

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Eléctrica

Trabajo de Suficiencia Profesional

Informe de estudio de la distorsión armónica total y armónicos individuales en sistemas de baja tensión de una central híbrida:

Aplicación de técnicas de medición Clase A

Ruben Enrique Pariona Santivañez

Para optar el Título Profesional de Ingeniero Electricista

INFORME DE CONFORMIDAD DE ORIGINALIDAD DE TRABAJO DE INVESTIGACIÓN

Α Decano de la Facultad de Ingeniería DE Jhosselin Madahi Flores Camayo Asesor de trabajo de investigación **ASUNTO** Remito resultado de evaluación de originalidad de trabajo de investigación **FECHA** 24 de Agosto de 2025 Con sumo agrado me dirijo a vuestro despacho para informar que, en mi condición de asesor del trabajo de investigación: Título: Informe de Estudio de la Distorsión Armónica Total y Armónicos Individuales en Sistemas de Baja Tensión de una Central Híbrida: Aplicación de Técnicas de Medición Clase A Autor: Rubén Enrique Pariona Santivañez – EAP. Ingeniería Eléctrica Se procedió con la carga del documento a la plataforma "Turnitin" y se realizó la verificación completa de las coincidencias resaltadas por el software dando por resultado 15 % de similitud sin encontrarse hallazgos relacionados a plagio. Se utilizaron los siguientes filtros: SI • Filtro de exclusión de bibliografía SI • Filtro de exclusión de grupos de palabras menores Nº de palabras excluidas (en caso de elegir "\$1"): SI • Exclusión de fuente por trabajo anterior del mismo estudiante

En consecuencia, se determina que el trabajo de investigación constituye un documento original al presentar similitud de otros autores (citas) por debajo del porcentaje establecido por la Universidad Continental.

Recae toda responsabilidad del contenido del trabajo de investigación sobre el autor y asesor, en concordancia a los principios expresados en el Reglamento del Registro Nacional de Trabajos conducentes a Grados y Títulos – RENATI y en la normativa de la Universidad Continental.

Atentamente,

La firma del asesor obra en el archivo original

(No se muestra en este documento por estar expuesto a publicación)

Índice

Agrade	cimiento	l
Dedicat	oria	II
Índice		III
Índice c	le figuras	VIII
Índice c	le tablas	IX
Resume	en ejecutivo	X
Introduc	cción	XI
CAPÍTU	JLO I	1
ASPEC	TOS GENERALES DE LA EMPRESA Y/O INSTITUCIÓN	1
1.1.	Datos generales de la empresa	1
1.2.	Actividades principales de la empresa	1
1.2.1.	Mantenimiento eléctrico en BT y MT	1
1.2.2.	Auditoria energética	2
1.2.3.	Servicios de automatización industrial	2
1.2.4.	Servicios de Ingeniería	3
1.2.5.	Reseña histórica de la empresa	4
1.2.6.	Organigrama de la empresa	5
1.2.7.	Visión y misión	7
1.2.8.	Descripción del área donde se realiza sus actividades profesionale	∋s.
		7
1.2.9. empre	Descripción del cargo y de las responsabilidades del bachiller en	
CAPÍTU	JLO II	9
ASPEC	TOS GENERALES DE LAS ACTIVIDADES PROFESIONALES	9
2.1.	Antecedentes o diagnostico situacional	9

2.1.1.	Antecedentes	9
2.1.2.	Diagnostico situacional	9
2.2. I	dentificación de la necesidad en el área de actividad profesional	. 10
2.2.1.	Necesidad general	. 10
2.2.2.	Necesidades especificas	. 12
2.3.	Objetivos de la actividad profesional	. 13
2.3.1.	Objetivo general	. 13
2.3.2.	Objetivos específicos	. 13
2.3.3.	Justificación de la actividad profesional	. 14
2.3.4.	Justificación teórica	. 14
2.3.5.	Justificación práctica	. 15
2.3.6.	Justificación metodológica	. 16
2.3.7.	Importancia	. 17
2.4. F	Resultados esperados	. 18
CAPÍTUL	_O III	. 20
MARCO	TEÓRICO	. 20
3.1. F	undamentos de calidad de energía	. 20
3.1.1.	Importancia en sistemas modernos	. 20
3.1.2.	Efectos de la mala calidad de energía	. 21
3.1.3.	Fallos en equipos electrónicos sensibles	. 21
3.1.4.	Sobrecalentamiento y envejecimiento prematuro	. 21
3.1.5.	Disparo intempestivo de protecciones	. 21
3.1.6.	Pérdidas económicas y aumento de costos operativos	. 21
3.1.7.	Interferencia electromagnética y comunicaciones erráticas	. 22
3.1.8.	Riesgos para la seguridad eléctrica	. 22
3.1.9.	Parámetros clave de la calidad de energía	. 22
3.1.10.	Tensión y frecuencia	. 22

3.1.11.	Desbalance de fases	23
3.1.12.	Causas comunes	23
3.1.13.	Consecuencias de desbalance	24
3.1.14.	Armónicos eléctricos: THD y armónicos individuales	24
3.1.15.	Armónicos	24
3.1.16.	Medición: THD y armónicos individuales	25
3.1.17.	Efectos negativos de los armónicos	25
3.1.18.	Limites normativos	26
3.1.19.	Soluciones técnicas	26
3.1.20.	Flicker	27
3.1.21.	Transitorios, sags y swells	27
3.1.22.	Normas técnicas aplicables	27
3.1.23.	IEEE 519-2014	28
3.1.24.	NTCSE – PERÚ	28
3.1.25.	IEC 61000-4-30	29
3.1.26.	Curva CBEMA/ITIC	29
3.1.27.	Instrumentación y análisis de calidad de energía	30
3.1.28.	Analizadores clase A	30
3.1.29.	Recolección de datos eléctricos	31
CAPÍTULO) IV:	32
DESCRIP	CIÓN DE ACTIVIDADES PROFESIONALES	32
4.1. De	escripción de actividades profesionales	32
4.1.1.	Enfoque de las actividades profesionales	32
4.1.2.	Alcance de las actividades profesionales	33
4.1.3.	Entregables de las actividades profesionales	34
4.1.4.	Aspectos técnicos de la actividad profesional	36
4.2. Me	etodologías	36

	4.3. T	écnicas	. 38
	4.3.1.	Equipos y materiales utilizados en el desarrollo de las actividades	. 40
	4.4. E	jecución de las actividades profesionales	. 41
	4.4.1.	Cronograma de actividades realizadas	. 41
	4.4.2.	INFORME VRX. Inf. 002 .180324. 0093- Rev. D	. 43
	4.4.3.	Descripción de subestaciones eléctricas	. 43
	4.4.4.	Descripción de subestaciones eléctricas	. 45
	4.4.5.	Evaluación de los indicadores de calidad según NTCSE	. 46
	4.4.6.	Conclusiones	. 50
	4.4.7.	INFORME VEROX – 120624 - 103- Rev. C	. 51
	4.4.8.	Desarrollo del mantenimiento de subestaciones	. 52
	4.4.9.	Celda de salida barra 13.8KV A TRAFO 13.8-66KV	. 52
	4.4.10.	Celda de salida de TRAFO SSAA-TABLERO SSAA 380 VAC	. 53
	4.4.11.	Celda de entrada a transformador DATA CENTER 13.8-0.4KV:	. 54
	4.4.12.	Salida de interruptor BITCOIN 1 - 400V:	. 55
	4.5. A	nálisis de resultados	. 56
	4.5.1.	Informe VRX. Inf. 003. 130824. 0093 - Rev. D	. 56
	4.5.2.	Informe VRX. Inf. 00 . 270624. 0093 - Rev. D	. 57
	4.5.3.	Conclusiones DATACENTER	. 57
	4.5.4.	Conclusiones generales	. 58
C	APÍTUL	O V:	. 60
F	RESULTA	ADOS	. 60
	5.1. L	ogros alcanzados	. 60
	5.1.1	Reducción de distorsión armónica	. 60
	5.1.2	Disminución de desbalances de corriente	. 60
	5.1.3	Mitigación de eventos críticos	. 60
	5.1.4	Optimización del factor de potencia	60

5.1.5. Capacitación y transferencia de conocimiento	60
5.2. Logros alcanzados por ámbitos	61
5.2.1. En el ámbito del servicio	61
5.2.2. En el ámbito personal	61
5.2.3. Planeamiento de mejoras	62
5.3. Aportes de bachiller	63
5.3.1. En el aspecto cognoscitivo	65
5.3.2. En el aspecto procedimental	66
5.3.3. En el aspecto actitudinal	66
CONCLUSIONES	68
RECOMENDACIONES	69
BIBLIOGRAFÍA	71

Índice de figuras

Figura 1. Organigrama de la empresa VEROX ECO ENERGY S.A.C	5
Figura 2. Organigrama técnico de VEROX ECO ENERGY S.A.C	6
Figura 3. Plano unifilar data center	. 12
Figura 4. Ruta crítica de actividades	. 42
Figura 5. Plano unifilar data center	. 44
Figura 6. laca de transformador 2500 – Data Center	. 45

Índice de tablas

Tabla 1. Instrumentos utilizados en el desarrollo del estudio	40
Tabla 2. Cronograma de actividades y fechas de ejecución	41
Tabla 3. Puntos de medición	44
Tabla 4. Descripción de subestaciones eléctricas	46
Tabla 5. Distorsión de armónicos totales de tensión 0.40 kV	47
Tabla 6. Desbalance en los niveles de corriente	48

Resumen ejecutivo

El presente informe de suficiencia profesional documenta el análisis técnico de

la calidad de energía en los sistemas de baja tensión de una central híbrida

operada por Huaura Power Group, en colaboración con VEROX ECO ENERGY

SOLUTIONS. El estudio se desarrolló el año 2024 y se centró en la evaluación

de distorsión armónica total (THD), armónicos individuales, desbalances de

fases y eventos críticos como sags y transitorios, con el fin de garantizar la

estabilidad y continuidad del suministro eléctrico en cargas críticas como el Data

Center y unidades de procesamiento de alta demanda energética.

A través del uso de analizadores clase A conforme a la norma IEC 61000-4-30 y

aplicando metodologías basadas en la IEEE 519-2014 y la NTCSE, se realizó un

diagnóstico detallado de los parámetros eléctricos. Los resultados evidenciaron

la presencia de distorsión armónica fuera de norma, desbalances superiores al

40 % y eventos de tensión que afectan la confiabilidad de la infraestructura.

Frente a ello, se propusieron e implementaron soluciones correctivas como el

balanceo de cargas y la instalación de filtros activos de armónicos, los cuales

fueron validados mediante mediciones posteriores.

El estudio también incluyó el diseño de un plan de mejora técnica y de

capacitación para el personal operativo, orientado a la gestión de calidad de

energía en tiempo real. Como parte del enfoque profesional, el bachiller participó

en todas las fases del proyecto: planificación, ejecución, análisis, elaboración de

informes y propuesta de soluciones técnicas, consolidando así su formación en

ingeniería eléctrica aplicada a contextos reales.

Palabras Clave: Calidad de energía, Distorsión armónica, Desbalance de fases,

Filtros activos y Central híbrida

Χ