRONCE

Color

: DORADO

Código de Identificación

: NO INDICA

3. Lugar y fecha de Calibración

AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO - CUSCO

05 - MARZO - 2022

### 4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09

## 5. Trazabilidad

| INSTRUMENTO | MARCA  | CERTIFICADO      | TRAZABILIDAD |  |  |
|-------------|--------|------------------|--------------|--|--|
| PIE DE REY  | INSIZE | TC - 9991 - 2020 | INACAL - DM  |  |  |

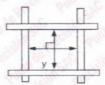
# 6. Condiciones Ambientales

| mills c        | INICIAL |      |  |  |  |  |  |
|----------------|---------|------|--|--|--|--|--|
| Temperatura °C | 16,2    | 16,3 |  |  |  |  |  |
| Humedad %      | 49      | 49   |  |  |  |  |  |

# 7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09

BORATOR PUNTO DE PRECISIÓN SAC




CERTIFICADO DE CALIBRACIÓN Nº LL - 324 - 2022

Página : 2 de 2

# 8. Resultados

| MEDIDAS TOMADAS |       |      |      |      |      |      |       |      | PROMEDIO | ESTÁNDAR     | ERROR       | DESVIACIÓN<br>ESTANDAR<br>MÁXIMA | DESVIACIÓN<br>ESTANDAR |            |     |
|-----------------|-------|------|------|------|------|------|-------|------|----------|--------------|-------------|----------------------------------|------------------------|------------|-----|
|                 | 60, 7 | de d | A ST | m    | m    | 90   | A. A. |      | 7 75     | mm           | mm          | mm                               | mm                     | mm         |     |
| 4,76            | 4,76  | 4,70 | 4,89 | 4,73 | 4,86 | 4,91 | 4,69  | 4,73 | 4,76     | No islan     | 100 m       | on del                           | in the President       | 60 21      |     |
| 4,73            | 4,91  | 4,76 | 4,86 | 4,91 | 4,73 | 4,76 | 4,86  | 4,76 | 4,73     | Poble of     |             | Ship                             |                        | legiela.   |     |
| 4,86            | 4,76  | 4,86 | 4,91 | 4,76 | 4,70 | 4,91 | 4,73  | 4,73 | 4,86     | Sidn St. Pre |             |                                  | C.                     | Magneto ga | SAC |
| 4,76            | 4,91  | 4,70 | 4,76 | 4,91 | 4,86 | 4,76 | 4,86  | 4,70 | 4,76     |              | all and and | untoo                            | 0,13                   | 0,08       |     |
| 4,73            | 4,73  | 4,91 | 4,70 | 4,89 | 4,76 | 4,86 | 4,73  | 4,86 | 4,73     | 100          | 4,75        | 0.05                             |                        |            |     |
| 4,86            | 4,76  | 4,73 | 4,86 | 4,91 | 4,70 | 4,91 | 4,89  | 4,76 | 4,76     | 4,80         |             | 0,05                             |                        |            |     |
| 4,76            | 4,86  | 4,73 | 4,76 | 4,70 | 4,89 | 4,73 | 4,76  | 4,70 | 4,76     | 230 80 PM    | out of      | Showing .                        |                        |            |     |
| 4,70            | 4,91  | 4,76 | 4,86 | 4,91 | 4,86 | 4,76 | 4,73  | 4,91 | 4,73     | Partir SAC   |             | Mary State                       |                        |            |     |
| 4,73            | 4,86  | 4,73 | 4,70 | 4,73 | 4,91 | 4,86 | 4,70  | 4,76 | 4,91     |              | 100         | elsibn "                         |                        |            |     |
| 4,76            | 4,73  | 4,89 | 4,86 | 4,76 | 4,73 | 4,76 | 4,91  | 4,86 | 4,73     |              | Sales and   | dille                            |                        |            |     |





FIN DEL DOCUMENTO







# CERTIFICADO DE CALIBRACIÓN Nº LL - 325 - 2022

Página: 1 de 2

El Equipo de medición con el modelo y

número de serie abajo. Indicados ha sido calibrado probado y verificado usando

patrones certificados con trazabilidad a la

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante

le corresponde disponer en su momento la ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento del instrumento de medición o a

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

reglamentaciones vigentes.

calibración aquí declarados.

Dirección de Metrología del INACAL y otros.

Expediente Fecha de Emisión : T 071-2022 : 2022-03-08

1. Solicitante

: GEOTEST PERU S.A.C

Dirección

: AV. BRASIL MZA, C LOTE. 4 URB. QUISPICANCHI - CUSCO -

CUSCO

2. Instrumento de Medición

: TAMIZ

Tamiz N°

: 8

Diametro de Tamiz

: 8 pulg

Marca

: GRAN TEST

Serie

: 8662

Material

: BRONCE

Color

.

1.0

: DORADO

Código de Identificación

: NO INDICA

3. Lugar y fecha de Calibración

AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO - CUSCO

05 - MARZO - 2022

#### 4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

#### 5. Trazabilidad

| INSTRUMENTO          | MARCA  | CERTIFICADO       | TRAZABILIDAD |  |  |
|----------------------|--------|-------------------|--------------|--|--|
| RETICULA DE MEDICIÓN | INSIZE | CCP-0340-008-2020 | ELICROM      |  |  |

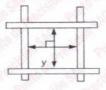
### 6. Condiciones Ambientales

| million c      | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura °C | 16,2    | 16,3  |
| Humedad %      | 49      | 49    |

#### 7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

PUNTO DE PRECISIÓN S A C




CERTIFICADO DE CALIBRACIÓN Nº LL - 325 - 2022

Página: 2 de 2

#### 8. Resultados

|       | MEDIDAS TOMADAS |       |       |       |       |       |       |       |       | PROMEDIO      | ESTÁNDAR | ERROR     | DESVIACIÓN<br>ESTANDAR<br>MÁXIMA | DESVIACIÓN<br>ESTANDAR |        |           |
|-------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|----------|-----------|----------------------------------|------------------------|--------|-----------|
|       |                 | C GE  |       | m     | m     |       |       |       |       | mm            | mm       | mm        | mm                               | mm                     |        |           |
| 2,376 | 2,401           | 2,453 | 2,412 | 2,340 | 2,563 | 2,397 | 2,493 | 2,476 | 2,340 | a significant | - Files  |           |                                  | "Girla,                | VE DIE | Sur Sills |
| 2,563 | 2,412           | 2,453 | 2,340 | 2,412 | 2,453 | 2,340 | 2,563 | 2,453 | 2,563 | Show A        |          |           | Cisple Se bu                     | elig litig             |        |           |
| 2,340 | 2,563           | 2,401 | 2,412 | 2,563 | 2,412 | 2,401 | 2,340 | 2,476 | 2,340 | Pall of Barry |          |           |                                  |                        |        |           |
| 2,453 | 2,412           | 2,340 | 2,476 | 2,412 | 2,340 | 2,453 | 2,401 | 2,453 | 2,563 | 1110 de 11150 |          | Me of     | on. again                        | 40 Pro. C              |        |           |
| 2,412 | 2,563           | 2,401 | 2,563 | 2,401 | 2,412 | 2,476 | 2,412 | 2,340 | 2,453 | Olecjam og    |          | ion Sin   | age, baug                        | Spheri                 |        |           |
| 2,340 | 2,412           | 2,340 | 2,412 | 2,453 | 2,340 | 2,412 | 2,340 | 2,563 | 2,340 | 2,436         | 2,360    | 0,076     | 0,077                            | 0,078                  |        |           |
| 2,563 | 2,376           | 2,476 | 2,376 | 2,563 | 2,376 | 2,563 | 2,453 | 2,412 | 2,563 | Tr. VE Suc.   |          | are de    |                                  |                        |        |           |
| 2,340 | 2,453           | 2,563 | 2,412 | 2,453 | 2,401 | 2,476 | 2,376 | 2,453 | 2,340 | Unio ENC      |          | e little  | TRIPLE.                          | age, bu                |        |           |
| 2,412 | 2,340           | 2,476 | 2,563 | 2,412 | 2,340 | 2,401 | 2,340 | 2,401 | 2,563 | dig and       |          | siliti    | Man dan                          | in Star Be             |        |           |
| 2,453 | 2,563           | 2,453 | 2,340 | 2,401 | 2,563 | 2,412 | 2,563 | 2,476 | 2,453 | 101           |          | Still Co. | on Shorter                       | Smiles.                |        |           |
| 2,340 | 2,401           | 2,340 | 2,563 | 2,453 | 2,340 | 2,563 | 2,401 | 2,340 | 2,563 | O. College    |          | Dife.     | TO NO. THE                       | addin.                 |        |           |





FIN DEL DOCUMENTO





# CERTIFICADO DE CALIBRACIÓN Nº LL - 327 - 2022

Página : 1 de 2

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones

certificados con trazabilidad a la Dirección de

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le

corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

Metrología del INACAL y otros.

reglamentaciones vigentes.

calibración aquí declarados

Expediente Fecha de Emisión : T 071-2022

Toolia do Elillolo.

: 2022-03-08

Solicitante

: GEOTEST PERU S.A.C

Dirección

: AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO -

CUSCO

2. Instrumento de Medición

: TAMIZ

Tamiz N

: 30

Diametro de Tamiz

: 8 pulg

Marca

: GRAN TEST

Serie

8619

Material

: BRONCE

Color

: DORADO

Código de Identificación

: NO INDICA

3. Lugar y fecha de Calibración

AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO - CUSCO

05 - MARZO - 2022

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

| INSTRUMENTO          | MARCA  | CERTIFICADO       | TRAZABILIDAD |
|----------------------|--------|-------------------|--------------|
| RETICULA DE MEDICIÓN | INSIZE | CCP-0340-008-2020 | ELICROM      |

# 6. Condiciones Ambientales

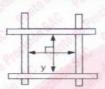
| cho blo        | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura °C | 16,3    | 16,2  |
| Humedad %      | 50      | 49    |

#### 7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

PUNTO DE PRECISIÓN SA C






CERTIFICADO DE CALIBRACIÓN Nº LL - 327 - 2022

Página : 2 de 2

#### 8. Resultados

|      |     | \$160 TE | N.  | IEDIDAS | TOMAD | AS  |     |     |     | PROMEDIO      | ESTÁNDAR | ERROR     | (*)<br>DESVIACIÓN<br>ESTANDAR |                             |       |
|------|-----|----------|-----|---------|-------|-----|-----|-----|-----|---------------|----------|-----------|-------------------------------|-----------------------------|-------|
|      |     |          |     | O COLOR | m     |     |     |     |     | μm            | um       | μm        | MÁXIMA                        | DESVIACIÓ<br>ESTANDAR<br>μm |       |
| 583  | 610 | 582      | 602 | 605     | 594   | 590 | 605 | 599 | 605 | S LOS         | Pitt     | pin       | in and                        | phi phi                     |       |
| 610  | 583 | 610      | 583 | 594     | 610   | 583 | 610 | 594 | 610 |               |          | Siece.    | 30 de la Ci                   | S 100                       |       |
| 605  | 599 | 602      | 605 | 599     | 583   | 605 | 594 | 583 | 605 |               | go, Sto  |           | 90. 6                         |                             | degra |
| 583  | 605 | 602      | 599 | 610     | 594   | 599 | 583 | 610 | 583 |               |          | Story Of  | E Build                       | AND SALV                    |       |
| 610  | 599 | 594      | 583 | 605     | 583   | 610 | 605 | 599 | 594 | punto isida   |          | Punte.    |                               | unta da Pr                  |       |
| 594  | 605 | 599      | 602 | 599     | 602   | 594 | 583 | 594 | 605 | TO BIELLIN    |          |           |                               |                             |       |
| 610  | 599 | 610      | 605 | 610     | 605   | 583 | 610 | 583 | 610 | 10 a          |          |           |                               | E BILL                      |       |
| 583  | 594 | 599      | 594 | 599     | 583   | 610 | 605 | 594 | 605 | 30,000        |          | 200       |                               | , a                         |       |
| 605  | 610 | 605      | 602 | 610     | 594   | 599 | 594 | 605 | 610 | 599           | 600      | -1        | 31,32                         | 9,49                        |       |
| 594  | 583 | 602      | 583 | 605     | 610   | 583 | 610 | 583 | 594 | Callego, only |          | ALL LEGIS | on per                        | Claid Shi                   |       |
| 605  | 610 | 599      | 594 | 599     | 602   | 605 | 583 | 599 | 610 | CHE 142       |          | britis    |                               |                             |       |
| 610  | 583 | 605      | 602 | 610     | 583   | 610 | 594 | 610 | 605 | T. Blan       | 620,     | 1000      |                               | All and                     |       |
| 594  | 605 | 583      | 605 | 583     | 594   | 599 | 610 | 583 | 610 | io ion SA     | - CO     | 10        | A. Chilippi                   | Victor P.                   |       |
| 610  | 583 | 594      | 610 | 599     | 605   | 583 | 599 | 605 | 594 | laga laga     | . BL     | OIL ST.   | ge, bay                       | Jalen 3                     |       |
| 605  | 599 | 610      | 594 | 602     | 599   | 610 | 594 | 610 | 605 | ball          |          | bin.      | ENC 16                        | annin d                     |       |
| 583  | 610 | 605      | 599 | 583     | 605   | 583 | 599 | 605 | 610 | To Store      | SA SA    | and left  | Palling C                     | and a second                |       |
| 594  | 583 | 594      | 610 | 594     | 599   | 605 | 594 | 610 | 594 | The CALL      | 200      | 200       | Callett San                   | Oggan o                     |       |
| 0.00 | 360 | all.     | nd. | Was     | 900   | .7. | 200 | 00  | -   | 100           | 00       | 100       | C. 00                         | 133                         |       |





FIN DEL DOCUMENTO





# CERTIFICADO DE CALIBRACIÓN Nº LL - 328 - 2022

Página: 1 de 2

El Equipo de medición con el modelo y

número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la

Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante

le corresponde disponer en su momento la

ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento del instrumento de medición o a

Punto de Precisión S.A.C no se responsabiliza

de los periuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

reglamentaciones vigentes.

calibración aquí declarados.

Expediente Fecha de Emisión : T 071-2022 : 2022-03-08

1. Solicitante

: GEOTEST PERU S.A.C.

Dirección

: AV. BRASIL MZA, C LOTE. 4 URB. QUISPICANCHI - CUSCO -

CUSCO

2. Instrumento de Medición

: TAMIZ

Tamiz N°

. 30

Diametro de Tamiz

: 8 pulg

Marca

: GRAN TEST

Serie

: 8104

Material

: BRONCE

Color

: DORADO

Código de Identificación

: NO INDICA

3. Lugar y fecha de Calibración

AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO - CUSCO

05 - MARZO - 2022

### 4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

#### 5. Trazabilidad

| INSTRUMENTO          | MARCA  | CERTIFICADO       | TRAZABILIDAD |
|----------------------|--------|-------------------|--------------|
| RETICULA DE MEDICIÓN | INSIZE | CCP-0340-008-2020 | ELICROM      |

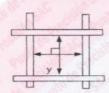
### 6. Condiciones Ambientales

| millio c       | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura °C | 16,3    | 16,2  |
| Humedad %      | 50      | 49    |

#### 7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

PUNTO DE PRECISIÓN S A C




CERTIFICADO DE CALIBRACIÓN Nº LL - 328 - 2022

Página: 2 de 2

### 8. Resultados

| PATERIO. | St. | 100 | No. | 25 1   | S. C. | CONTRACTOR OF THE PERSON OF TH | 70  |     |     | CONTRACTOR OF THE PARTY OF THE |              |             | (*)<br>DESVIACIÓN  |                       |
|----------|-----|-----|-----|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|--------------------|-----------------------|
|          |     |     | М   | EDIDAS |       | AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |     | PROMEDIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ESTÁNDAR     | ERROR       | ESTANDAR<br>MÁXIMA | DESVIACIÓ<br>ESTANDAR |
| 000      | 000 | 000 | 000 | p      | 100   | 0//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0   | 012 | NO. | μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μm           | μm          | μm                 | μm                    |
| 298      | 302 | 302 | 290 | 290    | 295   | 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 305 | 312 | 305 | acielo or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | " BOLEJA    |                    | 710 2 W               |
| 312      | 290 | 312 | 305 | 290    | 305   | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 312 | 298 | 312 | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | out of      |                    | diam bil              |
| 298      | 305 | 298 | 302 | 312    | 298   | 302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 305 | 290 | 305 | Toll a burg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 2 9         |                    | 110                   |
| 305      | 312 | 290 | 305 | 302    | 312   | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 298 | 312 | 305 | and the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | May div     | And and            |                       |
| 298      | 290 | 305 | 312 | 298    | 305   | 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 305 | 298 | 290 | oregign.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | ion Sha     |                    |                       |
| 312      | 305 | 305 | 298 | 290    | 312   | 302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 312 | 290 | 305 | e, baum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AND THE REST | 6 ng        |                    |                       |
| 298      | 290 | 302 | 290 | 305    | 305   | 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 302 | 305 | 312 | P.C. Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | C. cis      |                    |                       |
| 305      | 305 | 312 | 305 | 298    | 302   | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 305 | 290 | 305 | Pulito LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000000       | 6000        |                    |                       |
| 312      | 298 | 302 | 305 | 290    | 312   | 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 305 | 298 | 290 | Telph anto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | Slott "     | Mary Bill          |                       |
| 290      | 305 | 290 | 298 | 305    | 298   | 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 290 | 312 | 305 | 15 Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | ounto a     | in the marie       |                       |
| 305      | 298 | 312 | 290 | 302    | 305   | 302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 298 | 305 | 298 | 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300          | 910         | 20,29              | 7,36                  |
| 305      | 290 | 302 | 305 | 290    | 298   | 302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 305 | 290 | 305 | Se Sic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 00 di       | and the second     | Piego S               |
| 302      | 312 | 305 | 298 | 312    | 302   | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 305 | 302 | 298 | Egn. St. St.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 10 g        | beaution.          |                       |
| 290      | 302 | 305 | 302 | 305    | 305   | 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 298 | 312 | 305 | pullu leigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | brun.       | C Plen             | Will ye               |
| 305      | 305 | 298 | 290 | 298    | 312   | 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 290 | 305 | 290 | St. Prior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | elejon.     | Outo or 6          | an egiplen.           |
| 312      | 290 | 302 | 312 | 305    | 290   | 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 305 | 298 | 312 | . S. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 25          | in San Co          | S. Billing            |
| 305      | 312 | 305 | 290 | 298    | 312   | 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 302 | 290 | 305 | d'antode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 76.5/6/     | 6.00               | C PAI                 |
| 290      | 298 | 302 | 312 | 302    | 305   | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 302 | 312 | 298 | 160 520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No Transfer  | 000         | ore thin           | outo ac               |
| 298      | 305 | 290 | 305 | 290    | 298   | 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 290 | 305 | 305 | Speig, bill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | September 1 | No. PIC            | isin and              |
| 312      | 290 | 312 | 290 | 305    | 312   | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 305 | 312 | 290 | CHE MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | don         | Page 16 big        | 60.                   |





FIN DEL DOCUMENTO







# CERTIFICADO DE CALIBRACIÓN Nº LL - 329 - 2022

Página: 1 de 2

: T 071-2022 Expediente : 2022-03-08 Fecha de Emisión

1. Solicitante : GEOTEST PERU S.A.C

: AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO -Dirección

2. Instrumento de Medición : TAMIZ

Tamiz N° : 100

Diametro de Tamiz : 8 pulg

Marca : GRAN TEST

Serie : 8124

: BRONCE Material

Color : DORADO

Código de Identificación : NO INDICA El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento instrumento de medición 0 reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

#### 3. Lugar y fecha de Calibración

AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO - CUSCO

05 - MARZO - 2022

# 4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09

# 5. Trazabilidad

| INSTRUMENTO          | MARCA  | CERTIFICADO       | TRAZABILIDAD |
|----------------------|--------|-------------------|--------------|
| RETICULA DE MEDICIÓN | INSIZE | CCP-0340-008-2020 | ELICROM      |

### 6. Condiciones Ambientales

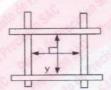
| all c          | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura °C | 16,3    | 16,3  |
| Humedad %      | 50      | 50    |

#### 7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C
- (\*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09

BORATOR **PUNTO DE** PRECISIÓN SAC






CERTIFICADO DE CALIBRACIÓN Nº LL - 329 - 2022

Página : 2 de 2

#### 8. Resultados

| 11/2 | 1   | 18, | 61. | ,      | 635   | Yas | 4/0 |     | 18/4 | 11/2         | 7/2      | 1           | (*)                              | 10.7                  |    |
|------|-----|-----|-----|--------|-------|-----|-----|-----|------|--------------|----------|-------------|----------------------------------|-----------------------|----|
|      |     |     | MI  | EDIDAS |       | AS  |     |     |      | PROMEDIO     | ESTÁNDAR | ERROR       | DESVIACIÓN<br>ESTANDAR<br>MÁXIMA | DESVIACIÓ<br>ESTANDAR |    |
| 145  | 152 | 152 | 153 | 143    | 160   | 155 | 160 | 151 | 145  | hw           | μm       | μm          | μm                               | μm                    |    |
| -    | -   | 190 |     | - 500  | N. A. | -   |     |     | 30   | an older     |          | _0016       | 186 (                            | - Marie               |    |
| 155  | 153 | 145 | 153 | 145    | 155   | 145 | 155 | 153 | 152  | 1091.0       |          | 64.04       | 10 " 11 2 h                      | and the same          |    |
| 145  | 152 | 151 | 152 | 155    | 153   | 152 | 153 | 152 | 145  | - H Sh.      |          | 0           | Sterrie de                       | Sept. 96              | 0. |
| 152  | 145 | 155 | 153 | 160    | 145   | 155 | 160 | 145 | 155  | Helm 86 St.  |          | 30          |                                  | 111 St. 111           |    |
| 155  | 160 | 145 | 151 | 145    | 151   | 153 | 145 | 152 | 153  | Punto        |          | Mules &     | i aredi                          | AR PER                |    |
| 145  | 153 | 151 | 152 | 160    | 155   | 152 | 155 | 153 | 145  |              |          | 101 31      | " you or                         |                       |    |
| 152  | 151 | 155 | 145 | 153    | 160   | 145 | 152 | 155 | 152  | To a Ship    |          | Sec. S.     |                                  |                       |    |
| 155  | 153 | 152 | 160 | 152    | 155   | 153 | 155 | 153 | 145  | 10 00        |          | 10 M        |                                  |                       |    |
| 145  | 145 | 153 | 152 | 155    | 155   | 160 | 151 | 152 | 160  | 120,090,     |          | 31 0160     |                                  |                       |    |
| 152  | 153 | 153 | 145 | 152    | 145   | 152 | 145 | 153 | 155  | 20,000       |          | 96,         |                                  |                       |    |
| 145  | 151 | 160 | 151 | 155    | 152   | 155 | 153 | 155 | 145  | Joll St.     |          | Till .      |                                  |                       |    |
| 152  | 153 | 152 | 145 | 145    | 155   | 153 | 152 | 160 | 152  | Sepa, Series |          | September 1 | 050                              |                       |    |
| 145  | 155 | 155 | 151 | 155    | 160   | 153 | 145 | 153 | 155  | 152          | 150      | 2           | 13,30                            | 4,59                  |    |
| 145  | 155 | 151 | 160 | 155    | 155   | 151 | 152 | 160 | 145  | 102          |          | 00          | Pariti de<br>Pariti de           | 2,35                  |    |
| 153  | 145 | 160 | 145 | 145    | 151   | 153 | 151 | 155 | 160  | Je "360      |          | 96,         |                                  |                       |    |
| 155  | 151 | 152 | 155 | 160    | 145   | 155 | 145 | 160 | 153  | The state of |          | 0,0         |                                  |                       |    |
| 152  | 153 | 145 | 145 | 153    | 151   | 160 | 152 | 155 | 155  | Mach of the  |          | 02.10       | De billion                       |                       |    |
| 145  | 155 | 160 | 152 | 151    | 152   | 153 | 160 | 153 | 145  | Pull di      |          | billion     | 1/2 640                          | 1000                  |    |
| 155  | 153 | 152 | 155 | 153    | 160   | 151 | 152 | 160 | 155  | P. Diller    |          | Pellat      | "HE GE                           | brilly "File          |    |
| 145  | 160 | 155 | 160 | 145    | 155   | 152 | 145 | 155 | 153  | 10 gp 21     |          | dep.        | ben all                          | 648pm                 |    |
| 153  | 152 | 160 | 145 | 151    | 153   | 151 | 155 | 153 | 152  | SHE .        |          | 310         | asidit                           | a. Sa                 |    |
| 145  | 153 | 155 | 152 | 153    | 160   | 145 | 151 | 160 | 145  | 100 3 109    | 1987 N   | all M       | in buy                           | Che .                 |    |
| 153  | 155 | 145 | 155 | 155    | 152   | 160 | 152 | 153 | 160  | bay, et      |          | 170 00      | 37 160                           | May to                |    |
| 155  | 145 | 151 | 152 | 145    | 160   | 155 | 145 | 151 | 152  | Tilleja S    |          | 190         | 10 bion                          | 30 31                 |    |
| 153  | 152 | 160 | 155 | 160    | 152   | 160 | 152 | 160 | 155  | 616n B       |          | Sito.       | 000 340                          | 9610                  |    |
| 155  | 153 | 152 | 153 | 153    | 145   | 151 | 153 | 155 | 153  | Ship         |          | 50          | Helon 10                         | 6                     |    |





FIN DEL DOCUMENTO







# LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO N° LC - 033



# CERTIFICADO DE CALIBRACIÓN Nº LM-083-2022

Página: 1 de 3

 Expediente
 T 071-2022

 Fecha de Emisión
 2022-03-09

1. Solicitante : GEOTEST PERU S.A.C

Dirección : AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI -

CUSCO - CUSCO

2. Instrumento de Medición : BALANZA

Marca : TORREY

Modelo : L-EQ5/10

Número de Serie : 5885

Alcance de Indicación : 5 kg

División de Escala : 0,001 kg

de Verificación (e)

División de Escala Real (d) : 0,001 kg

Procedencia : MEXICO

Identificación : NO INDICA

Tipo : ELECTRÓNICA

Ubicación : LABORATORIO

Fecha de Calibración : 2021-03-05

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2. La incertidumbre fue determinada según la "Guía para la Expresión de la incertidumbre en la medición". Generalmente, el valor de la magnitud está dentro del intervalo de los valores determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95 %.

Los resultados son válidos en el momento y en las condiciones en que se realizarón las mediciones y no debe ser utilizado como certificado de conformidad con normas de productos o como certificado del sistema de calidad de la entidad que lo produce.

Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

PUNTO DE PRECISIÓN S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

### 3. Método de Calibración

La calibración se realizó mediante el método de comparación según el PC-001 1ra Edición, 2019; Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase III y IIII del INACAL-DM.

#### 4. Lugar de Calibración

LABORATORIO de GEOTEST PERU S.A.C

AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO - CUSCO







# LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO N° LC - 033



CERTIFICADO DE CALIBRACIÓN Nº LM-083-2022

#### 5. Condiciones Ambientales

| The How willing  | Mínima | Máxima |
|------------------|--------|--------|
| Temperatura      | 15,9   | 16,0   |
| Humedad Relativa | 51,2   | 51,2   |

#### Trazabilidad

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

| Trazabilidad  | Patrón utilizado              | Certificado de calibración |
|---------------|-------------------------------|----------------------------|
| INACAL - DM   | Juego de pesas (exactitud F1) | PE21-C-0084-2021           |
| INACAL - DIVI | Pesa (exactitud F1)           | M-0527-2020                |

#### 7. Observaciones

(\*) La balanza se calibró hasta una capacidad de 5,000 kg

Antes del ajuste, la indicación de la balanza fue de 4,995 kg para una carga de 5,000 kg

El ajuste de la balanza se realizó con las pesas de Punto de Precisión S.A.C.

Los errores máximos permitidos (e.m.p.) para esta balanza corresponden a los e.m.p. para balanzas en uso de funcionamiento no automático de clase de exactitud III, según la Norma Metrológica Peruana 003 - 2009. Instrumentos de Pesaje de Funcionamiento no Automático.

Se colocó una etiqueta autoadhesiva de color verde con la indicación de "CALIBRADO".

Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

# 8. Resultados de Medición

| Property of the  | INSPECCIÓ | N VISUAL       |          |
|------------------|-----------|----------------|----------|
| AJUSTE DE CERO   | TIENE     | ESCALA         | NO TIENE |
| OSCILACIÓN LIBRE | TIENE     | CURSOR         | NO TIENE |
| PLATAFORMA       | TIENE     | SIST. DE TRABA | NO TIENE |
| NIVELACIÓN       | TIENE     |                |          |

#### **ENSAYO DE REPETIBILIDAD** Inicial

15.9

Final

|          |           | ramp. (   | -1-1-   | 2.717     |         |         |
|----------|-----------|-----------|---------|-----------|---------|---------|
| Medición | Carga L1= | 2,500     | kg      | Carga L2= | 5,000   | kg      |
| N°       | I (kg)    | ΔL (kg)   | E (kg)  | I (kg)    | ΔL (kg) | E (kg)  |
| 001 00   | 2,500     | 0,0008    | -0,0003 | 5,001     | 0,0006  | 0,0009  |
| 2        | 2,500     | 0,0007    | -0,0002 | 5,000     | 0,0009  | -0,0004 |
| 3        | 2,501     | 0,0006    | 0,0009  | 5,000     | 0,0006  | -0,0001 |
| 4        | 2,500     | 0,0009    | -0,0004 | 5,001     | 0,0007  | 0,0008  |
| 5        | 2,500     | 0,0006    | -0,0001 | 5,000     | 0,0006  | -0,0001 |
| 6        | 2,500     | 0,0006    | -0,0001 | 5,000     | 0,0009  | -0,0004 |
| 7        | 2,500     | 0,0008    | -0,0003 | 5,001     | 0,0006  | 0,0009  |
| 8        | 2,500     | 0,0009    | -0,0004 | 5,001     | 0,0008  | 0,0007  |
| 9        | 2,500     | 0,0006    | -0,0001 | 5,001     | 0,0008  | 0,0007  |
| 10       | 2,500     | 0,0007    | -0,0002 | 5,000     | 0,0006  | -0,0001 |
|          | 170.1     | -10. O.C. | 0.0040  |           | CAN DIE | 0.0040  |







# LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO N° LC - 033



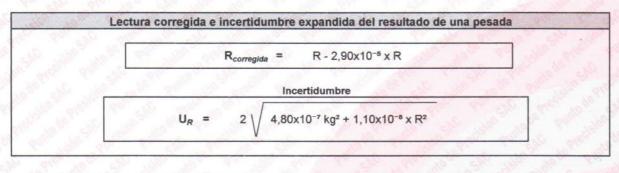
CERTIFICADO DE CALIBRACIÓN Nº LM-083-2022

Página: 3 de 3

| 2 |   | 5 |
|---|---|---|
| 3 | 1 | 4 |

#### **ENSAYO DE EXCENTRICIDAD**

|           | Inicial | Final |   |
|-----------|---------|-------|---|
| emp. (°C) | 16,0    | 16,0  | 1 |


| Posición       |                   | Determinaci | ión de E <sub>0</sub> | Y AT    |              | Determinación | del Error co | orregido |         |
|----------------|-------------------|-------------|-----------------------|---------|--------------|---------------|--------------|----------|---------|
| de la<br>Carga | Carga mínima (kg) | I (kg)      | ΔL (kg)               | Eo (kg) | Carga L (kg) | l (kg)        | ΔL (kg)      | E (kg)   | Ec (kg) |
| 1              | 10 SP 10          | 0,010       | 0,0007                | -0,0002 |              | 1,500         | 0,0006       | -0,0001  | 0,0001  |
| 2              | 19/01/19/19       | 0,010       | 0,0006                | -0,0001 | you down     | 1,500         | 0,0008       | -0,0003  | -0,0002 |
| 3              | 0,010             | 0,010       | 0,0008                | -0,0003 | 1,500        | 1,500         | 0,0007       | -0,0002  | 0,0001  |
| 4              | 100 00            | 0,010       | 0,0006                | -0,0001 | 200 200      | 1,500         | 0,0006       | -0,0001  | 0,0000  |
| 5              | Sales and         | 0,010       | 0,0008                | -0,0003 | 13           | 1,500         | 0,0007       | -0,0002  | 0,0001  |
| valor entre    | 0 y 10 e          | GV.         | - M                   |         | Error máximo | permitido :   | ±            | 0.002 kg | (3) X   |

#### **ENSAYO DE PESAJE**

Inicial Final Final Femp. (°C) 16,0 16,0

| Carga L |        | CRECIEN | NTES    |         |        | DECRECI | ENTES   | THE LO  | ± emp |
|---------|--------|---------|---------|---------|--------|---------|---------|---------|-------|
| (kg)    | I (kg) | ΔL (kg) | E (kg)  | Ec (kg) | I (kg) | ΔL (kg) | E (kg)  | Ec (kg) | (kg)  |
| 0,0100  | 0,010  | 0,0008  | -0,0003 |         |        |         |         |         |       |
| 0,0200  | 0,020  | 0,0007  | -0,0002 | 0,0001  | 0,020  | 0,0008  | -0,0003 | 0,0000  | 0,001 |
| 0,1000  | 0,100  | 0,0009  | -0,0004 | -0,0001 | 0,100  | 0,0008  | -0,0003 | 0,0000  | 0,001 |
| 0,2000  | 0,200  | 0,0006  | -0,0001 | 0,0002  | 0,200  | 0,0009  | -0,0004 | -0,0001 | 0,001 |
| 0,5000  | 0,500  | 0,0007  | -0,0002 | 0,0001  | 0,500  | 0,0009  | -0,0004 | -0,0001 | 0,001 |
| 0,7000  | 0,700  | 0,0006  | -0,0001 | 0,0002  | 0,700  | 0,0006  | -0,0001 | 0,0002  | 0,002 |
| 1,0000  | 1,000  | 0,0008  | -0,0003 | 0,0000  | 1,000  | 0,0007  | -0,0002 | 0,0001  | 0,002 |
| 1,5000  | 1,500  | 0,0007  | -0,0002 | 0,0001  | 1,500  | 0,0008  | -0,0003 | 0,0000  | 0,002 |
| 2,0000  | 2,000  | 0,0008  | -0,0003 | 0,0000  | 2,000  | 0,0006  | -0,0001 | 0,0002  | 0,002 |
| 4,0000  | 4,000  | 0,0007  | -0,0002 | 0,0001  | 4,000  | 0,0008  | -0,0003 | 0,0000  | 0,003 |
| 5,0000  | 5,000  | 0,0006  | -0,0001 | 0,0002  | 5,000  | 0,0006  | -0,0001 | 0,0002  | 0,003 |

e.m.p.: error máximo permitido



t: Lectura de la balanza ΔL:

L: Carga Incrementada

Error encontrado

E<sub>o</sub>: Error en cero

E. E

Error corregido

R: en kg

FIN DEL DOCUMENTO







# LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO N° LC - 033



# CERTIFICADO DE CALIBRACIÓN Nº LM-084-2022

Página: 1 de 3

 Expediente
 T 071-2022

 Fecha de Emisión
 2022-03-09

1. Solicitante : GEOTEST PERU S.A.C

Dirección : AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI -

cusco - cusco

2. Instrumento de Medición : BALANZA

Marca : OHAUS

Modelo : TAJ602

Número de Serie : B131184633

Alcance de Indicación : 600 g

División de Escala

de Verificación (e)

: 0,01 g

División de Escala Real (d) : 0,01 g

Procedencia : CHINA

Identificación : NO INDICA

Tipo : ELECTRÓNICA

Ubicación : LABORATORIO

Fecha de Calibración : 2021-03-05

La incertidumbre reportada en el presente certificado es incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2. La incertidumbre fue determinada según la "Guía para la Expresión de la incertidumbre en la medición". Generalmente, el valor de la magnitud está dentro del intervalo de los valores determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95 %.

Los resultados son válidos en el momento y en las condiciones en que se realizarón las mediciones y no debe ser utilizado como certificado de conformidad con normas de productos o como certificado del sistema de calidad de la entidad que lo produce.

Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

PUNTO DE PRECISIÓN S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

### 3. Método de Calibración

La calibración se realizó mediante el método de comparación según el PC-011 4ta Edición, 2010; Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase I y II del SNM-INDECOPI.

#### 4. Lugar de Calibración

LABORATORIO de GEOTEST PERU S.A.C

AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO - CUSCO







# LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 033



CERTIFICADO DE CALIBRACIÓN Nº LM-084-2022

Página: 2 de 3

#### 5. Condiciones Ambientales

| The Hall walls   | Mínima | Máxima |
|------------------|--------|--------|
| Temperatura      | 15,8   | 15,9   |
| Humedad Relativa | 47,4   | 50,3   |

#### 6. Trazabilidad

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

| Trazabilidad | Patrón utilizado              | Certificado de calibración |
|--------------|-------------------------------|----------------------------|
| INACAL - DM  | Juego de pesas (exactitud F1) | PE21-C-0084-2021           |

#### 7. Observaciones

(\*) La balanza se calibró hasta una capacidad de 600,00 g

Antes del ajuste, la indicación de la balanza fue de 599,59 g para una carga de 600,00 g

El ajuste de la balanza se realizó con las pesas de Punto de Precisión S.A.C.

Los errores máximos permitidos (e.m.p.) para esta balanza corresponden a los e.m.p. para balanzas en uso de funcionamiento no automático de clase de exactitud II, según la Norma Metrológica Peruana 003 - 2009. Instrumentos de Pesaje de Funcionamiento no Automático.

Se colocó una etiqueta autoadhesiva de color verde con la indicación de "CALIBRADO".

Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

#### 8. Resultados de Medición

|                  | INSPECCIÓ | N VISUAL        |          |
|------------------|-----------|-----------------|----------|
| AJUSTE DE CERO   | TIENE     | ESCALA          | NO TIENE |
| OSCILACIÓN LIBRE | TIENE     | CURSOR          | NO TIENE |
| PLATAFORMA       | TIENE     | SIST. DE TRABA  | NO TIENE |
| NIVELACIÓN       | TIENE     | <b>明</b> 《温度》 通 |          |

#### **ENSAYO DE REPETIBILIDAD**

|            | Inicial | Final |
|------------|---------|-------|
| Temp. (°C) | 15,8    | 15,8  |

| Medición       | Carga L1=     | 300,00 | 9      | Carga L2=              | 600,00 g |        |
|----------------|---------------|--------|--------|------------------------|----------|--------|
| N°             | l (g)         | ΔL (g) | E (g)  | l (g)                  | ΔL (g)   | E (g)  |
| 1 0            | 299,99        | 0,008  | -0,014 | 600,00                 | 0,006    | -0,002 |
| 2              | 300,00        | 0,007  | -0,003 | 600,00                 | 0,007    | -0,003 |
| 3              | 300,00        | 0,006  | -0,002 | 600,00                 | 0,008    | -0,004 |
| 4              | 300,00        | 0,008  | -0,004 | 600,00                 | 0,008    | -0,004 |
| 5              | 300,00        | 0,006  | -0,002 | 600,00                 | 0,006    | -0,002 |
| 6              | 300,00        | 0,007  | -0,003 | 600,00                 | 0,007    | -0,003 |
| 7              | 300,00        | 0,008  | -0,004 | 600,00                 | 0,006    | -0,002 |
| 8              | 300,00        | 0,009  | -0,005 | 600,00                 | 0,009    | -0,005 |
| 9              | 300,00        | 0,006  | -0,002 | 600,01                 | 0,006    | 0,008  |
| 10             | 300,00        | 0,007  | -0,003 | 600,01                 | 0,007    | 0,007  |
| erencia Máxima | Second of the | 2 6/2  | 0,012  | Contract of the second | 361 16   | 0,013  |
| or máximo perm | tido ±        | 0,03   | g      | ±                      | 0,03     | g      |

PUNTO DE PRECISIÓN S A C
PT-06.F06 / Diciembre 2016 / Rev 02





# LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 033



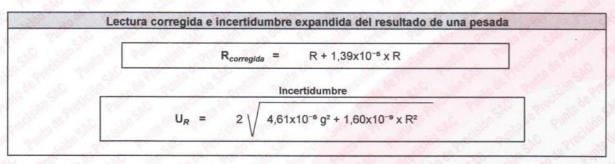
CERTIFICADO DE CALIBRACIÓN Nº LM-084-2022

Página: 3 de 3

2 5 1 4

#### **ENSAYO DE EXCENTRICIDAD**

|            | Inicial | Final |
|------------|---------|-------|
| Temp. (°C) | 15,8    | 15,8  |


| Posición       | sia - astr       | Determinaci | ión de E <sub>0</sub> |        | Determinación del Error corregido |               |        |        |        |  |
|----------------|------------------|-------------|-----------------------|--------|-----------------------------------|---------------|--------|--------|--------|--|
| de la<br>Carga | Carga mínima (g) | 1 (g)       | ΔL (g)                | Eo (g) | Carga L (g)                       | 1(g)          | ΔL (g) | E (g)  | Ec (g) |  |
| 1_             | 1 18 NOV         | 0,09        | 0,007                 | -0,012 | S. Jakob                          | 200,00        | 0,007  | -0,002 | 0,010  |  |
| 2              | 12/0, 40,0       | 0,09        | 0,006                 | -0,011 |                                   | 199,99        | 0,008  | -0,013 | -0,002 |  |
| 3              | 0,10             | 0,10        | 0,008                 | -0,003 | 200,00                            | 200,00        | 0,007  | -0,002 | 0,001  |  |
| 4              | "Mr. 24.         | 0,10        | 0,007                 | -0,002 | 1000                              | 200,00        | 0,006  | -0,001 | 0,001  |  |
| 5              | 3 100            | 0,09        | 0,006                 | -0,011 | 700 30                            | 199,99        | 0,008  | -0,013 | -0,002 |  |
| valor entre (  | ) y 10 e         | 165Y        | The Table             | 103    | Error máxim                       | o permitido : | ±      | 0.03 g | P 3    |  |

#### **ENSAYO DE PESAJE**

Inicial Final
Femp. (°C) 15,8 15,9

| Carga L |        | CRECIEN | ITES   |        |        | DECRECI | ENTES  |        | ± emp |
|---------|--------|---------|--------|--------|--------|---------|--------|--------|-------|
| (g)     | l (g)  | ΔL (g)  | E (g)  | Ec (g) | l (g)  | ΔL(g)   | E (g)  | Ec (g) | (g)   |
| 0,100   | 0,10   | 0,008   | -0,003 |        |        |         |        |        |       |
| 0,200   | 0,20   | 0,007   | -0,002 | 0,001  | 0,20   | 0,006   | -0,001 | 0,002  | 0,01  |
| 5,000   | 5,00   | 0,006   | -0,001 | 0,002  | 5,00   | 0,009   | -0,004 | -0,001 | 0,01  |
| 20,000  | 20,00  | 0,007   | -0,002 | 0,001  | 20,00  | 0,007   | -0,002 | 0,001  | 0,01  |
| 50,000  | 49,99  | 0,006   | -0,011 | -0,008 | 50,00  | 0,006   | -0,001 | 0,002  | 0,01  |
| 100,000 | 100,00 | 0,007   | -0,002 | 0,001  | 100,00 | 0,007   | -0,002 | 0,001  | 0,02  |
| 150,000 | 149,99 | 0,006   | -0,011 | -0,008 | 149,99 | 0,006   | -0,011 | -0,008 | 0,02  |
| 200,000 | 199,99 | 0,008   | -0,013 | -0,010 | 199,99 | 0,007   | -0,012 | -0,009 | 0,02  |
| 400,001 | 400,00 | 0,007   | -0,003 | 0,000  | 400,00 | 0,009   | -0,005 | -0,002 | 0,03  |
| 500,000 | 500,00 | 0,008   | -0,003 | 0,000  | 499,99 | 0,007   | -0,012 | -0,009 | 0,03  |
| 600,001 | 600,00 | 0,007   | -0,003 | 0,000  | 600,00 | 0,007   | -0,003 | 0,000  | 0,03  |

e.m.p.: error máximo permitido



and the second second

Carga Incrementada

Error encontra

E<sub>o</sub>: Error en cero

E.

Error corregido

R: en g

FIN DEL DOCUMENTO







# CERTIFICADO DE CALIBRACIÓN Nº LT - 705 - 2022

Página : 1 de 4

Expediente Fecha de emisión : T 071-2022 : 2022-03-08

1. Solicitante

: GEOTEST PERU S.A.C

Dirección

: AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI -

CUSCO - CUSCO

2. Instrumento de Medición

: ESTUFA

Indicación

: ANALÓGICO

Marca del Equipo

: ARMS

Modelo del Equipo

: NO INDICA

Serie del Equipo

: ECS15/001203619

Capacidad del Equipo

: 14 L

Código de Identificación

: NO INDICA

Marca de indicador Modelo de indicador : NO INDICA : NO INDICA

Serie de indicador Temperatura calibrada : NO INDICA

emperatura calibra

: 110 °C

Procedencia

: PERÚ

indicados ha sido calibrado, probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la

El instrumento de medición con el

modelo y número de serie abajo

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precision S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

# 3. Lugar y fecha de Calibración

AV. BRASIL MZA. C LOTE. 4 URB. QUISPICANCHI - CUSCO - CUSCO 05 - MARZO - 2022

# 4. Método de Calibración

La calibración se efectuó según el procedimiento de calibración PC-018 del Servicio Nacional de Metrología del INACAL - DM.

# 5. Trazabilidad

| INSTRUMENTO        | MARCA   | CERTIFICADO   | TRAZABILIDAD |
|--------------------|---------|---------------|--------------|
| TERMOMETRO DIGITAL | APPLENT | 150-CT-T-2020 | INACAL - DM  |

# 6. Condiciones Ambientales

| The Party of the | INICIAL | FINAL |
|------------------|---------|-------|
| Temperatura °C   | 16,9    | 17,2  |
| Humedad %        | 50      | 50    |

### 7. Conclusiones

La estufa se encuentra fuera de los rangos 110 °C  $\pm 5$  °C para la realización de los ensayos de laboratorio según la norma ASTM.

#### 8. Observaciones

Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.







CERTIFICADO DE CALIBRACION Nº LT - 705 - 2022

Página : 2 de 4

#### CALIBRACIÓN PARA 110 °C

| Tiempo | Ind. (°C)       | to h           |       |       |       | LAS PO | SICIONE |       |        |       | 55     | T. prom  | ΔTMax  |
|--------|-----------------|----------------|-------|-------|-------|--------|---------|-------|--------|-------|--------|----------|--------|
| P. C.  | Temperatura del | NIVEL INFERIOR |       |       |       |        | da F    | NIVE  | L SUPE | RIOR  | 15/10. | 1. prom  | - TMin |
| (min.) | equipo          | 1 10           | 2     | 3     | 4     | 5      | 6       | 7     | 8      | 9     | 10     | (°C)     | (°C)   |
| 0      | 110,0           | 101,2          | 110,5 | 108,5 | 107,5 | 104,6  | 111,8   | 103,7 | 105,0  | 106,3 | 105,0  | 106,4    | 10,6   |
| 2      | 110,0           | 99,8           | 108,1 | 106,7 | 105,8 | 101,5  | 109,9   | 102,6 | 103,8  | 104,5 | 105,4  | 104,8    | 10,1   |
| 4      | 110,0           | 99,9           | 108,1 | 106,7 | 105,8 | 101,0  | 109,9   | 102,4 | 103,6  | 104,6 | 105,1  | 104,7    | 10,0   |
| 6      | 110,0           | 102,2          | 109,1 | 107,9 | 107,6 | 99,7   | 111,3   | 104,8 | 105,9  | 105,7 | 105,0  | 105,9    | 11,6   |
| 8      | 110,0           | 102,1          | 109,0 | 108,0 | 107,6 | 99,8   | 111,5   | 104,4 | 105,4  | 105,8 | 104,2  | 105,8    | 11,7   |
| 10     | 110,0           | 101,5          | 109,2 | 108,1 | 107,4 | 102,2  | 111,6   | 104,1 | 105,1  | 105,7 | 104,6  | 106,0    | 10,1   |
| 12     | 110,0           | 101,0          | 109,2 | 108,1 | 106,7 | 101,5  | 111,6   | 103,8 | 105,0  | 105,6 | 104,4  | 105,7    | 10,6   |
| 14     | 110,0           | 99,6           | 109,0 | 107,7 | 106,7 | 103,7  | 111,2   | 102,9 | 104,2  | 105,4 | 104,9  | 105,5    | 11,6   |
| 16     | 110,0           | 99,7           | 109,1 | 107,7 | 107,7 | 104,6  | 111,4   | 102,8 | 104,2  | 105,4 | 104,8  | 105,7    | 11,7   |
| 18     | 110,0           | 101,5          | 109,5 | 108,2 | 107,7 | 109,1  | 111,8   | 104,6 | 105,9  | 106,0 | 104,7  | 106,9    | 10,3   |
| 20     | 110,0           | 102,1          | 109,7 | 108,3 | 107,9 | 104,6  | 111,9   | 104,9 | 106,2  | 106,2 | 104,6  | 106,6    | 9,8    |
| 22     | 110,0           | 101,2          | 108,1 | 108,0 | 105,8 | 99,7   | 111,8   | 104,4 | 103,6  | 104,6 | 105,0  | 105,2    | 12,1   |
| 24     | 110,0           | 101,0          | 109,0 | 108,5 | 107,6 | 101,5  | 109,9   | 103,7 | 104,2  | 105,8 | 105,1  | 105,6    | 8,9    |
| 26     | 110,0           | 99,8           | 110,5 | 106,7 | 107,4 | 102,2  | 111,3   | 104,4 | 103,6  | 104,5 | 105,4  | 105,6    | 11,5   |
| 28     | 110,0           | 101,2          | 109,0 | 107,7 | 106,7 | 104,6  | 111,8   | 103,7 | 105,0  | 104,6 | 105,0  | 105,9    | 10,6   |
| 30     | 110,0           | 101,0          | 110,5 | 108,5 | 105,8 | 99,7   | 111,5   | 102,4 | 104,2  | 105,8 | 105,1  | 105,5    | 11,8   |
| 32     | 110,0           | 102,1          | 109,0 | 108,0 | 106,7 | 102,2  | 111,8   | 104,1 | 105,0  | 104,5 | 105,4  | 105,9    | 9,7    |
| 34     | 110,0           | 99,8           | 109,2 | 107,7 | 107,6 | 101,5  | 111,3   | 103,7 | 104,2  | 105,8 | 105,0  | 105,6    | 11,5   |
| 36     | 110,0           | 101,0          | 110,5 | 108,5 | 107,4 | 99,7   | 111,5   | 102,4 | 105,0  | 104,5 | 105,1  | 105,6    | 11,8   |
| 38     | 110,0           | 101,2          | 108,1 | 106,7 | 107,6 | 101,5  | 111,8   | 104,4 | 103,6  | 104,6 | 105,0  | 105,5    | 10,6   |
| 40     | 110,0           | 102,1          | 109,2 | 108,0 | 107,4 | 104,6  | 109,9   | 102,4 | 105,0  | 105,8 | 105,1  | 106,0    | 7,8    |
| 42     | 110,0           | 99,8           | 110,5 | 106,7 | 107,6 | 102,2  | 111,3   | 104,4 | 104,2  | 104,5 | 105,4  | 105,7    | 11,5   |
| 44     | 110,0           | 101,2          | 108,1 | 107,7 | 106,7 | 101,5  | 109,9   | 103,7 | 105,0  | 104,6 | 105,1  | 105,4    | 8,7    |
| 46     | 110,0           | 101,0          | 109,0 | 108,0 | 107,4 | 104,6  | 111,8   | 104,4 | 103,6  | 104,5 | 105,0  | 105,9    | 10,8   |
| 48     | 110,0           | 102,1          | 108,1 | 108,5 | 105,8 | 99,7   | 111,5   | 103,7 | 104,2  | 105,8 | 105,0  | 105,4    | 11,8   |
| 50     | 110,0           | 99,8           | 109,2 | 106,7 | 107,6 | 102,2  | 111,3   | 104,1 | 105,0  | 104,6 | 105,1  | 105,6    | 11,5   |
| 52     | 110,0           | 101,0          | 109,0 | 107,7 | 107,4 | 99,7   | 111,5   | 104,4 | 103,6  | 105,8 | 105,4  | 105,6    | 11,8   |
| 54     | 110,0           | 99,8           | 108,1 | 108,0 | 105,8 | 101,5  | 111,3   | 103,7 | 104,2  | 104,6 | 105,0  | 105,2    | 11,5   |
| 56     | 110,0           | 102,1          | 109,0 | 108,5 | 106,7 | 102,2  | 109,9   | 102,4 | 103,6  | 105,8 | 105,1  | 105,5    | 7,8    |
| 58     | 110,0           | 101,2          | 108,1 | 107,7 | 107,6 | 99,7   | 111,8   | 103,7 | 105,0  | 104,5 | 105,0  | 105,4    | 12,1   |
| 60     | 110,0           | 101,0          | 110,5 | 108,0 | 107,4 | 102,2  | 111,3   | 102,4 | 104,2  | 104,6 | 105,4  | 105,7    | 10,3   |
| PROM   | 110,0           | 101,0          | 109,1 | 107,8 | 107,0 | 102,1  | 111,2   | 103,7 | 104,5  | 105,2 | 105,0  | 105,7    | 1      |
| . MAX  | 110,0           | 102,2          | 110,5 | 108,5 | 107,9 | 109,1  | 111,9   | 104,9 | 106,2  | 106,3 | 105,4  | 100      |        |
| . MIN  | 110,0           | 99,6           | 108,1 | 106,7 | 105,8 | 99,7   | 109,9   | 102,4 | 103,6  | 104,5 | 104,2  | 90       |        |
| HO S   | 0,0             | 2,6            | 2,4   | 1,8   | 2,1   | 9,4    | 2,0     | 2,5   | 2,6    | 1,8   | 1,2    | The same |        |

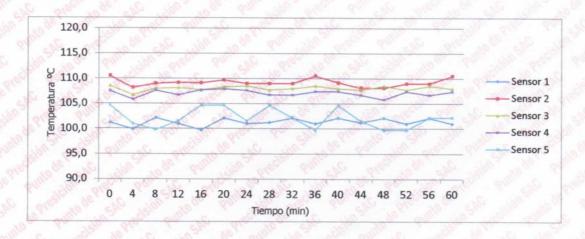
| Parámetro                               | Valor (°C) | Incertidumbre<br>Expandida (°C) |
|-----------------------------------------|------------|---------------------------------|
| Máxima Temperatura Medida               | 111,9      | 0,4                             |
| Mínima Temperatura Medida               | 99,6       | 0,5                             |
| Desviación de Temperatura en el Tiempo  | 9,4        | 0,2                             |
| Desviación de Temperatura en el Espacio | 10,3       | 0,3                             |
| Estabilidad Media ( ± )                 | 4,7        | 0,02                            |
| Uniformidad Media                       | 12,3       | 0,1                             |

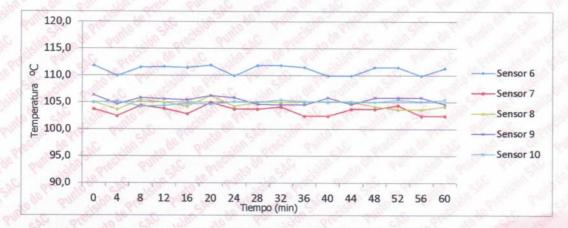
Para cada posición de medición su "desviación de temperatura en el tiempo" DTT esta dada por la diferencia entre la máxima y la mínima temperatura registradas en dicha posición

Entre dos posiciones de medición su "desviación de temperatura en el espacio" esta dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.

La incertidumbre expandida de la medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k =2 que, para una distribución normal corresponde a una probabilidad de cobertura de apróximadamente 95 %.






CERTIFICADO DE CALIBRACION Nº LT - 705 - 2022

Página : 3 de 4

### TEMPERATURA DE TRABAJO 110°C











# CERTIFICADO DE CALIBRACIÓN N° LMA-066-2023

#### Laboratorio de Metrología

Fecha de emisión

2023/03/27

Solicitante

**CONSULTORIA EN GEOLOGIA E INGENIERIA CIVIL** 

E.I.R.L.

Dirección

A.H. S. HERRERA MZ. Q LT. 8 - CUSCO CUSCO WANCHAQ

Instrumento de medición

BALANZA

Identificación

NO INDICA

Intervalo de indicación

30000 g

División de escala

Resolución

1g

División de verificación 1 g

(e)

Tipo de indicación

Digital

Marca / Fabricante

**OHAUS** 

Modelo

**R21PE30** 

N° de serie

8340110204

Procedencia

**ESTADOS UNIDOS** 

Ubicación

Laboratorio de suelos

Lugar de calibración

Laboratorio ARSOU GROUP S.A.C.

Fecha de calibración

2023/03/27

### Método/Procedimiento de calibración

"Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase III y IIII" (PC-001) del SNM-INDECOPI, 3era edición Enero 2009 y la Norma Metrológica Peruana "Instrumentos de Pesaje de Funcionamiento No Automático (NMP 003:2009)

Este certificado de calibración documenta la trazabilidad patrones nacionales Internacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades

Los resultados son válidos en el momento de la calibración. Al solicitante le corresponde disponer en su momento recalibrar sus Instrumentos a intervalos regulares, los cuales deben ser establecidos sobre la base de las características propias del instrumento, sus condiciones de uso, mantenimiento realizado conservación del instrumento de medición o de acuerdo a reglamentaciones vigentes.

ARSOU GROUP S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este Instrumento después de su calibración, ni de una incorrecta interpretación de los resultados de la calibración declarados en este documento.

Este certificado no podrá ser reproducido o difundido parcialmente, excepto con autorización previa por escrito de ARSOU GROUP S.A.C.



Ing. Hugo Cuis Arévalo Carnica



# CERTIFICADO DE CALIBRACIÓN N° LMA-066-2023

# Laboratorio de Metrología

# Patrones e Instrumentos auxiliares

| Trazabilidad        | Patrón Utilizado            | Certificado de Calibración |
|---------------------|-----------------------------|----------------------------|
| PESATEC PERÚ S.A.C. | Juego de Pesas de 1mg a 1kg | 1226-MPES-C-2022           |
| PESATEC PERÚ S.A.C. | Juego de Pesas de 1g a 1kg  | 1227-MPES-C-2022           |
| PESATEC PERÚ S.A.C. | Pesa Patrón de 5kg          | 1228-MPES-C-2022           |
| PESATEC PERÚ S.A.C. | Pesa Patrón de 10 kg        | 1229-MPES-C-2022           |
| PESATEC PERÚ S.A.C. | Pesa Patrón de 20kg         | 1230-MPES-C-2022           |

#### Condiciones ambientales durante la calibración

Temperatura Ambiental

Inicial: 27 ºC

Final: 27 ºC

**Humedad Relativa** 

Inicial: 81 %hr

Final: 81 %hr

# Resultados

# **ENSAYO DE REPETIBILIDAD**

| Medición | Carga L1= | 15000  | g      | Carga L1= | 30000  | g      |
|----------|-----------|--------|--------|-----------|--------|--------|
| N°       | I (g)     | ΔL (g) | E (g)  | 1 (g)     | ΔL (g) | E (g)  |
| 1        | 15000.0   | 0.001  | -0.001 | 30001.0   | 0.007  | -0.004 |
| 2        | 15000.0   | 0.002  | -0.004 | 30001.0   | 0.003  | -0.006 |
| 3        | 15000.0   | 0.007  | 0.005  | 30000.0   | 0.004  | -0.004 |
| 4        | 14999.0   | 0.001  | 0.001  | 2999.9    | 0.001  | -0.009 |
| 5        | 15000.0   | 0.004  | -0.007 | 30000.0   | 0.001  | -0.004 |
| 6        | 15000.0   | 0.001  | -0.005 | 30001.0   | 0.002  | -0.003 |
| 7        | 15000.0   | 0.003  | -0.003 | 30000.0   | 0.003  | -0.009 |
| 8        | 15000.0   | 0.009  | -0.001 | 29999.0   | 0.003  | -0.001 |
| 9        | 15000.0   | 0.007  | -0.002 | 29998.0   | 0.004  | -0.001 |
| 10       | 15000.0   | 0.005  | -0.003 | 30000.0   | 0.003  | -0.001 |

Carga Diferencia Máxima Encontrada Error Máximo Permitido (g) (g) (g) 15000 0 1 30000 0 5



# **CERTIFICADO DE CALIBRACIÓN** N° LMA-066-2023

Laboratorio de Metrología

#### **ENSAYO DE EXCENTRICIDAD**

| Posición                   | D                               | etermina | ción de E <sub>O</sub> |        | Determinación de E <sub>O</sub> |        |        |        |        |
|----------------------------|---------------------------------|----------|------------------------|--------|---------------------------------|--------|--------|--------|--------|
| de la Carga M<br>Carga (g) | Carga Mín <sup>(1)</sup><br>(g) | 1 (g)    | ΔL (g)                 | E0 (g) | Carga L (g)                     | l (kg) | ΔL (g) | E (g)  | Ec (g) |
| 1                          |                                 | 500      | 0.005                  | -0.001 |                                 | 10000  | 0.006  | -0.001 | 0.001  |
| 2                          |                                 | 500      | 0.006                  | -0.004 |                                 | 10000  | 0.005  | 0.004  | 0.002  |
| 3                          | 500                             | 500      | 0.005                  | 0.001  | 10000                           | 10000  | 0.003  | 0.001  | 0.001  |
| 4                          |                                 | 499      | 0.007                  | 0.003  | <b>1</b> i                      | 10002  | 0.001  | 0.002  | -0.001 |
| 5                          |                                 | 499      | 0.009                  | -0.006 | ľ                               | 10001  | 0.002  | -0.002 | -0.002 |

#### **ENSAYO DE PESAJE**

| Carga L |       | Crecie | entes  |                    |       | Decrec | ientes |                    | EMP <sup>(2)</sup> |
|---------|-------|--------|--------|--------------------|-------|--------|--------|--------------------|--------------------|
| (g)     | I (g) | ΔL (g) | E (g)  | E <sub>c</sub> (g) | 1 (g) | ΔL (g) | E (g)  | E <sub>c</sub> (g) | (±g)               |
| 1       | 1     | 0.010  | 0.001  | 0.001              |       |        |        | 1,107              | 1-0/               |
| 5       | 5     | 0.030  | 0.003  | -0.002             | 5     | 0.008  | -0.005 | -0.002             | 0.1                |
| 10      | 10    | 0.020  | -0.002 | 0.003              | 10    | 0.006  | -0.001 | 0.003              | 0.1                |
| 50      | 50    | 0.002  | -0.001 | 0.001              | 50    | 0.002  | -0.005 | 0.001              | 0.1                |
| 100     | 100   | 0.090  | 0.004  | 0.004              | 100   | 0.004  | 0.006  | 0.008              | 0.1                |
| 500     | 500   | 0.010  | 0.011  | -0.002             | 500   | 0.006  | 0.007  | 0.009              | 0.1                |
| 1000    | 1000  | 0.090  | -0.005 | 0.008              | 1000  | 0.001  | 0.009  | 0.001              | 0.1                |
| 5000    | 5000  | 0.019  | 0.008  | 0.007              | 5000  | 0.007  | 0.001  | -0.005             | 0.1                |
| 10000   | 10000 | 0.010  | 0.014  | 0.001              | 10000 | 0.017  | -0.005 | -0.001             | 0.1                |
| 20000   | 20000 | 0.060  | 0.004  | 0.011              | 20002 | 0.009  | -0.001 | 0.012              | 0.8                |
| 30000   | 30000 | 0.070  | 0.008  | 0.009              | 30000 | 0.005  | 0.004  | -0.002             | 0.8                |

### Leyenda

1: Indicación de la balanza

ΔL: Carga Incrementada

Error encontrado

En: Error en cero

Ec: Error corregido

EMP: Error máximo permitido

# INCERTIDUMBRE EXPANDIDA Y LECTURA CORREGIDA

Incertidumbre expandida de medición

0.25067 g 2 + 0.0000000006181 R2

R

Lectura Corregida

Roomenida = R + 0.838813027

R: Indicacion de lectura de balanza: (g)

# **Observaciones**

- 1. Antes de la calibración no se realizó ningún tipo de ajuste.
- 2. Los EMP para esta balanza, corresponden para balanzas en uso de funcionamiento no automático de clase de exactitud II según la Norma Metrológica Peruana NMP 003:2009
- 3. La incertidumbre de la medición ha sido calculada para un nivel de confianza de aproximadamente del 95 % con un factor de cobertura k=2.
- 4. (\*) Codigo indicado en una etiqueta adherida al instrumento.
- 5. Con fines de identificación se colocó una etiqueta autoadhesiva con la indicación "CALIBRADO"

ARSOU GROUP S.A.C.

Asoc. Viv. Las Flores de San Diego Mz C Lote 01, San Martin de Porres, Lima, Perú Telf: +51 301-1680 / Cel: +51 928 196 793 / Cel: +51 925 151 437 ventas@arsougroup.com rww.arsougroup.com



# CERTIFICADO DE CALIBRACIÓN N° LMA-065-2023

Laboratorio de Metrología

Fecha de emisión

2023/03/27

Solicitante

**CONSULTORIA EN GEOLOGIA E INGENIERIA CIVIL** 

Dirección

A.H. S. HERRERA MZ. Q LT. 8 - CUSCO CUSCO

WANCHAQ

Instrumento de medición

BALANZA

Identificación

**NO INDICA** 

Intervalo de Indicación

5000g

División de escala

0,1 g

Resolución

División de verificación (e) 0,1 g

Tipo de indicación

Digital

Marca / Fabricante

**ELECTRONIC SCALE** 

Modelo

NO INDICA

N° de serie

8542

Procedencia

**ESTADOS UNIDOS** 

Ubicación

Laboratorio de suelos

Lugar de calibración

Laboratorio ARSOU GROUP S.A.C.

Fecha de calibración

2023/03/27

#### Método/Procedimiento de calibración

"Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase III y IIII" (PC-001) del SNM-INDECOPI, 3era edición Enero 2009 y la Norma Metrológica Peruana "Instrumentos de Pesaje de Funcionamiento No Automático (NMP 003:2009)

Este certificado de calibración documenta la trazabilidad a patrones nacionales Internacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI)

Los resultados son válidos en el momento de la calibración. Al solicitante le corresponde disponer en su momento recalibrar sus instrumentos a intervalos regulares, los cuales deben ser establecidos sobre la base de las características propias del instrumento, sus condiciones de uso, mantenimiento realizado conservación del instrumento de medición o de acuerdo a reglamentaciones vigentes.

ARSOU GROUP S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento después de su calibración, ni de una incorrecta interpretación de los resultados de la calibración declarados en este documento.

Este certificado no podrá ser reproducido difundido 0 parcialmente, excepto con autorización previa por escrito de ARSOU GROUP S.A.C.



ARSOU GROUP .A. lag. Huge Mis Arevalo



# CERTIFICADO DE CALIBRACIÓN N° LMA-065-2023

# Patrones e Instrumentos auxillares

| Trazabilidad        | Patrón Utilizado            | Certificado de Calibración |  |  |
|---------------------|-----------------------------|----------------------------|--|--|
| PESATEC PERÚ S.A.C. | Juego de Pesas de 1mg a 1kg | 1226-MPES-C-2022           |  |  |
| PESATEC PERÚ S.A.C. | Juego de Pesas de 1g a 1kg  | 1227-MPES-C-2022           |  |  |
| PESATEC PERÚ S.A.C. | Pesa Patrón de 5kg          | 1228-MPES-C-2022           |  |  |
| PESATEC PERÚ S.A.C. | Pesa Patrón de 10 kg        | 1229-MPES-C-2022           |  |  |
| PESATEC PERÚ S.A.C. | Pesa Patrón de 20kg         | 1230-MPES-C-2022           |  |  |

#### Condiciones ambientales durante la calibración

Temperatura Ambiental

Inicial: 27 ºC

Final: 27 ºC

**Humedad Relativa** 

Inicial: 81 %hr

Final: 81 %hr

# Resultados

# ENSAYO DE REPETIBILIDAD

| Medición     | Carga L1=  | 2500                                | g      | Carga L1= | 5000               | B      |
|--------------|------------|-------------------------------------|--------|-----------|--------------------|--------|
| N.           | 1 (g)      | ΔL (g)                              | E (g)  | 1 (g)     | ΔL (g)             | E (g)  |
| 1            | 2500.0     | 0.02                                | -0.01  | 5000      | 0.04               | -0.01  |
| 2            | 2500.0     | 0.01                                | -0.01  | 5000      | 0.01               | -0.03  |
| 3            | 2500.0     | 0.01                                | 0.02   | 5000      | 0.02               | -0.07  |
| 4            | 2500.0     | 0.01                                | 0.03   | 5000      | 0.01               | -0.02  |
| 5            | 2500.0     | 0.01                                | -0.01  | 5000      | 0.05               | -0.02  |
| 6            | 2500.0     | 0.02                                | -0.02  | 5000      | 0.06               | 0.01   |
| 7            | 2500.0     | 0.03                                | -0.04  | 5000      | 0.04               | 0.03   |
| 8            | 2500.0     | 0.04                                | 0.02   | 5000      | 0.06               | 0.07   |
| 9            | 2500.0     | 0.05                                | 0.01   | 5000      | 0.08               | 0.09   |
| 10           | 2500.0     | 0.03                                | 0.01   | 5000      | 0.04               | 0.01   |
| Carga<br>(g) | Diferencia | Diferencia Máxima Encontrada<br>(g) |        |           | Máximo Peri<br>(g) | nitido |
| 2500         |            | 0                                   | 247,13 |           | 1                  |        |
| 5000         |            | 0                                   |        | 2         |                    |        |



Ing. Hugo Idiy Arivalo Carnica



# CERTIFICADO DE CALIBRACIÓN N° LMA-065-2023

| 100 | Toronto. | 100 | 100 |    | Section 1 |     |     |   |
|-----|----------|-----|-----|----|-----------|-----|-----|---|
| -   | TE A     | 7/1 | VE. | LV | CEN       | TDU | 1DA | n |
|     |          |     |     |    |           |     |     |   |

| Posición       | De                              | eterminac      | ión de E <sub>O</sub> |        | Determinación de E <sub>0</sub> |        |        |       |        |
|----------------|---------------------------------|----------------|-----------------------|--------|---------------------------------|--------|--------|-------|--------|
| de la<br>Carga | Carga Mín <sup>(1)</sup><br>(g) | I (kg)         | ΔL (g)                | E0 (g) | Carga L (g)                     | 1 (kg) | ΔL (g) | E (g) | Ec (g) |
| 1              | 10.0 0.01 -0.01                 | 1000.0         | 0.05                  | -0.02  | 0.01                            |        |        |       |        |
| 2              |                                 | 10.0           | 0.01                  | -0.01  | 1                               | 1000.1 | 0.01   | -0.01 | 0.01   |
| 3              | 10                              | 10.0           | 0.01                  | 0.01   | 1000                            | 1000.0 | 0.06   | -0.02 | -0.02  |
| 4              |                                 | 10.0 0.03 0.01 | 1000.2                | 0.03   | 0.04                            | 0.03   |        |       |        |
| 5              | Ī                               | 10.0           | 0.05                  | -0.02  |                                 | 1000.3 | 0.05   | 0.03  | 0.02   |

<sup>(1)</sup> Valor entre 0 y 10 e

#### ENSAYO DE PESAJE

| Carga L |        | Crecie | ntes  |        |        | Decreci | entes        |                    | EMP <sup>(2</sup> |
|---------|--------|--------|-------|--------|--------|---------|--------------|--------------------|-------------------|
| (g)     | 1 (g)  | ΔL (g) | E (g) | Ec (g) | I (g)  | ΔL (g)  | E (g)        | E <sub>c</sub> (g) | (±g)              |
| 0.5     | 0.5    | 0.05   | -0.01 |        |        |         | a bissues at |                    | 1                 |
| 1       | 1.0    | 0.06   | 0.03  | 0.03   | 1.0    | 0.06    | 0.01         | 0.01               | 1                 |
| 5       | 5.0    | 0.04   | -0.02 | 0.02   | 5.0    | 0.05    | -0.04        | -0.04              | 1                 |
| 10      | 10.0   | 0.03   | 0     | 0.04   | 10.0   | 0.05    | -0.04        | -0.03              | 1                 |
| 100     | 100.0  | 0.05   | 0.01  | 0.01   | 100.0  | 0.05    | -0.01        | 0.02               | 1                 |
| 500     | 500.0  | 0.02   | 0.05  | 0.02   | 500.0  | 0.02    | -0.01        | 0.01               | 1                 |
| 1000    | 1000.1 | 0.01   | 0.06  | 0.02   | 1000.1 | 0.03    | -0.02        | 0.01               | 1                 |
| 2000    | 2000.0 | 0.05   | 0.05  | 0.03   | 2000.0 | 0.05    | -0.1         | -0.03              | 2                 |
| 3000    | 2999.9 | 0.05   | 0.07  | 0.02   | 2999.9 | 0.01    | -0.04        | -0.04              | 2                 |
| 5000    | 4999.9 | 0.09   | 0.06  | 0.04   | 4999.9 | 0.05    | -0.11        | -0.01              | 2                 |
| 6000    | 6000.0 | 0.08   | 0.05  | 0.05   | 6000.0 | 0.04    | -0.12        | -0.08              | 2                 |

### Leyenda

I: Indicación de la balanza

ΔL: Carga Incrementada

E: Error encontrado

Eo: Error en cero

Ec: Error corregido

EMP: Error máximo permitido

### INCERTIDUMBRE EXPANDIDA Y LECTURA CORREGIDA

Incertidumbre expandida

11 - 20

0,00237 g 2 + 0,0000000132351 R2

de medición

Lectura Corregida

edición

R<sub>correcide</sub> = R + 7,926841380

R: Indicacion de lectura de balanza :

...

# Observaciones

- 1. Antes de la calibración no se realizó ningún tipo de ajuste.
- 2. Los EMP para esta balanza, corresponden para balanzas en uso de funcionamiento no automático de clase de exactitud II según la Norma Metrológica Peruana NMP 003:2009
- 3. La incertidumbre de la medición ha sido calculada para un nivel de confianza de aproximadamente del 95 % con un factor de cobertura k=2.
- 4. (\*) Codigo indicado en una etiqueta adherida al instrumento.
- 5. Con fines de identificación se colocó una etiqueta autoadhesiva con la indicación "CALIBRADO"

ARSOU GROUP A.C.

ARSOU GROUP S.A.C.

Asoc. Viv. Las Flores de San Diego Mz C Lote 01, San Martin de Porres, Lima, Perú Teif: +51 301-1680 / Cel: +51 928 196 793 / Cel: +51 925 151 437 ventas@arsougroup.com



# CERTIFICADO DE CALIBRACIÓN N° LMA-064-2023

Fecha de emisión 2023/03/27

Solicitante CONSULTORIA EN GEOLOGIA E INGENIERIA CIVIL

E.I.R.L.

A.H. S. HERRERA MZ. Q LT. 8 - CUSCO CUSCO Dirección

WANCHAQ

Instrumento de medición BALANZA

Identificación NO INDICA

Intervalo de Indicación 2000g

División de escala

Resolución

0.01 g

División de verificación (e) 0,01 g

Tipo de indicación Digital

Marca / Fabricante

**ELECTRONIC SCALE** 

Modelo

NO INIDICA

N° de serie

8551

Procedencia

**NO INDICA** 

Ubicación

Laboratorio de suelos

Lugar de calibración

PRO. MATIAS MANZANILLA NRO. 905 ICA - ICA - ICA

Fecha de calibración

2023/03/27

# Método/Procedimiento de calibración

"Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase III y IIII" (PC-001) del SNM-INDECOPI, 3era edición Enero 2009 y la Norma Metrológica Peruana "Instrumentos de Pesaje de Funcionamiento No Automático (NMP 003:2009)

Este certificado de calibración documenta la trazabilidad nacionales Internacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI)

Los resultados son válidos en el momento de la calibración. Al solicitante le corresponde disponer en su mornento recalibrar sus instrumentos a intervalos regulares, los cuales deben ser establecidos sobre la base de las características propias del Instrumento, sus condiciones de uso, el mantenimiento realizado conservación del instrumento de medición o de acuerdo a reglamentaciones vigentes.

ARSOU GROUP S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso Inadecuado de este instrumento después de su calibración, ni de una incorrecta interpretación de los resultados de la calibración declarados en este documento.

Este certificado no podrá ser difundido 0 parcialmente, excepto con autorización previa por escrito de ARSOU GROUP S.A.C.



ARSOU GROUP S.A.C. Asoc. Viv. Las Flores de San Diego Mz C Lote 01, San Martin de Porres, Lima, Perú Telf: +51 301-1680 / Cel: +51 928 196 793 / Cel: +51 925 151 437 ventas@arsougroup.com

www.arsougroup.com



# CERTIFICADO DE CALIBRACIÓN N° LMA-064-2023

#### Patrones e Instrumentos auxiliares

| Trazabilidad        | Patrón Utilizado            | Certificado de Calibración |  |  |
|---------------------|-----------------------------|----------------------------|--|--|
| PESATEC PERÚ S.A.C. | Juego de Pesas de 1mg a 1kg | 1226-MPES-C-2022           |  |  |
| PESATEC PERÚ S.A.C. | Juego de Pesas de 1g a 1kg  | 1227-MPES-C-2022           |  |  |
| PESATEC PERÚ S.A.C. | Pesa Patrón de 5kg          | 1228-MPES-C-2022           |  |  |
| PESATEC PERÚ S.A.C. | Pesa Patrón de 10 kg        | 1229-MPES-C-2022           |  |  |
| PESATEC PERÚ S.A.C. | Pesa Patrón de 20kg         | 1230-MPES-C-2022           |  |  |

# Condiciones ambientales durante la calibración

Temperatura Ambiental

Inicial: 27 ºC

Final: 27 ºC

**Humedad Relativa** 

Inicial: 81 %hr

Final: 81 %hr

### Resultados

# **ENSAYO DE REPETIBILIDAD**

| Medición     | Carga L1=  | 1000             | g        | Carga L1= | 2000               | g      |
|--------------|------------|------------------|----------|-----------|--------------------|--------|
| N°           | I (g)      | ΔL (g)           | E (g)    | 1 (g)     | ΔL (g)             | E (g)  |
| 1            | 1000.0     | 0.04             | -0.09    | 2000.1    | 0.05               | -0.1   |
| 2            | 1000.2     | 0.03             | -0.1     | 2000.1    | 0.07               | -0.03  |
| 3            | 1000.1     | 0.03             | -0.05    | 2000.0    | 0.05               | -0.07  |
| 4            | 1000.1     | 0.04             | -0.09    | 2000.0    | 0.03               | -0.1   |
| 5            | 1000.0     | 0.05             | -0.04    | 2000.1    | 0.06               | -0.1   |
| 6            | 1000.0     | 0.08             | -0.04    | 2000.1    | 0.07               | -0.1   |
| 7            | 1000.0     | 0.07             | -0.09    | 2000.1    | 0.05               | -0.12  |
| 8            | 1000.0     | 0.05             | -0.05    | 2000.1    | 0.05               | -0.1   |
| 9            | 1000.0     | 0.04             | -0.08    | 2000.0    | 0.05               | -0.11  |
| 10           | 1000.0     | 0.05             | -0.1     | 2000.0    | 0.04               | -0.1   |
| Carga<br>(g) | Diferencia | Máxima En<br>(g) | contrada | Error M   | láximo Pern<br>(g) | nitido |
| 1000         |            | 0                |          |           | 1                  |        |
| 2000         | 0          |                  |          |           | 2                  |        |



ARSOU GROUP S.A.C.

Asoc. Viv. Las Flores de San Diego Mz C Lote 01, San Martin de Porres, Lima, Perú Telf: +51 301-1680 / Cel: +51 928 196 793 / Cel: +51 925 151 437 ventas@arsougroup.com www.arsougroup.com Ing. Hugo Was Arevalo Carnica

# CERTIFICADO DE CALIBRACIÓN N° LMA-064-2023

Página 3 de 3

| VAZ |  |  |  |  |
|-----|--|--|--|--|
|     |  |  |  |  |
|     |  |  |  |  |

| Posición       | 0                               | eterminac | ión de E <sub>O</sub> |        | Determinación de Eo |        |        |       |        |
|----------------|---------------------------------|-----------|-----------------------|--------|---------------------|--------|--------|-------|--------|
| de la<br>Carga | Carga Mín <sup>(1)</sup><br>(g) | l (kg)    | ΔL (g)                | E0 (g) | Carga L (g)         | I (kg) | ΔL (g) | E (g) | Ec (g) |
| 1              |                                 | 1         | 0.04                  | -0.01  |                     | 50     | 0.06   | -0.01 | 0.01   |
| 2              |                                 | 1         | 0.06                  | -0.02  | <b>1</b> †          | 49     | 0.04   | -0.01 | 0.01   |
| 3              | 1                               | 1         | 0.04                  | -0.01  | 50                  | 50     | 0.05   | -0.02 | -0.02  |
| 5              |                                 | 1         | 0.03                  | 0.01   | 1 [                 | 50     | 0.04   | 0.04  | 0.03   |
|                |                                 | 1         | 0.05                  | -0.02  |                     | 50     | 0.04   | 0.03  | 0.02   |

(1) Valor entre 0 y 10 e

# ENSAYO DE PESAJE

| Carga L |        | Crecie | ntes  |                    |        | Decrec | entes |        | EMP <sup>(2)</sup> |
|---------|--------|--------|-------|--------------------|--------|--------|-------|--------|--------------------|
| (g)     | 1 (g)  | ΔL (g) | E (g) | E <sub>c</sub> (g) | 1 (g)  | ΔL (g) | E (g) | Ec (g) | 1                  |
| 0.5     | 0.5    | 0.05   | -0.01 | 1.107              | 107    | (6)    | - 10/ | -C (8) | (±g)               |
| 1.0     | 1.0    | 0.06   | 0.03  | 0.03               | 1.0    | 0.06   | 0.01  | 0.01   | 1                  |
| 5.0     | 5.0    | 0.04   | -0.02 | 0.02               | 5.0    | 0.05   | -0.04 | -0.04  | 1                  |
| 10.0    | 10.0   | 0.03   | -0.03 | 0.04               | 10.0   | 0.05   | -0.04 | -0.03  | 1                  |
| 50.0    | 50.0   | 0.05   | 0.01  | 0.01               | 50.0   | 0.05   | -0.01 | 0.02   | 1                  |
| 100.0   | 100.0  | 0.04   | 0.07  | 0.02               | 100.0  | 0.04   | -0.01 | 0.02   | 1                  |
| 800.0   | 799.9  | 0.01   | 0.08  | 0.02               | 800.0  | 0.03   | 0     | 0.01   | 1                  |
| 1000.0  | 1000.0 | 0.05   | 0.08  | 0.03               | 1000.0 | 0.05   | -0.1  | -0.07  | -                  |
| 1500.0  | 1500.0 | 0.07   | 0.09  | 0.02               | 1500.0 | 0.01   | -0.04 | -0.07  | 2                  |
| 2000.0  | 2000.0 | 0.09   | 0.09  | 0.04               | 2000.0 | 0.05   | -0.11 | -0.03  | 2                  |

# Leyenda

I: Indicación de la balanza

En: Error en cero

ΔL: Carga Incrementada E<sub>c</sub>: Error corregido E: Error encontrado

EMP: Error máximo permitido

INCERTIDUMBRE EXPANDIDA Y LECTURA CORREGIDA

Incertidumbre expandida  $U_R = 2^*$  de medición

0.00177 g <sup>2</sup> +

0.0000000078065 R<sup>2</sup>

Lectura Corregida

R<sub>corregids</sub> = R + 6.605875868

R: Indicacion de lectura de balanza:

(0)

# Observaciones

- 1. Antes de la calibración no se realizó ningún tipo de ajuste.
- 2. Los EMP para esta balanza, corresponden para balanzas en uso de funcionamiento no automático de clase de exactitud II según la Norma Metrológica Peruana NMP 003:2009
- 3. La incertidumbre de la medición ha sido calculada para un nivel de confianza de aproximadamente del 95 % con un factor de cobertura k=2.
- 4. (\*) Codigo indicado en una etiqueta adherida al instrumento.
- 5. Con fines de identificación se colocó una etiqueta autoadhesiva con la indicación "CALIBRADO"

ARSOU GROUP S.A.C.

Asoc. Viv. Las Flores de San Diego Mz C Lote 01, San Martin de Porres, Lima, Perú Telf: +51 301-1680 / Cel: +51 928 196 793 / Cel: +51 925 151 437 ventas@arsougroup.com www.arsougroup.com Ing. Hugo Vux Alevalo Carnica



# CERTIFICADO DE VERIFICACIÓN Nº ES - 828 - 2023

Página: 1 de 3

patrones

Al solicitante le

El equipo de medición con el

modelo y número de serie

indicados en el presente informe, ha sido calibrado probado y

usando

certificados con trazabilidad a la

Los resultados son válidos en el

momento y en las condiciones de

corresponde disponer en su

momento la ejecución de un re

calibración, la cual está en función

mantenimiento del instrumento de

medición o a reglamentaciones

S.R.L no se responsabiliza de los

perjuicios que pueda ocasionar el

instrumento, ni de una incorrecta

interpretación de los resultados de

la calibración aquí declarados.

conservación

Laboratorio

de

Dirección de Metrología

verificado

INACAL y otros.

la calibración.

uso.

uso inadecuado

del

vigentes.

Terraservice

Expediente : TLPB-00000110523-0000237

Fecha de emisión : 28/12/2023

1. Solicitante : CONSULTORIA EN GEOLOGIA EINGENIERIA CIVIL E.I.R.L

RUC : 20610425098

2. Descripción del equipo : EQUIPO PARA PRUEBA DE REVENIMIENTO

Marca : RUMISTONE

Modelo : CSR901R

Número de serie : LA-0271

Partes del equipo: :

RAICE

A) Varilla

B) Molde

C) Plato base

3. Lugar y fecha de verificación

Fecha: 27/12/2023

Lugar : Jr. Andahuaylas 477, San Martín de Porres - Lima

4. Lugar de verificación

Procedimiento : Determinación de medidas del cono por el método de "Medición Lineal". Comparación de

Observaciones : Los datos obtenidos característicos del molde (altura, diámetro), fueron comparados según los

requerimientos de la norma ASTM C 143.

# 5. Condiciones Ambientales

| Magnitud         | Inicial       | Final |
|------------------|---------------|-------|
| Temperatura      | 25.4 TORIO PE | 25.4  |
| Humedad Relativa | SERVICE 68%   | 68%   |

# 6. Trazabilidad

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

|    | Trazabilidad | Patrón utilizado        | Certificado N°    |
|----|--------------|-------------------------|-------------------|
| A  | INACAL       | Vernier de 450mmx0,02mm | TC - 10977 - 2023 |
| CH | INACAL       | Vernier de 200mmx0,02mm | TC - 10978 - 2023 |

01 323 9468

938 385 323 / 950 721 511

☑ JR. Andahuaylas N°477

San Martín de Porres - Lima RUC: 20603356781

www.terraservicelaboratorioperu.com

TERRASERVICE LABORATORIO PERÚ SRL

TERRASERVICE LABORATORIO PERU SRL

ing. Br. DIANA S. MON YENEGRO CARHUAS





# SERVICE LABORATORIO PENO ICE LABORATORIO PERÚ CERTIFICADO DE VERIFICACIÓN N° ES - 828 - 2023

TERRASERVICE LABORATORIO PERU

THE SERVICE

Página 2 de 3

TERRASERVICE LABORATORIO PERÙ

E LABORATORIO PERÚ

TERRASERVICE LABORATORIO PERÙ

# 7. Determinación del espesor del molde

| min | ación del espesor del | molde NEERING | ARORATORIO PER | TERRASERI<br>AT THE SER | WICE OF ENGINE | ERVICE LABOR | ATORIO PERÚ<br>NGINEERING |
|-----|-----------------------|---------------|----------------|-------------------------|----------------|--------------|---------------------------|
| 90  | N°                    | 1             | 2              | 3                       | 4              | EKA          | -anast                    |
|     | Espesor (mm)          | 2.05          | 2.10           | 2.05                    | 2.05           | RIO PERÚ     | TEHRAGE                   |

# Cálculo de Espesor Promedio

| Cálculo de Espesor Prome | dio of ENGINEE     | ABORATORIO PERÚ                                |
|--------------------------|--------------------|------------------------------------------------|
| TOBIO PERO               | nDISLITATION       | BORATORIU FENG                                 |
| Media(mm)                | 2.04 THE SERVICE   | - PUICE LAP                                    |
| Desv. Estand.            | 0.0617             | TERRASERVICE LAR                               |
| Coef. Variación          | 0.0303 RIO PERU    | A                                              |
| TERR                     | ASERVICE OF ENGINE | ANDRATORIO PERÚ                                |
| inación del diámetro     | TERRASER           | NICE LABORATORIO PERÚ<br>ERVICE OF ENGINEERING |

# 8. Determinación del diámetro

RIO PERÚ

JORATORIO PERÚ

| n del diámetro | -onin PERÚ | AT THE SERVICE | -nuce LA | BORATORIO PER |
|----------------|------------|----------------|----------|---------------|
| Diámetros      | 1          | 2              | 3        | 4             |
| Superior       | 100.15     | 100.10         | 100.85   | 101.05        |
| Inferior       | 202.85     | 202.90         | 202.95   | 202.95        |

# Cálculo de Diámetros Promedios

| TEMIN'S SE      | KA                 | CODIN PENO        |
|-----------------|--------------------|-------------------|
| Diámetros       | Superiror promedio | Inferior promedio |
| Media(mm)       | 100.54             | 202.91 ABUNAT     |
| Desv. Estand.   | 0.4837 PERU        | 0.0479            |
| Coef. Variación | ASERVICE 1.0.0048  | 0.0002            |

# CE LABORATORIO PERU 9. Determinación de altura

|      | TERRASERVICE LABORA | GINEERING | -ODIN PERÚ | TERRASERVICE OF | -purce LAB | ORATORIO PE |
|------|---------------------|-----------|------------|-----------------|------------|-------------|
| PERÚ | N°                  | 1         | 2          | 3               | 4          | E E IN-     |
|      | Altura (mm)         | 302.15    | 302.10     | 302.10          | 302.15     | TERR        |

# Cálculo de Altura Promedio

| Media (mm)      | 302.13 | F.14 -  |
|-----------------|--------|---------|
| Desv. Estand.   | 0.0289 | TERRASE |
| Coef. Variación | 0.0001 | PT THE  |

01 323 9468

IO PERÚ

938 385 323 / 950 721 511

JR. Andahuaylas Nº477

RUC: 20603356781 www.terraservicelaboratorioperu.com

ABORATORIO PERU SRL

Auxiliar de Metrología

LABORATORIO PERU SRL

ing. Br. DIANA S. MONTENEGRO CARHUAS Jefe de Metrología





# IRASERVICE LABORATORIO PENU ICE LABORATORIO PERÚ CERTIFICADO DE VERIFICACIÓN Nº ES - 828 - 2023

TERRASERVICE LABORATORIO PERÙ

TERMINE SERVICE

Página 3 de 3

BORATORIO PERÚ

ERVICE LABORATORIO PERÚ

TERRASERVICE LABORATORIO PERÚ

ERRASERVICE LABORATORIO PERÙ

# 10. Parámetro de control de varilla

| Parámetro             | Laboratorio          | ASTM C 143     |
|-----------------------|----------------------|----------------|
| Diámetro (mm) 10 PERÚ | 16.0                 | 5/8" o 16.0 mm |
| Altura (mm)           | ICE LABORATORIO PENS | 600.0 mm       |

| RORALT | MORIO TELIN |     |      |       | TERRASE | RVICEOREN |     |     | 2001 |
|--------|-------------|-----|------|-------|---------|-----------|-----|-----|------|
|        |             | UN  | NDAD | ES DI | MEN.    | SIONAI    | ES  |     |      |
| Pulg.  | 1/16        | 1/8 | 1/2  | 1     | 3       | 3 1/8     | 4   | 8   | 12   |
| mm.    | 2           | 3   | 15   | 25    | 75      | 80        | 100 | 200 | 300  |

# TERRASERVICE LABORATORIO 11. Parámetro de control ERVICE LABORATORIO PERU

OGRATORIO PERÚ

| TERRASE            | ERVICE OF ENGINE             | O PERÚ ATTHE                |
|--------------------|------------------------------|-----------------------------|
| Parámetro          | Laboratorio                  | ASTM C 143                  |
| Altura (mm)        | AT STERNICE LABORAT 302.730  | 304.80 mm ± 3.18 mm         |
| Diámetro Sup. (mm) | 100.54                       | 100 mm ± 3mm TERE ASER      |
| Diámetro Inf. (mm) | OPATORIO PERU 202.91         | 200 mm ± 3mm                |
| Espesor (mm)       | TORASERVICE LA 2.04 INEERING | = 1.5 mm HE SERVICE OF NGIN |

FIN DEL DOCUMENTO

01 323 9468

IO PERÚ

938 385 323 / 950 721 511

IR. Andahuaylas N°477 RUC: 20603356781

www.terraservicelaboratorioperu.com

TERRASERVICE LABORATORIO PERÙ ABORATORIO PERU SRL

> Gerze Renate Rodriguez Bazatar Auxiliar de Metrología

LABORATORIO PERU SRL

ing. Br. DIANA S. MONTENEGRO CARHUAS Jefe de Metrología







# CERTIFICADO DE CALIBRACION

TC - 10977 - 2023

PROFORMA: 21085A Fecha de emisión: 2023-06-10

SOLICITANTE: TERRASERVICE LABORATORIO PERU S.R.L. : Jr Andahuaylas 477 San Martin De Porres - Lima

INSTRUMENTO DE MEDICIÓN : PIE DE REY Analógico Tipo Marca **INSIZE** 1214-450 Modelo N° de Serie 0301160066 0 mm a 450 mm Intervalo de Indicación

División de Escala 0.02 mm No Indica Procedencia Identificación TLP-01-PL Fecha de Calibración 2023 - 06 - 10

#### **LUGAR DE CALIBRACIÓN**

Laboratorio de TEST & CONTROL S.A.C.

#### MÉTODO DE CALIBRACIÓN

La calibración se realizó por comparación directa con nuestro bloques patrón según procedimiento PC - 012 " Procedimiento de calibración de pie de rey". Quinta Edición -Agosto 2012. SNM - INDECOPI

#### **CONDICIONES AMBIENTALES**

| Magnitud         | Inicial | Final   |
|------------------|---------|---------|
| Temperatura      | 19,9 °C | 20,1 °C |
| Humedad Relativa | 51,3 %  | 55,1 %  |

TEST & CONTROL S.A.C. es un Laboratorio de Calibración Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

válidos Los resultados son solamente para el ítem sometido a calibración, no deben ser utilizados una certificación como conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar Gerente Técnico CFP: 0316

PGC-16-r05/Noviembre 2022/Rev.03









Página: 1 de 4

# LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 016



Certificado : TC - 10977 - 2023

#### **TRAZABILIDAD**

| Patrón de Referencia                                                      | Patrón de Trabajo                                        | Certificado de Calibración |
|---------------------------------------------------------------------------|----------------------------------------------------------|----------------------------|
| Bloques Patrón<br>Grado K<br>DM-INACAL                                    | Bloques Patrón de Longitud<br>0,5 mm a 100 mm<br>Grado 0 | LLA-C-081-2022             |
| Bloques Patrón<br>Grado K<br>DM-INACAL                                    | Bloques Patrón de Longitud<br>200 mm<br>Grado 0          | LLA-304-2022               |
| Bloques Patrón<br>Grado K<br>DM-INACAL                                    | Bloques Patrón de Longitud<br>300 mm<br>Grado 0          | LLA-305-2022               |
| Comparador Horizontal<br>Incertidumbre de 0,2 μm + 0,78 μm/m<br>DM-INACAL | Varilla Cilindrica<br>10 mm                              | LLA-038-2023               |
| Bloque Patrón<br>Grado 0<br>DM-INACAL                                     | Micrómetro de Exteriores<br>0 mm a 25 mm                 | TC-11578-2022              |

#### **RESULTADOS DE MEDICIÓN**

Error de referencia inicial (I)  $0~\mu m$ 

# Error de indicación del pie de rey para medición de exteriores

| Valor<br>Patrón | Promedio de la indicación del<br>Pie de Rey | Error  |
|-----------------|---------------------------------------------|--------|
| ( mm )          | ( mm )                                      | ( µm ) |
| 50,000          | 50,000                                      | 0      |
| 100,000         | 100,000                                     | 0      |
| 150,000         | 150,000                                     | 0      |
| 200,000         | 200,000                                     | 0      |
| 300,000         | 300,000                                     | 0      |
| 400,000         | 400,000                                     | 0      |
| 450,001         | 450,000                                     | -1     |

# Error de contacto superficie parcial (E)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 450,000      | 0      |













Certificado : TC - 10977 - 2023

#### **RESULTADOS DE MEDICIÓN**

# Error de repetibilidad (R)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 450,000      | 0      |

#### Error de cambio de escala de exteriores a interiores (S<sub>E-I</sub>)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 40,000       | 0      |

#### Error de contacto lineal (L)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 10,000       | 0      |

#### Error de contacto de superficie completa (J)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 10,000       | 0      |

 $(11.7^2 + 0.01^2 \times L^2)^{1/2} \mu m$ Incertidumbre de Medición :

L: Indicación del pie de rey expresado en milimetros (mm)

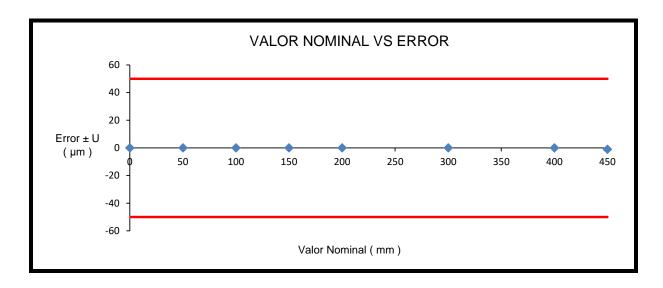
Nota 1: Error de indicación del pie de rey para medición de interiores = Error de indicación de exteriores + Error de cambio de escala de exteriores e interiores (SE-I).

Nota 2: El instrumento tiene un error máximo permitido de ± 50 µm, según norma DIN 862.














Certificado : TC - 10977 - 2023

#### **RESULTADOS DE MEDICIÓN**



#### **OBSERVACIONES**

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado.

# **INCERTIDUMBRE**

La incertidumbre expandida que resulta de multiplicar la incertidumbre típica combinada por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

# FIN DEL DOCUMENTO









# CERTIFICADO DE CALIBRACION

TC - 10978 - 2023

PROFORMA: 21085A Fecha de emisión: 2023-06-10

SOLICITANTE: TERRASERVICE LABORATORIO PERU S.R.L. : Jr Andahuaylas 477 San Martin De Porres - Lima

INSTRUMENTO DE MEDICIÓN : PIE DE REY Analógico Tipo Marca **INSIZE** 1205-200S Modelo N° de Serie 0604170710 0 mm a 200 mm Intervalo de Indicación

División de Escala 0.02 mm No Indica Procedencia Identificación TLP-02-PL Fecha de Calibración 2023 - 06 - 10

#### **LUGAR DE CALIBRACIÓN**

Laboratorio de TEST & CONTROL S.A.C.

#### MÉTODO DE CALIBRACIÓN

La calibración se realizó por comparación directa con nuestro bloques patrón según procedimiento PC - 012 " Procedimiento de calibración de pie de rey". Quinta Edición -Agosto 2012. SNM - INDECOPI

#### **CONDICIONES AMBIENTALES**

| Magnitud         | Inicial | Final   |
|------------------|---------|---------|
| Temperatura      | 19,9 °C | 20,0 °C |
| Humedad Relativa | 50,3 %  | 54,0 %  |

TEST & CONTROL S.A.C. es un Laboratorio de Calibración Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

válidos Los resultados son solamente para el ítem sometido a calibración, no deben ser utilizados una certificación como conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar Gerente Técnico CFP: 0316









# LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 016



Certificado : TC - 10978 - 2023

#### **TRAZABILIDAD**

| Patrón de Referencia                                                      | Patrón de Trabajo           | Certificado de Calibración |
|---------------------------------------------------------------------------|-----------------------------|----------------------------|
| Bloques Patrón                                                            | Bloques Patrón de Longitud  |                            |
| Grado K                                                                   | 0,5 mm a 100 mm             | LLA-C-081-2022             |
| DM-INACAL                                                                 | Grado 0                     |                            |
| Bloques Patrón                                                            | Bloques Patrón de Longitud  |                            |
| Grado K                                                                   | 200 mm                      | LLA-304-2022               |
| DM-INACAL                                                                 | Grado 0                     |                            |
| Comparador Horizontal<br>Incertidumbre de 0,2 μm + 0,78 μm/m<br>DM-INACAL | Varilla Cilindrica<br>10 mm | LLA-038-2023               |
| Máquina de Medición<br>por Coordenadas<br>DM-INACAL                       | Anillo Patrón<br>5 mm       | LLA-299-2022               |

# **RESULTADOS DE MEDICIÓN**

 $0 \mu m$ Error de referencia inicial (I)

# Error de indicación del pie de rey para medición de exteriores

| Valor   | Promedio de la indicación del | Error  |
|---------|-------------------------------|--------|
| Patrón  | Pie de Rey                    | Elloi  |
| ( mm )  | ( mm )                        | ( µm ) |
| 50,000  | 50,000                        | 0      |
| 100,000 | 100,000                       | 0      |
| 150,000 | 150,000                       | 0      |
| 200,000 | 200,000                       | Ö      |

#### Error de contacto superficie parcial (E)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 200.000      | 0      |













Certificado : TC - 10978 - 2023

#### **RESULTADOS DE MEDICIÓN**

#### Error de repetibilidad (R)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 200,000      | 0      |

#### Error de cambio de escala de exteriores a interiores (S<sub>E-I</sub>)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 10,000       | 0      |

#### Error de cambio de escala de exteriores a profundidad (S<sub>E-P</sub>)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 10,000       | 0      |

#### Error de contacto lineal (L)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 10,000       | 0      |

#### Error de contacto de superficie completa (J)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 10,000       | 0      |

#### Error debido a la distancia de cruce de las superficies de medición para medición de interiores (K)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 5,000        | 0      |

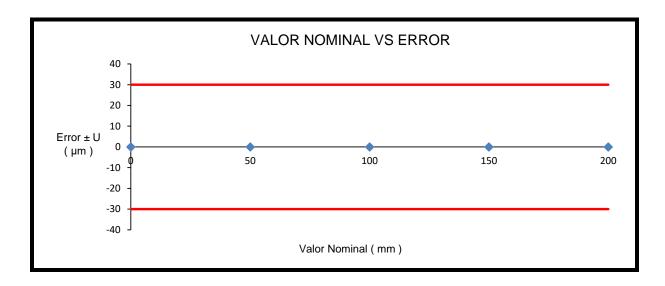
Incertidumbre de Medición :  $(11,55^2 + 0,01^2 \times L^2)^{1/2} \mu m$ 

L: Indicación del pie de rey expresado en milimetros (mm)

Nota 1: Error de indicación del pie de rey para medición de interiores = Error de indicación de exteriores + Error de cambio de escala de exteriores e interiores (SE-I).

Nota 2: Error de indicación del pie de rey para medición de profundidad = Error de indicación de exteriores + Error de cambio de escala de exterioresa profundidad (SE-P).

Nota 3: El instrumento tiene un error máximo permitido de ± 30 µm, según norma DIN 862.








Certificado : TC - 10978 - 2023

## **RESULTADOS DE MEDICIÓN**



#### **OBSERVACIONES**

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado.

## **INCERTIDUMBRE**

La incertidumbre expandida que resulta de multiplicar la incertidumbre típica combinada por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

## FIN DEL DOCUMENTO



# CERTIFICADO DE VERIFICACION Nº OPU - 003 - 2023

Página: 1 de 1

Expediente

TERRADE: TLPB-00000110523-0000237 ORIO PERU

TERRADE: TLPB-00000110523-00000237 ORIO PERU

TERRADE: TLPB-000000110523-00000237 ORIO PERU

TERRADE: TLPB-000000110523-000000237 ORIO PERU

TERRADE: TLPB-000000110520 ORIO PERU

TERRADE: TLPB-0000000110520 ORIO PERU

TERRADE: TLPB-0000000100 ORIO PERU

TERRADE: TLPB-0000000100 ORIO PERU

TERRADE: TLPB-00000000000 ORIO PERU

TERRADE: TLPB-00000000000 ORIO PERU

TERRADE: TLPB-0000000000 ORIO PERU

TERRADE: TLPB-000000000 ORIO PERU

TERRADE: TLPB-0000000000 ORIO PERU

TERRADE: TLPB-0000000000 ORIO PERU

TERRADE: TLPB-000000000 ORIO PERU

TERRADE: TLPB-00000000 ORIO PERU

TERRADE: TLPB-00000000 ORIO PERU

TERRADE: TLPB-0000000 ORIO PERU

TERRADE: TLPB-0000000 ORIO PERU

TERRADE: TLPB-0000000 ORIO PERU

TERRADE: TLPB-0000000 ORIO PERU

TERRADE: TLPB-000000 ORIO PERU

TERRADE: TLPB-000000 ORIO PERU

TERRADE: TLPB-000000 ORIO PERU

TERRADE: TLPB-00000 ORIO PERU

TERRADE: TLPB-00000 ORIO PERU

TER

Fecha de Emisión : 2/11/2023

1. Solicitante : CONSULTORIA EN GEOLOGIA E INGENIERIA CIVIL E.I.R.L

RUC

SERVICE LABORATORIO PERÚ

SERVICE LABOR

2. Instrumento a verificar : OLLA DE PESO UNITARIO DE 1/2 FT3

Marca:: RUMISTONE

Modelo : OR10004

Número de serie : LA-0044

3. Método de verificación

El recipiente calibrado de peso unitario ha sido examinado y ensayado en nuestros talleres considerando en todo momento las especificaciones establecidad en las normas.

4. Lugar y fecha de verificación

Lugar: Jr. Andahuaylas 477, San Martín de Porres - Lima

Fecha: 2/11/2023

Este certificado de verificación documenta la trazabilidad a patrones nacionales o internacionales, los cuales realizan las unidades de medida según el Sistema Internacional de Unidades (SI).

Los resultados declarados en este certificado son válidos en el momento y en las condiciones en que se realizaron las mediciones. Correspondiente al solicitante establecer una próxima calibración, la cual esta en función del uso, mantenimiento y conservación del instrumento de medición o las reglamentaciones vigentes.

**TERRASERVICE** 

LABORATORIO PERÚ S.R.L no se responsabiliza de los prejuicios que pueda ocasionar el uso del instrumento ni de una incorrecta interpretación, de los resultados de la calibración aqui

declarados.

## 5. Trazabilidad

| FSE | TERRASERVICE LA | BORATORIO PERO            | ERRASERVICE OF ENGINE | ABORATORIO PERÚ |
|-----|-----------------|---------------------------|-----------------------|-----------------|
| 77  | TRAZABILIDAD    | PATRÓN UTILIZADO          | CERTIFICADO N°        | OFFI            |
| G   | INACAL PERÚ     | Vernier de 450mm x 0,02mm | TC - 10978 - 2023     | TERRASERVI      |
|     | ISO 14025:2017  | WINCHA 0m a 8m            | TC - 10976 - 2023     | p.v.s.          |

## Resultados de medición

| e  | medición TERRASER | VICE LABORATOR | EERING 100 1 ABO | RATORIO PERÚ | TERRASERVICE.       | TERRASE           | RVICE LABORATORIO |
|----|-------------------|----------------|------------------|--------------|---------------------|-------------------|-------------------|
| A  | - AUTHORN         | N              | IEDIDAS MÍI      | NIMAS        | ,                   |                   | TERR              |
|    | NORMA             | CAPA           | CIDAD            | FONDO        | ESPESOR DE<br>PARED | RESTO DE<br>PARED | PERÚ ATT<br>RING  |
|    |                   | 0.4ft3 a       | a 1.5ft3         | 0.2"         | 0.1"                | 0.1"              | -DUICE LABOR      |
| RI | MEDIDA DE EQUIPO  | 1/2 ft3        | 0.5 ft3          | LABORATUMU I | 0.58"               | OPER 0.1"         | RRASERVICE OF E   |

NORMA DE ENSAYO MTC E 203 - NTP 400.017

01 323 9468

938 385 323 / 950 721 511

JR. Andahuaylas N°477

San Martín de Porres - Lima RUC: 20603356781

www.terraservicelaboratorioperu.com

ERRASERVICE LABORATORIO PERU SILL

Gerze Renate Rodriguez Bazalar Auxiliar de Metrología TERRASERVICE LABORATORIO PERU SRL

ing. Br. DIANA S. MON JENEGRO CARHUAS Jefe de Metrología







## CERTIFICADO DE CALIBRACION

TC - 10978 - 2023

PROFORMA: 21085A Fecha de emisión: 2023-06-10

SOLICITANTE: TERRASERVICE LABORATORIO PERU S.R.L. : Jr Andahuaylas 477 San Martin De Porres - Lima

INSTRUMENTO DE MEDICIÓN : PIE DE REY Analógico Tipo Marca **INSIZE** 1205-200S Modelo N° de Serie 0604170710 0 mm a 200 mm Intervalo de Indicación

División de Escala 0.02 mm No Indica Procedencia Identificación TLP-02-PL Fecha de Calibración 2023 - 06 - 10

#### **LUGAR DE CALIBRACIÓN**

Laboratorio de TEST & CONTROL S.A.C.

## MÉTODO DE CALIBRACIÓN

La calibración se realizó por comparación directa con nuestro bloques patrón según procedimiento PC - 012 " Procedimiento de calibración de pie de rey". Quinta Edición -Agosto 2012. SNM - INDECOPI

#### **CONDICIONES AMBIENTALES**

| Magnitud         | Inicial | Final   |
|------------------|---------|---------|
| Temperatura      | 19,9 °C | 20,0 °C |
| Humedad Relativa | 50,3 %  | 54,0 %  |

TEST & CONTROL S.A.C. es un Laboratorio de Calibración Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

válidos Los resultados son solamente para el ítem sometido a calibración, no deben ser utilizados una certificación como conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar Gerente Técnico CFP: 0316









## LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 016



Certificado : TC - 10978 - 2023

#### **TRAZABILIDAD**

| Patrón de Referencia                                                      | Patrón de Trabajo           | Certificado de Calibración |
|---------------------------------------------------------------------------|-----------------------------|----------------------------|
| Bloques Patrón                                                            | Bloques Patrón de Longitud  |                            |
| Grado K                                                                   | 0,5 mm a 100 mm             | LLA-C-081-2022             |
| DM-INACAL                                                                 | Grado 0                     |                            |
| Bloques Patrón                                                            | Bloques Patrón de Longitud  |                            |
| Grado K                                                                   | 200 mm                      | LLA-304-2022               |
| DM-INACAL                                                                 | Grado 0                     |                            |
| Comparador Horizontal<br>Incertidumbre de 0,2 μm + 0,78 μm/m<br>DM-INACAL | Varilla Cilindrica<br>10 mm | LLA-038-2023               |
| Máquina de Medición<br>por Coordenadas<br>DM-INACAL                       | Anillo Patrón<br>5 mm       | LLA-299-2022               |

## **RESULTADOS DE MEDICIÓN**

 $0 \mu m$ Error de referencia inicial (I)

## Error de indicación del pie de rey para medición de exteriores

| Valor   | Promedio de la indicación del | Error  |
|---------|-------------------------------|--------|
| Patrón  | Pie de Rey                    | LIIOI  |
| ( mm )  | ( mm )                        | ( µm ) |
| 50,000  | 50,000                        | 0      |
| 100,000 | 100,000                       | 0      |
| 150,000 | 150,000                       | 0      |
| 200,000 | 200,000                       | 0      |

## Error de contacto superficie parcial (E)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 200.000      | 0      |











Certificado : TC - 10978 - 2023

## **RESULTADOS DE MEDICIÓN**

## Error de repetibilidad (R)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 200,000      | 0      |

## Error de cambio de escala de exteriores a interiores (S<sub>E-I</sub>)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 10,000       | 0      |

### Error de cambio de escala de exteriores a profundidad (S<sub>E-P</sub>)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 10,000       | 0      |

## Error de contacto lineal (L)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 10,000       | 0      |

## Error de contacto de superficie completa (J)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 10,000       | 0      |

### Error debido a la distancia de cruce de las superficies de medición para medición de interiores (K)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 5,000        | 0      |

Incertidumbre de Medición :  $(11,55^2 + 0,01^2 \times L^2)^{1/2} \mu m$ 

L: Indicación del pie de rey expresado en milimetros (mm)

Nota 1: Error de indicación del pie de rey para medición de interiores = Error de indicación de exteriores + Error de cambio de escala de exteriores e interiores (SE-I).

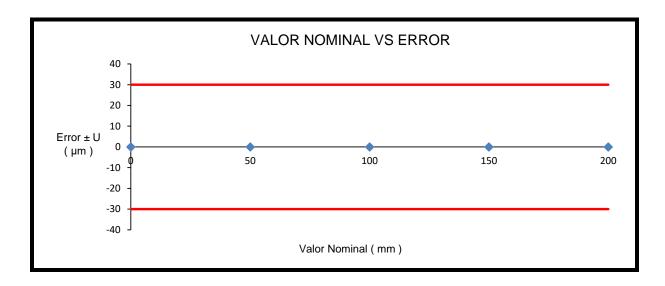
Nota 2: Error de indicación del pie de rey para medición de profundidad = Error de indicación de exteriores + Error de cambio de escala de exterioresa profundidad (SE-P).

Nota 3: El instrumento tiene un error máximo permitido de ± 30 µm, según norma DIN 862.














Certificado : TC - 10978 - 2023

## **RESULTADOS DE MEDICIÓN**



#### **OBSERVACIONES**

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado.

## **INCERTIDUMBRE**

La incertidumbre expandida que resulta de multiplicar la incertidumbre típica combinada por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

## FIN DEL DOCUMENTO



Dirección

## SISTEMA DE GESTIÓN DE LA CALIDAD NTP ISO / IEC 17025:2017



# CERTIFICADO DE CALIBRACIÓN

TC - 10976 - 2023

PROFORMA: 21085A Fecha de emisión: 2023-06-09

Jr Andahuaylas 477 San Martin De Porres - Lima

INSTRUMENTO DE MEDICIÓN : WINCHA

Marca : STANLEY

Modelo : 30-626

SOLICITANTE: TERRASERVICE LABORATORIO PERU S.R.L.

N° de Serie: No IndicaIntervalo de Indicación: 0 m a 8 mResolución: 1 mmProcedencia: ChinaIdentificación: TLP-03-PLFecha de Calibración: 2023 - 06 - 09

LUGAR DE CALIBRACIÓN

Laboratorio de TEST & CONTROL S.A.C.

## MÉTODO DE CALIBRACIÓN

La calibración se realizó por comparación directa con nuestro regla patrón según procedimiento PIC-TC-21 "Procedimiento interno para calibración de flexómetros". Primera Edición - Marzo 2017. TEST & CONTROL S.A.C.

## **CONDICIONES AMBIENTALES**

| Magnitud         | Inicial | Final   |
|------------------|---------|---------|
| Temperatura      | 20,2 °C | 20,3 °C |
| Humedad Relativa | 49,4 %  | 50,9 %  |

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados son válidos solamente para el ítem sometido a calibración, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar Gerente Técnico

**CFP: 0316** Página 1 de 2

PGC-16-r29/Marzo 2017/Rev.00



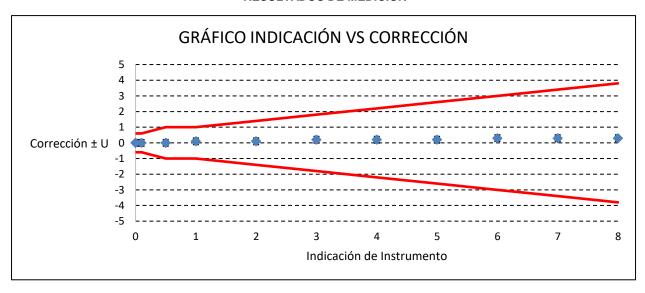




## SISTEMA DE GESTIÓN DE LA CALIDAD NTP ISO / IEC 17025:2017



Certificado : TC - 10976 - 2023


#### **TRAZABILIDAD**

| Patrón de Referencia                                                          | Patrón de Trabajo                            | Certificado de Calibración |
|-------------------------------------------------------------------------------|----------------------------------------------|----------------------------|
| Láser estabilizado con<br>incertidumbre de 0,08 um<br>DM - INACAL             | Regla de Acero<br>Clase I<br>0 mm a 1 000 mm | LLA-034-2023               |
| Microscopio de Medición<br>Incertidumbre de<br>0,58 μm a 1,10 μm<br>DM-INACAL | Retícula de Medición<br>0 mm a 10 mm         | LLA-210-2023               |

## **RESULTADOS DE MEDICIÓN**

| Indicac<br>Instrumento |         | Indicación<br>del Patrón | Corrección | E.M.P.<br>Clase II | Incertidumbre |
|------------------------|---------|--------------------------|------------|--------------------|---------------|
| ( m )                  | ( mm )  | ( mm )                   | ( mm )     | ( mm )             | ( mm )        |
| 0                      | 0,0     | 0,0                      | 0,0        | 0,6                | 0,2           |
| 0,1                    | 100,0   | 100,0                    | 0,0        | 0,6                | 0,2           |
| 0,5                    | 500,0   | 500,0                    | 0,0        | 1,0                | 0,2           |
| 1                      | 1 000,0 | 1 000,1                  | 0,1        | 1,0                | 0,2           |
| 2                      | 2 000,0 | 2 000,1                  | 0,1        | 1,4                | 0,2           |
| 3                      | 3 000,0 | 3 000,2                  | 0,2        | 1,8                | 0,2           |
| 4                      | 4 000,0 | 4 000,2                  | 0,2        | 2,2                | 0,2           |
| 5                      | 5 000,0 | 5 000,2                  | 0,2        | 2,6                | 0,2           |
| 6                      | 6 000,0 | 6 000,3                  | 0,3        | 3,0                | 0,2           |
| 7                      | 7 000,0 | 7 000,3                  | 0,3        | 3,4                | 0,2           |
| 8                      | 8 000,0 | 8 000,3                  | 0,3        | 3,8                | 0,2           |

## **RESULTADOS DE MEDICIÓN**



#### **OBSERVACIONES**

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado. Los errores máximos permitidos especificdos en la tabla son de la clase II, acuerdo a la norma OIML R35-1.

## INCERTIDUMBRE

La incertidumbre expandida de medida se ha obtenido multiplicando la incertidumbre típica de medición por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

FIN DEL DOCUMENTO

PGC-16-r29/Marzo 2017/Rev.00 Página 2 de 2



💽 Av. Simón Bolivar 1631 Pueblo Libre - Lima







# CERTIFICADO DE VERIFICACIÓN Nº OPU - 014 - 2023

Página: 1 de 1

PB-00000110523-0000237 Expediente FRU

Fecha de Emisión (CEL) : 2/11/2023

1. Solicitante CONSULTORIA EN GEOLOGIA E INGENIERIA CIVIL E.I.R.

RUC : 20610425098

2. Instrumento a verificar OLLA DE PESO UNITARIO DE 1/10 FT3

: RUMISTONE Marca

Modelo : OR100010RIG

Número de serie : LA-0045

3. Método de verificación

El recipiente calibrado de peso unitario ha sido examinado y ensayado en nuestros talleres considerando en todo momento las especificaciones establecidad en las normas.

4. Lugar y fecha de verificación

Lugar: Jr. Andahuaylas 477, San Martín de Porres - Lima

Fecha: 2/11/2023

Este certificado de calibración documenta la trazabilidad a nacionales patrones internacionales. los realizan las unidades de medida según el Sistema Internacional de Unidades (SI).

Los resultados declarados en este certificado son válidos en el momento y en las condiciones en que se realizaron las mediciones. Correspondiente al solicitante establecer una próxima calibración, la cual esta función del uso, mantenimiento y conservación del instrumento de medición o las reglamentaciones vigentes.

**TERRASERVICE** 

LABORATORIO PERÚ S.R.L no responsabiliza de prejuicios que pueda ocasionar el uso del instrumento ni de una incorrecta interpretación, de los resultados de la calibración aqui declarados.

## 5. Trazabilidad

| RATORIUFLING             | TERRASERVICE OF ENGLISH   | AT THE            |
|--------------------------|---------------------------|-------------------|
| Trazabilidad             | Patrón utilizado          | Certificado N°    |
| TODASERI INACAL GINEERIN | Vernier de 450mm x 0,02mm | TC - 10978 - 2023 |
| ISO 17025:2017           | WINCHA STANLEY 0m a 8m    | TC - 10976 - 2023 |

## 6. Resultados de medición

| le medición de ABUNACIONES TERRASERVICE OF ENGINEER |          | TERRASERVICE OF ENGINE |        | AT THE SE        |                   |
|-----------------------------------------------------|----------|------------------------|--------|------------------|-------------------|
|                                                     | -TIH     | MEDIDAS M              | ÍNIMAS | of I Broom       |                   |
| NORMA                                               | CAPA     | CIDAD                  | FONDO  | ESPESOR DE PARED | RESTO DE<br>PARED |
|                                                     | Menos    | de 0.4ft3              | 0.2"   | 0.1"             | 0.1"              |
| MEDIDA DE EQUIPO                                    | 1/10 ft3 | 0.10 ft3               | 0.59"  | 0.24"BORATO      | NO PERÚ DE AT     |

NORMA DE ENSAYO MTC E 203 - NTP 400.017

01 323 9468

938 385 323 / 950 721 511

JR. Andahuaylas N°477

San Martín de Porres - Lima RUC: 20603356781 CFR\\\C\

www.terraservicelaboratorioperu.com

TERRASERVICE LABORATORIO PERÚ SRL

TERRASERVICE LABORATORIO PERU SRL







## CERTIFICADO DE CALIBRACION

TC - 10978 - 2023

PROFORMA: 21085A Fecha de emisión: 2023-06-10

SOLICITANTE: TERRASERVICE LABORATORIO PERU S.R.L. : Jr Andahuaylas 477 San Martin De Porres - Lima

INSTRUMENTO DE MEDICIÓN : PIE DE REY Analógico Tipo Marca **INSIZE** 1205-200S Modelo N° de Serie 0604170710 0 mm a 200 mm Intervalo de Indicación

División de Escala 0.02 mm No Indica Procedencia Identificación TLP-02-PL Fecha de Calibración 2023 - 06 - 10

#### **LUGAR DE CALIBRACIÓN**

Laboratorio de TEST & CONTROL S.A.C.

## MÉTODO DE CALIBRACIÓN

La calibración se realizó por comparación directa con nuestro bloques patrón según procedimiento PC - 012 " Procedimiento de calibración de pie de rey". Quinta Edición -Agosto 2012. SNM - INDECOPI

#### **CONDICIONES AMBIENTALES**

| Magnitud         | Inicial | Final   |
|------------------|---------|---------|
| Temperatura      | 19,9 °C | 20,0 °C |
| Humedad Relativa | 50,3 %  | 54,0 %  |

TEST & CONTROL S.A.C. es un Laboratorio de Calibración Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

válidos Los resultados son solamente para el ítem sometido a calibración, no deben ser utilizados una certificación como conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar Gerente Técnico CFP: 0316









## LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 016



Certificado : TC - 10978 - 2023

#### **TRAZABILIDAD**

| Patrón de Referencia                                                      | Patrón de Trabajo           | Certificado de Calibración |
|---------------------------------------------------------------------------|-----------------------------|----------------------------|
| Bloques Patrón                                                            | Bloques Patrón de Longitud  |                            |
| Grado K                                                                   | 0,5 mm a 100 mm             | LLA-C-081-2022             |
| DM-INACAL                                                                 | Grado 0                     |                            |
| Bloques Patrón                                                            | Bloques Patrón de Longitud  |                            |
| Grado K                                                                   | 200 mm                      | LLA-304-2022               |
| DM-INACAL                                                                 | Grado 0                     |                            |
| Comparador Horizontal<br>Incertidumbre de 0,2 μm + 0,78 μm/m<br>DM-INACAL | Varilla Cilindrica<br>10 mm | LLA-038-2023               |
| Máquina de Medición<br>por Coordenadas<br>DM-INACAL                       | Anillo Patrón<br>5 mm       | LLA-299-2022               |

## **RESULTADOS DE MEDICIÓN**

 $0 \mu m$ Error de referencia inicial (I)

## Error de indicación del pie de rey para medición de exteriores

| Valor   | Promedio de la indicación del | Error  |
|---------|-------------------------------|--------|
| Patrón  | Pie de Rey                    | LIIOI  |
| ( mm )  | ( mm )                        | ( µm ) |
| 50,000  | 50,000                        | 0      |
| 100,000 | 100,000                       | 0      |
| 150,000 | 150,000                       | 0      |
| 200,000 | 200,000                       | 0      |

## Error de contacto superficie parcial (E)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 200.000      | 0      |











Certificado : TC - 10978 - 2023

## **RESULTADOS DE MEDICIÓN**

## Error de repetibilidad (R)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 200,000      | 0      |

## Error de cambio de escala de exteriores a interiores (S<sub>E-I</sub>)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 10,000       | 0      |

### Error de cambio de escala de exteriores a profundidad (S<sub>E-P</sub>)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 10,000       | 0      |

## Error de contacto lineal (L)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 10,000       | 0      |

## Error de contacto de superficie completa (J)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 10,000       | 0      |

### Error debido a la distancia de cruce de las superficies de medición para medición de interiores (K)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 5,000        | 0      |

Incertidumbre de Medición :  $(11,55^2 + 0,01^2 \times L^2)^{1/2} \mu m$ 

L: Indicación del pie de rey expresado en milimetros (mm)

Nota 1: Error de indicación del pie de rey para medición de interiores = Error de indicación de exteriores + Error de cambio de escala de exteriores e interiores (SE-I).

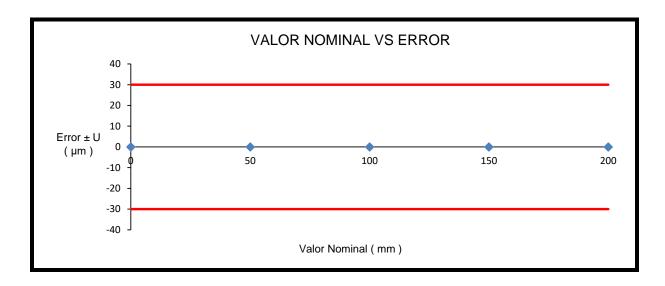
Nota 2: Error de indicación del pie de rey para medición de profundidad = Error de indicación de exteriores + Error de cambio de escala de exterioresa profundidad (SE-P).

Nota 3: El instrumento tiene un error máximo permitido de ± 30 µm, según norma DIN 862.














Certificado : TC - 10978 - 2023

## **RESULTADOS DE MEDICIÓN**



#### **OBSERVACIONES**

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado.

## **INCERTIDUMBRE**

La incertidumbre expandida que resulta de multiplicar la incertidumbre típica combinada por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

## FIN DEL DOCUMENTO



Dirección

## SISTEMA DE GESTIÓN DE LA CALIDAD NTP ISO / IEC 17025:2017



# CERTIFICADO DE CALIBRACIÓN

TC - 10976 - 2023

PROFORMA: 21085A Fecha de emisión: 2023-06-09

Jr Andahuaylas 477 San Martin De Porres - Lima

INSTRUMENTO DE MEDICIÓN : WINCHA

Marca : STANLEY

Modelo : 30-626

SOLICITANTE: TERRASERVICE LABORATORIO PERU S.R.L.

N° de Serie: No IndicaIntervalo de Indicación: 0 m a 8 mResolución: 1 mmProcedencia: ChinaIdentificación: TLP-03-PLFecha de Calibración: 2023 - 06 - 09

LUGAR DE CALIBRACIÓN

Laboratorio de TEST & CONTROL S.A.C.

## MÉTODO DE CALIBRACIÓN

La calibración se realizó por comparación directa con nuestro regla patrón según procedimiento PIC-TC-21 "Procedimiento interno para calibración de flexómetros". Primera Edición - Marzo 2017. TEST & CONTROL S.A.C.

## **CONDICIONES AMBIENTALES**

| Magnitud         | Inicial | Final   |
|------------------|---------|---------|
| Temperatura      | 20,2 °C | 20,3 °C |
| Humedad Relativa | 49,4 %  | 50,9 %  |

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados son válidos solamente para el ítem sometido a calibración, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar Gerente Técnico

**CFP: 0316** Página 1 de 2

PGC-16-r29/Marzo 2017/Rev.00



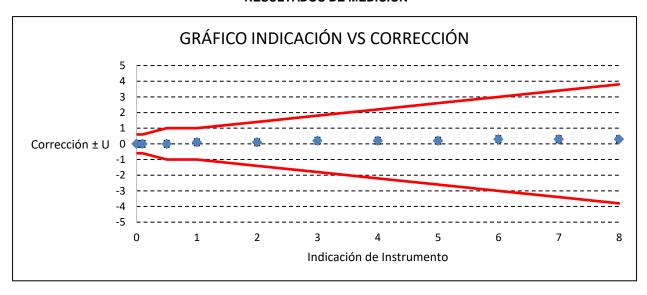




## SISTEMA DE GESTIÓN DE LA CALIDAD NTP ISO / IEC 17025:2017



Certificado : TC - 10976 - 2023


#### **TRAZABILIDAD**

| Patrón de Referencia                                                          | Patrón de Trabajo                            | Certificado de Calibración |
|-------------------------------------------------------------------------------|----------------------------------------------|----------------------------|
| Láser estabilizado con<br>incertidumbre de 0,08 um<br>DM - INACAL             | Regla de Acero<br>Clase I<br>0 mm a 1 000 mm | LLA-034-2023               |
| Microscopio de Medición<br>Incertidumbre de<br>0,58 μm a 1,10 μm<br>DM-INACAL | Retícula de Medición<br>0 mm a 10 mm         | LLA-210-2023               |

## **RESULTADOS DE MEDICIÓN**

| Indicac<br>Instrumento |         | Indicación<br>del Patrón | Corrección | E.M.P.<br>Clase II | Incertidumbre |
|------------------------|---------|--------------------------|------------|--------------------|---------------|
| ( m )                  | ( mm )  | ( mm )                   | ( mm )     | ( mm )             | ( mm )        |
| 0                      | 0,0     | 0,0                      | 0,0        | 0,6                | 0,2           |
| 0,1                    | 100,0   | 100,0                    | 0,0        | 0,6                | 0,2           |
| 0,5                    | 500,0   | 500,0                    | 0,0        | 1,0                | 0,2           |
| 1                      | 1 000,0 | 1 000,1                  | 0,1        | 1,0                | 0,2           |
| 2                      | 2 000,0 | 2 000,1                  | 0,1        | 1,4                | 0,2           |
| 3                      | 3 000,0 | 3 000,2                  | 0,2        | 1,8                | 0,2           |
| 4                      | 4 000,0 | 4 000,2                  | 0,2        | 2,2                | 0,2           |
| 5                      | 5 000,0 | 5 000,2                  | 0,2        | 2,6                | 0,2           |
| 6                      | 6 000,0 | 6 000,3                  | 0,3        | 3,0                | 0,2           |
| 7                      | 7 000,0 | 7 000,3                  | 0,3        | 3,4                | 0,2           |
| 8                      | 8 000,0 | 8 000,3                  | 0,3        | 3,8                | 0,2           |

## **RESULTADOS DE MEDICIÓN**



#### **OBSERVACIONES**

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado. Los errores máximos permitidos especificdos en la tabla son de la clase II, acuerdo a la norma OIML R35-1.

## INCERTIDUMBRE

La incertidumbre expandida de medida se ha obtenido multiplicando la incertidumbre típica de medición por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

FIN DEL DOCUMENTO

PGC-16-r29/Marzo 2017/Rev.00 Página 2 de 2



💽 Av. Simón Bolivar 1631 Pueblo Libre - Lima







CERTIFICATE CALIBRATION



N° OW - 218 - 2024

: TLPB-00000110523-0000237 Expediente

Fecha de emisión : 7/02/2024

**CONSULTORIA EN GEOLOGIA E** 1. Solicitante

INGENIERIA CIVIL E.I.R.L.

**RUC** : 20610425098

2. Instrumento de medición : OLLA WASHINGTON

: RUMISTONE Marca

Modelo : LC-510

Número de serie : 220814

Capacidad : 0.34 ft3

: PERÚ Procedencia

Marca de manómetro : RUMISTONE

Punto inicial (PI) : 3% Los resultados son válidos en el momento y en las condiciones en que se realizaron las mediciones y no debe ser utilizado como certificado conformidad con normas de productos o como certificado del sistema de calidad de la entidad que lo produce.

Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

TERRASERVICE **LABORATORIO** PERÚ S.R.L no se responsabiliza de los prejuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

## 3. Método de Calibración

La calibración se realizó por comparación directa siguiendo el "Procedimiento ME-003 para la calibración de manómetros, vacuómetros y manóvacuometros" Edición digital 3 - 2019 del CEM - Centro Español de Metrologia.

## 4. Observaciones

- \* Se colocó una etiqueta con la idicación "CALIBRADO"
- \* El resultado de cada uno de la mediciones, en el presente documento es de un promedio de dos valores de un mismo punto.
- \*Los resultados indicados en el presente documento, son validos en el momento de la calibración y se refieren exclusivamente al instrumento calibrado, no deben usarse como certificado de conformidad de producto.
- \* El presente documento carece de valor sin firmas y sellos.
- (\*) Código asignado por TERRASERVICE LABORATORIO PERÚ S.R.L
- \* El fluido de transmisión de presión utilizado en la calibración fue aire.

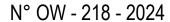
## 5. Lugar y fecha de Calibración

: Jr. Andahuaylas N° 477, San Martín de Porres - Lima Lugar

Fecha : 5/02/2024

TERRASERVICE LABORATORIO PERÚ S.R.L.

Gerzo Renato Rodriguez Bazalar Auxiliar de Metrología


Ing. Diana S. Montenegro Carhuas

Jefe de Metrología

TLP-M-21 Versión: 2 TORIO PERÚ S.R.L.

TERRASERVICE L

Aprobado el 02-01-2024





## 6. Trazabilidad

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

| Nombre del patrón                                                   | Serie de patrón | Certificado de Calibración | Trazabilidad |
|---------------------------------------------------------------------|-----------------|----------------------------|--------------|
| Manómetro análogo ADDITEL 0 psi a 232 psi x 0.1 psi ; clase 0,2% FS | TLP-02-PP       | PR23 - C - 0393            | INACAL       |
| Vernier INSIZE de 200 mm x 0,05 mm                                  | 0604170710      | TC - 10978 - 2023          | INACAL       |
| Balanza OHAUS 22000g x 0.1g                                         | 1124021550      | TC - 11323 - 2023          | INACAL       |

## 7. Temperatura y Humedad Relativa

| Magnitud         | Inicial | Final |
|------------------|---------|-------|
| Temperatura (°C) | 29.3    | 29.9  |
| Humedad Relativa | 57%     | 58%   |

## 8. Resultados

| Volumen de la olla con agua (cm3)                                         |       |          |        |
|---------------------------------------------------------------------------|-------|----------|--------|
| masa del agua (g)  Densidad del agua (25.4°C) g/cm3  Volumen cm3 promedio |       | promedio |        |
| 7048                                                                      |       | 7068.6   |        |
| 7048                                                                      | 0.997 | 7068.6   | 7068.6 |
| 7048                                                                      |       | 7068.6   |        |

| Desv. Stand.   | 0.000 |  |
|----------------|-------|--|
| coeficiente de | 0.000 |  |
| variación      | 0.000 |  |

| Volumen de la probeta con agua (cm3)                                      |       |       |       |
|---------------------------------------------------------------------------|-------|-------|-------|
| masa del agua (g)  Densidad del agua (25.4°C) g/cm3  Volumen cm3 promedio |       |       |       |
| 354                                                                       |       | 355.0 |       |
| 354                                                                       | 0.997 | 355.0 | 355.0 |
| 354                                                                       |       | 355.0 |       |

TLP-M-21 Versión: 2 Aprobado el 02-01-2024 Página 2 de 3



| Desv. Stand.                | 0.000 |
|-----------------------------|-------|
| coeficiente de<br>variación | 0.00  |

| Porcentaje de relación (%) | 5.023 |
|----------------------------|-------|

| Recipiente de Medicion |             |          |               |
|------------------------|-------------|----------|---------------|
| Diámetro (mm)          | Altura (mm) | Masa (g) | Volumen (cm3) |
| 203.4                  | 218.0       | 2941.0   |               |
| 204.5                  | 218.0       | 2942.0   | 7083.5        |
| 205.4                  | 220.0       | 2943.0   |               |

| Conceptos                | Diámetro (mm) | Altura (mm) | Masa (g) |
|--------------------------|---------------|-------------|----------|
| Media                    | 204.4         | 219.0       | 2942.0   |
| Desv. Stand.             | 1.020         | 1.155       | 1.000    |
| Coeficiente de variación | 0.005         | 0.005       | 0.000    |

| Medidor de Aire tipo Bourdon |                                        |                   |                  |                   |                |
|------------------------------|----------------------------------------|-------------------|------------------|-------------------|----------------|
| Puntos de Calibración        | Lectura del Equipo Error de indicacion |                   |                  | Error de          |                |
| (psi)                        | Ascendente (psi)                       | Descendente (psi) | Ascendente (psi) | Descendente (psi) | Historosis (%) |
| 0.0                          | 0.0                                    | 0.0               | 0.0              | 0.0               | 0.0            |
| 5.0                          | 5.0                                    | 5.1               | 0.0              | -0.1              | 0.7            |
| 10.0                         | 10.1                                   | 10.0              | -0.1             | 0.0               | -0.7           |
| 15.0                         | 15.0                                   | 15.0              | 0.0              | 0.0               | 0.0            |

## 9. Error de Histeresis

El efecto de histéresis se produce debido a que se realizaron pruebas con cargas continuamente creciente y decreciente. Su incertidumbre será asociada a una distribución de probabilidad rectangular.

FIN DEL DOCUMENTO



## LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 006



# Certificado de Calibración

Calibration Certificate

N° PR23-C-0393

Registro N°LC - 006

TERRASERVICE LABORATORIO PERU S.R.L. Cliente:

Custome

Dirección: Jr. Andahuylas N° 477 Urb. Perú (Lima / Lima / San Martin de Porres)

**MANÓMETRO** Instrumento de Medición:

Measuring instrument

Marca: **ADDITEL** 

Brand

No indica Modelo:

Model

No indica Serie:

Serial Number

TLP-02-PP (\*) Identificación:

Identification

Laboratorio de Dimensión y Presión - KOSSODO Lugar de Calibración:

Place of Calibration METROLOGÍA S.A.C.

Orden de Trabajo: OT-02301581

Work Order

Fecha de Calibración: 2023-06-30

Date of Calibration

Fecha de Emisión: 2023-06-30

Date of Issue

Calibración documenta Certificado de trazabilidad a los patrones Nacionales o Internacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

KOSSODO METROLOGÍA S.A.C. mantiene y calibra sus patrones de referencia para garantizar la cadena de trazabilidad de las mediciones que realiza, así mismo realiza certificaciones metrológicas a solicitud de los interesados y brinda asistencia técnica en temas relacionados al campo de la metrología en la industria

Con el fin de asegurar la calidad de sus mediciones el usuario debería recalibrar sus instrumentos a intervalos apropiados

This Calibration Certificate documents the traceability to national or international standards, which realize the units of measurement according to the International System of Units (SI).

KOSSODO METROLOGIA S.A.C. supports and calibrates his standards of reference to guarantee the chain of traceability of the measurements realized, as well as the metrological certifications realize at the request of the interested parties and offers technical assistance in topics related to the metrology field in

the Peruvian industry

In order to assure the quality of measurements the user should recalibrate his

instruments at appropriate intervals

## DATOS DEL INSTRUMENTO DE MEDICIÓN

Measurement instrument data

Intervalo de Indicación Manómetrica: 0 psi a 232 psi

Manometric Indication Interval.

Resolución del Manómetro: 0,1 psi

Pressure gauge resolution

Clase de Exactitud: 0.2 %FS Tipo de indicación: Digital

Accuracy class: Type of indication:

Diametro de Caja: 80 mm Diametro de Rosca: 1/4" NPT Posición de Trabajo: Vertical

Diameter of Case Screw Diameter. Working Position:

## MÉTODO DE CALIBRACIÓN

Calibration Methodo

La calibración se realizó por comparación directa siguiendo el "Procedimiento ME-003 para la calibración de manómetros, vacuómetros y manóvacuometros" Edición digital 3 - 2019 del CEM - Centro Español de Metrologia.

The calibration was carried out by direct comparison following the "ME-003 Procedure for the calibration of pressure gauges, vacuum gauges and pressure gauges". Digital Edition 3 - 2019 of the CEM - Spanish Center of Metrology



Jefe de Laboratorio

Olga Toro Sayas

Supervisor de Laboratorio

Giovanny M. De La Cruz Cuya



# LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 006



N° PR23-C-0393

## **PATRONES UTILIZADOS**

Standards Used

| Nombre del patrón                                                                           | Código y/o serie del Patrón | Nº de Certificado  | Trazabilidad |
|---------------------------------------------------------------------------------------------|-----------------------------|--------------------|--------------|
| Standard name                                                                               | Pattern code and/or series  | certificate number | Traceability |
| Manómetro de indicación digital de 0 bar a 20,7 bar con una clase de exactitud de 0,05 %FS. | PT-PRES-10 / 211H199E0011   | LFP-039-2022       | DM-INACAL    |

## CONDICIONES AMBIENTALES DURANTE LA CALIBRACIÓN

Environment Conditions during Calibration

Presión Atmosferica Inicial:

Temperatura Inicial: 20,6 °C Temperatura Final: 20,1 °C

Initial Temperature Final Temperature

Humedad Relativa Final: 64,0 %

Final Relative Humidity:

Humedad Relativa Inicial: 69,0 % Initial Relative Humidity:

997,0 mbar Presión Atmosferica Final: 996,1 mbar

Initial Atmospheric Pressure: final Atmospheric Pressure:

## **RESULTADOS ANTES DEL AJUSTE**

Results before adjust

No se realizó el ajuste.

No adjustment was made

#### RESULTADOS DE CALIBRACIÓN

Calibration results

## PRESIÓN MANÓMETRICA Ó POSITIVA

| Presión de referencia | Indicación del<br>instrumento | Error de la indicación | Incertidumbre | Error Máximo<br>Permitido (EMP) |
|-----------------------|-------------------------------|------------------------|---------------|---------------------------------|
| psi                   | psi                           | psi                    | psi           | psi                             |
| 0,0                   | 0,0                           | 0,0                    | 0,1           | 0,5                             |
| 6,0                   | 6,0                           | 0,0                    | 0,1           | 0,5                             |
| 12,0                  | 12,0                          | 0,0                    | 0,1           | 0,5                             |
| 18,0                  | 18,0                          | 0,0                    | 0,1           | 0,5                             |
| 23,9                  | 24,0                          | 0,1                    | 0,1           | 0,5                             |
| 30,0                  | 30,0                          | 0,0                    | 0,1           | 0,5                             |
| 35,9                  | 36,0                          | 0,1                    | 0,1           | 0,5                             |
| 41,9                  | 42,0                          | 0,1                    | 0,1           | 0,5                             |
| 47,9                  | 48,0                          | 0,1                    | 0,1           | 0,5                             |
| 54,0                  | 54,0                          | 0,0                    | 0,1           | 0,5                             |
| 60,0                  | 60,0                          | 0,0                    | 0,1           | 0,5                             |



# LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 006



N° PR23-C-0393

### PRESIÓN MANÓMETRICA Ó POSITIVA - RESULTADOS EN UNIDADES SI

| Presión de referencia | Indicación del<br>instrumento | Error de la indicación | Incertidumbre | Error Máximo<br>Permitido (EMP) |
|-----------------------|-------------------------------|------------------------|---------------|---------------------------------|
| bar                   | bar                           | bar                    | bar           | bar                             |
| 0,00                  | 0,00                          | 0,00                   | 0,01          | 0,03                            |
| 0,41                  | 0,41                          | 0,00                   | 0,01          | 0,03                            |
| 0,83                  | 0,83                          | 0,00                   | 0,01          | 0,03                            |
| 1,24                  | 1,24                          | 0,00                   | 0,01          | 0,03                            |
| 1,65                  | 1,65                          | 0,00                   | 0,01          | 0,03                            |
| 2,07                  | 2,07                          | 0,00                   | 0,01          | 0,03                            |
| 2,48                  | 2,48                          | 0,00                   | 0,01          | 0,03                            |
| 2,89                  | 2,90                          | 0,01                   | 0,01          | 0,03                            |
| 3,30                  | 3,31                          | 0,01                   | 0,01          | 0,03                            |
| 3,72                  | 3,72                          | 0,00                   | 0,01          | 0,03                            |
| 4,14                  | 4,14                          | 0,00                   | 0,01          | 0,03                            |

## INCERTIDUMBRE DE MEDICIÓN

Uncertainty of Measurement

La incertidumbre de medición calculada (U), ha sido determinada a partir de la Incertidumbre estándar de medición combinada, multiplicada por el factor de cobertura k=2. Este valor ha sido calculado para un nivel de confianza aproximado del 95%.

The calculated measurement uncertainty (U) has been determined from the combined standard uncertainty of measurement, multiplied by the coverage factor k=2. This value has been calculated for a confidence level of approximately 95%.

## **OBSERVACIONES**

Comments

(\*) Indicado en una etiqueta adherida al instrumento.

(\*) Indicated on a label attached to the instrument.

(\*\*) La clase de exactitud se encuentra en las especificaciones de fabricante del instrumento.

(\*\*) The accuracy class is found in the instrument manufacturer's specifications

El fluido de transmisión de presión utilizado en la calibración fue aire.

The pressure transmission fluid used in the calibration was air.

A solicitud del cliente, la calibración se realizo en un rago de 0 psi a 60 psi .

At the request of the client, the calibration was carried out in a range of 0 psi to 60 psi.

#### **NOTAS**

Notes

Los resultados contenidos en el presente documento son válidos únicamente para las condiciones del instrumento durante la calibración. KOSSODO METROLOGÍA S.A.C. no se responsabiliza de ningún perjuicio que puedan derivarse del uso inadecuado del objeto calibrado.

The values indicated in this document are only valid for the conditions of the instrument during calibration. KOSSODO METROLOGÍA S.A.C. takes no responsibility for any damages caused by bad use of the calibrated object.

Los resultados declarados en el presente documento se relacionan solamente con el ítem sometido a calibración indicado en la pagina 1 de éste documento.

The results declared in this document relate only to the item undergoing calibration indicated on page 1 of this document.

Una copia de este documento será mantenida en archivo electrónico en el laboratorio por un período de por lo menos 4 años.

A copy of this document will be kept in electronic device in the laboratory for 4 years at least.

La versión en inglés de este documento es una traducción relativa. En caso de duda, es válida la versión original en español.

The version in english of this document is not a binding translation. If any controversy arises, the original version in spanish must be considered.

El cliente es responsable de toda la información proporcionada durante el servicio y que puedan afectar a la validez de los resultados.

The client is responsable for all information provided during the service that may affect the validity of results.





## CERTIFICADO DE CALIBRACION

TC - 10978 - 2023

PROFORMA: 21085A Fecha de emisión: 2023-06-10

SOLICITANTE: TERRASERVICE LABORATORIO PERU S.R.L. : Jr Andahuaylas 477 San Martin De Porres - Lima

INSTRUMENTO DE MEDICIÓN : PIE DE REY Analógico Tipo Marca **INSIZE** 1205-200S Modelo N° de Serie 0604170710 0 mm a 200 mm Intervalo de Indicación

División de Escala 0.02 mm No Indica Procedencia Identificación TLP-02-PL Fecha de Calibración 2023 - 06 - 10

#### **LUGAR DE CALIBRACIÓN**

Laboratorio de TEST & CONTROL S.A.C.

## MÉTODO DE CALIBRACIÓN

La calibración se realizó por comparación directa con nuestro bloques patrón según procedimiento PC - 012 " Procedimiento de calibración de pie de rey". Quinta Edición -Agosto 2012. SNM - INDECOPI

#### **CONDICIONES AMBIENTALES**

| Magnitud         | Inicial | Final   |
|------------------|---------|---------|
| Temperatura      | 19,9 °C | 20,0 °C |
| Humedad Relativa | 50,3 %  | 54,0 %  |

TEST & CONTROL S.A.C. es un Laboratorio de Calibración Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

válidos Los resultados son solamente para el ítem sometido a calibración, no deben ser utilizados una certificación como conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar Gerente Técnico CFP: 0316









## LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 016



Certificado : TC - 10978 - 2023

#### **TRAZABILIDAD**

| Patrón de Referencia                                                      | Patrón de Trabajo           | Certificado de Calibración |
|---------------------------------------------------------------------------|-----------------------------|----------------------------|
| Bloques Patrón                                                            | Bloques Patrón de Longitud  |                            |
| Grado K                                                                   | 0,5 mm a 100 mm             | LLA-C-081-2022             |
| DM-INACAL                                                                 | Grado 0                     |                            |
| Bloques Patrón                                                            | Bloques Patrón de Longitud  |                            |
| Grado K                                                                   | 200 mm                      | LLA-304-2022               |
| DM-INACAL                                                                 | Grado 0                     |                            |
| Comparador Horizontal<br>Incertidumbre de 0,2 μm + 0,78 μm/m<br>DM-INACAL | Varilla Cilindrica<br>10 mm | LLA-038-2023               |
| Máquina de Medición<br>por Coordenadas<br>DM-INACAL                       | Anillo Patrón<br>5 mm       | LLA-299-2022               |

## **RESULTADOS DE MEDICIÓN**

 $0 \mu m$ Error de referencia inicial (I)

## Error de indicación del pie de rey para medición de exteriores

| Valor   | Promedio de la indicación del | Error  |
|---------|-------------------------------|--------|
| Patrón  | Pie de Rey                    | LIIOI  |
| ( mm )  | ( mm )                        | ( µm ) |
| 50,000  | 50,000                        | 0      |
| 100,000 | 100,000                       | 0      |
| 150,000 | 150,000                       | 0      |
| 200,000 | 200,000                       | 0      |

## Error de contacto superficie parcial (E)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 200.000      | 0      |











Certificado : TC - 10978 - 2023

## **RESULTADOS DE MEDICIÓN**

## Error de repetibilidad (R)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 200,000      | 0      |

## Error de cambio de escala de exteriores a interiores (S<sub>E-I</sub>)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 10,000       | 0      |

### Error de cambio de escala de exteriores a profundidad (S<sub>E-P</sub>)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 10,000       | 0      |

## Error de contacto lineal (L)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 10,000       | 0      |

## Error de contacto de superficie completa (J)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 10,000       | 0      |

### Error debido a la distancia de cruce de las superficies de medición para medición de interiores (K)

| Valor Patrón | Error  |
|--------------|--------|
| ( mm )       | ( µm ) |
| 5,000        | 0      |

Incertidumbre de Medición :  $(11,55^2 + 0,01^2 \times L^2)^{1/2} \mu m$ 

L: Indicación del pie de rey expresado en milimetros (mm)

Nota 1: Error de indicación del pie de rey para medición de interiores = Error de indicación de exteriores + Error de cambio de escala de exteriores e interiores (SE-I).

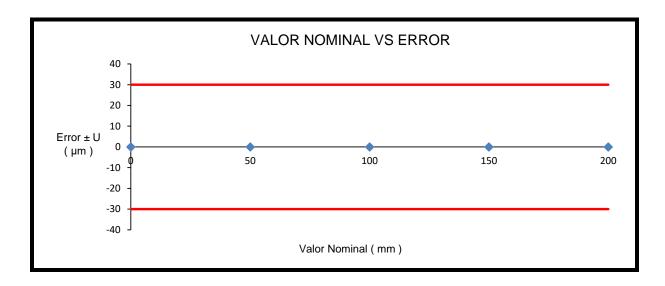
Nota 2: Error de indicación del pie de rey para medición de profundidad = Error de indicación de exteriores + Error de cambio de escala de exterioresa profundidad (SE-P).

Nota 3: El instrumento tiene un error máximo permitido de ± 30 µm, según norma DIN 862.














Certificado : TC - 10978 - 2023

## **RESULTADOS DE MEDICIÓN**



#### **OBSERVACIONES**

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado.

## **INCERTIDUMBRE**

La incertidumbre expandida que resulta de multiplicar la incertidumbre típica combinada por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

## FIN DEL DOCUMENTO





# Certificado de Calibración

TC - 11322 - 2023

Proforma : 21219A Fecha de emisión : 2023-06-10

TERRASERVICE LABORATORIO PERU S.R.L. Solicitante Jr Andahuaylas 477 San Martin De Porres - Lima Dirección

: Balanza Instrumento de medición Tipo Electrónica Marca **OHAUS** 

**EP22001 BASIC EXPLORER** Modelo

1124021550 N° de Serie 22000 g Capacidad Máxima Resolución 0,1 gDivisión de Verificación 0.5 gClase de Exactitud Ш Capacidad Mínima 5 g

Procedencia **SWITZERLAND** TLP-03-PB Identificación

Ubicación Área de metrología mantenimiento

3°C Variación de ∆T Local Fecha de Calibración 2023-06-08

Lugar de calibración

Instalaciones de TERRASERVICE LABORATORIO PERU S.R.L.

Método de calibración

La calibración se realizó por comparación directa entre las indicaciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones según procedimiento PC-011 "Procedimiento para la Calibración de Balanzas de Funcionamiento No Automático Clase I y II". Cuarta Edición - Abril 2010. SNM -INDECOPI.

TEST & CONTROL S.A.C. es un Laboratorio de Calibración Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción nuestros clientes.

certificado de calibración Este documenta la trazabilidad a los patrones nacionales internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados.

Los resultados son válidos solamente para el ítem sometido a calibración, no deben ser utilizados como una certificación de conformidad con normas de producto 0 como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar **Gerente Técnico** CFP: 0316

PGC-16-r08/ Diciembre 2019/Rev.04 Página: 1 de 3











Certificado de Calibración TC - 11322 - 2023

#### Trazabilidad

| Trazabilidad                           | Patrón de trabajo                                      | Certificado de calibración  |
|----------------------------------------|--------------------------------------------------------|-----------------------------|
| Patrones de Referencia de<br>KOSSOMET  | Juego de Pesas<br>1 mg a 1 kg<br>Clase de Exactitud F1 | PE23-C-0191<br>Marzo 2023   |
| Patrones de Referencia de<br>DM-INACAL | Juego de Pesas<br>1 kg a 5 kg<br>Clase de Exactitud F1 | LM-C-026-2023<br>Enero 2023 |
| Patrones de Referencia de<br>DM-INACAL | Pesa<br>10 kg<br>Clase de Exactitud F1                 | LM-C-024-2023<br>Enero 2023 |
| Patrones de Referencia de<br>DM-INACAL | Pesa<br>20 kg<br>Clase de Exactitud F1                 | LM-C-029-2023<br>Enero 2023 |

## **RESULTADOS DE MEDICIÓN**

## Inspección visual

| Ajuste de Cero   | Tiene    |
|------------------|----------|
| Oscilación Libre | Tiene    |
| Plataforma       | Tiene    |
| Sistema de Traba | No Tiene |

| Escala     | No Tiene |
|------------|----------|
| Cursor     | No Tiene |
| Nivelación | Tiene    |

## Ensayo de repetibilidad

| Magnitud         | Inicial | Final   |
|------------------|---------|---------|
| Temperatura      | 24,7 °C | 24,7 °C |
| Humedad Relativa | 71 %    | 71 %    |

| Medición                    | Carga     | I          | $\DeltaL$ | E    |
|-----------------------------|-----------|------------|-----------|------|
| N°                          | (g)       | (g)        | (g)       | (g)  |
| 1                           |           | 11 000,3   | 0,08      | 0,27 |
| 2                           |           | 11 000,2   | 0,06      | 0,19 |
| 3                           |           | 11 000,2   | 0,06      | 0,19 |
| 4                           |           | 11 000,3   | 0,08      | 0,27 |
| 5                           | 11 000,00 | 11 000,3   | 0,08      | 0,27 |
| 6                           | 11 000,00 | 11 000,2   | 0,06      | 0,19 |
| 7                           |           | 11 000,1   | 0,05      | 0,10 |
| 8                           |           | 11 000,2   | 0,06      | 0,19 |
| 9                           |           | 11 000,2   | 0,06      | 0,19 |
| 10                          |           | 11 000,3   | 0,08      | 0,27 |
| Emáx - Emín   (g)           |           | 0,         | 17        |      |
| error máximo permitido (±g) |           | itido (±g) | 1,        | 50   |

| Medición                    | Carga     | I        | $\DeltaL$ | Е    |
|-----------------------------|-----------|----------|-----------|------|
| N°                          | (g)       | (g)      | (g)       | (g)  |
| 1                           |           | 22 000,2 | 0,08      | 0,17 |
| 2                           |           | 22 000,2 | 0,08      | 0,17 |
| 3                           |           | 22 000,1 | 0,05      | 0,10 |
| 4                           |           | 22 000,2 | 0,08      | 0,17 |
| 5                           | 22 000,00 | 22 000,3 | 0,08      | 0,27 |
| 6                           | 22 000,00 | 22 000,3 | 0,08      | 0,27 |
| 7                           |           | 22 000,2 | 0,08      | 0,17 |
| 8                           |           | 22 000,2 | 0,06      | 0,19 |
| 9                           |           | 22 000,3 | 0,08      | 0,27 |
| 10                          |           | 22 000,3 | 0,08      | 0,27 |
| Emáx - Emín   (g)           |           | 0,       | 17        |      |
| error máximo permitido (±g) |           | 1,       | 50        |      |

PGC-16-r08/ Diciembre 2019/Rev.04







Página : 2 de 3





Certificado de Calibración TC - 11322 - 2023



## Ensayo de excentricidad

| Magnitud         | Inicial | Final   |
|------------------|---------|---------|
| Temperatura      | 24,7 °C | 24,7 °C |
| Humedad Relativa | 71 %    | 71 %    |

| N° | Determinación de Error Eo |       |        | Determinación de Error Corregido Ec |           |         |        | e.m.p. |        |      |
|----|---------------------------|-------|--------|-------------------------------------|-----------|---------|--------|--------|--------|------|
| 14 | Carga (g)                 | I (g) | ∆L (g) | Eo (g)                              | Carga (g) | I (g)   | ∆L (g) | E (g)  | Ec (g) | (±g) |
| 1  |                           | 5,0   | 0,05   | 0,00                                |           | 7 000,2 | 0,08   | 0,17   | 0,17   |      |
| 2  |                           | 5,0   | 0,05   | 0,00                                |           | 6 999,7 | 0,05   | -0,30  | -0,30  |      |
| 3  | 5,00                      | 5,0   | 0,07   | -0,02                               | 7 000,00  | 6 999,8 | 0,05   | -0,20  | -0,18  | 1,00 |
| 4  |                           | 5,0   | 0,05   | 0,00                                |           | 6 999,8 | 0,05   | -0,20  | -0,20  |      |
| 5  |                           | 5,0   | 0,07   | -0,02                               |           | 7 000,2 | 0,08   | 0,17   | 0,19   |      |

## Ensayo de pesaje

| Magnitud         | Inicial | Final   |  |  |
|------------------|---------|---------|--|--|
| Temperatura      | 24,8 °C | 24,8 °C |  |  |
| Humedad Relativa | 72 %    | 72 %    |  |  |

| Carga     | Crecientes |        |       |        | Decrecientes |        |       |        | e.m.p. |
|-----------|------------|--------|-------|--------|--------------|--------|-------|--------|--------|
| (g)       | I (g)      | ∆L (g) | E (g) | Ec (g) | I (g)        | ∆L (g) | E (g) | Ec (g) | (±g)   |
| 0,50      | 0,5        | 0,05   | 0,00  |        |              |        |       |        |        |
| 5,00      | 5,0        | 0,06   | -0,01 | -0,01  | 5,0          | 0,06   | -0,01 | -0,01  | 0,50   |
| 1 000,00  | 1 000,0    | 0,06   | -0,01 | -0,01  | 1 000,0      | 0,06   | -0,01 | -0,01  | 0,50   |
| 2 000,00  | 2 000,0    | 0,06   | -0,01 | -0,01  | 2 000,0      | 0,06   | -0,01 | -0,01  | 0,50   |
| 4 500,00  | 4 500,0    | 0,06   | -0,01 | -0,01  | 4 500,1      | 0,07   | 0,08  | 0,08   | 1,00   |
| 6 000,02  | 5 999,8    | 0,05   | -0,22 | -0,22  | 5 999,8      | 0,07   | -0,24 | -0,24  | 1,00   |
| 8 000,03  | 7 999,7    | 0,05   | -0,33 | -0,33  | 7 999,8      | 0,05   | -0,23 | -0,23  | 1,00   |
| 10 000,01 | 9 999,8    | 0,04   | -0,20 | -0,20  | 10 000,1     | 0,06   | 0,08  | 0,08   | 1,00   |
| 15 000,03 | 15 000,2   | 0,08   | 0,14  | 0,14   | 15 000,2     | 0,08   | 0,14  | 0,14   | 1,50   |
| 20 000,01 | 20 000,3   | 0,08   | 0,26  | 0,26   | 20 000,2     | 0,08   | 0,16  | 0,16   | 1,50   |
| 22 000,01 | 22 000,3   | 0,08   | 0,26  | 0,26   | 22 000,3     | 0,08   | 0,26  | 0,26   | 1,50   |

Donde:

I : Indicación de la balanza ΔL : Carga adicional Eo : Error en cero R : Lectura de la balanza posterior a la calibración (g) E: Error del instrumento Ec: Error corregido

Lectura corregida e incertidumbre de la balanza

R - 3,54 x 10 <sup>-6</sup> x R Lectura Corregida R<sub>corregida</sub>

<sup>-9</sup>x R<sup>2</sup> Incertidumbre Expandida  $U_R$ 2 x  $2,62 \times 10^{-3}$ + 1,21 x 10

#### **Observaciones**

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado. La indicación de la balanza fue de 22 009,4 g para una carga de valor nominal 22000 g.

## Incertidumbre

La incertidumbre expandida que resulta de multiplicar la incertidumbre típica combinada por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

### Fin del documento

PGC-16-r08/ Diciembre 2019/Rev.04







Página: 3 de 3



# PERUTEST S.A.C.

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA

RUC N° 20602182721

# CERTIFICADO DE CALIBRACIÓN PT - LL - 007 - 2024

Área de Metrología Laboratorio de Longitud

| 1. Expediente                      | 0521-2024                                                                          | Este certificado de calibración documenta la trazabilidad a los                                                              |
|------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 2. Solicitante                     | CONS ULTORIA EN GEOLOGIA E                                                         | documenta la trazabilidad a los<br>patrones nacionales d                                                                     |
| 3. Dirección                       | INGENIERIA CIVIL E.I.R.L.<br>MZA. Q LOTE. 8 S . HERRERA - CUS CO CUS CO<br>WANCHAQ | internacionales, que realizan las<br>unidades de la medición de acuerdo<br>con el Sistema Internacional de<br>Unidades (SI). |
| 4. Instrumento de Medición         | APARATO DE CONSISTENCIA VICAT                                                      | omadacs (Si).                                                                                                                |
| Alcance de indicación              | 0 mm a 50 mm                                                                       | Los resultados son validos en el<br>momento de la calibración. Al<br>solicitante le corresponde disponer                     |
| División de Escala /<br>Resolución | 1 mm                                                                               | en su momento la ejecución de una<br>recalibración, la cual está en función                                                  |
| Marca                              | HUMBOLTD                                                                           | del uso, conservación y<br>mantenimiento del instrumento de<br>medición o a reglamento vigente.                              |
| Modelo                             | LA-4100-50                                                                         | S. T. S.                                                                                 |
| Número de Serie                    | NO INDICA                                                                          | PERUTEST S.A.C. no se responsabiliza<br>de los perjuicios que pueda ocasionar<br>el uso inadecuado de este                   |
| Procedencia                        | U.S.A.                                                                             | instrumento, ni de una incorrecta                                                                                            |
| Identificación                     | LL-027                                                                             | interpretación de los resultados de la calibración aqui declarados.                                                          |
| Tipo de indicación                 | ANALÓGICO                                                                          | Este certificado de calibración no<br>podrá ser reproducido parcialmente<br>sin la aprobación por escrito del                |
| 5. Fecha de Calibración            | 2024-02-01                                                                         | laboratorio que lo emite.                                                                                                    |
|                                    | S. Charles and C. Alba and C. A.                                                   | El certificado de calibración sin firma y sello carece de validez.                                                           |
| Fecha de Emisión                   | Jefe del Laboratorio de Metrología                                                 | Sello                                                                                                                        |

2024-02-01

OSE ALEJANDRO FLORES MINAYA



913 028 621 / 913 028 622

913 028 623 / 913 028 624

www.perutest.com.pe

🕠 Av. Chillon Lote 50B - Comas - Lima - Lima

ventas@perutest.com.pe

**O PERUTEST SAC** 



# PERUTEST S.A.C.

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LL - 007 - 2024

Página 2 de 3

Área de Metrología Laboratorio de Longitud

## 6. Método de Calibración

La calibración se realizó por comparación directa con patrones calibrados

7. Lugar de calibración

Laboratorio de PERUTEST S.A.C.

8. Condiciones Ambientales

| VA 65 P.         | Inicial  | Final    |
|------------------|----------|----------|
| Temperatura      | 25.50 ºC | 26.00 ºC |
| Humedad Relativa | 56%      | 58%      |

## 9. Patrones de Referencia

| Trazabilidad | Patrón utilizado                                   | Certificado/Informe de calibración |
|--------------|----------------------------------------------------|------------------------------------|
| INACAL       | BLOQUES PATRÓN (Grado 0)<br>Vertex Modelo VGB-87-0 | LLA-C-071-2023                     |

## 10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- (\*) Serie grabado en el instrumento.



- 913 028 623 / 913 028 624
- www.perutest.com.pe

- Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- **O PERUTEST SAC**



# PERUTEST S.A.C.

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LL - 007 - 2024

Página 3 de 3

## Área de Metrología Laboratorio de Longitud

#### 11. Resultados de Medición

ALCANCE DEL ERROR DE INDICACIÓN (fe)

| VALOR PATRÓN | INDICACIÓN DEL<br>COMPARADOR | ERROR<br>DE INDICACIÓN |  |
|--------------|------------------------------|------------------------|--|
| (mm) 9       | ( mm )                       | (μm)                   |  |
| 5.0000       | 5.0000                       | 0.0000                 |  |
| 10.0000      | 10.0000                      | 0.0000                 |  |
| 15.0000      | 15.0000                      | 0.0000                 |  |
| 20.0000      | 20.0000                      | 0.0000                 |  |
| 25.0000      | 25.0000                      | 0.0000                 |  |
| 30.0000      | 30.0000                      | 0.0000                 |  |
| 35.0000      | 35.0000                      | 0.0000                 |  |
| 40.0000      | 40.0000                      | 0.0000                 |  |
| 45.0000      | 45.0000                      | 0.0000                 |  |
| 50.0000      | 50.0000                      | 0.0000                 |  |

Alcance del error de indicación (fe): 0 mm

Incertidumbre del error de indicación : ± 2 µm para (k=2)

#### 12. Incertidumbre

La incertidumbre expandida de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%.



- 913 028 623 / 913 028 624
- www.perutest.com.pe

- 🕠 Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- **(1)** PERUTEST SAC

# ANEXO DE FOTOS

Foto: Obtención del agregado grueso



Foto: Obtención del agregado fino



Foto: Diseño de mezclas









Foto: Obtención de la cascara de huevo (molienda)





Foto: obtención de la Ceniza de la cascarilla de café







Foto: obtención del concreto para los diferentes tratamientos



Foto: Ensayo de Resistencia a la compresión de los tratamientos ( a los 7 dias )





Foto: Ensayo de Resistencia a la compresión de los tratamientos ( a los 14 dias )



Foto: Ensayo de Resistencia a la compresión de los tratamientos ( a los 28 dias )





Foto: Ensayo de Temperatura del concreto Fresco





Foto: Ensayo de Consistencia del concreto fresco

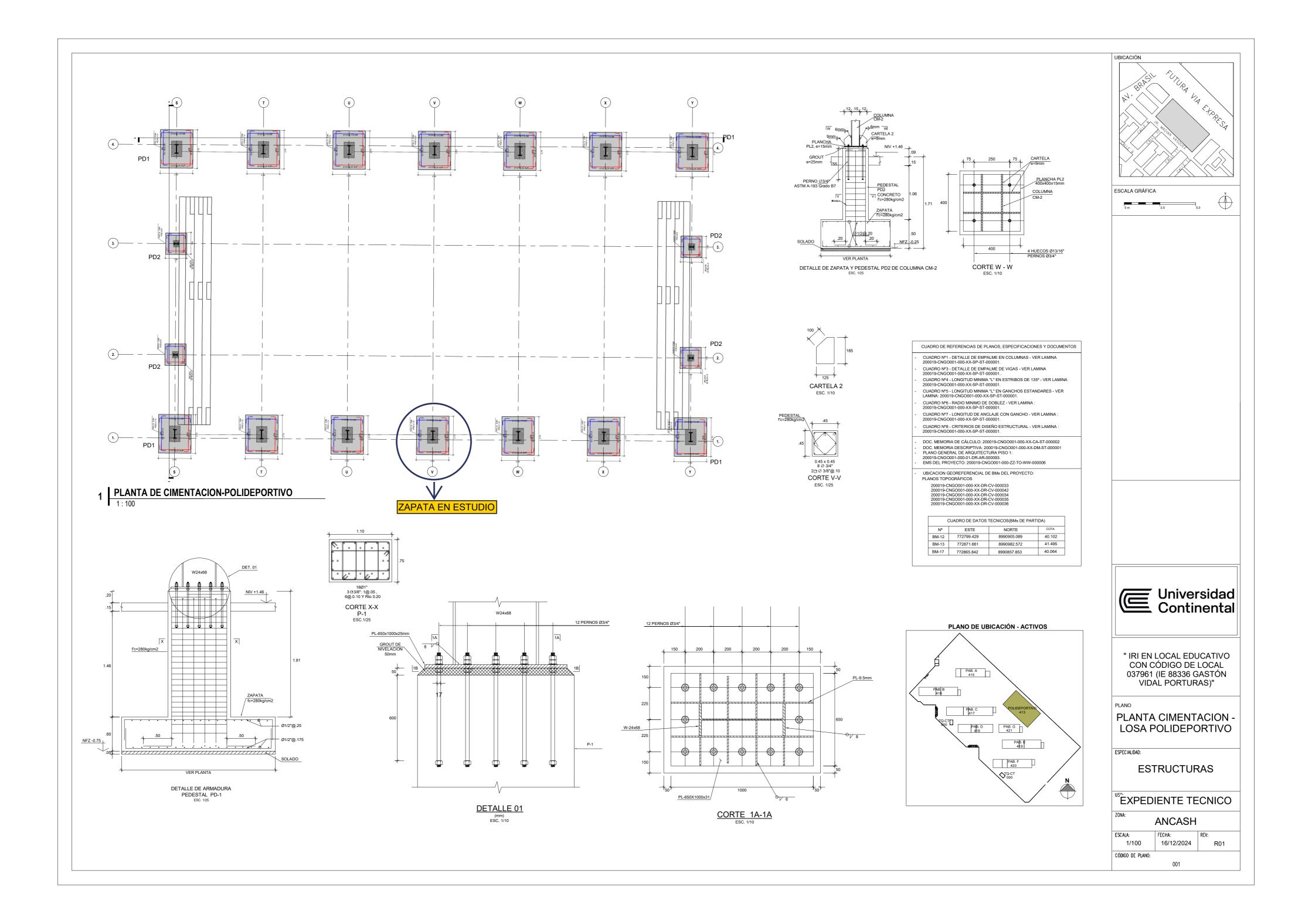


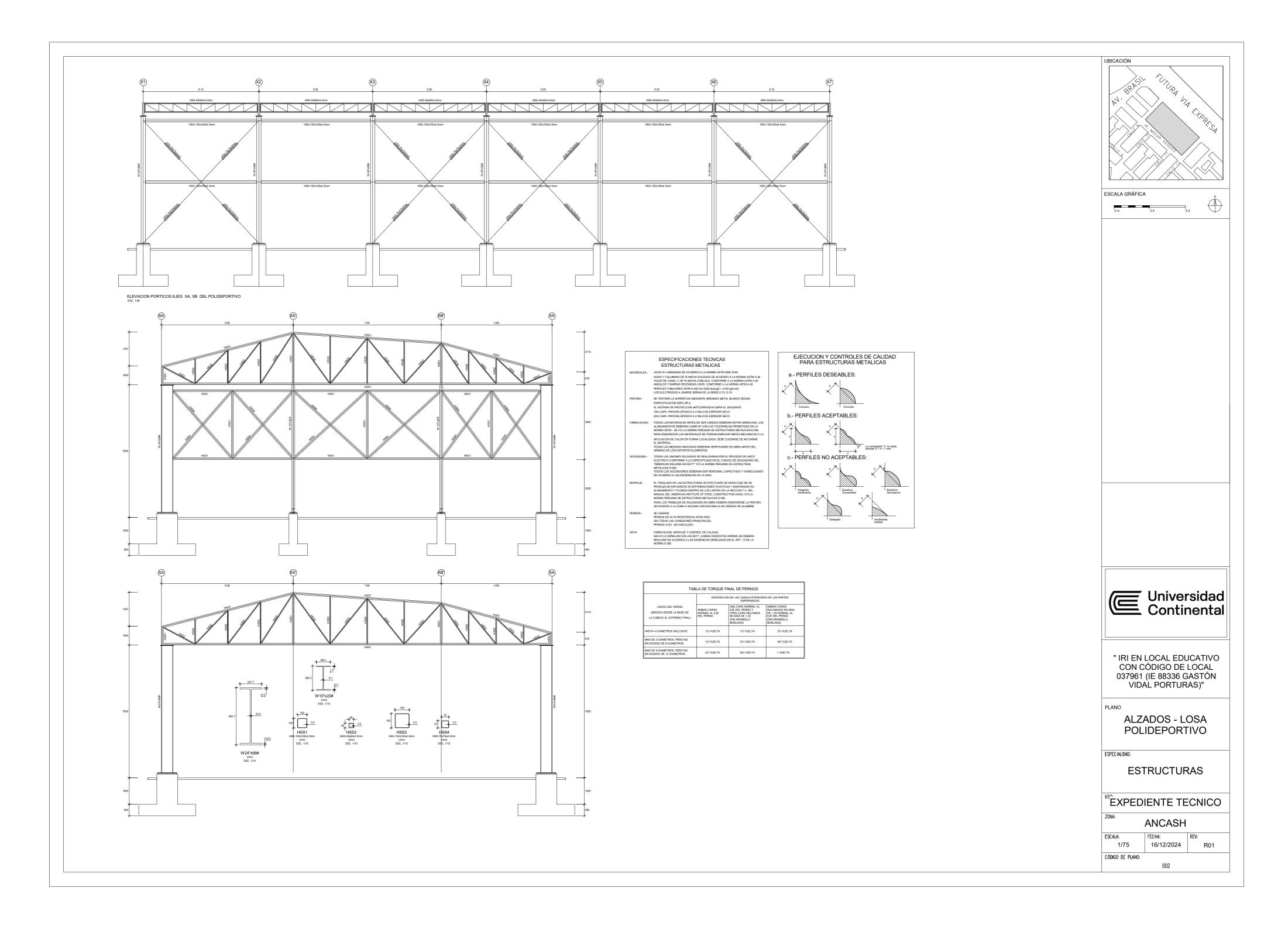


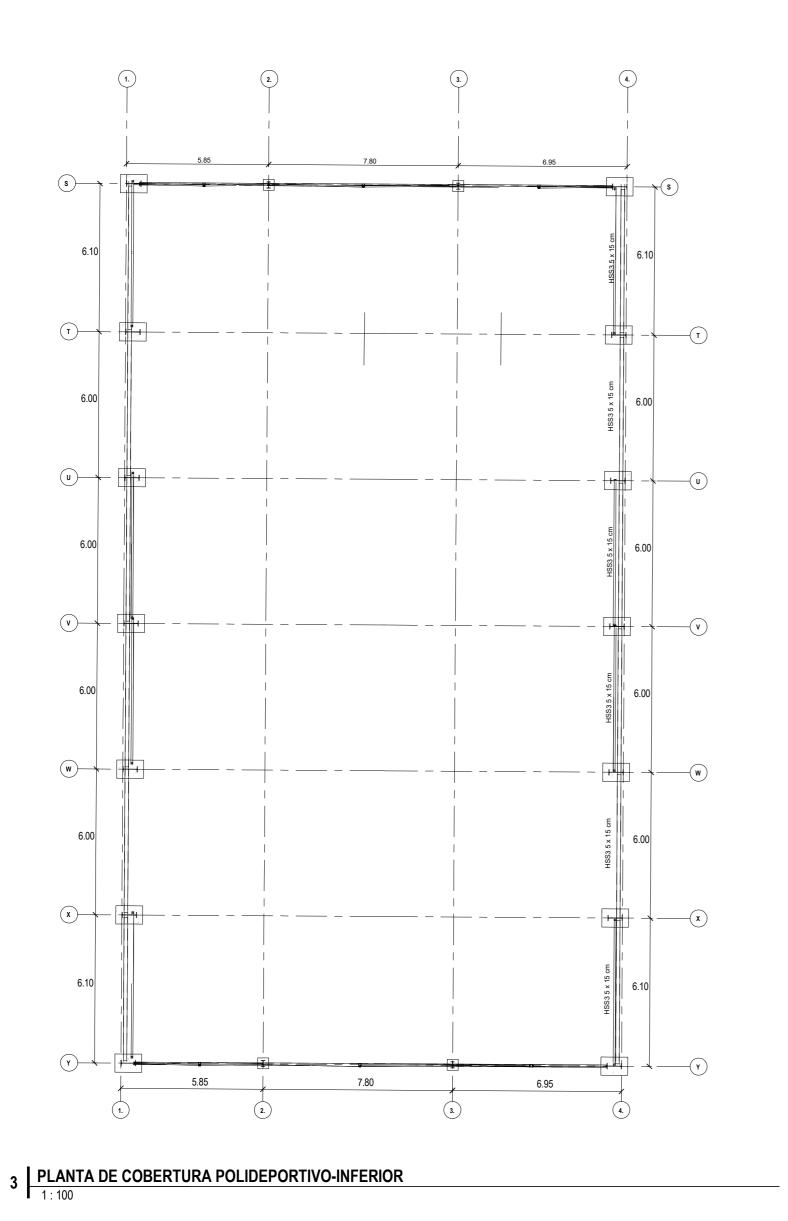
Foto: Ensayo de Peso Unitario del concreto fresco

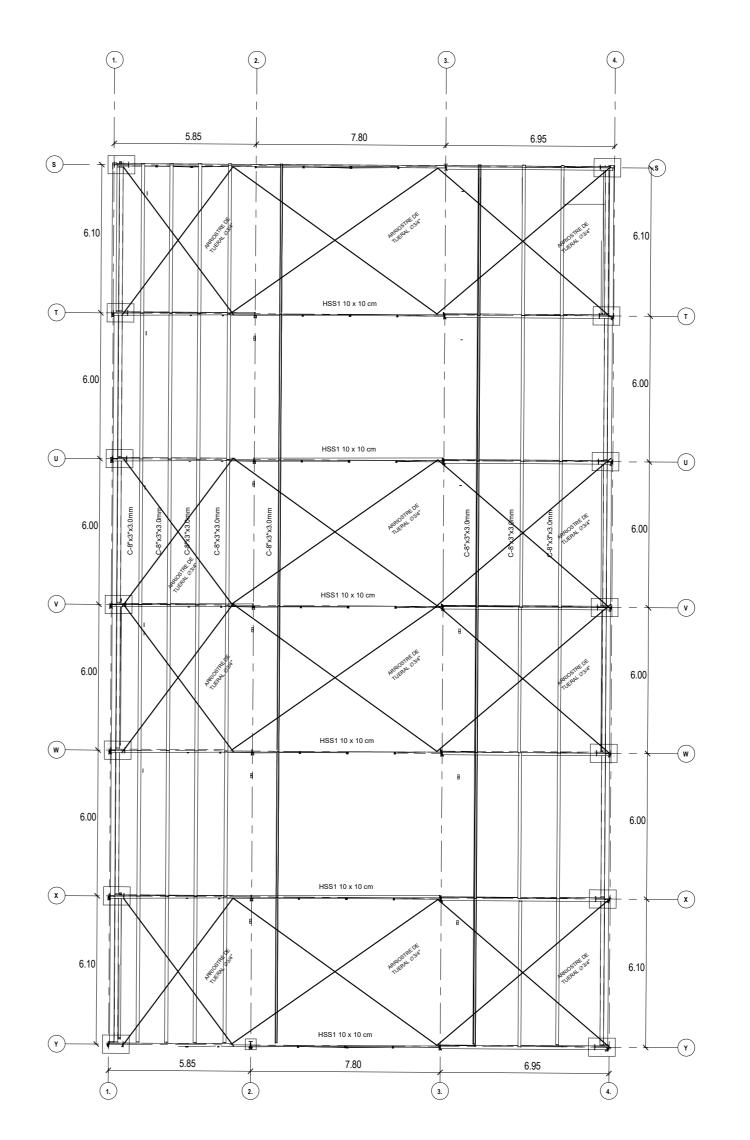


Foto: Ensayo de Contenido de aire del concreto fresco





Foto: Ensayo de tiempo de fraguado del concreto fresco














4 PLANTA DE COBERTURA POLIDEPORTIVO-EXTERIOR
1:100

UBICACIÓN

ESCALA GRÁFICA

Universidad Continental

" IRI EN LOCAL EDUCATIVO CON CÓDIGO DE LOCAL 037961 (IE 88336 GASTÓN VIDAL PORTURAS)"

PLANTA DE COBERTURA- LOSA DEPORTIVA

ESPECIALIDAD:

**ESTRUCTURAS** 

EXPEDIENTE TECNICO

| ZONA:            | ANCASH               |      |  |  |
|------------------|----------------------|------|--|--|
| ESCALA:<br>1/100 | FECHA:<br>16/12/2024 | REV: |  |  |
| CÓDIGO DE PLANO: |                      |      |  |  |
|                  | 003                  |      |  |  |