

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Industrial

Tesis

Propuesta de optimización de procesos de perforación y voladura en una mina de Cerro de Pasco, 2024

Paul Alberto Quintana Ramos

Para optar el Título Profesional de Ingeniero Industrial

Cusco, 2025

Repositorio Institucional Continental Tesis digital

Esta obra está bajo una Licencia "Creative Commons Atribución 4.0 Internacional".

INFORME DE CONFORMIDAD DE ORIGINALIDAD DE TRABAJO DE INVESTIGACIÓN

: Decano de la Facultad de Ingeniería

DE	•	Asesor de trabajo de investigación		
ASUNTO FECHA	:	Remito resultado de evaluación de originalidad de trabajo de 17 de Setiembre de 2025	e investigación	l
Con sumo ag de investigad		me dirijo a vuestro despacho para informar que, en mi condicio	ón de asesor de	el trabajo
Título: Propuesta de 2024	opti	mización de procesos de perforación y voladura en una mina	de Cerro de Pa	esco,
Autores: 1. Paul Albert	o Qui	ntana Ramos – EAP. Ingeniería Industrial		
de las coincid	denci	a carga del documento a la plataforma "Turnitin" y se realizó l as resaltadas por el software dando por resultado 14 % de si ados a plagio. Se utilizaron los siguientes filtros:		
• Filtro de ex	clusió	n de bibliografía	SI X	NO
		ón de grupos de palabras menores excluidas (en caso de elegir *SI"): 10	SI X	NO
• Exclusión d	le fue	nte por trabajo anterior del mismo estudiante	SI	NO X
		se determina que el trabajo de investigación constituye ur d de otros autores (citas) por debajo del porcentaje estable		
concordancia	a a l	nsabilidad del contenido del trabajo de investigación sobre os principios expresados en el Reglamento del Registro ados y Títulos – RENATI y en la normativa de la Universidad Co	Nacional de	
Atentamente,				

La firma del asesor obra en el archivo original (No se muestra en este documento por estar expuesto a publicación)

ASESORA

MBA Mg. Karina Ponce Begazo

AGRADECIMIENTO

Expreso mi profundo agradecimiento a mi asesora MBA Mg. Karina Ponce Begazo por su valiosa orientación, así como a mis profesores de la universidad Continental, cuya guía fue fundamental en mi formación profesional.

También expresar mi más profundo agradecimiento, a mi hermano Dimas por compartirme su experiencia de perforación y voladura y por su aliento constante lo cual permitió superar los momentos más difíciles de esta investigación. Así también agradecer a mi amigo Hugo H. especialista en perforación. Este logro no solo es mío, sino también suyo, porque cada uno de ustedes ha sido una parte fundamental en este camino. Gracias por su paciencia, este éxito es un reflejo de todo lo que compartimos juntos.

DEDICATORIA

Dedico esta tesis con amor a mi esposa Rosa y a mis hijas Carmen y Antonella, quienes, con su apoyo incondicional, su comprensión y su amor me han dado la fuerza para continuar avanzando en este camino académico. También dedico esta tesis a mis padres Alberto Quintana y Dora Ramos, quienes siempre me enseñaron el valor de luchar por lo que uno anhela y nunca rendirse. Este logro es mío, pero el triunfo es de ustedes, porque sin su sabiduría, su ejemplo y su amor, no habría sido posible llegar hasta aquí. Gracias por ser mi inspiración y mi mayor soporte.

INDICE DE CONTENIDO

AGRADECI	MIENTO	ii
DEDICATOR	RIA	iii
INDICE DE	CONTENIDO	iv
INDICE DE	ΓABLAS	x
INDICE DE I	FIGURAS	xiii
INDICE DE A	ANEXOS	xv
RESUMEN		xvi
ABSTRACT.		xvii
INTRODUC	CIÓN	xviii
CAPITULO I	: PLANTEAMIENTO Y FORMULACIÓN DEL PROBLEMA	19
1.1. Pla	nteamiento del problema	19
1.2. For	mulación del problema	21
1.2.1.	Pregunta general	21
1.2.3.	Preguntas especificas	21
1.3. Obj	etivos	22
1.3.1.	Objetivo general	22
1.3.2.	Objetivos específicos	22
1.4. Just	tificación	22
1.5. Imp	portancia	23
1.6. Del	imitación	23
1.6.1.	Delimitación temporal	23
1.6.2.	Delimitación espacial	23
1.7. Hip	ótesis	23
1.7.1.	Hipótesis general	23
1.7.2.	Hipótesis específicas	24
1.8. Var	iables	24
1.8.1.	Descripción de la variable	24

1.8.1.1.	Variable independiente	24
1.8.1.2.	Variable dependiente	24
1.8.2.	Operacionalización de la variable	24
CAPÍTULO	II: MARCO TEÓRICO	26
2.1. Ar	ntecedentes de la investigación	26
2.2. Ar	ntecedentes nacionales	28
2.3. Ba	ses teóricas	31
2.3.1.	Optimización de procesos en minería	31
2.3.2.	Proceso de perforación	32
2.3.3.	Métodos de perforación de rocas	32
2.3.4.	Impacto de la optimización	32
2.3.5.	Relevancia de la perforación y voladura	33
2.3.6.	Partes de una malla de perforación	33
2.3.7.	Diseño de malla de perforación	33
2.3.8.	Variables controlables y no controlables en un diseño de malla	33
2.3.9.	Modelos matemáticos para el diseño de la malla	34
2.4. Parán	netros de perforación	34
2.4.1.	Modelo EXSA	35
2.4.2.	Modelo de López Jimeno	36
2.4.3.	Proceso de voladura	37
2.4.4. F	actores que afectan la perforación	37
2.4.5. C	Cebado y distribución de carga por taladro	37
2.4.6. E	ficiencia de perforación	37
2.4.7. E	strategias para medir eficiencia de perforación	37
2.4.8. E	ficiencia de voladura	38
2.4.9. A	Accesorios de voladura	39
2.5. Defin	ición de términos básicos	40
CAPÍTULO	III: METODOLOGÍA	42
3.1. Método	y alcance de la investigación	42

3.1.1. Método	42
3.1.2. Alcance explicativo	42
3.2. Diseño de la investigación	42
3.3. Población y muestra	43
3.3.1. Población	43
3.3.2. Muestra	43
3.4. Técnicas e instrumentos de recolección de datos	43
3.4.1. Técnicas de recolección de datos	43
3.4.2. Instrumentos de recolección de datos	43
3.5. Instrumentos de análisis de datos	43
CAPÍTULO IV: DIAGNÓSTICO, ANÁLISIS Y RESULTADOS	45
4.1. Breve descripción de la empresa y sus procesos	45
4.1.1. Procesos en la unidad minera	45
4.1.2. Estrategias aplicadas a procesos de perforación y voladura	46
4.1.3. Análisis PESTA de la empresa minera enfocado a perforación y voladura	46
4.1.3.1. Factor político	46
4.1.3.2. Factor económico	46
4.1.3.3. Factor social	47
4.1.3.4. Factor tecnológico	48
4.1.3.5. Factor ambiental	49
4.1.4. Análisis interno: Autodiagnóstico empresarial	49
4.1.4.1. Análisis interno: Organización	50
4.1.4.2. Gestión productiva	50
4.1.4.3. Sistema de gestión medioambiental	51
4.1.4.4. Investigación y desarrollo	52
4.1.4.5. Gestión económica y financiera	53
4.1.4.6. Costos y presupuestos	53
4.1.5. Matriz FODA	54
4.1.6. Estrategias FODA	55

4.1.7. Estrategias referidas a la optimización de procesos de perforación y voladura5	9
4.2. Situación actual del proceso de perforación y voladura	9
4.2.1. Diagrama de operaciones del proceso	60
4.2.1.1. Diagrama de operaciones del proceso de perforación con rock drill6	60
4.2.1.2. Diagrama de operaciones del proceso de voladura	51
4.2.2. Diagrama Ishikawa6	52
4.2.2.1. Diagrama de Ishikawa tiempo improductivo e ineficacia de perforación6	52
4.2.2.2. Diagrama de Ishikawa porcentaje de rocas > a 20 cm y < a 20 cm en voladura 6	52
4.2.3. Diagrama de Pareto	i3
4.2.4. Los cinco "porqués"6	5
4.2.5. Indicador ciclo de tiempo de perforación	57
4.2.5.1. Cálculo del tiempo de ciclo de perforación	57
4.2.5.2. Indicador ciclo de tiempo de abastecimiento de agua para perforación6	58
4.2.5.3. Cálculo del tiempo de ciclo de abastecimiento de agua para perforadora 6	58
4.2.5.4. Indicador ciclo de tiempo de abastecimiento de combustible6	59
4.2.5.5. Cálculo de tiempo estándar de abastecimiento de combustible	0
4.2.5.6. Indicador ciclo de tiempo de proceso de voladura	0
4.2.5.7. Cálculo de tiempo de ciclo de voladura	1
4.2.6. Indicadores actuales de horas máquina y horas-hombre	'2
4.2.6.1. Indicador rendimiento horas máquina trabajadas equipo rock drill Sandvi Pantera DP 1500i	
4.2.6.2. Indicador horas efectivas de trabajo y horas inactivas por mes	'2
4.2.6.3. Indicador rendimiento horas maquina trabajadas equipo rock drill Epiroc D 657	′4
4.2.6.4. Indicador horas efectivas de trabajo y horas inactivas por mes	′4
4.2.6.5. Indicador rendimiento horas maquina equipo rock drill Sandvik DX 8007	'5
4.2.6.6. Indicador horas efectivas de trabajo y horas inactivas por mes	'5
4.2.7. Indicador disponibilidad mecánica	7
4.2.7.1. Equipo 1 rock drill Sandvik Pantera DP 1500i	7
4.2.7.2. Equipo 2 rock drill Epiroc D65	7

	4.2.7.3. Equipo 3 rock drill Sandvik DX 800	78
	4.2.8. Cálculos de disponibilidad mecánica de equipos de perforación del mes de m	ıayo
		78
	4.2.9. Cálculos de eficiencia de horas hombre mes mayo	79
4.	3. Programas de mantenimiento preventivo y correctivo	80
	4.3.1. Programa de mantenimiento preventivo de equipo rock drill	81
	4.3.1.1. Programa de mantenimiento en horas según recomendación del fabricante	84
4.	3.1.2. Fichas de mantenimiento preventivo	84
	4.3.1.3. Formatos	99
	4.3.1.4. Capacitación en mantenimiento preventivo	103
	4.3.2. Diagrama de flujo de procedimiento de mantenimiento preventivo de rock drill	104
	4.3.3. Diagrama de flujo de procedimiento de mantenimiento correctivo de equipo r drill.	
	4.4. Estandarización de los procesos del área de perforación y voladura	108
	4.4.1. Diagrama de flujo de procesos de perforación y voladura	108
	4.4.1.1. Diagrama de flujo de procesos de perforación con rock drill	108
	4.4.1.2. Diagrama de flujo de procesos de voladura	109
	4.4.2. Estudio de tiempos del ciclo de perforación y voladura	110
	4.4.2.1. Cálculo del tiempo de ciclo de perforación	110
	4.4.2.2. Método propuesto diagrama analítico de procesos de perforación	111
	4.4.3. Cálculo del tiempo de ciclo de abastecimiento de agua para perforadora	111
	4.4.3.1. Método propuesto de diagrama analítico de procesos de abastecimiento de a para perforación	•
	4.4.4. Cálculo de tiempo estándar de abastecimiento de combustible	113
	4.4.4.1. Método propuesto de diagrama analítico de procesos de abastecimiento	de
	combustible	115
	4.4.5. Cálculo de tiempo de ciclo de voladura	115
	4.4.5.1. Método propuesto de diagrama analítico de procesos de voladura	117
	4.4.6. Resultados post-test	118
	4.4.6.1. Horas máquina de perforación del mes de junio	118

4.4.7. Eficiencia de horas hombre
4.4.8. Cálculo de disponibilidad mecánica del mes de junio después del diseño de la implementación del plan de mantenimiento
4.4.8.1. Equipo 1 rock drill Sandvik Pantera DP 1500i
4.4.8.2. Equipo 2 rock drill Epiroc D65
4.4.8.3. Equipo 3 rock drill Sandvik DX 800
4.4.8.4. Cálculos de disponibilidad mecánica de equipos de perforación del mes de mayo
4.4.9. Análisis comparativo que valide la eficiencia operativa de disponibilidad mecánica y productividad
4.4.9.1. Contrastes de ex ante y ex post de optimización de perforación
4.4.9.2. Cálculo de costos de perforación
4.4.9.3. Reducción de costos con optimización de procesos de perforación ex ante y ex post
4.5. Diseño del proceso de voladura mediante el software Wipfrag
4.5.1. Porcentaje de rocas > a 20 centímetros y < a 20 centímetros
4.5.2. Planteamiento de diseño de voladura mes de junio
4.5.3. Planteamiento de diseño de carga con cargas espaciadas en taladros de perforación
4.5.4. Imágenes con carga normal y con carga espaciada
4.5.5. Resultados de Wipfrag
4.5.5.1. Procesos del software Wipfrag
4.5.5.2. Reducción de boloneria en proceso de voladura
CONCLUSIONES 133
RECOMENDACIONES
REFERENCIAS BIBLIOGRÁFICAS
ANEXOS

INDICE DE TABLAS

Tabla 1.	Matriz de operacionalización de variable	25
Tabla 2.	Variables del modelo matemático	34
Tabla 3.	Principales variables	36
Tabla 4.	Análisis interno: administración	49
Tabla 5.	Análisis interno: organización.	50
Tabla 6.	Análisis Interno: producción	50
Tabla 7.	Análisis interno: sistema de gestión medioambiental	51
Tabla 8.	Análisis interno: investigación y desarrollo	52
Tabla 9.	Análisis Interno: Gestión económica y financiera	53
Tabla 10.	Análisis interno: costos y presupuestos	53
Tabla 11.	Matriz FODA	54
Tabla 12.	Estrategias FODA	55
Tabla 13.	Estrategias referidas a la optimización de procesos de perforación	У
voladura		59
Tabla 14.	Los 5 porqués, stand by por falta de área de perforación	65
Tabla 15.	Los 5 porqués, stand by por mantenimiento	66
Tabla 16.	Los 5 porqués, demora por abastecimiento de agua.	66
Tabla 17.	Cronometraje de ciclo de perforación: 6 taladro/hora de altura de 6.3 m	67
Tabla 18.	Cronometraje del tiempo de ciclo de abastecimiento de agua pa	ıra
perforación/	día	68
Tabla 19.	Cronometraje del tiempo de ciclo de abastecimiento de combustible	de
perforadora		69
Tabla 20.	Cronometraje del tiempo de ciclo del proceso de voladura	70
Tabla 21.	Rendimiento de horas máquina de perforación	72
Tabla 22.	Indicador rendimiento de horas maquina trabajados	74
Tabla 23.	Indicador rendimiento horas maquina trabajados	75
Tabla 24.	Disponibilidad mecánica del mes de mayo	78
Tabla 25.	Horas hombre planificados	79

Tabla 26.	Horas hombre productivas por equipo rock drill Sandvik Pantera DP 1500i79
Tabla 27.	Horas hombre productivas por equipo rock drill Epiroc D6580
Tabla 28.	Horas-hombre productivas por equipo rock drill Sandvik DX 80080
Tabla 29.	Programa de cambio de lubricantes según horas programadas
Tabla 30.	Identificación de vida útil de equipos y componentes
Tabla 31.	Comprobaciones rutinarias antes del funcionamiento
Tabla 32.	Comprobaciones diarias
Tabla 33.	Ficha de inspección de M. P. cada 50 horas motor diésel
Tabla 34.	Ficha de inspección de M. P. cada 250 horas motor diésel
Tabla 35.	Ficha de inspección de M. P. cada 500 horas motor diésel
Tabla 36.	Ficha de inspección de M. P. cada 1000 horas motor diésel90
Tabla 37.	Ficha de inspección de M. P. cada 1500 horas motor diésel
Tabla 38.	Ficha de inspección de M. P. cada 3000 horas motor diésel96
Tabla 39.	Orden de trabajo - área de mantenimiento mecánico - equipos99
Tabla 40.	Temas de capacitación de mantenimiento preventivo
Tabla 41.	Responsables del proceso de mantenimiento preventivo de rock drill 104
Tabla 42.	Responsables del proceso de mantenimiento correctivo de rock drill 106
Tabla 43.	Horas hombre planificados despues de la implentación
Tabla 44.	Horas hombre productivas por equipo rock drill Sandvik Pantera DP 1500i
después de la	implantación120
Tabla 45.	Horas hombre productivas por equipo rock drill Epiroc D65 después de la
implantación.	
Tabla 46.	Horas-hombre productivas por equipo rock drill Sandvik DX 800 después de la
implantación.	121
Tabla 47.	Cálculos de disponibilidad mecánica del mes de junio después del diseño de
plan de mante	nimiento122
Tabla 48.	Comparativo de eficiencia operativa entre el mes de mayo y junio
Tabla 49.	Costos de perforación Sandvik Pantera DP 1500i
Tabla 50.	Costos de perforación Epiroc D65
Tabla 51.	Costos de perforación Sandvik DX 800

Tabla 52.	Fórmulas para determinar el costo por tonelada	25
Tabla 53.	Comparativo de reducción de costos con optimización ex ante y ex post 1	26
Tabla 54.	Registro de datos de voladura mes mayo	27
Tabla 55.	Registro de datos de voladura mes de junio	29
Tabla 56.	Reducción de bolonerias de voladura 1	32

INDICE DE FIGURAS

Figura 1.	Diagrama de operaciones del proceso de perforación con rock drill60
Figura 2.	Diagrama de operaciones del proceso de voladura61
Figura 3.	Diagrama de Ishikawa Causa Efecto
Figura 4.	Diagrama de Ishikawa Causa Efecto
Figura 5. Pantera	Diagrama de Pareto alto porcentaje de tiempo muertos rock drill Sandvik
Figura 6.	Diagrama de Pareto alto porcentaje de tiempo muerto equipo Epiroc D6564
Figura 7. DX800	Diagrama de Pareto alto porcentaje de tiempo muerto equipo Sandvik
Figura 8.	Horas efectivas de trabajo y horas inactivas por mes DP 1500i
Figura 9.	Porcentaje de horas de trabajo y porcentaje de inactividad por mes DP 1500i73
Figura 10.	Horas efectivas de trabajo y horas inactivas por mes Epiroc D 6574
Figura 11. D65	Porcentaje de horas de trabajo y porcentaje de inactividad por mes Epiroc
Figura 12.	Horas efectivas de trabajo y horas inactivas por mes DX 80076
Figura 13.	Porcentaje de horas de trabajo y porcentaje de inactividad por mes DX 80076
Figura 14.	Programa de cambio de filtros y componentes
Figura 15.	Historial de mantenimiento preventivo de perforadora rock drill100
Figura 16.	Registro de fallas y averías de perforadora rock drill
Figura 17.	Check list de equipo rock drill
Figura 18.	Diagrama de flujo de mantenimiento preventivo de rock drill
Figura 19.	Diagrama de flujo de mantenimiento correctivo de rock drill
Figura 20.	Método propuesto de diagrama de flujo de procesos de perforación con rock
drill	
Figura 21.	Método propuesto de diagrama de flujo de procesos de voladura109
Figura 22.	Método propuesto de diagrama analítico de procesos de perforación 111
Figura 23.	Método propuesto de diagrama analítico de procesos de abastecimiento de
agua para per	foración113

Figura 24.	Método propuesto de diagrama analítico de procesos de abastecimiento de
combustible	de perforadora115
Figura 25.	Método propuesto de diagrama analítico de procesos de voladura117
Figura 26.	Reporte de perforación del mes de junio equipo 1 Sandvik Pantera DP
1500i	
Figura 27.	Reporte de perforación del mes de junio equipo 2 Epiroc D 65118
Figura 28.	Reporte de perforación del mes de junio equipo 3 Sandvik DX-800119
Figura 29.	Porcentaje de roca > a 20 cm y < a 20 cm
Figura 30.	Carga normal y carga espaciada propuesto
Figura 31.	Porcentaje de roca > a 20 cm y < a 20 cm
Figura 32.	Imagen fotográfica de enmallado con Wipfrag131
Figura 33.	Línea de curva granulométrica del software Wipfrag
Figura 34.	Diseño de malla según software Wipfrag

INDICE DE ANEXOS

Anexo n° 1: Matriz de consistencia	139
Anexo n° 2: Matriz de operacionalización	140
Anexo n° 3: Reporte diario de perforación.	141
Anexo n° 4: Reporte de perforación mensual turno día equipo 1 sandvik pantera	142
Anexo n° 5: Reporte de perforación mensual turno día de equipo 2 epiroc d 65	143
Anexo n° 6: Reporte de perforación mensual turno día de equipo 3 sandvik dx-800	144
Anexo n° 7: Reporte mensual de fuerza laboral con rol de bajadas	145
Anexo n° 8: Reporte de perforación mensual turno día equipo 1 sandvik pantera	146
Anexo n° 9: Reporte de perforación mensual turno día de equipo 2 epiroc d 65	147
Anexo n° 10: Reporte de perforación mensual turno día de equipo 3	148
Anexo n° 11: Costos fijos mensuales	149
Anexo n° 12: Gastos generales de perforación	149
Anexo n° 13: Gastos en beneficios sociales	150
Anexo n° 14: Cálculo de costos por tonelada	150
Anexo n° 15: Imagen proceso de perforación en plataforma	151
Anexo n° 16: Imagen perforadora pantera	151
Anexo n° 17: Imagen proceso de perforación con dx-800	152
Anexo n° 18: Imagen proceso de voladura	152
Anexo n° 19: Imagen proceso de detonación de voladura	153

RESUMEN

La investigación tuvo como objetivo principal desarrollar una propuesta de optimización de los procesos de perforación y voladura en una mina de Cerro de Pasco, 2024. Se aplicó el método cuantitativo y alcance descriptivo, con diseño de investigación pre experimental donde se hizo la recolección de datos en diferentes fechas, con una muestra del 100% de los equipos, dado que la muestra es censal. Se aplicaron técnicas de recolección de datos como el análisis documental donde se recolectaron datos de fuentes secundarias como fichas de registros denominado reporte de perforación diaria, reporte mensual, reporte de voladuras mensual, reporte de fuerza laboral. Los instrumentos de análisis de datos fueron la herramienta Microsoft Excel, diagrama de operaciones del proceso, diagrama de Ishikawa, diagrama de Pareto, los 5 porqués, análisis y estrategias FODA. En la situación actual del proceso de perforación se identificó la disponibilidad mecánica de los equipos rock drill en 84.53% y la eficiencia h-h de 75.90%. Así mismo se estructuró procedimiento de mantenimiento preventivo y correctivo con diagramas de flujo. Además, se estandarizó procesos de perforación y voladura mediante el diagrama de flujo, estudio de tiempos y diagramas analíticos lo cual permitió evidenciar las mejoras en el incremento del número de perforaciones por hora, de 6 perf/h a 6.3 perf/h, aumento la disponibilidad mecánica de los tres equipos, de 84.53% a 88.28%, los costos disminuyeron de 17.97 \$\text{ m perforado a 16.76} \$/m perforado y por tonelada de 0.1258 \$/t a 0.1173 \$/t. Finalmente, se logró reducir bloques grandes de rocas de 25.75% a 23.54%.

Palabras claves: Optimización, procesos, perforación, voladura, ciclo de tiempo, eficiencia de horas hombre, productividad, costos de perforación, mantenimiento preventivo, disponibilidad mecánica, Wipfrag.

ABSTRACT

The main objective of this research was to develop a proposal to optimize the drilling and blasting processes in a mine located in Cerro de Pasco, 2024. The quantitative method with a descriptive scope was applied, under a pre-experimental research design in which data were collected on different dates, with a sample covering 100% of the equipment, since the sample was census-based. Data collection techniques included documentary analysis, gathering secondary sources such as daily drilling reports, monthly reports, monthly blasting reports, and workforce reports. The data analysis instruments were Microsoft Excel, process operation diagrams, Ishikawa diagrams, Pareto diagrams, the 5 Whys method, and SWOT analysis and strategies. In the current situation of the drilling process, the mechanical availability of the rock drill equipment was identified at 84.53% and labor-hour efficiency at 75.90%. Preventive and corrective maintenance procedures were structured using flowcharts, and drilling and blasting processes were standardized through flowcharts, time studies, and analytical diagrams, which made it possible to demonstrate improvements such as an increase in drilling rate from 6 holes/hour to 6.3 holes/hour, an increase in the mechanical availability of the three equipment units from 84.53% to 88.28%, a reduction in costs from 17.97 USD/m drilled to 16.76 USD/m drilled and from 0.1258 USD/t to 0.1173 USD/t, and finally a reduction of large rock blocks from 25.75% to 23.53%.

Keywords: Optimization, processes, drilling, blasting, time cycle, man-hour efficiency, productivity, drilling costs, preventive maintenance, mechanical availability, Wipfrag.

INTRODUCCIÓN

La optimización de los procesos en perforación y voladura en la minería superficial es crucial dado que mejora la eficiencia operativa y aumenta la productividad. Estos procesos representan etapas clave en la cadena de valor minera, una optimización adecuada permite tener mayor productividad en cada proceso.

En una mina de Cerro de Pasco, los procesos de perforación y voladura presentan deficiencias operativas notables, como la falta de planificación en la entrega de áreas para perforación por parte del departamento de movimiento de tierras. También se reportan fallas mecánicas frecuentes en los equipos de perforación y una capacitación insuficiente en mantenimiento. Además, se enfrentan problemas de bloque grandes de rocas, fragmentación deficiente, lo que afecta la productividad en las operaciones mineras.

Teniendo como objetivo principal de investigación desarrollar una propuesta de optimización de los procesos de perforación y voladura en una mina de Cerro de Pasco, 2024, para lo cual se ha identificado las causas principales de estos problemas que son el alto porcentaje de stand by por mantenimiento de equipos de perforación y el retraso en la entrega de áreas de perforación, poca capacitación de los colaboradores, también errores en el diseño de los parámetros de perforación y voladura. Corrigiendo todas estas causas se podrá mejorar los procesos de perforación y voladura en una mina de Cerro de Pasco.

En este contexto, la optimización de los procesos de perforación y voladura en la mina se presenta como necesidad urgente, ya que, mediante la implementación de estrategias para controlar las horas máquina trabajadas y la eficiencia de horas hombre, desarrollar procedimientos de mantenimiento preventivo y correctivo, realizar estandarización de procesos de perforación y voladura mediante estudio de tiempos y diagramas analíticos además, ajustar los parámetros de perforación y voladura, pueden aumentar la eficiencia y mejorar la fragmentación de rocas. Esta optimización no solo incrementará la productividad, sino que también contribuirá a una operación minera más segura y rentable.

CAPITULO I: PLANTEAMIENTO Y FORMULACIÓN DEL PROBLEMA

1.1. Planteamiento del problema

A escala global, la demanda de minerales como el zinc, el plomo y la plata, que produce una mina en Cerro de Pasco, Perú, ha alcanzado niveles sin precedentes debido a la creciente industrialización y la transición hacia tecnologías más limpias. El zinc, utilizado principalmente para la galvanización de acero y en la producción de aleaciones, tiene una demanda significativa en países como China y Estados Unidos, que lideran el mercado global debido a su expansión en infraestructura y construcción. China, siendo el mayor consumidor de zinc, también representa una parte crucial del mercado para el plomo, que se utiliza en baterías y otras aplicaciones industriales. En el caso del plomo, además de China, países como Corea del Sur y Japón son grandes compradores debido a sus industrias electrónicas y automotrices. La plata, con aplicaciones que van desde la joyería y la inversión hasta la electrónica y la energía solar, es demandada globalmente por mercados en Europa, Estados Unidos y Asia, siendo importante para los sectores tecnológico y financiero. Esta alta demanda internacional es impulsada por la necesidad de estos minerales en diversas aplicaciones industriales y tecnológicas, reflejando una tendencia global hacia una mayor producción y consumo de recursos minerales para satisfacer las crecientes necesidades de las economías emergentes y desarrolladas (1).

En 2024, América Latina se posicionó como un líder global en minería, con varios países destacando por su notable desempeño. Chile sigue siendo el mayor productor de cobre a nivel mundial, con una producción que supera los 5.5 millones de toneladas anuales, y es el principal exportador de litio, con una producción que ronda las 300,000 toneladas de carbonato de litio equivalente (LCE) (2). Perú se mantiene como uno de los mayores productores de cobre y zinc, produciendo aproximadamente 2.4 millones de toneladas de cobre y 1.4 millones de toneladas de zinc al año, además de ser uno de los principales proveedores de plata con cerca de 3,800 toneladas anuales. Brasil destaca en la producción de hierro, con más de 400 millones de toneladas exportadas anualmente, y en níquel, con una producción cercana a las 230,000 toneladas. Colombia sigue siendo uno de los principales exportadores de carbón, con una producción de alrededor de 80 millones de toneladas, y es reconocido por su producción de esmeraldas, representando aproximadamente el 70% de la oferta global. Argentina ha visto un aumento significativo en su producción de litio, alcanzando más de 200,000 toneladas de LCE, y también está desarrollando la minería de oro y plata, con una producción combinada de aproximadamente 60 toneladas de oro y 350 toneladas de plata. Estos datos reflejan cómo América Latina no solo posee una abundancia de recursos minerales, sino que también se beneficia de una infraestructura y políticas que fomentan la inversión y el crecimiento en el sector, consolidando su papel crucial en el mercado global (3).

La minería continúa siendo el sector económico más importante de Perú, desempeñando un papel crucial en el sostenimiento y crecimiento de la economía nacional. El sector minero representa aproximadamente el 10% del producto interno bruto (PIB) del país y contribuye con alrededor del 60% de las exportaciones totales de Perú (4). La minería es la principal fuente de divisas, con exportaciones que superan los 30,000 millones de dólares anuales, impulsadas en gran medida por la producción de cobre, zinc, oro y plata. Perú es el segundo mayor productor de cobre a nivel mundial, con una producción de cerca de 2.4 millones de toneladas métricas anuales, y el tercer mayor productor de zinc, con aproximadamente 1.4 millones de toneladas. Además, el país se sitúa como el sexto mayor productor de oro globalmente, con una producción cercana a las 150 toneladas al año, y el séptimo en producción de plata, con alrededor de 3,800 toneladas. La minería también juega un papel vital en la creación de empleo, con más de 200,000 trabajadores directamente empleados en el sector y generando una significativa cadena de valor en términos de proveedores y servicios asociados (5). El impacto económico de la minería es tan profundo que las inversiones en el sector han superado los 5,000 millones de dólares anuales, impulsando no solo la economía local, sino también el desarrollo de infraestructura y servicios en las regiones mineras. Este papel dominante de la minería en la economía peruana subraya su importancia como pilar fundamental para el crecimiento económico y la estabilidad financiera del país (6).

En la empresa objeto de estudio en una mina de Cerro de Pasco, la actividad de perforación y voladura no cuenta con procesos adecuados para cumplir sus objetivos, por ello es necesario una reestructuración en la planificación de entrega de áreas liberadas para perforación por el departamento de movimiento de tierras, Los equipos de perforación tienen fallas mecánicas, pocas capacitaciones de colaboradores en mantenimiento, operaciones y en seguridad. Bloques grandes de rocas post voladura, fragmentación de rocas inadecuadas, sobre excavación de taludes.

Las causas de estos problemas operativos pueden atribuirse a varias razones. En primer lugar, se observa un retraso en la entrega de áreas liberadas de perforación por parte del departamento de movimiento de tierras. Asimismo, el departamento de mantenimiento de equipos de perforación no actualiza su registro de mantenimiento correctivo y preventivo, lo que afecta la gestión de horas de trabajo del equipo. Además, no se cuenta con un stock de repuestos en almacén, lo que complica aún más la situación. Por otro lado, la capacitación en temas de mantenimiento, operación de equipos y seguridad ocupacional es escasa. A esto se

suman los diseños erróneos en parámetros de perforación y voladura, como la inclinación de los taladros y los diseños de cargas con explosivos, que agravan los problemas operativos.

La baja productividad se debe a las demoras ocasionadas por la tardía entrega de zonas de perforación; además, se generan tiempos muertos, horas de máquinas sin operar y horas hombre sin productividad. Asimismo, las paradas de los equipos de perforación por fallas mecánicas y la falta de repuestos resultan en pérdidas significativas de horas máquina y horas hombre. A esto se suma la demora en diagnosticar fallas mecánicas y la negligencia de los operadores al manejar las máquinas de perforación hidráulica, lo que provoca paradas por razones de seguridad al no cumplir con los procedimientos de trabajo. Por último, también se enfrentan desafíos como grandes bloques de rocas, problemas con el toes, post voladura y una fragmentación deficiente de rocas, así como la sobre excavación de taludes.

En minería, la falta de procesos adecuados en perforación y voladura ha generado problemas operativos significativos. La escasa planificación para liberar áreas de perforación y la ausencia de mantenimiento preventivo afectan la eficiencia y aumentan costos, por ende, con el control de horas máquina reduciremos costos de perforación así mismo estandarizaremos el mantenimiento preventivo y correctivo de los equipos de perforación además también mejoraremos los parámetros de perforación y voladura para tener mejor fragmentación y la sobre excavación del talud producto de la detonación del explosivo.

1.2. Formulación del problema

1.2.1. Pregunta general

1.2.2. ¿Cómo desarrollar una propuesta de optimización de los procesos de perforación y voladura para mejorar los parámetros de producción en una mina de Cerro de Pasco, 2024?

1.2.3. Preguntas especificas

- 1.2.3.1. ¿Qué estrategias aplicadas a los procesos de perforación y voladura pueden generarse a partir de la situación actual de una mina de Cerro de Pasco, 2024?
- 1.2.3.2. ¿Cuál es la situación actual del proceso de perforación y voladura en una mina de Cerro de Pasco, 2024?
- 1.2.3.3. ¿Cómo estructurar los procedimientos de mantenimiento preventivo y correctivo para los equipos de perforación en una mina de Cerro de Pasco, 2024?
- 1.2.3.4. ¿Cómo estandarizar los procesos del área de perforación y voladura en una mina de Cerro de Pasco, 2024?

1.2.3.5. ¿Como diseñar y simular la voladura mediante el uso del software WipFrag, con el propósito de reducir la generación de bolonerias en una mina de Cerro de Pasco, 2024?

1.3. Objetivos

1.3.1. Objetivo general

1.3.1.1. Desarrollar una propuesta de optimización de los procesos de perforación y voladura para mejorar los parámetros de producción en una mina de Cerro de Pasco, 2024.

1.3.2. Objetivos específicos

- 1.3.2.1. Generar estrategias aplicadas a los procesos de perforación y voladura a partir de la situación actual de una mina de Cerro de Pasco, 2024.
- 1.3.2.2. Evaluar la situación actual del proceso de perforación y voladura en una mina de Cerro de Pasco, 2024.
- 1.3.2.3. Estructurar los procedimientos de mantenimiento preventivo y correctivo para los equipos de perforación en una mina de Cerro de Pasco, 2024.
- 1.3.2.4. Estandarizar los procesos del área de perforación y voladura en una mina de Cerro de Pasco, 2024.
- 1.3.2.5. Diseñar y simular la voladura mediante el uso del software WipFrag, con el propósito de reducir la generación de bolonerias en una mina de Cerro de Pasco, 2024.

1.4. Justificación

Los procesos de perforación y voladura para mejorar los parámetros de producción en una mina de Cerro de Pasco, 2024, tiene un impacto significativo.

- 1.4.1. Teóricos: este trabajo contribuye al avance del conocimiento en la industria minera mediante el desarrollo y la implementación de nuevas herramientas que buscan aumentar la eficiencia y la productividad en las operaciones de perforación y voladura.
- 1.4.2. Empresarial: Incrementar la rentabilidad y la competitividad de la mina al optimizar la eficiencia, producción de minerales y al reducir los gastos operativos, lo que potencialmente se traduce en mayores ingresos y una mayor estabilidad financiera a largo plazo para la empresa (7).
- 1.4.3. Económica: La optimización de los procesos de perforación y voladura en la mina permitirá reducir significativamente los tiempos muertos y las fallas mecánicas, lo que se traducirá en un aumento de la productividad y una reducción de los costos

- operativos. Además, al mejorar los estudios de tiempos, la mejora de los diseños de voladura, se disminuirán los costos, generando así un retorno de inversión positivo y un incremento en la rentabilidad de la operación minera (8).
- 1.4.4. Social: Ayuda al progreso económico y social local al sostener y posiblemente incrementar los empleos generados por la mina. Además, al optimizar la eficacia de las operaciones, se puede mitigar el impacto ambiental y social de la minería en la comunidad cercana (9).
- 1.4.5. Ambiental: Mejorar los procesos puede influir en disminuir el uso de recursos naturales y disminución en producción de residuos, lo que contribuye a mitigar el impacto ambiental de la minería. Además, al disminuir la cantidad de explosivos empleados, se puede reducir la emisión de gases contaminantes y la generación de desechos sólidos (10).

1.5. Importancia

Es crucial para abordar los desafíos operativos que afectan la eficiencia y rentabilidad de la mina. Al mejorar estos procesos, se busca reducir tiempos muertos, minimizar fallas mecánicas y optimizar la fragmentación de rocas, lo que resultará en un aumento significativo de la productividad. La relevancia de este estudio radica en su potencial para resolver problemas de horas máquina sin trabajar, horas hombre sin trabajar, reducir costos operativos. Implementar estas mejoras no solo fortalecerá la competitividad de la mina en el mercado, sino que también contribuirá a una gestión más sostenible y económica de los recursos minerales además nos podría servir para futuros estudios de este tema.

1.6. Delimitación

1.6.1. Delimitación temporal

La presente investigación se desarrolló en una unidad minera en el periodo comprendido entre mayo y junio del 2024.

1.6.2. Delimitación espacial

La presente investigación se desarrolló en una unidad minera ubicada en el distrito de San Francisco de Asís de Yarusyacan en la provincia de Pasco región Cerro de Pasco, Perú.

1.7. Hipótesis

1.7.1. Hipótesis general

Es posible desarrollar una propuesta de optimización de los procesos de perforación y voladura para mejorar los parámetros de producción en una mina de Cerro de Pasco, 2024.

1.7.2. Hipótesis específicas

- 1.7.2.1. Es posible desarrollar estrategias aplicadas a los procesos de perforación y voladura a partir de un análisis FODA en una mina de Cerro de Pasco, 2024.
- 1.7.2.2. La situación actual del proceso de perforación y voladura en una mina de Cerro de Pasco, 2024 es regular.
- 1.7.2.3. Los procedimientos de mantenimiento preventivo y correctivo para los equipos de perforación en una mina de Cerro de Pasco, 2024 se pueden estructurar mediante diagramas de flujo.
- 1.7.2.4. Los procesos del área de perforación y voladura en una mina de Cerro de Pasco, 2024 pueden estandarizarse mediante un estudio de tiempos y diagramas analíticos de proceso.
- 1.7.2.5. El software Wipfrag permite diseñar y simular la voladura con el propósito de reducir la generación de bolonería en una mina de Cerro de Pasco, 2024.

1.8. Variables

1.8.1. Descripción de la variable

1.8.1.1. Variable independiente: Propuesta de optimización de los procesos de perforación y voladura

La optimización de los procesos de perforación y voladura busca mejorar la eficiencia operativa mediante estrategias efectivas. Esto implica optimizar el proceso, gestionar la voladura a través del análisis de datos, La combinación de ambos enfoques permite identificar ineficiencias.

1.8.1.2. Variable dependiente: Parámetros de producción

1.8.2. Operacionalización de la variable

Tabla 1. Matriz de operacionalización de variable

	Definición conceptual	Definición operacional	Dimensiones	Indicadores
Variable	La optimización de los	Optimización de procesos de perforación y	Diagnóstico situacional	Ciclo de tiempo
independiente:	procesos de perforación y	voladura se refiere a un conocimiento amplio de		Rendimiento de horas máquina
Propuesta de	voladura en minería es	los trabajos de perforación y voladura para hacer	Eficiencia operativa	trabajadas, Eficiencia de horas
optimización de	llevar a cabo mediante	un análisis de la situación actual, para determinar		hombre trabajados
los procesos de	estrategias efectivas como	cuántas horas trabajan los equipos y cuántas horas	Identificación de procedimientos de	
perforación y	la evaluación y análisis de	hombre trabajan en un turno así mismo para	mantenimiento de equipo rock drill	Número de procedimientos
voladura.	cada una de las	implementar procedimientos de mantenimiento de	Análisis granulométricos post	Porcentajes de rocas > a 20 cm
	operaciones (11).	equipos, además para mejorar el diseño de los	voladura con software Wipfrag y	y < 20 cm
		parámetros de perforación y voladura desde los	base de datos de voladura	
		resultados del software Wipfrag.		
Variable	Los parámetros de	Mide la capacidad operativa y el rendimiento de	Equipos de perforación hidráulica	Número de perforaciones por
dependiente:	producción son las	los procesos. Estos parámetros están directamente		hora
Parámetros de	variables controlables que	relacionados con la eficiencia del ciclo de trabajo,	Disponibilidad mecánica	Tiempo disponible / Tiempo
producción	afectan la eficiencia y el	la velocidad de avance, eficiencia de perforación,		total programado x 100
	costo de las operaciones	profundidad promedio de los taladros, número de	Costos de perforación	Costo dólares por metro
	de perforación y voladura	taladros perforados por día, toneladas de mineral		perforado y por tonelada
	(12).	volado, rendimiento por equipo y consumo	Granulometría post voladura	Porcentaje de granulometría
		específico de explosivos.		por mes

Fuente: Elaboración propia.

CAPÍTULO II: MARCO TEÓRICO

2.1. Antecedentes de la investigación

Perincek et al., en el año 2025, en su artículo "Optimización del patrón de perforación para voladuras complejas de gran tamaño mejorar la fragmentación y la eficiencia de la excavación", siendo su objetivo abordar la complejidad de la variación de la dureza del suelo mediante la personalización espacial de los diseños D&B. Su estudio se basó en el método cuantitativo, ya que evaluaron grandes conjuntos de datos operativos de los sitios mineros para modelar el impacto de D&B. con diseño experimental que se desarrolló en tres etapas para determinar la carga óptima, el espaciamiento, intensidad explosiva en cada hoyo para todo el patrón. Por otro lado, la técnica y los instrumentos utilizados consistieron en un análisis de datos optimizador de puntos interiores. Como resultado, determinaron la eficiencia de excavación desde un promedio del 80% (promedio de todos los diseños originales) hasta más del 95%. En todas las voladuras, la eficiencia de excavación es aproximadamente un 2% mejor si se utiliza el diseño variable en comparación con el diseño constante, con un 11% menos de barrenos (13).

Rocha y Mendoza, en el año 2023, en su artículo "El valor de los datos para la toma de decisiones en perforación y voladura", analizaron los principales retos y desafíos en la operación de voladuras. Su estudio se basó en el método cuantitativo, ya que evaluaron la longitud de perforación, la posición de los emboquilles, la longitud de retacado y la densidad lineal de carga. Por otro lado, la técnica y los instrumentos utilizados consistieron en un análisis documental. Como resultado, determinaron que el porcentaje de precisión en la perforación antes del estudio era del 64 %, mientras que, después del estudio, aumentó al 75 %, logrando así una mejora del 11 %. Para alcanzar esta mejora, implementaron acciones inmediatas, como un mayor cuidado en la preparación de áreas de barrenación y una mejor programación de los equipos de perforación en áreas reducidas. Finalmente, concluyeron que no era posible mejorar un diseño de voladuras hasta que los principales KPI estuvieran bajo control, entre ellos: la longitud de perforación, la densidad lineal del explosivo, la precisión del emboquille y la longitud del retacado en una operación minera de Peña Colorada, en México (14).

Yussupov et al., en el año 2021, en su artículo "Optimización del proceso de perforación y voladura para mejorar la fragmentación mediante la creación de un estrés preliminar en un bloque", emplearon el método cuantitativo, con un diseño experimental, basado en técnicas e instrumentos de análisis documental. Como parte de sus resultados, ajustaron el diseño de voladura existente en el sitio Belaya Gorka mediante la incorporación de una fila intermedia

de barrenos, ubicada en el límite entre la segunda y la tercera zona de voladura, calculadas según las condiciones específicas de la mina. El objetivo de esta modificación fue generar un estrés preliminar que permitiera mejorar la fragmentación final del bloque. Posteriormente, llevaron a cabo una serie limitada de voladuras experimentales en la mina a cielo abierto con el propósito de evaluar su efectividad. Para ello, realizaron un análisis de fragmentación del mineral triturado inmediatamente después de las voladuras, utilizando fotografías y el método de medición planimétrica. Finalmente, evidenciaron que el diseño de voladura estándar generaba un 48% de piezas de mineral con un tamaño de hasta 300 mm, mientras que la tecnología propuesta incrementó esta cantidad al 73%, lo que representó una mejora en la fragmentación de aproximadamente un 25%, superando así las expectativas iniciales (15).

Espinosa y Hormaechea, en su tesis publicada en año 2021 titulada "Optimización de procesos de perforación y voladura en los frentes de trabajo de la sociedad minera santa clara, Ponce Enríquez - Azuay", tuvieron como objetivo optimizar los procedimientos de perforación y voladura. Para ello, emplearon un método cuantitativo basado en el modelo matemático sueco desarrollado por Langefors y Kihlstrom, el cual les permitió obtener resultados óptimos para su investigación. El estudio tuvo un alcance descriptivo. Por otro lado, las técnicas e instrumentos utilizados consistieron en análisis documental, utilizando fichas de laboratorio de mecánica de rocas. Como resultado, determinaron que, en un frente de trabajo con 20 taladros de una pulgada de diámetro distribuidos de manera aleatoria, existía un consumo innecesario de explosivos, lo que generaba pérdidas en horas máquina y horas hombre. Ante esta problemática, propusieron el uso de taladros de 2 pulgadas de diámetro, lo que permitió reducir la cantidad de taladros y evitar tiros cortados, optimizando así el proceso de perforación y voladura (16).

Buele, en su tesis publicada en 2017 titulada "Optimización en los parámetros de perforación y voladura en el avance del túnel de la mina Cabo de Hornos", tuvo como objetivo optimizar los parámetros de perforación y voladura en el avance del túnel en dicha mina. Para ello, empleó un método de investigación cuantitativo con un alcance descriptivo, en el cual evaluó la longitud del taladro, la longitud de carga del taladro y el factor de carguío, entre otros parámetros de voladura. Además, utilizó como técnica e instrumentos de análisis documental los registros de perforación y los análisis de laboratorio de rocas. Como resultado, se evidenció que la aplicación de una nueva propuesta de malla de perforación permitió utilizar una cantidad adecuada de taladros, lo que a su vez mejoró la distribución de los explosivos y redujo el consumo de 8.51 kg/m³ a 6.82 kg/m³. Finalmente, concluyó que la optimización de la malla de perforación y voladura aplicada en la mina Cabo de Hornos generó un ahorro en costos y una mejora en los tiempos de operación, lo cual no ocurría con el diseño empírico (17).

Aguirre, en su tesis publicada en 2016 titulada "Optimización de parámetros de tronadura en función de explosivos de alta energía en sociedad contractual minera el Abra", planteó como objetivo específico optimizar la fragmentación en función de las mallas, el nuevo explosivo y los tacos, además de realizar un análisis granulométrico del material con el fin de realizar comparaciones. Para ello, empleó un método de investigación cuantitativo, en el cual analizó el diseño de mallas y el explosivo utilizado en 38 tronaduras realizadas en 2015, lo que otorgó representatividad a los resultados obtenidos. Asimismo, utilizó una investigación descriptiva, ya que requirió una muestra de las variables de interés para posteriormente establecer patrones de comportamiento a partir de estos datos, respaldados por la empresa Orica Mining Services. En cuanto a las técnicas e instrumentos, aplicó un análisis documental y, para determinar el P80, empleó el software de análisis de fragmentación Split Desktop y Split online. Finalmente, los resultados demostraron un incremento en el beneficio de la fragmentación en todas las propuestas al comparar el P80 del caso base con el de las propuestas. Incluso, la totalidad de las propuestas evidenció un aumento en el beneficio del factor de carga total; sin embargo, el mayor incremento se obtuvo en la propuesta 4, con un 69%, debido principalmente a que la columna explosiva en esta propuesta fue de 10 metros (18).

Guamán, en su tesis publicada en el año 2016 y titulada "Optimización de los procesos de perforación y voladura en el túnel fase a-b de interconexión del proyecto Sopladora", tuvo como objetivo mejorar los procesos de perforación y voladura empleados en dicho túnel del proyecto hidroeléctrico Sopladora. Para ello, se utilizó un enfoque de investigación cuantitativa, basándose en información existente sobre el lugar, como mapas topográficos, geológicos y estudios previos. La investigación, de alcance descriptivo, detalló la situación actual de los procesos con el fin de optimizarlos, mediante la técnica e instrumentos análisis documental. Como resultado, se determinó que el modelo de cálculo de Rune Gustafsson, aplicado a las propiedades físicas, mecánicas y geológicas del macizo rocoso, permitía optimizar el proceso de perforación y voladura, evitando así la necesidad de realizar voladuras secundarias (19).

2.2. Antecedentes nacionales

Bejarano y Gómez, en su artículo de investigación del año 2024 "Optimization of the exploitation of the rock mass to increase productivity through mining planning in CMPSA", utilizaron un método de investigación cuantitativo, ya que contaban con un diagnóstico previo basado en la recopilación de datos numéricos, estructurados en un cronograma mensual que reflejaba la producción. Además, la investigación tuvo un alcance descriptivo-prospectivo, dado que estudió, diagnosticó y desarrolló una planificación de minado propuesta para su

implementación futura. El diseño de la investigación fue no experimental, pues en ningún caso se alteraron las variables de estudio. En cuanto a los resultados, se observó una diferencia significativa entre la producción del año 2022, sin optimización de la explotación del macizo rocoso, y la producción del año 2023. Durante el año 2022, la producción comenzó en niveles altos, pero posteriormente sufrió una caída pronunciada en los meses siguientes. A mediados de año, se logró una recuperación parcial, manteniéndose relativamente estable, aunque con ligeras fluctuaciones. En contraste, en el año 2023, la producción mostró una tendencia más variable, iniciando en niveles bajos y alcanzando un pico notable en el quinto mes (20).

Huallanca, en su tesis de maestría publicada en el año 2023, titulada "Optimización del proceso de perforación y voladura en los avances de la profundización en la mina San Vicente, Compañía Minera San Ignacio de Morococha S.A.A.", tuvo como objetivo establecer la influencia en los KPIS de los avances en la profundización de la mina San Vicente con la optimización del proceso de perforación y voladura. Se empleó un método cuantitativo, debido a que los parámetros que se utilizaron para realizar la evaluación son medibles medidas métricas. Además, el estudio tuvo un alcance explicativo y un diseño experimental debido a que se tiene las mediciones de las variables dependientes y la comparación de los resultados actuales con los nuevos resultados, que fueron obtenidos luego de la aplicación de la ficha de observación. En técnicas e instrumentos utilizados aplicó la observación selectiva e interpretativa, lo que les permitió obtener información relevante, describir situaciones específicas y contrastar hipótesis mediante la observación, aplicación, medición, recolección y registro sistemático de los datos correspondientes a los procesos de perforación y voladura durante la construcción de la rampa 8600 (-) de la mina San Vicente. Finalmente, los resultados evidenciaron una reducción significativa en el factor de avance, registrándose un promedio por debajo de 38,34 kilogramos de explosivo por metro de avance, además de una disminución del 7 % en el costo de explosivos por disparo durante la profundización de la mencionada rampa, lo cual demuestra la eficacia de las medidas implementadas (21)

Colque, en su tesis publicada en el año 2022 "Mejora en los procesos operativos de perforación, voladura y sostenimiento mediante la aplicación de modelos matemáticos - unidad minera Alpacay", tuvo como objetivo aplicar modelos matemáticos en Excel para el rediseño de la malla de perforación. Para ello, empleó un método cuantitativo que permitió obtener datos in situ sobre el control de operación, hojas de reporte diarias. La investigación tuvo un alcance descriptivo, ya que recopiló información desde el inicio del turno, incluyendo la cantidad de trabajadores necesarios, el tipo y nivel de la labor donde se realizó la perforación, el área de la sección y los resultados de la voladura. Además, utilizó técnicas de

análisis documental y herramientas como fichas de registro y finalmente en sus resultados las mallas de perforación con rombos inscritos les permitió una mejor evaluación de los parámetros de perforación y voladura (22).

Idone y Tinta, en su tesis publicada en el año 2022 titulada "Optimización del proceso de perforación y voladura para mejorar la eficiencia de operaciones en la unidad minera las Bravas, Ica II", utilizaron un método cuantitativo, ya que evaluaron los parámetros de operación y, con base en ello, diseñaron una malla de perforación orientada a optimizar la eficiencia en las operaciones mineras. La investigación tuvo un alcance descriptivo aplicado al área de ingeniería, donde se buscó mejorar el proceso de perforación. El diseño de investigación fue experimental y se consideró un subgrupo experimental puro, debido a que el estudio se ejecutó bajo planteamientos específicos de optimización. Las técnicas e instrumentos fueron análisis documental, mediante los cuales se observaron hechos y avances a través de listas de verificación y registro de datos. Finalmente, los resultados demostraron que la modificación de la malla de perforación permitió reducir los tiempos en el ciclo de perforación y a su vez la optimización de la malla redujo los tiempos de perforación de 3.5 horas (malla estándar) a 2.73 horas (malla optimizada), mejorando significativamente la eficiencia operativa (23).

Huincho en su tesis publicado en el año 2022 "Optimización del proceso de perforación y voladura para mejorar la eficiencia de avance y controlar la sobre rotura en los frentes de avance de la unidad minera cerro lindo, Nexa Resources s. a. a." tuvo como objetivo optimizar el proceso de perforación y voladura para mejorar la eficiencia de avance y controlar la sobre rotura en los frentes de avance de la unidad minera cerro lindo, con un método cuantitativo de observación numérica, con diseño experimental ya que manipularon la variable independiente para ver los efectos sobre la variable dependiente. Con técnica e instrumentos aplicada ya que pusieron en práctica los resultados obtenidos en la investigación. Finalmente, sus resultados fueron la optimización del proceso de perforación y voladura logrando mejorar la eficiencia de avance de 88.20 % a 93.60%, obteniendo un avance promedio de 4.85 m. por disparo (24).

Gonzales y Vilca, en su tesis publicada en el año 2021 titulada "Optimización de la fragmentación en las rocas con la aplicación de cápsulas plasma en el tajo santa rosa de la empresa administradora Cerro S.A.C. Cerro de Pasco", tuvieron como objetivo específico reducir la fragmentación a un P80 menor o igual a 10 pulgadas. Para ello, emplearon un método cuantitativo porque se han desarrollado diseños con la finalidad de cumplir con el objeto del estudio, con un diseño experimental a través de los datos obtenidos de la experimentación y comparación con variables constantes, con técnicas e instrumentos análisis

documental fueron muy indispensables contar con datos de las investigaciones científicas revisadas para la realización de este trabajo de investigación, tras el análisis de la información obtenida, diseñaron una propuesta de solución basada en la modificación de los parámetros de la malla de perforación, ajustando el burden, el espaciamiento y la altura de los taladros de producción. Finalmente, los resultados demostraron una disminución significativa en el tamaño de las rocas obtenidas después del disparo, confirmando la efectividad de la optimización propuesta (25).

Carlos y Cuellar, en su tesis de año 2021 titulada "Optimización de la perforación y voladura para el método de minado por Bench and Fill en la unidad minera Carahuacra" cuyo objetivo fue delimitar sobre la optimización de la perforación y voladura para el método de minería Bench and Fill, con método de investigación cuantitativo, de alcance descriptivo ya que se trata de esclarecer la optimización de la perforación y voladura para el método de minado de Bench and Fill en la unidad minera Carahuacra, con diseño experimental debido a que el objetivo de la investigación es optimizar la perforación y voladura, con técnicas e instrumentos análisis documental cuya investigación recolectó información en campo mediante la técnica observacional y el procesamiento de datos pasados y actuales de las operaciones mineras de perforación y voladura, cuaderno de notas, planos, reporte de operaciones de perforación y voladura de la unidad minera Carahuacra. finalmente, sus resultados fueron una optimización de avance lineal para los tajeos de 1,000 metros para el año 2020, en relación al año 2019 (26).

2.3. Bases teóricas

2.3.1. Optimización de procesos en minería

La optimización de procesos en minería es esencial para mejorar la eficiencia operativa y la sostenibilidad del sector, e implica un análisis exhaustivo de los flujos de trabajo, identificando cuellos de botella y oportunidades de mejora. La implementación de tecnologías avanzadas, como automatización y monitoreo en tiempo real, permite un uso más eficiente de recursos críticos como energía y agua. Además, la capacitación del personal y la creación de una cultura de mejora continua son fundamentales para mantener estos avances. Asimismo, se busca minimizar el impacto ambiental a través de prácticas sostenibles y la gestión adecuada de residuos. Finalmente, el establecimiento de indicadores clave de desempeño (KPIs) facilita la evaluación de resultados y ajustes necesarios, asegurando una operación más rentable y responsable. Para perfeccionar los procesos mineros de manera efectiva, es esencial considerar los siguientes puntos: tener en cuenta el ciclo de minado y mantener en observación desde el minado hasta la planta donde se realiza el procesamiento; determinar las mejores técnicas para emplear en perforación y voladura; y proponer sistemas de salidas de

voladura eficientes. Para alcanzar estos objetivos, será fundamental adoptar un enfoque de mejora continua que involucre un monitoreo constante para identificar oportunidades de optimización y así incrementar la productividad (27).

2.3.2. Proceso de perforación

La apertura de la perforación es consumar la dureza de la roca con golpes incesantes en dos extremos, el primero es golpear con filos cortantes y el otro lado es sacudido y girado de forma constante, de tal forma que cada golpe provoca un corte local en diversas direcciones, conllevando al proceso de perforación de los taladros con un diámetro equivalente al diámetro del filo cortante utilizado (28).

2.3.3. Métodos de perforación de rocas

Los procedimientos de perforación de rocas varían según tres características principales: el sistema de perforación empleado, el rango de diámetros de taladros utilizados y las máquinas y el mecanismo de accionamiento (29).

Los agujeros profundos se dividen en agujeros profundos verticales y agujeros profundos inclinados. Los agujeros verticales profundos se perforan principalmente con punzones de impacto. Los pozos profundos inclinados se perforan principalmente con equipos de perforación rotativos o perforadoras de fondo. Su inclinación es generalmente de 75° a 80° (30).

2.3.4. Impacto de la optimización

Mejora de la fragmentación: Una perforación y voladura bien optimizada generan un material fragmentado de tamaño adecuado, lo que facilita las operaciones posteriores como el carguío, transporte y trituración. Esto se traduce en una reducción de costos operativos y en una mayor eficiencia energética. "La optimización en los procesos de perforación y voladura no solo mejora la fragmentación de la roca, sino que también reduce los costos generales del ciclo de operación minera, especialmente en las etapas de transporte y chancado" (31).

Reducción de costos: La optimización permite un uso más eficiente de explosivos, equipos y personal, reduciendo el costo por tonelada de material movido o procesado. "La implementación de diseños optimizados de voladura puede reducir significativamente el consumo de explosivos y los costos asociados al mantenimiento de maquinaria y equipo" (32).

Control de impactos ambientales: Un diseño optimizado disminuye las vibraciones, la emisión de polvo y el ruido, reduciendo el impacto ambiental y social de las operaciones. "El uso de técnicas avanzadas en perforación y voladura permite minimizar los efectos colaterales

en las comunidades cercanas y contribuye al cumplimiento de estándares ambientales más estrictos" (33).

2.3.5. Relevancia de la perforación y voladura

Eficiencia en la extracción: Facilitan la fragmentación de grandes bloques de roca en tamaños manejables, lo que optimiza el transporte y procesamiento posterior. Así también en control de costos dado que un diseño eficiente de perforación y voladura puede minimizar el consumo de explosivos, reducir el desgaste de equipos y disminuir los costos operativos generales. Además, brinda seguridad permitiendo controlar el tamaño y forma de los bancos, garantizando condiciones de trabajo más seguras para los operarios. También tiene un impacto ambiental ya que una voladura bien planificada puede minimizar las vibraciones, el ruido y el material particulado, reduciendo el impacto ambiental del proceso (31).

2.3.6. Partes de una malla de perforación

Una malla de perforación está compuesta principalmente por la distancia entre perforaciones (espaciado), que determina el tamaño de los fragmentos de roca; la profundidad de las perforaciones, que influye en la cantidad de explosivo a utilizar; y el diámetro de los agujeros, que afecta la distribución de la energía de la voladura. Estos parámetros deben ser diseñados considerando las características geológicas y las condiciones operativas del yacimiento (34).

2.3.7. Diseño de malla de perforación

Se refiere a los parámetros de un frente de perforación, compuesto por ubicación del frente, burden, espaciamiento, el ángulo, diámetro, profundidad. Los parámetros de la malla tienen como objetivo minimizar costos asociados al proceso y reducir la cantidad de explosivos utilizados, buscando así un avance eficiente y la estabilidad de los taludes, además de establecer una secuencia y salida de los taladros.

Para el diseño de mallas en el proceso de perforación y voladura, es fundamental considerar diversos criterios que aseguren la eficiencia y seguridad de las operaciones. Entre ellos, se encuentran el tipo de equipo utilizado para la perforación, el estudio detallado de las características de las rocas, incluyendo su tipo y comportamiento, los materiales empleados para el sostenimiento estructural, y el tiempo requerido para llevar a cabo cada actividad, garantizando así una planificación adecuada y resultados óptimos (34).

2.3.8. Variables controlables y no controlables en un diseño de malla

Las variables controlables en los procesos de perforación y voladura incluyen aspectos como los parámetros de perforación, las propiedades del explosivo, el carguío y el tiempo de secuencia, así como los componentes del diseño geométrico del disparo. Por otro lado, las variables no controlables se refieren principalmente a las características del macizo rocoso,

que abarcan las propiedades físicas, las condiciones geológicas, y los parámetros elásticos y de resistencia dinámica del macizo rocoso (32).

2.3.9. Modelos matemáticos para el diseño de la malla

Los modelos matemáticos para el diseño de malla en minería superficial permiten calcular la distribución óptima de taladros entre el burden y espaciamiento en función del tipo de roca, diámetro de perforación, la altura del banco y explosivo utilizado. Estos modelos buscan maximizar la fragmentación eficiente, minimizar costos y garantizar la seguridad operativa. existen fórmulas empíricas basadas en parámetros geotécnicos y propiedades del explosivo. Su aplicación mejora el rendimiento de la voladura y la productividad minera (28).

Así determinamos el burden y espaciamiento:

a) Burden (B)

$$B = K \cdot \frac{D}{1000}$$

B =burden (en metros)

D = diámetro de taladro (en milímetros)

K = coeficiente empírico (sin unidades)

Tabla 2. Variables del modelo matemático

Variable	Influencia sobre K	Observación técnica		
Tipo de roca	A mayor resistencia, menor K	Roca dura: 25 a 30		
Tipo de explosivo	Explosivos de alta energía permiten mayor K	Emulsiones K > ANFO		
Relación de carga (kg/m³)	Alta carga → mayor K	A mayor carga, mayor presión de gases		
Altura del banco (H)	Bancos altos tienden a requerir menor K	Por riesgo de sobrepresión o proyecciones		
VOD del explosivo	Alta VOD → mayor energía → posible mayor K	Aumenta el radio de ruptura efectiva		

Fuente: Elaboración propia.

b) Espaciamiento (S)

 $S = \propto .B$

• S = Espaciamiento (m)

• α = Coeficiente de patrón de perforación:

• Rectangular: α=1.1

• Triangular: α =1.25 a 1.5

2.4. Parámetros de perforación

Incluyen aspectos como el diámetro, la profundidad y el patrón de perforación, los cuales tienen una relación directa con la fragmentación del material y el rendimiento de la operación minera. Un diseño adecuado de estos parámetros permite una mejor fragmentación de la roca, lo que optimiza las etapas posteriores del proceso de extracción, como el carguío y el transporte, y mejora la eficiencia del procesamiento. La relación entre estos parámetros y la eficiencia operativa ha sido ampliamente estudiada, destacando su impacto en la reducción de costos y el aumento de la productividad (35).

2.4.1. Modelo EXSA

Para voladura se basa en una planificación técnica integral de la operación de perforación y voladura, buscando maximizar la eficiencia de la fragmentación, minimizar costos operativos y controlar impactos ambientales (34).

El modelo considera: Geología del macizo rocoso, propiedades de los explosivos, parámetros de diseño de la malla de perforación, desempeño operativo (desviación, avance, sobreperforación).

Malla de Perforación y Avance de Voladura

a. Avance de Voladura

- El avance real alcanzado por la voladura debe ser cercano al 95% de la longitud planificada del taladro.
- Valores por debajo del 90% indican problemas de alivio o desviación excesiva, lo que compromete la eficiencia.

b. Diámetro de Alivio y Relación con la Malla

- El diámetro de alivio (usualmente un taladro sin carga o con carga mínima para liberar tensiones) influye directamente en el avance de los taladros vecinos.
- El alivio debe ser suficiente para permitir una expansión radial adecuada de los gases de voladura.
- Una regla de diseño es que el diámetro de alivio debe ser igual o superior al diámetro de los taladros cargados, o tener un espaciamiento más cercano si es del mismo diámetro.

c. Desviación de Taladros

 Las desviaciones angulares o lineales de los taladros no deben superar el 25% de la longitud total, ya que afectan: la ubicación de las cargas explosivas, el control del burden y espaciamiento efectivo, el contacto explosivo-roca y por lo tanto la eficiencia de fragmentación.

2.4.2. Modelo de López Jimeno

Este modelo proporciona una metodología sistemática para definir los parámetros de diseño de la malla de perforación, considerando la geomecánica del macizo rocoso, el tipo de explosivo y los objetivos operacionales (fragmentación, control de vibraciones, seguridad, etc.) (28).

1. Principales variables del modelo:

Tabla 3. Principales variables

Parámetro	Descripción técnica	
Burden (B)	Distancia entre taladro y cara libre	
Espaciamiento (E)	Distancia entre taladros paralelos	
Profundidad (H)	Longitud del taladro incluyendo subperforación	
Diámetro (D)	Diámetro del taladro	
Subperforación (J)	Extensión extra para eliminar el pie	
Carga específica (q)	kg de explosivo por m³ de roca	
Factor de potencia (PEF)	Energía relativa del explosivo (MJ/kg)	
VOD (m/s)	Velocidad de detonación del explosivo	

Fuente: Elaboración propia.

2. Cálculo del burden (B) y espaciamiento (E)

a) Burden (B):

$$B = K_1 \cdot D \cdot \left(\frac{Rc}{PEF}\right)^{1/2}$$

b) Espaciamiento (E):

$$E = K_2 \cdot B$$

Donde:

- K1, K2 = Coeficientes empíricos ajustables (entre 20 y 40 para K1, y entre 1.1 y 1.5 para K2).
- Rc = Resistencia a compresión simple de la roca (kg/cm² o MPa).
- PEF = Potencial energético del explosivo (MJ/kg).
- D = Diámetro del taladro (mm o in).
- 3. Carga específica (q)

$$q = \frac{Q \ taladro}{B.E.H}$$

Donde:

- Q taladro = carga total por taladro (kg)
- H = Profundidad del taladro

4. Subperforación (J)

• Usualmente: 0.2 a 0.5 veces el burden

• Sirve para evitar dejar roca remanente (zócalo) en el pie del banco.

2.4.3. Proceso de voladura

La voladura es el acto de fracturar o fragmentar rocas, suelos duros, hormigón o desprender elementos metálicos utilizando explosivos. Estas operaciones se realizan para alcanzar un objetivo específico y pueden ser controladas o no, además de realizarse ya sea en superficie, en galerías subterráneas o bajo el agua. Durante este proceso, ciertas variables afectan directamente el resultado y pueden ser controladas en algunos casos, mientras que en otros no lo son (33).

2.4.4. Factores que afectan la perforación

Incluyen las propiedades geológicas, como la dureza, las fracturas y la cohesión del macizo rocoso, que influyen directamente en la dificultad y eficiencia del proceso de perforación. Además, el mantenimiento y el diseño de los equipos de perforación son fundamentales para asegurar un rendimiento óptimo y minimizar tiempos de inactividad. La dureza de la roca y su fracturación afectan la elección de las brocas y la velocidad de perforación, mientras que el diseño adecuado del equipo y un buen mantenimiento pueden mejorar la productividad y reducir los costos operativos (36).

2.4.5. Cebado y distribución de carga por taladro

Para repartir la carga de explosivo a cada taladro, es esencial considerar el cebado. Se debe asegurar que el explosivo trabaje en su máxima energía, para ello la carga de columna debe ser bien atacado según el diseño, y garantizar una longitud adecuada de la detonación a velocidades apropiadas. Se pueden aplicar diferentes métodos de cebado, ya sea múltiple o único, así como el cebado axial se utiliza con el de cordón detonante (37).

2.4.6. Eficiencia de perforación

Se tiene que asegurar la eficiencia en la perforación, es crucial cumplir el procedimiento adecuado de perforación, garantizar la profundidad, ángulos, así como mantener un paralelismo correcto. Estos criterios son fundamentales para lograr una fragmentación adecuada, lo cual a su vez contribuye a disminuir los costos en los trabajos de perforación (34). Por lo tanto, en las operaciones en perforación, la eficacia se traduce en obtener una mayor penetración a un costo menor (38).

2.4.7. Estrategias para medir eficiencia de perforación

El Mine to Mill es un enfoque integral que evalúa la eficiencia operativa en la minería, centrado en reducir el consumo energético desde la perforación hasta la obtención del

producto final en la concentradora. El objetivo principal es optimizar la energía utilizada en las etapas de perforación y voladura para mejorar la eficiencia general del proceso (39).

a) Análisis del avance real vs planificado (m/taladro):

Mide el porcentaje de cumplimiento del avance de los taladros en relación con la longitud planificada, para identificar ineficiencias o desviaciones en la perforación.

b) Relación fragmentación vs. energía de conminución:

Evaluar el impacto de la calidad de la voladura (tamaño de fragmentos) en el consumo energético del chancado y molienda. Fragmentaciones más finas reducen la energía total del sistema.

c) Uso de índices de productividad por equipo de perforación:

Comparar m/hora máquina y toneladas perforadas por hora efectiva entre diferentes equipos o turnos para detectar brechas de eficiencia.

d) Seguimiento del factor de carga (kg/m³) y su impacto en la fragmentación:

Ajustar la carga explosiva en función de la resistencia del macizo y del resultado esperado en chancado, controlando la energía usada en voladura.

e) Monitoreo de la desviación de taladros:

Utilizar tecnologías como navegación GPS o giroscopios para medir desviaciones, que afectan directamente la distribución energética y calidad de fragmentación.

f) Implementación de KPIs integrados entre mina y planta:

Usar indicadores como P80 mina – P80 planta, kWh/ton chancado.

g) Modelos de simulación Mine to Mill:

Aplicar software de simulación para predecir el efecto de cambios en malla de perforación, tipo de explosivo o secuencia de disparo sobre el rendimiento de planta.

h) Capacitación cruzada mina planta:

Entrenar al personal de perforación y voladura con enfoque en el impacto que su trabajo tiene en la molienda, fomentando decisiones colaborativas.

2.4.8. Eficiencia de voladura

La eficiencia de voladura se define como la habilidad para lograr una adecuada fragmentación del material rocoso utilizando la cantidad de explosivos y perforaciones necesarias para cada voladura. Para evaluar esta eficiencia, se analiza la longitud del avance en el frente después de la detonación. La eficiencia de voladura se calcula dividiendo la eficiencia de perforación entre la longitud del avance y multiplicando el resultado por 100 (%), además según el "Manual de perforación y voladura" de la universidad Politécnica de Madrid, la eficiencia de voladura se determina mediante la relación entre el volumen de roca fracturada y el volumen total de la voladura, lo que permite evaluar la efectividad del proceso de fragmentación (37).

2.4.9. Accesorios de voladura

Para toda actividad donde se involucran el uso de explosivos, ya sea en minería superficial y también en proyectos de construcción, se debe asegurar que la detonación actúe de manera apropiada. Esto requiere un conocimiento detallado de los métodos y técnicas que posibilitan el inicio de la reacción explosiva en modo de detonación, así como la secuencia adecuada para iniciar la detonación integrada de todos los taladros de manera ordenada (28).

• Sistemas de iniciación:

Las diversas técnicas y formas de dar inicio al proceso de voladura, con los detonadores, pueden ser utilizados en voladuras en tajo abierto y también en subterráneas. Su propósito es iniciar la detonación de la carga explosiva en el interior de cada taladro, este sistema de iniciación desencadena la detonación dentro del mismo. La selección de cada tipo de detonador se basará en según el diseños y secuencia, las características del entorno y la flexibilidad para realizar la conexión, entre otros factores (28).

Todos los detonadores utilizados en aplicaciones civiles tienen una carga explosiva aproximadamente equivalente, variando principalmente en el método de iniciación. Normalmente consisten en una cápsula metálica de aluminio o cobre que contiene un explosivo iniciador, conocido como carga base (que incluye trinitrotoleno de plomo y azida de plomo), y una carga principal (que incluye pentrita). Esta carga explosiva se activa mediante una píldora inflamable en el caso de detonadores eléctricos, no eléctricos o electrónicos, o directamente a través de una llama en el caso de detonadores convencionales (28).

- Detonadores Eléctricos
- Detonadores ordinarios
- Detonadores no eléctricos
- Cordón detonante

Un cordón detonante es un material flexible e impermeable que contiene pentrita, un explosivo con una velocidad de detonación de 7.000 metros por segundo. Su principal función es propagar la detonación a los explosivos situados en los taladros, iniciada por un detonador. Algunos tipos de cordón detonante, especialmente los de mayor grosor, pueden utilizarse también como explosivo principal para cargar los taladros destinados a la voladura (28).

• Relé de microrretardo

Los relés de microrretardo consisten en una envoltura de plástico moldeado que alberga en su centro un componente metálico retardador. Los extremos de esta envoltura están

especialmente diseñados para permitir la conexión del cordón detonante, asegurándolo con cuñas de plástico para un ajuste seguro y fácil (28).

2.5. Definición de términos básicos

Perforación con rock drill: Es una técnica esencial en minería y construcción civil para crear agujeros en roca, utilizados para insertar explosivos en procesos de voladura o para instalar pernos de sostenimiento. Este método emplea herramientas especializadas que combinan rotación y percusión para penetrar eficientemente en la roca (28).

Voladura: Actividad que utiliza explosivos para fragmentar rocas a tamaños deseados que pueden ser para construcción de carreteras, extracción de minerales (34).

Plataforma: Lugar plano usado como zona de perforación o parqueo de equipos (36).

Rock Drill: Equipo de perforación hidráulico montado sobre orugas propulsado por un motor diésel (40).

El ciclo de perforación: Es un proceso fundamental en las operaciones mineras, que comprende una serie de etapas destinadas a garantizar una perforación eficiente y precisa. Este ciclo incluye actividades clave como la planificación, perforación, carguío de explosivos, voladura y evacuación de material fragmentado. Una correcta ejecución del ciclo mejora la productividad y reduce los costos operativos (37).

Carga de explosivos: Cantidad y tipo de explosivo utilizado en un agujero de voladura, que afecta la eficacia y seguridad del proceso (28).

Patrón de voladura: Distribución y secuencia de detonaciones en una operación de voladura, diseñada para optimizar la fragmentación (37).

Fragmentación: Resultado de la voladura, refiriéndose al tamaño y distribución de los fragmentos de roca (28).

Eficiencia operativa: Relación entre los resultados obtenidos (producción de mineral) y los recursos utilizados (tiempo, costo, energía) (33).

Optimización: Proceso de mejorar un sistema o proceso para maximizar resultados, minimizando costos y recursos (38).

Impacto ambiental: Efectos negativos que pueden resultar de la perforación y voladura, como la contaminación y alteración del paisaje (10).

Simulación: Uso de modelos computacionales para predecir resultados de perforación y voladura, ayudando en la toma de decisiones (37).

Control de calidad: Proceso para asegurar que las operaciones de perforación y voladura cumplen con los estándares requeridos (36).

Tecnología de perforación: Herramientas y métodos utilizados para realizar perforaciones, incluyendo maquinaria especializada (28).

Tiempo muerto: Se refiere a los periodos durante los cuales los recursos, ya sean humanos, maquinaria o sistemas, no están operando de manera productiva dentro de un proceso. Este concepto es crítico porque representa ineficiencias que impactan negativamente en los costos, la productividad y el rendimiento general de las operaciones (41).

Criterios de seguridad: Normas y procedimientos diseñados para minimizar riesgos durante la perforación y voladura (42).

Análisis de costos: En las operaciones de perforación y voladura es un proceso esencial para evaluar el impacto financiero de estas actividades y buscar oportunidades de mejora. Estas operaciones representan una proporción significativa de los costos totales en minería, por lo que su optimización puede generar ahorros considerables y mejorar la rentabilidad del proyecto (33).

Planificación de minado: Proceso que define la secuencia y métodos de extracción de mineral, incluyendo la perforación y voladura (37).

Disponibilidad: Es el tiempo de máquina que tenemos para producir. Haremos algunas consideraciones al respecto. Consideramos tiempo disponible, todo el tiempo excepto aquel que ha sido programado para otros menesteres, como el destinado a mantenimiento preventivo o predictivo, pero no aquel intervenido en curativo, averías, paradas por festivos, etc (43).

CAPÍTULO III: METODOLOGÍA

3.1. Método y alcance de la investigación

3.1.1. Método

El método a aplicar en el presente estudio es cuantitativo. La elección de este método ayuda a probar la hipótesis del objetivo de estudio dado que se hará un análisis documental a partir de la revisión de datos numéricos que serán medidos con los indicadores cuantificables ciclo de tiempo, horas máquina y eficiencia de horas-hombre trabajados, disponibilidad mecánica, porcentaje de rocas > a 20 cm y < 20 cm.

3.1.2. Alcance explicativo

La propuesta de optimización de los procesos de perforación y voladura en una mina de Cerro de Pasco se centra en un diagnóstico situacional que evalúa la eficiencia actual de las operaciones, incluyendo ciclo de tiempo, la cantidad de horas máquina trabajadas eficiencias de horas hombre, disponibilidad mecánica, porcentajes de tamaño de rocas. Se identifican los procedimientos de mantenimiento preventivo y correctivo para asegurar la disponibilidad de equipos de perforación, lo que debe minimizar el tiempo de inactividad. Además, se sugerirán desde los resultados obtenidos parámetros específicos de perforación y voladura, como la selección adecuada de explosivos y patrones de carga, que maximizan la fragmentación. Este enfoque integral busca optimizar los procesos de perforación y voladura, contribuyendo a una operación más eficiente y rentable.

Según H. Sampieri: "los estudios explicativos van más allá de la descripción de conceptos o fenómenos o del establecimiento de relaciones entre conceptos; es decir, están dirigidos a responder por las causas de los eventos y fenómenos físicos o sociales. Como su nombre lo indica, su interés se centra en explicar por qué ocurre un fenómeno y en qué condiciones se manifiesta o por qué se relacionan dos o más variables" (44).

3.2. Diseño de la investigación

La presente investigación se desarrollará mediante el diseño pre experimental dado que la recolección de datos se realizará en un período temporal durante 60 días de operación, lo cual permitirá obtener una fotografía del estado actual del proceso y el propuesto. A través de este enfoque, se recopilarán datos cuantitativos relacionados con indicadores operativos ciclo de tiempo, horas máquina y eficiencia de horas-hombre trabajados, disponibilidad mecánica, porcentaje de rocas > a 20 cm y < 20 cm. La manipulación de la variable independiente es esencial en este enfoque, ya que busca establecer una posible relación causal preliminar, aunque con limitaciones en la validez interna. Por ello, si bien se puede intervenir

directamente sobre una variable, los resultados deben interpretarse con cautela, ya que otros factores externos no controlados podrían influir en los cambios observados.

3.3. Población y muestra

3.3.1. Población

La población objeto de estudio estará representado por los procesos de perforación y voladura de tres equipos rock drill y 60 días de labor turno día, ocho frentes de trabajo dentro de una mina en Cerro de Pasco.

3.3.2. Muestra

Para el presente estudio se realizará el muestreo censal dado que la muestra es igual a la población ya que la empresa en estudio cuenta con tres equipos rock drill y 60 días de labor turno día, ocho frentes de trabajo dentro de una mina en Cerro de Pasco.

3.4. Técnicas e instrumentos de recolección de datos

3.4.1. Técnicas de recolección de datos

La técnica que se usará para la presente investigación es análisis documental dado que se realizará la revisión física de documentos y fichas de registros para extraer información relevante que permita mejorar procesos, optimizar recursos y aumentar la eficiencia en la operación de perforación y voladura. En esta técnica, se seleccionará documentos clave, como reporte de perforación, reporte de mantenimiento, informes de producción, y reportes de voladura, que contienen datos históricos y operativos. Donde la técnica dará el soporte para analizar estos documentos para identificar patrones, tiempos muertos, ineficiencias y oportunidades de mejora (Ver Anexo 03, anexo 04, anexo 05 y anexo 06)

3.4.2. Instrumentos de recolección de datos

El instrumento a usar en el presente estudio será ficha de registro de datos denominado reporte diario de perforación de 3 equipos por 60 días laborados donde se registran todos los acontecimientos dados durante la jornada laboral (véase en el anexo 03), para los siguientes indicadores: horas máquina trabajadas y eficiencia de horas-hombre trabajados (véase en el anexo 4,5,6), disponibilidad mecánica del equipo de perforación, porcentaje de rocas > a 20 cm y < a 20 cm. Asimismo, se usará el diagrama analítico de procesos.

3.5. Instrumentos de análisis de datos

Este análisis permitirá tomar decisiones fundamentadas y diseñar estrategias de mejora continua. Para ello, la herramienta Microsoft Excel brindará soporte a través de la base de datos de la empresa, utilizando los reportes diarios de perforación en un periodo estimado de 30 días. Asimismo, se considerará la relación causa-efecto mediante el diagrama de Ishikawa,

que facilitará la identificación de factores que influyen en los procesos, y el diagrama de Pareto, clave para aplicar la regla del 80/20, según la cual el 80% de los problemas provienen del 20% de las causas.

Estas herramientas serán fundamentales para obtener una visión integral de los procesos de optimización y respaldar la toma de decisiones basadas en datos históricos y reales. Además, el diagrama analítico de procesos proporcionará soporte en el análisis del ciclo de tiempo de los procesos de perforación y voladura, mientras que el diagrama de flujo ilustrará los procedimientos de mantenimiento. Finalmente, para profundizar en la causa raíz de los problemas, se empleará la metodología de los "5 porqués", permitiendo identificar el origen de las dificultades y contribuir a su solución efectiva.

CAPÍTULO IV: DIAGNÓSTICO, ANÁLISIS Y RESULTADOS

4.1. Breve descripción de la empresa y sus procesos

La compañía es una destacada empresa minera de metales no ferrosos con operaciones clave en América Latina, especialmente en Perú y Brasil. Su historia comienza en 2010, tras la integración de activos estratégicos adquiridos por un conglomerado brasileño, incluyendo una operación minera polimetálica con una rica trayectoria desde 1936. La empresa se dedica a la exploración, extracción, procesamiento y comercialización de concentrados de zinc, cobre y plomo, complementados con contenidos de plata y oro, esenciales para industrias como la construcción, electrónica y fabricación de baterías. Su modelo de negocio combina el uso de tecnologías avanzadas con un firme compromiso hacia la sostenibilidad y la minería responsable, cumpliendo con altos estándares internacionales en términos de calidad, eficiencia y respeto por el medio ambiente. La empresa ha logrado consolidarse como un referente global al integrar operaciones que responden a la creciente demanda mundial de metales críticos para el desarrollo industrial y tecnológico, mientras promueve el desarrollo sostenible en las comunidades donde opera.

4.1.1. Procesos en la unidad minera

En la unidad minera, ubicada en la región central Cerro de Pasco del Perú, la empresa emplea métodos de explotación tanto subterráneos como superficiales, adaptándose a las características geológicas del yacimiento. El método de corte y relleno ascendente mecanizado, con perforación horizontal (bresting), es empleado para las labores subterráneas, asegurando la estabilidad de las estructuras y la seguridad operativa. Desde 2014, la compañía introdujo el método de tajo abierto en sectores estratégicos como una veta x, implementando además el sistema Glory Hole, que consiste en transportar el mineral a través de chimeneas verticales (ore pass) hacia la planta concentradora z. Este sistema optimiza la logística minera, permitiendo manejar eficientemente tanto el mineral como el material de desmonte, depositado en zonas de almacenamiento temporal. La planta procesadora está equipada con tecnología de punta para maximizar la recuperación y pureza de los concentrados, cumpliendo con estándares internacionales. Gracias a esta combinación de innovación, experiencia operativa y un enfoque sostenible, la empresa minera en estudio no solo contribuye al desarrollo de la industria minera peruana, sino que también refuerza su compromiso con la excelencia operativa y el cuidado del medio ambiente.

4.1.2. Estrategias aplicadas a procesos de perforación y voladura

4.1.3. Análisis PESTA de la empresa minera enfocado a perforación y voladura

4.1.3.1. Factor político

La minería en Cerro de Pasco, 2024, está sujeta a diversas exigencias y regulaciones que incluyen la obtención de permisos específicos para exploración, explotación y cierre de mina, otorgados por el ministerio de energía y minas (MINEM), así como el cumplimiento de la evaluación de impacto ambiental (EIA) para mitigar efectos ambientales antes de iniciar operaciones, bajo sanciones estrictas en caso de incumplimiento. Además, la ley de consulta previa requiere la consulta a comunidades aledañas a la explotación antes de afectar sus territorios.

A nivel de impuestos, las empresas mineras deben pagar un impuesto a la renta del 29.5%, un sistema de regalías, y el impuesto especial y gravamen especial a la minería, además del 18% del impuesto general a las ventas (IGV) para las transacciones internas.

En términos de comercio exterior, los tratados de libre comercio (TLC) permiten la exportación de minerales sin barreras arancelarias, y los acuerdos comerciales de la comunidad andina y la alianza del pacífico facilitan la inversión y el intercambio de insumos para la minería. Las políticas de inversión extranjera ofrecen contratos de estabilidad jurídica y tributaria, promovidos a través de ProInversión, para atraer capital externo. Sin embargo, las prácticas locales como la burocracia y los altos niveles de corrupción, la inestabilidad política especialmente rechazo a la presidenta de la república, representan desafíos adicionales, así como la necesidad de construir relaciones sostenibles con las comunidades para evitar conflictos sociales.

4.1.3.2. Factor económico

Es muy importante para evaluar el clima de negocios en Perú, específicamente para operaciones mineras en Cerro de Pasco, abarca varios aspectos clave. El país muestra una economía relativamente estable, con un tipo de cambio variable que sigue principalmente al dólar estadounidense, lo que impacta directamente en los costos de importación de equipos y en la competitividad de las exportaciones de minerales.

La inflación se ha mantenido en rangos moderados en los últimos años y específicamente en lo que va del 2024 cerraremos con una inflación de 2.78 por ciento incidiendo en la baja los rubros de transporte local, servicios culturales y educación, pero es sensible a fluctuaciones externas, como el precio de los combustibles y los alimentos, lo que puede afectar el costo de vida y los salarios demandados.

Las tasas de interés en Perú tienden a ser altas en comparación con otras economías de la región, lo que encarece el financiamiento local, aunque existen beneficios fiscales específicos para proyectos mineros de gran envergadura que pueden ayudar a compensar este impacto.

El ingreso promedio familiar en zonas cercanas a Cerro de Pasco suele ser bajo, y la capacidad de ahorro es limitada, lo cual puede dificultar el desarrollo de economías locales sólidas y sostenibles alrededor de los proyectos mineros. Además, aunque los niveles de empleo en minería son favorables, la tasa de desempleo en la región permanece relativamente alta, lo cual sugiere la necesidad de programas de capacitación que preparen a la población para empleos directos o indirectos en el sector.

En cuanto a precios de propiedades y el mercado accionario, los valores inmobiliarios en áreas mineras han visto incrementos moderados debido a la actividad minera, aunque se mantiene una tendencia de baja accesibilidad para la población local. Por otro lado, el mercado accionario de Lima sigue vulnerable a la volatilidad de los precios de los metales, lo cual afecta la rentabilidad de las inversiones mineras y la percepción de riesgo para los inversionistas.

4.1.3.3. Factor social

Para una mina en Cerro de Pasco se revelan importantes consideraciones demográficas y culturales que afectan tanto la operación minera como las relaciones comunitarias. Cerro de Pasco es una de las regiones mineras más tradicionales de Perú, con una población mayoritariamente joven, aunque en constante migración hacia centros urbanos en busca de oportunidades educativas y laborales, lo que crea una demanda de empleo local en proyectos mineros.

El crecimiento poblacional en la región se ha ralentizado, reflejando las limitadas oportunidades económicas locales, lo cual hace de la minería una de las principales fuentes de empleo y desarrollo. Sin embargo, la estructura de edad muestra un alto porcentaje de población económicamente activa que puede ser capacitada para desempeñarse en empleos mineros o en actividades económicas secundarias.

Además, los cambios sociales y culturales son relevantes, pues la población local mantiene una fuerte conexión cultural con sus tradiciones y tierras, lo que genera sensibilidad respecto al impacto ambiental y social de las operaciones mineras. Los valores comunitarios enfatizan la protección del entorno natural y los derechos de las generaciones futuras, por lo que las empresas mineras enfrentan el desafío de implementar programas de responsabilidad social que respeten estas tradiciones y favorezcan un desarrollo sostenible en la zona. La confianza en el sector minero puede ser baja debido a experiencias previas de impacto ambiental y a la

percepción de abandono por parte del gobierno, por lo cual es crucial establecer relaciones transparentes y de beneficio mutuo con la comunidad, promoviendo una imagen de responsabilidad y compromiso con el bienestar local. Este contexto social, con su estructura demográfica y valores culturales, representa tanto un desafío como una oportunidad para la mina en Cerro de Pasco, que deberá enfocarse en un desarrollo inclusivo y sostenible para ganar legitimidad y aceptación en el ámbito local.

4.1.3.4. Factor tecnológico

Para una mina en Cerro de Pasco es fundamental, pues los avances tecnológicos están generando un impacto significativo en la eficiencia, la sostenibilidad y la competitividad de las operaciones mineras. La adopción de tecnologías avanzadas como la automatización de procesos, la utilización de maquinaria autónoma y los sistemas de monitoreo en tiempo real son cada vez más accesibles para las empresas mineras en Perú, permitiendo reducir costos operativos, mejorar la seguridad y optimizar la producción.

Además, la implementación de tecnologías de minería verde y tratamiento de residuos se vuelve indispensable en un contexto en el que las regulaciones ambientales y las demandas sociales son cada vez más estrictas.

Los competidores están destinando fuertes inversiones en investigación y desarrollo (I+D) para mejorar sus procesos extractivos y reducir su huella ambiental, lo cual representa una presión para que las empresas en Cerro de Pasco adopten tecnologías innovadoras para no perder ventaja competitiva. Este entorno competitivo impulsa la creación de nuevos mercados tecnológicos, como los servicios especializados en remediación ambiental y consultorías en automatización, que pueden ofrecer apoyo para enfrentar los desafíos específicos de la minería en zonas con ecosistemas frágiles. Sin embargo, la accesibilidad a nuevas tecnologías de exploración y análisis de datos también permite mejorar la precisión en la identificación de depósitos minerales y optimizar los métodos de extracción, lo que reduce el desperdicio y maximiza el uso de los recursos.

Para las minas en Cerro de Pasco, el desafío es incorporar estas innovaciones a pesar de los costos iniciales que pueden ser altos, particularmente en un contexto de presión de costos y fluctuaciones del mercado de metales. No obstante, la inversión en tecnología se proyecta como un factor clave para la sostenibilidad y la rentabilidad a largo plazo, dado que contribuye a reducir el impacto ambiental y mejora las relaciones con las comunidades al demostrar un compromiso con prácticas responsables.

4.1.3.5. Factor ambiental

Es crítico debido a los profundos impactos que la producción minera tiene sobre las condiciones ambientales de la región, caracterizada por su biodiversidad y vulnerabilidad ecológica. Cerro de Pasco enfrenta serios desafíos relacionados con la contaminación del agua debido al uso intensivo de químicos y metales pesados en el proceso de extracción, los cuales afectan no solo las fuentes de agua superficiales y subterráneas, sino también la salud de las comunidades locales y la fauna que depende de estos recursos.

Además, en el contexto de calentamiento global y cambio climático, la actividad minera tiene implicaciones por el aumento de emisiones de gases de efecto invernadero y la alteración de la cobertura vegetal, factores que contribuyen al desequilibrio climático local y regional. Así también la transformación de áreas naturales en zonas de explotación y depósito de residuos genera una pérdida significativa de biodiversidad y limita el uso del suelo para actividades agrícolas, lo cual impacta la economía y las formas de vida tradicionales de las comunidades cercanas.

Para mitigar estos efectos, es imperativo que la mina en Cerro de Pasco adopte prácticas sostenibles, como la implementación de tecnologías de gestión de residuos y tratamiento de aguas, que minimicen los efluentes tóxicos y eviten la degradación del entorno natural. También es clave promover programas de reforestación y recuperación de suelos en las zonas afectadas por la minería, no solo para restablecer el equilibrio ecológico, sino también para responder a las demandas sociales y normativas en materia ambiental. La implementación de estándares ambientales elevados y la responsabilidad en el manejo de recursos resultan esenciales para que la mina asegure su viabilidad a largo plazo y mantenga una relación armónica con el entorno y las comunidades locales, quienes exigen cada vez más un enfoque de desarrollo sostenible.

4.1.4. Análisis interno: Autodiagnóstico empresarial

Tabla 4. Análisis interno: administración

Administración		
Pregunta Respuesta		
Realiza una planificación	Sí, la compañía implementa una planificación detallada para las	
para el desarrollo de sus	operaciones de perforación y voladura, incluyendo cronogramas,	
actividades en Perforación	asignación de recursos y evaluación de riesgos. Esto garantiza que las	
y voladura?	actividades se ejecuten de manera eficiente, segura y alineada con los	
	objetivos de producción.	
¿Posee el personal una	El personal clave en perforación y voladura tiene una comprensión clara	

clara declaración del	de la estrategia de negocio de la empresa minera, que se centra en la
concepto de estrategia y	productividad sostenible y la optimización de costos operativos. Además,
de negocio?	se fomenta la capacitación continua para asegurar que todos los empleados
	comprendan cómo sus roles contribuyen al logro de los objetivos
	organizacionales.
¿Los objetivos y las	Los objetivos y metas relacionados con perforación y voladura se
metas han sido	comunican de manera efectiva a través de reuniones regulares, reportes y
debidamente	herramientas tecnológicas. Esto permite que todo el equipo esté alineado y
comunicados?	trabaje hacia metas comunes, como el cumplimiento de los cronogramas
	de producción y el mantenimiento de altos estándares de seguridad.

4.1.4.1. Análisis interno: Organización

Tabla 5. Análisis interno: organización.

Organización		
Pregunta	Respuesta	
¿Se utilizan organigramas para visualizar la organización?	Sí, la empresa minera utiliza organigramas claros y actualizados para representar la estructura organizativa de las operaciones de perforación y voladura. Esto facilita la comprensión de las jerarquías, responsabilidades y líneas de reporte dentro del equipo.	
¿Cuenta la empresa con manuales de procedimientos y descripción de puestos?	La empresa dispone de manuales de procedimientos bien documentados y actualizados, que incluyen procesos estandarizados para las actividades de perforación y voladura. Además, cada puesto cuenta con una descripción detallada que define las funciones, responsabilidades y requisitos técnicos necesarios.	
¿Existe un programa de capacitación de personal?	Sí, la empresa implementa un programa continuo de capacitación para el personal involucrado en perforación y voladura, enfocado en seguridad, eficiencia técnica y manejo de nueva tecnología. Esto permite mantener altos estándares operativos y adaptarse a las demandas del sector minero.	

Fuente: Elaboración propia

4.1.4.2. Gestión productiva

Tabla 6. Análisis Interno: producción

Producción			

Pregunta	Respuesta	
¿Se documenta todos los	Todos los procesos de producción están documentados en manuales de	
procesos de producción	procedimientos, instructivos detallados y registros de control, lo que	
(procedimientos,	garantiza la trazabilidad y la consistencia operativa. Esta documentación se	
instructivos, registros)?	actualiza regularmente, promoviendo un enfoque de mejora continua y	
	cumpliendo con las regulaciones del sector.	
¿Tienen capacidad para	La compañía tiene la capacidad de adaptar y actualizar su maquinaria y	
cambiar de maquinaria y	equipo según sea necesario. La empresa realiza inversiones periódicas en	
equipo?	tecnología y equipos, lo que le permite mantener sus operaciones a la	
	vanguardia y responder a cambios en los requerimientos del proceso	
	productivo.	
¿Cuenta con un sistema	La empresa cuenta con un sistema de gestión de calidad riguroso, aunque	
establecido que	para el departamento de Perforación y voladura se trasladan material de	
garantice un nivel de	perforación en movilidades distintas y explosivos con otros cuidados	
calidad constante de los	necesarios que incluye controles en cada etapa del proceso productivo para	
productos?	asegurar que los productos cumplan con estándares de calidad. Además, se	
	realizan auditorías internas y externas, lo que permite mantener una	
	calidad constante y cumplir con los requisitos regulatorios de parte del	
	estado peruano.	

4.1.4.3. Sistema de gestión medioambiental

Tabla 7. Análisis interno: sistema de gestión medioambiental

Pregunta	Respuesta	
¿Se ejecuta una política	La empresa cuenta con una política formal de medio ambiente, higiene y	
ambiental, de higiene y	seguridad que se aplica en todas sus operaciones. Esta política incluye	
seguridad?	lineamientos específicos para minimizar el impacto ambiental, proteger la	
	salud de sus colaboradores y promover prácticas seguras en el entorno	
	laboral. La empresa realiza auditorías internas para asegurar el	
	cumplimiento de esta política y fomenta una cultura de seguridad a través	
	de capacitaciones y controles preventivos.	
¿Está definido el sistema	La compañía ha establecido un sistema de control ambiental riguroso que	
de control medio	abarca monitoreo de emisiones, gestión de residuos y control de calidad de	
ambiental?	agua y suelo. Este sistema permite evaluar en tiempo real el impacto	
	ambiental de sus operaciones y tomar acciones correctivas de ser	
	necesario, garantizando el cumplimiento de los estándares regulatorios	
	nacionales e internacionales.	

¿Se han establecido	La compañía ha definido metas específicas para reducir la generación de
metas para la reducción	residuos en sus operaciones. Estas metas incluyen el reciclaje de
de generación de	materiales, la reutilización de agua y la optimización de procesos para
residuos?	disminuir desechos mineros. Estas iniciativas están alineadas con su
política de sostenibilidad y se revisan anualmente para medir el avance	
	establecer nuevas metas de reducción.

4.1.4.4. Investigación y desarrollo

Tabla 8. Análisis interno: investigación y desarrollo

Pregunta	Respuesta
¿La empresa trabaja con	La empresa sigue estrictos estándares internacionales, como ISO 9001 en
normas técnicas y	calidad y ISO 14001 en gestión ambiental, garantizando que sus productos
estándares de calidad?	cumplan con las normativas internacionales y generen confianza en los
	clientes globales. Estos estándares son esenciales para mantenerse
	competitiva en mercados exigentes y para asegurar una producción
	responsable y eficiente.
¿Cuenta la empresa con	La empresa cuenta con procedimientos documentados y estructurados para
procedimientos escritos	la incorporación de nuevas tecnologías y conocimientos adquiridos en
para la incorporación de	investigación y desarrollo, lo que facilita la adaptación y mejora continua
nuevos conocimientos?	de sus procesos productivos, fortaleciendo así su posición en el sector.
¿La empresa realiza	La compañía realiza estudios de mercado periódicos, lo que le permite
estudios de mercado?	identificar oportunidades emergentes y adaptar su estrategia de producción
	y comercialización. Este análisis continuo de las tendencias de mercado le
	permite ajustar su oferta y desarrollar nuevos productos que respondan a
	las expectativas de los clientes.
¿El departamento de	El departamento de mercadotecnia de la empresa minera mantiene un mix
mercadotecnia ha	de marketing actualizado para sus principales líneas de productos. Esta
desarrollado el mix de	estrategia de marketing se revisa regularmente para asegurar que cada
marketing de las	línea esté alineada con los cambios en la demanda, la competencia y las
principales líneas y lo	condiciones de mercado en las diferentes regiones.
revisa con frecuencia?	
¿La empresa conoce las	La empresa minera mantiene un conocimiento actualizado de las
preferencias arancelarias	preferencias arancelarias en mercados desarrollados, lo que le permite
para sus productos en los	optimizar sus exportaciones a regiones como Estados Unidos, la Unión
países desarrollados?	Europea y Asia. Esto asegura que la empresa aproveche los acuerdos
	comerciales y reduzca los costos arancelarios, ampliando su

4.1.4.5. Gestión económica y financiera

Tabla 9. Análisis Interno: Gestión económica y financiera

Pregunta	Respuesta		
¿Cuenta con capital de	La compañía minera dispone de un capital de inversión suficiente que le		
inversión para realizar	permite llevar a cabo sus proyectos de expansión, investigación y		
las acciones	sostenibilidad. Esta disponibilidad de capital garantiza que la empresa pueda		
propuestas?	ejecutar sus planes de crecimiento sin enfrentar restricciones financieras que		
	comprometan su competitividad o sostenibilidad operativa.		
¿Identifica el nivel	La empresa ha establecido un enfoque prudente en cuanto a su nivel de		
adecuado de	endeudamiento, asegurando un balance adecuado entre deuda y capital propio		
endeudamiento y	para mantener su estabilidad financiera. La empresa monitorea las		
conoce las	condiciones del mercado financiero y considera diversas alternativas de		
alternativas dentro	financiamiento que ofrecen costos competitivos y flexibilidad, permitiéndole		
del sistema	responder a cambios en el mercado o a nuevas oportunidades de inversión sin		
financiero?	asumir riesgos financieros innecesarios.		

Fuente: Elaboración propia

4.1.4.6. Costos y presupuestos

Tabla 10. Análisis interno: costos y presupuestos

Pregunta	Respuesta	
¿Cuenta con una	La compañía minera dispone de una estructura de costos detallada que le	
estructura de costos para	permite identificar con precisión los costos fijos y variables asociados a cada	
determinar sus costos?	proceso productivo. Esta estructura facilita la toma de decisiones informadas	
	sobre la asignación de recursos, optimización de gastos y el cálculo de	
	precios de sus productos para maximizar la rentabilidad.	
¿Conoce los elementos	La empresa está bien informada sobre los elementos de costos en sus	
de costos a considerar	actividades de unitarias de perforación y voladura, como costos por hora	
en un trabajo de	máquina, transporte de equipos de perforación, transporte de explosivos,	
perforación y	seguros, y otra documentación, lo que le permite mantener una logística	
voladura?	interna eficiente y con costos controlados. Este conocimiento es clave para	
	su competitividad en los mercados locales e internacionales.	
¿Realiza un análisis	La empresa realiza análisis semestrales de costos en las áreas técnicas y de	
semestral en el área	producción para identificar oportunidades de reducción de gastos y aumento	
técnica y de	de productividad. Este enfoque periódico de evaluación y ajuste garantiza	

producción para	que la empresa mantenga su eficiencia operativa y se mantenga proactiva
reducir costos o	ante posibles fluctuaciones de costos en insumos o tecnología.
mejorar la	
productividad?	

4.1.5. Matriz FODA

•Una estructura organizativa y objetivos claramente definidos para las operaciones mineras de perforación y voladura. •En todas las actividades de perforación y voladura se da estricto cumplimiento de normas internacionales como ISO 9001 e ISO 14001. •El acceso a tecnología de última generación da la capacidad para integrar innovaciones en automatización, minería moderna y tratamiento de residuos. •Los costos altos iniciales significan dificultades para implementar más equipos en perforación e innovaciones debido a costos elevados. •Elevados costos operativos y carga administrativa asociado al seguimiento continuo de los sistemas de gestión ISO, lo cual puede limitar la flexibilidad operativa o la asignación de recursos. •Brechas en la capacitación, el capital humano no está completamente preparado para operar los equipos, lo cual puede reducir el aprovechamiento. •Los registros documentarios y control de procesos, de procedimientos de perforación y imprevistos como condiciones donde el terrence definidos para inspersar innovaciones apara implementar más equipos en perforación e innovaciones debido a costos elevados. •Elevados costos operativos y carga administrativa asociado al seguimiento continuo de los sistemas de gestión ISO, lo cual puede recursos. •Brechas en la capacitación, el capital humano no está completamente preparado para operar los equipos, lo cual puede reducir el aprovechamiento.	Tabla 11. Matriz FODA				
 • Una estructura organizativa y objetivos claramente definidos para las operaciones mineras de perforación y voladura. • En todas las actividades de perforación y voladura se da estricto cumplimiento de normas internacionales como ISO 9001 e ISO 14001. • El acceso a tecnología de última generación da la capacidad para integrar innovaciones en automatización, minería moderna y tratamiento de residuos. • Los costos altos iniciales significan dificultades para implementar más equipos en perforación e innovaciones debido a costos elevados. • Elevados costos operativos y carga administrativa asociado al seguimiento continuo de los sistemas de gestión ISO, lo cual puede limitar la flexibilidad operativa o la asignación de recursos. • Brechas en la capacitación, el capital humano no está completamente preparado para operar los equipos, lo cual puede reducir el aprovechamiento. • Bastante rigidez en la documentación y control de procesos, de procedimientos de perforación y voladura garantizan la programación estimada. 	ANÁLISIS INTERNO				
claramente definidos para las operaciones mineras de perforación y voladura. • En todas las actividades de perforación y voladura se da estricto cumplimiento de normas internacionales como ISO 9001 e ISO 14001. • El acceso a tecnología de última generación da la capacidad para integrar innovaciones en automatización, minería moderna y tratamiento de residuos. • Los registros documentarios y control de procesos, de procedimientos de perforación y voladura garantizan la programación estimada. para implementar más equipos en perforación e innovaciones debido a costos operativos y carga administrativa asociado al seguimiento continuo de los sistemas de gestión ISO, lo cual puede limitar la flexibilidad operativa o la asignación de recursos. • Brechas en la capacitación, el capital humano no está completamente preparado para operar los equipos, lo cual puede reducir el aprovechamiento. • Bastante rigidez en la documentación y control de procesos, de procedimientos de perforación y voladura garantizan la programación estimada.	FORTALEZAS	DEBILIDADES			
 perforación y voladura. En todas las actividades de perforación y voladura se da estricto cumplimiento de normas internacionales como ISO 9001 e ISO 14001. El acceso a tecnología de última generación da la capacidad para integrar innovaciones en automatización, minería moderna y tratamiento de residuos. Los registros documentarios y control de procesos, de procedimientos de perforación y voladura garantizan la programación estimada. innovaciones debido a costos elevados. Elevados costos operativos y carga administrativa asociado al seguimiento continuo de los sistemas de gestión ISO, lo cual puede limitar la flexibilidad operativa o la asignación de recursos. Brechas en la capacitación, el capital humano no está completamente preparado para operar los equipos, lo cual puede reducir el aprovechamiento. Bastante rigidez en la documentación y control de procesos, de procedimientos de perforación y voladura garantizan la programación estimada. 	●Una estructura organizativa y objetivos	•Los costos altos iniciales significan dificultades			
 En todas las actividades de perforación y voladura se da estricto cumplimiento de normas internacionales como ISO 9001 e ISO 14001. El acceso a tecnología de última generación da la capacidad para integrar innovaciones en automatización, minería moderna y tratamiento de residuos. Los registros documentarios y control de procesos, de procedimientos de perforación y voladura garantizan la programación estimada. Elevados costos operativos y carga administrativa asociado al seguimiento continuo de los sistemas de gestión ISO, lo cual puede limitar la flexibilidad operativa o la asignación de recursos. Brechas en la capacitación, el capital humano no está completamente preparado para operar los equipos, lo cual puede reducir el aprovechamiento. Bastante rigidez en la documentación y control de procesos, de procedimientos de perforación y puede variar rápidamente y requerir ajustes 	claramente definidos para las operaciones mineras de	para implementar más equipos en perforación e			
 En todas las actividades de perforación y voladura se da estricto cumplimiento de normas internacionales como ISO 9001 e ISO 14001. El acceso a tecnología de última generación da la capacidad para integrar innovaciones en automatización, minería moderna y tratamiento de residuos. Los registros documentarios y control de procesos, de procedimientos de perforación y voladura garantizan la programación estimada. administrativa asociado al seguimiento continuo de los sistemas de gestión ISO, lo cual puede limitar la flexibilidad operativa o la asignación de recursos. Brechas en la capacitación, el capital humano no está completamente preparado para operar los equipos, lo cual puede reducir el aprovechamiento. Bastante rigidez en la documentación y control de procesos, de procedimientos de perforación y puede variar rápidamente y requerir ajustes 	perforación y voladura.	innovaciones debido a costos elevados.			
de los sistemas de gestión ISO, lo cual puede limitar la flexibilidad operativa o la asignación de recursos. •El acceso a tecnología de última generación da la capacidad para integrar innovaciones en automatización, minería moderna y tratamiento de residuos. •Los registros documentarios y control de procesos, de procedimientos de perforación y voladura garantizan la programación estimada. de los sistemas de gestión ISO, lo cual puede limitar la flexibilidad operativa o la asignación de recursos. •Brechas en la capacitación, el capital humano no está completamente preparado para operar los equipos, lo cual puede reducir el aprovechamiento. •Bastante rigidez en la documentación y control de imprevistos como condiciones donde el terrence puede variar rápidamente y requerir ajustes		•Elevados costos operativos y carga			
internacionales como ISO 9001 e ISO 14001. •El acceso a tecnología de última generación da la capacidad para integrar innovaciones en automatización, minería moderna y tratamiento de residuos. •Los registros documentarios y control de procesos, de procedimientos de perforación y voladura garantizan la programación estimada. limitar la flexibilidad operativa o la asignación de recursos. •Brechas en la capacitación, el capital humano no está completamente preparado para operar los equipos, lo cual puede reducir el aprovechamiento. •Bastante rigidez en la documentación y control de imprevistos como condiciones donde el terrence puede variar rápidamente y requerir ajustes	•En todas las actividades de perforación y voladura	administrativa asociado al seguimiento continuo			
de recursos. •El acceso a tecnología de última generación da la capacidad para integrar innovaciones en automatización, minería moderna y tratamiento de residuos. •Los registros documentarios y control de procesos, de procedimientos de perforación y voladura garantizan la programación estimada. de recursos. •Brechas en la capacitación, el capital humano no está completamente preparado para operar los equipos, lo cual puede reducir el aprovechamiento. •Bastante rigidez en la documentación y control de procesos, lo cual dificulta la reacción ante imprevistos como condiciones donde el terrence puede variar rápidamente y requerir ajustes	se da estricto cumplimiento de normas	de los sistemas de gestión ISO, lo cual puede			
 El acceso a tecnología de última generación da la capacidad para integrar innovaciones en automatización, minería moderna y tratamiento de residuos. Los registros documentarios y control de procesos, de procedimientos de perforación y voladura garantizan la programación estimada. Brechas en la capacitación, el capital humano no está completamente preparado para operar los equipos, lo cual puede reducir el aprovechamiento. Bastante rigidez en la documentación y control de imprevistos como condiciones donde el terreno puede variar rápidamente y requerir ajustes 	internacionales como ISO 9001 e ISO 14001.	limitar la flexibilidad operativa o la asignación			
capacidad para integrar innovaciones en automatización, minería moderna y tratamiento de residuos. • Los registros documentarios y control de procesos, de procedimientos de perforación y voladura garantizan la programación estimada. no está completamente preparado para operar los equipos, lo cual puede reducir el aprovechamiento. • Bastante rigidez en la documentación y control de procesos, lo cual dificulta la reacción ante imprevistos como condiciones donde el terreno puede variar rápidamente y requerir ajustes		de recursos.			
automatización, minería moderna y tratamiento de residuos. •Los registros documentarios y control de procesos, de procedimientos de perforación y voladura garantizan la programación estimada. los equipos, lo cual puede reducir el aprovechamiento. •Bastante rigidez en la documentación y control de imprevistos como condiciones donde el terrence puede variar rápidamente y requerir ajustes	•El acceso a tecnología de última generación da la	•Brechas en la capacitación, el capital humano			
eLos registros documentarios y control de procesos, de procedimientos de perforación y voladura garantizan la programación estimada. aprovechamiento. •Bastante rigidez en la documentación y control de procesos, lo cual dificulta la reacción ante imprevistos como condiciones donde el terreno puede variar rápidamente y requerir ajustes	capacidad para integrar innovaciones en	no está completamente preparado para operar			
 Los registros documentarios y control de procesos, de procedimientos de perforación y voladura garantizan la programación estimada. Bastante rigidez en la documentación y control de procesos, lo cual dificulta la reacción ante imprevistos como condiciones donde el terreno puede variar rápidamente y requerir ajustes 	automatización, minería moderna y tratamiento de	los equipos, lo cual puede reducir el			
◆Los registros documentarios y control de procesos, lo cual dificulta la reacción ante imprevistos como condiciones donde el terreno voladura garantizan la programación estimada.	residuos.	aprovechamiento.			
procesos, de procedimientos de perforación y imprevistos como condiciones donde el terreno voladura garantizan la programación estimada.		•Bastante rigidez en la documentación y control			
voladura garantizan la programación estimada.	◆Los registros documentarios y control de	de procesos, lo cual dificulta la reacción ante			
	procesos, de procedimientos de perforación y	imprevistos como condiciones donde el terreno			
dinámicos.	voladura garantizan la programación estimada.	puede variar rápidamente y requerir ajustes			
		dinámicos.			
•El compromiso en políticas ambientales y sociales •El cumplimiento estricto de políticas	•El compromiso en políticas ambientales y sociales	•El cumplimiento estricto de políticas			
brinda sostenibilidad y responsabilidad social ambientales y sociales puede aumentar los	brinda sostenibilidad y responsabilidad social	ambientales y sociales puede aumentar los			
mediante programas y metas claras. costos operativos limitando la flexibilidad y	mediante programas y metas claras.	costos operativos limitando la flexibilidad y			
rentabilidad en algunas operaciones.		rentabilidad en algunas operaciones.			
ANÁLISIS EXTERNO	ANÁLISIS E	XTERNO			
OPORTUNIDADES AMENAZAS	OPORTUNIDADES	AMENAZAS			

- Los tratados de libre comercio facilitan la exportación de minerales y la importación de maquinaria de perforación sin barreras arancelarias, ampliando mercados.
- El desarrollo de relaciones comunitarias con la implementación de programas sociales que fortalezcan la confianza y cooperación con las comunidades evitaran paradas continuas.
- Los avances tecnológicos generaran oportunidades en la adopción de tecnologías de perforación y voladura y automatización para ganar ventaja competitiva.
- La creciente subida de precios del mineral a nivel global incentiva a seguir con nuestro el de producción de mineral estratégicamente.
- Los programas de Proinversion con contratos de estabilidad jurídica y tributaria incentivaran la inversión extranjera y nos mantiene sólidos.

- Los conflictos sociales y el rechazo de comunidades locales debido a impactos ambientales y percepciones de abandono por parte de estado peruano.
- La volatilidad de precios de los metales podría generar riesgos financieros derivados de fluctuaciones en mercados internacionales.
- Las nuevas regulaciones estrictas inciertas generarían mayor presión para cumplirlas con normas ambientales y sociales.
- El cambio climático podría generar impacto directo en las operaciones por falta de agua o climas adversos directamente al área de perforación y voladura.
- La inestabilidad política y los factores internos como el rechazo a las autoridades de turno nacionales afectaran el clima de inversión.

4.1.6. Estrategias FODA

Tabla 12. Estrategias FODA

FORTALEZAS	DEBILIDADES

Estrategias Ofensivas

- Aprovechando la estructura organizativa clara y los objetivos definidos, se optimizarán las operaciones de perforación y voladura que mejorara la eficiencia. Esto fortalecerá la producción y la exportación de minerales a mercados estratégicos, diversificando clientes y asegurando una mayor competitividad en el sector minero.
- Utilizar programas sociales para fortalecer las relaciones comunitarias, aprovechando el cumplimiento de normas internacionales ISO 9001 e ISO 14001 en perforación y voladura, permitirá construir confianza, evitar paradas continúas optimizando la productividad y reforzando la imagen corporativa de la empresa.
- Mediante el acceso a tecnología de última generación, se impulsará la adopción de innovaciones en automatización, minería moderna y tratamiento de residuos, optimizando la eficiencia operativa. La integración de nuevas tecnologías en perforación y voladura permitirá reducir costos, mejorar la seguridad y aumentar la productividad, fortaleciendo la ventaja competitiva de la empresa en el sector minero
- Mediante un sólido control de procesos de registros documentarios en perforación y voladura, se garantizará una ejecución eficiente del programa de producción para aprovechar la tendencia de subida de precios del mineral a nivel global.
- Aprovechar nuestro compromiso con la sostenibilidad y responsabilidad social fortalecerá nuestra imagen y confianza en el mercado. Sumado a los incentivos de ProInversión esto asegurará crecimiento sostenido y liderazgo en el sector.

Estrategias de Reorientación

- Aprovechar los tratados de libre comercio para adquirir maquinaria de perforación moderna sin barreras arancelarias, a fin de reducir el impacto de la inversión inicial.
- Integrar los programas sociales comunitarios dentro del alcance de los sistemas de gestión ISO 14001 e ISO 26000, para que las inversiones sociales aporten al cumplimiento normativo, reduzcan la carga administrativa mediante sinergias operativas y eviten interrupciones.
- Implementar un programa continuo de capacitación técnica especializado en nuevas automatizaciones de perforación, voladura en alianza con fabricantes, para preparar al capital humano en el uso eficiente de estos avances, maximizando su impacto productivo y competitivo.
- Revisar y flexibilizar los procedimientos documentados de perforación y voladura mediante la incorporación de protocolos adaptativos basados en escenarios geotécnicos, aprovechando los mayores ingresos generados por el aumento de precios del mineral y mantener la continuidad operativa.
- Aprovechar los contratos de estabilidad jurídica y tributaria ofrecidos por ProInversión lo cual permitirá absorber los costos asociados al cumplimiento regulatorio sin afectar la rentabilidad, asegurando continuidad operativa bajo marcos legales estables.

Estrategias Defensivas

- Fortalecer la comunicación y el compromiso social mediante diálogo continuo y programas de desarrollo comunitario reducirá el riesgo de conflictos. Una estructura organizativa clara permitirá gestionar eficazmente impactos ambientales y fortalecer relaciones con las comunidades. Esto garantizará operaciones mineras sostenibles y estabilidad a largo plazo.
- Mantener el cumplimiento de normas internacionales optimiza la eficiencia y sostenibilidad operativa, reduciendo costos a largo plazo. Diversificar mercados y optimizar costos de producción mitigará el impacto de la volatilidad de precios. Esto asegurará estabilidad financiera y competitividad en el sector.

Estrategias de supervivencias

- Optimizar la inversión a través de financiamiento escalonado y leasing de equipos reducirá el impacto de los costos iniciales. Paralelamente, fortalecer el diálogo con las comunidades mediante programas sociales y ambientales mejorará la aceptación del proyecto. Esto garantizará continuidad operativa y mitigará conflictos sociales.
- Implementar un sistema de gestión integrada que combine procesos de certificación en calidad de capital humano, medio ambiente y seguridad. Este enfoque busca maximizar el valor generado en las actividades clave. Además, deben incorporar herramientas de control de costo y presupuestos que permitan adaptar los gastos operativos. Estas herramientas deben ser flexibles a ciclos del mercado minero.

- Aprovechar nuestra tecnología de última generación permitirá adaptarnos eficientemente a nuevas regulaciones ambientales y sociales. Implementar sistemas automatizados y de gestión sostenible optimizará el cumplimiento normativo sin afectar la productividad. Esto reducirá riesgos operativos y fortalecerá nuestra competitividad.
- Aprovechar nuestra tecnología de última generación permitirá adaptarnos eficientemente a nuevas regulaciones ambientales y sociales.
 Implementar sistemas automatizados y de gestión sostenible optimizará el cumplimiento normativo sin afectar la productividad. Esto reducirá riesgos operativos y fortalecerá nuestra competitividad.
- El compromiso con políticas ambientales y sociales fortalecerá la confianza de inversionistas y comunidades, mitigando el impacto de la inestabilidad política. Mantener una gestión transparente y sostenible garantizará estabilidad operativa. Esto reforzará nuestra solidez y atractivo en el mercado.

- Diseñar e implementar un programa interno de formación técnica continúa enfocado en operación eficiente de nuevas tecnologías y cumplimiento normativo, en alianza con organismos especializados y bajo un enfoque preventivo, para anticiparse a las regulaciones ambientales y sociales en evolución.
- Reestructurar procedimientos los operativos estándar bajo un enfoque flexible basado escenarios, incorporando protocolos de respuesta rápida ante variaciones geotécnicas o climáticas, y establecer un sistema de monitoreo ambiental en tiempo real que dinámicamente permita ajustar las actividades de perforación y voladura.
- Optimizar el cumplimiento ambiental mediante tecnologías sostenibles y eficiencia operativa reducirá costos sin comprometer la rentabilidad. Además, fortalecer relaciones con comunidades y actores clave mejorará la estabilidad y confianza en el proyecto. Esto mitigará el impacto de la inestabilidad política y mantendrá el atractivo para inversionistas

4.1.7. Estrategias referidas a la optimización de procesos de perforación y voladura

Tabla 13. Estrategias referidas a la optimización de procesos de perforación y voladura

Estrategias referidas a la optimización de procesos de perforación y voladura • Aprovechando la estructura organizativa clara y los objetivos definidos, se optimizarán las operaciones de perforación y voladura que mejorará la eficiencia. Esto fortalecerá la producción y Estrategias ofensivas la exportación de minerales a mercados estratégicos, diversificando clientes y asegurando una mayor competitividad en el sector minero. • Mediante un sólido control de procesos de registros documentarios en perforación y voladura, se garantizará una ejecución eficiente del programa de producción para aprovechar la tendencia de subida de precios del mineral a nivel global. • Implementar un programa continuo de capacitación técnica especializado en nuevas Estrategias de reorientación automatizaciones de perforación, voladura en alianza con fabricantes, para preparar al capital humano en el uso eficiente de estos avances, maximizando su impacto productivo y competitivo. • Revisar y flexibilizar los procedimientos documentados de perforación y voladura mediante la incorporación de protocolos adaptativos basados en escenarios geotécnicos, aprovechando los mayores ingresos generados por el aumento de precios del mineral y mantener la continuidad operativa.

Fuente: Elaboración propia

4.2. Situación actual del proceso de perforación y voladura

Como parte de la situación actual del área de perforación y voladura, se aplicaron herramientas de mejora continua como el diagrama de operaciones del proceso, el diagrama de Ishikawa, el diagrama de Pareto y la técnica de los 5 porqués, permitiendo identificar y jerarquizar las principales causas que afectan el rendimiento del proceso, entre ellas: paradas mecánicas no programadas, deficiente planificación, y baja capacitación operativa. Se evaluó el ciclo de tiempo de perforación, identificando retrasos en los subprocesos clave como posicionamiento de equipos, perforación efectiva, cambio de barras y limpieza. El análisis de horas efectivas de trabajo frente a las horas máquina disponibles evidenció una eficiencia operativa regular, influenciada por la limitada disponibilidad mecánica de los equipos, la cual promedia en 84.53 % y una velocidad de perforación variable de 37.8 m/h, dada por las condiciones del macizo rocoso y la falta de seguimiento al programa de mantenimiento preventivo. Asimismo, se identificaron brechas en la eficiencia de horas-hombre, asociado a las horas improductivas y a la insuficiente capacitación técnica, factores que inciden directamente en la calidad de ejecución y cumplimiento del diseño de malla. Se

revisaron los formatos de trabajo de perforación, observando la necesidad de estandarización y digitalización de la información para una toma de decisiones más oportuna.

4.2.1. Diagrama de operaciones del proceso

4.2.1.1. Diagrama de operaciones del proceso de perforación con rock drill

Figura 1. Diagrama de operaciones del proceso de perforación con rock drill.

Fuente: Elaboración propia

4.2.1.2. Diagrama de operaciones del proceso de voladura

DOP - Proceso de voladura en una mina de Cerro de Pasco

Siguiente frente de trabajo

Figura 2. Diagrama de operaciones del proceso de voladura.

Fuente: Elaboración propia

4.2.2. Diagrama Ishikawa

4.2.2.1. Diagrama de Ishikawa tiempo improductivo e ineficacia de perforación

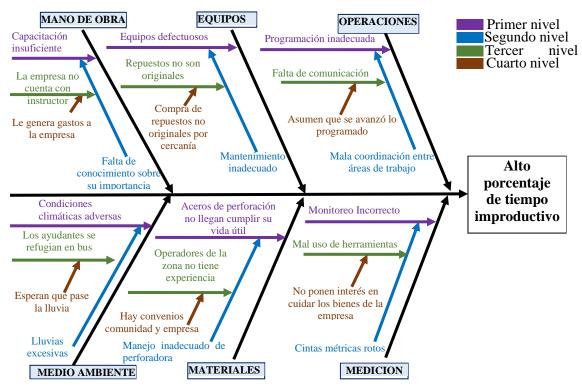


Figura 3. Diagrama de Ishikawa Causa Efecto.

Fuente: Elaboración propia

En la figura 3 el diagrama de Ishikawa nos ilustra las causas de primer nivel, de segundo nivel, de tercer nivel, de cuarto nivel conlleva al problema de alto porcentaje de tiempo improductivo. Abordar este problema requiere una estrategia integral que incluya la modernización de equipos, mantenimientos preventivos, la mejora de los procesos, la capacitación del personal, la optimización de los métodos y mejoras en la gestión de mano de obra al abordar estos factores mejorara significativamente la optimización de la perforación.

4.2.2.2. Diagrama de Ishikawa porcentaje de rocas > a 20 cm y < a 20 cm en voladura

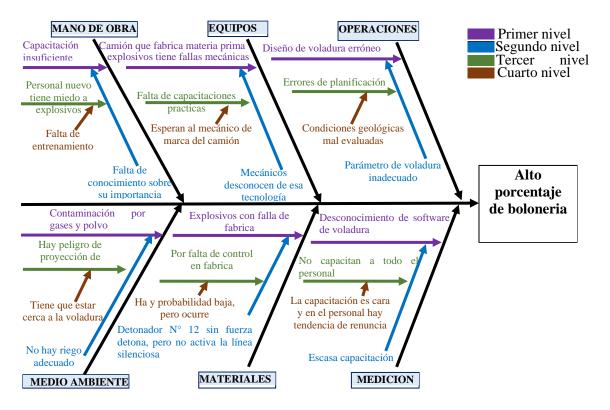


Figura 4. Diagrama de Ishikawa Causa Efecto

En la figura 4 del diagrama de Ishikawa se ilustra las causas de primer nivel, de segundo nivel, de tercer nivel, de cuarto nivel que conlleva al efecto de alto porcentaje de bolonería. Abordar este problema requiere una estrategia integral que será necesario ajustar los parámetros de voladura, considerando modificaciones en factores como la densidad de carga, burden, espaciamiento entre taladros, paralelismo de taladros, diámetro de perforación, tipos de amarres y tiempos de retardo, acceder a datos geológicos actualizados, cargas espaciadas con cámara de aire, taco de materia arcilla, lo que contribuiría a mejorar la distribución granulométrica, y en consecuencia, incrementaría la eficiencia operativa.

4.2.3. Diagrama de Pareto

Este diagrama permitirá realizar un análisis detallado del problema general de la investigación como muestra en la figura 5.

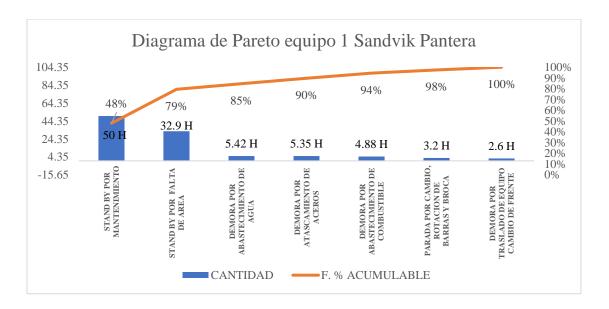


Figura 5. Diagrama de Pareto alto porcentaje de tiempo muertos rock drill Sandvik Pantera

Según la figura 5 el equipo de perforación número 1 rock drill Sandvik pantera, la causa principal de tiempos improductivos es stand by por mantenimiento con 50 horas y la segunda causa es stand by por falta de área 32.9 horas que resultan en tiempos muertos y baja productividad en el área de perforación. Ambas causas son identificadas como cruciales para mejorar la eficiencia en el tajo en una mina de Cerro de Pasco, 2024. Estas causas representan el 20% que causa el 80% de las consecuencias observadas.

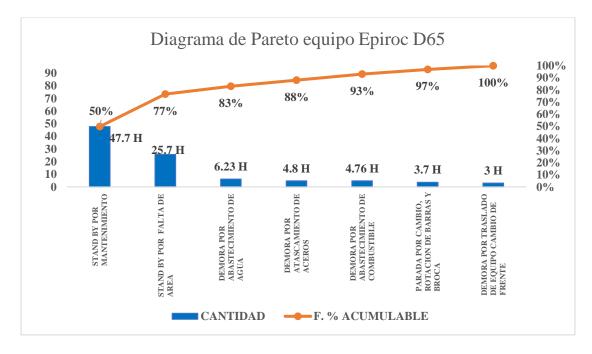


Figura 6. Diagrama de Pareto alto porcentaje de tiempo muerto equipo Epiroc D65

Fuente: Elaboración propia

Según la gráfica 6 el equipo de perforación número 2 rock drill Epiroc D65, la causa principal de tiempos improductivos es stand by por mantenimiento con 47.7 horas y la segunda causa es stand by por falta de área 25.7 horas que resultan en tiempos muertos y baja productividad en el área de perforación son identificadas como cruciales para mejorar la eficiencia en el tajo en una mina de Cerro de Pasco,2024. Estas causas representan el 20% que causa el 80% de las consecuencias observadas.

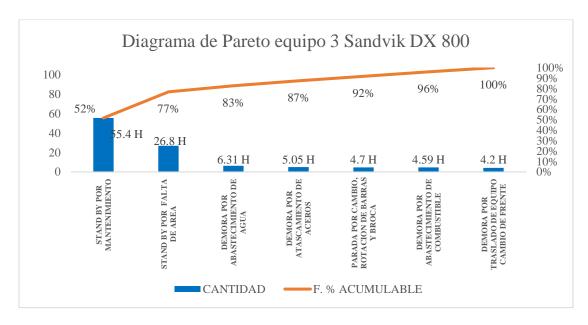


Figura 7. Diagrama de Pareto alto porcentaje de tiempo muerto equipo Sandvik DX800

Fuente: Elaboración propia.

Según la gráfica 7 el equipo de perforación número 3 Sandvik dx-800 siendo la causa principal de tiempos improductivos es stand by por mantenimiento con 55.4 horas y la segunda causa es stand by por falta de área de perforación 26.8 horas que resultan en tiempos muertos y baja productividad en el área de perforación son identificadas como cruciales para mejorar la eficiencia en el tajo en una mina de Cerro de Pasco,2024. Estas causas representan el 20% que causa el 80% de las consecuencias observadas.

4.2.4. Los cinco "porqués"

Tabla 14. Los 5 porqués, stand by por falta de área de perforación.

	Nivel del problema	Nivel correspondiente de la solución
¿Por qué?	Existe demora por stand by por falta de área de perforación	Esperar hasta que libere el área de perforación
¿Por qué?	Porque falta limpieza de área de perforación	Coordinar con el área de movimiento de tierras que acelere el proceso

¿Por qué?	Porque no hay coordinación eficiente entre	Definir y cumplir la programación
	áreas de trabajo	para la entrega de zonas de
		peroración
¿Por qué?	Porque priorizan su avance de traslado de	Reunirse con el supervisor de
	mineral	campo
¿Por qué?	Porque en movimiento de tierras no	Modificar política de trabajo
	quieren tener volquetes parados	

Tabla 15. Los 5 porqués, stand by por mantenimiento

	Nivel del problema	Nivel correspondiente de la solución
¿Por qué?	Existe demora por stand by por mantenimiento	Mejorar el mantenimiento preventivo y predictivo para reducir averías.
¿Por qué?	Porque los equipos fallan intempestivamente	Crear un programa de inspección periódica para identificar problemas antes de que afecten la operación.
¿Por qué?	Porque las reparaciones y la pruebas no se hacen a alta presión	Modernización de equipos de pruebas en taller de mantenimiento central
¿Por qué?	Porque las pruebas a alta presión se deben hacer en talleres con laboratorios de banco de pruebas.	Cambiar política mantenimiento de la empresa

Fuente: Elaboración Propia

Tabla 16. Los 5 porqués, demora por abastecimiento de agua.

	Nivel del problema	Nivel correspondiente de la solución		
¿Por qué?	Existe demora por abastecimiento de agua	Abastecer agua al inicio de guardia		
¿Por qué?	Porque el camión cisterna no llega al punto de perforación	Hacer una rampa más ancha con excavadora		
¿Por qué?	Porque el acceso tiene mucho desnivel mayor a 15%	Trasladar con excavadora en cilindros agua al punto de perforación		
¿Por qué?	Porque las zonas de perforación son agrestes	Cambiar de estrategias en agrandar tanque de agua de equipos de		

	perforación

4.2.5. Indicador ciclo de tiempo de perforación

Tabla 17. Cronometraje de ciclo de perforación: 6 taladro/hora de altura de 6.3 m

Descripción	Tal.1 (min)	Tal.2 (min)	Tal.3 (min)	Tal.4 (min)	Tal.5 (min)	Tal.6 (min)	Promedio
1. Alineación y nivelación del							
equipo	0.2	0.2	0.2	0.3	0.2	0.3	0.23
2. Limpieza de punto de perforación	0.4	0.3	0.5	0.5	0.3	0.6	0.43
3. Perforación de taladro	6.5	6.4	6.5	6.6	6.6	6.5	6.52
4. Aumento y recuperación de							
aceros de perforación	1.5	1.6	1.7	1.8	1.7	1.6	1.65
5. Desplazamiento de viga de							
perforación	0.3	0.2	0.2	0.2	0.2	0.2	0.22
6. Inspección de profundidad de							
taladro	0.4	0.3	0.4	0.3	0.4	0.2	0.33
7. Colocar tapón con sacos cónicos a							
taladro	0.2	0.2	0.2	0.1	0.1	0.1	0.15
8. Registro de datos del taladro	0.1	0.2	0.1	0.1	0.1	0.1	0.12
9. Transporte de la perforadora a							
siguiente taladro	0.3	0.4	0.4	0.3	0.4	0.3	0.35
Tiempo de ciclo total (minutos)	9.9	9.8	10	10	10	9.9	10.00

Fuente: Elaboración Propia

La tabla 17 muestra el estudio de tiempos realizados en el proceso de perforación en un periodo de una hora hizo 6 perforaciones de 6.3 metros lineales con una broca de diámetro de 5 pulgadas, en este estudio se obtuvo un tiempo promedio de 10 minutos por perforación.

4.2.5.1. Cálculo del tiempo de ciclo de perforación

Para la determinación del cálculo propuesto se hace referencia a los datos de la tabla 17, dado que el ciclo del tiempo promedio fue de 10 minutos por perforación.

Cálculo del tiempo normal (TN)

$$TN = TM \times PR$$

Donde:

- TN = Tiempo normal
- TM = Tiempo medio (promedio de los tiempos registrados).
- PR = Factor de ritmo (eficiencia del operario en porcentaje o decimal).

$$TN = 10 \times 0.88$$

$$TN = 8.8 \text{ minutos}$$

Determinación de los suplementos (S)

$$S = (NP+F+DI) S = (NP+F+DI) S=(NP+F+DI)$$

Donde:

- NP = Necesidades personales (4 a 5% del tiempo total)
- F = Fatiga (4 a 10%, dependiendo de la dificultad del trabajo)
- DI = Demoras inevitables (3 a 7%, según la naturaleza del proceso)

$$S = 5\% + 5\% + 4\% = 12\%$$

Suplementos = 14%

Cálculo del tiempo estándar (TE)

 $TE = TN \times (1+S)$

- TE = Tiempo estándar
- TN = Tiempo normal
- S = Suplementos en forma decimal

$$TE = 8.8 \text{ x } (1+0.14) = 8.8 \text{ x } 1.14$$

TE = 10.03 minutos: TE = 10 minutos 2 segundos

4.2.5.2. Indicador ciclo de tiempo de abastecimiento de agua para perforación

Tabla 18. Cronometraje del tiempo de ciclo de abastecimiento de agua para perforación/día

Descripción	T (min)	T (min)	T (min)	Promedio
1. Traslado por abastecimiento de agua	3	3	3	3.0
2. Inclinación de equipo	0.2	0.2	0.2	0.2
3. Abastecimiento de agua a tanque de Rock drill	3.5	4	4	3.8
4. Nivelación de Equipo Rock Drill	0.2	0.2	0.2	0.2
6. Traslado al punto de perforación	3	3	2.5	2.8
Tiempo total	9.9	10.4	9.9	10.07

Fuente: Elaboración propia

La Tabla 18 muestra el estudio de tiempos realizado para el proceso de abastecimiento de agua para perforación por día. En este proceso, se realizaron tres abastecimientos, con un tiempo promedio de 10.07 minutos.

4.2.5.3. Cálculo del tiempo de ciclo de abastecimiento de agua para perforadora

Para la determinación del cálculo propuesto se hace referencia a los datos de la tabla 18, dado que nos da el ciclo del tiempo promedio de 10.07 minutos por abastecimiento de agua para perforadora

Cálculo del tiempo normal (TN) TN=TM×PR

Donde:

- TN = Tiempo normal
- TM = Tiempo medio (promedio de los tiempos registrados).
- PR = Factor de ritmo (eficiencia del operario en porcentaje o decimal).

 $TN = 10.07 \times 1.1$

TN = 11.077 minutos

Determinación de los suplementos (S)

$$S = (NP+F+DI) S = (NP+F+DI) S=(NP+F+DI)$$

Donde:

- NP = Necesidades personales (4 a 5% del tiempo total)
- F = Fatiga (4 a 10%, dependiendo de la dificultad del trabajo)
- DI = Demoras inevitables (3 a 7%, según la naturaleza del proceso)

$$S = 5\% + 5\% + 4\% = 14\%$$

Suplementos = 14%

> Cálculo del tiempo estándar (TE)

 $TE = TN \times (1+S)$

TE = Tiempo estándar

TN = Tiempo normal

S = Suplementos en forma decimal

TE = 11.07 x (1+0.14) = 11.07 x 1.14

TE = 12.61 minutos: TE = 12 minutos 37 segundos

4.2.5.4. Indicador ciclo de tiempo de abastecimiento de combustible

Tabla 19. Cronometraje del tiempo de ciclo de abastecimiento de combustible de perforadora.

Descripción	T (min)
1. Traslado por abastecimiento de Combustible	2.9
2. Nivelación de equipo	0.2
3. Colocar viga de perforación al piso	0.1
4. Abastecimiento de combustible	2
5. Colocar viga de perforación horizontal	0.2
6. Registro y firma a vale de combustible	0.1
7. Traslado al punto de perforación	2.8
Tiempo de ciclo total	8.3

Fuente: elaboración propia

La Tabla 19 muestra el estudio de tiempos realizado para el proceso de abastecimiento de combustible por día. En este proceso se abasteció 90 galones de petróleo en un tiempo de 8.1 minutos.

4.2.5.5. Cálculo de tiempo estándar de abastecimiento de combustible

Para la determinación del cálculo propuesto se hace referencia a los datos de la tabla 19, dado que nos da el ciclo del tiempo promedio de 8.3 minutos por abastecimiento de combustible

> Cálculo del tiempo normal (TN)

 $TN=TM\times PR$

Donde:

- TN = Tiempo normal
- TM = Tiempo medio (promedio de los tiempos registrados).
- PR = Factor de ritmo (eficiencia del operario en porcentaje o decimal).

 $TN = 8.3 \times 1.1$

TN = 9.13 minutos

> Determinación de los suplementos (S)

$$S = (NP+F+DI) S = (NP+F+DI) S=(NP+F+DI)$$

Donde:

- NP = Necesidades personales (4 a 5% del tiempo total)
- F = Fatiga (4 a 10%, dependiendo de la dificultad del trabajo)
- DI = Demoras inevitables (3 a 7%, según la naturaleza del proceso)

$$S = 5\% + 5\% + 4\% = 14\%$$

Suplementos = 14%

Cálculo del tiempo estándar (TE)

 $TE = TN \times (1+S)$

TE = Tiempo estándar

TN = Tiempo normal

S = Suplementos en forma decimal

TE = 9.13 x (1+0.14) = 9.13 x 1.14

TE = 10.40 minutos: TE = 10 minutos 24 segundos

4.2.5.6. Indicador ciclo de tiempo de proceso de voladura

Tabla 20. Cronometraje del tiempo de ciclo del proceso de voladura.

Descripción	Vol. 1 (min)	Vol. 2 (min)	Vol. 3 (min)	Promedio
1. Traslado de explosivo al área de minado	30	25	35	30.0
2. Inspección de presencia de agua	10	8	10	9.3
3. Zonificar la zona de carga con explosivos	12	10	10	10.7
4. Reunión de seguridad de 5 minutos	5	5	5	5.0
5. Distribución de explosivos a cada taladro	50	40	50	46.7

6. Distribución de accesorios a cada taladro	10	11	5	8.7
7. Cortado de cada empaque de cada caja o bolsa	10	9	12	10.3
8. Descubrir taladros tapados con sacos cónicos	5	6	4	5.0
9. Emprimado de sistema de iniciación en cada taladro	10	12	11	11.0
10. Cargado de taladros con explosivos según diseño de carga	160	155	165	160.0
11. Taqueado con material arcilla con atacador de madera	30	35	34	33.0
12. Amarre y cierre de circuito de manguera fanel	20	25	22	22.3
13. Verificación de continuidad de conexiones	20	25	18	21.0
14. Desalojo de personal y equipos de zona de influencia	10	10	11	10.3
15. Instalación de monitoreo sismográfico	10	15	10	11.7
16. Amarre final	5	5	5	5.0
17. Confirmación de inspección de seguridad de área liberada	2	2	2	2.0
18. Retirado de personal de voladura fuera 500 metros	5	5	5	5.0
19. Detonación final	1	1	1	1.0
20. Espera de 5 minutos para ingreso a voladura	5	5	5	5.0
21. Retorno al área de voladura	5	5	5	5.0
22. Análisis de fragmentación del material volado	5	3	5	4.3
23. Retorno de material sobrante a polvorín de explosivo	30	25	28	27.7
Total, de ciclo de proceso de voladura	450	442	458	450.0

La Tabla 20 muestra el registro de tiempos realizado para el proceso de voladura, en el cual se cronometraron 23 actividades del proceso de voladura a lo largo de tres voladuras distintas, obteniendo un tiempo promedio de 450 minutos para un volumen roto de 16000 m³.

4.2.5.7. Cálculo de tiempo de ciclo de voladura

Para la determinación del cálculo propuesto se hace referencia a los datos de la tabla 20, dado que nos da el ciclo del tiempo promedio de 450 minutos por proceso de voladura.

Cálculo del tiempo normal (TN)

$$TN = TM \times PR$$

Donde:

- TN = Tiempo normal
- TM = Tiempo medio (promedio de los tiempos registrados).
- PR = Factor de ritmo (eficiencia del operario en porcentaje o decimal).

$$TN = 450 \times 0.90$$

$$TN = 405 \text{ minutos}$$

• Determinación de los suplementos (S)

$$S = (NP+F+DI) S = (NP+F+DI) S=(NP+F+DI)$$

Donde:

- NP = Necesidades personales (4 a 5% del tiempo total)
- F = Fatiga (4 a 10%, dependiendo de la dificultad del trabajo)
- DI = Demoras inevitables (3 a 7%, según la naturaleza del proceso)

$$S = 5\% + 5\% + 4\% = 14\%$$

Suplementos = 14%

> Cálculo del tiempo estándar (TE)

 $TE = TN \times (1+S)$

- TE = Tiempo estándar
- TN = Tiempo normal
- S = Suplementos en forma decimal

$$TE = 405 \text{ x } (1+0.14) = 405 \text{ x } 1.14$$

$$TE = 405 \text{ x } (1+0.14) = 405 \text{ x } 1.14$$

TE = 461.7 minutos: TE = 461 minutos 42 segundos

4.2.6. Indicadores actuales de horas máquina y horas-hombre

4.2.6.1. Indicador rendimiento horas máquina trabajadas equipo rock drill Sandvik Pantera DP 1500i

En el proceso de perforación, el equipo registró un avance total de 272 metros perforados por día, con una velocidad promedio de perforación de 37.8 m/h. La disponibilidad mecánica alcanzó el 84.85%, lo cual indica una regular condición técnica del equipo y una gestión regular del mantenimiento. Estos resultados muestran un desempeño regular del equipo (Ver anexo 3).

Tabla 21. Rendimiento de horas máquina de perforación

Metros perforados por día	272 m
Velocidad de perforación	37.8 m/h
Disponibilidad mecánica	84.85 %

Fuente: Elaboración propia.

4.2.6.2. Indicador horas efectivas de trabajo y horas inactivas por mes

El equipo rock drill Sandvik Pantera DP 1500i (equipo n°1), con una programación de 11 horas por guardia durante 30 días, acumula un total de 330 horas mensuales programadas. La utilización efectiva del equipo fue de 247.1 horas, lo que representa un 74.88% del tiempo total programado, mientras que el 25.12% restante corresponde a períodos sin actividad operativa, de los cuales el 15.15% se debe a inactividad por mantenimiento y el 9.97% a tiempo de espera (stand by) por falta de área de perforación. (Ver anexo 3).

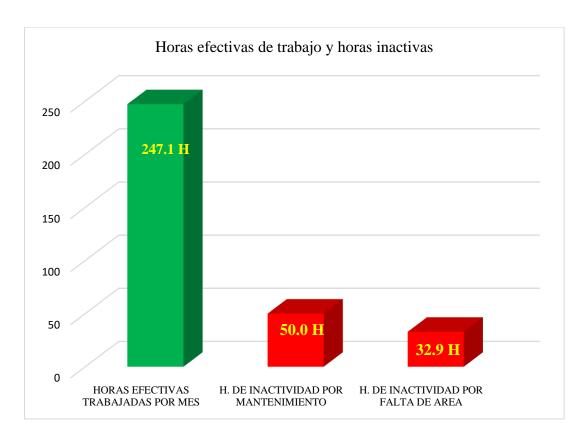


Figura 8. Horas efectivas de trabajo y horas inactivas por mes DP 1500i

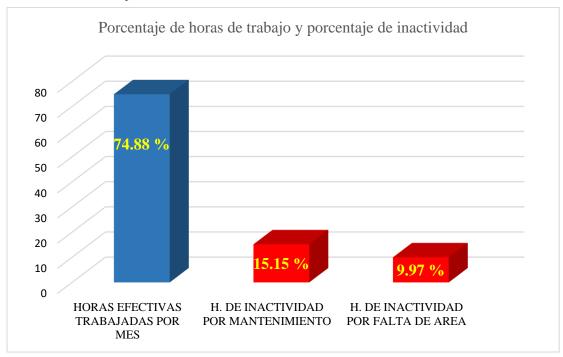


Figura 9. Porcentaje de horas de trabajo y porcentaje de inactividad por mes DP 1500i

4.2.6.3. Indicador rendimiento horas maquina trabajadas equipo rock drill Epiroc D 65

En el proceso de perforación, el equipo registró un avance total de 282.4 metros perforados por día, con una velocidad promedio de perforación de 37.8 m/h. La disponibilidad mecánica alcanzó el 85.55%, lo cual indica una regular condición técnica del equipo y una gestión regular del mantenimiento. Estos resultados muestran un desempeño regular del equipo (Ver anexo 4).

Tabla 22. Indicador rendimiento de horas maquina trabajados

Metros perforados por día	282.4 m
Velocidad de perforación	37.80 m/h
Disponibilidad mecánica	85.55 %

Fuente: Elaboración Propia

4.2.6.4. Indicador horas efectivas de trabajo y horas inactivas por mes

El análisis muestra que el equipo número 2 rock drill Epiroc D 65 de un total de 11 horas programados por guardia por 30 días de trabajo 330 horas/mes, la utilización efectiva del equipo es 256.6 horas que representa el 77.76% y 22.24% son porcentajes sin actividad operativa, de ello lo más resaltante es el 14.45% que representa a inactividad por mantenimiento y el 7.79% parado por stand by por falta de área de perforación como se puede visualizar en la siguiente figura (Ver anexo 4)

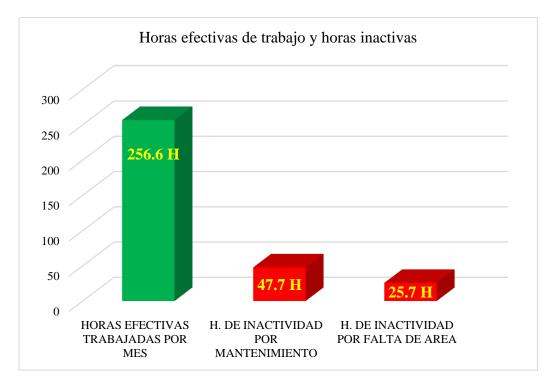


Figura 10. Horas efectivas de trabajo y horas inactivas por mes Epiroc D 65

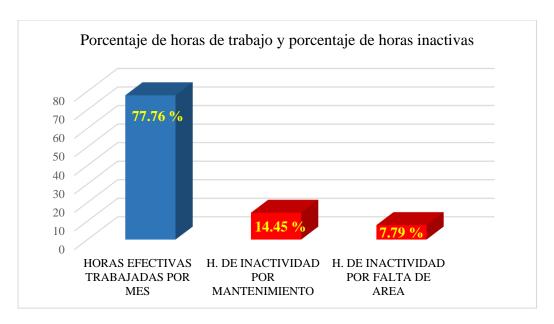


Figura 11. Porcentaje de horas de trabajo y porcentaje de inactividad por mes Epiroc D65

4.2.6.5. Indicador rendimiento horas maquina equipo rock drill Sandvik DX 800

En el proceso de perforación, el equipo registró un avance total de 211 metros perforados por día, con una velocidad promedio de perforación de 29.6 m/h. La disponibilidad mecánica alcanzó el 83.21%, lo cual indica una regular condición técnica del equipo y una gestión regular del mantenimiento. Estos resultados muestran un desempeño regular del equipo (Ver anexo 5).

Tabla 23. Indicador rendimiento horas maquina trabajados

Metros perforados por día	211 m
Velocidad de perforación	29.6 m/h
Disponibilidad mecánica	83.21 %

Fuente: Elaboración Propia

4.2.6.6. Indicador horas efectivas de trabajo y horas inactivas por mes

Los resultados obtenidos muestran que el equipo 3 rock drill Sandvik DX 800 de un total de 11 horas programados por guardia por 30 días de trabajo 330 horas/mes, la utilización efectiva del equipo es 247.80 horas que representa el 75.09% y 24.91% son porcentajes sin actividad operativa, de ello lo más resaltante es el 16.79% que representa a inactividad por mantenimiento y el 8.12% parado por stand by por falta de área de perforación como se puede visualizar en la siguiente figura

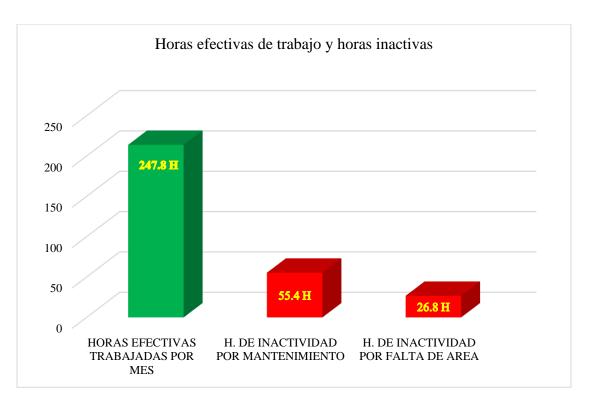


Figura 12. Horas efectivas de trabajo y horas inactivas por mes DX 800

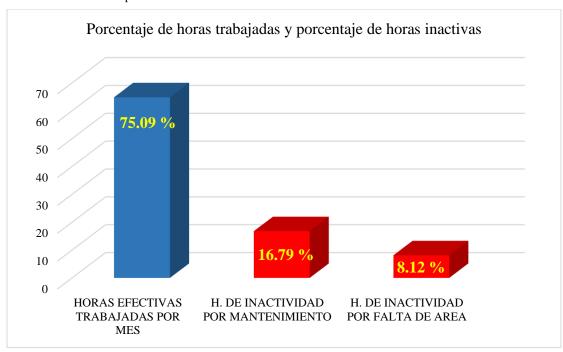


Figura 13. Porcentaje de horas de trabajo y porcentaje de inactividad por mes DX 800

Fuente: Elaboración Propia

Este proceso implica el monitoreo continuo del tiempo efectivo de operación, identificando períodos de inactividad por varios factores véase en el anexo 5. Además, permite programar mantenimientos preventivos basados en las horas trabajadas, lo que reduce el riesgo de fallas inesperadas y prolonga la vida útil de los equipos. Implementar sistemas de registro

automatizados y análisis de datos asegura una gestión más precisa, favoreciendo la toma de decisiones estratégicas en las operaciones de perforación.

4.2.7. Indicador disponibilidad mecánica

Para determinar la disponibilidad del equipo de perforación tenemos 330 horas programados al mes/ equipo de los cuales el equipo numero 1 rock drill Sandvik pantera trabajo 280 horas véase en el anexo 3 del presente estudio, para determinar usaremos la fórmula de disponibilidad:

4.2.7.1. Equipo 1 rock drill Sandvik Pantera DP 1500i

Disponibilidad Mecánica =
$$\left(\frac{Horas\ total\ operativo}{Horas\ total\ programados}\right) x\ 100$$

Disponibilidad Mecánica =
$$\left(\frac{280}{330 \text{ horas}}\right) x 100$$

Disponibilidad Mecánica = 84.84%

4.2.7.2. Equipo 2 rock drill Epiroc D65

Para determinar la disponibilidad del equipo de perforación tenemos 330 horas programados al mes/ equipo de los cuales el equipo numero 2 rock drill Epiroc D65 trabajo 282.3 horas véase en el anexo 4 del presente estudio, para determinar usaremos la fórmula de disponibilidad mecánica:

Disponibilidad Mecánica =
$$\left(\frac{Horas\ total\ operativo}{Horas\ total\ programados}\right) x\ 100$$

Disponibilidad Mecánica =
$$\left(\frac{282.3}{360 \text{ horas}}\right) x 100$$

Disponibilidad Mecánica = 85.54%

4.2.7.3. Equipo 3 rock drill Sandvik DX 800

Para determinar la disponibilidad del equipo de perforación tenemos 330 horas programados al mes/ equipo de los cuales el equipo numero 3 rock drill Sandvik DX 800 trabajo 274.6 horas véase en el anexo 5 del presente estudio, para determinar usaremos la fórmula de disponibilidad mecánica:

Disponibilidad Mecánica =
$$\left(\frac{Horas\ total\ operativo}{Horas\ total\ programados}\right) x\ 100$$

Disponibilidad Mecánica =
$$\left(\frac{274.6}{330 \text{ horas}}\right) x 100$$

Disponibilidad Mecánica = 83.21%

4.2.8. Cálculos de disponibilidad mecánica de equipos de perforación del mes de mayo

$$Disponibilidad\ Mec\'anica = \left(\frac{Horas\ total\ operativo}{Horas\ total\ programados}\right)x\ 100$$

Tabla 24. Disponibilidad mecánica del mes de mayo

Equipos	Tiempo	Velocidad	Perforaciones	Tiempo parado	Disponibilidad		
rock drill	programad	de	por hora	de equipos por	mecánica de		
en	o de trabajo	perforació	(perf/hr)	mantenimiento	equipos por		
estudio	por mes	n		mecánico (hr)	mes		
	(hr)	(m/h)					
Equipo 1	330	37.8 m/h	6 perf/h	50	84.84 %		
Equipo 2	330	37.8 m/h	6 perf/h	47.7	85.55 %		
Equipo 3	330	29.6 m/h	4.7 perf/h	55.4	83.21 %		
Disponibili	Disponibilidad mecánica de equipos rock drill						

Fuente: Elaboración Propia

La tabla 30 muestra la disponibilidad mecánica en promedio de los tres equipos es 84.53% (Ver anexo 3, anexo 4, anexo 5) Además, el equipo 1 y equipo 2 muestran 6 perforaciones por hora con una velocidad de perforación de 37.8 metros por hora y el equipo 3 realiza 4.7 perforaciones por hora con una velocidad de penetración de 29.6 metros por hora.

4.2.9. Cálculos de eficiencia de horas hombre mes mayo

La fuerza laboral del área de perforación durante el mes de mayo en una mina de Cerro de Pasco está conformada por un total de 22 colaboradores (Ver anexo 6). Para el presente estudio se ha considerado 9 colaboradores distribuidos en equipos de trabajo de 3 integrantes por cada equipo. Cada equipo está compuesto por un supervisor, un operador de rock drill y un ayudante de rock drill. Para el presente estudio de eficiencia en el uso de horas-hombre, se consideró un periodo de 30 días laborados por 11 horas programadas al día, según se detalla en la siguiente tabla.

Tabla 25. Horas hombre planificados

	Numero de personal	Horas por día	Días/mes	Horas por mes/ equipo
Horas hombre supervisión	1	11	30	330
Horas hombre operadores	1	11	30	330
Horas hombre ayudante de				
perforación	1	11	30	330
Total, de horas-hombre planifica	adas/ equipo			990

Fuente: Elaboración propia.

Tabla 26. Horas hombre productivas por equipo rock drill Sandvik Pantera DP 1500i

1 doid 20. Horas nomere	productivas por equipo rock artii sanavik i antera Bi 1500t						
	Horas efectivas	Equipo de trabajo de	Total, de horas - hombre				
	trabajadas por	3 integrantes	reales trabajados por				
	mes		mes				
Equipo 1	247.1	3	741.3				

Fuente: Elaboración propia.

Porcentaje de eficiencia de horas-hombre.

$$KPI = \left(\frac{Horas\ reales\ trabajados}{Horas\ Planeadas}\right) x\ 100$$

$$KPI = \left(\frac{741.3}{990}\right) x \ 100 = 74.87\%$$

Por lo tanto, la eficiencia en el uso de horas-hombre del equipo número 1 se ha calculado en un 74.87%, reflejando su desempeño en el periodo analizado.

Tabla 27. Horas hombre productivas por equipo rock drill Epiroc D65

Tabla 27. Horas homore productivas por equipo rock artii Epiroc Dos									
	Horas efectivas	Equipo de trabajo de	Total, de horas- hombre						
	trabajados por	3 integrantes	reales trabajados por						
	mes		mes						
Equipo 2	256.6	3	769.8						
	ļ ·								

Fuente: Elaboración propia.

Porcentaje de eficiencia de horas-hombre.

$$KPI = \left(\frac{Horas\ reales\ trabajados}{Horas\ Planeadas}\right) x\ 100$$

$$KPI = \left(\frac{769.8}{990}\right) x \ 100 = 77.75\%$$

Por ende, la eficiencia en el uso de horas-hombre del equipo número 2 se ha calculado en un 77.75%, reflejando su desempeño en el periodo analizado.

Tabla 28. Horas-hombre productivas por equipo rock drill Sandvik DX 800

14014 201 110140 11011010	e producer, as por equiporoen arm sandrin 212 oco							
	Horas efectivas	Equipo de trabajo de	Total, de horas- hombre					
	trabajados por	3 integrantes	reales trabajados por					
	mes		mes					
Equipo 3	247.8	3	743.4					

Fuente: Elaboración propia.

Porcentaje de eficiencia de horas-hombre.

$$KPI = \left(\frac{Horas\ reales\ trabajados}{Horas\ Planeadas}\right) x\ 100$$

$$KPI = \left(\frac{743.4}{990}\right) x \ 100 = 75.09\%$$

Es así que la eficiencia en el uso de horas-hombre del equipo número 3 se calcula un 75.09%, reflejando su desempeño en el periodo analizado.

4.3. Programas de mantenimiento preventivo y correctivo

Resulta clave establecer un sistema de mantenimiento preventivo que programe revisiones periódicas con el objetivo de prevenir fallas mecánicas inesperadas y reducir tiempos de

inactividad. De igual manera, la capacitación continua de los operadores y técnicos mecánicos es crucial para garantizar el correcto registro de las horas máquina promoviendo una mayor confiabilidad y control sobre el uso de los equipos. Finalmente, implementar un diagrama analítico de procesos de perforación y voladura con tiempos normales, suplementos y tiempo estándar, estas acciones mencionadas permitirán optimizar las horas inactivas, mejorar la planificación operativa.

Por otro lado, a través de un seguimiento preciso del tiempo de uso, se puede programar el reemplazo oportuno de lubricantes y componentes críticos, minimizando el desgaste y evitando fallas inesperadas. Para ello, el mantenimiento preventivo de los equipos de perforación se basa en inspecciones continuas, ajustes y reemplazos planificados, siguiendo las horas de operación y las recomendaciones del fabricante. Este mantenimiento combina revisiones diarias, semanales y programadas según el uso del equipo, con el objetivo de detectar signos de desgaste antes de que generen fallas. Las actividades incluyen chequeos visuales, pruebas operativas diarias, aplicación de lubricantes en puntos clave como el martillo de perforación, cilindros y articulaciones, así como el cambio programado de aceites de motor, hidráulico, compresor y transmisión. Además, se realiza la sustitución de filtros de aire, aceite de motor e hidráulicos, combustible de acuerdo con las horas de operación.

4.3.1. Programa de mantenimiento preventivo de equipo rock drill

El mantenimiento preventivo ayudará con la eficiencia y confiabilidad de la perforadora rock drill. El programa llevará a cabo inspecciones y tareas de mantenimiento con comprobaciones rutinarias antes del funcionamiento, comprobaciones diarias y en intervalos de 50 horas, 250 horas, 500 horas, 1000 horas, 1500 hora y 3000 horas de operación, asegurando que el equipo funcione de manera óptima y evitando fallas inesperadas para mejorar la productividad.

	LISTADO DE FILTROS, SELLOS Y OTROS COMPONENTES PRINCIPALES							
	MODELO	PANTERA -	DP1500i	MARCA	SANDVIK			
	SERIE	111T16516		MOTOR	CATERPILLAR C1			
ITEM	DESCRIPCIÓN	NP	CODIGO	SISTEMA	FREC. CAMBIO			
1	Filtro de combustible del motor	550 723 23	0205030527	Motor Diesel	250			
2	Filtro separador de agua	885 239 79	0205030004	Motor Diesel	250			
3	Filtro de aceite del motor	550 558 74	0205030528	Motor Diesel	250			
4	Filtro de aceite del compresor	818 937 49	0205030009	Compresor	250			
5	Filtros de retorno de aceite hidráulico	867 272 89	0205030010	Hidraulico	500			
6	Presión de aceite hidráulico	872 701 09	0205030531	Hidraulico	500			
7	Respiraderos	850 794 09	0205030318		500			
8	Filtro de aire primario del motor	550 892 69	0205170008	Motor Diesel	250			
9	Filtro de aire secundario del motor	550 892 74	0205170009	Motor Diesel	500			
10	Filtro de aire primario del compresor	550 892 67	0205030006	Compresor	250			
11	Filtro de aire secundario del compresor	550 892 73	0205030008	Compresor	500			
12	Separadores de aceite del compresor	551 844 29	0205030552	Compresor	1000			
13	Filtros de aire de cabina (internos)	550 999 05	0205030549	Cabina	1000			
14	Filtros de aire de cabina (externos)	550 999 10	0205170014	Cabina	500			
15	Filtro de recirculación de aire de cabina	551 711 50	0205030551	Cabina	1000			
16	Filtros de colector de polvo	880 211 99	0205030015	Colector de polvo	1000			
17	Tapón de llenado / Respiraderos	887 616 09	0205030225		500			
18	Juego de retenes para perforadora	550 391 15	0205030676	Rock drill / HL1560T-65	500			
19	Juego de retenes para motor hidráulico	867 666 99	0205030031	Motor hidraulico	500			

Figura 14. Programa de cambio de filtros y componentes

Tabla 29. Programa de cambio de lubricantes según horas programadas

	LUBRICANTES								
N°	SISTEMA	ESPECIFI	MAR	TIPO	COMPON	CAPACI	FREC.		
		CACION	CA		ENTE	DAD	DE		
							CAMBIO		
1	Motor diésel	SAE 15W-	Mobil	15w40 clasif.	Motor diese	40 L./10.1	250		
		40		API CI4		GL			
2	Hidráulico	SAE 10W-	Mobil	Mobil DTE 26 /	Tanque	390 L. /	2000		
		20		Tellus 68	hidráulico	103 GL			
3	Compresor	SAE 10 W	Mobil	Rarus SHC1024	Compresor	19 L. / 5.0	1000		
	de aire					GL			
4	Caja	SAE	Mobil	Mobil HD 80 W	Caja	5.2 L/ 1.4	500		
	transferencia	80W90		90	Transferenci	GL			
					a				
5	Transmisión	SAE 80W-	Mobil	Mobil DH 80 W	Mandos	2.0 L. / 0.5	500		
		90		90	finales-	GL			
					Reductor				
6	Lubricante	SAE 100	Mobil	Almo 527 /	Lubricación	30 L. / 7.9	Seg.		
	de martillo		/	TORCULA 100	del Martillo	GL	consumo		

			Shell				
7	Acero de	NLGI 2	Texac	Threadex	Grasa de		Seg.
	perforación		О		barras		consumo
8	Chasis	EP 2	Mobil	Mobil lux	Lubricación		Seg.
					central		consumo
9	Motor diésel		Cat		Radiador	55 L / 14.5	4000
					Refrigerante	Gl	

Tabla 30. Identificación de vida útil de equipos y componentes

v	ncipales y vida útil estimada	Horas
Rock drill	Perforadora rock drill	20000
	Martillo hidráulico	5000
Sistema de percusión	Pistón de percusión	5000
Sistema de percusión	Camisa del pistón	3000
	Kit de sellos del martillo	500
	Motor hidráulico de rotación	8000
Sistema de rotación	Reductores de rotación	10000
Sistema de Totación	Corona y piñón de rotación	7000
	Sellos y cojinetes del cabezal rotatorio	3000
	Cilindro de avance	8000
Sistema de avance	Cadena de avance / Cremallera	6000
	Rodillos y guías de avance	5000
	Compresor de aire	10000
Sistema de aire y lubricación	Separador de aceite del compresor	1000
Sistema de ane y idoneación	Filtros de aire	250
	Lubricador de línea	4000
	Bombas hidráulicas principales	10000
Sistema hidráulico	Mangueras hidráulicas	2000
Sistema muraunco	Filtros hidráulicos	500
	Válvulas de control	7000
	Orugas y rodillos	5000
Estructura y soporte	Chasis y estructura principal	15000
	Pernos y bujes del mástil	5000
	Sensores de presión y temperatura	5000
Sensores de control y eléctrico	Panel de control y electrónica	10000
Euguto Elekonosión Duomio	Baterías	3 años

4.3.1.1. Programa de mantenimiento en horas según recomendación del fabricante

Tabla 31. Comprobaciones rutinarias antes del funcionamiento

Tuesta 51. Compressiventes runnarius annes aet junicionamiento
Comprobaciones rutinarias antes del funcionamiento
Compruebe que no existen fugas de aceite
Compruebe el separador de agua / filtro de combustible
Compruebe las juntas de la carcasa de barrido.
Compruebe la presencia de fugas de aceite en el martillo perforador.
Compruebe las temperaturas del aceite hidráulico, el compresor y el refrigerante
Compruebe el funcionamiento de las luces de conducción y trabajo
Compruebe el funcionamiento de las paradas de emergencia
Compruebe el funcionamiento del cable de seguridad
Lubrique los puntos de engrase del brazo

Fuente: Elaboración Propia

Tabla 32. Comprobaciones diarias

Comprobaciones diarias
Comprobaciones rutinarias previas al arranque del motor
Compruebe el nivel de refrigerante del motor
Compruebe el nivel de aceite del motor
Compruebe visualmente el motor
Compruebe el separador de agua del combustible y drene el agua
Compruebe el nivel de aceite de la caja de cambios de transferencia
Compruebe el nivel de aceite de la unidad de lubricación de la espiga
Compruebe el nivel de aceite hidráulico.
Compruebe el nivel de aceite del compresor
Compruebe el separador de agua del sistema neumático y drene el agua
Compruebe que el martillo perforador esté sujeto al carro
Compruebe el apriete y el estado de los pernos de la carcasa de barrido
Compruebe la tensión y el estado de los cables de alimentación
Engrase los puntos de engrase del extremo inferior del manipulador de varillas
Compruebe el apriete de las orugas
Compruebe el estado de las mangueras y las conexiones

Fuente: Elaboración Propia

4.3.1.2. Fichas de mantenimiento preventivo

Para cada ficha de mantenimiento preventivo se ha asignado clasificaciones según la criticidad y prioridad de las inspecciones:

- **A.** Crítico: tareas esenciales para la seguridad y funcionamiento del equipo rock drill. Su omisión puede generar fallas graves o accidentes.
- **B.** Importante: actividades necesarias para el rendimiento óptimo del equipo rock drill, cuya falta de mantenimiento puede reducir la eficiencia y acelerar el desgaste.

C. Complementario: revisiones y lubricaciones que ayudan a mantener el equipo rock drill en buen estado, pero cuya omisión no genera un impacto inmediato en el funcionamiento.

Tabla 33. Ficha de inspección de M. P. cada 50 horas motor diésel

Tabla 33. F		rinspección de M. P. cada 50 horas motor diésel Ficha de inspección de M. P. cada 50 horas motor diésel			
Equipo n°		Fecha de inspección			
Horas del equi	no	Mec. Resp.:	A	В	С
Tiorus dei equi	1	ruebe el apriete de los pernos y las tuercas	А		
		ruebe el anillo rascador del tubo de extensión			1
Brazo	_	ruebe la sujeción del brazo al portador			1
	•	ue los puntos de engrase			1
		ruebe el apriete de los pernos y las tuercas			
	_	e los cables			
		ruebe el desgaste y el estado del cableado			
		ruebe la fijación y el apriete de los cables			
Avance	-	ruebe las holguras de la guía del cilindro del avance			
	Compr	ruebe la holgura del carro del martillo perforador y del carro del dor de la manguera y el estado de las piezas de deslizamiento			
	Lubriq	ue el cilindro del centralizador PITO			
	Lubriq	ue los puntos de engrase			
Mania 1.1.	Compruebe el apriete de los pernos y las tuercas				
Manipulador de varillas	Compruebe del estado del rodillo Pito				
	Lubrique el manipulador de varillas				
		ruebe el apriete de los pernos entre el carro y el martillo adora, así como los pernos de la carcasa de barrido			
N. (11) 1	Compr	ruebe el estado de las juntas de la carcasa de barrido			
Martillo de perforador hidráulico		ruebe la espiga, portaherramientas, carcasa de barrido, miento y buje de rotación			
		el estado de las válvulas de llenado del acumulador de presión y ones de la cubierta			
	Compr	ruebe las presiones de los acumuladores de presión			
	Lave e	l equipo			
	Lubriq	ue el eje de oscilación			
Portador		ue los pasadores del cilindro de oscilación			
	Compruebe el nivel de electrolito y las conexiones del cable de la batería				_
	Compr	ruebe el estado y el montaje del cable del cabestrante			-
Motor diesel	Limpie	e el cuerpo del radiador			
	Limpie	e el termo cambiador intermedio			
Cabina	Compr	ruebe el funcionamiento del interruptor de la puerta de la cabina			
Sistema hidráulico	Limpie	e el cuerpo del radiador			

Sistema neumático	Revise las tuberías y conexiones de la admisión de aire Limpie el cuerpo del radiador		
Unidad de lubricación de la espiga	Drene el agua condensada del depósito de aceite Vacíe el depósito de retorno de la lubricación de la espiga		
Sistema de combustible	Drene el agua condensada y elimine los depósitos del depósito de combustible		
Sistema de captador de polvo	Compruebe el estado de las conexiones y las mangueras de succión Compruebe el estado de los cartuchos del filtro Compruebe el funcionamiento de la limpieza del pulsorreactor de polvo Compruebe el estado del captador de polvo Compruebe el estado de la placa de impacto del separador de finos Compruebe el estado de las gomas del faldón del separador de gruesos Engrase el cilindro de la campana de aspiración móvil Engrase el cilindro de corte y la válvula de mariposa		

Tabla 34. Ficha de inspección de M. P. cada 250 horas motor diésel

Mantenimiento Preventivo cada 250 horas motor diésel						
Ein nº						
Equipo n°		Fecha de inspección	A .	D	C	
Horas del equip	00	Mec. Resp.:	A	В	С	
	Compi	ruebe el apriete de los pernos y las tuercas				
Brazo	Compi	ruebe el anillo rascador del tubo de extensión				
Diuzo	Compi	ruebe la sujeción del brazo al portador				
	Lubrig	ue los puntos de engrase				
	Compi	ruebe el apriete de los pernos y las tuercas				
	Limpie los cables					
	Compruebe el desgaste y el estado del cableado					
	Compruebe la fijación y el apriete de los cables					
Avance	Compi	ruebe las holguras de la guía del cilindro del avance				
Tivance		ruebe la holgura del carro del martillo perforador y del carro del ador de manguera y el estado de las piezas de deslizamiento				
	Lubric	ue el cilindro del centralizador pito				
	Lubrig	ue los puntos de engrase				
	Compi	ruebe las mordazas del centralizador pito				
Manipulador	Compi	ruebe el apriete de los pernos y las tuercas				

de varillas	Compruebe del estado del rodillo Pito	ĺ	
	Lubrique el manipulador de varillas		
	Compruebe las mordazas del cambiador de varillas		
	·		
	Compruebe el apriete de los pernos entre el carro y el martillo perforador, así como los pernos de la carcasa de barrido		
Martillo perforador	Compruebe el estado de las juntas de la carcasa de barrido		
hidráulico	Compruebe la espiga, portaherramientas, carcasa de barrido, acoplamiento y buje de rotación		
	Revise el estado de las válvulas de llenado del acumulador de presión y los tapones de la cubierta.		
	Compruebe la presión de los acumuladores de presión		
	Lave el equipo		
	Lubrique el eje de oscilación		
	Lubrique los pasadores del cilindro de oscilación		
Portador	Compruebe el nivel de electrolito y las conexiones del cable de la batería		
	Compruebe el estado y el montaje del cable del cabestrante		
	Compruebe el aceite del embrague de desplazamiento		
	Compruebe el aceite de la rueda de marcha en vacío		
	Limpie la batería y sus terminales		
	Limpie el cuerpo del radiador		
	Limpie el termocambiador intermedio		
Motor diésel	Cambie el aceite y sustituya el filtro		
TVIOTOT GIESET	Limpie el respiradero del cárter motor		
	Compruebe el terminal de puesta a tierra del motor		
	Compruebe las conexiones y mangueras		
Cabina	Compruebe el funcionamiento del interruptor de la puerta de la cabina		
Sistema hidráulico	Limpie el cuerpo del radiador		
	Revise las tuberías y conexiones de la admisión del aire		
Sistema	Limpie el cuerpo del radiador		
neumático	Compruebe el funcionamiento del indicador de mantenimiento del filtro de aire		
Unidad de lubricación de	Drene de agua condensada del depósito de aceite		
la espiga	Vacié el depósito de retorno de la lubricación de la espiga		
sistema de	Drene el agua condensada y elimine los depósitos del depósito de combustible		
combustible	Sustituya el filtro del separador de combustible y agua		
	Sustituya el filtro de combustible		

	Compruebe el estado del estado de las conexiones y mangueras de succión
	compruebe el estado de los cartuchos del filtro
	Compruebe el funcionamiento de la limpieza del pulsorreactor
	Compruebe el estado del captador de polvo
Sistema captador de	Compruebe el estado de la placa de impacto del separador de finos
polvo	Compruebe el estado de las gomas del faldón del separador de gruesos
	Engrase en el cilindro de la campana de aspiración móvil
	Engrase de cilindros de corte y la válvula de mariposa
	Compruebe el estado del revestimiento de goma del separador de gruesos
	Compruebe del estado de gomas de la campana de aspiración
	Compruebe el funcionamiento de la válvula de mariposa cilindro de corte
Sistemas eléctricos	Compruebe el estado de las conexiones y los cables eléctricos
principal	Compruebe las cajas y armarios eléctricos
	Compruebe el apriete de los cables eléctricos

Tabla 35. Ficha de inspección de M. P. cada 500 horas motor diésel

Mantenimiento Preventivo cada 500 horas motor diésel						
Equipo n°		Fech	a de inspección:			
Horas del equipo		Mec.	. Resp.:	A	В	C
	Comprue	pe el apriete de los pe	rnos y las tuercas			
	Comprueb	oe el anillo rascador d	lel tubo de extensión			
	Comprueb	oe la sujeción del braz	zo al portador			
Brazo	Lubrique	los puntos de engrase	;			
	Comprueb	oe los pasadores de lo	s cilindros hidráulicos			
	Revise la	soldadura del caballe	te y del brazo			
	Comprueb	oe las presiones de los	s acumuladores de presión			
	Comprueb	pe le apriete de los pe	rnos y tuercas			
	Limpie los	s cables				
	Comprueb	oe el desgaste y el est	ado del cableado			
	Comprueb	oe la fijación y el apri	ete de los cables			
Avance	Comprueb	oe las holguras de la g	guía del cilindro del avance			
3 2 7 3322 3			ro del martillo perforador y del carro del estado de las piezas de deslizamiento			
	Lubrique	el cilindro del central	izador pito			
	Lubrique	los puntos de engrase				
	Comprueb	oe las mordazas del ce	entralizador pito			
Manipulador	Comprueb	pe el apriete de los pe	rnos y las tuercas			

de varillas	Compruebe del estado del rodillo pito	
	Lubrique el martillo de varillas	
	Compruebe las mordazas del cambiador de varillas	
	Compruebe el apriete de los pernos entre el carro y el martillo perforador, así como los pernos de la carcasa de barrido	
	Compruebe el estado de las juntas de la carcasa de barrido	
Martillo perforación hidráulico	Compruebe la espiga, portaherramientas, carcasa de barrido, acoplamiento y buje de rotación	
inoraumo o	Revise el estado de las válvulas de llenado del acumulador de presión y los tapones de la cubierta	
	Comprueba las presiones de los acumuladores de presión	
	Lave el equipo	
	Lubrique el eje de oscilación	
	Lubrique los pasadores del cilindro de oscilación	
	Compruebe el nivel de electrolito y las conexiones del cable de la batería	
Portador	Compruebe el estado y el montaje del cable del cabestrante	
Fortagor	Compruebe el aceite de la rueda de marcha en vacío	
	Compruebe el aceite de embrague de desplazamiento	
	Limpie la batería y sus terminales	
	Compruebe el montaje de los lotes de oruga	
	Compruebe los tornillos del pasador de expansión de los cilindros de oscilación	
	Limpie el cuerpo del radiador	
	Limpie el termocambiador intermedio	
	Cambie el aceite y sustituya el filtro	
	Limpie el respirador del cárter de motor	
	Compruebe el terminal de puesta a tierra del motor	
Motor diésel	Compruebe las conexiones y mangueras	
	Limpia el motor diésel	
	Sustituya el filtro de aire	
	Comprueba el apriete y el estado de las correas trapezoidales	
	Compruebe el estado de la bomba de agua	
	Compruebe la protección del motor Compruebe el alternador	
Cabina		
340114	Compruebe el funcionamiento del interruptor de la puerta de la cabina	 $\perp \!\!\! \perp \!\!\! \perp$
	Limpie el cuerpo del radiador	
	Compruebe el sensor de presión de retorno	
Sistema	Revise el sensor de temperatura	 $\perp \!\!\! \perp \!\!\! \perp$
hidráulico	Cambie el respirador del depósito de aceite hidráulico	
	Sustituya el filtro de presión del aceite	
	Cambie los filtros de aceite 2 unidades	 $\perp \!\!\! \perp \!\!\! \perp$
Sistema	Revise la tuberías y conexiones de admisión de aire	 $\perp \perp \perp$
neumático	Limpie el cuerpo del radiador	

	Compruebe el funcionamiento del indicador de mantenimiento del filtro de aire		
	Sustituya el filtro de aire		
	Cambia el aceite del compresor		
	Cambie el filtro del aceite		
Unidad de lubricación	Drene el agua condensada del depósito de aceite		
de la espiga	Vacié el depósito de retorno de la lubricación de la espiga		
G' . 1	Drene el agua condensada y elimine los depósitos del depósito de combustible		
Sistema de combustible	Sustituya el filtro del separador de combustible y agua		
001110 0.0011010	Sustituya el filtro de combustible		
	Cambie el respirador del depósito de combustible		
	Compruebe del estado de las conexiones y mangueras de succión		
	Compruebe el estado de los cartuchos del filtro		
	Compruebe el funcionamiento de la limpieza del pulsorreactor		
	Compruebe el estado del captador de polvo		
	Compruebe el estado de la placa de impacto del separador de finos		
Sistema de	Compruebe el estado de las gomas del faldón del separador de gruesos		
captador de polvo	Engrase el cilindro de la campana de aspiración móvil		
porvo	Engrase el cilindro de corte y la válvula de mariposa		
	Compruebe el estado del revestimiento de goma del separadore de gruesos		
	Compruebe del estado de las gomas de la campana de la campana de aspiración		
	Compruebe el funcionamiento de la válvula de mariposa cilindro de corte		
Sistema	Compruebe el estado de las conexiones y cables eléctricos		
eléctrico	Compruebe las cajas y armarios eléctricos		
principal	Compruebe el apriete de los cables eléctricos		

Tabla 36. Ficha de inspección de M. P. cada 1000 horas motor diésel

	Mantenimiento Preventivo cada 1000 horas motor diésel					
Equipo n°	Fecha de insp	ección				
Horas del equi	Mec. Resp.:	A	В		C	
	Compruebe el apriete de los pernos y la	s tuercas				
	Compruebe el anillo rascador del tubo o	le extensión				
	Compruebe la sujeción del brazo al por	tador				
Brazo	Lubrique los puntos de engrase 137					
	Compruebe el estado de los pasadores y	del cilindro				
	Compruebe el montaje de los cilindros	hidráulicos				
	Revise las soldaduras del caballete y de	l brazo				

	Compruebe las presiones de los acumuladores de presión	
	Holguras de las piezas de deslizamiento del tubo de extensión	
	Compruebe las holguras de la cuna	
	Compruebe el apriete de los pernos y las tuercas	
	Limpie los cables 139	
	Compruebe el desgaste y el estado del cableado	
	Compruebe la fijación y el apriete de los cables	
Avance	Compruebe las holguras de la guía del cilindro de avance	
	Compruebe la holgura del carro del martillo y del carro del enrollador	
	Lubrique el cilindro del centralizador PITO	
	Lubrique los puntos de engrase	
	Compruebe las mordazas del centralizador pito	
	Compruebe el apriete de los pernos y las tuercas	
Manipulador	Compruebe del estado del rodillo Pito	
de varillas	Lubrique el manipulador de varillas	
	Compruebe las mordazas del cambiador de varillas	
	Compruebe el apriete de los pernos entre el carro y el martillo perforador, así como los pernos de la carcasa de barrido	
	Compruebe el estado de las juntas de la carcasa de barrido	
Martillo perforador hidráulico	Compruebe la espiga, portaherramientas, portaherramientas, carcasa de barrido, acoplamiento y buje de rotación	
muraunco	Revise el estado de las válvulas de llenado del acumulador de presión y lo tapones de la cubierta	
	Compruebe la presión de los acumuladores de presión	
	Lave el equipo	
	Lubrique el eje de oscilación	
	Lubrique los pasadores del cilindro de oscilación	
	Compruebe el nivel de electrolito y las conexiones del cable y el montaje del cable de cabrestante	
	Compruebe el aceite del embrague de desplazamiento	
D . 1	Compruebe el aceite de la rueda de marcha en vacío	
Portador	Limpie la batería y sus terminales	
	Compruebe el montaje de los lotes de oruga	
	Compruebe los tornillos del pasador de expansión de los cilindros	
	Compruebe las soldaduras 193	
	Cambie el aceite del embrague de desplazamiento	
	Cambiar el aceite de la caja de cambios de transferencia	
	Compruebe el apriete de los cables	
	Limpie el cuerpo del radiador	
	Limpie el termocambiador intermedio	
Motor diesel	Cambie el aceite y sustituya el filtro	
motor dieser	Limpie el respiradero del cárter motor	
	Compruebe el terminal de puesta a tierra del motor	
	Compruebe las conexiones y mangueras	

	Limpie el motor diésel	
	Sustituya el filtro de aire	
	Compruebe el apriete y el estado de las correas trapezoidales	
	Compruebe del estado del motor de arranque	
	Compruebe el estado de la bomba de agua	
	Compruebe la protección del motor	
	Compruebe el alternador	
~	,	
Cabina	Compruebe el funcionamiento del interruptor de la puerta de la cabina	
	Limpie el cuerpo del radiador	
	Compruebe el sensor de presión de retorno	
Sistema	Revise el sensor de temperatura	
hidráulico	Cambie el respiradero del depósito de aceite hidráulico	
	Sustituya el filtro de presión del aceite	
	Cambie los filtros de retornos de aceite 2 unidades	
	Revise las tuberías y conexiones de la admisión de aire	
	Limpie el cuerpo del radiador	
Sistema neumático	Compruebe el funcionamiento del indicador de mantenimiento de filtro de aire	
neumatico	Sustituya el filtro de aire	
	Cambie el aceite del compresor	
	Cambie el filtro del aceite	
	Drene el agua condensada del depósito de aceite	
	Vacíe el depósito de retorno de la lubricación de la espiga	
Unidad de lubricación de la espiga	Cambie el respiradero del receptor de aceite de lubricación de la espiga	
	Limpie el depósito de aceite de lubricación de la espiga	
	Compruebe el funcionamiento de la unidad de supervisión	
	Drene el agua condensada y elimine los depósitos de combustible	
Sistema de	Sustituya el filtro del separador de combustible y agua	
combustible	Sustituya el filtro de combustible	
	Cambie el respiradero del depósito de combustible	
	Compruebe del estado de las conexiones y manguera de succión	
	Compruebe el estado de los cartuchos del filtro	
	Compruebe el funcionamiento de la limpieza del pulsorreactor	
	Compruebe el estado del captador de polvo	
	Compruebe el estado de la placa de impacto del separador de finos	
Sistema		
captador de polvo	Compruebe el estado de las gomas del faldón del separador de gruesos	
	Engrase el cilindro de la campana de aspiración móvil	
	Engrase el cilindro de corte y la válvula de mariposa	
	Compruebe el estado del revestimiento de goma del separador de gruesos	
	Compruebe del estado de las gomas de la campana de aspiración	

	Compruebe el funcionamiento de la válvula de mariposa cilindro de corte		
	Compruebe el estado de las conexiones y los cables eléctricos		
Sistema eléctrico	Compruebe las cajas y armarios eléctricos		
Ciccurco	Compruebe el apriete de los cables eléctricos		

Tabla 37. Ficha de inspección de M. P. cada 1500 horas motor diésel

1 abia 57. Fic	na ae u	nspección de M. P. cada 1500 horas motor diésel			
-	1	Mantenimiento Preventivo cada 1500 horas motor diésel			
Equipo n°			Fecha de inspección: Mec Resp: A B 0		
Horas del equipo		Mec. Resp.:	Α	В	С
	Compr	uebe el apriete de los pernos y las tuercas			
	Compr	uebe el anillo rascador del tubo de extensión			
	Compr	uebe la sujeción del brazo al portador			
	Lubriqu	ue los puntos de engrase			
Brazo	Compr	uebe el estado de los pasadores del cilindro			
	Compr	uebe el montaje de los cilindros hidráulicos			
	Revise	las soldaduras del caballete y del brazo			
	1	uebe las presiones de los acumuladores de presión			
	•	uebe el apriete de los pernos y las tuercas			
	Limpie los cables				
	Compruebe la fijación y el apriete de los cables				
	Compruebe el desgaste y el estado del cableado				
Avance	Compr	uebe las holguras de la guía del cilindro de avance			
		uebe la holgura del carro del martillo perforador y del carro del dor de manguera y el estado de las piezas de deslizamiento			
	Lubriqu	ue el cilindro del centralizador PITO			
		ue los puntos de engrase			
	Compr	uebe las mordazas del centralizador pito			
		ción de las juntas del cilindro del avance			
Manipulador	Compr	uebe el apriete de los pernos y las tuercas			
de varillas	Compr	uebe del estado del rodillo Pito			
	Compr	uebe del estado del rodillo Pito			
	Compr	uebe las mordazas del cambiador de varillas			
Martillo perforador hidráulico		uebe el apriete de los pernos entre el carro y el martillo dor, así como los pernos de la carcasa de barrido			
moraune	Compr	uebe el estado de las juntas de la carcasa de barrido			

	Compruebe la espiga, portaherramientas, carcasas de barrido, acoplamiento y buje de rotación		
	Revise el estado de las válvulas de llenado del acumulador de presión y los tapones de la cubierta		
	Compruebe la presión de los acumuladores de presión		
	Lave el equipo		
	Lubrique el eje de oscilación		
	Lubrique los pasadores del cilindro de oscilación		
	Compruebe el nivel de electrolito y las conexiones del cable de la batería		
	Compruebe el estado y el montaje del cable del cabestrante		
Portador	Compruebe el aceite del embrague de desplazamiento		
	Compruebe el aceite de la rueda de marcha en vacío		
	Limpie la batería y sus terminales		
	Compruebe el montaje de los lotes de orugas		
	Compruebe los tornillos del pasador de expansión de los cilindros oscilación		
	Compruebe las soldaduras		
	Cambie el aceite del cabrestante.		
	Limpie el cuerpo del radiador Limpie el termocambiador intermedio		
	•		
	Cambie el aceite y sustituya el filtro Limpie el respiradero del cárter motor		
	Compruebe el terminal de puesta a tierra del motor		
	•		
	Compruebe las conexiones y mangueras		
Motor diesel	Limpie el motor diésel		
	Sustituya el filtro de aire		
	Companyaba al amieto y al astado de los comeos transgraideles		
	Compruebe el apriete y el estado de las correas trapezoidales		
	Compruebe del estado del motor de arranque Compruebe el estado de la bomba de agua		
	T T T T T T T T T T T T T T T T T T T		
	Compruebe la protección del motor		
	Compruebe el alternador		
	Cambie el filtro de seguridad		
Cabina	Compruebe el funcionamiento del interruptor de la puerta de la cabina		
	Sustituya los filtros de aire de la cabina filtros de aspiración y de circulación interna		
Sistema hidráulico	Limpie el cuerpo del radiador		
muraunco	Compruebe el sensor de presión de retorno		

	Revise el sensor de temperatura			ĺ	
	Technol of bondor de temperatura		\dashv		
	Cambie el respiradero del depósito de aceite hidráulico	1			
	Sustituya el filtro de presión del aceite				
	Cambie los filtros de retornos de aceite 2 unidades				
	Compruebe el funcionamiento del interruptor del nivel de aceite				
	Limpiar el depósito de aceite hidráulico				
	Cambie el aceite hidráulico				
		1			
	Revise las tuberías y conexiones de la admisión de aire				
	Limpie el cuerpo del radiador				
Sistema	Compruebe el funcionamiento del indicador de mantenimiento del filtro de aire				
neumático	Sustituya el filtro de aire				
	Cambie el aceite del compresor				
	Cambie el filtro del aceite				
	Cambie el filtro de seguridad				
	Sustituya el separador de aceite				
Unidad de		1			
espiga de lubricación	Drene el agua condensada del depósito de aceite				
de la espiga	Vacíe el depósito de retorno de la lubricación de la espiga				
	Drene el agua condensada y elimine los depósitos del depósito de combustible				
Sistema de combustible	Sustituya el filtro del separador de combustible y agua				
	Sustituya el filtro de combustible				
	Cambie el respiradero del depósito de combustible				
	Limpie el depósito de combustible				
	Compruebe del estado de las conexiones y manguera de succión	1			
	Compruebe el estado de los cartuchos del filtro				
	Compruebe el funcionamiento de la limpieza del pulsorreactor				
	Compruebe el estado del captador de polvo		_		
	compraede el estado del captadol de polvo				
Sistema de	Compruebe el estado de la placa de impacto del separador de finos				
captador de polvo	Compruebe el estado de las gomas del faldón del separador de las gomas del faldón del separador de gruesos				
	Engrase el cilindro de la campana de aspiración móvil				
	Engrase el cilindro de corte y la válvula de mariposa				
	Compruebe el estado del revestimiento de goma del separador de gruesos				
	Compruebe del estado de las gomas de la campana de aspiración				

	Compruebe el funcionamiento de la válvula de mariposa cilindro de corte		
Sistema eléctrico	Compruebe el estado de las conexiones y los cables eléctricos		
principal	Compruebe las cajas y armarios eléctricos		

Tabla 38. Ficha de inspección de M. P. cada 3000 horas motor diésel

1 abia 38. Fic		cada 3000 horas motor diésel				
	Mantenimiento Preventivo cada 3000 horas motor diésel Equipo n° Fecha de inspección:					
- 1		1			Τ	
Horas del equi	Mec.	Resp.:	A	В	С	
	Compruebe el apriete de los	pernos y las tuercas			<u> </u>	
	Compruebe el anillo rascado	or del tubo de extensión				
	Compruebe la sujeción del l	orazo al portador				
	Lubrique los puntos de engr	ase			<u> </u>	
Brazo	Compruebe el estado de los	pasadores del cilindro			<u> </u>	
Druze	Compruebe el montaje de lo	s cilindros hidráulico				
	Revise las soldaduras del ca	ballete y del brazo				
	Compruebe las presiones de	los acumuladores de presión				
	Holguras de las piezas de de	eslizamiento del tubo de extensión				
	Compruebe la holgura de la	cuna				
	Compruebe el apriete de los	pernos y las tuercas				
	Limpie los cables					
	Compruebe el desgaste y el estado del cableado					
	Compruebe la fijación y el a	priete de los cables				
	Compruebe las holguras de	la guía del cilindro del avance				
Avance		carro del martillo perforador y del carro del estado de las piezas de deslizamiento				
	Lubrique el cilindro del cen	tralizador PITO				
	Lubrique los puntos de engr	ase				
	Compruebe las mordazas de	l centralizador pito				
	Sustituya los cojinetes de la	rueda de marcha en vacío				
	Sustitución de las juntas del	cilindro del avance				
	Compruebe el apriete de los	pernos y tuercas	_			
Manipulador	Compruebe del estado del re					
de varillas	Lubrique el manipulador de					
	Compruebe las mordazas de					
	Compruebe el apriete de perforador, así como los per	los pernos entre el carro y el martillo nos de la carcasa de barrido				
Martillo	Compruebe el estado de las	juntas de la carcasa de barrido			<u> </u>	
perforador hidráulico	Compruebe la espiga, acoplamiento y buje de rota					
	Revise el estado de las válv los tapones de la cubierta.	ulas de llenado del acumulador de presión y				

	Compruebe la presión de los acumuladores de presión		
	Lave el equipo		
	Lubrique el eje de oscilación		
	Lubrique los pasadores del cilindro de oscilación		
	Compruebe el nivel de electrolito y las conexiones del cable de la batería		
	Compruebe el estado y el montaje del cable del cabestrante		
	Compruebe el aceite del embrague de desplazamiento		
	Compruebe el aceite de la rueda de marcha en vacío		
Portador	Limpie la batería y sus terminales		
ronador	Compruebe el montaje de los lotes de orugas		
	Compruebe los tornillos del pasador de expansión de los cilindros oscilación		
	Compruebe las soldaduras		
	Cambie el aceite del embrague de desplazamiento		
	Cambiar el aceite de la caja de cambios de transferencia		
	Compruebe el apriete de los cables		
	Cambie el aceite del cabrestante		
	Compruebe el estado de los extintores de incendios		
	Limpie el cuerpo del radiador		
	Limpie el termocambiador intermedio		
	Cambie el aceite y sustituya el filtro		
	Limpie el respiradero del cárter motor		
	Compruebe el terminal de puesta a tierra del motor		
	Compruebe las conexiones y mangueras		
	Limpie el motor diésel		
	Sustituya el filtro de aire		
	Compruebe el apriete y el estado de las		
	correas trapezoidales		
	Compruebe del estado del motor de arranque		
Motor diesel	Compruebe el estado de la bomba de agua		
	Compruebe la protección del motor		
	Compruebe el alternador		
	Cambie el filtro de seguridad		
	Compruebe el estado del turbocompresor.		
	Cambie el líquido refrigerante		
	Sustituya el termostato del sistema de refrigeración		
	Compruebe los soportes del motor		
	Compruebe el amortiguador de vibraciones del cigüeñal		
	Compruebe las boquillas del inyector electrónico		
	Compruebe los sensores de temporización y velocidad del motor		
	Compruebe las holguras de la válvula		
	Compruebe los rotadores de válvula		

Cabina	Compruebe el funcionamiento del interruptor de la puerta de la cabina	
Cuomu	Sustituya los filtros de aire de la cabina (filtros de aspiración y de circulación interna)	
	Limpie el cuerpo del radiador	
	Compruebe el sensor de presión de retorno	
	Revise el sensor de temperatura	
	Cambie el respiradero del depósito de aceite hidráulico	
Sistema	Sustituya el filtro de presión del aceite	
hidráulico	Cambie los filtros de retornos de aceite 2 unidades	
	Compruebe el funcionamiento del interruptor del nivel de aceite	
	Limpiar el depósito de aceite hidráulico	
	Cambie el aceite hidráulico	
	Termostatos de aceite hidráulico	
	Revise las tuberías y conexiones de la admisión	
	Limpie el cuerpo del radiador	
	Compruebe el funcionamiento del indicador de mantenimiento del filtro de aire	
G: A	Sustituya el filtro de aire	
Sistema neumático	Cambie el aceite del compresor	
neumanes	Cambie el filtro del aceite	
	Cambie el filtro de seguridad	
	Sustituya el separador de aceite	
	Limpie el depósito de aceite	
	Compruebe el funcionamiento del termostato	
	Drene el agua condensada del depósito de aceite	
Unidad de	Vacíe el depósito de retorno de la lubricación de la espiga	
lubricación de		
la espiga	Cambie el respiradero del receptor de aceite de lubricación de la espiga	
	Compruebe el funcionamiento de la unidad de supervisión	
	Drene el agua condensada y elimine los depósitos del depósito de combustible	
Sistema de	Sustituya el filtro del separador de combustible y agua	
combustible	Sustituya el filtro de combustible	
	Cambie el respiradero del depósito de combustible	
	Limpie el depósito de combustible	
	Compruebe del estado de las conexiones y mangueras de succión	
	Compruebe el estado de los cartuchos del filtro	
Q:	Compruebe el funcionamiento de la limpieza del pulsorreactor	
Sistema captador de	Compruebe el estado del captador de polvo	
polvo	Compruebe el estado de la placa de impacto del separador de finos	
	Compruebe el estado de las gomas del faldón del separador de gruesos	
	Engrase el cilindro de la campana de aspiración móvil	
		 08

	Engrase el cilindro de corte y la válvula de mariposa		
	Compruebe el estado del revestimiento de goma del separador de gruesos		
	Compruebe del estado de las gomas de la campana de aspiración		
	Compruebe el funcionamiento de la válvula de mariposa / cilindro de corte		
~.	Compruebe el estado de las conexiones y los cables eléctricos		
Sistema eléctrico	Compruebe las cajas y armarios eléctricos		
principal	Compruebe y apriete los cables eléctricos		

4.3.1.3. Formatos

Tabla 39. Orden de trabajo - área de mantenimiento mecánico - equipos

Orden de trabajo	o - área de mantenimiento mecánico - equipos
Orden de Trabajo N°:	Fecha:
Sector:	Ubicación:
Equipo N°:	Responsable:
Descripción del trabajo:	
Tareas a realizar:	
Materiales/herramientas:	
Tiempo Estimado:	Frecuencia:
Técnico:	Supervisor:
Observaciones:	

Historial de mantenimiento preventivo de perforadora rock drill							
Fecha de mante nimie nto	Código de e quipo	Mod	lelo	Ubicación	Téo	enico responsable	Horas de us o
Actividades de ma	Actividades de mantenimiento preventivo realizadas						
Compone nte	Activ	vidad realiza	da	Estado después	1	Observaciones	
Repuestos y materiales utilizados							
Repuesto/material Cant		idad	Código de parto	2	Observacio	nes	
Observaciones generales: Recomendaciones para próximos mantenimientos, posibles fallas futuras, etc.							
Firma de aprobaci	ó n:						
Técnico		Supervisor		Fecha			

Figura 15. Historial de mantenimiento preventivo de perforadora rock drill

Registro de fallas y averias de perforadora rock drill						
Fecha Código de equ	nipo Modelo	Ubicación Horas de uso				
	Detalle de la falla:					
Componente afectado:						
Descripción de la falla:						
Descripción de la falla:						
Condición inicial:						
	nálisis de causa raíz					
Posible causa:						
Método de diagnóstico:						
Resultado del análisis:						
	cciones correctivas					
Acción realizada: Repuestos utilizados:						
Código de parte:						
Estado final:						
	empo de reparación:					
	ervaciones adicionales:					
Firmas y aprobaciones						
Técnico	Supervisor	Fecha:				

Figura 16. Registro de fallas y averías de perforadora rock drill

		Chek list de equipo	Rock Drill		
CODIGO DE EQUIPO:		TURNO:	NOCHE	FECHA: 13/05	/2024
MARCA:	·		вС	HOROMETROS:	
		GUARDIA:	<u> </u>		
MODELO:					
OPERADOR: Hugo Hei	rmitaño Atencio.	SUPERVISOR:		_	
			RACION (marcar	NIVEL DE COMBUSTIBLE: F con una X en cada recuadro según corresponda)	
se coloca "SI" cuando el equipo se coloca "NO" cuando el equipo si el equipo no cuenta o no apliq	tenga un item a revisa o no tenga o este en n	r y se encuentre en buen estado. nal estado cada item a revisar.			
OBSERVACIONES: Falta aceite hidraulico Protector de caida de barras se en	canzado mínimo 7 horas an	22 Cadena de mecanismo de avance 23 Pines y bocinas 24 Mandos 25 Calefaccion 26 Espejos 27 Frenos 28 josticks y controles 29 Aire acondicionado 30 Escaleras y passamanos 31 Rotulo de codigo interno 32 Paneles de instrumentos (indicadores) 33 Plumilla y liquido limpia parabrisas 54 34 Existen fugus de combustible? 36 Esi adecuado el nivel de aceite de motor? 37 Es adecuado el nivel de aceite de motor? 38 Es adecuado el nivel de aceite de hidraulico? 38 Es adecuado el nivel de aceite de bidraulico? 40 Es adecuado el nivel de aceite de bidraulico? 41 Capuchones de ciclon de colector de polvo 42 Carrete porta burras tes de operara el presente equipo, en caso de fatiga le info	SI NO N/A	43 tornameza de barras 44 absorbedor de impacto(shock absorber) 45 Enfriador de aceite hidrulico 46 Enfriador de aceite refrigerante de motor 47 Tanque de agua 48 Sistema contra incendios automatico 49 Profundimetro 50 Mandos finales 51 Rueda guia y sprocket 52 Zapatas 53 Eslabones de cadena de oruga 54 Es adecudo el nivel de aceites de compresor de aire PUNTOS NO NEGOCIABLES SINO N/A 1 Sistema de bloqueo de columna de perforacion 2 Tensado de cadenas de orugas 3 Cinturon de seguridad 4 Alarma de retroceso 5 Laces delanteras y posteriores 6 Claxon	SI NO N/A
falta de tapa de filtro de aire de mo	otor				
Falta broca					
Firma del operador Entrante	-	Firma del supervisor Mantenimiento		Firma del supervisor operaciones	

Figura 17. Check list de equipo rock drill

4.3.1.4. Capacitación en mantenimiento preventivo

La formación en mantenimiento preventivo de perforadoras rock drill es esencial para asegurar su máxima eficiencia operativa, extender su ciclo de vida útil y reducir la incidencia de fallas no programadas. Este proceso debe centrarse en la evaluación meticulosa de sistemas críticos, como el hidráulico, neumático, de percusión y refrigeración, además de la correcta aplicación de lubricantes y ajustes mecánicos. Es crucial que técnicos, operadores desarrollen competencias en la detección temprana de posibles fallas para optimizar la disponibilidad del equipo. Una capacitación no solo incrementa la confiabilidad de la maquinaria, sino que también maximiza la productividad del proceso de perforación en una mina.

Tabla 40. Temas de capacitación de mantenimiento preventivo

Módulo	Temas principales		Responsable
		ión	
Modulo 1:	- Importancia del mantenimiento preventivo en		
Introducción al	perforadoras rock drill.	4	Ingeniero de
mantenimiento	- Tipos de mantenimiento (preventivo, correctivo y	horas	Mantenimiento
preventivo	predictivo).		
	- Seguridad en trabajos de mantenimiento.		
Módulo 2:	- Verificación de niveles de aceite y lubricación.	6	Supervisor de
Inspección Diaria	- Identificación de fugas y desgaste prematuro	horas	Mantenimiento
y Lubricación			
Módulo 3:	- Funcionamiento del sistema hidráulico y neumático.		
Mantenimiento de	- Inspección de mangueras, conexiones y cilindros.		
Sistemas	- Cambio de filtros y diagnóstico de fallas	6	Ingeniero de
Hidráulico y	comunes	horas	Mantenimiento
Neumático			
Módulo 4:	- Inspección del martillo y barra de perforación.		
Mantenimiento	- Revisión del sistema de refrigeración (radiador,		
del Sistema de	ventiladores).	6	Supervisor de
Percusión y	- Métodos de limpieza y reemplazo de componentes	horas	Mantenimiento
Refrigeración			
Módulo 5:	- Interpretación de síntomas de fallas mecánicas.	4	Ingeniero de
Diagnóstico de	- Uso de check lists y formatos de registro.	horas	Mantenimiento
Fallas y Registro	- Evaluación de funcionamiento después del		
de Mantenimiento	mantenimiento		

4.3.2. Diagrama de flujo de procedimiento de mantenimiento preventivo de rock drill

Tabla 41. Responsables del proceso de mantenimiento preventivo de rock drill

abla	abla 41. Responsables del proceso de mantenimiento preventivo de rock drill				
1.	Técnico de mantenimiento	Inicio de mantenimiento			
2.	Gerente de mantenimiento	Verificación de plan de mantenimiento			
3.	Supervisor de mantenimiento	Verificación de plan de mantenimiento			
4.	Jefe de almacén	Entrega de repuestos			
5.	Jefe de logística	Traslado de repuestos hacia almacén			
6.	Técnico de mantenimiento	Selección de equipo para mantenimiento			
7.	Técnico planner	Requerimientos de mantenimiento			
8.	Supervisor de mantenimiento	Identificación de técnicos de mantenimiento			
9.	Técnico de mantenimiento	Inspección de equipo rock drill			
10.	Técnico de mantenimiento	Cierre de informe y almacén de datos			
11.	Técnico de mantenimiento	Identificación de falla de rock drill			
12.	Técnico de mantenimiento	Descripción de lo ocurrido			
13.	Técnico de mantenimiento	Descripción de la decisión tomada			
14.	Técnico de mantenimiento	Enumeración de piezas para cambio			
15.	Supervisor de mantenimiento	Esperar y suspende el mantenimiento			
16.	Supervisor de mantenimiento	Inicio de solitud de compra de repuestos			
17.	Técnico de mantenimiento	Realiza cambio de piezas			
18.	Técnico de mantenimiento	Rellenar ficha de mantenimiento			
19.	Técnico operador	Rellenar ficha de mantenimiento			
20.	Técnico de mantenimiento	Cerrar informe y almacenamiento de datos			
21.	Supervisor de mantenimiento	Fin de proceso			

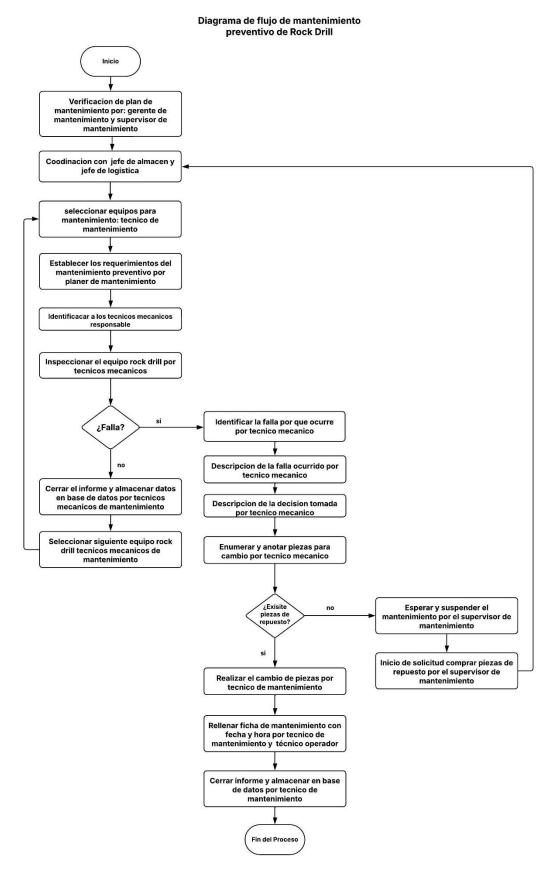


Figura 18. Diagrama de flujo de mantenimiento preventivo de rock drill Fuente: Elaboración propia.

4.3.3. Diagrama de flujo de procedimiento de mantenimiento correctivo de equipo rock drill.

Tabla 42. Responsables del proceso de mantenimiento correctivo de rock drill

1.	Técnico de mantenimiento	Inicio de mantenimiento
2.	Técnico de planner	Recepción de reportes de falla
3.	Supervisor de mantenimiento	Identificación de técnicos de mantenimiento
4.	Técnico de mantenimiento	Evaluación inicial de rock drill
5.	Técnico de mantenimiento	Regresa a evaluación inicial
6.	Técnico de mantenimiento	Diagnostico detallado de falla
7.	Técnico de mantenimiento	Identificación de componentes dañados
8.	Supervisor de mantenimiento	Inicio de proceso de solicitud de compra de repuestos
9.	Técnico de mantenimiento	Reparación de falla mecánica
10.	Técnico operador	Prueba de funcionamiento de rock drill
11.	Supervisor de mantenimiento	Vuelve al diagnóstico al no funcionar
12.	Supervisor de mantenimiento	Fin del proceso al funcionar correctamente

Fuente: Elaboración propia.

Diagrama de Flujo de mantenimiento correctivo de Rock Drill Recepccion de reportes de falla, solicitud de repuestos por planer de mantenimiento Identificar a los mecanicos responsables de mantenimiento Evaluacion Inicial por tecnico mecanico de mantenimiento ¿Falla confirmada? Diagnostico detallado por tecnicos mecanico de mantenimiento no regresa a la evaluacion inicial Identificacion de componentes dañados por tecnicos mecanicos de mantenimiento Reparacion de falla canica por tecnicos de mantenimiento ¿Repuestos disponibles? Prueba de funcionamiento de rock drill por tecnico operador de perforadora Realizar un proceso plicitando repuestos por supervisor de mantenimiento Vuelve al diagnostico al no funcionar por supervisor de mantenimiento

Figura 19. Diagrama de flujo de mantenimiento correctivo de rock drill

Fuente: Elaboración propia.

4.4. Estandarización de los procesos del área de perforación y voladura

Para la estandarización del proceso de perforación y voladura se implementó una mejora reemplazando el diagrama de operaciones del proceso (DOP) por un diagrama de flujo funcional, más dinámico y adaptado a las necesidades operativas del frente de trabajo.

4.4.1. Diagrama de flujo de procesos de perforación y voladura

4.4.1.1. Diagrama de flujo de procesos de perforación con rock drill

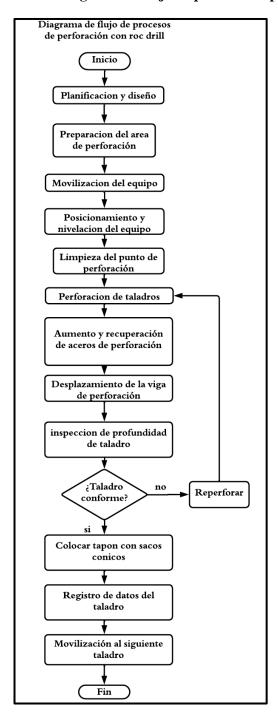


Figura 20. Método propuesto de diagrama de flujo de procesos de perforación con rock drill Fuente: Elaboración propia

4.4.1.2. Diagrama de flujo de procesos de voladura

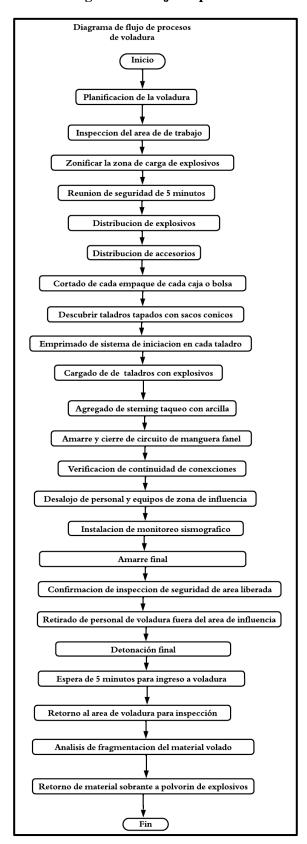


Figura 21. Método propuesto de diagrama de flujo de procesos de voladura

Fuente: Elaboración propia

4.4.2. Estudio de tiempos del ciclo de perforación y voladura

A través de estudios de tiempo en campo, se determinó el tiempo normal (TN) para cada

actividad, se aplicaron suplementos por necesidades personales, retrasos inevitables y fatiga,

obteniéndose así el tiempo estándar (TE) para cada proceso del ciclo operativo. Este análisis

fue complementado con diagramas analítico de procesos que descompone cada operación en

secuencias lógicas. La estandarización facilitara la planificación diaria, y cálculo de

rendimientos reales.

4.4.2.1. Cálculo del tiempo de ciclo de perforación

Para la determinación del cálculo propuesto se hace referencia a los datos de la tabla

17, dado que el ciclo del tiempo promedio fue de 10 minutos por perforación.

Cálculo del tiempo normal (TN)

$$TN = TM \times PR$$

Donde:

• TN = Tiempo normal

• TM = Tiempo medio (promedio de los tiempos registrados).

• PR = Factor de ritmo (eficiencia del operario en porcentaje o decimal).

$$TN = 10 \times 0.88$$

$$TN = 8.8 \text{ minutos}$$

> Determinación de los suplementos (S)

$$S = (NP+F+DI) S = (NP+F+DI) S=(NP+F+DI)$$

Donde:

• NP = Necesidades personales (4 a 5% del tiempo total)

• F = Fatiga (4 a 10%, dependiendo de la dificultad del trabajo)

• DI = Demoras inevitables (3 a 7%, según la naturaleza del proceso)

$$S = 5\% + 4\% + 3\% = 12\%$$

Suplementos = 12%

Cálculo del tiempo estándar (TE)

 $TE = TN \times (1+S)$

• TE = Tiempo estándar

• TN = Tiempo normal

• S = Suplementos en forma decimal

$$TE = 8.8 \text{ x } (1+0.11) = 8.8 \text{ x } 1.12$$

TE = 9.85 minutos: TE = 9 minutos 51 segundos

4.4.2.2. Método propuesto diagrama analítico de procesos de perforación

A continuación, se presenta una propuesta gráfica detallada del proceso de perforación. Este diagrama desglosa las actividades clave, como operaciones, transporte, inspección y almacenamiento, y se utilizará para analizar, optimizar y detectar tiempos muertos.

METODO PROPUESTO: DIAGRAMA ANALITICO DE PROCESOS	OPERADOR: Hugo Hermitaño Atencio / EQUIPO: Sandvik Pantera							Sandvik Pantera	
DIAGRAMA núm: 1 Hoja num: 1					RESU	JME	N		
Objeto: Perforacion	ACT	IVIDAD	ACTU.	AL	PR	OPU	EST	`A	ECONOMÍA
Actividad: Perforacion con Rock Dill	Operaci	ón	07						
retividad. I errorderon con Rock Din	Transporte		03						
Método: PROPUESTO	Espera								
Nictodo. I ROI CESTO	Inspecc	ión	02						
Lugar: Mina Cerro de Pasco	Almacei	namiento							
Operarios(s): 2 Ficha num: 1	Distanc	ia							
	Tiempo								
Compuesto por: Paul Quintana Fecha: 10-06-24	Costo								
Aprobado por: Jorge Miranda Fecha: 15-06-24	M ano de M aterial	obra							
					SIM	IBOI	<u> </u>		
DESCRIPCIÓN	C D (m)		T (min)	0	D D V			∇	Observaciones
1. Planificación de la perforación				_]	Ť	
2. Inspección del área de trabajo							7		
3. Transporte de la perforadora al area de					•				
perforacion									
4. Alineación y nivelación del equipo			0.2	•					
5. Limpieza de punto de perforacion			0.4	•					
6. Perforación de taladro			6.5	•					
7. Aumento y recuperacion de aceros de			1.7	1					
perforacion			1.7	\					
8. Desplazamiento de viga de perforacion			0.2		۴				
9. Inspeccion de profundidad de taladro			0.3			$/ \setminus$	7		
10. Colocar tapon con sacos conicos a taladro			0.2	}					
11. Registro de datos del taladro			0.1						
12. Transporte de la perforadora a siguiente			0.4						
taladro			0.4		•				
Total de tiempo promedio			10.0	07	03		02		
Tiempo Suplemento = S = NP+F+DI S= 12%									
Tiempo Normal = $TN = TM \times PR TN = 8.8$									
Tiempo Estandar = $TE = TN \times (1+S)$									
$TE = 8.8 \times (1+0.12\%)$	$TE = 8.8 \times (1+0.12\%)$								

Figura 22. Método propuesto de diagrama analítico de procesos de perforación

Fuente: Elaboración propia

La Figura 22 presenta un diagrama analítico de procesos, en el que se detallan siete actividades operativas, tres de transporte y dos de inspección. El tiempo estándar del proceso de perforación se estableció en 9.85 minutos dado su conversión a 9 minutos y 51 segundos por ciclo de una perforación de 6.3 metros de profundidad con un diámetro de perforación de 5 pulgadas. Esta propuesta integra el tiempo normal, los suplementos y el tiempo estándar.

4.4.3. Cálculo del tiempo de ciclo de abastecimiento de agua para perforadora

Para la determinación del cálculo propuesto se hace referencia a los datos de la tabla 18, dado que nos da el ciclo del tiempo promedio de 10.07 minutos por abastecimiento de agua para perforadora

> Cálculo del tiempo normal (TN)

 $TN=TM\times PR$

Donde:

- TN = Tiempo normal
- TM = Tiempo medio (promedio de los tiempos registrados).
- PR = Factor de ritmo (eficiencia del operario en porcentaje o decimal).

 $TN = 10.07 \times 1.1$

TN = 11.077 minutos

> Determinación de los suplementos (S)

$$S = (NP+F+DI) S = (NP+F+DI) S=(NP+F+DI)$$

Donde:

- NP = Necesidades personales (4 a 5% del tiempo total)
- F = Fatiga (4 a 10%, dependiendo de la dificultad del trabajo)
- DI = Demoras inevitables (3 a 7%, según la naturaleza del proceso)

$$S = 5\% + 4\% + 3\% = 12\%$$

Suplementos = 12%

Cálculo del tiempo estándar (TE)

 $TE = TN \times (1+S)$

TE = Tiempo estándar

TN = Tiempo normal

S = Suplementos en forma decimal

$$TE = 11.07 \text{ x } (1+0.11) = 11.07 \text{ x } 1.12$$

TE = 12.39 minutos: TE = 12 minutos 23 segundos

4.4.3.1. Método propuesto de diagrama analítico de procesos de abastecimiento de agua para perforación

METODO PROPUESTO: DIAGRAMA ANALITICO DE PROCESOS	OPERARIO: Hugo Hermitaño Atencio / EQUIPO: Sandvik Pantera										
DIAGRAMA núm: 2 Hoja num: 2			RESUMEN								
Objeto: Perforacion	ACTI	VIDAD	ACTU	JAL	PROPUESTA				ECONOMÍA		
Actividad: Abastecimiento de agua de Rock Dill	Operación		04								
retividad. Housteenmento de agua de Rock Din	Transporte		02	2							
Método: PROPUESTO	Espera										
Metodo. TROT CESTO	Inspecc	ión	01								
Lugar: Mina Cerro de Pasco	Almacei	namiento									
Operarios(s): 2 Ficha num: 2	Distanc	ia									
	Tiempo										
Compuesto por: Paul Quintana Fecha:10-06-24	Costo										
Aprobado por: Jorge Miranda Fecha: 15-06-24	M ano de M aterial										
DESCRIPCIÓN	С	D (m)	T (min)	0		MBO	LO	∇	Observaciones		
1. Planificación de la perforación				1							
2. Inspección del área de trabajo						\wedge	•				
3. Traslado por abastecimiento de agua			3.0		•						
4. Inclinacion de equipo			0.2								
5. Abastecimiento de agua atanque de Rock Drill			3.8								
6. Nivelacion de Equipo Rock Drill			0.2	•							
7. Traslado al punto de perforacion			2.8								
Total de tiemppo promedio			10.07	04	02		01				
Tiempo Suplemento = $S = NP+F+DI$ $S= 12\%$											
Tiempo Normal = $TN = TM \times PR TN = 11.07$											
Tiempo Estandar = $TE = TN \times (1+S)$											
$TE = 11.07 \times (1+0.12\%)$		12.39									

Figura 23. Método propuesto de diagrama analítico de procesos de abastecimiento de agua para perforación

Fuente: elaboración propia

La Figura 23 nos muestra un método propuesto de diagrama analítico de procesos, en la que se detallan cuatro actividades operativas, dos de transporte y uno de inspección. El tiempo estándar del proceso de abastecimiento se estableció en 12 minutos y 23 segundos por ciclo. Esta propuesta integra el tiempo normal, los suplementos y el tiempo estándar.

4.4.4. Cálculo de tiempo estándar de abastecimiento de combustible

Para la determinación del cálculo propuesto se hace referencia a los datos de la tabla 19, dado que nos da el ciclo del tiempo promedio de 8.3 minutos por abastecimiento de combustible

> Cálculo del tiempo normal (TN)

 $TN=TM\times PR$

Donde:

- TN = Tiempo normal
- TM = Tiempo medio (promedio de los tiempos registrados).
- PR = Factor de ritmo (eficiencia del operario en porcentaje o decimal).

$$TN = 8.3 \times 1.1$$

TN = 9.13 minutos

> Determinación de los suplementos (S)

$$S = (NP+F+DI) S = (NP+F+DI) S=(NP+F+DI)$$

Donde:

- NP = Necesidades personales (4 a 5% del tiempo total)
- F = Fatiga (4 a 10%, dependiendo de la dificultad del trabajo)
- DI = Demoras inevitables (3 a 7%, según la naturaleza del proceso)

$$S = 5\% + 4\% + 3\% = 12\%$$

Suplementos = 12%

> Cálculo del tiempo estándar (TE)

$$TE = TN \times (1+S)$$

TE = Tiempo estándar

TN = Tiempo normal

S = Suplementos en forma decimal

$$TE = 9.13 \text{ x } (1+0.11) = 9.13 \text{ x } 1.12$$

TE = 10.22 minutos: TE = 10 minutos 13 segundos

4.4.4.1. Método propuesto de diagrama analítico de procesos de abastecimiento de combustible

METODO PROPUESTO DIAGRAMA ANALITICO DE PROCESOS	A OPERARIO: Hugo Hermitaño Atencio / EQUIPO: Sandvik Pantera								lvik Pantera
DIAGRAMA núm: 3 Hoja num: 3				R	ESUM	IEN			
Objeto: Perforacion	ACTIV	IDAD	ACTU	JAL	PROPUESTA				ECONOMÍA
Actividad: Abastecimiento de combustible a	Operación	ı	06	5					
Rock Dill	Transporte		02	2					
Método: PROPUESTO	Espera Inspección		01						
Lugar: Mina Cerro de Pasco	Almacena	miento							
Operarios(s): 3 Ficha num: 3	Distancia								
	Tiempo								
Compuesto por: Paul Quintana Fecha:10-06-24 Aprobado por: Jorge Miranda Fecha:15-06-24	Costo Mano de o Material	bra							
_					SII	мво	LO		
DESCRIPCIÓN	С	D (m)	T (min)	0	⇨	D		∇	Observaciones
1. Planificación de la perforación				1					
2. Inspección del área de trabajo						\geq	•		
3. Traslado por abastecimiento de Combustible			2.9						
4. Nivelacion de equipo			0.2						
5. Colocar viga de perforacion al piso			0.1						
6. Abastecimiento de combustible			2						
7. Colocar viga de perforacion horizontal			0.2						
8. Registro y firma a vale de combustible			0.1	/					
9. Traslado al punto de perforacion			2.8		•				
Total			8.3	06	02		01		
Tiempo Suplemento = $S = NP+F+DI$ $S= 12\%$									
Tiempo Normal = $TN = TM \times PR TN = 9.13$								<u> </u>	
Tiempo Estandar = $TE = TN \times (1+S)$								<u> </u>	
$TE = 9.13 \times (1+0.12\%)$			10.22						

Figura 24. Método propuesto de diagrama analítico de procesos de abastecimiento de combustible de perforadora.

Fuente: Elaboración propia.

La Figura 24 presenta un diagrama analítico de procesos, en la cual se ilustran seis actividades de operación, dos de transporte y uno de inspección. Al evaluar su desempeño con un factor de ritmo de 1.10 y considerando un 12% en suplementos, estableciendo el tiempo estándar del proceso de abastecimiento de combustible en 10 minutos y 13 segundos. Esta propuesta integra el tiempo normal, los suplementos y el tiempo estándar.

4.4.5. Cálculo de tiempo de ciclo de voladura

Para la determinación del cálculo propuesto se hace referencia a los datos de la tabla 20, dado que nos da el ciclo del tiempo promedio de 450 minutos por proceso de voladura.

> Cálculo del tiempo normal (TN)

$$TN = TM \times PR$$

Donde:

- TN = Tiempo normal
- TM = Tiempo medio (promedio de los tiempos registrados).

• PR = Factor de ritmo (eficiencia del operario en porcentaje o decimal).

$$TN = 450 \times 0.90$$

$$TN = 405 \text{ minutos}$$

• Determinación de los suplementos (S)

$$S = (NP+F+DI) S = (NP+F+DI) S=(NP+F+DI)$$

Donde:

- NP = Necesidades personales (4 a 5% del tiempo total)
- F = Fatiga (4 a 10%, dependiendo de la dificultad del trabajo)
- DI = Demoras inevitables (3 a 7%, según la naturaleza del proceso)

$$S = 5\% + 4\% + 3\% = 12\%$$

Suplementos = 12%

Cálculo del tiempo estándar (TE)

 $TE = TN \times (1+S)$

- TE = Tiempo estándar
- TN = Tiempo normal
- S = Suplementos en forma decimal

$$TE = 405 \text{ x } (1+0.11) = 405 \text{ x } 1.12$$

TE = 453.6 minutos

4.4.5.1. Método propuesto de diagrama analítico de procesos de voladura

METODO PROPUESTO DIAGRAMA	OPERARIO: Jorge Castillo Aguirre / EQUIPO: Voladura										
ANALITICO DE PROCESOS					ESU	· · · · ·	,				
DIAGRAMA núm: 3 Hoja num: 4	A COPPY		Tanyon st.								
Objeto: Voladura		VIDAD	ACTU		P	ROP	UEST	A	ECONOMÍA		
Actividad: Cargado de taladros con explosivos	Operac			12							
	Transp			07							
Método: PROPUESTO	Espera			01							
	Inspec			03							
Lugar: Mina Cerro de Pasco		enamiento)								
Operarios(s): 10 Ficha num: 4	Distanc	cia									
	Tiempo)									
Compuesto por: Paul Quintana Fecha: 10/06/2024	Costo										
	Mano d										
Aprobado por: Jorge Miranda Fecha: 15-06-2024	Materia	ales	1		CIN	иво	10				
DESCRIPCIÓN	С	D (m)	T (min)	0		D		∇	Observaciones		
1. Planificación de la voladura											
2. Inspección del área de trabajo											
3. Traslado de explosivo al area de minado			30.0		-						
4. Inspeccion de presencia de agua			9.3				\triangleright				
5. Zonificar la zona de carga con explosivos			10.7								
6. Reunion de seguridad de 5 minutos			5.0								
7. Distribucion de explosivos a cada taladro			46.7		•						
8. Distribucion de accesorios a cada taladro			8.7								
Cortado de cada empaque de cada caja o bolsa			10.3								
Descubrir taladros tapados con sacos conicos			5.0								
*			11.0								
11. Emprimado de sistema de iniciacion en cada taladro			11.0	_							
12. Cargado de taladros con explosivos según diseño de			160.0	•							
carga 13. Taqueado con material arcilla con atacador de				+							
madera			33.0	•							
14. Amarre y cierre de circuito de manguera Fanel			22.3								
15. Verificacion de continuidad de conexiones			21.0								
16. Desalojo de personal y equipos de zona de			2110								
influencia			10.3								
17. Instalacion de monitoreo sismografico			11.7								
18. Amarre final			5.0								
19. Confirmacion de inspeccion de seguridad de area			5.0								
liberada			2.0				>				
20. Retirado de personal de voladura fuera del radio de											
influencia			5.0								
21. Detonacion final			1.0	~							
22. Espera de 5 minutos para ingreso a voladura			5.0			1					
23. Retorno al area de voladura			5.0			_					
24. Analisis de fragmentacion del material volado			4.3		_						
25. Retorno de material sobrante a polvorin de	<u> </u>		4.3	_			1				
explosivo			27.7		•						
Total de ciclo de proceso de voladura			450.0	12	07	01	03				
Tiempo Suplemento = S = NP+F+DI S= 12%		1			-						
Tiempo Normal = TN = TM x PR TN = $450x0.90 = 40$)5										
Tiempo Estandar = $TE = TN \times (1+S)$											
TE = $405 \times (1+0.12\%)$ =			453.6			1					
1L - 703^(1T0.1270) -		755.0		<u> </u>	<u> </u>		<u> </u>	<u> </u>			

Figura 25. Método propuesto de diagrama analítico de procesos de voladura

Fuente: Elaboración propia

La Figura 25 muestra un diagrama analítico de procesos, en el que se representan 12 actividades de operación, siete de transporte, una de demora y tres de inspección, evaluando su desempeño con un factor de ritmo de 0.90 y considerando un 12% en suplementos. El

tiempo estándar del proceso de voladura se estableció en 453.6 minutos, lo que equivale a 7 horas, 33 minutos y 33 segundos, considerando un volumen de 16 000 m³, con el fin de facilitar la programación de futuras voladuras.

4.4.6. Resultados post-test

4.4.6.1. Horas máquina de perforación del mes de junio

Para demostrar el sistema de control de horas máquina de perforación sumado al plan de mantenimiento preventivo planteado se hizo un análisis de datos en el mes de junio para lo cual se presentan fichas de control de perforación de los tres equipos rock drill.

	REPORTI	DE PERFOR	ACION MES JU	NIO TURNO	DIA, EQUIPO	ROCK DRILL	L SANDVIK PA	ANTERA DP 1	500i, DIAMET	RO DE PERF	ORACION 5 PU	LGADAS	
	HORAS	CHARLA DE	ABASTECIMIE	ABASTECIMI	STAND BY	STAND BY	TRASLADO	CAMBIO,	ATASCAMIE	TOTAL DE	PRODUCTIVID	METROS POR	VELOCIDAD
	EFECTIVAS	SEGURIDAD	NTO DE	ENTO DE	POR FALTA	POR	DE EQUIPO	ROTACION	NTO DE	HORAS POR	AD: PERF./DIA	DIA	DE
FECHA	PERFORADAS		COMBUSTIBL	AGUA	DE AREA	MANTENIMI	CAMBIO DE	DE BARRAS	ACEROS	GUARDIA	(9.51 min/perf.)	MEJORADO	PERFORACIO
			E			ENTO	FRENTE	Y BROCA				(6.3 alt. Prom	N
	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	6.3 P/H-6.3 ML	METROS	M/Hora
1/06/2024	7.67	0.25	0.17	0.21	0	2	0.3	0	0.4	11	48	304	39.69
2/06/2024	9.41	0.25	0.17	0.17	1	0	0	0	0	11	59	373	39.69
3/06/2024	10.07	0.25	0.17	0.21	0	0	0	0	0.3	11	63	400	39.69
4/06/2024	6.23	0.25	0.17	0.15	0	4	0	0	0.2	11	39	247	39.69
5/06/2024	6.37	0.25	0.17	0.21	4	0	0	0	0	11	40	253	39.69
6/06/2024	7.87	0.25	0.17	0.21	0	2	0.5	0	0	11	50	312	39.69
7/06/2024	9.37	0.25	0.17	0.21	0	1	0	0	0	11	59	372	39.69
8/06/2024	6.57	1	0.17	0.16	3	0	0	0.1	0	11	41	261	39.69
9/06/2024	6.38	0.25	0.16	0.21	3	0	0.5	0.5	0	11	40	253	39.69
10/06/2024	9.88	0.25	0.16	0.21	0.5	0	0	0	0	11	62	392	39.69
11/06/2024	5.88	0.25	0.16	0.21	1	3	0	0.2	0.3	11	37	233	39.69
12/06/2024	10.09	0.25	0.16	0.5	0	0	0	0	0	11	64	400	39.69
13/06/2024	0	0	0	0	0	11	0	0	0	11	0	0	0.00
14/06/2024	5.67	0.25	0.17	0.21	1	3	0.4	0	0.3	11	36	225	39.69
15/06/2024	6.62	1	0.17	0.21	3	0	0	0	0	11	42	263	39.69
16/06/2024	7.67	0.25	0.17	0.21	0	2	0	0.4	0.3	11	48	304	39.69
17/06/2024	10.38	0.25	0.17	0.2	0	0	0	0	0	11	65	412	39.69
18/06/2024	4.48	0.25	0.17	0.2	2	3	0.4	0.3	0.2	11	28	178	39.69
19/06/2024	6.88	0.25	0.17	0.2	3	0	0	0	0.5	11	43	273	39.69
20/06/2024	10.38	0.25	0.17	0.2	0	0	0	0	0	11	65	412	39.69
21/06/2024	6.38	0.25	0.17	0.2	2	2	0	0	0	11	40	253	39.69
22/06/2024	9.98	0.25	0.17	0.2	0	0	0.4	0	0	11	63	396	39.69
23/06/2024	8.48	0.25	0.17	0.2	1.4	0	0	0	0.5	11	53	337	39.69
24/06/2024	7.08	0.25	0.17	0.2	3	0	0	0	0.3	11	45	281	39.69
25/06/2024	8.38	0.25	0.17	0.2	1	0	0.5	0.5	0	11	53	333	39.69
26/06/2024	9.38	0.25	0.17	0.2	0	1	0	0	0	11	59	372	39.69
27/06/2024	7.88	0.25	0.17	0.2	2	0	0	0.5	0	11	50	313	39.69
28/06/2024	6.97	0.25	0.17	0.21	0	3	0	0	0.4	11	44	277	39.69
29/06/2024	9.12	1	0.17	0.21	0	0	0.5	0	0	11	57	362	39.69
30/06/2024	6.37	0.25	0.17	0.21	2	2	0	0	0	11	40	253	39.69
TOTAL	227.89	9.5	4.89	6.12	32.9	39	3.5	2.5	3.7	330	1436	9045	39.69
PORCENTAJES	69.06	2.88	1.48	1.85	9.97	11.82	1.06	0.76	1.12	100%	1436 PERF/MES	9045 Mt/ mes	39.7M/H

Figura 26. Reporte de perforación del mes de junio equipo 1 Sandvik Pantera DP 1500i

Fuente: Elaboración propia

REPORTE DE PERFORACION MES JUNIO TURNO DIA, EQUIPO ROCK DRILL EPIROC D65, DIAMETRO DE 5 PULGADAS													
	HORAS	CHARLA DE	ABASTECIMIEN	ABASTECIMI	STAND BY	STAND BY	TRASLADO	CAMBIO.	ATASCAMIE	TOTAL DE	PRODUCTIV	METROS POR	VELOCIDA
	EFECTIVAS	SEGURIDAD	TO DE	ENTO DE	POR FALTA	POR	DE EOUIPO	ROTACION	NTO DE	HORAS POR	IDAD: PERF.	DIA	D DE
FECHA	PERFORADAS		COMBUSTIBLE	AGUA	DE AREA	MANTENIMIE	CAMBIO DE	DE BARRAS	ACEROS	GUARDIA	POR DIA	MEJORADO	PERFORACI
						NTO	FRENTE	Y BROCA			9.51 min/perf.	(6.3 alt. Prom)	ON
	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	6.3 P/H-6.3 MI	METROS	M/Hora
01/06/2024	9.16	0.25	0.17	0.22	0	1	0	0	0.2	11	58	364	39.69
02/06/2024	9.07	0.25	0.17	0.21	1	0	0	0.3	0	11	57	360	39.69
03/06/2024	9.08	0.25	0.17	0.2	0.5	0	0.5	0	0.3	11	57	360	39.69
04/06/2024	8.08	0.25	0.17	0.2	0.3	2	0	0	0	11	51	321	39.69
05/06/2024	4.38	0.25	0.17	0.2	1	5	0	0	0	11	28	174	39.69
06/06/2024	9.68	0.25	0.17	0.2	0	0	0.5	0	0.2	11	61	384	39.69
07/06/2024	10.38	0.25	0.17	0.2	0	0	0	0	0	11	65	412	39.69
08/06/2024	7.13	1	0.17	0.2	2	0	0	0.5	0	11	45	283	39.69
09/06/2024	0	0	0	0	0	11	0	0	0	11	0	0	0
10/06/2024	5.58	0.25	0.17	0	0	5	0	0	0	11	35	221	39.69
11/06/2024	6.28	0.25	0.17	0.2	3	0	0.6	0.2	0.3	11	40	249	39.69
12/06/2024	10.38	0.25	0.17	0.2	0	0	0	0	0	11	65	412	39.69
13/06/2024	8.38	0.25	0.17	0.2	2	0	0	0	0	11	53	333	39.69
14/06/2024	7.88	0.25	0.17	0.2	0	2	0	0	0.5	11	50	313	39.69
15/06/2024	6.93	1	0.17	0.2	1.5	0	0.5	0.5	0.2	11	44	275	39.69
16/06/2024	10.08	0.25	0.17	0.2	0	0	0	0	0.3	11	64	400	39.69
17/06/2024	6.38	0.25	0.17	0.2	2	2	0	0	0	11	40	253	39.69
18/06/2024	8.88	0.25	0.17	0.5	0.4	0	0.5	0.3	0	11	56	352	39.69
19/06/2024	9.18	0.25	0.17	0.5	0	0	0	0.4	0.5	11	58	364	39.69
20/06/2024	8.38	0.25	0.17	0.2	2	0	0	0	0	11	53	333	39.69
21/06/2024	5.88	0.25	0.17	0.2	2	2	0.5	0	0	11	37	233	39.69
22/06/2024	9.23	1	0.17	0.2	0	0	0	0	0.4	11	58	366	39.69
23/06/2024	10.38	0.25	0.17	0.2	0	0	0	0	0	11	65	412	39.69
24/06/2024	5.38	0.25	0.17	0.2	3	2	0	0	0	11	34	214	39.69
25/06/2024	9.98	0.25	0.17	0.2	0	0	0	0	0.4	11	63	396	39.69
26/06/2024	7.88	0.25	0.17	0.2	0	2	0.5	0	0	11	50	313	39.69
27/06/2024	6.88	0.25	0.17	0.2	3	0	0	0.5	0	11	43	273	39.69
28/06/2024	8.38	0.25	0.17	0.2	1.5	0	0	0	0.5	11	53	333	39.69
29/06/2024	7.23	1	0.17	0.2	0	2	0	0.4	0	11	46	287	39.69
30/06/2024	9.88	0.25	0.17	0.2	0.5	0	0	0	0	11	62	392	39.69
TOTAL (H)	236.39	10.25	4.93	6.23	25.7	36	3.6	3.1	3.8	330	1489	9382	39.69
PORCENTAJES	71.63	3.11	1.49	1.89	7.79	10.91	1.09	0.94	1.15	100	1489 perf/mes	9382 met./mes	39.69 M/H

Figura 27. Reporte de perforación del mes de junio equipo 2 Epiroc D 65

REPORTE DE PERFORACION MES JUNIO TURNO DIA, EQUIPO ROCK DRILL SANDVIK DX 800, DIAMETRO DE PERFORACION 3.5 PULGADAS													
	HORAS	CHARLA DE	ABASTECIMI	ABASTECIMI	STAND BY	STAND BY	TRASLADO	CAMBIO,	PARADA	TOTAL DE	PRODUCTIVID	METROS POR	
	EFECTIVAS	SEGURIDAD	ENTO DE	ENTO DE	POR FALTA	POR	DE EQUIPO	ROTACION	POR	HORAS POR	AD PERF. POR	DIA	VELOCIDAD
EEGHA	PERFORADA		COMBUSTIBL	AGUA	DE AREA	MANTENIMI	CAMBIO DE	DEBARRAS	ATASCAMIE	GUARDIA	DIA 12	MEJORADODO	DE
FECHA	S		E			ENTO	FRENTE	YBROCA	NTO DE		min/perf	(6.3 alt. prom)	PERFORACION
									ACEROS				
	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	5 P/H- 6.3m	METROS	M/Hora
01/06/2024	8.58	0.25	0.17	0.5	0	1	0	0	0.5	11	43	270	31.5
02/06/2024	9.93	0.25	0.17	0.15	0	0	0	0.5	0	11	50	313	31.5
03/06/2024	7.83	0.25	0.17	0.15	1.5	0	0.6	0	0.5	11	39	247	31.5
04/06/2024	8.43	0.25	0.17	0.15	0	0	2	0	0	11	42	266	31.5
05/06/2024	8.43	0.25	0.17	0.15	0	2	0	0	0	11	42	266	31.5
06/06/2024	7.93	0.25	0.17	0.15	2.5	0	0	0	0	11	40	250	31.5
07/06/2024	6.78	0.25	0.17	0.3	3	0	0	0	0.5	11	34	214	31.5
08/06/2024	7.31	1	0.17	0.22	0	1	1	0.3	0	11	37	230	31.5
09/06/2024	7.86	0.25	0.17	0.22	2	0	0.5	0	0	11	39	248	31.5
10/06/2024	8.96	0.25	0.17	0.22	0.5	0	0	0.5	0.4	11	45	282	31.5
11/06/2024	6.36	0.25	0.17	0.22	1	3	0	0	0	11	32	200	31.5
12/06/2024	9.46	0.25	0.17	0.22	0	0	0	0.4	0.5	11	47	298	31.5
13/06/2024	4.36	0.25	0.17	0.22	2	3	1	0	0	11	22	137	31.5
14/06/2024	9.46	0.25	0.17	0.22	0	0	0	0.4	0.5	11	47	298	31.5
15/06/2024	0	0	0	0	0	11	0	0	0	11	0	0	0
16/06/2024	9.96	0.25	0.17	0.22	0	0	0	0.4	0	11	50	314	31.5
17/06/2024	7.46	0.25	0.17	0.22	2.5	0	0.4	0	0	11	37	235	31.5
18/06/2024	7.06	0.25	0.17	0.22	0	3	0	0	0.3	11	35	222	31.5
19/06/2024	7.28	0.25	0.17	0.8	2	0	0	0.5	0	11	36	229	31.5
20/06/2024	9.56	0.25	0.17	0.22	0	0	0.6	0.2	0	11	48	301	31.5
21/06/2024	10.06	0.25	0.17	0.22	0	0	0	0	0.3	11	50	317	31.5
22/06/2024	10.36	0.25	0.17	0.22	0	0	0	0	0	11	52	326	31.5
23/06/2024	7.83	0.25	0.17	0.25	2	0	0.5	0	0	11	39	247	31.5
24/06/2024	9.53	0.25	0.17	0.25	0	0	0	0.5	0.3	11	48	300	31.5
25/06/2024	0	0	0	0	0	11	0	0	0	11	0	0	0
26/06/2024	7.68	0.25	0.17	0.7	1	1	0.2	0	0	11	38	242	31.5
27/06/2024	8.11	0.25	0.17	0.17	2	0	0	0.3	0	11	41	255	31.5
28/06/2024	6.81	0.25	0.17	0.17	3	0	0.3	0	0.3	11	34	215	31.5
29/06/2024	4.47	1	0.17	0.36	0	5	0	0	0	11	22	141	31.5
30/06/2024	8.61	0.25	0.17	0.17	1.8	0	0	0	0	11	43	271	31.5
TOTAL	226.46	8.5	4.76	7.28	26.8	41	7.1	4	4.1	330	1132	7133	31.50
PORCENTAJES	68.62	2.58	1.44	2.21	8.12	12.42	2.15	1.21	1.24	100	1132 P./MES	7133 M/MES	31.5 M/H

Figura 28. Reporte de perforación del mes de junio equipo 3 Sandvik DX-800

Fuente: Elaboración propia

4.4.7. Eficiencia de horas hombre

La fuerza laboral del área de perforación durante el mes de junio en una mina de Cerro de Pasco está conformada por un total de 22 colaboradores véase en el anexo 6, Para el presente estudio se ha considerado 9 colaboradores distribuidos en equipos de trabajo de 3 integrantes por cada equipo. Cada equipo está compuesto por un supervisor, un operador de rock drill y un ayudante de rock drill. Para el presente estudio de eficiencia en el uso de horas-hombre, se considerará un periodo de 30 días laborados por 11 horas programadas al día, según se detalla en la siguiente tabla.

Tabla 43. Horas hombre planificados despues de la implentación

	Numero de personal	Horas por día	Días/mes	Horas por mes/ equipo
Horas hombre supervisión	1	11	30	330
Horas hombre operadores	1	11	30	330
Horas hombre ayudante de				
perforación	1	11	30	330
Total, de horas-hombre planificada	s/ equipo			990

Fuente: Elaboración propia.

Tabla 44. Horas hombre productivas por equipo rock drill Sandvik Pantera DP 1500i después de la implantación

ae ia impianiaciói	ı								
	Horas	efectiv	as	Equipo de t	rabajo de 3	Total,	de	horas-	hombre
	trabaja	dos p	or	integrantes		reales t	raba	ajados p	or mes
	mes								
Equipo 1	2	62.5		3	3		,	787.5	

Porcentaje de eficiencia de horas-hombre.

$$KPI = \left(\frac{Horas\ reales\ trabajados}{Horas\ Planeadas}\right) x\ 100$$

$$KPI = \left(\frac{787.5}{990}\right) x \ 100 = 79.54\%$$

Por lo tanto, la eficiencia en el uso de horas-hombre del equipo número 1 se ha calculado en un 79.54%, reflejando su desempeño en el periodo analizado.

Tabla 45. Horas hombre productivas por equipo rock drill Epiroc D65 después de la implantación

	Horas efectivas	Equipo de trabajo de 3	Total, de horas- hombre
	trabajados por	integrantes	reales trabajados por mes
	mes		
Equipo 2	279.8	3	821.4

Fuente: Elaboración propia.

Porcentaje de eficiencia de horas-hombre.

$$KPI = \left(\frac{Horas\ reales\ trabajados}{Horas\ Planeadas}\right) x\ 100$$

$$KPI = \left(\frac{812.4}{990}\right) x \ 100 = 82.06\%$$

Por ende, la eficiencia en el uso de horas-hombre del equipo número 2 se ha calculado en un 82.06%, reflejando su desempeño en el periodo analizado.

Tabla 46. Horas-hombre productivas por equipo rock drill Sandvik DX 800 después de la implantación

ітріапіасіоп			
	Horas efectivas	Equipo de trabajo de 3	Total, de horas- hombre
	trabajados por	integrantes	reales trabajados por mes
	mes		
Equipo 3	267.2	3	801.6

Porcentaje de eficiencia de horas-hombre.

$$KPI = \left(\frac{Horas\ reales\ trabajados}{Horas\ Planeadas}\right) x\ 100$$

$$KPI = \left(\frac{801.6}{990}\right) x\ 100 = 80.96\%$$

Es así que la eficiencia en el uso de horas-hombre del equipo número 3 se calcula un 80.96%, reflejando su desempeño en el periodo analizado.

4.4.8. Cálculo de disponibilidad mecánica del mes de junio después del diseño de la implementación del plan de mantenimiento

Para determinar la disponibilidad del equipo de perforación tenemos 330 horas programados al mes/ equipo de los cuales el equipo numero 1 rock drill Sandvik pantera trabajo 291 horas véase en el anexo 7 del presente estudio, para determinar usaremos la fórmula de disponibilidad:

4.4.8.1. Equipo 1 rock drill Sandvik Pantera DP 1500i

Disponibilidad Mecánica =
$$\left(\frac{Horas\ total\ operativo}{Horas\ total\ programados}\right) x\ 100$$

Disponibilidad Mecánica =
$$\left(\frac{291}{330 \text{ horas}}\right) x 100$$

Disponibilidad Mecánica = 88.18%

4.4.8.2. Equipo 2 rock drill Epiroc D65

Para determinar la disponibilidad del equipo de perforación tenemos 330 horas programados al mes/ equipo de los cuales el equipo numero 2 rock drill Epiroc D65 trabajo 294 horas véase

en el anexo 8 del presente estudio, para determinar usaremos la fórmula de disponibilidad mecánica:

Disponibilidad Mecánica =
$$\left(\frac{Horas\ total\ operativo}{Horas\ total\ programados}\right) x\ 100$$

Disponibilidad Mecánica =
$$\left(\frac{294}{360 \text{ horas}}\right) x 100$$

Disponibilidad Mecánica = 89.09%

4.4.8.3. Equipo 3 rock drill Sandvik DX 800

Para determinar la disponibilidad del equipo de perforación tenemos 330 horas programados al mes/ equipo de los cuales el equipo numero 3 rock drill Sandvik DX 800 trabajo 289 horas véase en el anexo 9 del presente estudio, para determinar usaremos la fórmula de disponibilidad mecánica:

Disponibilidad Mecánica =
$$\left(\frac{Horas\ total\ operativo}{Horas\ total\ programados}\right) x\ 100$$

Disponibilidad Mecánica =
$$\left(\frac{289}{330 \text{ horas}}\right) x 100$$

Disponibilidad Mecánica = 87.57%

4.4.8.4. Cálculos de disponibilidad mecánica de equipos de perforación del mes de mayo

Tabla 47. Cálculos de disponibilidad mecánica del mes de junio después del diseño de plan de mantenimiento

Equipos	Tiempo	Velocidad de	Perforaciones	Tiempo parado	Disponibilidad
rock drill	programado	perforación	por hora	de equipos por	mecánica de
en estudio	de trabajo por	(m/h)	(perf/hr)	mantenimiento	equipos por mes
	mes (hr)			mecánico (hr)	
Equipo 1	330	39.69 m/h	6.3 perf/h	39	88.18 %
Equipo 2	330	39.69 m/h	6.3 perf/h	36	89.09 %
Equipo 3	330	31.5 m/h	5 perf/h	41	87.57 %
Disponibilidad mecánica de equipos rock drill					88.28%

Fuente: Elaboración Propia

En la tabla 47 se observa que el sistema de control efectivo de las horas máquina tiene un impacto positivo, ya que la disponibilidad mecánica en promedio de los tres equipos llega a

88.28% donde los datos se evidencian en el anexo 7, anexo 8, anexo 9. Además, nos muestra 6.3 perforaciones por hora con un avance de 39.69 metros por hora de los equipos pantera dp1500i y Epiroc D 65 mientras el equipo DX 800 registro 5 perforaciones.

4.4.9. Análisis comparativo que valide la eficiencia operativa de disponibilidad mecánica y productividad.

Tabla 48. Comparativo de eficiencia operativa entre el mes de mayo y junio

Comparativo de eficiencia operativa de ex ante y ex post						
Indicador Ex ante Ex post Observaciones						
			Aumento por implementación de			
Disponibilidad mecánica	84.53%	88.28%	mantenimiento preventivo			
			Aumento por el control de horas de			
Productividad	6 perf/h	6.3 perf/h	perforación			
			Aumento por control de horas-hombre de			
Eficiencia de h-hombre	75.90 %	80.85%	perforación			

Fuente: Elaboración Propia

4.4.9.1. Contrastes de ex ante y ex post de optimización de perforación

Durante el mes de mayo, sin la implementación de un plan de mantenimiento preventivo, la disponibilidad mecánica alcanzó el 84.53%, mientras que la productividad fue de 6 perforaciones por hora con un avance de 37.8 metros por hora. No obstante, tras la implementación del plan de mantenimiento preventivo en junio, con un seguimiento detallado, la disponibilidad mecánica aumentó al 88.28% y las perforaciones con la implementación del de control de horas maquina a través del diagrama analítico de proceso donde se especificó el tiempo estándar de 9 minutos con 51 segundos lo que ha aumentado las perforaciones a 6.3 perforaciones por hora con un avance de 39.69 metros por hora. Estos resultados confirman que los equipos operaron dentro del rango esperado.

4.4.9.2. Cálculo de costos de perforación

La estimación del total de costos de perforación donde se incluye el costo de la broca, costos de martillo DTH, tubo de DTH, shank DTH, vida útil de aceros, costo de maquina perforadora por hora y velocidad de penetración. Así expresaremos en la siguiente ecuación. Costo variable de perforación:

$$CVP = (\frac{costo\ de\ la\ broca}{rendimiento\ de\ la\ broca} + \frac{costo\ de\ martillo\ TDH}{rendimiento\ de\ martillo\ TDH} + \frac{costo\ de\ tubo\ de\ perf. TDH}{rendimiento\ de\ tubo\ TDH} + \frac{costo\ de\ shank\ TDH}{rendimiento\ shank\ TDH} + \frac{costo\ de\ maq.\ perforado\ por\ hora}{rendimiento\ velocidad\ de\ penetracion}) = \$/m$$

Tabla 49. Costos de perforación Sandvik Pantera DP 1500i

Costo variable: precio y vida útil de aceros de perforación con martillo hidráulico HL1560i					
Aceros de perforación	Precio	Vida útil (m)	Velocidad de penetración (m/h)	Costo total de perforación (\$/m)	
Broca de insertos5" retráctil 1 und	\$380.00	2500	39.69	\$0.15	
Shank adapter por 1 und	\$320.00	14000	39.69	\$0.02	
Barra GT 60 MF por 3 und	\$1500.00	5000	39.69	\$0.30	
Costo por hora de una maquina perforadora \$/h	\$210.00			\$5.29	
Costo combustible/metro	\$1.59				
Costo variable total \$/m	Costo variable total \$/m				
Costo fijo/mes: véase en anexo 10 \$77,249.12 Costo fijo/día				\$2,574.97	
Metros perforados/día				301.2	
Consumo de combustible/día: = (13.22gal/h)*(horas/día)*(precio/ga)	\$477.84				
Costo diario: = (costo variable*met/día) +	\$4789.49				
Costo general: = (costo diario/met. día) + costo diésel/metro					
Costo general de perforación \$/m				\$16.17	
Costo general de perforación por tonelada	explotada \$/t			\$0.1132	

La tabla nos muestra que el costo variable de perforación el costo fijo/día, el consumo de combustible/hora, metros perforados/día, el costo diario nos da el costo general de perforación por metro perforado en 15.52 \$/m. y el cálculo del costo por tonelada no da en 0.1114 \$/t véase en el anexo 13.

Tabla 50. Costos de perforación Epiroc D65

Costo variable: precio y vida útil de aceros de perforación con DTH					
Aceros de perforación	Precio	Vida útil (m)	Velocidad de penetración (m/h)	Costo total de perforación (\$/m)	
Broca de insertos5" retráctil 1 und	\$380.00	3000	39.69	\$0.13	
Martillo de fondo DTH por 1 und	4500	8000	39.69	\$0.56	
Shank adapter por 1 und	\$320.00	14000	39.69	\$0.02	
Tubo de perforación DTH por 2 und	\$600.00	5000	39.69	\$0.06	
Costo por hora de una maquina perforadora \$/h	\$200.00			\$5.04	
Costo combustible/metro				\$1.55	
Costo variable total \$/m				\$7.36	
Costo fijo/mes: véase en anexo 10 \$77,249.12 Costo fijo/día				\$2,574.97	
Metros perforados/día				313	
Consumo de combustible/día: = (13.22gal/h)*(horas/día)*(precio/ga)	horas/día 8	pre	ecio/gal \$4.6	\$485.92	
Costo diario: = (costo variable*met/día) +	\$4879.28				
Costo general: = (costo diario/met. día) + costo diésel/metro					
Costo general de perforación \$/m	\$15.84				

La tabla muestra que el costo variable de perforación, el costo fijo/día, el consumo de combustible/hora, metros perforados/día, el costo diario da como resultado el costo general de perforación por metro perforado en 15.98 \$/m. y el cálculo del costo por tonelada con un total de en 0.1119 \$/t véase en el anexo 13.

Tabla 51. Costos de perforación Sandvik DX 800

Costo variable: precio y vida útil de aceros de perforación con martillo hidráulico HL800					
Aceros de perforación	Precio	Vida útil (m)	Velocidad de penetración (m/h)	Costo total de perforación (\$/m)	
Broca de insertos 3.5" retráctil 1 und	\$180.00	2500	31.5	\$0.07	
Shank adapter por 1 und	\$230.00	10000	31.5	\$0.02	
Barra GT 60 MF por 3 und	\$1200.00	3000	31.5	\$0.40	
Costo por hora de una maquina perforadora \$/h	\$170.00			\$5.40	
Costo combustible/metro	\$1.20				
Costo variable total \$/m	\$7.10				
Costo fijo/mes: véase en anexo 10 \$77,249.12 Costo fijo/día				\$2,574.97	
Metros perforados/día				238	
Consumo de comb/día: = (7.8gal/h)*(horas/día)*(precio/gal)	\$286.70				
Costo diario: = (costo variable*met/dia) +	\$4263.93				
Costo general: = (costo diario/met.dia)					
Costo general de perforación \$/m				\$18.26	
Costo general de perforado por tonelada e	explotada \$/t			\$0.1278	

Fuente: Elaboración Propia

La tabla nos muestra que el costo variable de perforación el costo fijo/día, el consumo de combustible/hora, metros perforados/día, el costo diario nos da el costo general de perforación por metro perforado en 17.92 \$/m. y el cálculo del costo por tonelada no da en 0.1255 \$/t véase en el anexo 13

Tabla 52. Fórmulas para determinar el costo por tonelada

Fórmulas para determinar el costo por tonelada					
Burden (m)					
Espaciamiento (m)					
Altura promedio (m)					
Metros cúbicos por taladro = (B x E x M)					
Metros cúbicos por metro = $((m^3/m) / (altura promedio m))$					
Metros cúbicos por día= ((metros cúbicos/metro) x metros perforados por día)					
Densidad de mineral g/cm3= tabla de mineralogía zinc 7.14 g/cm ³					
Toneladas por día= Metros cúbicos por día x densidad del mineral					

Metros perforados por día= Ficha de registro de perforación anexo 4				
Toneladas de mineral por metro= Toneladas por día / metros perforados por día				
Costos dólares por metro perforado= costo de perforación				
Costo dólares por tonelada explotados= ((Costo de perf. /m) / (ton/metro perforado)				

4.4.9.3. Reducción de costos con optimización de procesos de perforación ex ante y ex post

Tabla 53. Comparativo de reducción de costos con optimización ex ante y ex post

Reducción de costos con optimización de procesos de perforación ex ante y ex post							
Indicador	Ex ante	Ex post	Observaciones				
			Reducido por control de horas e				
			implantación de mantenimiento				
Dólares/ metro perforado	17.97\$/m	16.76 \$/m	preventivo, estandarización de tiempos				
			redujo por el control de horas de				
Dólares /tonelada explotada	0.1258 \$/T	0.1173 \$/ton					

Fuente: Elaboración Propia

La tabla nos da una clara visión que con la implementación del sistema de control de horas maquina y la implementación del mantenimiento preventivo reduce de 17.97 \$/m a 16.47 \$/m evidenciando un ahorro significativo de 0.83 \$/m perforado y el costo por tonelada de 0.1154 \$/t redujo a 0.1153 \$/t evidenciando un ahorro de 0.001 \$/t explotada.

4.5. Diseño del proceso de voladura mediante el software Wipfrag

Para diseñar el proceso de voladura mediante el software Wipfrag, es fundamental realizar un análisis detallado de los resultados post-voladura, además, es necesario utilizar la regla P80 dado que permite determinar si el tamaño de las rocas obtenidas es el adecuado para su posterior procesamiento. Para ello, se emplean herramientas especializadas como el software Wipfrag, que facilitan el estudio minucioso de la granulometría del material volado mediante imágenes de alta resolución post voladura, las cuales son cargadas en el software para realizar el análisis de imágenes y los ajustes necesarios para establecer una escala de medición precisa. Una vez insertado los datos al software, se ejecuta el análisis y se generan los resultados que permiten visualizar la distribución de tamaños de las rocas, finalmente más allá de los números y gráficos, este proceso impacta directamente en la operación minera, ya que una fragmentación adecuada reduce costos en chancado y molienda, mejora la seguridad en el transporte del material y optimiza el rendimiento de la planta, representando así una oportunidad para perfeccionar el proceso, hacer más eficiente la operación y contribuir al desarrollo sostenible de la minería.

4.5.1. Porcentaje de rocas > a 20 centímetros y < a 20 centímetros

El cálculo del porcentaje granulométricos post voladura se ha determinado realizando un análisis de datos de un registro de 16 voladuras durante el periodo del mes de mayo considerando los parámetros fundamentales de la regla P80. El 80% de rocas deben corresponder a menores de 20 centímetros y el 20% de rocas debe corresponder a rocas mayores a 20 centímetros. El caso ha sido registrado mediante la siguiente tabla.

Tabla 54. Registro de datos de voladura mes mayo

Fecha	Porcentaje de rocas menores a 20 centímetros	Porcentaje de rocas mayores a 20 centímetros	Kilogramos de explosivo usado/ voladura	Volumen de roca en m3 volados
2/05/2024	74 %	26 %	4800	16000
4/05/2024	73 %	27 %	5580	18600
6/05/2024	76 %	24 %	6000	20000
8/05/2024	72 %	28 %	4500	15000
10/05/2024	75 %	25 %	4440	14800
12/05/2024	69 %	31 %	3180	10600
14/05/2024	71 %	29 %	4260	16000
16/05/2024	79 %	21 %	3900	13000
18/05/2024	77 %	23 %	2400	8000
20/05/2024	76%	24%	3150	10500
22/05/2024	75 %	25 %	3600	12000
24/05/2024	73 %	27 %	4440	14800
26/05/2024	72 %	28 %	4050	13500
28/05/2024	75 %	25 %	3000	10000
30/05/2024	78 %	22 %	5400	18000
31/05/2024	73 %	27 %	4500	15000
Porcentaje	74.25 %	25.75 %	67200kg	225800m3

Fuente: Elaboración Propia

En la tabla 54 se muestra un registro de voladuras con dimensiones de rocas mayores y menores a 20 cm².

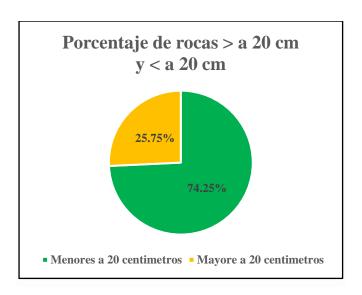


Figura 29. Porcentaje de roca > a 20 cm y < a 20 cm

La figura 29 nos muestra que no llegamos a la regla P80 dado que el 74.25 % es menor a lo requerido de un 80 % y el 26.75% es rocas mayores a 20 centímetros.

4.5.2. Planteamiento de diseño de voladura mes de junio

Para el diseño de voladura se identificó en base a un análisis del macizo rocoso y comunicación con los operadores de rock drill, que en zona de perforación había espacios vacíos producto de explotaciones subterráneas de décadas pasadas, por lo que las voladuras en esos taladros de perforación ahora con el método superficial fueron afectadas a la detonación ineficiente.

4.5.3. Planteamiento de diseño de carga con cargas espaciadas en taladros de perforación

Se propone un diseño de carga enfocado exclusivamente en la utilización de cargas espaciadas con cámaras de aire para optimizar la fragmentación del macizo rocoso en condiciones donde los taladros presentan zonas vacías o discontinuas. Esta técnica consiste en distribuir el explosivo en segmentos separados, en perforaciones identificados, intercalados con cámaras de aire controladas, aprovechando los espacios vacíos naturales. La finalidad es modificar la distribución de la energía detonante, concentrándola en zonas clave del taladro para lograr una ruptura más eficiente del mineral. Este tipo de carga permite disminuir el consumo de explosivo sin comprometer la calidad de la fragmentación, ya que las cámaras de aire actúan como reflectores de onda de choque, intensificando la fractura radial. Adicionalmente, mejora la distribución del gas de detonación, facilita el alivio de tensiones internas y optimiza el patrón de fragmentación. Esta estrategia resulta especialmente eficaz en

bancos de roca con variaciones geomecánicas o presencia de huecos, donde una carga continua generaría resultados irregulares como las obtenidas.

4.5.4. Imágenes con carga normal y con carga espaciada

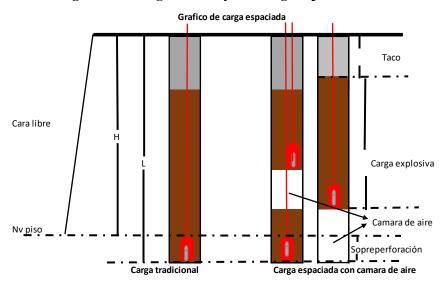


Figura 30. Carga normal y carga espaciada propuesto

Fuente: Elaboración propia

Tabla 55. Registro de datos de voladura mes de junio

Fecha	Porcentaje de rocas menores a 20 centímetros	Porcentaje de rocas mayores a 20 centímetros	Kilogramos de explosivo usado/ voladura	Volumen de roca en m3 volados
1/06/2024	75 %	25 %	4800	16000
4/06/2024	76 %	24 %	5580	18600
6/06/2024	76 %	24 %	6000	20000
8/06/2024	74 %	26 %	4500	15000
10/06/2024	76 %	24 %	4440	14800
12/06/2024	79 %	21 %	3180	10600
14/06/2024	76 %	24 %	4260	16000
16/06/2024	78 %	22 %	3900	13000
18/06/2024	76 %	24 %	2400	8000
20/06/2024	78 %	22 %	3150	10500
22/06/2024	76 %	24 %	3600	12000
24/06/2024	74 %	26 %	4440	14800
26/06/2024	77 %	23 %	4050	13500
28/06/2024	78 %	22 %	3000	10000
30/06/2024	78 %	22 %	4500	15000
Porcentaje	76.46%	23.54%	61800kg	207800m3

Fuente: Elaboración propia

La tabla 55 nos muestra 15 voladuras realizadas en el mes de junio donde las rocas menores a 20 centimetros alcanza a 76.46% y rocas mayores a 20 centimetros 23.53%.

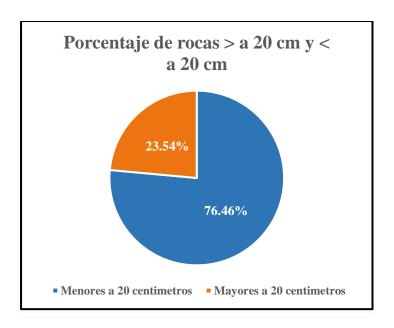


Figura 31. Porcentaje de roca > a 20 cm y < a 20 cm

4.5.5. Resultados de Wipfrag

4.5.5.1. Procesos del software Wipfrag

Determinación de escala: La determinación de la escala fue dada por el software Wipfrag tomando de referencia el balón colocado en campo post voladura también se puede determinar que el balón mide aproximadamente 20 centímetros que equivale a 35 pixeles.

Malla: Se crea una malla correspondiente a la granulometría que se desea medir, se procura borrar las zonas que no se utilizarán.

Zona de exclusión: Al igual que al formar la malla, se excluye zonas donde no existen roca alguna, para llegar de forma óptima al resultado deseado.

Tamiz: Se genera un filtro para medir los tamaños de los bloques. Se obtiene la curva de distribución granulométrica.

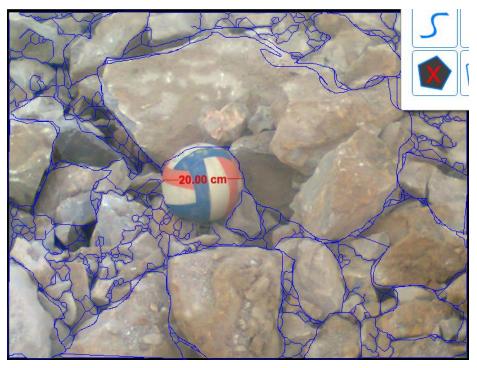


Figura 32. Imagen fotográfica de enmallado con Wipfrag

En la figura 32 se observa el enmallado con líneas azules de rocas y como referencia para los tamaños de fragmentos se utilizó el registro fotográfico con un balón de 20 centímetros.

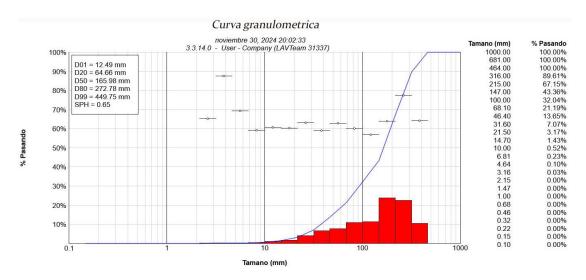


Figura 33. Línea de curva granulométrica del software Wipfrag

Fuente: Elaboración propia.

En la figura 33 se observa la línea azul que es la curva del porcentaje de aprobación acumulada. Los valores de tamaño y porcentaje de aprobación se ven a la derecha y representa la curva de porcentaje de fragmentos. El histograma representa el porcentaje de valores detenidos para cada tipo de tamaño.

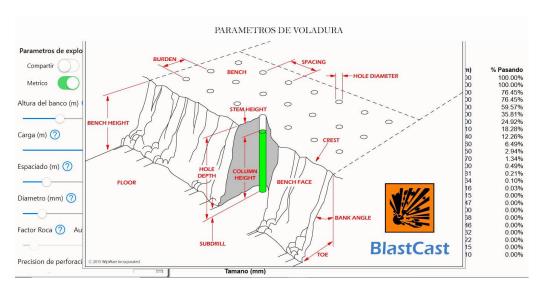


Figura 34. Diseño de malla según software Wipfrag

En la figura 34 se observa el diseño de distribución de los parámetros de una perforación y los parámetros de voladura.

4.5.5.2. Reducción de boloneria en proceso de voladura

Con la implementación del diseño de carga espaciada desde el resultado del software wipfrag podemos evidenciar que se ha reducido las bolonerias como se muestra en la siguiente tabla.

Tabla 56. Reducción de bolonerias de voladura

Mayo	Junio
Rocas menores a 20 cm 74.25%	Rocas menores a 20 cm 76.46%
Rocas mayores a 20 cm 25.75%	Rocas mayores a 20 cm 23.54%

Fuente: Elaboración Propia

La tabla 56 nos muestra una eficiencia operativa dado que se acerca a la regla P80 por lo aumento la fragmentación en 2.21% y la boloneria redujo 2.21%.

CONCLUSIONES

- 1. En conclusión, se aplicó herramientas estratégicas y técnicas que optimizaron el proceso de perforación y voladura, mejorando la productividad, disponibilidad y costos. El análisis FODA y los indicadores técnicos guiaron decisiones efectivas. Además, las perforaciones aumentaron de 6 a 6.3 perforaciones por hora, la disponibilidad mecánica aumento de 84.53 % a 88.28 %, el costo de perforación por metro perforado se redujo de 17.97 \$/m a 16.76 \$/m y costo por tonelada redujo de 0.1258 \$/T a 0.1173 \$/T y el porcentaje de granulometría de voladura se redujo de 25.75% a 23.54%.
- 2. En conclusión, la aplicación del análisis FODA permitió definir estrategias ofensivas que optimizan la eficiencia en perforación y voladura. Esto fortalece la producción minera y mejora la competitividad en el sector minero. Además, la estrategia de reorientación de implementar un programa en capacitación continua en automatización para maximizar el impacto productivo.
- 3. La situación actual del proceso de perforación y voladura fue diagnosticada con el diagrama de operaciones del proceso, diagrama de Ishikawa, diagrama de Pareto y los 5 porqués. Asimismo, se registraron indicadores del proceso de perforación y voladura obteniéndose la disponibilidad mecánica del mes de mayo en 84.53% con eficiencia de horas hombre 75.90% proporcionando datos claves para la toma de decisiones y mejorar la eficiencia operativa.
- 4. En los resultados obtenidos se muestran los procedimientos estructurados mediante un diagrama de flujo de mantenimiento preventivo y un diagrama de flujo de mantenimiento correctivo. Estos permitieron describir de manera clara la secuencia de procesos con cada responsable. Además, la implementación del plan de mantenimiento preventivo garantiza la continuidad operativa de los equipos de perforación.
- 5. La estandarización de tiempos mejoró la productividad reflejada en el incremento de la velocidad de penetración de 37.8 m/h a 39.69 m/h, aumento del número de perforaciones por hora de 6 perf. /h a 6.3 perf. /h, aumento la disponibilidad mecánica de los tres equipos, de 84.53% a 88.28%, la eficiencia de horas hombre trabajados mejoró de 75.90 % a 80.85 %, los costos redujeron de 17.97 \$/m perforado a 16.76 \$/m perforado y por tonelada de 0.1258 \$/t a 0.1173 \$/t. Estos resultados demuestran que los equipos han operado dentro del rango esperado, asegurando así el cumplimiento del objetivo establecido.
- 6. Al simular con el software Wipfrag el proceso de voladura, se evidenció una fragmentación más eficiente de 74.25% a 76.46% producto de la implementación de carga explosiva con carga espaciada que redujo las bolonerias en taladros específicos.

RECOMENDACIONES

- 1. Se recomienda continuar con la integración de herramientas estratégicas y de simulación en los procesos de perforación y voladura, promoviendo una cultura de mejora continua basada en datos. Asimismo, es fundamental fortalecer los programas de capacitación técnica en automatización y análisis de datos, a fin de consolidar la eficiencia operativa alcanzada y adaptar el proceso a futuras innovaciones tecnológicas de perforación y voladura.
- 2. Se recomienda implementar un sistema integrado de gestión por procesos, enfocado en la mejora continua del área de perforación y voladura. Este sistema debe incluir indicadores clave de desempeño KPI alineados a las estrategias ofensivas identificadas, permitiendo monitorear en tiempo real la eficiencia operativa, el avance tecnológico y el impacto del programa de capacitación técnica.
- 3. Es fundamental tomar en cuenta los estudios de tiempo realizados con cronometro adaptado gráficamente al diagrama analítico de proceso de perforación y voladura para futuras planificaciones de perforación y voladura a corto y largo plazo que ayudara a optimizar los procesos. Así también se sugiere monitorear continuamente los procesos dado que el factor de la roca no es homogéneo.
- 4. Se recomienda actualizar y estandarizar los procedimientos de mantenimiento preventivo y correctivo utilizando los diagramas de flujo desarrollado, asegurando su correcta implementación. Además, se sugiere establecer un sistema de monitoreo preventivo para aumentar la disponibilidad mecánica y prevenir futuras fallas.
- 5. Se recomienda poner en uso el proceso de estandarización de tiempos con diagramas analíticos de procesos para evitar tiempos improductivos.
- 6. Es recomendable mantener una comunicación efectiva con los operadores de rock drill para identificar perforaciones que tengan espacios vacíos en el macizo rocoso, para poner cargas espaciadas en las perforaciones requeridas para reducir bolonerias.

REFERENCIAS BIBLIOGRÁFICAS

- 1. **Association, International Zinc.** *Global Zinc Market Overview.* North Carolina: s.n., 2023.
- 2. **SONAMI SOC. NACIONAL DE MINERIA.** *Litio: situacion actual y desafios.* Santiago de Chile: s.n., 2024.
- 3. **Perú, Ministerio de Energía y Minas del.** *Boletín Estadístico Minero*. Lima, Ministerio de Energía y Minas del Perú. 2024. Boletín Estadístico Minero.
- 4. **Ministerio de Energía y Minas del Perú** (**MINEM**). *Anuario Minero 2024*. Lima, MINEM. Lima: s.n., 2024.
- 5. Banco Central de Reserva del Perú (BCRP). Reporte de Inflación y Panorama Económico 2024. Lima, Banco Central de Reserva del Perú (BCRP). 2024.
- 6. Sociedad Nacional de Minería, Petróleo y Energía (SNMPE). . Informe Anual del Sector Minero. Lima, Sociedad Nacional de Minería, Petróleo y Energía (SNMPE). . 2024.
- 7. Sociedad Nacional de Minería, Petróleo y Energía (SNMPE). (2024). Estrategias de Competitividad y Rentabilidad en el Sector Minero. Disponible en: https://www.snmpe.org.pe. Estrategias de Competitividad y Rentabilidad en el Sector Minero. . Lima. Lima : s.n., 2024.
- 8. Improving Productivity Through Drilling and Blasting Optimization. Atlas Copco. Estocolmo: s.n., 2024.
- 9. **Banco Mundial.** . *Minería y Desarrollo Sostenible: Impactos Sociales y Ambientales.* . Washington, D.C., 20433, Washington, D.C., 20433, : s.n., 2024.
- 10. **Ministerio del Ambiente (MINAM).** Guía de Buenas Prácticas Ambientales en Minería: Uso Eficiente de Recursos y Reducción de Impactos. Lima. Lima: s.n., 2024.
- 11. Assessment of noise and ground vibration induced during blasting operations in an open pit mine A case study on Ewekoro limestone quarry, Nigeria. **AFENI, T., OSASAN, S.** Nigeria: s.n., 2009.
- 12. Voladura de rocas. OSPINA, G. Lima: Instituto de ingenieros minas del Peru, 2010.
- 13. Drill Pattern Optimisation for Large Complex Blasts to Improve Fragmentation and Dig Efficiency. **PERINCEK**, **O. et al.** Turquia: s.n., Enero de 2025, Mathematical Geosciences, pág. 577 a 599.

- 14. Actualidad tecnica de ingenieria civil, mineria, geologica y medio ambiente. **ROCHA, M.** Madrid: Ingeopres, 2022, Vol. 296.
- 15. Optimization of the drilling-and-blasting process to improve. YUSSUPOV, K. et al. Kazakhstan: published by EDP Sciences, 2021.
- 16. **ESPINOSA, N. , HORMAECHEA, R.** Optimizacion de procesos de perforacion y voladura en los frentes de trabajo de la sociedad minera Santa Clara, Ponce. Cuenca: Repositorio Universidad del Azuay facultad de ciencias y tecnologia escuela de ingenieria, 2021.
- 17. **BUELE, J.** Optimizacion de los parametros de perforacion y voladura en el avance del tunel de la mina Cabo de Hornos. Cuenca: Repositorio de la universidad de Azuay facultad de ciencias y tecnologia escuela de ingenieria de, 2017.
- 18. **AGUIRRE, A.** Optimización de parámetros de tronadura en función de explosivos de alta energía en Sociedad Contractual Minera El Abra. Santiago: s.n., 2016.
- 19. **GUAMAN, M.** Optimizacion de los procesos de perforacion y voladura en el tunel a-b de interconeccion. Macas: Repositorio de la universidad superior politecnica de chimborazo, 2016.
- 20. Optimization of the Exploitation of the Rock Mass to Increase Productivity Through Mining Planning in CMPSA. **BEJARANO**, **E.**, **GOMEZ**, **W.** Lima: Repositorio de la Facultad de ingeniería-Ing. Minas Universidad Privada del Norte, Perú, 2024.
- 21. **HUALLANCA, J.** Optimización del proceso de perforación y voladura en los avances de la profundización en la mina San Vicente compañía San ignacio de Morococha. Huancayo: s.n., 2023.
- 22. **COLQUE, J.** Mejora en los procesos operativos de perforación, voladura y sostenimiento mediante la aplicación de modelos matemáticos Unidad Minera Alpacay. Arequipa: Repositorio de la universidad Catolica Santa Maria, 2022.
- 23. **IDONE, E. , TINTA, J.** Optimización del proceso de perforación y voladura para mejorar la eficiencia de operaciones en la unidad minera las Bravas, Ica II. Arequipa: Facultad de Ingeniería de minas Universidad Tecnologica del Peru, 2022.
- 24. **HUINCHO, H.** optimización del proceso de perforación y voladura para mejorar la eficiencia de avance y controlar la sobre rotura en los frentes de avance de la unidad minera Cerro Lindo, Nexa Resources S. A. A. Huancayo: Repositorio de la universidad continental Escuela Académico Profesional de Ingeniería de Minas, 2022.

- 25. GONZALES, A., VILCA, J. Optimización de la fragmentación en las rocas con la aplicación de. Lima: s.n., 2021.
- 26. CARLOS, J., CUELLAR, A. Optimización de la perforación y voladura para el método de minado por bench and fill en la Unidad Minera Carahuacra. Huancayo: Repositorio de la universidad Continental Escuela Académico Profesional de Ingeniería de Minas, 2021.
- 27. **ANCHAPURI, L.** *Optimizacion de procsos mineros funadamentos y mejores practicas.* Lima Peru : Editorial minera global, 2018.
- 28. LOPEZ, C., GARCIA, P. Manual de perforacion y voladura de rocas. Madrid: s.n., 2003.
- 29. **BERNAOLA, J. , CASTILLA, J. y HERRERA, J.** *Perforacion y voladura de Rocas en Mineria*. Madrid: I.T.S. de ingenieros de minas de Madrid, 2013.
- 30. **DASWELL, H.** 6 Métodos Comunes de Voladura en Minería a Cielo Abierto. *Dawell*. 2023.
- 31. LOPEZ, C., LOPEZ, E. y AYALA, F. DRILLING AND BLASTING OF ROCKS. Madrid: A. A. B ALKEMA/ROTTERDAM/BROOKFIELD/1995, 1995.
- 32. CALVIN, J. et al. Rock Blasting and Overbreak Control. washinton: National Highway Institute, 1991.
- 33. **LOPEZ, C. , LOPEZ, E. y AYALA, F.** *Manual de Perforación y Voladura de Rocas.* Madrid : Ediciones Díaz de Santos., 2017.
- 34. Exsa Soluciones. Manual practico de voladura. Lima: Exsa soluciones, 2019.
- 35. LOPEZ, C., LOPEZ, E. y AYALA, F. Drilling and Blasting of rocks. Madrid: Taylor & Francis., 1995.
- 36. *Introductory mining engineering*. **HARTMAN, H. y MUTMANSKY, J.** Pennsylvania : Wiley-Interscience, 2002. segunda edicion.
- 37. **BERNAOLA, J. , CASTILLA, J. y HERRERA, J.** *Perforacion y voladura de rocas en mineria*. Madrid : Repositorio de la universidad politecnica de Madrid, 2013.
- 38. **LOPEZ, C. , LOPEZ, E. y GARCIA, P.** *Manual de perforacion y voladura.* Madrid : Instituto tecnologico GeoMinero de España, 2003.
- 39. Use of drilling performance to improve rock-breakage efficiencies: A part of mine-to-mill optimization studies in a hard-rock mine. **JUNHYOK**, **P.**, **KWANGMING**, **K.** Behalf of China: Elsevier B.V. on behalf of China University of Mining & Technology, 2020.

- 40. **EPIROC.** *Manual operacional de EpiRoc D65*. Estocolmo : s.n., 2023.
- 41. **MAYNARD, H.**, **STEGEMERTEN, G.** y **SCHWAB, J.** *Methods Time Measuremnt*. New York: Totonto: London: University of Wisconsin, 1948.
- 42. **MINEM.** Decreto supremo N° 023-2017 EM enerigia y minas. Lima: s.n., 2017.
- 43. **GUALOTO, F.** *Administracion y direccion del mantenimiento*. Ecuador : Repositorio de la Universidad Tecnica del Norte, 2014.
- 44. **HERNANDEZ, R. , FERNANDEZ, C. y BAPTISTA, P.** *Metodologia de la investigacion*. 6ta edicion. mexico : McGRAW-HILL / INTERAMERICANA EDITORES, S.A. DE C.V., 2014. pág. 92.

ANEXOS

Anexo n° 1: Matriz de consistencia

Problema de Investigación	Objetivos	Hipótesis	Variables e indicadores	Metodología
Pregunta general	Objetivo general	Hipótesis general	Variable	Tipo de
¿Cómo desarrollar una propuesta de	Desarrollar una propuesta de	Es posible desarrollar una propuesta de	independiente:	investigación:
optimización de los procesos de	optimización de los procesos de	optimización de los procesos de	Propuesta de	Explicativo.
perforación y voladura para mejorar	perforación y voladura para mejorar	perforación y voladura para mejorar los	optimización de los	
los parámetros de producción en una	los parámetros de producción en	parámetros de producción en una mina de	procesos de perforación	Diseño de
mina de Cerro de Pasco, 2024?	una mina de Cerro de Pasco, 2024.	Cerro de Pasco, 2024.	y voladura.	investigación: Pre
Preguntas específicas	Objetivos específicos	Hipótesis específicas	Indicadores: Ciclo de	experimental
1) ¿Qué estrategias aplicadas a los	1) Generar estrategias aplicadas a	1) Es posible desarrollar estrategias	tiempo, Rendimiento de	
procesos de perforación y voladura	los procesos de perforación y	aplicadas a los procesos de perforación y	horas máquina	Población: 3 equipos
pueden generarse a partir de la	voladura a partir de la situación	voladura a partir de un análisis FODA en	trabajadas, Eficiencia de	rock drill por 60 días
situación actual de una mina de	actual de una mina de Cerro de	una mina de Cerro de Pasco, 2024.	horas hombre trabajados,	laborados.
Cerro de Pasco, 2024?	Pasco, 2024.	2) La situación actual del proceso de	Número de	
2) ¿Cuál es la situación actual del	2) Evaluar la situación actual del	perforación y voladura en una mina de	procedimientos,	Muestra: 3 equipos
proceso de perforación y voladura en	proceso de perforación y voladura	Cerro de Pasco, 2024 es regular.	Porcentajes de rocas > a	rock drill por 60 días
una mina de Cerro de Pasco, 2024?	en una mina de Cerro de Pasco,	3) Los procedimientos de mantenimiento	20 cm y < 20 cm.	laborados.
3) ¿Cómo estructurar los	2024.	preventivo y correctivo para los equipos de		
procedimientos de mantenimiento	3) Estructurar los procedimientos	perforación en una mina de Cerro de	Variable dependiente:	m
preventivo y correctivo para los	de mantenimiento preventivo y	Pasco, 2024 se pueden estructurar	Parámetros de	Técnica: Análisis
equipos de perforación en una mina	correctivo para los equipos de	mediante diagramas de flujo.	producción.	documental.
de Cerro de Pasco, 2024?	perforación en una mina de Cerro	4) Los procesos del área de perforación y		T 4 C 1
4) ¿Cómo estandarizar los procesos	de Pasco, 2024.	voladura en una mina de Cerro de Pasco,	Indicadores:	Instrumento: ficha
del área de perforación y voladura en	4) Estandarizar los procesos del	2024 pueden estandarizarse mediante un	Número de perforaciones	de registro de datos
una mina de Cerro de Pasco, 2024?	área de perforación y voladura en	estudio de tiempos y diagramas analíticos	por hora,	denominado reporte
5) ¿Como diseñar y simular la	una mina de Cerro de Pasco, 2024.	de proceso.	Tiempo disponible /	diario de perforación
voladura mediante el uso del	5) Diseñar y simular la voladura	5) El software Wipfrag permite diseñar y	Tiempo total programado	de 3 equipos por 60
software WipFrag, con el propósito	mediante el uso del software	simular la voladura con el propósito de	x 100, Costo dólares por	días laborados.
de reducir la generación de	WipFrag, con el propósito de	reducir la generación de bolonería en una	metro perforado y por	Método:
bolonerias en una mina de Cerro de	reducir la generación de bolonerias	mina de Cerro de Pasco, 2024.	tonelada, Porcentaje de	Cuantitativo.
Pasco, 2024?	en una mina de Cerro de Pasco,		granulometría por mes.	Cuaillitativo.
	2024.			

Anexo n° 2: Matriz de operacionalización

Variables	Definición conceptual	Definición operacional	Dimensiones	Indicadores
Variable	La optimización de los	Optimización de procesos de perforación y voladura se	Diagnóstico situacional	Ciclo de tiempo
independiente: Propuesta de optimización de los procesos de perforación y voladura.		refiere a un conocimiento amplio de los trabajos de perforación y voladura para hacer un análisis de la situación actual, para determinar cuántas horas trabajan los equipos y cuántas horas hombre trabajan en un turno así mismo para implementar procedimientos de mantenimiento de equipos, además para mejorar el diseño de los parámetros de perforación y voladura desde los resultados del software Wipfrag.	Eficiencia operativa Identificación de procedimientos de mantenimiento de equipo rock drill Análisis granulométricos post voladura con software Wipfrag y base de datos de voladura	Rendimiento de horas máquina trabajadas. Eficiencia de horas hombre trabajados Numero de procedimientos Porcentajes de rocas > a 20 cm y < 20 cm
Variable	Los parámetros de	Mide la capacidad operativa y el rendimiento de los	Equipos de perforación hidráulica	Número de perforaciones por
dependiente:	producción son las	procesos. Estos parámetros están directamente		hora
Parámetros de producción	variables controlables que afectan la eficiencia y el	relacionados con la eficiencia del ciclo de trabajo, la velocidad de avance, eficiencia de perforación,	Disponibilidad mecánica	Tiempo disponible / Tiempo total programado x 100
	costo de las operaciones de perforación y voladura (12).	profundidad promedio de los taladros, número de taladros perforados por día, toneladas de mineral volado, rendimiento por equipo y consumo específico de explosivos.		Costo dólares por metro perforado y por tonelada Porcentaje de granulometría por mes

Anexo n° 3: Reporte diario de perforación.

No. No.	INIGIAL: FINAL: UNDIDA (M) IO H. REAL	TIPO DE ROCA	HOROMETRO DE PERCUSION OBSERVACION	EQUIPO: INICIAL: FINAL: N° TAL 43 44 45 46 47		PROFUNDID/ DISEÑO	A (M) H REAL	- TIPO DE ROCA	TRAMO: OPERADOR: SUPERVISOR: OBSERVACION			COMBUSTIBLE (GL): HM MOTOR: TIPO DE MALLA: B= 0 O TIVIDAD PRODUCTIVA	CODIGO	S= H. DE INICIO	TIEMPO H. DE FIN	DURA (D) MEDIA (M) SUAVE (S)
N* AL TIPODE TAL DESERVA 1 2 3 4 4 5 6 6 7 7 8 8 8 9 9 10 11 11 12 12 13 13 13 14 14 15 15 16 16 17 7 18 18 19 19	FINAL: UNDIDA (M)	TIPO DE ROCA	PERCUSION	N° TAL 43 44 45 46	TIPO DE TAL	PROFUNDID/ DISEÑO	A (M) H REAL	TIPO DE ROCA	SUPERVISOR:			TIPO DE MALLA: B=	CODIGO		TIEMPO H. DE FIN	SUAVE (S)
AL PRODETAL DISEN	UNDIDA (M)	TIPO DE ROCA		N° TAL 43 44 45 46	TIPO DE TAL	PROFUNDIDA DISEÑO	A (M) H REAL	TIPO DE ROCA				O TIVIDAD PRODUCTIVA	CODIGO		TIEMPO H. DE FIN	
AL TIPODETAL DISEN	UNULLA (M)	TIPO DE ROCA	OBSERVACION	43 44 45 46	TIPO DE TAL	DISEÑO	H REAL	TIPO DE ROCA	OBSERVACION				DEL	H. DE INICIO	H. DE FIN	TOTAL
2 3 3 4 4 5 5 5 6 6 6 7 7 8 8 9 9 10 10 11 11 11 12 12 12 13 13 14 15 15 16 16 16 17 17 18 8 19 19				44 45 46							PERFORAC	ON				1
3 4 4 5 5 6 6 6 7 7 8 8 9 9 10 10 11 12 12 12 13 13 14 14 15 15 16 16 17 7 18 8 19 19 19				45 46								ON	1	—		-
4				46								TO DE PRODUCCION				-
5 6 6 7 7 8 8 8 9 9 10 10 11 11 12 12 13 13 13 14 14 14 15 15 16 16 17 17 18 18 19 19				1						3		n de 5 min de seguridad				-
6 6 7 7 8 8 9 9 10 10 10 11 11 11 11 11 11 11 11 11 11				4/						4	p. c ccc,					
7 8 8 9 9 10 10 10 11 11 12 2 13 3 14 15 15 16 17 7 18 19 19				48						5	Inspeccio	iento de equipo				
8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19				49						6	Outomani	distribucion de trabajo				
10 11 12 12 12 13 13 14 14 14 15 15 15 16 16 17 17 19 19 19 19 19				50						7		/ descanso nocturno				
11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 19				51						8		niento de agua				
12 13 13 14 14 14 15 15 15 16 16 16 17 17 18 18 19 19 19				52						9	Abastecin	niento de combustible e broca, barra, martillo y otros				
3 4 4 5 5 6 6 7 7 8 8 9 9				53						10	aceros	e broca, barra, martillo y otros				
14 5 5 6 6 6 77 8 8 9 9				54						11		de equipo a otro frente				
5 16 17 18 19 19 19 19 19 19 19				55						12	Mantenim	iento preventivo				
5 16 17 18 19 19 19 19 19 19 19				56						13	Traslado	por mantenimiento preventivo				
17 18 19 19				57						14						
9				58						15		on de reporte				
9				59						_	ACTIVIE	AD FUERA DE PRODUCCION				
	\perp			60							Re perfora					<u> </u>
				61						17	Traslado	de personal al frente de trabajo				
20				62						18	Traslado	de personal al concluir la guardia				
21				63						19	Falta de a					
22				64								ombustible				
13				65						21	Falta de a					
24				66						22		uminacion noche				
25				67						23		nalla de perforacion				_
26				68						24		de perforacion				
27				69						25	Falta de o Marcado	perador / ayudante y levantamiento top. De malla de				-
28				70						26	perforacio					
29				71						27		on de area de perforacion				-
30				72						28		ento de barra / broca				-
31				73						30		or mantenimiento Equipos				-
32				74						31		iento correctivo				
33				75 76						32		de equipo por voladura de equipo en Camabaja				_
										33	1100000	por mantenimiento correctivo				
35				77						34						
36				·*-						35	raiaua pu	arada por falta de ploteo				†
37				79						_		cnica por traslado de equipo				-
38				80						36		Parada por voladura				-
39				81						38						-
40				82 83						39	i arada poi corillicios sociales					
42				84						40		n de gerencia				
	-		•							41		ctivas / Capacitaciones				
	PRODUCCIO	ON	BUFFER	PF	RECORTE	SHO	ORT HOLE	TIEMP) NETO	42	Seguridad					
N° TALADROS										43	Condicion	nes climaticas				
METROS PERF.										44	Otros			TOTAL		₩
SERVACION:														TOTAL		
		1			1			1				ı	1		1	
	BROCA 01	BROCA 2	BROCA NUEVA	SHANK	SHANK	NUEVO	BARRA 01	BARRA 02	BARRA 03	BARR.	A 01 NUEVA	BARRA 02 NUEVA	BARRA (3 NUEVA	BARRA	.04 NUEVA
RCA																
RIE																
METRO (PULG.)																
UMULADO (M) TROS																
RFORADOS TAL	+ +															

Anexo n° 4: Reporte de perforación mensual turno día equipo 1 Sandvik Pantera.

	RI	EPORTE DE PEI	RFORACION TU	JRNO DEL MES	DE MAYO DIA	, EQUIPO ROC	K DRILL SAND	VIK PANTERA,	DIAMETRO DE	PERFORACIO	ON 5 PULGADAS	3	
FECHA	HORAS EFECTIVAS PERFORADAS (HORAS)	CHARLA DE SEGURIDAD, HERRAMIENTAS DE GESTION	PARADA POR ABASTECIMIENT O DE COMBUSTIBLE (HORAS)	PARADA POR ABASTECIMIENT O DE AGUA	-	STAND BY POR MANTENIMIENT O (HORAS)	TRASLADO DE EQUIPO CAMBIO DE FRENTE (HORAS)	PARADA POR CAMBIO, ROTACION DE BARRAS Y BROCA	PARADA POR ATASCAMIEN TO DE ACEROS	TOTAL DE HORAS POR GUARDIA	PRODUCTIVIDA D: PERF./ DIA (10 mi/perf.) 6P/H- 6.3 ML	METROS POR DIA (6.3 alt. Promedio)	VELOCIDAD DE PERFORACION (M/H)
_	~	_	(1101E15)	▼	_	~	▼	₽ 110 0.1	(HORAS)	~	▼	~	▼
02/05/2024	6.67	0.25	0.17	0.21	0.5	2.5	0.3	0	0.4	11	40	252	37.80
03/05/2024	10.01	0.25	0.17	0.17	0	0	0	0	0.4	11	60	378	37.80
04/05/2024	6.07	0.25	0.17	0.21	2	2	0	0	0.3	11	36	229	37.80
05/05/2024	9.73	0.25	0.17	0.15	0.5	0	0	0	0.2	11	58	368	37.80
06/05/2024	7.08	0.25	0.17	0	2	1.5	0	0	0	11	42	268	37.80
07/05/2024	9.08	0.25	0.17	0	0	1	0.5	0	0	11	54	343	37.80
08/05/2024	6.37	0.25	0.17	0.21	0	4	0	0	0	11	38	241	37.80
09/05/2024	4.87	1	0.17	0.16	3	1.5	0	0.3	0	11	29	184	37.80
10/05/2024	6.88	0.25	0.16	0.21	3	0	0	0.5	0	11	41	260	37.80
11/05/2024	5.38	0.25	0.16	0.21	0.5	4	0	0.5	0	11	32	203	37.80
12/05/2024	7.88	0.25	0.16	0.21	1	1	0	0.2	0.3	11	47	298	37.80
13/05/2024	9.28	0.25	0.16	0.21	0	0.5	0.4	0	0.2	11	56	351	37.80
14/05/2024	8.88	0.25	0.16	0.21	0	1.5	0	0	0	11	53	336	37.80
15/05/2024	7.12	0.25	0.17	0.21	0	3	0	0	0.25	11	43	269	37.80
16/05/2024	6.22	1	0.17	0.21	3	0	0	0	0.4	11	37	235	37.80
17/05/2024	8.67	0.25	0.17	0.21		1	0	0.4	0.3	11	52	328	37.80
18/05/2024	7.38	0.25	0.17	0.2	2	1	0	0	0	11	44	279	37.80
19/05/2024	8.78	0.25	0.17	0.2	0.4	0	0.4	0.3	0.5	11	53	332	37.80
20/05/2024	4.88	0.25	0.17	0.2	2	3	0	0	0.5	11	29	184	37.80
21/05/2024	8.38	0.25	0.17	0.2	1	1	0	0	0	11	50	317	37.80
22/05/2024	8.38	0.25	0.17	0.2	0	2	0	0	0	11	50	317	37.80
23/05/2024	0	0	0	0	0	11	0	0	0	11	0	0	0.00
24/05/2024	9.38	0.25	0.17	0.2	0	0.5	0	0	0.5	11	56	355	37.80
25/05/2024	8.58	0.25	0.17	0.2	1.5	0	0	0	0.3	11	51	324	37.80
26/05/2024	6.98	0.25	0.17	0.2	1	1	0.5	0.5	0.4	11	42	264	37.80
27/05/2024	8.38	0.25	0.17	0.2	1	1	0	0	0	11	50	317	37.80
28/05/2024	6.88	0.25	0.17	0.2	3	0	0	0.5	0	11	41	260	37.80
29/05/2024	6.47	0.25	0.17	0.21	1.5	2	0	0	0.4	11	39	245	37.80
30/05/2024	5.12	1	0.17	0.21	2	2	0.5	0	0	11	31	194	37.80
31/05/2024	6.37	0.25	0.17	0.21	2	2	0	0	0	11	38	241	37.80
Total	216.15	9.5	4.88	5.42	32.9	50	2.6	3.2	5.35	330	1297	8170	37.8
PORCENTAJES	65.50	2.88	1.48	1.64	9.97	15.15	0.79	0.97	1.62	100.00	1297 Tal/mes	8170 MT/MES	37.8 MT/H

Anexo n° 5: Reporte de perforación mensual turno día de equipo 2 Epiroc D 65.

	REP	ORTE DE PERFO	RACION MES MA	A VO TURNO DIA	FOUIPO ROCK	DRILL FPIROC	D65 DIAMETRO	DE PERFORACI	ON 5 . 6 PHL GAD	AS			
FECHA	HORAS EFECTIVAS PERFORADAS (HORAS)	CHARLA DE SEGURIDAD,	PARADA POR ABASTECIMIENTO DE COMBUSTIBLE (HORAS)	PARADA POR ABAS TECIMIENTO DE AGUA	STAND BY POR FALTA DE AREA (LIMPIEZA) (HORAS)	STAND BY POR MANTENIMIENTO (HORAS)	TRASLADO DE EQUIPO CAMBIO DE FRENTE (HORAS)	PARADA POR CAMBIO, ROTACION DE BARRAS YBROCA	PARADA POR ATASCAMIENTO DE ACEROS (HORAS)	TOTAL DE HORAS POR GUARDIA	PRODUCTIVIDAD: PERF.POR DIA 10 min/perf.	METROS POR DIA (6.3 alt. promedio)	VELOCIDAD DE PERFORACION
▼	~	~	▼	▼	~	▼	▼	~	~	▼	▼	▼	~
	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	6 P/H 6.3 ML	Metros	M/H
02/05/2024	7.86	0.25	0.17	0.22	0	2	0.5	0	0	11	47	297	37.80
03/05/2024	8.57	0.25	0.17	0.21	1	0.5	0	0	0.3	11	51	324	37.80
04/05/2024	8.88	0.25	0.17	0.2	1	0.5	0	0	0	11	53	336	37.80
05/05/2024	8.88	0.25	0.17	0.2	0.3	1	0	0	0.2	11	53	336	37.80
06/05/2024	8.38	0.25	0.17	0.2	1	1	0	0	0	11	50	317	37.80
07/05/2024	8.88	0.25	0.17	0.2	0	0	0.5	1	0	11	53	336	37.80
08/05/2024	4.38	0.25	0.17	0.2	0	6	0	0	0	11	26	166	37.80
09/05/2024	7.33	1	0.17	0.2	2	0	0	0.3	0	11	44	277	37.80
10/05/2024	0	0	0	0	0	11	0	0	0	11	0	0	0.00
11/05/2024	0	0	0	0	0	11	0	0	0	11	0	0	0.00
12/05/2024	5.88	0.25	0.17	0.2	3	0.5	0.5	0.2	0.3	11	35	222	37.80
13/05/2024	10.38	0.25	0.17	0.2	0	0	0	0	0	11	62	392	37.80
14/05/2024	8.38	0.25	0.17	0.2	2	0	0	0	0	11	50	317	37.80
15/05/2024	9.48	0.25	0.17	0.2	0	0.4	0	0	0.5	11	57	358	37.80
16/05/2024	6.93	1	0.17	0.2	1.5	0.5	0	0.5	0.2	11	42	262	37.80
17/05/2024	9.08	0.25	0.17	0.2	0	1	0	0	0.3	11	54	343	37.80
18/05/2024	6.38	0.25	0.17	0.2	2	2	0	0	0	11	38	241	37.80
19/05/2024	7.48	0.25	0.17	0.5	0.4	0.9	0.5	0.3	0.5	11	45	283	37.80
20/05/2024	9.18	0.25	0.17	0.5	0	0.5	0	0.4	0	11	55	347	37.80
21/05/2024	9.38	0.25	0.17	0.2	1	0	0	0	0	11	56	355	37.80
22/05/2024	7.58	0.25	0.17	0.2	2	0	0.5	0	0.3	11	45	287	37.80
23/05/2024	9.03	1	0.17	0.2	0	0	0	0	0.6	11	54	341	37.80
24/05/2024	8.48	0.25	0.17	0.2	0	1.5	0	0	0.4	11	51	321	37.80
25/05/2024	7.48	0.25	0.17	0.2	1.5	1.1	0	0	0.3	11	45	283	37.80
26/05/2024	7.98	0.25	0.17	0.2	1	1	0	0	0.4	11	48	302	37.80
27/05/2024	6.88	0.25	0.17	0.2	1	2	0.5	0	0	11	41	260	37.80
28/05/2024	6.88	0.25	0.17	0.2	3	0		0.5	0	11	41	260	37.80
29/05/2024	8.08	0.25	0.17	0.2	1.5	0.3	0	0	0.5	11	48	305	37.80
30/05/2024	7.13	1	0.17	0.2	0	2	0	0.5	0	11	43	270	37.80
31/05/2024	8.88	0.25	0.17	0.2	0.5	1	0	0	0	11	53	336	37.80
Total	224.11	10	4.76	6.23	25.7	47.7	3	3.7	4.8	330	1345	8471	37.80
PORCENTAJES	67.91	3.03	1.44	1.89	7.79	14.45	0.91	1.12	1.45	100	1345 perf./mes	8471 met./ mes	37.8 M/H

Anexo n° 6: Reporte de perforación mensual turno día de equipo 3 Sandvik DX-800.

		REPORTE DE PI	ERFORACION DI	EL MES DE MAY	O TURNO DIA.	EOUIPO ROCK	DRILL SANDVII	DX 800, DIAM	ETRO DE PERFO	DRACION 3.	5 PULGADAS		
FECHA .	HORAS EFECTIVAS PERFORADAS (HORAS)		PARADA POR ABASTECIMIENT O DE COMBUSTIBLE	PARADA POR ABASTECIMIENT O DE AGUA	STAND BY POR FALTA DE AREA (LIMPIEZA) (HORAS)	STAND BY POR MANTENIMIENTO (HORAS)	TRASLADO DE	PARADA POR CAMBIO, ROTACION DE BARRAS Y BROCA	PARADA POR	TOTAL DE HORAS POR GUARDIA	PRODUCTIVIDAD:	METROS POR DIA (6.3 alt. Promedio)	VELOCIDAD DE PERFORACION
	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	4.7P/H- 6.3 ML	Metros	M/H
02/05/2024	9.18	0.25	0.17	0.5	0	0.4	0	0	0.5	11	43	272	29.61
03/05/2024	9.43	0.25	0.17	0.15	0	0.5	0	0.5	0	11	44	279	29.61
04/05/2024	7.63	0.25	0.17	0.15	1.5	0.5	0.3	0	0.5	11	36	226	29.61
05/05/2024	0	0	0	0	0	11	0	0	0	11	0	0	0.00
06/05/2024	0	0	0	0	0	11	0	0	0	11	0	0	0.00
07/05/2024	8.08	0.25	0.17	0	2.5	0	0	0	0	11	38	239	29.61
08/05/2024	6.78	0.25	0.17	0.3	3	0	0	0	0.5	11	32	201	29.61
09/05/2024	6.31	1	0.17	0.22	0	2	1	0.3	0	11	30	187	29.61
10/05/2024	7.36	0.25	0.17	0.22	2	0.5	0.5	0	0	11	35	218	29.61
11/05/2024	8.66	0.25	0.17	0.22	0.5	0.3	0	0.5	0.4	11	41	256	29.61
12/05/2024	6.36	0.25	0.17	0.22	1	3	0	0	0	11	30	188	29.61
13/05/2024	8.56	0.25	0.17	0.22	0	0.9	0	0.4	0.5	11	40	253	29.61
14/05/2024	6.86	0.25	0.17	0.22	0	2.5	1	0	0	11	32	203	29.61
15/05/2024	8.66	0.25	0.17	0.22	0	0.7	0	0.5	0.5	11	41	256	29.61
16/05/2024	8.41	1	0.17	0.22	0	1	0	0	0.2	11	40	249	29.61
17/05/2024	8.96	0.25	0.17	0.22	0	1	0	0.4	0	11	42	265	29.61
18/05/2024	8.96	0.25	0.17	0.22	1	0	0.4	0	0	11	42	265	29.61
19/05/2024	7.56	0.25	0.17	0.22	0	2.5	0	0	0.3	11	36	224	29.61
20/05/2024	7.61	0.25	0.17	0.22	2	0	0	0.5	0.25	11	36	225	29.61
21/05/2024	8.91	0.25	0.17	0.22	1	0	0.25	0.2	0	11	42	264	29.61
22/05/2024	7.36	0.25	0.17	0.22	1	2		0	0	11	35	218	29.61
23/05/2024	0	0	0	0	0	11	0	0	0	11	0	0	0.00
24/05/2024	7.18	0.25	0.17	0.25	2	0	0.25	0.4	0.5	11	34	213	29.61
25/05/2024	8.93	0.25	0.17	0.25	0	1.1	0	0	0.3	11	42	264	29.61
26/05/2024	7.43	0.25	0.17	0.25	1	1	0	0.5	0.4	11	35	220	29.61
27/05/2024	8.38	0.25	0.17	0.7	1.3	0	0.2	0	0	11	39	248	29.61
28/05/2024	7.91	0.25	0.17	0.17	2	0	0	0.5	0	11	37	234	29.61
29/05/2024	6.91	0.25	0.17	0.17	1	2	0.3	0	0.2	11	32	205	29.61
30/05/2024	7.66	1	0.17	0.17	2	0	0	0	0	11	36	227	29.61
31/05/2024	7.91	0.25	0.17	0.17	2	0.5	0	0	0	11	37	234	29.61
TOTAL	213.95	9	4.59	6.31	26.8	55.4	4.2	4.7	5.05	330	1006	6335	29.6
PORCENTAJES	64.83	2.73	1.39	1.91	8.12	16.79	1.27	1.42	1.53	100.00	963 tal/mes	6065 m/mes	29.61M/hora

Anexo n° 7: Reporte mensual de fuerza laboral con rol de bajadas.

CRISTIAN

EDISON

GREGO RIO

UIS

RONY

WILIAN

MARIO

RAMIRO

JUAN

JOSE

FRANSISCO

GUILLERMO

O PERADO R

HERMO GENES AYUDANTE DE PERVOL

AYUDANTE DE PERVOL PERVOL

REPORTE MENSUAL: MES MAYO

HUAMANI

CHECCO

ALVAREZ

CHACON

СНІІО

TACO

QUINTANILLA POLINAR

YUCRAVILCA

QUINTANILLA

CHALCO

MARCELO

BERROSPI

TO LENTINO

PALO MINO

MENDO ZA

VALENCIA

VILCAS

MONTES

13

14

15

22

AREA: PERFORACION

FECHA		APELLIDOS Y NO	MB RES		PUESTO	AREA	DNI	HORA DE INGRESO	REFRIGERI O	HORA DE SALIDA		1/05/2024	3/05/2024	4/05/2024	5/05/2024	6/05/2024	8/05/2024	9/05/2024	11/05/2024	13/05/2024	05/20	05/20	17/05/2024	9/05/20	0/05/20	2/02/20	3/05/20	24/05/2024	8	27/05/2024	80 8	g l p	TAL DE DIAS
1	MIRANDA	AGREDA	JORGE	MIGUEL			25438175	06:00	12:00 A 13:00	18:00	11	D D	D	D	D I	D D	D	D D	DL D	L DL	DL D	L DL	DL D	L DL	DL D	D	D I	D D	D I) D	D D		30
2	HURTADO	СНЕССО	 	ALEX			45689176	06:00	12:00 A 13:00	18:00	11	DL D	L DI	L DL	DL I	DL DL	DL	DL DL	D D	D	D D	D	D D	D	D D	D	D I	D D	D I) D	D D	_	30
3	CCORIMANYA	GARCIA	ERICK		O FICINA TECNICA	PERVOL	43151177	06:00	12:00 A 13:00	18:00	11	D D	D	D	D I	D D	D I	D D	D D	D	D D	D	D D	D	D D	L DL	DL I	DL DL	DL I	DL DL	DL D	L	30
4	CASTILLO	AGUIRRE	JORGE	JOSE	SUPERVISOR DE CAMPO	PERVOL	44732178	06:00	12:00 A 13:00	18:00	11	DL D	L DI	L DL	DL I	DL DL	DL	DL DL	D D	D	D D	D	D D	D	D D	D	D I	D D	D I	D D	D D		30
5	HERMITAÑO	ATENCIO	HUGO		O PERADO R	PERVOL	40233179	06:00	12:00 A 13:00	18:00	11	D D	D	D	D I	D D	D I	D D	N N	N	N N	N	N N	N	N D	L DL	DL E	DL DL	DL I	DL DL	DL D	L	30
6	CRUZ	PACCO	ELMER	ALBERTO	O PERADO R	PERVOL	45972780	06:00	12:00 A 13:00	18:00	11	D D	D	D	D I	D D	D I	D D	N N	N	N N	N	N N	N	N D	L DL	DL E	DL DL	DL I	DL DL	DL D	L	30
7	HUAMAN	NINAHUAMAN	EDGAR	JOSE	O PERADO R	PERVOL	43013681	06:00	12:00 A 13:00	18:00	11	D D	D	D	D I	D D	D I	D D	N N	N	N N	N	N N	N	N D	L DL	DL E	DL DL	DL I	DL DL	DL D	L	30
8	FLORES	MINANYA	JORGE		O PERADO R	PERVOL	80427182	06:00	12:00 A 13:00	18:00	11	DL D	L DI	L DL	DL	DL DL	DL	DL DL	D D	D	D D	D	D D	D	D N	N	N N	N	N I	N N	N N		30
9	HERMITAÑO	QUISPE	EDUARDO	JAVIER	O PERADO R	PERVOL	42700613	06:00	12:00 A 13:00	18:00	11	DL D	L DI	L DL	DL	DL DL	DL	DL DL	D D	D	D D	D	D D	D	D N	N	N N	N	N I	N N	N N		30
10	YUPANQUI	HUILLCA	VICTOR		O PERADO R	PERVOL	43488184	06:00	12:00 A 13:00	18:00	11	DL D	L DI	L DL	DL	DL DL	DL	DL DL	D D	D	D D	D	D D	D	D N	N	N N	N	N I	N N	N N		30
11	САРСНА	HUISA	AQUILINO		O PERADO R	PERVOL	42821545	06:00	12:00 A 13:00	18:00	11	N N	N	N	N I	N N	N I	N N	DL D	L DL	DL D	L DL	DL D	L DL	DL D	D	D I	D	D I	D D	D D		30
12	MALPARTIDA	RAMOS	SAMUEL		O PERADO R	PERVOL	45037986	06:00	12:00 A 13:00	18:00	11	N N	N	N	N I	N N	N	N N	DL D	L DL	DL D	L DL	DL D	L DL	DL D	D	D I	D	D I	D D	D D		30

12:00 A 13:00

2:00 A 13:00

12:00 A 13:0

12:00 A 13:0

12:00 A 13:0

2:00 A 13:0

2:00 A 13:0

2:00 A 13:

12:00 A 13:0

12:00 A 13:00

06:00

06:00

06:00

06:00

06:00

06:00

06:00

18:00

18:00

18:00

18:00

18:00

18:00

18:00

18:00

18:00

18:00

11

11

11

11

11

11

11

11

5602187

11743902

3673216

26034592

6152418

2405312

6721420

3027712

2000234

45921652

PERVOL

PERVOL

PERVOL

PERVOL

PERVOL

PERVOL

ERVOL

ERVOL

PERVOL

30

30

30

30

Anexo n° 8: Reporte de perforación mensual turno día equipo 1 Sandvik pantera.

	REPORTE	DE PERFORA	CION MES JU	NIO TURNO I	OIA, EQUIPO	ROCK DRILL	SANDVIK PA	NTERA DP 1	500i, DIAMET	RO DE PERFO	ORACION 5 PU	LGADAS	
	HORAS	CHARLA DE	ABASTECIMIE	ABASTECIMI	STAND BY	STAND BY	TRASLADO	CAMBIO,	ATASCAMIE	TOTAL DE	PRODUCTIVI	METROS POR	VELOCIDAD
	EFECTIVAS	SEGURIDAD	NTO DE	ENTO DE	POR FALTA	POR	DE EQUIPO	ROTACION	NTO DE	HORAS POR	DAD:	DIA	DE
FECHA	PERFORADAS		COMBUSTIBL	AGUA	DE AREA	MANTENIMI	CAMBIO DE	DE BARRAS	ACEROS	GUARDIA	PERF./DIA	MEJORADO	PERFORACIO
			E			ENTO	FRENTE	Y BROCA			(9.51 min/perf.)	(6.3 alt. Prom	N
	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	6.3 P/H-6.3 ML	METROS	M/Hora
1/06/2024	7.67	0.25	0.17	0.21	0	2	0.3	0	0.4	11	48	304	39.69
2/06/2024	9.41	0.25	0.17	0.17	1	0	0	0	0	11	59	373	39.69
3/06/2024	10.07	0.25	0.17	0.21	0	0	0	0	0.3	11	63	400	39.69
4/06/2024	6.23	0.25	0.17	0.15	0	4	0	0	0.2	11	39	247	39.69
5/06/2024	6.37	0.25	0.17	0.21	4	0	0	0	0	11	40	253	39.69
6/06/2024	7.87	0.25	0.17	0.21	0	2	0.5	0	0	11	50	312	39.69
7/06/2024	9.37	0.25	0.17	0.21	0	1	0	0	0	11	59	372	39.69
8/06/2024	6.57	1	0.17	0.16	3	0	0	0.1	0	11	41	261	39.69
9/06/2024	6.38	0.25	0.16	0.21	3	0	0.5	0.5	0	11	40	253	39.69
10/06/2024	9.88	0.25	0.16	0.21	0.5	0	0	0	0	11	62	392	39.69
11/06/2024	5.88	0.25	0.16	0.21	1	3	0	0.2	0.3	11	37	233	39.69
12/06/2024	10.09	0.25	0.16	0.5	0	0	0	0	0	11	64	400	39.69
13/06/2024	0	0	0	0	0	11	0	0	0	11	0	0	0.00
14/06/2024	5.67	0.25	0.17	0.21	1	3	0.4	0	0.3	11	36	225	39.69
15/06/2024	6.62	1	0.17	0.21	3	0	0	0	0	11	42	263	39.69
16/06/2024	7.67	0.25	0.17	0.21	0	2	0	0.4	0.3	11	48	304	39.69
17/06/2024	10.38	0.25	0.17	0.2	0	0	0	0	0	11	65	412	39.69
18/06/2024	4.48	0.25	0.17	0.2	2	3	0.4	0.3	0.2	11	28	178	39.69
19/06/2024	6.88	0.25	0.17	0.2	3	0	0	0	0.5	11	43	273	39.69
20/06/2024	10.38	0.25	0.17	0.2	0	0	0	0	0	11	65	412	39.69
21/06/2024	6.38	0.25	0.17	0.2	2	2	0	0	0	11	40	253	39.69
22/06/2024	9.98	0.25	0.17	0.2	0	0	0.4	0	0	11	63	396	39.69
23/06/2024	8.48	0.25	0.17	0.2	1.4	0	0	0	0.5	11	53	337	39.69
24/06/2024	7.08	0.25	0.17	0.2	3	0	0	0	0.3	11	45	281	39.69
25/06/2024	8.38	0.25	0.17	0.2	1	0	0.5	0.5	0	11	53	333	39.69
26/06/2024	9.38	0.25	0.17	0.2	0	1	0	0	0	11	59	372	39.69
27/06/2024	7.88	0.25	0.17	0.2	2	0	0	0.5	0	11	50	313	39.69
28/06/2024	6.97	0.25	0.17	0.21	0	3	0	0	0.4	11	44	277	39.69
29/06/2024	9.12	1	0.17	0.21	0	0	0.5	0	0	11	57	362	39.69
30/06/2024	6.37	0.25	0.17	0.21	2	2	0	0	0	11	40	253	39.69
TOTAL	227.89	9.5	4.89	6.12	32.9	39	3.5	2.5	3.7	330	1436	9045	39.69
PORCENTAJES	69.06	2.88	1.48	1.85	9.97	11.82	1.06	0.76	1.12	100%	1436 PERF/MES	9045 Mt/ mes	39.7M/H

Anexo n° 9: Reporte de perforación mensual turno día de equipo 2 Epiroc D 65.

		REPO	RTE DE PERFOR	ACION MES JU	JNIO TURNO	DIA, EOUIPO I	ROCK DRILL	EPIROC D65, I	DIAMETRO DI	E 5 PULGADAS	3		
	HORAS	CHARLA DE	ABASTECIMIEN	ABASTECIMI	STAND BY	STAND BY	TRASLADO	CAMBIO.	ATASCAMIE	TOTAL DE	PRODUCTIV	METROS POR	VELOCIDA
	EFECTIVAS	SEGURIDAD	TO DE	ENTO DE	POR FALTA	POR	DE EQUIPO	ROTACION	NTO DE	HORAS POR	IDAD: PERF.	DIA	D DE
FECHA	PERFORADAS		COMBUSTIBLE	AGUA	DE AREA	MANTENIMIE	CAMBIO DE	DE BARRAS	ACEROS	GUARDIA	POR DIA	MEJORADO	PERFORACI
						NTO	FRENTE	Y BROCA			9.51 min/perf.	(6.3 alt. Prom)	ON
	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	6.3 P/H-6.3 ML	METROS	M/Hora
01/06/2024	9.16	0.25	0.17	0.22	0	1	0	0	0.2	11	58	364	39.69
02/06/2024	9.07	0.25	0.17	0.21	1	0	0	0.3	0	11	57	360	39.69
03/06/2024	9.08	0.25	0.17	0.2	0.5	0	0.5	0	0.3	11	57	360	39.69
04/06/2024	8.08	0.25	0.17	0.2	0.3	2	0	0	0	11	51	321	39.69
05/06/2024	4.38	0.25	0.17	0.2	1	5	0	0	0	11	28	174	39.69
06/06/2024	9.68	0.25	0.17	0.2	0	0	0.5	0	0.2	11	61	384	39.69
07/06/2024	10.38	0.25	0.17	0.2	0	0	0	0	0	11	65	412	39.69
08/06/2024	7.13	1	0.17	0.2	2	0	0	0.5	0	11	45	283	39.69
09/06/2024	0	0	0	0	0	11	0	0	0	11	0	0	0
10/06/2024	5.58	0.25	0.17	0	0	5	0	0	0	11	35	221	39.69
11/06/2024	6.28	0.25	0.17	0.2	3	0	0.6	0.2	0.3	11	40	249	39.69
12/06/2024	10.38	0.25	0.17	0.2	0	0	0	0	0	11	65	412	39.69
13/06/2024	8.38	0.25	0.17	0.2	2	0	0	0	0	11	53	333	39.69
14/06/2024	7.88	0.25	0.17	0.2	0	2	0	0	0.5	11	50	313	39.69
15/06/2024	6.93	1	0.17	0.2	1.5	0	0.5	0.5	0.2	11	44	275	39.69
16/06/2024	10.08	0.25	0.17	0.2	0	0	0	0	0.3	11	64	400	39.69
17/06/2024	6.38	0.25	0.17	0.2	2	2	0	0	0	11	40	253	39.69
18/06/2024	8.88	0.25	0.17	0.5	0.4	0	0.5	0.3	0	11	56	352	39.69
19/06/2024	9.18	0.25	0.17	0.5	0	0	0	0.4	0.5	11	58	364	39.69
20/06/2024	8.38	0.25	0.17	0.2	2	0	0	0	0	11	53	333	39.69
21/06/2024	5.88	0.25	0.17	0.2	2	2	0.5	0	0	11	37	233	39.69
22/06/2024	9.23	1	0.17	0.2	0	0	0	0	0.4	11	58	366	39.69
23/06/2024	10.38	0.25	0.17	0.2	0	0	0	0	0	11	65	412	39.69
24/06/2024	5.38	0.25	0.17	0.2	3	2	0	0	0	11	34	214	39.69
25/06/2024	9.98	0.25	0.17	0.2	0	0	0	0	0.4	11	63	396	39.69
26/06/2024	7.88	0.25	0.17	0.2	0	2	0.5	0	0	11	50	313	39.69
27/06/2024	6.88	0.25	0.17	0.2	3	0	0	0.5	0	11	43	273	39.69
28/06/2024	8.38	0.25	0.17	0.2	1.5	0	0	0	0.5	11	53	333	39.69
29/06/2024	7.23	1	0.17	0.2	0	2	0	0.4	0	11	46	287	39.69
30/06/2024	9.88	0.25	0.17	0.2	0.5	0	0	0	0	11	62	392	39.69
TOTAL (H)	236.39	10.25	4.93	6.23	25.7	36	3.6	3.1	3.8	330	1489	9382	39.69
PORCENTAJES	71.63	3.11	1.49	1.89	7.79	10.91	1.09	0.94	1.15	100	1489 perf/mes	9382 met./mes	39.69 M/H

Anexo n° 10: Reporte de perforación mensual turno día de equipo 3

R	EPORTE DE	PERFORAC	CION MES J	UNIO TURN	O DIA, EQU	IPO ROCK I	ORILL SAND	VIK DX 800	DIAMETRO	DE PERF	ORACION 3.5	5 PULGADAS	
	HORAS	CHARLA DE	ABASTECIMI	ABASTECIMI	STAND BY	STAND BY	TRASLADO	CAMBIO,	PARADA	TOTALDE	PRODUCTIVID	METROS POR	
	EFECTIVAS	SEGURIDAD	ENTO DE	ENTO DE	POR FALTA	POR	DE EQUIPO	ROTACION	POR	HORAS POR	AD PERF. POR	DIA	VELOCIDAD
	PERFORADA		COMBUSTIBL	AGUA	DE AREA	MANTENIMI	CAMBIO DE	DE BARRAS	ATASCAMIE	GUARDIA	DIA 12	MEJORADODO	DE
FECHA	S		Е			ENTO	FRENTE	YBROCA	NTO DE		min/perf	(6.3 alt. prom)	PERFORACION
									ACEROS				
	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	HORAS	5 P/H- 6.3m	METROS	M/Hora
01/06/2024	8.58	0.25	0.17	0.5	0	1	0	0	0.5	11	43	270	31.5
02/06/2024	9.93	0.25	0.17	0.15	0	0	0	0.5	0	11	50	313	31.5
03/06/2024	7.83	0.25	0.17	0.15	1.5	0	0.6	0	0.5	11	39	247	31.5
04/06/2024	8.43	0.25	0.17	0.15	0	0	2	0	0	11	42	266	31.5
05/06/2024	8.43	0.25	0.17	0.15	0	2	0	0	0	11	42	266	31.5
06/06/2024	7.93	0.25	0.17	0.15	2.5	0	0	0	0	11	40	250	31.5
07/06/2024	6.78	0.25	0.17	0.3	3	0	0	0	0.5	11	34	214	31.5
08/06/2024	7.31	1	0.17	0.22	0	1	1	0.3	0	11	37	230	31.5
09/06/2024	7.86	0.25	0.17	0.22	2	0	0.5	0	0	11	39	248	31.5
10/06/2024	8.96	0.25	0.17	0.22	0.5	0	0	0.5	0.4	11	45	282	31.5
11/06/2024	6.36	0.25	0.17	0.22	1	3	0	0	0	11	32	200	31.5
12/06/2024	9.46	0.25	0.17	0.22	0	0	0	0.4	0.5	11	47	298	31.5
13/06/2024	4.36	0.25	0.17	0.22	2	3	1	0	0	11	22	137	31.5
14/06/2024	9.46	0.25	0.17	0.22	0	0	0	0.4	0.5	11	47	298	31.5
15/06/2024	0	0	0	0	0	11	0	0	0	11	0	0	0
16/06/2024	9.96	0.25	0.17	0.22	0	0	0	0.4	0	11	50	314	31.5
17/06/2024	7.46	0.25	0.17	0.22	2.5	0	0.4	0	0	11	37	235	31.5
18/06/2024	7.06	0.25	0.17	0.22	0	3	0	0	0.3	11	35	222	31.5
19/06/2024	7.28	0.25	0.17	0.8	2	0	0	0.5	0	11	36	229	31.5
20/06/2024	9.56	0.25	0.17	0.22	0	0	0.6	0.2	0	11	48	301	31.5
21/06/2024	10.06	0.25	0.17	0.22	0	0	0	0	0.3	11	50	317	31.5
22/06/2024	10.36	0.25	0.17	0.22	0	0	0	0	0	11	52	326	31.5
23/06/2024	7.83	0.25	0.17	0.25	2	0	0.5	0	0	11	39	247	31.5
24/06/2024	9.53	0.25	0.17	0.25	0	0	0	0.5	0.3	11	48	300	31.5
25/06/2024	0	0	0	0	0	11	0	0	0	11	0	0	0
26/06/2024	7.68	0.25	0.17	0.7	1	1	0.2	0	0	11	38	242	31.5
27/06/2024	8.11	0.25	0.17	0.17	2	0	0	0.3	0	11	41	255	31.5
28/06/2024	6.81	0.25	0.17	0.17	3	0	0.3	0	0.3	11	34	215	31.5
29/06/2024	4.47	1	0.17	0.36	0	5	0	0	0	11	22	141	31.5
30/06/2024	8.61	0.25	0.17	0.17	1.8	0	0	0	0	11	43	271	31.5
TOTAL	226.46	8.5	4.76	7.28	26.8	41	7.1	4	4.1	330	1132	7133	31.50
PORCENTAJES	68.62	2.58	1.44	2.21	8.12	12.42	2.15	1.21	1.24	100	1132 P./MES	7133 M/MES	31.5 M/H

Anexo n° 11: Costos fijos mensuales

		Costos fijos	s mensua	les		
Personal	Cantidad	Precio	o/unit	Precio/unit + B	Total	Acumulado
Ingeniero Jefe de pervol	1	S/ 8,000	\$2,162	\$3,491.24	\$3,491.24	
Supervisor de perforacion	2	S/ 6,000	\$1,622	\$2,618.43	\$5,236.86	
Mecanico	3	S/ 4,100	\$1,108	\$1,789.26	\$5,367.79	
Operador roc drill	3	S/ 4,200	\$1,135	\$2,229.75	\$6,689.24	
Ayudante roc drill	3	S/ 2,000	\$541	\$1,061.78	\$3,185.35	
Chofer de camioneta	3	S/ 2,600	\$703	\$1,380.32	\$4,140.96	
MOVILIDAD Y OTROS						\$28,111.44
Camioneta sin chofer	2		\$2,400	0	\$4,800	\$4,800
Total us \$						\$32,911.44
Utilidad	0%)				
Total Costos Fijos US\$						\$32,911.44
Gastos Generales						11426.24
Total de costos Fijos + Gast	os Generales	US\$				\$77,249.12

Anexo n $^{\circ}$ 12: Gastos generales de perforación

Cantidad	Descripcion	Sueldos \$	Benef Socia	Factor	Total
Gastos generales oficina principal	-				
- PLANILLAS					
1	Gerente General	12000.00	19376.40	\$5,236.86	
1	Administrador y contador	4500.00	7266.15	\$1,963.82	
1	Secretaria en Lima	3000.00	4844.10	\$1,309.22	
	Sub total:				\$8,509.9
Sastos operativos					
	Alquiler oficina	700.00		\$189.19	
	Servicios de Internet	320.00		\$86.49	
	Utiles de Escritorio Lima / Cerro de Pasco	300.00		\$81.08	
	Telefono	285.00		\$77.03	
	Electricidad	150.55		\$40.69	
	Agua + limpieza	53.50		\$14.46	
2	Computadoras	127.00		\$34.32	
	Impresora	43.00		\$11.62	
	Muebles y enseres	63.75		\$17.23	
	Sub total:				\$552.11
Sastos generales operaciones					
	Servicios de Internet	250.00		\$67.57	
	Utiles de Escritorio Mina	340.00		\$91.89	
	Fondos para agasajos (Aniversarios, Navidad, cumpleai	2500.00		\$675.68	
	Gastos financieros + transferencia de fondos	2000.00		\$540.54	
2	Computadoras mina	145.83		\$39.41	
	Impresora	55.21		\$14.92	
	Muebles y enseres mina	70.59		\$19.08	
	Capacitacion Personal Nuevo (pervol)	3000.00		\$810.81	
	Materiales de Limpieza	40.50		\$10.95	
	Alquiler de maquinas de soldar y equipo de corte	180.00		\$48.65	
	Palanas	120.00		\$32.43	
	Cintas bandit+ extintores	45.50		\$12.30	
	Sub total:				\$2,364.2
Total gastos generales PERVOL					\$11,426.2

Anexo n° 13: Gastos en beneficios sociales

Beneficios	s sociales	
Leyes Sociales	Obreros	Empleados
Imp. extraord de solidaridad	0.00%	0.00%
Essalud	9.00%	9.00%
Seguro complem. salud	1.00%	1.00%
Seguro complem. invalidez	5.70%	5.59%
Seguro vida	1.46%	0.53%
AFP empleador	2.00%	2.00%
compensacion por tiempo de servicios	10.72%	10.64%
Gratificaciones	21.26%	17.61%
Vacaciones	10.63%	8.80%
Dominicales	17.30%	0.00%
Feriados	3.81%	0.00%
Impuesto complementario	10.70%	5.02%
Asignacion familiar	2.85%	1.28%
	96.43%	61.47%

Anexo n $^{\circ}$ 14: Cálculo de costos por tonelada

Calculo de Tonelaje E	piroc D65
Variables	
Burden (m)	4
Espaciamiento (m)	5
Altura promedio (m)	6.3
M. cub./tal	126
M cub/ m	20
M cub/dia	6260
Densidad de mineral g/cm	7.14
ton/ dia	44696.4
Metros perf/dia	313
Ton/metro	142.8
Costo \$/m	\$15.84
Costo \$/t explotados	\$0.1109

Calculo de Tonelaje Di	X 800
Variables	
Burden (m)	4
Espaciamiento (m)	5
Altura promedio (m)	6.3
M. cub./tal = (BxExM)	126
M cub/ m = (m3/alt promedio)	20
M cub/dia	4760
Densidad de mineral g/cm3	7.14
ton/ dia	33986.4
Metros perf/dia	238
Ton/metro	142.8
Costo \$/m	\$18.26
Costo \$/t explotados	\$0.1279

Calculo de Tonelaje Pantera DP1500i	
Variables	
Burden (m)	4
Espaciamiento (m)	5
Altura promedio (m)	6.3
M. cub./tal	126
M. cub/ ml	20
M cub/dia	6024
Densidad de mineral g/cm	7.14
ton/ tal	43011.36
Metros perf/ dia	301.2
Ton/metro	142.80
Costo \$/m	\$16.17
Costo \$/t explotados	\$0.1132

Anexo n° 15: Imagen proceso de perforación en plataforma

Anexo n° 16: Imagen perforadora pantera

Anexo n $^{\circ}$ 17: Imagen proceso de perforación con DX-800

Anexo n° 18: Imagen proceso de voladura

Anexo n° 19: Imagen proceso de detonación de voladura

