

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Civil

Tesis

Análisis de la correlación de resultados de textura superficial entre el ensayo de círculo de arena y el péndulo británico (TRRL), aplicado en la avenida San Carlos – Huancayo, 2021

Sarin Evelyn Estrada Chavez

Para optar el Título Profesional de Ingeniero Civil

Huancayo, 2025

Repositorio Institucional Continental Tesis digital

Esta obra está bajo una licencia "Creative Commons Atribución 4.0 Internacional"

INFORME DE CONFORMIDAD DE ORIGINALIDAD DE TRABAJO DE INVESTIGACIÓN

A : Decano de la Facultad de Ingeniería

DE : AGUSTO ELÍAS GARCÍA CORZO

Asesor de trabajo de investigación

ASUNTO: Remito resultado de evaluación de originalidad de trabajo de investigación

FECHA: 12 de Octubre de 2025

Con sumo agrado me dirijo a vuestro despacho para informar que, en mi condición de asesor del trabajo de investigación:

Título:

"ANÁLISIS PARA LA CORRELACIÓN DE RESULTADOS DE TEXTURA SUPERFICIAL ENTRE EL ENSAYO DE CÍRCULO DE ARENA Y EL PÉNDULO BRITANICO (TRRL) APLICADO A LA AVENIDA SAN CARLOS – HUANCAYO 2021"

Autores:

1. SARIN EVELYN ESTRADA CHAVEZ – Carrera profesional Ingeniería Civil

Se procedió con la carga del documento a la plataforma "Turnitin" y se realizó la verificación completa de las coincidencias resaltadas por el software dando por resultado 18 % de similitud sin encontrarse hallazgos relacionados a plagio. Se utilizaron los siguientes filtros:

Filtro de exclusión de bibliografía	SI x	NO
 Filtro de exclusión de grupos de palabras menores Nºde palabras excluidas (20): 	SI X	NO
Exclusión de fuente por trabajo anterior del mismo estudiante	SI x	NO

En consecuencia, se determina que el trabajo de investigación constituye un documento original al presentar similitud de otros autores (citas) por debajo del porcentaje establecido por la Universidad Continental.

Recae toda responsabilidad del contenido del trabajo de investigación sobre el autor y asesor, en concordancia a los principios expresados en el Reglamento del Registro Nacional de Trabajos conducentes a Grados y Títulos – RENATI y en la normativa de la Universidad Continental.

Atentamente,

La firma del asesor obra en el archivo original (No se muestra en este documento por estar expuesto a publicación)

ASESOR

Ing. Augusto Elías García Corzo

AGRADECIMIENTO

A Dios, por permitirme culminar la universidad. A mi familia, por apoyarme a ser una profesional en lo que tanto me apasiona. A mis maestros, colegas y amigos, por ser parte de esta etapa de formación.

DEDICATORIA

Esta tesis está dedicada a Dios, el que me acompaña cada día, el que tiene las respuestas correctas a cada problema.

A mis padres, ya que sin el apoyo de ellos no lo hubiera logrado; siempre me motivaron a hacer realidad mis sueños.

ÍNDICE

ASESOR		IV
AGRADECI	MIENTO	V
DEDICATOR	RIA	VI
ÍNDICE		VII
LISTA DE T	ABLAS	X
LISTA DE FI	IGURAS	XI
RESUMEN		XIII
ABSTRACT		XIV
INTRODUC	CIÓN	XV
CAPÍTULO I	l	16
PROBLEMA	A DE INVESTIGACIÓN	16
1.1. PL	ANTEAMIENTO DEL PROBLEMA	16
1.2. FO	RMULACIÓN DEL PROBLEMA	18
1.2.1.	PROBLEMA GENERAL	18
1.2.2.	PROBLEMAS ESPECÍFICOS	18
1.3. OB	JETIVOS	18
1.3.1.	OBJETIVO GENERAL	18
1.3.2.	OBJETIVOS ESPECÍFICOS	18
1.4. JUS	STIFICACIÓN E IMPORTANCIA	19
1.4.1.	JUSTIFICACIÓN PRÁCTICA	19
1.4.2.	JUSTIFICACIÓN ECONÓMICA	19
1.4.3.	JUSTIFICACIÓN METODOLÓGICA	19
1.4.4.	IMPORTANCIA	19
1.5. DE	LIMITACIÓN DE LA INVESTIGACIÓN	19
1.5.1.	DELIMITACIÓN ESPACIAL	20
1.5.2.	DELIMITACIÓN TEMPORAL	20

	1.5.	3.	DELIMITACIÓN CONCEPTUAL	20
	1.6.	HIP	ÓTESIS Y DESCRIPCIÓN DE VARIABLES	20
	1.6.	1.	HIPÓTESIS GENERAL	20
	1.6.	2.	HIPÓTESIS ESPECÍFICAS	20
	1.7.	VAI	RIABLES	21
	1.7.	1.	VARIABLE INDEPENDIENTE	21
	1.7.	2.	VARIABLES DEPENDIENTES	21
CA	PÍTU	LO I	I	22
MA	RCO	TEC	ÓRICO	22
2	2.1.	AN	TECEDENTES DEL PROBLEMA	22
	2.1.	1.	ANTECEDENTES NACIONALES	22
	2.1.	2.	ANTECEDENTES INTERNACIONALES	24
2	2.2.	BAS	SES TEÓRICAS	26
	2.2.	1.	PAVIMENTO	26
			DETERMINACIÓN DE LA TEXTURA SUPERFICIAL DEL PAVIMEN	
			DETERMINACIÓN DEL COEFICIENTE DE RESISTENCIA AMIENTO EN EL PAVIMENTO CON PÉNDULO BRITÁNICO (TRRL)	
2	2.3.	MA	CROTEXTURA	32
ME	TOD	OLC	OGÍA	33
3	3.1.	ΜÉ	TODOS Y ALCANCE DE LA INVESTIGACIÓN	33
	3.1.	1.	MÉTODO DE INVESTIGACIÓN	33
	3.1.	2.	NIVEL	33
	3.1.	3.	TIPO	33
3	3.2.	DIS	EÑO DE LA INVESTIGACIÓN	34
3	3.3.	РО	BLACIÓN Y MUESTRA	34
	3.3.	1.	POBLACIÓN	34
	3.3.	2.	MUESTRA	34
	33	3	MUESTREO	34

3.4.	TÉCNICAS DE RECOLECCIÓN DE DATOS	.35
3.5.	INSTRUMENTO DE ANÁLISIS DE DATOS	.35
CAPÍTL	JLO IV	.36
RESUL	TADOS Y DISCUSIÓN	.36
4.1.	ANÁLISIS Y RESULTADOS	.36
DESL	ENSAYO DE DETERMINACIÓN DEL COEFICIENTE DE RESISTENCIA LIZAMIENTO EN EL PAVIMENTO CON PÉNDULO BRITÁNICO (TRRL) (ASTN AASHTO T 278)	ЛΕ
	ENSAYO DE DETERMINACIÓN DE LA TEXTURA SUPERFICIAL D MENTO MEDIANTE EL ENSAYO DE CÍRCULO DE ARENA (ASTM E 965)	
4.4.	ANÁLISIS ESTADÍSTICO	.61
CAPÍTL	JLO V	.77
CONCL	LUSIONES Y RECOMENDACIONES	.77
5.2.	CONCLUSIONES	.77
5.3.	RECOMENDACIONES	.78
REFER	ENCIAS BIBLIOGRÁFICAS	.79
ANEXO	os	.81
MATE	RIZ DE CONSISTENCIA	.82
CERTIE	FICADOS	90

LISTA DE TABLAS

Tabla 1 Clasificación de texturas de pavimentos	29
Tabla 2 Criterios de clasificación de textura superficial	31
Tabla 3 Calificación del coeficiente de resistencia al deslizamiento	32
Tabla 4 Valores internaciones de coeficiente de fricción y textura superficial	32
Tabla 5 Grupo de 50 puntos de control (CRD) – 1	39
Tabla 6 Grupo de 50 puntos de control (CRD) – 2	41
Tabla 7 Grupo de 50 puntos de control (CRD) – 3	43
Tabla 8 Grupo de 50 puntos de control (CRD) – 4	44
Tabla 9 Grupo de 50 puntos de control (CRD) – 5	46
Tabla 10 Grupo de 50 puntos de control (MTD) – 1	51
Tabla 11 Grupo de 50 puntos de control (MTD) – 2	52
Tabla 12 Grupo de 50 puntos de control (MTD) – 3	54
Tabla 13 Grupo de 50 puntos de control (MTD) – 4	56
Tabla 14 Grupo de 50 puntos de control (MTD) – 5	58
Tabla 15 Resumen de procesamiento de casos - Coeficiente de resistencia al desliz	
Tabla 16 Análisis descriptivo - CRD	63
Tabla 17 Resumen de procesamiento de casos – MTD	68
Tabla 18 Análisis descriptivo - MTD	70
Tabla 19 Tipo de correlación según sus rangos	74
Tabla 20 Correlación entre CRD vs MTD	75
Tabla 21 Gráfica de Correlación de Variables (ANÁLISIS ESTADÍSTICO SPSS)	76

LISTA DE FIGURAS

llustración 1 Determinación de la textura superficial del pavimento mediante ensa	ayo del
círculo de arena	17
llustración 2 Determinación del coeficiente de resistencia al deslizamiento en el pav	
con péndulo británico (trrl)	17
Ilustración 3 Pavimento flexible	27
llustración 4 Profundidad de microtextura y macrotextura superficial	29
llustración 5 Estacionamiento del equipo de péndulo británico	36
llustración 6 Calibración de equipo	37
llustración 7 Superficie limpia, libre de impurezas	37
llustración 8 Línea de tendencia (CRD) - 1	39
llustración 9 Línea de tendencia (CRD) - 2	41
llustración 10 Línea de tendencia (CRD) - 3	43
llustración 11 Línea de tendencia (CRD) – 4	45
llustración 12 Línea de tendencia (CRD) - 5	47
llustración 13 Tamiz para material de ensayo círculo de arena	47
llustración 14 Ensayo círculo de arena	48
llustración 15 Medición del diámetro alcanzado del círculo de arena	48
llustración 16 Esparcimiento de la arena sobre la superficie del pavimento	49
llustración 17 Línea de tendencia (MTD) - 1	51
llustración 18 Línea de tendencia (MTD) - 2	53
llustración 19 Línea de tendencia (MTD) - 3	55
llustración 20 Línea de tendencia (MTD) - 4	57
llustración 21 Línea de tendencia (MTD) - 5	59
llustración 22 Ecuación de Correlación	59
llustración 23 Línea de tendencia (CRD vs MTD)	60
llustración 24 Histograma Primer Grupo de Control	64

lustración 25 Histograma Segundo Grupo de Control	64
lustración 26 Histograma Tercer Grupo de Control	65
lustración 27 Histograma Cuarto Grupo de Control	65
lustración 28 Histograma Quinto Grupo de Control	66
lustración 29 Diagrama de bigotes – CRD	66
lustración 30 Frecuencia de CRD (250 PUNTOS DE CONTROL)	67
lustración 31 Histograma Primer Grupo de Control-MTD	70
lustración 32 Histograma Segundo Grupo de Control-MTD	71
lustración 33 Histograma Tercer Grupo de Control-MTD	71
lustración 34 Histograma Cuarto Grupo de Control-MTD	72
lustración 35 Histograma Quinto Grupo de Control-MTD	72
lustración 36 Diagrama de bigotes – MTD	73
lustración 37 Frecuencia de MTD (250 PUNTOS DE CONTROL)	73

RESUMEN

El objetivo de esta investigación es establecer una correlación entre dos ensayos no destructivos: el ensayo de Círculo de Arena y Péndulo Británico, mediante los valores que se obtendrán, la profundidad media de macrotextura y el coeficiente de resistencia al deslizamiento respectivamente, plasmados mediante un modelo matemático, el cual represente ambas variables correlacionadas a un nivel de confianza aceptable para su aplicación en el campo de la ingeniería.

Para el desarrollo de la investigación, se contó con 250 puntos de control para cada tipo de ensayo con un total de 50 puntos por ficha; para ello, se tuvo en cuenta las normas nacionales que contemplan el desarrollo correcto de cada ensayo para evitar resultados no veraces. El se desarrollo de los ensayos encuentran sujetos también a la temperatura del pavimento, es por esto que se tomó en cuenta la corrección por temperatura establecida en la norma, se realizaron líneas de tendencia por cada 50 puntos de control que contempla cada ficha, obteniendo así curvas homogéneas, las cuales representan el nivel de desgaste de la superficie del pavimento. Los valores de CRD van desde 0 hasta 150 siendo así el primero reflejo de una superficie totalmente lisa y el último de una superficie muy rugosa. Para el caso del ensayo de círculo de arena, se tuvo en cuenta el diámetro del círculo que se formaba sobre la superficie.

La correlación de cotejo y contraste mediante dos métodos de análisis, el primero a través de hojas de cálculo estableciendo la correlación y línea de tendencia con los 500 datos de ambos ensayos y el segundo método mediante el análisis estadístico con el programa IBM SPSS STATISTICS 26, métodos que nos dieron los mismos resultados, pudiendo así establecer una correlación positiva perfecta entre ambas variables y expresándola en un modelo matemático a un nivel de confianza de 84%, una ecuación de correlación Y (profundidad media de la macrotextura)=1.102X (CRD del péndulo) -0.1745 que es aplicable para los diferentes trabajos de campo en el ámbito de la ingeniería vial.

Palabras Clave: Correlación, IBM SPSS STATISTICS 26, Circulo de Arena, Péndulo Británico, Ingeniería.

ABSTRACT

The objective of this research is to establish a correlation between two nondestructive tests, the Sand Circle and British Pendulum test by means of the values that will be obtained, the mean depth of macrotexture and the coefficient of resistance to slip respectively, reflected by means of a mathematical model. which represents both variables correlated to an acceptable level of confidence for its application in the engineering field.

For the development of the research, there were 250 control points for each type of test with a total of 50 points per card, for this the national regulations that contemplate the correct development of each test were taken into account to avoid untrue results. The development of the tests are also subject to the temperature of the pavement, which is why the correction for temperature established in the standard was taken into account, trend lines were made for every 50 control points that each card contemplates, thus obtaining homogeneous curves which represent the level of wear of the pavement surface, the CRD values range from 0 to 150, thus being the first reflection of a totally smooth surface and the last of a very rough surface for the case of the sand circle test. took into account the diameter of the circle that formed on the surface.

The comparison and contrast correlation using two analysis methods, the first through spreadsheets establishing the correlation and trend line with the 500 data from both trials and the second method through statistical analysis with the IBM SPSS STATISTICS 26 program. methods which gave us the same results, thus being able to establish a perfect positive correlation between both variables and expressing it in a mathematical model at a confidence level of 84%, a correlation equation Y (mean depth of the rough texture) = 1.102X (Pendulum CRD) -0.1745 which is applicable for the different field works in the field of road engineering.

Keywords: Correlation, IBM SPSS STATISTICS 26, Sand Circle, British Pendulum, Engineering.

INTRODUCCIÓN

El campo de la ingeniería cada vez asume más retos en los cuales se busca optimizar tanto recursos como también procesos. Ante esto, es imprescindible abrir nuevos caminos teóricos aplicables a obras, nuevos modelos matemáticos que faciliten la obtención de resultados en varios ensayos referentes a la ingeniería civil. La presente investigación busca correlacionar dos de los ensayos esenciales para poder definir el estado de desgaste de un pavimento flexible: el ensayo de Péndulo Británico y el ensayo de Círculo de Arena.

A nivel internacional, existen valores establecidos para estos ensayos. En el caso del Perú, aún no se define si existe una correlación entre ambos ensayos; ante esto, se plantea definir el nivel de correlación existente entre ambos ensayos y así poder definir un modelo matemático, el cual nos permita hacer uso de un solo ensayo para poder proyectar valores del ensayo que lo complementará.

Ante esto, se plantea para el desarrollo de la investigación 250 puntos de control en la Av. San Carlos, 250 puntos de control para cada ensayo, el cual nos permitirá definir el grado de correlación sin riesgo de sesgos en los valores.

La presente investigación se divide en cuatro capítulos. El capítulo I detalla el problema de la investigación; en él se describe la caracterización y formulación del problema, objetivos, justificación y delimitación, hipótesis de la investigación y la descripción de las variables. En el capítulo II, se describe el marco teórico; aquí se analiza los antecedentes de la investigación, bases teóricas y definiciones de términos básicos. El capítulo III trata de la metodología; se verá el método y alcances de la investigación, diseño de la investigación, población y muestra, técnicas e instrumentación de recolección de datos. En el capítulo IV, se analizarán los resultados y discusiones, que consiste en el tratamiento del análisis de la información; y, en el capítulo V, se plantea las conclusiones y recomendaciones.

CAPÍTULO I

PROBLEMA DE INVESTIGACIÓN

1.1. PLANTEAMIENTO DEL PROBLEMA

En la actualidad, la conciencia de la sociedad a nivel mundial respecto a la seguridad vial se ha incrementado en los últimos años. Existen diversos métodos y/o ensayos, los cuales permiten calcular y obtener la resistencia al deslizamiento y la textura a nivel superficial de los pavimentos flexibles, siendo estos factores importantes, los cuales califican al pavimento según su nivel de desgaste.

Las técnicas y/o ensayos en la ingeniería vial se vienen desarrollando día a día de forma técnica. El campo en la investigación de estos ensayos y la relación de diversos procesos, los cuales llevan a obtener los mismos resultados están poco estudiados. Ante esto, el determinar los hechos del problema es un esfuerzo por lograr precisión y viabilidad utilizando diferentes métodos de prueba en pavimentos con el fin de obtener un modelo matemático representativo, el cual permita correlacionar los distintos ensayos.

Por lo que la investigación pretende establecer una correlación mediante un modelo matemático, el cual represente los resultados obtenidos de los ensayos de "Determinación de la textura superficial del pavimento mediante ensayo del círculo de arena" y "Determinación del coeficiente de resistencia al deslizamiento en el pavimento con péndulo británico (trrl)".

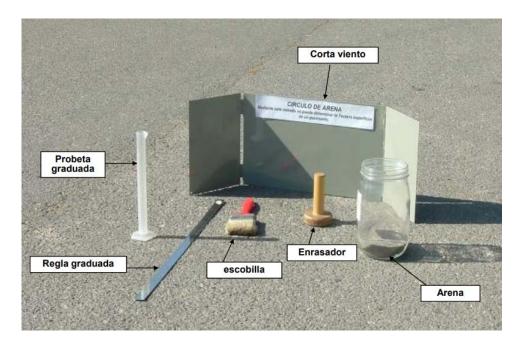


Ilustración 1 Determinación de la textura superficial del pavimento mediante ensayo del círculo de arena

Fuente: MOP - Dirección de vialidad - Laboratorio Nacional

Ilustración 2 Determinación del coeficiente de resistencia al deslizamiento en el pavimento con péndulo británico (trrl)

Fuente: Grupo Bitafal

1.2. FORMULACIÓN DEL PROBLEMA

1.2.1. PROBLEMA GENERAL

 ¿Cómo se correlacionan los resultados para la textura superficial obtenida con el ensayo de círculo de arena y el ensayo de péndulo británico, Huancayo 2021?

1.2.2. PROBLEMAS ESPECÍFICOS

- ¿Cuál es la rugosidad que se obtiene en el pavimento de la avenida San
 Carlos con el ensayo de círculo de arena, Huancayo 2021?
- ¿Cuál es la rugosidad que se obtiene en el pavimento de la avenida San
 Carlos con el ensayo de péndulo británico, Huancayo 2021?
- ¿Qué relación guarda la rugosidad del pavimento de la avenida San Carlos obtenida con el ensayo de círculo de arena y péndulo británico, Huancayo 2021?

1.3. OBJETIVOS

1.3.1. OBJETIVO GENERAL

 Determinar el grado de correlación de los resultados obtenidos de la rugosidad con el ensayo de círculo de arena y péndulo británico, Huancayo - 2021

1.3.2. OBJETIVOS ESPECÍFICOS

- Determinar la rugosidad que se obtiene en el pavimento de la avenida
 San Carlos con el ensayo de círculo de arena, Huancayo 2021
- Determinar la rugosidad que se obtiene en el pavimento de la avenida
 San Carlos con el ensayo de péndulo británico, Huancayo 2021

 Establecer la relación que guarda la rugosidad del pavimento de la avenida San Carlos obtenida con el ensayo de círculo de arena y péndulo británico, Huancayo 2021

1.4. JUSTIFICACIÓN E IMPORTANCIA

1.4.1. JUSTIFICACIÓN PRÁCTICA

Durante el transcurso de los años, los pavimentos tienden a deteriorarse y cambiar su rugosidad, el cual es un factor y/o índice de desgaste; para esto, se tienen distintos métodos para poder determinar su rugosidad. La investigación pretende correlacionar dos ensayos, los cuales están enfocados en la rugosidad y su resistencia al deslizamiento in situ para poder predecir algunos resultados a partir de solo un método de ensayo.

1.4.2. JUSTIFICACIÓN ECONÓMICA

Este estudio es justificado de forma económica al poder brindar un modelo matemático, el cual permita optimizar procesos y, por ende, disminuir costos al realizar un estudio de las vías.

1.4.3. JUSTIFICACIÓN METODOLÓGICA

Se justifica metodológicamente este estudio al contar con normativas como la MTC E 1004 y la MTC E 1005, las cuales hacen referencia a los ensayos de péndulo británico y círculo de arena respectivamente.

1.4.4. IMPORTANCIA

La importancia de este estudio es encontrar un modelo matemático el cual permita que en obras viables sea aplicable para los diversos tramos pavimentados, proyectando y prediciendo valores a partir de resultados de un solo ensayo.

1.5. DELIMITACIÓN DE LA INVESTIGACIÓN

1.5.1. DELIMITACIÓN ESPACIAL

Este estudio será desarrollado en la región de Huancayo, específicamente en la avenida San Carlos, por ser una con características que ameritan un estudio para poder saber su grado de rugosidad a razón del desgaste presentado durante los años de uso de esta.

1.5.2. DELIMITACIÓN TEMPORAL

La delimitación temporal de este estudio es de 6 meses aproximadamente, abarcando en un inicio con la elaboración del plan, los ensayos requeridos para la presente investigación, elaboración del borrador de tesis y finalizando con el procesamiento de datos.

1.5.3. DELIMITACIÓN CONCEPTUAL

Este estudio se realizará empleando normativas nacionales, teniendo como principal referencia algunas normativas internacionales tal como la Sociedad Estadounidense para Pruebas y Materiales, ASTM por sus siglas en inglés.

1.6. HIPÓTESIS Y DESCRIPCIÓN DE VARIABLES

1.6.1. HIPÓTESIS GENERAL

Existe una correlación entre los resultados obtenidos de la rugosidad con el ensayo de círculo de arena y péndulo británico, Huancayo – 2021.

1.6.2. HIPÓTESIS ESPECÍFICAS

- El índice de rugosidad que se obtiene en el pavimento de la avenida San Carlos con el ensayo de círculo de arena indica un considerable deterioro, Huancayo 2021.
- El índice de rugosidad que se obtiene en el pavimento de la avenida San Carlos con el ensayo de péndulo británico indica un índice bajo, Huancayo 2021.

Existe una relación entre la rugosidad del pavimento de la avenida San Carlos obtenida con el ensayo de círculo de arena y péndulo británico, Huancayo 2021.

1.7. VARIABLES

1.7.1. VARIABLE INDEPENDIENTE

Textura Superficial

1.7.2. VARIABLES DEPENDIENTES

- Círculo de Arena
- Péndulo Británico

CAPÍTULO II

MARCO TEÓRICO

2.1. ANTECEDENTES DEL PROBLEMA

2.1.1. ANTECEDENTES NACIONALES

Según (Huaychao, 2019), en su investigación de pregrado que lleva por título "Análisis comparativo del índice de rugosidad internacional del pavimento de la Av. La Cultura de la ciudad del Cusco, mediante el aplicativo para smartphone Roadroid, rugosímetro electrónico Bump Integrator b1-100a y rugosímetro de Merlín", que fue estudiada y desarrollada en su totalidad en la Universidad Andina del Cusco, dentro de sus objetivos plantea como objetivo principal el realizar la medición del índice de rugosidad internacional del pavimento de la Av. La Cultura, mediante el aplicativo para smartphone Roadroid, rugosímetro electrónico Bump Integrator b1-100a y rugosímetro de Merlín, llegando a concluir que al obtener los resultados del rugosímetro electrónico Bump Integrator b1-100a y el aplicativo para smartphone Roadroid con respecto al rugosímetro de Merlín se tiene una variación entre los valores del índice de rugosidad internacional, que los valores hallados mediante el aplicativo Roadroid y rugosímetro electrónico Bump Integrator b1-100a varían con respecto al rugosímetro de Merlín de la siguiente manera: para el sentido de bajada (plaza Limacpampa - paradero control), el rugosímetro electrónico Bump Integrator b1-100a con respecto al rugosímetro de Merlín tienen una variación de un 0.0032% y el aplicativo Roadroid con respecto al rugosímetro de Merlín en un 73.02%; de igual manera, para el sentido de subida (paradero control – plaza Limacpampa), el rugosímetro electrónico Bump Integrator b1-100a con respecto al rugosímetro de Merlín tienen una variación de 2.66% y el aplicativo Roadroid con respecto al rugosímetro de Merlín tienen una variación de 0.0042%.

Según (Asencios, 2016), en su investigación titulada "Medición y comparación de la rugosidad en pavimentos de la ciudad de Huánuco, mediante smartphone y un método tradicional", plantea como objetivo

principal la medición del índice de rugosidad internacional en los pavimentos de la ciudad de Huánuco para determinar el estado en que se encuentran a partir de un método innovador que consiste en una aplicación para smartphones denominada Roadroid. Acorde al desarrollo del estudio y procesando todos los datos obtenidos, se demostró que el Roadroid proporciona valores parecidos a los que se obtiene usando mira y nivel, pero de manera mucho menos compleja. También se puede aseverar que el Roadroid no tiende a incrementar demasiado el IRI producto de las variaciones de pendiente ni al inicio de la recolección de datos, por lo que sería más ventajoso usarlo en carreteras con pendiente variable y en tramos largos. De igual manera, las horas hombre empleadas con el Roadroid son mucho menores a las empleadas usando mira y nivel, por lo que el rendimiento de este programa es mejor. Además, se observó que el IRI obtenido a partir de datos recolectados con mira y nivel tiende a estabilizarse y se parecen a los valores obtenidos con Roadroid.

Según (Cordova, 2019), en su investigación de pregrado que lleva por título "Evaluación del coeficiente de fricción del pavimento en 10 vías rápidas en Arequipa usando el péndulo de fricción británico trrl", que fue investigada y estudiada minuciosamente en la Universidad Nacional San Agustín de Arequipa, dentro de sus objetivos principales presenta desarrollar toda la metodología experimental para conocer el coeficiente de fricción de las diez vías a evaluar, todo esto enfocado a la seguridad vial. Con el desarrollo de la tesis, se obtuvo los resultados deduciendo que el 80% de las vías evaluadas (8 de 10 vías) requiere un mantenimiento superficial para mejorar la microtextura y la macrotextura superficial del pavimento. De las diez vías evaluadas solo dos cumplen con el índice de fricción internacional (IFI* Umbral). Estas vías son avenida Parra y avenida Alfonso Ugarte y concluyendo que las 2 únicas vías (Av. Parra y Av. Alfonso Ugarte) con menor riesgo a que el usuario pueda perder el control del vehículo a altas velocidades debido al hidroplaneo es porque cuentan con una adecuada macrotextura pues es la que permite drenar el agua con mayor facilidad a altas velocidades. Esta macrotextura tiene una gran influencia en el 118 coeficiente de fricción final a medianas y altas velocidades (vías rápidas), sobre todo en condiciones más desfavorables (superficie mojada).

Según (Eléspuru, 2004), en su investigación de pregrado que lleva por título "Resistencia al deslizamiento en pavimentos flexibles: propuesta de norma peruana", que fue investigada y estudiada minuciosamente en la Universidad Peruana de Ciencias Aplicadas, dentro de sus objetivos principales presenta investigar la resistencia al deslizamiento en pavimentos flexibles del Perú para asegurar una buena adherencia entre el neumático y el pavimento, de tal manera que contribuya a la seguridad de los usuarios en las carreteras peruanas donde, contrastando las normas extranjeras y la normativa peruana, se llegó a la conclusión de que el factor más importante que afecta a la resistencia al deslizamiento entre el neumático y el pavimento es la textura superficial. Si existe una adecuada textura superficial, significa que puede combatir a los demás factores que la afectan. Actualmente, el Perú se encuentra muy atrasado con respecto a la valoración de este tema. Es importante crear conciencia de esto, sobre todo entre los ingenieros de caminos, ya que una de las responsabilidades más importantes de todo ingeniero es proporcionar seguridad a los usuarios.

2.1.2. ANTECEDENTES INTERNACIONALES

Según (Depestre, 2017), en su investigación de pregrado que lleva por título "Resistencia al deslizamiento y textura superficial en pavimentos flexibles en la carretera rural Santa Clara — Manicaragua", que fue investigada y estudiada minuciosamente en la Universidad Central Marta Abreu, dentro de sus objetivos principales presenta el poder determinar la resistencia al deslizamiento y textura superficial en pavimentos flexibles aplicando técnicas y equipos especializados en la carretera rural Santa Clara — Manicaragua. Desarrollada la investigación, se pudo demostrar la influencia de los resultados de la clasificación de la textura superficial de un pavimento y del coeficiente de resistencia al deslizamiento en la adherencia neumático-

pavimento, resultando el tramo seleccionado de categoría III con condiciones inseguras, peligro de circulación, velocidad limitada, con un alto índice de accidentalidad siendo de interés dicha investigación del Centro Provincial de Ingeniería del Tránsito, lo que requiere de acciones de conservación.

Según (Alvarez, 2018), en su investigación de pregrado que lleva por título "Seguimiento de tramos de pavimentos asfálticos del tipo Cape Seal en la III región", plantea como uno de sus objetivos principales el estudio y evaluación de la textura superficial de 5 caminos pavimentados con Cape Seal en la III región, donde se llegó a la conclusión de que las características de la superficie de los caminos evidencian un total recubrimiento de la primera aplicación por parte de la lechada asfáltica. La situación más representativa de los pavimentos estudiados corresponde al caso 2 de la Figura 1. Revisando las dosificaciones de diseño junto a las observaciones hechas durante el proceso constructivo del Cape Seal, se determina que difícilmente se pueden establecer relaciones directas entre las dosificaciones oficiales de cada proyecto (de áridos y ligante) y las características de la textura resultantes de las carpetas de rodadura y por lo tanto de la fricción entregada al usuario. Si bien el ajuste de una dosificación oficial para el proyecto permite establecer un rango en torno al valor establecido, la dosificación responde básicamente a las características del enlace íntimo entre los materiales involucrados en la mezcla asfáltica y no guarda necesariamente relación directa con las características de la textura final medidas con los ensayos de Péndulo Británico (TRRL) y Círculo de Arena.

Según (Diazgranados, 2017), en la investigación de pregrado que lleva por título "Evaluación de la textura y la rugosidad de pavimentos flexibles mediante imágenes tomadas a partir de cámara no métrica Nikon Coolpix s2900", en la cual se plantea como uno de los objetivos principales analizar la rugosidad y la textura en pavimentos flexibles, empleando procesamiento digital de imágenes tomadas a partir de una cámara no métrica Nikon S2900. Para tal fin, se correlacionaron las mediciones utilizando equipos típicos que

emplea la ingeniería de pavimentos con las obtenidas mediante la cámara fotográfica, donde al realizar la validación de la información obtenida en laboratorio con las áreas calculadas mediante el procesamiento de las imágenes no se obtuvieron resultados de asociación entre las variables analizadas, por lo que se estima que mediante fotografías convencionales no se puede analizar la textura y la rugosidad en un pavimento flexible.

Según (David, 2019), en la investigación de pregrado que lleva por título "Estudio de la capa de rodadura de pavimento flexible en los accesos principales de Jipijapa", donde se plantea como objetivo principal reconocer y divulgar la importancia de la altura de macrotextura del pavimento (textura), para garantizar la seguridad del tránsito durante la explotación de la vía, mediante el correcto contacto neumático / pavimento y así evitar la ocurrencia de accidentes de tránsito. Desarrollando la investigación, se llegó a la conclusión donde quedó demostrada la necesidad y puesta a punto de todos los medios sencillos, (SET DE MEDICIÓN DE TEXTURA SUPERFICIAL) poco costosos para la ejecución de mediciones. En particular, se justificó la construcción y el uso del marco portátil de textura para auscultar y clasificar la altura de macrotextura del pavimento HA(mm) según el criterio de la Asociación Mundial de Carreteras (PIARC). Además, quedó demostrada la validez y necesidad de utilizar los resultados del CFL según el modelo fricción.

2.2. BASES TEÓRICAS

2.2.1. PAVIMENTO

La parte más importante de una carretera por su interacción de forma directa con el tráfico y la influencia que tiene esta con su estado de explotación es el pavimento. En el campo económico, viene a significar la parte más costosa de una carretera, es decir, puede llegar a representar entre el 40-60% del costo total de una obra de carreteras. Es ahí donde el estudio e investigación de esta es muy importante. Se estudia sus propiedades, sus patologías, diseño, etc.

PAVIMENTO FLEXIBLE

Se entiende por pavimento flexible a aquel tipo de pavimento el cual está compuesto por una capa y/o carpeta asfáltica; es decir, el pavimento utiliza una mezcla donde en sus materiales de diseño está incluida algún tipo de bitumen más agregados. Este tipo de pavimento es frecuentemente usado en vías donde el tráfico es alto.

Ilustración 3 Pavimento flexible

Fuente: Reporte de Infraestructura VISE 2019

2.2.1.1. Características superficiales

La capa de rodadura es caracterizada por ser:

2.2.1.2. TEXTURA

La textura es uno de los parámetros más críticos en la comodidad y seguridad de los usuarios de las vías; esta influye en la capacidad de poder evacuar el agua de la interfase llanta-pavimento, así como esta es la responsable de la adherencia entre las mismas.

2.2.1.3. CARACTERÍSTICAS DE FRICCIÓN SUPERFICIAL

La macrotextura se refiere a la textura a gran escala determinada por la forma y el tamaño de las partículas de piedra contenidas en la mezcla de capas superficiales. La macrotextura de la superficie de la carretera proporciona un componente de histéresis de fricción y permite que el agua se drene rápidamente de la superficie de la carretera. Además de este objetivo principal, una macrotextura más alta puede proporcionar mejores vías de escape de agua al reducir el deslizamiento y, por lo tanto, mejorar la fricción de tracción. La medición de la profundidad de la macrotextura de la superficie de la carretera se puede encontrar utilizando la técnica de parcheo volumétrico.

Por este motivo, en la Tabla 1, se muestra cómo la textura del pavimento se dividió en tres rangos en función de la longitud de onda de sus componentes: microtextura, macrotextura y megatextura.

Texture classification	Relative Wavelengths
Microtexture	λ < 0.5 mm
Macrotexture	$0.5 \text{ mm} < \lambda < 50 \text{ mm}$
Megatexture	$50 \text{ mm} < \lambda < 500 \text{ mm}$
Roughness/Smoothness	$0.5 \text{ m} < \lambda < 50 \text{ m}$

Tabla 1 Clasificación de texturas de pavimentos

Fuente: (Lizárraga López, 2019)

A continuación, en la figura 2, se muestra la microtextura que se refiere a la textura a escala pequeña en la superficie de una partícula de piedra, la cual está más influenciada tanto por las características de los agregados como por la fuente de agregados, mientras que la macrotextura depende de la textura a gran escala definida por la forma y tamaño de partículas de piedra presentadas en la superficie de la carretera.

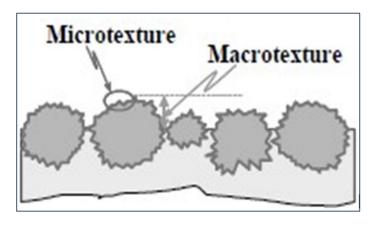
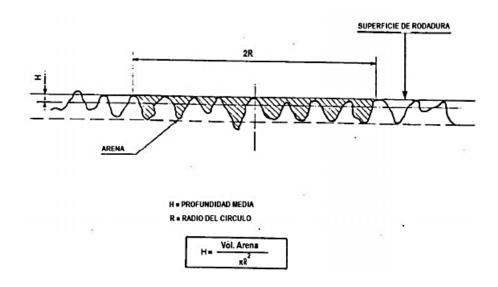


Ilustración 4 Profundidad de microtextura y macrotextura superficial


Fuente: (Lizárraga López, 2019)

2.2.2. DETERMINACIÓN DE LA TEXTURA SUPERFICIAL DEL PAVIMENTO MEDIANTE EL ENSAYO DE CÍRCULO DE ARENA.

Este ensayo es un método estático de medida de la macrotextura que está basado en la aplicación de un volumen conocido de material granular a la superficie y la siguiente medida del área total cubierta. Estos ensayos no son sensibles a la microtextura, que deberá ser caracterizada por la medida de la resistencia al deslizamiento. La extensión del material sobre la superficie del pavimento hace que los huecos superficiales de éste se rellenen completamente hasta nivelarse con las partes más elevadas de los áridos circundantes.

OBJETO Y CAMPO DE ACCIÓN

Esta norma describe el procedimiento que debe seguirse para la determinación de la textura superficial de un pavimento mediante el círculo de arena. En general, el ensayo es aplicable a cualquier tipo de pavimento, tanto bituminoso como de hormigón, y consiste en extender sobre su superficie un volumen determinado de arena fina, distribuyéndola y enrasándola posteriormente mediante un dispositivo adecuado. A partir del volumen de arena utilizado y del área cubierta por la misma sobre el pavimento, se calcula una profundidad media de los huecos rellenos por la arena, valor que puede utilizarse como medida de la rugosidad o textura superficial del pavimento.

Tipo de textura	H (profundidad media) mm
Textura muy fina (No deben utilizarse)	<0,2
Textura fina (Zonas urbanas de baja velocidad)	0,2 <h<0,4< td=""></h<0,4<>
Textura media (Velocidades entre 80 y 120 Km/h)	0,4 <h<0,8< td=""></h<0,8<>
Textura profunda (Velocidades mayores a 120 Km/h)	0,8 <h<1,2< td=""></h<1,2<>
Textura muy profunda (Curvas peligrosas, alta precipitación)	1,2 <h< td=""></h<>

Tabla 2 Criterios de clasificación de textura superficial

2.2.3. DETERMINACIÓN DEL COEFICIENTE DE RESISTENCIA AL DESLIZAMIENTO EN EL PAVIMENTO CON PÉNDULO BRITÁNICO (TRRL)

Este método se utiliza para medir las propiedades de resistencia al deslizamiento de las superficies tanto en terreno (suelos, carreteras y recintos deportivos) como en laboratorio.

Mediante este método, se mide la resistencia al deslizamiento de una pequeña zona de una superficie (aproximadamente 0,01 m2), lo que deberá tenerse en cuenta cuando se aplique a superficies de pavimentos que puedan presentar características superficiales variables, como por ejemplo los adoquinados.

Facilita una fundamental información en la seguridad vial: el índice de fricción entre el patín del instrumento y el firme mojado, a pie de obra.

CRD	Calificación	
<0,5	Malo (Deslizamiento)	
0,51-0,6	De regular a malo	
0,61-0,8	Bueno	
0,81-0,9	De bueno a regular	
>0,91	Malo (Desgaste de neumáticos)	

Tabla 3 Calificación del coeficiente de resistencia al deslizamiento

2.3. MACROTEXTURA

España: En el artículo 543 de mezclas bituminosas en caliente O.C. 299/89T se indica:

"Únicamente a efectos de recepción de capas de rodadura la textura superficial según la Norma NLT-335/87 (Círculo de Arena) no deberá ser inferior a 0,7mm" (Crespo 1999).

Argentina: Se consideran pavimentos especiales desde el punto de vista de la adherencia a las profundidades de textura por encima de 0,50mm medidas con el Círculo de Arena.

Cuba: Se propuso el valor de macrotextura mínimo de 0,3 mm medido con el ensayo del Marco Portátil de Textura.

Se resumen los valores para el coeficiente de fricción y textura superficial para algunos países.

	Países	Coeficiente de fricción	Textura superficial (mm)	
	Chile	0,50	-	
	España	0,70-0,80	0,70	
	Inglaterra	0,45	-	
	EE.UU, California	0,47	-	
_	Argentina	0,40	0,50	
	Perú	0,45	•	
	Cuba	0,33	0,30	

Tabla 4 Valores internaciones de coeficiente de fricción y textura superficial

Valores referentes a la condición del pavimento expresado en el coeficiente de resistencia al deslizamiento y la textura superficial del pavimento no se encuentra definido según los antecedentes investigados.

CAPÍTULO III

METODOLOGÍA

3.1. MÉTODOS Y ALCANCE DE LA INVESTIGACIÓN

3.1.1. MÉTODO DE INVESTIGACIÓN

Según (Mejía Mejía, 2005), el método científico es un método desarrollado para que el investigador parta de conocimientos previos que lo conduzcan a plantear los problemas y generar sus hipótesis hacia la verdad mediante el estudio de sus variables de investigación.

En la presente investigación, los objetivos principales buscan la correlación de dos tipos de ensayo mediante una ecuación matemática.

3.1.2. **NIVEL**

El nivel de investigación, según (Carrasco Díaz, 2005), se debe determinar la manera en que se desarrollará la investigación, determinando el orden y tratamiento que se dará a la investigación realizando estudios exploratorios, descriptivos o experimentales.

El nivel de investigación para este estudio será correlacional, debido a que, con las variables (resultados de ensayos), se pretende establecer una correlación entre ellas.

3.1.3. TIPO

De acuerdo a (Bernal Torres, 2010), el tipo de investigación depende del objetivo planteado y de las hipótesis propuestas en el estudio, ya que estos parámetros determinan la investigación que se quiere realizar.

Para esta investigación, se empleará el tipo aplicado, ya que se empleará la normativa del ensayo de círculo de arena y péndulo británico, ambos para poder determinar la textura superficial del pavimento mediante su índice de rugosidad.

3.2. DISEÑO DE LA INVESTIGACIÓN

Según (Hernández Sampieri, 2014), el diseño de investigación nos permitirá cumplir con el objetivo de la investigación de una manera estratégica, ya que nos brinda un enfoque del problema de la investigación y la estrategia para resolverlo. Para esta investigación, se empleará el diseño cuasiexperimental, en el que se manipula la variable independiente para obtener la reacción de la variable dependiente, teniendo en cuenta que la forma en la que se determinará ya está definida.

3.3. POBLACIÓN Y MUESTRA

3.3.1. POBLACIÓN

La población, según (Bernal Torres, 2010), se define como el grupo de muestreos que presentan ciertos parámetros similares que se necesitan para la investigación.

Para la presente investigación, la población tomada es definida mediante el tramo a estudiar, en este caso es la Av. San Carlos-Huancayo.

3.3.2. MUESTRA

Según (Monje Álvarez, 2011), se debe elegir un grupo de la población que represente unas explícitas características de esta población teniendo en cuenta que es para un estudio determinado.

Av. San Carlos de 200 metros del tramo (Av. Calmell del Solar al Psj Aurora).

3.3.3. MUESTREO

Según (Monje Álvarez, 2011), las muestras pueden ser probabilísticas y no probabilísticas. La primera se elige porque se espera tener elementos seleccionados aleatoriamente, mientras que la segunda se basa en la decisión del investigador.

El muestreo en la investigación es no probabilístico de corte longitudinal.

3.4. TÉCNICAS DE RECOLECCIÓN DE DATOS

La técnica de recolección de datos será por observación directa con el sistema para los ensayos de círculo de arena y péndulo británico.

3.5. INSTRUMENTO DE ANÁLISIS DE DATOS

El instrumento de análisis de datos será con fichas de recolección de datos.

CAPÍTULO IV RESULTADOS Y DISCUSIÓN

4.1. ANÁLISIS Y RESULTADOS

Este capítulo comprende el desarrollo y procesamiento de los datos obtenidos mediante los ensayos de péndulo británico y círculo de arena, los cuales nos dan como resultados el coeficiente de resistencia al deslizamiento y la profundidad media de macrotextura respectivamente. Para el desarrollo y análisis de estos, se tomó como variable "X" al coeficiente de resistencia al deslizamiento y como variable "Y" a la profundidad media de macrotextura.

Previo a esto, se realizaron diversos pasos, los cuales serán descritos a continuación.

4.2. ENSAYO DE DETERMINACIÓN DEL COEFICIENTE DE RESISTENCIA AL DESLIZAMIENTO EN EL PAVIMENTO CON PÉNDULO BRITÁNICO (TRRL) (ASTM E 303 / AASHTO T 278)

Ilustración 5 Estacionamiento del equipo de péndulo británico

El equipo de péndulo británico se estaciona tal cual se aprecia en la ilustración N° 4; cuenta con cuatro perillas, las cuales se tienen que manipular para lograr un correcto nivel para poder ejecutar el ensayo.

Ilustración 6 Calibración de equipo

El equipo para poder realizar el ensayo una vez estacionado cuenta con una placa metálica, la cual se tiene que ubicar frente al eje principal para poder calibrar el patín de caucho; se calibra con el patín retenido en ambos extremos de la placa.

Ilustración 7 Superficie limpia, libre de impurezas

La superficie del pavimento debe estar libre de impurezas; para eso, se debe limpiar el área a ensayar y se vierte agua sobre el pavimento y también al patín de caucho, esto para que el patín se pueda deslizar correctamente y obtener valores correctos. Para el ensayo, se tiene que registrar la temperatura del pavimento para poder realizar la corrección por temperatura, esto se realiza en cada punto de control. El equipo muestra valores de 0 a 150, siendo el valor de 0 el más liso y 150 la superficie más rugosa. Se obtuvo los siguientes resultados con 250 puntos de control desde la Av. San Carlos con Av. Calmell del Solar hasta la Av. San Carlos intersección con Pje. Aurora, siendo este tramo completo de pavimento flexible.

	MEDICIONES PLINTO DISTA 1 2 3 4 5 PROMEDIO T(°C) CRD ORSERVACIONES													
PUNTO	PISTA	1	2	3	4	5	PROMEDIO	T(°C)	CRD	OBSERVACIONES				
1		97	101	102	101	103	100.8	24.4	1.02	Ninguna				
2		96	98	98	96	101	97.8	24.3	0.99	Ninguna				
3		99	98	99	100	97	98.6	23.6	1.00	Ninguna				
4		96	101	98	101	103	99.8	25.5	1.01	Ninguna				
5		99	101	102	100	101	100.6	23.5	1.02	Ninguna				
6		98	98	102	101	103	100.4	25.6	1.01	Ninguna				
7		103	101	99	99	102	100.8	23.9	1.02	Ninguna				
8		96	99	100	103	102	100	24.2	1.01	Ninguna				
9		99	100	99	100	97	99	23.8	1.00	Ninguna				
10		100	100	96	97	99	98.4	24.0	0.99	Ninguna				
11		98	99	103	103	103	101.2	24.9	1.02	Ninguna				
12	S	103	101	100	103	96	100.6	23.5	1.02	Ninguna				
13	> Z	97	103	99	98	98	99	23.7	1.00	Ninguna				
14	VI C A	102	99	96	102	100	99.8	24.9	1.01	Ninguna				
15	P R L	103	103	98	96	96	99.2	22.8	1.00	Ninguna				
16	. 0 S	103	96	102	102	102	101	24.1	1.02	Ninguna				
17	01	102	101	96	103	103	101	25.4	1.02	Ninguna				
18		102	98	98	102	103	100.6	23.6	1.02	Ninguna				
19		97	102	97	102	99	99.4	23.6	1.00	Ninguna				
20		98	102	98	97	103	99.6	22.9	1.01	Ninguna				
21		97	102	102	103	102	101.2	24.9	1.02	Ninguna				
22		97	102	99	99	96	98.6	23.8	1.00	Ninguna				
23		101	99	103	103	103	101.8	25.8	1.03	Ninguna				
24		100	100	100	97	97	98.8	23.2	1.00	Ninguna				
25		97	96	97	99	98	97.4	24.7	0.98	Ninguna				
26		99	96	99	95	96	97	22.6	0.98	Ninguna				
27		94	95	95	93	97	94.8	22.6	0.96	Ninguna				
28		98	98	94	93	93	95.2	24.1	0.96	Ninguna				

29	99	96	92	99	94	96	24.8	0.97	Ninguna
30	98	94	92	93	92	93.8	24.7	0.95	Ninguna
31	94	95	98	93	93	94.6	25.0	0.96	Ninguna
32	96	94	97	93	94	94.8	23.8	0.96	Ninguna
33	93	96	97	95	96	95.4	23.6	0.96	Ninguna
34	93	92	95	99	95	94.8	23.7	0.96	Ninguna
35	96	96	92	95	96	95	24.1	0.96	Ninguna
36	95	95	95	96	94	95	25.0	0.96	Ninguna
37	99	92	97	95	93	95.2	24.5	0.96	Ninguna
38	98	98	99	99	99	98.6	23.7	1.00	Ninguna
39	94	99	96	95	99	96.6	24.0	0.98	Ninguna
40	96	97	92	95	94	94.8	23.1	0.96	Ninguna
41	94	96	98	93	95	95.2	24.6	0.96	Ninguna
42	98	97	95	93	98	96.2	25.5	0.97	Ninguna
43	92	93	99	96	99	95.8	25.5	0.97	Ninguna
44	97	97	94	94	99	96.2	25.6	0.97	Ninguna
45	99	95	96	98	99	97.4	23.7	0.98	Ninguna
46	98	97	99	92	95	96.2	24.9	0.97	Ninguna
47	98	96	99	93	92	95.6	23.9	0.97	Ninguna
48	98	94	95	99	92	95.6	23.5	0.97	Ninguna
49	94	99	93	95	99	96	23.4	0.97	Ninguna
50	92	96	98	95	92	94.6	24.1	0.96	Ninguna

Tabla 5 Grupo de 50 puntos de control (CRD) – 1

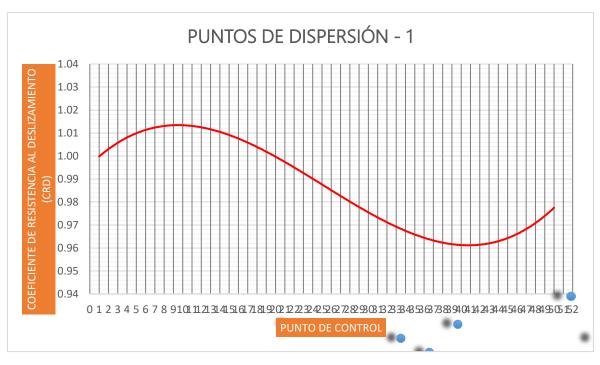


Ilustración 8 Línea de tendencia (CRD) - 1

El primer grupo de 50 puntos de control nos muestra los valores de los coeficientes de resistencia al deslizamiento (CDR), mostrando una línea de tendencia regular en la ilustración 7, mostrando valores con calificación mala, valores en su mayoría mayores a 0.91, el cual indica que provocará un desgaste mayor en los neumáticos de los vehículos que transiten por la Av. San Carlos.

MEDICIONES												
PUNTO	PISTA	1	2	3	4	5	PROMEDIO	T(°C)	CRD	OBSERVACIONES		
1		94	94	92	95	94	93.8	22.6	0.95	Ninguna		
2		90	90	92	95	93	92	25.4	0.93	Ninguna		
3		94	90	95	91	92	92.4	25.1	0.93	Ninguna		
4		95	92	95	91	95	93.6	23.0	0.95	Ninguna		
5		91	95	90	88	91	91	25.7	0.92	Ninguna		
6		92	89	94	89	92	91.2	25.0	0.92	Ninguna		
7		95	94	88	94	90	92.2	24.6	0.93	Ninguna		
8		94	91	91	91	95	92.4	23.0	0.93	Ninguna		
9		91	89	91	88	91	90	25.2	0.91	Ninguna		
10		88	90	94	92	88	90.4	25.2	0.91	Ninguna		
11		90	93	94	90	92	91.8	23.8	0.93	Ninguna		
12		91	90	90	95	95	92.2	25.3	0.93	Ninguna		
13		95	93	90	88	95	92.2	25.6	0.93	Ninguna		
14		89	90	92	94	95	92	23.4	0.93	Ninguna		
15	S	95	94	88	95	91	92.6	22.6	0.94	Ninguna		
16	Z	91	95	89	91	90	91.2	24.5	0.92	Ninguna		
17	CA	89	92	91	88	91	90.2	25.4	0.91	Ninguna		
18	RLO	88	93	92	90	88	90.2	24.4	0.91	Ninguna		
19	S	90	92	93	88	94	91.4	23.9	0.92	Ninguna		
20		94	95	92	94	94	93.8	25.2	0.95	Ninguna		
21		93	91	90	92	91	91.4	25.1	0.92	Ninguna		
22		92	95	93	91	94	93	22.9	0.94	Ninguna		
23		90	88	93	91	91	90.6	23.2	0.92	Ninguna		
24		91	91	94	93	90	91.8	22.9	0.93	Ninguna		
25		91	92	92	95	94	92.8	25.3	0.94	Ninguna		
26		85	91	87	91	89	88.6	25.8	0.90	Ninguna		
27		89	87	91	87	88	88.4	25.2	0.89	Ninguna		
28		87	85	90	84	88	86.8	25.2	0.88	Ninguna		
29		87	89	89	90	90	89	25.4	0.90	Ninguna		
30		89	84	89	84	90	87.2	23.4	0.88	Ninguna		
31		84	88	90	90	91	88.6	24.6	0.90	Ninguna		
32		87	85	91	84	85	86.4	23.7	0.87	Ninguna		
33		85	84	89	87	87	86.4	23.4	0.87	Ninguna		

34	85	85	84	90	86	86	24.9	0.87	Ninguna
35	90	91	91	88	88	89.6	24.0	0.91	Ninguna
36	85	84	85	87	88	85.8	22.5	0.87	Ninguna
37	88	85	89	86	90	87.6	24.2	0.89	Ninguna
38	86	84	90	85	88	86.6	23.3	0.88	Ninguna
39	86	91	89	84	91	88.2	24.6	0.89	Ninguna
40	89	89	85	85	90	87.6	25.7	0.89	Ninguna
41	90	88	89	85	84	87.2	24.9	0.88	Ninguna
42	86	86	90	90	88	88	25.8	0.89	Ninguna
43	84	87	84	86	84	85	25.3	0.86	Ninguna
44	85	84	87	84	91	86.2	23.1	0.87	Ninguna
45	88	86	86	90	86	87.2	25.9	0.88	Ninguna
46	88	91	91	84	84	87.6	23.5	0.89	Ninguna
47	84	86	85	87	90	86.4	25.0	0.87	Ninguna
48	84	89	85	91	87	87.2	23.5	0.88	Ninguna
49	88	89	90	84	89	88	25.7	0.89	Ninguna
50	89	86	90	90	89	88.8	24.7	0.90	Ninguna

Tabla 6 Grupo de 50 puntos de control (CRD) – 2

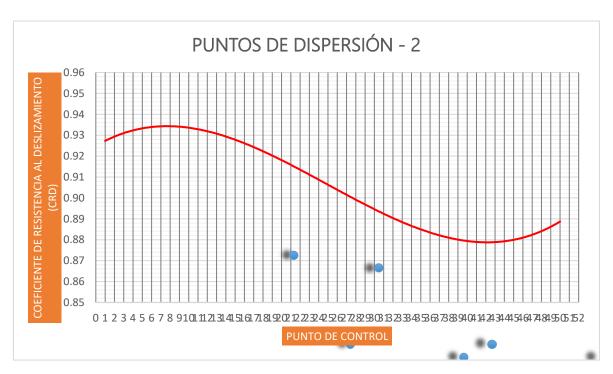


Ilustración 9 Línea de tendencia (CRD) - 2

El segundo grupo de datos (50 puntos de control) nos muestra de igual forma los CDR con una línea de tendencia similar a la del primer grupo, a diferencia de que ahora nos muestra un desgaste ligeramente menor en el pavimento.

MEDICIONES										
PUNTO	PISTA	1	2	3	4	5	PROMEDIO	T(°C)	CRD	OBSERVACIONES
1		81	87	82	86	86	84.4	23.7	0.85	Ninguna
2		82	86	80	85	80	82.6	25.0	0.84	Ninguna
3		83	86	82	82	87	84	24.5	0.85	Ninguna
4		84	87	84	87	83	85	22.6	0.86	Ninguna
5		82	81	82	85	87	83.4	25.6	0.84	Ninguna
6		86	81	87	80	81	83	25.6	0.84	Ninguna
7		80	82	86	87	83	83.6	25.7	0.85	Ninguna
8		86	83	85	81	86	84.2	24.3	0.85	Ninguna
9		86	80	87	82	85	84	23.2	0.85	Ninguna
10		81	80	84	85	80	82	25.6	0.83	Ninguna
11		82	86	85	86	84	84.6	23.8	0.86	Ninguna
12		85	82	85	81	83	83.2	22.6	0.84	Ninguna
13		81	83	87	80	80	82.2	25.1	0.83	Ninguna
14		85	87	85	86	80	84.6	22.7	0.86	Ninguna
15		83	82	81	85	83	82.8	23.5	0.84	Ninguna
16		83	87	81	83	85	83.8	24.5	0.85	Ninguna
17		83	81	87	85	85	84.2	23.3	0.85	Ninguna
18		86	83	84	81	83	83.4	23.7	0.84	Ninguna
19		87	81	83	82	85	83.6	24.7	0.85	Ninguna
20	S	82	83	86	87	80	83.6	24.0	0.85	Ninguna
21	Z	80	87	84	81	83	83	23.7	0.84	Ninguna
22	CAI	82	80	83	86	85	83.2	25.8	0.84	Ninguna
23	RLO	86	86	82	82	80	83.2	23.7	0.84	Ninguna
24	0 S	80	81	82	84	82	81.8	23.4	0.83	Ninguna
25		84	85	82	84	81	83.2	24.5	0.84	Ninguna
26		80	79	83	83	79	80.8	23.4	0.82	Ninguna
27		77	80	83	80	76	79.2	23.0	0.80	Ninguna
28		82	80	81	77	78	79.6	23.6	0.81	Ninguna
29		77	82	78	83	80	80	25.7	0.81	Ninguna
30		76	82	81	82	80	80.2	24.3	0.81	Ninguna
31		82	80	80	79	77	79.6	23.1	0.81	Ninguna
32		79	80	83	77	78	79.4	24.6	0.80	Ninguna
33		83	80	81	76	77	79.4	25.7	0.80	Ninguna
34		80	77	76	79	79	78.2	25.5	0.79	Ninguna
35		83	79	80	78	77	79.4	25.2	0.80	Ninguna
36		79	83	83	78	77	80	24.7	0.81	Ninguna
37		82	80	76	80	77	79	24.4	0.80	Ninguna
38		78	81	78	77	78	78.4	22.9	0.79	Ninguna
39		76	81	82	80	77	79.2	23.2	0.80	Ninguna
40		80	80	83	78	83	80.8	25.9	0.82	Ninguna
41		81	79	83	76	80	79.8	23.1	0.81	Ninguna
42		80	76	77	77	80	78	23.0	0.79	Ninguna
43		80	81	76	82	81	80	24.4	0.81	Ninguna

44	76	82	83	76	79	79.2	24.6	0.80	Ninguna
45	79	80	78	81	82	80	23.3	0.81	Ninguna
46	83	79	78	80	77	79.4	23.3	0.80	Ninguna
47	79	79	80	83	78	79.8	25.5	0.81	Ninguna
48	76	81	82	80	81	80	25.2	0.81	Ninguna
49	77	81	82	79	83	80.4	24.4	0.81	Ninguna
50	78	76	79	80	78	78.2	22.7	0.79	Ninguna

Tabla 7 Grupo de 50 puntos de control (CRD) – 3

Ilustración 10 Línea de tendencia (CRD) - 3

Para el tercer grupo de puntos de control para el ensayo realizado con el equipo péndulo británico, se observa que la condición del pavimento reflejado en el coeficiente de resistencia al deslizamiento es calificada como de buena a regular.

	MEDICIONES													
PUNTO	PISTA	1	2	3	4	5	PROMEDIO	T(°C)	CRD	OBSERVACIONES				
1		76	79	72	78	72	75.4	25.4	0.76	Ninguna				
2	S	76	78	75	77	79	77	25.3	0.78	Ninguna				
3	> Z	73	79	76	72	74	74.8	24.4	0.76	Ninguna				
4	\cap	75	77	74	73	79	75.6	25.2	0.77	Ninguna				
5	ARI	74	79	78	78	77	77.2	25.8	0.78	Ninguna				
6	0	78	79	76	75	74	76.4	24.7	0.77	Ninguna				
7	S	77	79	77	76	72	76.2	24.6	0.77	Ninguna				
8		79	74	75	76	72	75.2	25.7	0.76	Ninguna				

1	1	1	i	i	ı	1	1	ı	
9	72	72	73	77	78	74.4	22.7	0.75	Ninguna
10	77	78	76	77	78	77.2	25.4	0.78	Ninguna
11	79	79	73	75	75	76.2	25.6	0.77	Ninguna
12	76	73	74	78	75	75.2	24.6	0.76	Ninguna
13	78	74	76	73	79	76	24.5	0.77	Ninguna
14	79	73	77	77	72	75.6	25.4	0.77	Ninguna
15	79	77	75	72	77	76	23.5	0.77	Ninguna
16	74	78	72	76	74	74.8	23.5	0.76	Ninguna
17	73	72	75	76	79	75	24.3	0.76	Ninguna
18	74	74	79	75	73	75	23.9	0.76	Ninguna
19	74	72	72	76	77	74.2	23.2	0.75	Ninguna
20	75	76	78	79	77	77	25.6	0.78	Ninguna
21	73	73	75	74	75	74	25.0	0.75	Ninguna
22	79	79	78	73	78	77.4	22.6	0.78	Ninguna
23	79	76	73	76	73	75.4	23.6	0.76	Ninguna
24	72	76	72	78	78	75.2	24.9	0.76	Ninguna
25	74	72	76	72	78	74.4	25.5	0.75	Ninguna
26	71	75	75	70	71	72.4	24.2	0.73	Ninguna
27	69	75	68	71	72	71	22.5	0.72	Ninguna
28	74	73	69	75	70	72.2	25.9	0.73	Ninguna
29	74	70	71	71	68	70.8	24.2	0.72	Ninguna
30	74	68	72	69	70	70.6	24.1	0.72	Ninguna
31	75	68	73	71	74	72.2	22.6	0.73	Ninguna
32	73	68	74	69	72	71.2	24.8	0.72	Ninguna
33	74	73	71	74	72	72.8	25.7	0.74	Ninguna
34	73	68	68	71	72	70.4	23.3	0.71	Ninguna
35	71	73	74	69	75	72.4	22.8	0.73	Ninguna
36	68	73	72	73	69	71	25.7	0.72	Ninguna
37	70	73	69	73	70	71	24.2	0.72	Ninguna
38	73	71	74	74	69	72.2	23.9	0.73	Ninguna
39	71	69	74	69	68	70.2	24.8	0.71	Ninguna
40	73	70	70	73	68	70.8	24.5	0.72	Ninguna
41	68	1	71	73	75	72	23.9	0.73	Ninguna
42	71	68	73	69	69	70	23.7	0.71	Ninguna
43	73	71	75	69	74	72.4	25.4	0.73	Ninguna
44	73	68	68	68	75	70.4	23.1	0.71	Ninguna
45	75	73	74	72	72	73.2	24.2	0.74	Ninguna
46	72	72	73	68	72	71.4	24.9	0.72	Ninguna
47	68	+	72	71	69	70.4	23.5	0.71	Ninguna
48	72	73	73	69	73	72	25.7	0.73	Ninguna
49	74	1	75	69	70	72.2	25.2	0.73	Ninguna
50	69	+	75	73	68	72	23.4	0.73	Ninguna
	1 1 3	1				ino de 50 puntos de			=

Tabla 8 Grupo de 50 puntos de control (CRD) – 4

Ilustración 11 Línea de tendencia (CRD) – 4

Para el cuarto grupo de puntos de control para el ensayo realizado con el equipo péndulo británico, se observa una línea de tendencia correctamente distribuida donde se puede identificar diversos puntos con condiciones CDR diferentes, los cuales reflejan el desgaste del pavimento a través de los años por causa del tráfico.

	MEDICIONES													
PUNTO	PISTA	1	2	OBSERVACIONES										
1		65	64	70	69	69	67.4	23.6	0.68	Ninguna				
2		68	67	70	67	66	67.6	23.7	0.69	Ninguna				
3		64	69	67	70	71	68.2	23.6	0.69	Ninguna				
4		65	66	69	65	64	65.8	24.6	0.67	Ninguna				
5		69	64	67	64	71	67	25.8	0.68	Ninguna				
6		65	66	65	70	71	67.4	25.3	0.68	Ninguna				
7	S >>	71	71	71	69	68	70	23.6	0.71	Ninguna				
8	Z	65	65	66	64	64	64.8	25.6	0.66	Ninguna				
9	A	64	69	71	70	66	68	24.4	0.69	Ninguna				
10	χ _Γ Ο	65	65	66	65	70	66.2	24.1	0.67	Ninguna				
11	S	70	67	66	66	69	67.6	24.9	0.69	Ninguna				
12		64	69	67	70	70	68	23.0	0.69	Ninguna				
13		67	66	69	64	64	66	22.9	0.67	Ninguna				
14		69	67	70	66	64	67.2	25.7	0.68	Ninguna				
15		67	69	68	65	66	67	24.6	0.68	Ninguna				
16		65	67	68	66	67	66.6	23.4	0.68	Ninguna				
17		64	67	71	68	67	67.4	25.1	0.68	Ninguna				

18	64	67	64	66	64	65	24.9	0.66	Ninguna
19	67	68	69	71	71	69.2	23.6	0.70	Ninguna
20	68	70	71	69	68	69.2	25.9	0.70	Ninguna
21	66	66	71	67	64	66.8	22.6	0.68	Ninguna
22	65	64	67	71	67	66.8	24.9	0.68	Ninguna
23	70	71	69	69	64	68.6	25.3	0.70	Ninguna
24	66	70	69	70	68	68.6	23.0	0.70	Ninguna
25	71	66	69	69	71	69.2	22.6	0.70	Ninguna
26	63	65	66	62	67	64.6	25.9	0.66	Ninguna
27	66	62	63	64	64	63.8	25.1	0.65	Ninguna
28	66	60	62	64	64	63.2	24.0	0.64	Ninguna
29	63	61	62	67	63	63.2	25.7	0.64	Ninguna
30	65	64	65	63	65	64.4	22.5	0.65	Ninguna
31	65	61	65	63	62	63.2	22.8	0.64	Ninguna
32	67	65	67	67	67	66.6	24.3	0.68	Ninguna
33	67	66	65	63	64	65	23.8	0.66	Ninguna
34	63	67	66	60	63	63.8	25.9	0.65	Ninguna
35	62	67	62	65	60	63.2	23.8	0.64	Ninguna
36	64	66	66	66	67	65.8	25.9	0.67	Ninguna
37	67	62	64	62	66	64.2	22.8	0.65	Ninguna
38	67	65	67	63	67	65.8	25.2	0.67	Ninguna
39	60	66	64	66	64	64	25.4	0.65	Ninguna
40	67	66	64	60	66	64.6	23.8	0.66	Ninguna
41	64	65	64	64	66	64.6	25.3	0.66	Ninguna
42	62	63	61	66	62	62.8	23.9	0.64	Ninguna
43	64	66	63	67	63	64.6	22.6	0.66	Ninguna
44	63	66	61	67	61	63.6	22.5	0.65	Ninguna
45	60	62	63	63	65	62.6	22.6	0.64	Ninguna
46	65	64	61	66	66	64.4	23.9	0.65	Ninguna
47	60	60	61	63	62	61.2	22.9	0.62	Ninguna
48	67	65	61	61	64	63.6	24.2	0.65	Ninguna
49	60	66	66	66	63	64.2	24.8	0.65	Ninguna
50	60	61	66	63	65	63	23.3	0.64	Ninguna

Tabla 9 Grupo de 50 puntos de control (CRD) – 5

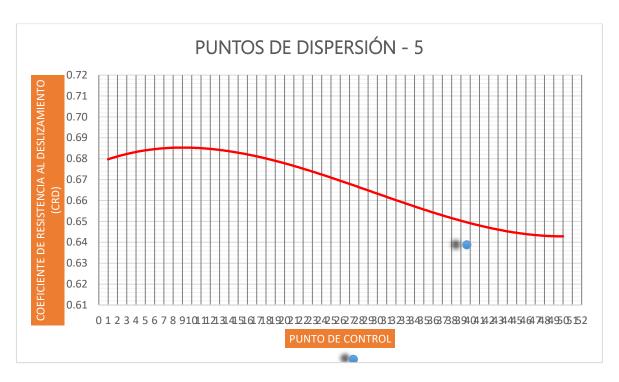


Ilustración 12 Línea de tendencia (CRD) - 5

El último grupo de puntos con los cuales se cierra los 250 puntos de control para el desarrollo de la investigación nos muestran valores entre 0.62 y 0.71 (CDR).

4.3. ENSAYO DE DETERMINACIÓN DE LA TEXTURA SUPERFICIAL DEL PAVIMENTO MEDIANTE EL ENSAYO DE CÍRCULO DE ARENA (ASTM E 965)

Para el ensayo de círculo de arena, el cual nos permite obtener la textura superficial del pavimento, se tuvo que obtener material pasante por el tamiz #80 y retenido en el tamiz #100.

Ilustración 13 Tamiz para material de ensayo círculo de arena

Para el desarrollo del ensayo en cada punto de control, se trabajó con un volumen de 50 cm3 aproximadamente.

Ilustración 14 Ensayo círculo de arena

Se realizaron un total de 250 puntos de control, cada uno de estos en el mismo punto donde se realizaron los puntos de control para obtener los coeficientes de resistencia al deslizamiento; estos ensayos se realizaron en forma simultánea.

Ilustración 15 Medición del diámetro alcanzado del círculo de arena

Para el cálculo de la profundidad media de la macrotextura (MTD), se tiene que realizar 5 mediciones por cada punto de control para obtener un promedio y ser reemplazado en la fórmula siguiente:

$$MDT = \frac{4 \cdot V}{\pi \cdot D^2}$$

- MTD: Profundidad media de macrotextura (mm)
- V: Volumen de arena utilizada (mm3)
- D: Diámetro promedio del área cubierta por la arena (mm)

Ilustración 16 Esparcimiento de la arena sobre la superficie del pavimento

El volumen de 50 cm3 se coloca sobre la superficie del pavimento en evaluación, este se esparce sobre la superficie consiguiendo un círculo de arena del cual se tomarán las mediciones de los diámetros para poder obtener un diámetro promedio y así realizar los cálculos respectivos los cuales se muestran.

					N	1EDIC	ONES		
PUNTO	PISTA	1	2	3	4	5	PROMEDIO	MTD	OBSEERVACIONES
1		25.6	24.1	24.6	23.2	28.4	25.18	1.00	Ninguna
2		25.3	22.9	27.2	25.7	22.2	24.66	1.05	Ninguna
3		28.5	28.2	25.8	25.1	28.8	27.28	0.86	Ninguna
4		27.7	27.5	26.2	28.5	28	27.58	0.84	Ninguna
5		26.1	28.8	23.8	27	25.1	26.16	0.93	Ninguna
6		24.7	24.3	23.7	25.2	27.3	25.04	1.02	Ninguna
7		25.6	28.7	25	26.7	27.2	26.64	0.90	Ninguna
8		22.8	22.8	26.3	24.2	26.8	24.58	1.05	Ninguna
9		23.4	23.2	27.2	22.8	23.9	24.1	1.10	Ninguna
10		27.1	22.6	23.1	25.7	25.4	24.78	1.04	Ninguna
11		28.5	24.6	26	28.9	23.6	26.32	0.92	Ninguna
12		23.3	28.4	25.3	25.6	28.4	26.2	0.93	Ninguna
13		26.8	24.9	28.8	23.4	25.7	25.92	0.95	Ninguna
14		27.3	28.3	28.4	22.2	24.7	26.18	0.93	Ninguna
15		25.4	25.6	25	27.2	26.8	26	0.94	Ninguna
16		25.4	22.5	22.9	23	24.8	23.72	1.13	Ninguna
17		24.1	27.8	22.3	24.5	28.2	25.38	0.99	Ninguna
18		26.5	22.7	28.9	25.9	28.7	26.54	0.90	Ninguna
19		23.7	24.6	27.7	27.9	22.9	25.36	0.99	Ninguna
20	SA	27.3	27.5	26.5	26.7	28.8	27.36	0.85	Ninguna
21	Z	23.8	25.5	23.2	24.9	25.6	24.6	1.05	Ninguna
22	AR	26.9	24.7	28.6	24.9	27.9	26.6	0.90	Ninguna
23	8 L O	23.5	23.7	22.9	27.3	28.2	25.12	1.01	Ninguna
24	S	28.3	22.7	26.2	22.2	23	24.48	1.06	Ninguna
25		25.8	25.2	26.8	26.5	23.8	25.62	0.97	Ninguna
26		23.9	29.9	23.6	25.3	27.2	25.98	0.94	Ninguna
27		24.6	28	29.8	24.2	27.5	26.82	0.89	Ninguna
28		29.7	26	28.8	23.3	23.5	26.26	0.92	Ninguna
29		26.5	26	29.6	29.3	25.8	27.44	0.85	Ninguna
30		26.2	27.6	28	29.1	24.1	27	0.87	Ninguna
31		26.2	27.5	28.2	27.4	29.6	27.78	0.82	Ninguna
32		26.6	29.6	24.4	24	27.9	26.5	0.91	Ninguna
33		26.9	26.2	29.5	23.5	29.8	27.18	0.86	Ninguna
34		23.9	23.6	26.7	28.5	26.4	25.82	0.95	Ninguna
35		28	24.8	26.1	27.8	23.6	26.06	0.94	Ninguna
36		27.1	28.1	24.7	27.9	28.7	27.3	0.85	Ninguna
37		25.7	27.8	29.2	29.6	26.1	27.68	0.83	Ninguna
38		27.8	27.9	24.9	28.7	28.1	27.48	0.84	Ninguna
39		25.1	27.4	27.3	23.8	23.8	25.48	0.98	Ninguna
40		24.8	25.7	29.5	29.2	28.9	27.62	0.83	Ninguna
41		27.8	24.7	27.9	28.8	23.8	26.6	0.90	Ninguna
42		24.3	26.9	27.6	24.6	26.9	26.06	0.94	Ninguna
43		26.1	28.7	28.7	24.5	28.1	27.22	0.86	Ninguna

44	25.4	28.2	24.2	28.8	25.9	26.5	0.91	Ninguna
45	28.7	26.2	28.6	28.9	24.1	27.3	0.85	Ninguna
46	27.5	28.5	26.6	26.9	25.6	27.02	0.87	Ninguna
47	29.7	23.7	29.1	30.1	26.2	27.76	0.83	Ninguna
48	24.8	28.3	27.9	27.7	25.1	26.76	0.89	Ninguna
49	27.5	26.7	25.8	28	28.2	27.24	0.86	Ninguna
50	28	28	26.8	25	24.9	26.54	0.90	Ninguna

Tabla 10 Grupo de 50 puntos de control (MTD) – 1

Ilustración 17 Línea de tendencia (MTD) - 1

Para el ensayo de círculo de arena, en el primer grupo de 50 puntos de control, los cuales fueron representados mediante puntos de dispersión según se puede observar en la ilustración 17, se aprecia una distribución homogénea según la línea de tendencia, con valores no mayores a 1.1 mm.

					Λ	/EDIC	iones		
PUNTO	PISTA	1 2 3 4 5 PROMEDIO MTD OBSEERVAC							OBSEERVACIONES
1		24.7	29.4	31	29	29.4	28.7	0.77	Ninguna
2	SA	26.2	24.9	26.8	30.9	29.2	27.6	0.84	Ninguna
3	Z	25.1	30.6	25	28.6	26.1	27.08	0.87	Ninguna
4	⊳	29.7	26.8	25.9	28.5	28.7	27.92	0.82	Ninguna
5	RLO	28.3	29.6	30.4	28.1	27.7	28.82	0.77	Ninguna
6	S 0	25.1	25.3	27.6	28.5	27	26.7	0.89	Ninguna
7		28.4	25.6	24.7	25	27.2	26.18	0.93	Ninguna

8		31.2	29.1	26.4	26.9	24.6	27.64	0.83	Ninguna
9	2	26.4	26.2	30.9	30	25.4	27.78	0.82	Ninguna
10	_	-	26.3	29.8	24.7	27	26.88	0.88	Ninguna
11			28.2	26.7	25.3	27.9	27.48	0.84	Ninguna
12	<u> </u>		25.9	28.7	24.9	27.9	26.82	0.89	Ninguna
13		26	29.2	31.2	25	24.5	27.18	0.86	Ninguna
14	3	30.2	30.5	28.3	30.7	30.5	30.04	0.71	Ninguna
15	2	27.5	25.1	25.8	25.7	29.4	26.7	0.89	Ninguna
16	2	25.9	28.3	30.4	27.8	27.3	27.94	0.82	Ninguna
17	3	30.4	27	24.5	27.5	28.5	27.58	0.84	Ninguna
18	2	29.8	27.6	30.1	29.8	29.9	29.44	0.73	Ninguna
19	2	25.3	26.5	24.8	26.6	30.5	26.74	0.89	Ninguna
20	2	24.5	26.5	29.2	25.6	25.7	26.3	0.92	Ninguna
21	2	28.1	28.3	30.3	25.5	31.1	28.66	0.78	Ninguna
22		27	30.7	26	27	29.7	28.08	0.81	Ninguna
23	3	31.3	30.7	30.5	28.7	26.5	29.54	0.73	Ninguna
24	2	29.2	28.9	30.6	27.4	24.5	28.12	0.81	Ninguna
25	2	27.6	25.3	25.2	26.5	27.5	26.42	0.91	Ninguna
26	2	26.3	31.2	29.4	28.6	29.9	29.08	0.75	Ninguna
27	2	27.6	31.7	28.3	32.5	27.3	29.48	0.73	Ninguna
28	2	27.2	31.5	27.3	30.6	26.4	28.6	0.78	Ninguna
29	2	25.9	31	31.2	26	28.9	28.6	0.78	Ninguna
30		28	29.2	28.7	30.7	27.2	28.76	0.77	Ninguna
31	3	32.1	28	30.3	28.6	32.5	30.3	0.69	Ninguna
32	3	31.5	32.1	26.1	27.7	30.4	29.56	0.73	Ninguna
33	2	27.1	26.8	28.5	29.6	28.7	28.14	0.80	Ninguna
34	2	27.9	29.8	31.2	26.4	30	29.06	0.75	Ninguna
35	2	27.9	26.4	30.5	28.6	29.7	28.62	0.78	Ninguna
36	2	27.9	31.6	28.6	26.2	28.4	28.54	0.78	Ninguna
37	3	30.4	26.2	26.3	29.4	27.9	28.04	0.81	Ninguna
38	2	29.1	27.9	27.9	32.2	26.3	28.68	0.77	Ninguna
39	3	30.7	31	26.3	28.8	28.9	29.14	0.75	Ninguna
40	2	26.8	32	29.5	27	26.1	28.28	0.80	Ninguna
41		28	26.9	30.6	26.3	29.3	28.22	0.80	Ninguna
42		32	29.4	26.5	27.6	30	29.1	0.75	Ninguna
43	2	28.4	30.9	27.4	27.8	27.8	28.46	0.79	Ninguna
44	2	26.9	26.3	27.5	31.8	25.7	27.64	0.83	Ninguna
45	2	28.3	28.2	31.7	28.4	26	28.52	0.78	Ninguna
46	2	26.2	28	26.5	29.5	26.5	27.34	0.85	Ninguna
47	2	29.2	30.5	27	30.1	28.9	29.14	0.75	Ninguna
48	2	26.5	29.7	31.7	31.3	29.4	29.72	0.72	Ninguna
49	2	28.4	29.7	27.1	31.8	30.6	29.52	0.73	Ninguna
50	2	28.4	28.4	26.6	32.4	29.7	29.1	0.75	Ninguna

Tabla 11 Grupo de 50 puntos de control (MTD) – 2

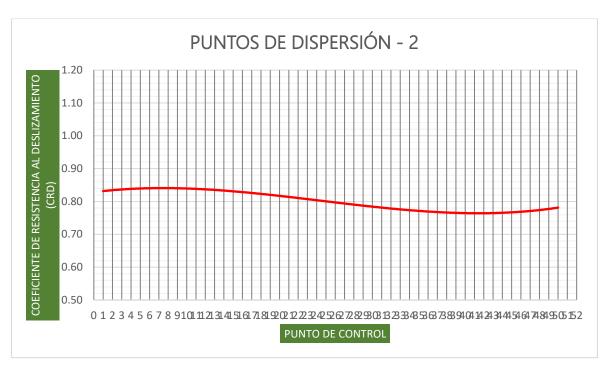


Ilustración 18 Línea de tendencia (MTD) - 2

En el segundo grupo de control, se observa una baja en los valores, estos no mayores a 0.95 mm ni menores a 0.70, teniendo un margen aproximado de 0.25 mm para este grupo de datos.

					Ν	/EDIC	IONES		
PUNTO	PISTA	1	2	3	4	5	PROMEDIO	MTD	OBSEERVACIONES
1		28.3	30.1	30.1	28.5	26	28.6	0.78	Ninguna
2		29.4	29.2	31.9	25.5	27.1	28.62	0.78	Ninguna
3		27.8	32.1	29.6	30.2	29	29.74	0.72	Ninguna
4		25.7	28.1	27.1	28	25.4	26.86	0.88	Ninguna
5		26.2	28.5	31.5	28.4	32.1	29.34	0.74	Ninguna
6		30.8	30.9	28.4	29.8	28.3	29.64	0.72	Ninguna
7	S	30.3	31.4	29	27.5	30.2	29.68	0.72	Ninguna
8	> Z	26.5	30.5	30.9	25.1	32.9	29.18	0.75	Ninguna
9	\cap	26.7	26.6	32.3	27.1	26.1	27.76	0.83	Ninguna
10	ARL	28.2	31.5	27.4	27.3	30.8	29.04	0.75	Ninguna
11	. O S	29.4	32	28.3	32.4	30	30.42	0.69	Ninguna
12	01	25.1	31.2	30.9	30.2	29.3	29.34	0.74	Ninguna
13		25.1	31.3	29.2	27.9	25.5	27.8	0.82	Ninguna
14		31.1	29.7	29.2	31.5	30.6	30.42	0.69	Ninguna
15		30.6	28.6	31.8	28	29.7	29.74	0.72	Ninguna
16		32.1	28.1	29.5	29.5	31.8	30.2	0.70	Ninguna
17		27.5	31.5	30.1	32.8	29	30.18	0.70	Ninguna
18		27.5	28.7	31.2	32.3	26.2	29.18	0.75	Ninguna

19	29	28.3	25.4	30.2	32.5	29.08	0.75	Ninguna
20	28.4	26.5	26.5	26.4	31.9	27.94	0.82	Ninguna
21	31.5	27.1	25.6	32.9	32.6	29.94	0.71	Ninguna
22	30.9	28.6	25.3	30.2	29.2	28.84	0.77	Ninguna
23	28.2	31.8	31.9	26.2	28	29.22	0.75	Ninguna
24	27.7	32.9	30.8	32.4	28.8	30.52	0.68	Ninguna
25	30.3	25.3	29.8	28.3	32	29.14	0.75	Ninguna
26	27.2	32.6	30.6	26.4	32.9	29.94	0.71	Ninguna
27	30.9	31.8	27	31.5	27.7	29.78	0.72	Ninguna
28	31.4	30.4	28.6	30.6	26.9	29.58	0.73	Ninguna
29	26.8	26.9	33	31.1	29.7	29.5	0.73	Ninguna
30	27.6	29.8	30.6	29.9	29.9	29.56	0.73	Ninguna
31	32.4	33	27	26.7	28.9	29.6	0.73	Ninguna
32	28	29.2	27.9	33.5	29.1	29.54	0.73	Ninguna
33	32.8	31.2	27.4	32.9	27.2	30.3	0.69	Ninguna
34	26.7	27.2	26.3	27.9	29.8	27.58	0.84	Ninguna
35	33.7	32.3	26.5	29.7	29.4	30.32	0.69	Ninguna
36	29.4	26.5	25.9	30.5	32.2	28.9	0.76	Ninguna
37	25.9	26.3	26.5	32.9	29.7	28.26	0.80	Ninguna
38	26.6	28.4	33.5	27.6	28.2	28.86	0.76	Ninguna
39	33.5	28.9	31.5	30	26.4	30.06	0.70	Ninguna
40	26.6	30.8	26.2	32	33.7	29.86	0.71	Ninguna
41	26.9	30.3	27.6	29.4	29.9	28.82	0.77	Ninguna
42	30.8	27.7	28	28.2	30.9	29.12	0.75	Ninguna
43	32	28	26.1	32.1	26.7	28.98	0.76	Ninguna
44	33.3	32.7	25.9	26	27.3	29.04	0.75	Ninguna
45	29.4	31.4	27.1	29.4	33.4	30.14	0.70	Ninguna
46	28.2	29.9	26.5	29.5	30.4	28.9	0.76	Ninguna
47	27.5	28.1	28.8	32.9	29.3	29.32	0.74	Ninguna
48	31.4	29.3	28.3	32.7	30.6	30.46	0.69	Ninguna
49	29.7	29.2	29.1	33.4	27.5	29.78	0.72	Ninguna
50	32.3	32.8	27.8	32.3	28.4	30.72	0.67	Ninguna

Tabla 12 Grupo de 50 puntos de control (MTD) – 3

Los 50 puntos de control del tercer grupo se obtuvieron sin ninguna observación. Este grupo de datos presenta una línea de tendencia relativamente similar al segundo grupo de puntos de control con valores no mayores a 0.90 ni menores a 0.65.

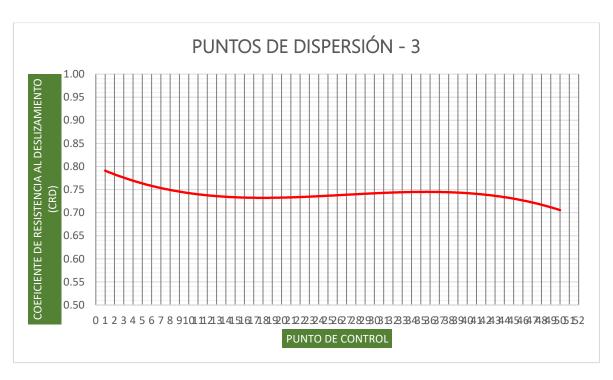


Ilustración 19 Línea de tendencia (MTD) - 3

					N	1EDIC	IONES		
PUNTO	PISTA	1	2	3	4	5	PROMEDIO	MTD	OBSEERVACIONES
1		35.1	35.3	34.1	31.2	33.2	33.78	0.56	Ninguna
2		28.2	27.6	29	30.7	34.8	30.06	0.70	Ninguna
3		32.7	29.4	31.4	33.1	30.7	31.46	0.64	Ninguna
4		31.4	35.4	30.2	26.9	33.7	31.52	0.64	Ninguna
5		27.7	35.3	27.7	26.6	27.5	28.96	0.76	Ninguna
6		32.8	35.9	32.4	29.2	34.2	32.9	0.59	Ninguna
7		34.6	31.3	28.8	31.6	28.9	31.04	0.66	Ninguna
8		32.8	27.7	32.7	29.3	29.7	30.44	0.69	Ninguna
9		31.9	32.4	29.2	30.1	28.8	30.48	0.69	Ninguna
10	S	31.8	26.5	35.3	35.2	29.8	31.72	0.63	Ninguna
11	Z	30.3	33	27.9	29.2	32.5	30.58	0.68	Ninguna
12	A	34.9	32.9	29.5	27.9	29.3	30.9	0.67	Ninguna
13	% ΓΟ	30	26.7	33.4	28.9	32.9	30.38	0.69	Ninguna
14	S	31	35.7	27.3	33	28.6	31.12	0.66	Ninguna
15		33.9	31.8	30.9	29.6	30.4	31.32	0.65	Ninguna
16		33.5	26.7	28.4	26.7	30.1	29.08	0.75	Ninguna
17		33.5	31	31.3	28.9	31.4	31.22	0.65	Ninguna
18		26.7	29.2	29.4	27.4	33.5	29.24	0.74	Ninguna
19		29.1	29.1	33.9	29.8	26.5	29.68	0.72	Ninguna
20		27.4	35.6	27.8	33.9	35.4	32.02	0.62	Ninguna
21		30.1	30.5	35.3	27.4	32.9	31.24	0.65	Ninguna
22		27.8	29.5	28.8	32.5	34.6	30.64	0.68	Ninguna
23		29.5	33.6	32.5	33.2	32.8	32.32	0.61	Ninguna

24		27.6	28	33.6	36.1	28.6	30.78	0.67	Ninguna
25		31.7	31.7	28.2	27.9	27.8	29.46	0.73	Ninguna
26	[34.7	28.4	31.1	27.9	29.1	30.24	0.70	Ninguna
27	3	33.2	34.8	35.8	32.2	35.6	34.32	0.54	Ninguna
28	3	35.8	34.4	27.9	30.3	33.3	32.34	0.61	Ninguna
29	6	28.3	31.3	27.9	31	28.7	29.44	0.73	Ninguna
30		31.2	34.8	33.1	31.5	34.3	32.98	0.59	Ninguna
31	3	34.2	32.4	34.7	27.7	31.9	32.18	0.61	Ninguna
32	6	29.2	28.2	28.7	28.6	33.8	29.7	0.72	Ninguna
33	3	33.6	32.2	29.2	34.7	27.7	31.48	0.64	Ninguna
34	í	28.8	33.3	32	34.9	29	31.6	0.64	Ninguna
35	:	31.8	29.8	27.5	36.1	31	31.24	0.65	Ninguna
36	6	27.7	33.5	32.2	32.2	31.1	31.34	0.65	Ninguna
37	3	35.8	33.3	34.2	28.2	34.9	33.28	0.57	Ninguna
38		33.1	31.6	35.1	31.8	33.2	32.96	0.59	Ninguna
39	į	30.3	29.9	27.9	28.9	30.7	29.54	0.73	Ninguna
40	í	28.8	30.7	29.6	29.4	31	29.9	0.71	Ninguna
41	í	28.6	35.4	32.3	35	32.6	32.78	0.59	Ninguna
42	á	27.7	30.9	28	27.5	35.2	29.86	0.71	Ninguna
43	:	32.1	30.2	36	36	28.2	32.5	0.60	Ninguna
44	á	27.7	33.9	27.5	33.6	34.8	31.5	0.64	Ninguna
45	[]	33.8	35.7	35	31.2	35.5	34.24	0.54	Ninguna
46	3	32.6	27.7	34.4	28	29.6	30.46	0.69	Ninguna
47		35	30.3	35.5	32.1	29.2	32.42	0.61	Ninguna
48		31.7	35.4	33.6	28.3	34.1	32.62	0.60	Ninguna
49	3	30.3	35.6	32.9	35.6	31.9	33.26	0.58	Ninguna
50	3	32.2	34.8	33.3	35	31.9	33.44	0.57	Ninguna

Tabla 13 Grupo de 50 puntos de control (MTD) – 4

En el cuarto grupo de 50 grupos de control, se aprecia una disminución en los valores obtenidos siendo así el valor mayor de 0.76 mm y el menor de 0.54 mm, estos valores obtenidos mediante el ensayo de círculo de arena en puntos de control consecutivos sin ningún tipo de alteración, para evitar sesgos en los resultados y así poder alcanzar los objetivos de la investigación.

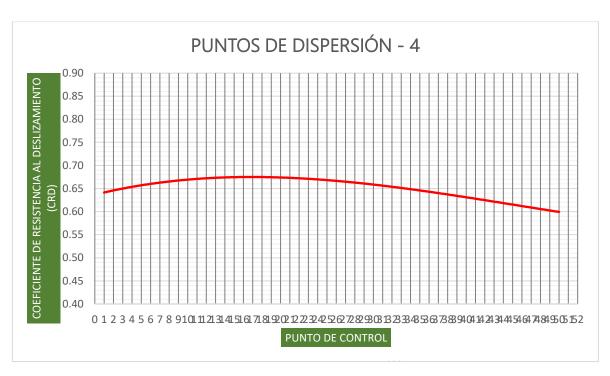


Ilustración 20 Línea de tendencia (MTD) - 4

					N	/EDIC	IONES		
PUNTO	PISTA	1	2	3	4	5	PROMEDIO	MTD	OBSEERVACIONES
1		31.9	33	37.6	38	28.9	33.88	0.55	Ninguna
2		35.3	30.5	29.8	28.9	30.9	31.08	0.66	Ninguna
3		37.7	37.4	35.9	30.8	31	34.56	0.53	Ninguna
4		35.7	34.1	32.4	35.3	34.2	34.34	0.54	Ninguna
5		35.3	36.1	35.9	36	31.5	34.96	0.52	Ninguna
6		37.8	33	29.6	29.1	29.3	31.76	0.63	Ninguna
7		33.4	35.7	33.2	33.1	30.8	33.24	0.58	Ninguna
8		31.8	30.2	29.5	37.3	32.9	32.34	0.61	Ninguna
9		34.7	29.2	37.7	29.3	32.1	32.6	0.60	Ninguna
10	S	35.4	30.4	33.1	30.6	36.4	33.18	0.58	Ninguna
11	> Z	31.5	32.3	32.1	35.7	32.4	32.8	0.59	Ninguna
12	\cap	36.7	35	30.9	31.3	37.8	34.34	0.54	Ninguna
13	A R	34.2	35.9	36.1	33.7	34	34.78	0.53	Ninguna
14	LOS	33.9	31.3	30.7	34.6	35.7	33.24	0.58	Ninguna
15	<i>O</i> 1	29.2	31.2	33.9	33	38.2	33.1	0.58	Ninguna
16		36.1	37.8	29.1	30.2	30.4	32.72	0.59	Ninguna
17		36.8	30.4	29.1	31.2	33.1	32.12	0.62	Ninguna
18		35.6	37.5	33.7	36.8	31.6	35.04	0.52	Ninguna
19		32.5	33.5	28.7	36.9	29.1	32.14	0.62	Ninguna
20		37.9	32.5	32.3	36.3	35.7	34.94	0.52	Ninguna
21		29.2	32.1	34.7	30.5	30.1	31.32	0.65	Ninguna
22		30.5	33.5	36.2	36.5	33	33.94	0.55	Ninguna
23		36	30.2	38	30	35.8	34	0.55	Ninguna
24		33.5	29.5	33.8	36.7	32.5	33.2	0.58	Ninguna

25	29.4	37.9	38.2	36.8	34.8	35.42	0.51	Ninguna
26	38.2	29.3	31.3	36.5	34.2	33.9	0.55	Ninguna
27	34.6	38.8	36.2	38.1	36.1	36.76	0.47	Ninguna
28	37.3	31.6	33	30.2	34.2	33.26	0.58	Ninguna
29	33.9	36.7	37.9	32.1	35.9	35.3	0.51	Ninguna
30	34.3	36.4	29.4	38.9	33.4	34.48	0.54	Ninguna
31	34.9	38.7	31.1	30.4	31.7	33.36	0.57	Ninguna
32	30.4	37.7	37.6	34.4	30.5	34.12	0.55	Ninguna
33	33.9	38.4	32.6	34.7	32.1	34.34	0.54	Ninguna
34	33.3	34.3	38.5	34.5	31.7	34.46	0.54	Ninguna
35	36.2	36.5	30.7	38.3	35.6	35.46	0.51	Ninguna
36	33.1	32.1	30.9	34.6	35	33.14	0.58	Ninguna
37	38.3	33.1	36.9	32.9	39.1	36.06	0.49	Ninguna
38	34.7	33.9	33.3	38.6	34.6	35.02	0.52	Ninguna
39	36.1	29.3	32.2	36	38.3	34.38	0.54	Ninguna
40	35.9	30.7	37.3	36	32.3	34.44	0.54	Ninguna
41	30.5	30.2	38.7	33.6	31.7	32.94	0.59	Ninguna
42	38.9	34.9	30.3	35.2	32.1	34.28	0.54	Ninguna
43	38.1	30.5	35.9	30.1	34.4	33.8	0.56	Ninguna
44	38.1	29.8	29.9	37.6	33.7	33.82	0.56	Ninguna
45	31.8	37.4	33.4	32.2	37.2	34.4	0.54	Ninguna
46	38.7	30	36.1	29.5	31	33.06	0.58	Ninguna
47	33.2	31.5	34.1	38.6	31.2	33.72	0.56	Ninguna
48	30.7	34.1	30.6	34.3	31	32.14	0.62	Ninguna
49	30.7	38.1	31.2	39	37.7	35.34	0.51	Ninguna
50	33.7	35	30.2	34.1	38	34.2	0.54	Ninguna

Tabla 14 Grupo de 50 puntos de control (MTD) – 5

En el quinto grupo, se obtuvo el menor valor de profundidad media de macrotextura (MTD) siendo este 0.47 mm; la línea de tendencia nos representa una distribución relativamente homogénea sin puntos muy dispersos, esto nos hace ver que no se tendrá que eliminar ningún punto de control para evitar resultados erróneos.

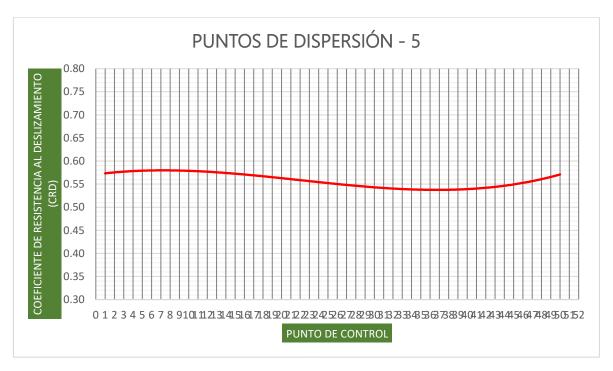


Ilustración 21 Línea de tendencia (MTD) - 5

Obtenidos todos estos valores, 250 puntos de control para cada ensayo (péndulo británico y círculo de arena), se realizó la correlación de resultados con todos los valores obtenido de CRD y MTD, obteniendo así la siguiente ecuación que representa la correlación de las dos variables.

$$y = 1.102x - 0.1745$$

Ilustración 22 Ecuación de Correlación

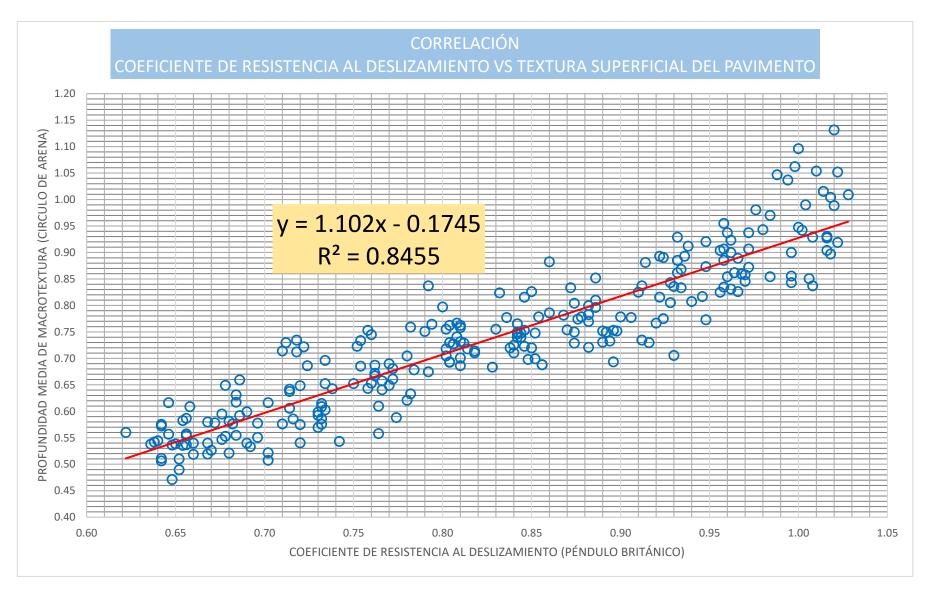


Ilustración 23 Línea de tendencia (CRD vs MTD)

4.4. ANÁLISIS ESTADÍSTICO

GRUPO DE CONTROL/COEFICIENTE DE RESISTENCIA AL DESLIZAMIENTO

	Resume	n de p	rocesamient	o de ca	8S(0)S			
	GRUPO DE				Casos			
	CONTROL		Válido	F	Perdidos	Total		
		N	Porcentaje	N	Porcentaje	N	Porcentaje	
COEFICIENTE	PRIMER	50	100,0%	0	0,0%	50	100,0%	
DE	GRUPO DE							
RESISTENCIA	CONTROL							
AL	SEGUNDO	50	100,0%	0	0,0%	50	100,0%	
DESLIZAMIENTO	GRUPO DE							
(CRD)	CONTROL							
	TERCER	50	100,0%	0	0,0%	50	100,0%	
	GRUPO DE							
	CONTROL							
	CUARTO	50	100,0%	0	0,0%	50	100,0%	
	GRUPO DE							
	CONTROL							
	QUINTO	50	100,0%	0	0,0%	50	100,0%	
	GRUPO DE							
	CONTROL							

Tabla 15 Resumen de procesamiento de casos - Coeficiente de resistencia al deslizamiento

Fuente: Elaboración propia (SPSS)

En la Tabla N° 15, se muestra el procesamiento de datos obtenidos en el ensayo de Péndulo Británico, en el cual se aprecia que no se obtuvo ningún dato perdido, acorde a esto los análisis siguientes contarán con el total de datos, 250 datos en total de este ensayo, 50 datos por cada grupo de control.

	GRUPO DE CONTR	ROL		Estadístico	Error estándar
COEFICIENTE	PRIMER GRUPO	Media		,9878	,00340
DE	DE CONTROL	95% de intervalo	Límite	,9810	,00340
RESISTENCIA	DE GOIVINGE	de confianza para	inferior	,9010	
AL		la media	Límite	,9946	
DESLIZAMIENTO			superior	,5540	
(CRD)		Media recortada al 5		,9876	
		Mediana		,9850	
		Varianza		,001	
		Desviación estánda	r	,02401	
		Mínimo		,95	
		Máximo		1,03	
		Rango		,08	
				,05	
		Asimetría		,132	,337
	SEGUNDO			-1,510	,662
			Media		
	GRUPO DE	95% de intervalo	Límite	,8988	
	CONTROL	de confianza para	inferior		
		la media	Límite superior	,9132	
		Media recortada al 5		,9058	
		Mediana	770	,9100	
		Varianza		,001	
		Desviación estánda	r	,02539	
		Mínimo		,86	
		Máximo		,95	
		Rango		,09	
		Rango intercuartil		,05	
		Asimetría		,003	,337
		Curtosis		-1,183	,662
	TERCER	Media		,8246	,00313
	GRUPO DE	95% de intervalo	Límite	,8183	
	CONTROL	de confianza para	inferior		
		la media	Límite	,8309	
			superior		
		Media recortada al 5	,8246		
		Mediana		,8250	
		Varianza		,000	

	Desviación estánda	r	,02215			
	Mínimo		,79			
	Máximo		,86			
	Rango		,07			
	Rango intercuartil		,03			
	Asimetría		-,003	,337		
	Curtosis		-1,450	,662		
CUARTO	Media		,7444	,00326		
GRUPO DE	95% de intervalo	Límite	,7378			
CONTROL	de confianza para	inferior				
	la media	Límite	,7510			
		superior				
	Media recortada al s	Media recortada al 5%				
	Mediana		,7450			
	Varianza		,001			
	Desviación estánda	Desviación estándar				
	Mínimo	Mínimo				
	Máximo		,78			
	Rango		,07			
	Rango intercuartil	Rango intercuartil				
	Asimetría					
	Curtosis		-1,408	,662		
QUINTO GRU	PO Media		,6676	,00299		
DE CONTROL	95% de intervalo	Límite	,6616			
	de confianza para	inferior				
	la media	Límite	,6736			
		superior				
	Media recortada al s	5%	,6676			
	Mediana		,6700			
	Varianza		,000			
	Desviación estánda	r	,02115			
	Mínimo		,62			
	Máximo		,71			
	Rango					
	Rango intercuartil					
	Asimetría		,033	,337		
	Curtosis		-,849	,662		

Tabla 16 Análisis descriptivo - CRD

El análisis descriptivo nos muestra las medias, así como el conteo de puntos de control correcto sin ninguna pérdida de datos. De igual forma, las gráficas planteadas (histogramas) nos muestran una simetría sin ningún tipo de sesgo pronunciado para el análisis.

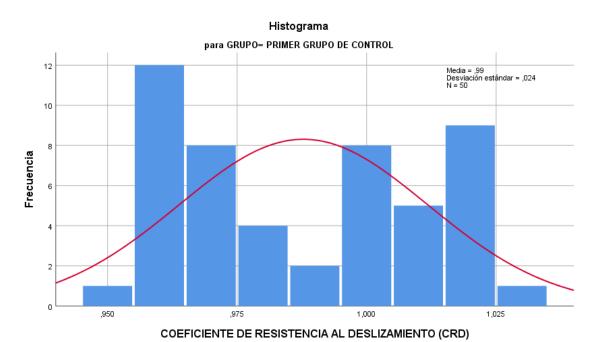


Ilustración 24 Histograma Primer Grupo de Control

Fuente: Elaboración propia (SPSS)

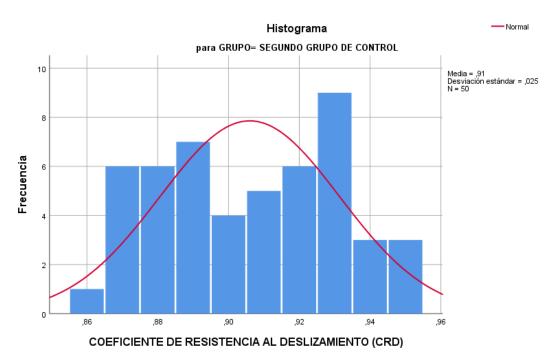


Ilustración 25 Histograma Segundo Grupo de Control

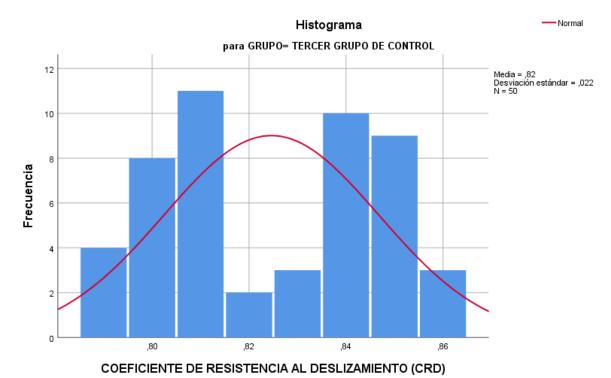


Ilustración 26 Histograma Tercer Grupo de Control

Fuente: Elaboración propia (SPSS)

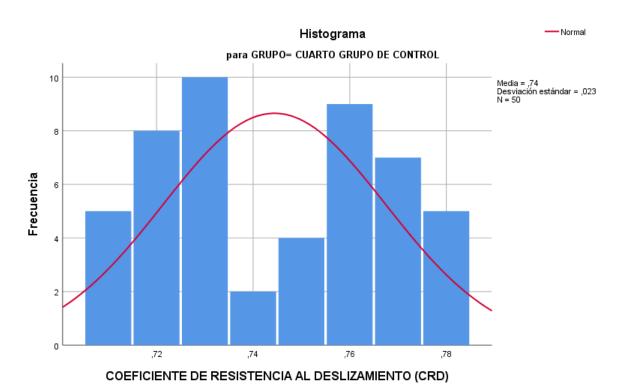


Ilustración 27 Histograma Cuarto Grupo de Control

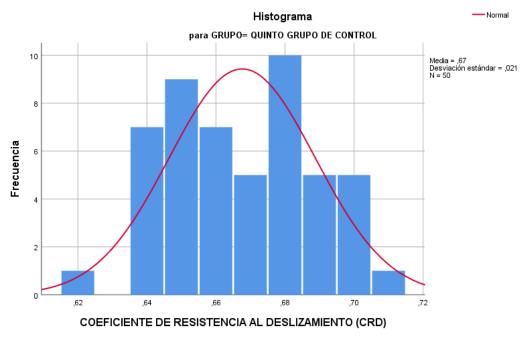


Ilustración 28 Histograma Quinto Grupo de Control

En la ilustración 29, se puede apreciar el diagrama de bigotes, el cual representa la distribución de los datos analizados, concluyendo de este que no se tiene ningún dato disperso, todos mantienen una tendencia dentro de los valores establecidos

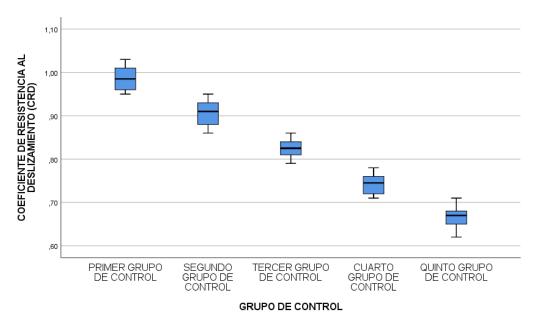


Ilustración 29 Diagrama de bigotes - CRD

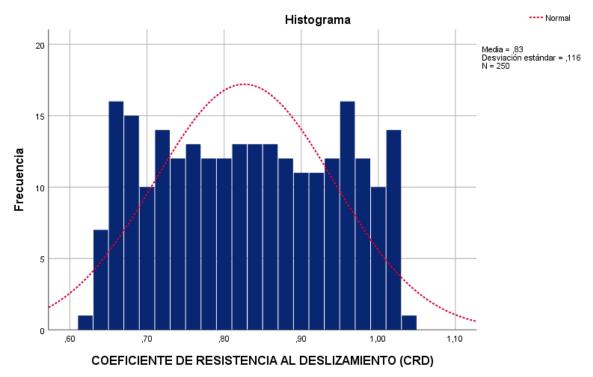


Ilustración 30 Frecuencia de CRD (250 PUNTOS DE CONTROL)

La ilustración 30 nos representa la frecuencia de los coeficientes de resistencia al deslizamiento, el cual nos permite definir que el desgaste de la Av. San Carlos es relativamente uniforme sin sesgos abruptos y pronunciados.

GRUPO DE CONTROL/PROFUNDIDAD MEDIA DE MACROTEXTURA

	Resumen	de pr	ocesamiento	de ca	SOS				
	GRUPO DE		Casos						
	CONTROL		Válido		Perdidos	Total			
		N	Porcentaje	N	Porcentaje	N	Porcentaje		
PROFUNDIDAD	PRIMER	50	100,0%	0	0,0%	50	100,0%		
MEDIA DE	GRUPO DE								
MACROTEXTURA	CONTROL								
(MTD)	SEGUNDO	50	100,0%	0	0,0%	50	100,0%		
	GRUPO DE								
	CONTROL								

TERCER	50	100,0%	0	0,0%	50	100,0%
GRUPO DE						
CONTROL						
CUARTO	50	100,0%	0	0,0%	50	100,0%
GRUPO DE						
CONTROL						
QUINTO	50	100,0%	0	0,0%	50	100,0%
GRUPO DE						
CONTROL						

Tabla 17 Resumen de procesamiento de casos – MTD

En la Tabla N° 17, se muestra el procesamiento de datos obtenidos en el ensayo de Círculo de Arena, en el cual se aprecia que no se obtuvo ningún dato perdido; acorde a esto, los análisis siguientes contarán con el total de datos, 250 datos en total de este ensayo, 50 datos por cada grupo de control, el procesamiento de datos para ambos ensayos (círculo de arena y péndulo británico) cuenta con todos los datos completos.

Descriptivos							
	GRUPO DE CONTROL			Estadístico	Error		
					estándar		
PROFUNDIDAD	PRIMER	Media	,9280	,01092			
MEDIA DE	GRUPO DE	95% de intervalo	Límite	,9061			
MACROTEXTURA	CONTROL	de confianza para	inferior				
(MTD)		la media	Límite	,9499			
			superior				
		Media recortada al 5% Mediana Varianza Desviación estándar Mínimo Máximo Rango Rango intercuartil Asimetría Curtosis		,9239			
				,9150			
				,006			
				,07722			
				,82			
				1,13			
				,31			
				,12			
				,724	,337		
				-,179	,662		
	SEGUNDO	Media		,8014	,00841		
	GRUPO DE		Límite	,7845			
	CONTROL		inferior				

	95% de intervalo	Límite	,8183	
	de confianza para	superior	,0103	
	la media	superior		
	Media recortada al 5	5%	,8001	
	Mediana Varianza Desviación estándar Mínimo Máximo		,7950	
			,004	
			,05949	
			,69	
			,93	
	Rango		,24	
	Rango intercuartil		,09	
	Asimetría		,376	,337
			-,637	,662
TERCER	Curtosis Media		,7410	,00621
GRUPO DE	95% de intervalo	Límite	,7410	,00021
CONTROL	de confianza para	inferior	,7200	
CONTROL	la media	Límite	,7535	
	ia media	superior	,7555	
	Modia recertada al F		,7382	
	Media recortada al 5% Mediana Varianza Desviación estándar Mínimo Máximo		,7352	
			,7330	
			,002	
			,67 ,88	
	Rango Rango intercuartil Asimetría		,21	
			,05	227
			1,024 1,260	,337
OLIABTO		Curtosis		,662
CUARTO	Media	1.616-	,6508	,00803
GRUPO DE	95% de intervalo	Límite	,6347	
CONTROL	de confianza para	inferior	0000	
	la media	Límite	,6669	
	Marking or control of the	superior	0544	
	Media recortada al 5% Mediana Varianza Desviación estándar Mínimo Máximo Rango Rango intercuartil Asimetría		,6511	
			,6500	
			,003	
			,05681	
			,54	
			,76	
			,22	
			,08	
			-,030	,337

	Curtosis		-,816	,662
QUINTO	Media		,5592	,00570
GRUPO DE	95% de intervalo	Límite	,5477	
CONTROL	de confianza para	inferior		
	la media	Límite	,5707	
		superior		
	Media recortada al 5% Mediana		,5582	
			,5500	
	Varianza		,002	
	Desviación estándar Mínimo Máximo Rango Rango intercuartil Asimetría		,04030	
			,47	
			,66	
			,19	
			,04	
			,416	,337
	Curtosis		,070	,662

Tabla 18 Análisis descriptivo - MTD

El análisis descriptivo de la tabla 18 nos muestra un resumen de los valores obtenidos, resaltando así que el valor para la profundidad media de macrotextura el valor mínimo es de 0.47 mm y el valor máximo es 1.13mm.

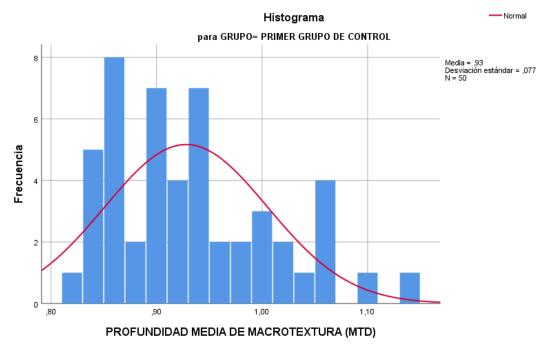


Ilustración 31 Histograma Primer Grupo de Control-MTD

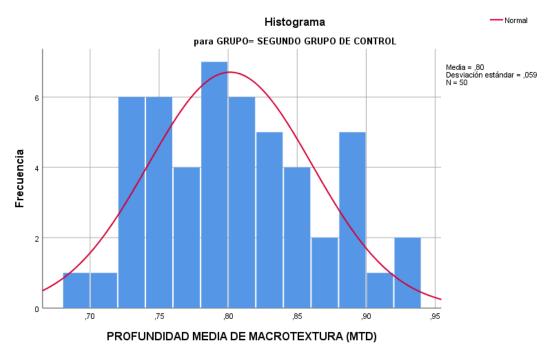


Ilustración 32 Histograma Segundo Grupo de Control-MTD

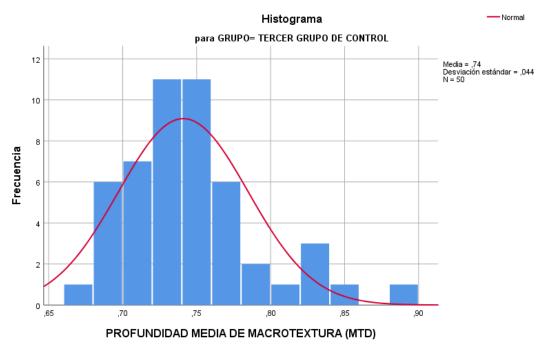


Ilustración 33 Histograma Tercer Grupo de Control-MTD

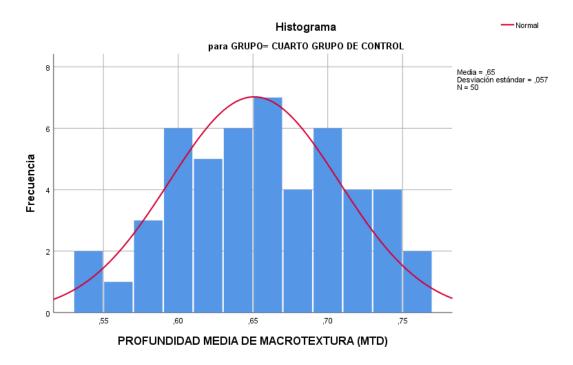


Ilustración 34 Histograma Cuarto Grupo de Control-MTD

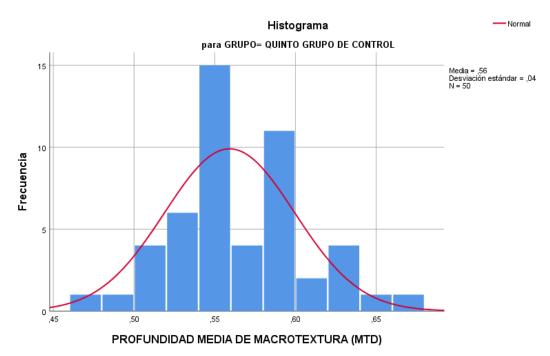
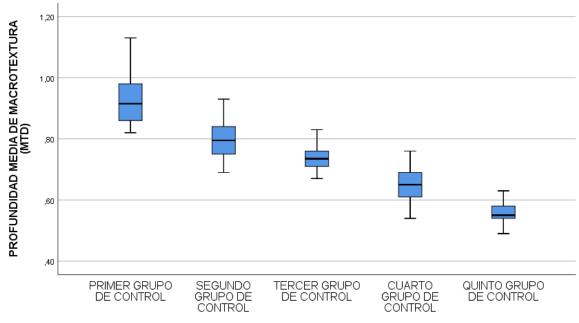



Ilustración 35 Histograma Quinto Grupo de Control-MTD

Fuente: Elaboración propia (SPSS)

Los histogramas mostrados nos muestran una correcta distribución de valores de profundidad media de macrotextura; esto nos permite deducir que no se tiene ningún tipo de sesgo.

GRUPO DE CONTROL

Ilustración 36 Diagrama de bigotes – MTD

Fuente: Elaboración propia (SPSS)

En la ilustración 36, se puede apreciar el diagrama de bigotes, el cual representa la distribución de los datos analizados, concluyendo de este que no se tiene ningún dato disperso, todos mantienen una tendencia dentro de los valores establecidos.

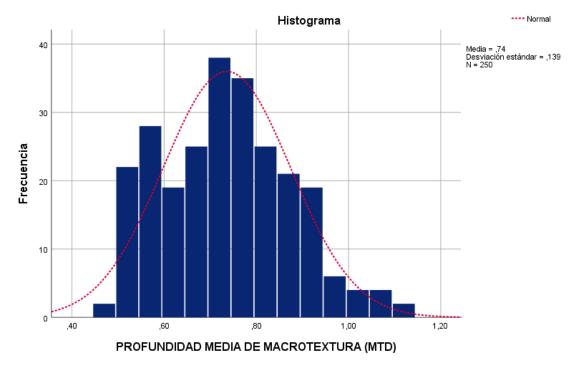


Ilustración 37 Frecuencia de MTD (250 PUNTOS DE CONTROL)

Fuente: Elaboración propia (SPSS)

CORRELACIÓN ENTRE EL COEFICIENTE DE RESISTENCIA AL DESLIZAMIENTO Y LA PROFUNDIDAD MEDIA DE MACROTEXTURA

Obtenidos los resultados de los análisis descriptivos y de frecuencias de los puntos de control para el ensayo de péndulo británico y círculo de arena, se realiza el análisis de correlación de variables para los resultados de coeficientes de resistencia al deslizamiento (variable x) y profundidad media de macrotextura (variable y).

- Ho: rho = 0 (No existe correlación entre el coeficiente de resistencia al deslizamiento y la profundidad media de macrotextura)
- Hi: rho ≠0 (Existe correlación entre el coeficiente de resistencia al deslizamiento y la profundidad media de macrotextura)

RANGOS	TIPO DE CORRELACIÓN
-0.91 a -1.00	Correlación negativa perfecta
-0.76 a -0.90	Correlación negativa muy fuerte
-0.51 a -0.75	Correlación negativa considerable
-0.11 a -0.50	Correlación negativa media
-0.01 a -0.70	Correlación negativa débil
0.00	No existe correlación
+0.01 a +0.10	Correlación positiva débil
+0.11 a +0.50	Correlación positiva media
+0.51 a +0.75	Correlación positiva considerable
+0.76 a +0.90	Correlación positiva muy fuerte
+0.90 a +1.00	Correlación positiva perfecta

Tabla 19 Tipo de correlación según sus rangos

Fuente: Elaboración propia

	Correlaciones								
		COEFICIENT	PROFUNDID						
		E DE	AD MEDIA						
		RESISTENCI	DE						
		A AL	MACROTEXT						
		DESLIZAMIE	URA (MTD)						
	T	NTO (CRD)							
COEFICIENTE DE	Correlación de Pearson	1	,919**						
RESISTENCIA AL	Sig. (bilateral)		,000						
DESLIZAMIENTO (CRD)	N	250	250						
PROFUNDIDAD MEDIA	Correlación de Pearson	,919**	1						
DE MACROTEXTURA	Sig. (bilateral)	,000							
(MTD)	N	250	250						
**. La correlación es significativa en el nivel 0,01 (bilateral).									

Tabla 20 Correlación entre CRD vs MTD

Fuente: Elaboración propia (SPSS)

Contrastando la tabla 20 y 19 con el valor de correlación de Pearson 0.919, se tiene una CORRELACIÓN POSITIVA PERFECTA, definida como el tipo de correlación que existe entre los resultados obtenidos de los ensayos de péndulo británico y círculo de arena con los resultados de coeficiente de resistencia al deslizamiento y profundidad media de macrotextura respectivamente.

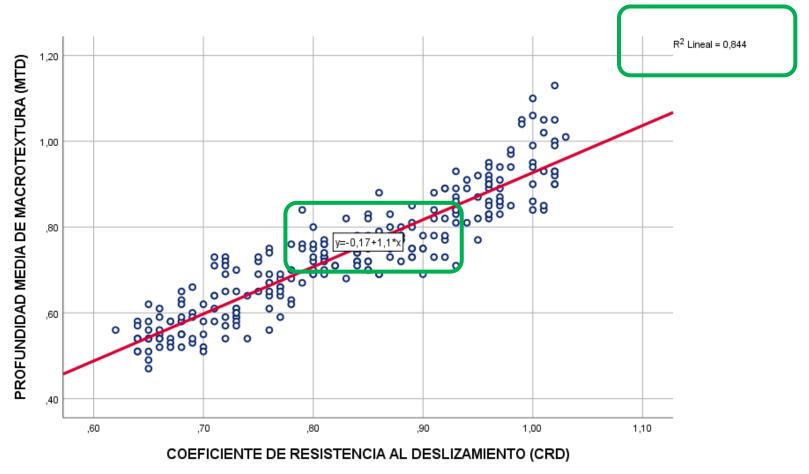


Tabla 21 Gráfica de Correlación de Variables (ANÁLISIS ESTADÍSTICO SPSS)

El análisis estadístico nos confirma los resultados obtenidos mediante las hojas de cálculo: la ecuación coincide con la presentada en la ilustración 22 y 23, existe una correlación relativamente perfecta con un nivel de confianza de 84%.

CAPÍTULO V

CONCLUSIONES Y RECOMENDACIONES

5.2. CONCLUSIONES

- Se concluye que, acorde al análisis estadístico y mediante el procesamiento de datos con las hojas de cálculo elaboradas, existe correlación entre los valores de coeficiente de resistencia al deslizamiento y la profundidad media de macrotextura con un nivel de confianza del 84% con un coeficiente de correlación de 0.919 (correlación positiva perfecta); por ende, una correlación entre los ensayos de péndulo británico y círculo de arena.
- Se concluye que la rugosidad que se obtiene en el pavimento de la avenida San Carlos con el ensayo de círculo de arena expresada en la profundidad media de macrotextura el valor promedio dentro de los 250 puntos de control es de 0.74mm, este valor en conjunto con el 0.83 del valor promedio de creciente de resistencia al deslizamiento caben dentro de los valores establecidos internacionalmente para otros países, los cuales no difieren más que en un 0.1, concluyendo así que los valores obtenidos son viables para establecer una correlación aplicable a la ingeniería.
- Se concluye que la rugosidad que se obtiene en el pavimento de la avenida San Carlos con el ensayo de péndulo británico expresado mediante el coeficiente de resistencia al deslizamiento es de 0.83, el cual tiende al valor de 0.90, el cual es calificado como malo, pues produce desgaste en los neumáticos de los vehículos que transitan por esta avenida, valor aceptado dentro de la investigación considerando los años de vida útil que tiene la vía en mención.
- Se concluye que debido a tener una correlación positiva perfecta entre los datos de coeficiente de resistencia al deslizamiento y profundidad

media de macrotextura se plantea como ecuación lineal viable a un nivel de confianza del 84% bajo las condiciones climáticas en las que se desarrollaron los ensayos, la siguiente ecuación verificada.

•

$$y = 1.102x - 0.1745$$

5.3. RECOMENDACIONES

- Se recomienda tener un análisis estadístico de respaldo para poder definir la viabilidad de nuevos modelos matemáticos aplicados a la ingeniería. Para el caso de la investigación, se desarrollaron mediante el programa IBM SPSS ESTATISTICS 26.
- Se recomienda tener en cuenta todas las correcciones de los resultados establecidos en las normas que definen los ensayos para así evitar datos errados.
- Para el caso de cada ensayo, es recomendable tener en cuenta la normativa de esta para evitar sesgo o error de resultados que no permitirían un desarrollo correcto de una investigación; seguir acorde lo estipula la norma cada paso del ensayo con los equipos y materiales correctos.
- Al correlacionar variables es recomendable tener una base de datos confiable y con puntos de control considerables para poder evitar sesgos en los resultados.

REFERENCIAS BIBLIOGRÁFICAS

- Alvarez, G. A. (2018). Seguimiento de tramos de pavimentos asfálticos del tipo cape seal en la III región. Santiago de Chile.
- Asencios, D. V. (2016). Medición y comparación de la rugosidad en pavimentos de la ciudad de Huánuco: mediante Smartphone y un método tradicional. Lima.
- Aulestia Viscarra, S. A., & Chávez Romero, S. F. (2017). Comparación de propiedades y características mecánicas entre una mezcla asfáltica en caliente normal y una mezcla asfáltica en caliente modificada con polímeros (tapas plásticas de botellas) por vía seca. Quito: Pontificia Universidad Católica del Ecuador.
- Bandura, L., Panek, R., & Woszuk, A. (2015). Application of zeolites as fillers in mix asphalt. Budownictwo i Architektura.
- Bernal Torres, C. A. (2010). *Metodología de la investigación*. Colombia: Pearson Educación.
- Carrasco Díaz, S. (2005). Metodología de la investigación científica. Lima: San Marcos.
- Cordova, J. C. (2019). Evaluación del coeficiente de fricción del pavimento en 10 vías rápidas en Arequipa usando el péndulo de fricción británico trrl. Arequipa.
- David, I. C. (2019). Estudio de la capa de rodadura de pavimento flexible en los accesos principales de Jipijapa. Manabí.
- Depestre, R. G. (2017). Resistencia al deslizamiento y textura superficial en pavimentos flexibles en la carretera rural Santa Clara Manicaragua. Santa Clara.
- Diazgranados, M. R. (2017). Evaluación de la textura y la rugosidad de pavimentos flexibles mediante imágenes tomadas a partir de cámara no métrica nikon coolpix s2900. Bogotá.
- Eléspuru, G. B. (2004). Resistencia al deslizamiento en pavimentos flexibles: propuesta de norma peruana. Lima.
- Hernández Cabrera, G. H., & Ramirez Rodriguez, F. (2010). Como influye el grado de compactación a una capa de pavimento flexible. *Programa de Ingenieria civil, Universidad Católica de Colombia*.
- Hernández Sampieri, R. (2014). *Metodología de la investigación*. México D.F.: McGraw-Hill.

- Huaychao, A. J. (2019). Análisis comparativo del índice de rugosidad del pavimento de la av. La cultura de la ciudad del Cusco mediante el aplicativo para smarthphone roadroid rugosmetro electrónico bump integrado b1 100a y rugosímetro de merlin. Cusco.
- Lizárraga López, J. M. (2019). Mechanical performance of half-warm mix recycled asphalt mixtures containing total rates of reclaimed asphalt pavement for their use in road pavements. Madrid: Universidad Politécnica de Madrid.
- Marinkovic, M., Milovic, T., & Matic, B. (2017). Zeolite as additive in warm mix asphalt.
- Mejía Mejía, E. (2005). *Metodología de la investigación científica*. Lima: Universidad Nacional Mayor de San Marcos Unidad de Postgrado.
- Monje Álvarez, C. A. (2011). *Metodología de la investigación cuantitativa y cualitativa*. Neiva: Universidad Surcolombiana.

ANEXOS

MATRIZ DE CONSISTENCIA

TITULO: ANÁLISIS PARA LA CORRELACIÓN DE RESULTADOS DE TEXTURA SUPERFICIAL ENTRE EL ENSAYO DE CIRCULO DE ARENA Y EL PÉNDULO BRITÁNICO (TRRL) APLICADO A LA AVENIDA SAN CARLOS – HUANCAYO 2021

PROBLEMAS	OBJETIVOS	HIPÓTESIS	VARIABLES	DIMENSION	METODOLOGÍA
PROBLEMA GENERAL ¿Cómo se correlacionan los resultados para la textura superficial, obtenida con el ensayo de círculo de arena y el ensayo de péndulo británico - Huancayo 2021? PROBLEMA ESPECÍFICO ¿Cuál es la rugosidad que se obtiene en el pavimento de la avenida San Carlos con el ensayo de círculo de arena, Huancayo 2021? ¿Cuál es la rugosidad que se obtiene en el pavimento de la avenida San Carlos con el ensayo de péndulo británico, Huancayo 2021?	OBJETIVO GENERAL Determinar el grado de correlación de los resultados obtenidos de la rugosidad con el ensayo de círculo de arena y péndulo británico, Huancayo – 2021 OBJETIVOS ESPECÍFICOS Determinar la rugosidad que se obtiene en el pavimento de la avenida San Carlos con el ensayo de círculo de arena, Huancayo 2021 Determinar la rugosidad que se obtiene en el pavimento de la avenida San Carlos con el ensayo de péndulo británico, Huancayo 2021	HIPÓTESIS GENERAL Existe una correlación entre los resultados obtenidos de la rugosidad con el ensayo de círculo de arena y péndulo británico, Huancayo - 2021 HIPÓTESIS ESPECÍFICA El índice de rugosidad que se obtiene en el pavimento de la avenida San Carlos con el ensayo de círculo de arena indica un considerable deterioro, Huancayo 2021 El índice de rugosidad que se obtiene en el pavimento de la avenida San Carlos con el ensayo de péndulo británico indica un índice bajo, Huancayo 2021	VI: TEXTURA SUPERFICIAL VD: Círculo de arena	- Índice de Rugosidad	TIPO: Aplicada NIVEL: Correlacional DISEÑO: Cuasiexperimental POBLACIÓN: Av. San Carlos MUESTRA: Av. San Carlos de 200 m del Tramo (Calmell Solar al Psj: Aurora) TÉCNICA: Observación sistemática INSTRUMENTO:
¿Qué relación guarda la rugosidad del pavimento de la avenida San Carlos obtenida con el ensayo de círculo de arena y péndulo británico, Huancayo 2021?	Establecer la relación que guarda la rugosidad del pavimento de la avenida San Carlos obtenida con el ensayo de círculo de arena y péndulo británico, Huancayo 2021	Existe una relación entre la rugosidad del pavimento de la avenida San Carlos obtenida con el ensayo de círculo de arena y péndulo británico, Huancayo 2021	Péndulo británico	- Coeficiente de resistencia a la deslizamiento	Fichas de recolección

ANEXO 1 Estacionamiento del Péndulo Británico

ANEXO 2 Calibración del Patín de Caucho con la regla metálica

ANEXO 3 Limpieza de superficie a ensayar

ANEXO 4 Equipo listo para ejecutar el ensayo

ANEXO 5 Tamiz N°80 y N°100 para material del ensayo círculo de arena

ANEXO 6 Arena para ensayo de circulo de arena

ANEXO 7 Material para el ensayo de círculo de arena

ANEXO 8 Vertido de la arena en la superficie del pavimento

ANEXO 9 Esparcimiento de la arena sobre la superficie del pavimento

ANEXO 10 Medición del diámetro del círculo de arena

ANEXO 11 Realizando la medición del ensayo

ANEXO 12 Verificando la medición realizada

ANEXO 13 Realizando la anotación del ensayo

ANEXO 14 Continuando con la medición del circulo de arena

CERTIFICADOS

COLDFIX CONSULTING

CLIENTE:

FECHA:

PROYECTO:

LABORATORIO DE MECANICA DE SUELOS,CONCRETO Y PAVIMENTO

REGISTRO DE CONTROL

SARIN EVELYN ESTRADA CHAVEZ

27-Set-21 LUGAR:

ANÁLISIS PARA LA CORRELACIÓN DE RESULTADOS DE TEXTURA
SUPERFICIAL ENTRE EL ENSAYO DE CIRCULO DE ARENA Y EL PÉNDULO
BRITANICO (TRRL) APLICADO A LA AVENIDA SAN CARLOS – HUANCAYO 2021
TEC. ESP:

DTO: JUNIN PROV: HUANCAYO

AV. SAN CARLOS - 1

DIST. HUANCAYO

PUNTO		MEDICIONES												
	PISTA	1	2	3	4	5	PROMEDIO	T(°C)	CRD	OBSERVACIONES				
1		97	101	102	101	103	100.8	24.4	1.02	Ninguna				
2		96	98	98	96	101	97.8	24.3	0.99	Ninguna				
3		99	98	99	100	97	98.6	23.6	1.00	Ninguna				
4		96	101	98	101	103	99.8	25.5	1.01	Ninguna				
5		99	101	102	100	101	100.6	23.5	1.02	Ninguna				
6		98	98	102	101	103	100.4	25.6	1.01	Ninguna				
7		103	101	99	99	102	100.8	23.9	1.02	Ninguna				
8		96	99	100	103	102	100	24.2	1.01	Ninguna				
9		99	100	99	100	97	99	23.8	1.00	Ninguna				
10		100	100	96	97	99	98.4	24.0	0.99	Ninguna				
11		98	99	103	103	103	101.2	24.9	1.02	Ninguna				
12		103	101	100	103	96	100.6	23.5	1.02	Ninguna				
13		97	103	99	98	98	99	23.7	1.00	Ninguna				
14		102	99	96	102	100	99.8	24.9	1.01	Ninguna				
15		103	103	98	96	96	99.2	22.8	1.00	Ninguna				
16		103	96	102	102	102	101	24.1	1.02	Ninguna				
17		102	101	96	103	103	101	25.4	1.02	Ninguna				
18		102	98	98	102	103	100.6	23.6	1.02	Ninguna				
19	S	97	102	97	102	99	99.4	23.6	1.00	Ninguna				
20		98	102	98	97	103	99.6	22.9	1.01	Ninguna				
21	Α	97	102	102	103	102	101.2	24.9	1.02	Ninguna				
22	N	97	102	99	99	96	98.6	23.8	1.00	Ninguna				
23	IN	101	99	103	103	103	101.8	25.8	1.03	Ninguna				
24	C	100	100	100	97	97	98.8	23.2	1.00	Ninguna				
25		97	96	97	99	98	97.4	24.7	0.98	Ninguna				
26	Α	99	96	99	95	96	97	22.6	0.98	Ninguna				
27	R	94	95	95	93	97	94.8	22.6	0.96	Ninguna				
28		98	98	94	93	93	95.2	24.1	0.96	Ninguna				
29	L	99	96	92	99	94	96	24.8	0.97	Ninguna				
30	0	98	94	92	93	92	93.8	24.7	0.95	Ninguna				
31	O	94	95	98	93	93	94.6	25.0	0.96	Ninguna				
32	S	96	94	97	93	94	94.8	23.8	0.96	Ninguna				
33		93	96	97	95	96	95.4	23.6	0.96	Ninguna				
34		93	92	95	99	95	94.8	23.7	0.96	Ninguna				
35		96	96	92	95	96	95	24.1	0.96	Ninguna				
36		95	95	95	96	94	95	25.0	0.96	Ninguna				
37		99	92	97	95	93	95.2	24.5	0.96	Ninguna				
38		98	98	99	99	99	98.6	23.7	1.00	Ninguna				
39		94	99	96	95	99	96.6	24.0	0.98	Ninguna				
40		96	97	92	95	94	94.8	23.1	0.96	Ninguna				
41		94	96	98	93	95	95.2	24.6	0.96	Ninguna				
42		98	97	95	93	98	96.2	25.5	0.97	Ninguna				
43		92	93	99	96	99	95.8	25.5	0.97	Ninguna				
44		97	97	94	94	99	96.2	25.6	0.97	Ninguna				
45		99	95	96	98	99	97.4	23.7	0.98	Ninguna				
46		98	97	99	92	95	96.2	24.9	0.97	Ninguna				
47		98	96	99	93	92	95.6	23.9	0.97	Ninguna				
48		98	94	95	99	92	95.6	23.5	0.97	Ninguna				
49		94	99	93	95	99	96	23.4	0.97	Ninguna				
50		92	96	98	95	92	94.6	24.1	0.96	Ninguna				

(Q) COLDFIX CONSULTING

LABORATORIO DE MECANICA DE SUELOS,CONCRETO Y PAVIMENTO

REGISTRO DE CONTROL

SARIN EVELYN ESTRADA CHAVEZ

AV. SAN CARLOS - 2 DTO: JUNIN PROV: HUANCAYO

CLIENTE: FECHA:

LUGAR: PROYECTO: ANÁLISIS PARA LA CORRELACIÓN DE RESULTADOS DE TEXTURA
SUPERFICIAL ENTRE EL ENSAYO DE CIRCULO DE ARENA Y EL PÉNDULO
BRITANICO (TRRL) APLICADO A LA AVENIDA SAN CARLOS – HUANCAYO 2021
TEC. ESP:

DIST. HUANCAYO

	MEDICIONES												
PUNTO	PISTA	1	2	3	4	5	PROMEDIO	T(°C)	CRD	OBSERVACIONES			
1		94	94	92	95	94	93.8	22.6	0.95	Ninguna			
2		90	90	92	95	93	92	25.4	0.93	Ninguna			
3		94	90	95	91	92	92.4	25.1	0.93	Ninguna			
4		95	92	95	91	95	93.6	23.0	0.95	Ninguna			
5		91	95	90	88	91	91	25.7	0.92	Ninguna			
6		92	89	94	89	92	91.2	25.0	0.92	Ninguna			
7		95	94	88	94	90	92.2	24.6	0.93	Ninguna			
8		94	91	91	91	95	92.4	23.0	0.93	Ninguna			
9		91	89	91	88	91	90	25.2	0.91	Ninguna			
10		88	90	94	92	88	90.4	25.2	0.91	Ninguna			
11		90	93	94	90	92	91.8	23.8	0.93	Ninguna			
12		91	90	90	95	95	92.2	25.3	0.93	Ninguna			
13		95	93	90	88	95	92.2	25.6	0.93	Ninguna			
14		89	90	92	94	95	92	23.4	0.93	Ninguna			
15		95	94	88	95	91	92.6	22.6	0.94	Ninguna			
16		91	95	89	91	90	91.2	24.5	0.92	Ninguna			
17		89	92	91	88	91	90.2	25.4	0.91	Ninguna			
18		88	93	92	90	88	90.2	24.4	0.91	Ninguna			
19	S	90	92	93	88	94	91.4	23.9	0.92	Ninguna			
20		94	95	92	94	94	93.8	25.2	0.95	Ninguna			
21	А	93	91	90	92	91	91.4	25.1	0.92	Ninguna			
22	N	92	95	93	91	94	93	22.9	0.94	Ninguna			
23		90	88	93	91	91	90.6	23.2	0.92	Ninguna			
24	С	91	91	94	93	90	91.8	22.9	0.93	Ninguna			
25	А	91	92	92	95	94	92.8	25.3	0.94	Ninguna			
26		85	91	87	91	89	88.6	25.8	0.90	Ninguna			
27	R	89	87	91	87	88	88.4	25.2	0.89	Ninguna			
28		87	85	90	84	88	86.8	25.2	0.88	Ninguna			
29	L	87	89	89	90	90	89	25.4	0.90	Ninguna			
30	0	89	84	89	84	90	87.2	23.4	0.88	Ninguna			
31	_	84	88	90	90	91	88.6	24.6	0.90	Ninguna			
32	S	87	85	91	84	85	86.4	23.7	0.87	Ninguna			
33		85	84	89	87	87	86.4	23.4	0.87	Ninguna			
34		85	85	84	90	86	86	24.9	0.87	Ninguna			
35		90	91	91	88	88	89.6	24.0	0.91	Ninguna			
36		85	84	85	87	88	85.8	22.5	0.87	Ninguna			
37		88	85	89	86	90	87.6	24.2	0.89	Ninguna			
38		86	84	90	85	88	86.6	23.3	0.88	Ninguna			
39		86	91	89	84	91	88.2	24.6	0.89	Ninguna			
40		89	89	85	85	90	87.6	25.7	0.89	Ninguna			
41		90	88	89	85	84	87.2	24.9	0.88	Ninguna			
42		86	86	90	90	88	88	25.8	0.89	Ninguna			
43		84	87	84	86	84	85	25.3	0.86	Ninguna			
44		85	84	87	84	91	86.2	23.1	0.87	Ninguna			
45		88	86	86	90	86	87.2	25.9	0.88	Ninguna			
46		88	91	91	84	84	87.6	23.5	0.89	Ninguna			
47		84	86	85	87	90	86.4	25.0	0.87	Ninguna			
48		84	89	85	91	87	87.2	23.5	0.88	Ninguna			
49		88	89	90	84	89	88	25.7	0.89	Ninguna			
50		89	86	90	90	89	88.8	24.7	0.90	Ninguna			

(g) COLDFIX CONSULTING

LABORATORIO DE MECANICA DE SUELOS,CONCRETO Y PAVIMENTO

REGISTRO DE CONTROL

SARIN EVELYN ESTRADA CHAVEZ

AV. SAN CARLOS - 3

CLIENTE: FECHA:

LUGAR:

DTO: JUNIN PROV: HUANCAYO

PROYECTO: ANÁLISIS PARA LA CORRELACIÓN DE RESULTADOS DE TEXTURA SUPERFICIAL ENTRE EL ENSAYO DE CIRCULO DE ARENA Y EL PÉNDULO BRITANICO (TRRL) APLICADO A LA AVENIDA SAN CARLOS – HUANCAYO 2021 TEC. ESP:

DIST. HUANCAYO

	MEDICIONES											
PUNTO	PISTA	1	2	3	4	5	PROMEDIO	T(°C)	CRD	OBSERVACIONES		
1		81	87	82	86	86	84.4	23.7	0.85	Ninguna		
2		82	86	80	85	80	82.6	25.0	0.84	Ninguna		
3		83	86	82	82	87	84	24.5	0.85	Ninguna		
4		84	87	84	87	83	85	22.6	0.86	Ninguna		
5		82	81	82	85	87	83.4	25.6	0.84	Ninguna		
6		86	81	87	80	81	83	25.6	0.84	Ninguna		
7		80	82	86	87	83	83.6	25.7	0.85	Ninguna		
8		86	83	85	81	86	84.2	24.3	0.85	Ninguna		
9		86	80	87	82	85	84	23.2	0.85	Ninguna		
10		81	80	84	85	80	82	25.6	0.83	Ninguna		
11		82	86	85	86	84	84.6	23.8	0.86	Ninguna		
12		85	82	85	81	83	83.2	22.6	0.84	Ninguna		
13		81	83	87	80	80	82.2	25.1	0.83	Ninguna		
14		85	87	85	86	80	84.6	22.7	0.86	Ninguna		
15		83	82	81	85	83	82.8	23.5	0.84	Ninguna		
16		83	87	81	83	85	83.8	24.5	0.85	Ninguna		
17		83	81	87	85	85	84.2	23.3	0.85	Ninguna		
18		86	83	84	81	83	83.4	23.7	0.84	Ninguna		
19	S	87	81	83	82	85	83.6	24.7	0.85	Ninguna		
20	Δ.	82	83	86	87	80	83.6	24.0	0.85	Ninguna		
21	А	80	87	84	81	83	83	23.7	0.84	Ninguna		
22	N	82	80	83	86	85	83.2	25.8	0.84	Ninguna		
23		86	86	82	82	80	83.2	23.7	0.84	Ninguna		
24	С	80	81	82	84	82	81.8	23.4	0.83	Ninguna		
25	А	84	85	82	84	81	83.2	24.5	0.84	Ninguna		
26		80	79	83	83	79	80.8	23.4	0.82	Ninguna		
27	R	77	80	83	80	76	79.2	23.0	0.80	Ninguna		
28	L	82	80	81	77	78	79.6	23.6	0.81	Ninguna		
29	_	77	82	78	83	80	80	25.7	0.81	Ninguna		
30	0	76	82	81	82	80	80.2	24.3	0.81	Ninguna		
31		82	80	80	79	77	79.6	23.1	0.81	Ninguna		
32	S	79	80	83	77	78	79.4	24.6	0.80	Ninguna		
33		83	80	81	76	77	79.4	25.7	0.80	Ninguna		
34		80	77	76	79	79	78.2	25.5	0.79	Ninguna		
35		83	79	80	78	77	79.4	25.2	0.80	Ninguna		
36		79	83	83	78	77	80	24.7	0.81	Ninguna		
37		82	80	76	80	77	79	24.4	0.80	Ninguna		
38		78	81	78	77	78	78.4	22.9	0.79	Ninguna		
39		76	81	82	80	77	79.2	23.2	0.80	Ninguna		
40		80	80	83	78	83	80.8	25.9	0.82	Ninguna		
41		81	79	83	76	80	79.8	23.1	0.81	Ninguna		
42		80	76	77	77	80	78	23.0	0.79	Ninguna		
43		80	81	76	82	81	80	24.4	0.81	Ninguna		
44		76	82	83	76	79	79.2	24.6	0.80	Ninguna		
45		79	80	78	81	82	80	23.3	0.81	Ninguna		
46		83	79	78	80	77	79.4	23.3	0.80	Ninguna		
47		79	79	80	83	78	79.8	25.5	0.81	Ninguna		
48		76	81	82	80	81	80	25.2	0.81	Ninguna		
49		77	81	82	79	83	80.4	24.4	0.81	Ninguna		
50		78	76	79	80	78	78.2	22.7	0.79	Ninguna		

(Q) COLDFIX CONSULTING

CLIENTE:

FECHA:

LABORATORIO DE MECANICA DE SUELOS,CONCRETO Y PAVIMENTO

REGISTRO DE CONTROL

SARIN EVELYN ESTRADA CHAVEZ

LUGAR:

AV. SAN CARLOS - 4 DTO: JUNIN PROV: HUANCAYO

DIST. HUANCAYO

PROYECTO: ANÁLISIS PARA LA CORRELACIÓN DE RESULTADOS DE TEXTURA
SUPERFICIAL ENTRE EL ENSAYO DE CIRCULO DE ARENA Y EL PÉNDULO
BRITANICO (TRRL) APLICADO A LA AVENIDA SAN CARLOS – HUANCAYO 2021
TEC. ESP:

	MEDICIONES												
PUNTO	PISTA	1	2	3	4	5	PROMEDIO	T(°C)	CRD	OBSERVACIONES			
1		76	79	72	78	72	75.4	25.4	0.76	Ninguna			
2		76	78	75	77	79	77	25.3	0.78	Ninguna			
3		73	79	76	72	74	74.8	24.4	0.76	Ninguna			
4		75	77	74	73	79	75.6	25.2	0.77	Ninguna			
5		74	79	78	78	77	77.2	25.8	0.78	Ninguna			
6		78	79	76	75	74	76.4	24.7	0.77	Ninguna			
7		77	79	77	76	72	76.2	24.6	0.77	Ninguna			
8		79	74	75	76	72	75.2	25.7	0.76	Ninguna			
9		72	72	73	77	78	74.4	22.7	0.75	Ninguna			
10		77	78	76	77	78	77.2	25.4	0.78	Ninguna			
11		79	79	73	75	75	76.2	25.6	0.77	Ninguna			
12		76	73	74	78	75	75.2	24.6	0.76	Ninguna			
13		78	74	76	73	79	76	24.5	0.77	Ninguna			
14		79	73	77	77	72	75.6	25.4	0.77	Ninguna			
15		79	77	75	72	77	76	23.5	0.77	Ninguna			
16		74	78	72	76	74	74.8	23.5	0.76	Ninguna			
17		73	72	75	76	79	75	24.3	0.76	Ninguna			
18		74	74	79	75	73	75	23.9	0.76	Ninguna			
19	S	74	72	72	76	77	74.2	23.2	0.75	Ninguna			
20	А	75	76	78	79	77	77	25.6	0.78	Ninguna			
21	/ \	73	73	75	74	75	74	25.0	0.75	Ninguna			
22	Ν	79	79	78	73	78	77.4	22.6	0.78	Ninguna			
23	_	79	76	73	76	73	75.4	23.6	0.76	Ninguna			
24	С	72	76	72	78	78	75.2	24.9	0.76	Ninguna			
25	Α	74	72	76	72	78	74.4	25.5	0.75	Ninguna			
26		71	75	75	70	71	72.4	24.2	0.73	Ninguna			
27	R	69	75	68	71	72	71	22.5	0.72	Ninguna			
28 29	L	74 74	73	69	75	70	72.2	25.9	0.73	Ninguna			
30		74	70 68	71 72	71 69	68 70	70.8 70.6	24.2 24.1	0.72 0.72	Ninguna Ninguna			
31	0	75	68	73	71	74	72.2	22.6	0.72	Ninguna			
32	S	73	68	74	69	72	71.2	24.8	0.73	Ninguna			
33		74	73	71	74	72	72.8	25.7	0.74	Ninguna			
34		73	68	68	71	72	70.4	23.3	0.74	Ninguna			
35		71	73	74	69	75	72.4	22.8	0.73	Ninguna			
36		68	73	72	73	69	71	25.7	0.72	Ninguna			
37		70	73	69	73	70	71	24.2	0.72	Ninguna			
38		73	71	74	74	69	72.2	23.9	0.73	Ninguna			
39		71	69	74	69	68	70.2	24.8	0.71	Ninguna			
40		73	70	70	73	68	70.8	24.5	0.72	Ninguna			
41		68	73	71	73	75	72	23.9	0.73	Ninguna			
42		71	68	73	69	69	70	23.7	0.71	Ninguna			
43		73	71	75	69	74	72.4	25.4	0.73	Ninguna			
44		73	68	68	68	75	70.4	23.1	0.71	Ninguna			
45		75	73	74	72	72	73.2	24.2	0.74	Ninguna			
46		72	72	73	68	72	71.4	24.9	0.72	Ninguna			
47		68	72	72	71	69	70.4	23.5	0.71	Ninguna			
48		72	73	73	69	73	72	25.7	0.73	Ninguna			
49		74	73	75	69	70	72.2	25.2	0.73	Ninguna			
50		69	75	75	73	68	72	23.4	0.73	Ninguna			

(g) COLDFIX CONSULTING

LABORATORIO DE MECANICA DE SUELOS,CONCRETO Y PAVIMENTO

REGISTRO DE CONTROL

SARIN EVELYN ESTRADA CHAVEZ

AV. SAN CARLOS - 5 DTO: JUNIN PROV: HUANCAYO

CLIENTE: FECHA:

LUGAR: PROYECTO: ANÁLISIS PARA LA CORRELACIÓN DE RESULTADOS DE TEXTURA SUPERFICIAL ENTRE EL ENSAYO DE CIRCULO DE ARENA Y EL PÉNDULO BRITANICO (TRRL) APLICADO A LA AVENIDA SAN CARLOS – HUANCAYO 2021 TEC. ESP:

DIST. HUANCAYO

	MEDICIONES												
PUNTO	PISTA	1	2	3	4	5	PROMEDIO	T(°C)	CRD	OBSERVACIONES			
1		65	64	70	69	69	67.4	23.6	0.68	Ninguna			
2		68	67	70	67	66	67.6	23.7	0.69	Ninguna			
3		64	69	67	70	71	68.2	23.6	0.69	Ninguna			
4		65	66	69	65	64	65.8	24.6	0.67	Ninguna			
5		69	64	67	64	71	67	25.8	0.68	Ninguna			
6		65	66	65	70	71	67.4	25.3	0.68	Ninguna			
7		71	71	71	69	68	70	23.6	0.71	Ninguna			
8		65	65	66	64	64	64.8	25.6	0.66	Ninguna			
9		64	69	71	70	66	68	24.4	0.69	Ninguna			
10		65	65	66	65	70	66.2	24.1	0.67	Ninguna			
11		70	67	66	66	69	67.6	24.9	0.69	Ninguna			
12		64	69	67	70	70	68	23.0	0.69	Ninguna			
13		67	66	69	64	64	66	22.9	0.67	Ninguna			
14		69	67	70	66	64	67.2	25.7	0.68	Ninguna			
15		67	69	68	65	66	67	24.6	0.68	Ninguna			
16		65	67	68	66	67	66.6	23.4	0.68	Ninguna			
17		64	67	71	68	67	67.4	25.1	0.68	Ninguna			
18		64	67	64	66	64	65	24.9	0.66	Ninguna			
19	S	67	68	69	71	71	69.2	23.6	0.70	Ninguna			
20	Δ.	68	70	71	69	68	69.2	25.9	0.70	Ninguna			
21	А	66	66	71	67	64	66.8	22.6	0.68	Ninguna			
22	N	65	64	67	71	67	66.8	24.9	0.68	Ninguna			
23		70	71	69	69	64	68.6	25.3	0.70	Ninguna			
24	С	66	70	69	70	68	68.6	23.0	0.70	Ninguna			
25	А	71	66	69	69	71	69.2	22.6	0.70	Ninguna			
26		63	65	66	62	67	64.6	25.9	0.66	Ninguna			
27	R	66	62	63	64	64	63.8	25.1	0.65	Ninguna			
28	L	66	60	62	64	64	63.2	24.0	0.64	Ninguna			
29	_	63	61	62	67	63	63.2	25.7	0.64	Ninguna			
30	0	65	64	65	63	65	64.4	22.5	0.65	Ninguna			
31		65	61	65	63	62	63.2	22.8	0.64	Ninguna			
32	S	67	65	67	67	67	66.6	24.3	0.68	Ninguna			
33		67	66	65	63	64	65	23.8	0.66	Ninguna			
34		63	67	66	60	63	63.8	25.9	0.65	Ninguna			
35		62	67	62	65	60	63.2	23.8	0.64	Ninguna			
36		64	66	66	66	67	65.8	25.9	0.67	Ninguna			
37		67	62	64	62	66	64.2	22.8	0.65	Ninguna			
38		67	65	67	63	67	65.8	25.2	0.67	Ninguna			
39		60	66	64	66	64	64	25.4	0.65	Ninguna			
40		67	66	64	60	66	64.6	23.8	0.66	Ninguna			
41		64	65	64	64	66	64.6	25.3	0.66	Ninguna			
42		62	63	61	66	62	62.8	23.9	0.64	Ninguna			
43		64	66	63	67	63	64.6	22.6	0.66	Ninguna			
44		63	66	61	67	61	63.6	22.5	0.65	Ninguna			
45		60	62	63	63	65	62.6	22.6	0.64	Ninguna			
46		65	64	61	66	66	64.4	23.9	0.65	Ninguna			
47		60	60	61	63	62	61.2	22.9	0.62	Ninguna			
48		67	65	61	61	64	63.6	24.2	0.65	Ninguna			
49		60	66	66	66	63	64.2	24.8	0.65	Ninguna			
50		60	61	66	63	65	63	23.3	0.64	Ninguna			

(\mathfrak{D}) CLIENTE:

LABORATORIO DE MECANICA DE SUELOS,CONCRETO Y PAVIMENTO

REGISTRO DE CONTROL

SARIN EVELYN ESTRADA CHAVEZ ######

TRAMO: LUGAR:

AV. SAN CARLOS - 1 DTO: JUNIN PROV: HUANCAYO

DIST. HUANCAYO

FECHA: PROYECTO:

ANÁLISIS PARA LA CORRELACIÓN DE RESULTADOS DE TEXTURA SUPERFICIAL ENTRE EL ENSAYO DE CIRCULO DE ARENA Y EL PÉNDULO BRITANICO (TRRL) APLICADO A LA AVENIDA SAN CARLOS – HUANCAYO 2021

TEC. ESP:

ENSAYO DE DETERMINACION DE LA TEXTURA SUPERFICIAL DEL PAVIMENTO MEDIANTE EL ENSAYO DE CIRCULO DE ARENA (ASTM E 965)

	MEDICIONES											
PUNTO	PISTA	1	2	3	4	5	PROMEDIO	MTD	OBSEERVACIONES			
1		25.6	24.1	24.6	23.2	28.4	25.18	1.00	Ninguna			
2		25.3	22.9	27.2	25.7	22.2	24.66	1.05	Ninguna			
3		28.5	28.2	25.8	25.1	28.8	27.28	0.86	Ninguna			
4		27.7	27.5	26.2	28.5	28	27.58	0.84	Ninguna			
5		26.1	28.8	23.8	27	25.1	26.16	0.93	Ninguna			
6		24.7	24.3	23.7	25.2	27.3	25.04	1.02	Ninguna			
7		25.6	28.7	25	26.7	27.2	26.64	0.90	Ninguna			
8		22.8	22.8	26.3	24.2	26.8	24.58	1.05	Ninguna			
9		23.4	23.2	27.2	22.8	23.9	24.1	1.10	Ninguna			
10		27.1	22.6	23.1	25.7	25.4	24.78	1.04	Ninguna			
11		28.5	24.6	26	28.9	23.6	26.32	0.92	Ninguna			
12		23.3	28.4	25.3	25.6	28.4	26.2	0.93	Ninguna			
13		26.8	24.9	28.8	23.4	25.7	25.92	0.95	Ninguna			
14		27.3	28.3	28.4	22.2	24.7	26.18	0.93	Ninguna			
15		25.4	25.6	25	27.2	26.8	26	0.94	Ninguna			
16		25.4	22.5	22.9	23	24.8	23.72	1.13	Ninguna			
17		24.1	27.8	22.3	24.5	28.2	25.38	0.99	Ninguna			
18		26.5	22.7	28.9	25.9	28.7	26.54	0.90	Ninguna			
19	S	23.7	24.6	27.7	27.9	22.9	25.36	0.99	Ninguna			
20	Α.	27.3	27.5	26.5	26.7	28.8	27.36	0.85	Ninguna			
21	А	23.8	25.5	23.2	24.9	25.6	24.6	1.05	Ninguna			
22	N	26.9	24.7	28.6	24.9	27.9	26.6	0.90	Ninguna			
23	_	23.5	23.7	22.9	27.3	28.2	25.12	1.01	Ninguna			
24	С	28.3	22.7	26.2	22.2	23	24.48	1.06	Ninguna			
25	А	25.8	25.2	26.8	26.5	23.8	25.62	0.97	Ninguna			
26		23.9	29.9	23.6	25.3	27.2	25.98	0.94	Ninguna			
27	R	24.6	28	29.8	24.2	27.5	26.82	0.89	Ninguna			
28	L	29.7	26	28.8	23.3	23.5	26.26	0.92	Ninguna			
29	L	26.5	26	29.6	29.3	25.8	27.44	0.85	Ninguna			
30	0	26.2	27.6	28	29.1	24.1	27	0.87	Ninguna			
31		26.2	27.5	28.2	27.4	29.6	27.78	0.82	Ninguna			
32	S	26.6	29.6	24.4	24	27.9	26.5	0.91	Ninguna			
33		26.9	26.2	29.5	23.5	29.8	27.18	0.86	Ninguna			
34		23.9	23.6	26.7	28.5	26.4	25.82	0.95	Ninguna			
35		28	24.8	26.1	27.8	23.6	26.06	0.94	Ninguna			
36		27.1	28.1	24.7	27.9	28.7	27.3	0.85	Ninguna			
37		25.7	27.8	29.2	29.6	26.1	27.68	0.83	Ninguna			
38		27.8	27.9	24.9	28.7	28.1	27.48	0.84	Ninguna			
39		25.1	27.4	27.3	23.8	23.8	25.48	0.98	Ninguna			
40		24.8	25.7	29.5	29.2	28.9	27.62	0.83	Ninguna			
41		27.8	24.7	27.9	28.8	23.8	26.6	0.90	Ninguna			
42		24.3	26.9	27.6	24.6	26.9	26.06	0.94	Ninguna			
43		26.1	28.7	28.7	24.5	28.1	27.22	0.86	Ninguna			
44 45		25.4	28.2	24.2	28.8	25.9	26.5 27.3	0.91	Ninguna			
		28.7	26.2	28.6	28.9	24.1		0.85	Ninguna			
46		27.5	28.5	26.6	26.9	25.6	27.02	0.87	Ninguna			
47		29.7	23.7	29.1	30.1	26.2	27.76	0.83	Ninguna			
48		24.8	28.3	27.9	27.7	25.1	26.76	0.89	Ninguna			
49 50		27.5	26.7	25.8	28	28.2	27.24	0.86	Ninguna			
DU		28	28	26.8	25	24.9	26.54	0.90	Ninguna			

(\mathfrak{D})

CLIENTE:

FECHA:

PROYECTO:

LABORATORIO DE MECANICA DE SUELOS,CONCRETO Y PAVIMENTO

REGISTRO DE CONTROL

SARIN EVELYN ESTRADA CHAVEZ

TRAMO: ####### LUGAR:

ANÁLISIS PARA LA CORRELACIÓN DE RESULTADOS DE TEXTURA SUPERFICIAL ENTRE EL ENSAYO DE CIRCULO DE ARENA Y EL PÉNDULO BRITANICO (TRRL) APLICADO A LA AVENIDA SAN CARLOS – HUANCAYO 2021

TEC. ESP:

AV. SAN CARLOS - 2 DTO: JUNIN PROV: HUANCAYO

DIST. HUANCAYO

ENSAYO DE DETERMINACION DE LA TEXTURA SUPERFICIAL DEL PAVIMENTO MEDIANTE EL ENSAYO DE CIRCULO DE ARENA (ASTM E 965)

MEDICIONES												
PUNTO	PISTA	1	2	3	4	5	PROMEDIO	MTD	OBSEERVACIONES			
1		24.7	29.4	31	29	29.4	28.7	0.77	Ninguna			
2		26.2	24.9	26.8	30.9	29.2	27.6	0.84	Ninguna			
3		25.1	30.6	25	28.6	26.1	27.08	0.87	Ninguna			
4		29.7	26.8	25.9	28.5	28.7	27.92	0.82	Ninguna			
5		28.3	29.6	30.4	28.1	27.7	28.82	0.77	Ninguna			
6		25.1	25.3	27.6	28.5	27	26.7	0.89	Ninguna			
7		28.4	25.6	24.7	25	27.2	26.18	0.93	Ninguna			
8		31.2	29.1	26.4	26.9	24.6	27.64	0.83	Ninguna			
9		26.4	26.2	30.9	30	25.4	27.78	0.82	Ninguna			
10		26.6	26.3	29.8	24.7	27	26.88	0.88	Ninguna			
11		29.3	28.2	26.7	25.3	27.9	27.48	0.84	Ninguna			
12		26.7	25.9	28.7	24.9	27.9	26.82	0.89	Ninguna			
13		26	29.2	31.2	25	24.5	27.18	0.86	Ninguna			
14		30.2	30.5	28.3	30.7	30.5	30.04	0.71	Ninguna			
15		27.5	25.1	25.8	25.7	29.4	26.7	0.89	Ninguna			
16		25.9	28.3	30.4	27.8	27.3	27.94	0.82	Ninguna			
17		30.4	27	24.5	27.5	28.5	27.58	0.84	Ninguna			
18		29.8	27.6	30.1	29.8	29.9	29.44	0.73	Ninguna			
19	S	25.3	26.5	24.8	26.6	30.5	26.74	0.89	Ninguna			
20		24.5	26.5	29.2	25.6	25.7	26.3	0.92	Ninguna			
21	А	28.1	28.3	30.3	25.5	31.1	28.66	0.78	Ninguna			
22	N	27	30.7	26	27	29.7	28.08	0.81	Ninguna			
23	.,	31.3	30.7	30.5	28.7	26.5	29.54	0.73	Ninguna			
24	C	29.2	28.9	30.6	27.4	24.5	28.12	0.81	Ninguna			
25	,	27.6	25.3	25.2	26.5	27.5	26.42	0.91	Ninguna			
26	А	26.3	31.2	29.4	28.6	29.9	29.08	0.75	Ninguna			
27	R	27.6	31.7	28.3	32.5	27.3	29.48	0.73	Ninguna			
28		27.2	31.5	27.3	30.6	26.4	28.6	0.78	Ninguna			
29	L	25.9	31	31.2	26	28.9	28.6	0.78	Ninguna			
30	0	28	29.2	28.7	30.7	27.2	28.76	0.77	Ninguna			
31		32.1	28	30.3	28.6	32.5	30.3	0.69	Ninguna			
32	S	31.5	32.1	26.1	27.7	30.4	29.56	0.73	Ninguna			
33		27.1	26.8	28.5	29.6	28.7	28.14	0.80	Ninguna			
34		27.9	29.8	31.2	26.4	30	29.06	0.75	Ninguna			
35		27.9	26.4	30.5	28.6	29.7	28.62	0.78	Ninguna			
36		27.9	31.6	28.6	26.2	28.4	28.54	0.78	Ninguna			
37		30.4	26.2	26.3	29.4	27.9	28.04	0.81	Ninguna			
38		29.1	27.9	27.9	32.2	26.3	28.68	0.77	Ninguna			
39		30.7	31	26.3	28.8	28.9	29.14	0.75	Ninguna			
40		26.8	32	29.5	27	26.1	28.28	0.80	Ninguna			
41		28	26.9	30.6	26.3	29.3	28.22	0.80	Ninguna			
42		32	29.4	26.5	27.6	30	29.1	0.75	Ninguna			
43		28.4	30.9	27.4	27.8	27.8	28.46	0.79	Ninguna			
44		26.9	26.3	27.5	31.8	25.7	27.64	0.83	Ninguna			
45		28.3	28.2	31.7	28.4	26	28.52	0.78	Ninguna			
46		26.2	28	26.5	29.5	26.5	27.34	0.85	Ninguna			
47		29.2	30.5	27	30.1	28.9	29.14	0.75	Ninguna			
48		26.5	29.7	31.7	31.3	29.4	29.72	0.72	Ninguna			
49		28.4	29.7	27.1	31.8	30.6	29.52	0.73	Ninguna			
50		28.4	28.4	26.6	32.4	29.7	29.1	0.75	Ninguna			

(g)

CLIENTE:

FECHA:

LABORATORIO DE MECANICA DE SUELOS,CONCRETO Y PAVIMENTO

REGISTRO DE CONTROL

SARIN EVELYN ESTRADA CHAVEZ

TRAMO: LUGAR:

AV. SAN CARLOS - 3 DTO: JUNIN PROV: HUANCAYO

PROYECTO:

ANÁLISIS PARA LA CORRELACIÓN DE RESULTADOS DE TEXTURA SUPERFICIAL ENTRE EL ENSAYO DE CIRCULO DE ARENA Y EL PÉNDULO BRITANICO (TRRL) APLICADO A LA AVENIDA SAN CARLOS – HUANCAYO 2021

DIST. HUANCAYO

TEC. ESP:

ENSAYO DE DETERMINACION DE LA TEXTURA SUPERFICIAL DEL PAVIMENTO MEDIANTE EL ENSAYO DE CIRCULO DE ARENA (ASTM E 965)

MEDICIONES											
PUNTO	PISTA	1	2	3	4	5	PROMEDIO	MTD	OBSEERVACIONES		
1		28.3	30.1	30.1	28.5	26	28.6	0.78	Ninguna		
2		29.4	29.2	31.9	25.5	27.1	28.62	0.78	Ninguna		
3		27.8	32.1	29.6	30.2	29	29.74	0.72	Ninguna		
4		25.7	28.1	27.1	28	25.4	26.86	0.88	Ninguna		
5		26.2	28.5	31.5	28.4	32.1	29.34	0.74	Ninguna		
6		30.8	30.9	28.4	29.8	28.3	29.64	0.72	Ninguna		
7		30.3	31.4	29	27.5	30.2	29.68	0.72	Ninguna		
8		26.5	30.5	30.9	25.1	32.9	29.18	0.75	Ninguna		
9		26.7	26.6	32.3	27.1	26.1	27.76	0.83	Ninguna		
10		28.2	31.5	27.4	27.3	30.8	29.04	0.75	Ninguna		
11		29.4	32	28.3	32.4	30	30.42	0.69	Ninguna		
12		25.1	31.2	30.9	30.2	29.3	29.34	0.74	Ninguna		
13		25.1	31.3	29.2	27.9	25.5	27.8	0.82	Ninguna		
14		31.1	29.7	29.2	31.5	30.6	30.42	0.69	Ninguna		
15		30.6	28.6	31.8	28	29.7	29.74	0.72	Ninguna		
16		32.1	28.1	29.5	29.5	31.8	30.2	0.70	Ninguna		
17		27.5	31.5	30.1	32.8	29	30.18	0.70	Ninguna		
18		27.5	28.7	31.2	32.3	26.2	29.18	0.75	Ninguna		
19	S	29	28.3	25.4	30.2	32.5	29.08	0.75	Ninguna		
20		28.4	26.5	26.5	26.4	31.9	27.94	0.82	Ninguna		
21	А	31.5	27.1	25.6	32.9	32.6	29.94	0.71	Ninguna		
22	N	30.9	28.6	25.3	30.2	29.2	28.84	0.77	Ninguna		
23	114	28.2	31.8	31.9	26.2	28	29.22	0.75	Ninguna		
24	C	27.7	32.9	30.8	32.4	28.8	30.52	0.68	Ninguna		
25		30.3	25.3	29.8	28.3	32	29.14	0.75	Ninguna		
26	Α	27.2	32.6	30.6	26.4	32.9	29.94	0.71	Ninguna		
27	R	30.9	31.8	27	31.5	27.7	29.78	0.72	Ninguna		
28		31.4	30.4	28.6	30.6	26.9	29.58	0.73	Ninguna		
29	L	26.8	26.9	33	31.1	29.7	29.5	0.73	Ninguna		
30	0	27.6	29.8	30.6	29.9	29.9	29.56	0.73	Ninguna		
31	Ŭ	32.4	33	27	26.7	28.9	29.6	0.73	Ninguna		
32	S	28	29.2	27.9	33.5	29.1	29.54	0.73	Ninguna		
33		32.8	31.2	27.4	32.9	27.2	30.3	0.69	Ninguna		
34		26.7	27.2	26.3	27.9	29.8	27.58	0.84	Ninguna		
35		33.7	32.3	26.5	29.7	29.4	30.32	0.69	Ninguna		
36		29.4	26.5	25.9	30.5	32.2	28.9	0.76	Ninguna		
37		25.9	26.3	26.5	32.9	29.7	28.26	0.80	Ninguna		
38		26.6	28.4	33.5	27.6	28.2	28.86	0.76	Ninguna		
39		33.5	28.9	31.5	30	26.4	30.06	0.70	Ninguna		
40		26.6	30.8	26.2	32	33.7	29.86	0.71	Ninguna		
41		26.9	30.3	27.6	29.4	29.9	28.82	0.77	Ninguna		
42		30.8	27.7	28	28.2	30.9	29.12	0.75	Ninguna		
43		32	28	26.1	32.1	26.7	28.98	0.76	Ninguna		
44		33.3	32.7	25.9	26	27.3	29.04	0.75	Ninguna		
45		29.4	31.4	27.1	29.4	33.4	30.14	0.70	Ninguna		
46		28.2	29.9	26.5	29.5	30.4	28.9	0.76	Ninguna		
47		27.5	28.1	28.8	32.9	29.3	29.32	0.74	Ninguna		
48		31.4	29.3	28.3	32.7	30.6	30.46	0.69	Ninguna		
49		29.7	29.2	29.1	33.4	27.5	29.78	0.72	Ninguna		
50		32.3	32.8	27.8	32.3	28.4	30.72	0.67	Ninguna		

(\mathfrak{D})

LABORATORIO DE MECANICA DE SUELOS,CONCRETO Y PAVIMENTO

REGISTRO DE CONTROL

SARIN EVELYN ESTRADA CHAVEZ

TRAMO: LUGAR:

AV. SAN CARLOS - 4 DTO: JUNIN PROV: HUANCAYO

CLIENTE:

FECHA:

PROYECTO:

######

ANÁLISIS PARA LA CORRELACIÓN DE RESULTADOS DE TEXTURA SUPERFICIAL ENTRE EL ENSAYO DE CIRCULO DE ARENA Y EL PÉNDULO BRITANICO (TRRL) APLICADO A LA AVENIDA SAN CARLOS – HUANCAYO 2021

DIST. HUANCAYO

TEC. ESP:

ENSAYO DE DETERMINACION DE LA TEXTURA SUPERFICIAL DEL PAVIMENTO MEDIANTE EL ENSAYO DE CIRCULO DE ARENA

(ASTM E 965)

	MEDICIONES											
PUNTO	PISTA	1	2	3	4	5	PROMEDIO	MTD	OBSEERVACIONES			
1		35.1	35.3	34.1	31.2	33.2	33.78	0.56	Ninguna			
2		28.2	27.6	29	30.7	34.8	30.06	0.70	Ninguna			
3		32.7	29.4	31.4	33.1	30.7	31.46	0.64	Ninguna			
4		31.4	35.4	30.2	26.9	33.7	31.52	0.64	Ninguna			
5		27.7	35.3	27.7	26.6	27.5	28.96	0.76	Ninguna			
6		32.8	35.9	32.4	29.2	34.2	32.9	0.59	Ninguna			
7		34.6	31.3	28.8	31.6	28.9	31.04	0.66	Ninguna			
8		32.8	27.7	32.7	29.3	29.7	30.44	0.69	Ninguna			
9		31.9	32.4	29.2	30.1	28.8	30.48	0.69	Ninguna			
10		31.8	26.5	35.3	35.2	29.8	31.72	0.63	Ninguna			
11		30.3	33	27.9	29.2	32.5	30.58	0.68	Ninguna			
12		34.9	32.9	29.5	27.9	29.3	30.9	0.67	Ninguna			
13		30	26.7	33.4	28.9	32.9	30.38	0.69	Ninguna			
14		31	35.7	27.3	33	28.6	31.12	0.66	Ninguna			
15		33.9	31.8	30.9	29.6	30.4	31.32	0.65	Ninguna			
16		33.5	26.7	28.4	26.7	30.1	29.08	0.75	Ninguna			
17		33.5	31	31.3	28.9	31.4	31.22	0.65	Ninguna			
18		26.7	29.2	29.4	27.4	33.5	29.24	0.74	Ninguna			
19	S	29.1	29.1	33.9	29.8	26.5	29.68	0.72	Ninguna			
20	۸	27.4	35.6	27.8	33.9	35.4	32.02	0.62	Ninguna			
21	А	30.1	30.5	35.3	27.4	32.9	31.24	0.65	Ninguna			
22	N	27.8	29.5	28.8	32.5	34.6	30.64	0.68	Ninguna			
23	_	29.5	33.6	32.5	33.2	32.8	32.32	0.61	Ninguna			
24	C	27.6	28	33.6	36.1	28.6	30.78	0.67	Ninguna			
25	А	31.7	31.7	28.2	27.9	27.8	29.46	0.73	Ninguna			
26		34.7	28.4	31.1	27.9	29.1	30.24	0.70	Ninguna			
27	R	33.2	34.8	35.8	32.2	35.6	34.32	0.54	Ninguna			
28	L	35.8	34.4	27.9	30.3	33.3	32.34	0.61	Ninguna			
29	_	28.3	31.3	27.9	31	28.7	29.44	0.73	Ninguna			
30	0	31.2	34.8	33.1	31.5	34.3	32.98	0.59	Ninguna			
31		34.2	32.4	34.7	27.7	31.9	32.18	0.61	Ninguna			
32	S	29.2	28.2	28.7	28.6	33.8	29.7	0.72	Ninguna			
33		33.6	32.2	29.2	34.7	27.7	31.48	0.64	Ninguna			
34		28.8	33.3	32	34.9	29	31.6	0.64	Ninguna			
35		31.8	29.8	27.5	36.1	31	31.24	0.65	Ninguna			
36		27.7	33.5	32.2	32.2	31.1	31.34	0.65	Ninguna			
37		35.8	33.3	34.2	28.2	34.9	33.28	0.57	Ninguna			
38		33.1	31.6	35.1	31.8	33.2	32.96	0.59	Ninguna			
39		30.3	29.9	27.9	28.9	30.7	29.54	0.73	Ninguna			
40		28.8	30.7	29.6	29.4	31	29.9	0.71	Ninguna			
41		28.6	35.4	32.3	35	32.6	32.78	0.59	Ninguna			
42		27.7	30.9	28	27.5	35.2	29.86	0.71	Ninguna			
43		32.1	30.2	36	36	28.2	32.5	0.60	Ninguna			
44		27.7	33.9	27.5	33.6	34.8	31.5	0.64	Ninguna			
45		33.8	35.7	35	31.2	35.5	34.24	0.54	Ninguna			
46		32.6	27.7	34.4	28	29.6	30.46	0.69	Ninguna			
47		35	30.3	35.5	32.1	29.2	32.42	0.61	Ninguna			
48		31.7	35.4	33.6	28.3	34.1	32.62	0.60	Ninguna			
49		30.3	35.6	32.9	35.6	31.9	33.26	0.58	Ninguna			
50		32.2	34.8	33.3	35	31.9	33.44	0.57	Ninguna			

COLDFIX CONSULTING

LABORATORIO DE MECANICA DE SUELOS,CONCRETO Y PAVIMENTO

REGISTRO DE CONTROL

SARIN EVELYN ESTRADA CHAVEZ

TRAMO: LUGAR: AV. SAN CARLOS - 5 DTO: JUNIN PROV: HUANCAYO

CLIENTE: FECHA: PROYECTO:

#######

ANÁLISIS PARA LA CORRELACIÓN DE RESULTADOS DE TEXTURA SUPERFICIAL
ENTRE EL ENSAYO DE CIRCULO DE ARENA Y EL PÉNDULO BRITANICO (TRRL)
APLICADO A LA AVENIDA SAN CARLOS – HUANCAYO 2021

DIST. HUANCAYO

TEC. ESP:

ENSAYO DE DETERMINACION DE LA TEXTURA SUPERFICIAL DEL PAVIMENTO MEDIANTE EL ENSAYO DE CIRCULO DE ARENA (ASTM E 965)

MEDICIONES									
UNTO	PISTA	1	2	3	4	5	PROMEDIO	MTD	OBSEERVACIONES
1		31.9	33	37.6	38	28.9	33.88	0.55	Ninguna
2		35.3	30.5	29.8	28.9	30.9	31.08	0.66	Ninguna
3		37.7	37.4	35.9	30.8	31	34.56	0.53	Ninguna
4		35.7	34.1	32.4	35.3	34.2	34.34	0.54	Ninguna
5		35.3	36.1	35.9	36	31.5	34.96	0.52	Ninguna
6		37.8	33	29.6	29.1	29.3	31.76	0.63	Ninguna
7		33.4	35.7	33.2	33.1	30.8	33.24	0.58	Ninguna
8		31.8	30.2	29.5	37.3	32.9	32.34	0.61	Ninguna
9		34.7	29.2	37.7	29.3	32.1	32.6	0.60	Ninguna
10		35.4	30.4	33.1	30.6	36.4	33.18	0.58	Ninguna
11		31.5	32.3	32.1	35.7	32.4	32.8	0.59	Ninguna
12		36.7	35	30.9	31.3	37.8	34.34	0.54	Ninguna
13		34.2	35.9	36.1	33.7	34	34.78	0.53	Ninguna
14		33.9	31.3	30.7	34.6	35.7	33.24	0.58	Ninguna
15		29.2	31.2	33.9	33	38.2	33.1	0.58	Ninguna
16		36.1	37.8	29.1	30.2	30.4	32.72	0.59	Ninguna
17		36.8	30.4	29.1	31.2	33.1	32.12	0.62	Ninguna
18		35.6	37.5	33.7	36.8	31.6	35.04	0.52	Ninguna
19	S	32.5	33.5	28.7	36.9	29.1	32.14	0.62	Ninguna
20		37.9	32.5	32.3	36.3	35.7	34.94	0.52	Ninguna
21	А	29.2	32.1	34.7	30.5	30.1	31.32	0.65	Ninguna
22	N	30.5	33.5	36.2	36.5	33	33.94	0.55	Ninguna
23	IN	36	30.2	38	30	35.8	34	0.55	Ninguna
24	C	33.5	29.5	33.8	36.7	32.5	33.2	0.58	Ninguna
25		29.4	37.9	38.2	36.8	34.8	35.42	0.51	Ninguna
26	A	38.2	29.3	31.3	36.5	34.2	33.9	0.55	Ninguna
27	R	34.6	38.8	36.2	38.1	36.1	36.76	0.47	Ninguna
28		37.3	31.6	33	30.2	34.2	33.26	0.58	Ninguna
29	L	33.9	36.7	37.9	32.1	35.9	35.3	0.51	Ninguna
30		34.3	36.4	29.4	38.9	33.4	34.48	0.54	Ninguna
31	0	34.9	38.7	31.1	30.4	31.7	33.36	0.57	Ninguna
32	S	30.4	37.7	37.6	34.4	30.5	34.12	0.55	Ninguna
33		33.9	38.4	32.6	34.7	32.1	34.34	0.54	Ninguna
34		33.3	34.3	38.5	34.5	31.7	34.46	0.54	Ninguna
35		36.2	36.5	30.7	38.3	35.6	35.46	0.51	Ninguna
36		33.1	32.1	30.9	34.6	35	33.14	0.58	Ninguna
37		38.3	33.1	36.9	32.9	39.1	36.06	0.49	Ninguna
38		34.7	33.9	33.3	38.6	34.6	35.02	0.52	Ninguna
39		36.1	29.3	32.2	36	38.3	34.38	0.54	Ninguna
40		35.9	30.7	37.3	36	32.3	34.44	0.54	Ninguna
41		30.5	30.2	38.7	33.6	31.7	32.94	0.59	Ninguna
42		38.9	34.9	30.3	35.2	32.1	34.28	0.54	Ninguna
43		38.1	30.5	35.9	30.1	34.4	33.8	0.56	Ninguna
44		38.1	29.8	29.9	37.6	33.7	33.82	0.56	Ninguna
45		31.8	37.4	33.4	32.2	37.2	34.4	0.54	Ninguna
46		38.7	30	36.1	29.5	31	33.06	0.58	Ninguna
47		33.2	31.5	34.1	38.6	31.2	33.72	0.56	Ninguna
48		30.7	34.1	30.6	34.3	31	32.14	0.62	Ninguna
49		30.7	38.1	31.2	34.3	37.7	35.34	0.62	Ninguna
50		33.7	35	30.2	34.1	38	34.2	0.54	Ninguna