

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Civil

Tesis

Análisis de metodologías modernas de combinación de agregados en las propiedades en estado fresco y endurecido del concreto bombeable, Huancayo, 2023

Pool Said Sotomayor Camargo

Para optar el Título Profesional de Ingeniero Civil

Huancayo, 2025

Repositorio Institucional Continental

Tesis digital

Esta obra está bajo una licencia "Creative Commons Atribución 4.0 Internacional"

INFORME DE CONFORMIDAD DE ORIGINALIDAD DE TRABAJO DE INVESTIGACIÓN

Decano(a) de la Facultad de Ingeniería

	(No	se muestra en este documento por estar expuest	o a pul	blicación)		
		La firma del asesor obra en el archivo orig	ginal			
Atentament	e,					
en concord	lancion nduc	onsabilidad del contenido del trabajo de investig a a los principios expresados en el Reglamen centes a Grados y Títulos – RENATI y en la n	to del	Registro I	Vacion	al de
	esen	a, se determina que el trabajo de investigació tar similitud de otros autores (citas) por debajo de ontinental.				
Exclusión de	fuen	te por trabajo anterior del mismo estudiante	SI		NO	Χ
		n de grupos de palabras menores excluidas (en caso de elegir "SI"):	SI		NO	X
		n de bibliografía	SI		NO	X
completa de	e las	la carga del documento a la plataforma "Turnit coincidencias resaltadas por el software dando p allazgos relacionados a plagio. Se utilizaron los sig	or resu	ultado 20 9		
1. Pool Said	Sotor	mayor Camargo – EAP. Ingeniería Civil				
Autor:						
		dologías modernas de combinación de agrego ndurecido del concreto bombeable, Huancayo,		n las prop	oiedad	les en
Título:						
Con sumo a del trabajo d		o me dirijo a vuestro despacho para informar qu vestigación:	e, en n	ni condici	ón de d	asesor
FECHA	:	16 de Setiembre de 2025			-	
ASUNTO	:	Asesor de trabajo de investigación Remito resultado de evaluación de originalida	d de tra	abajo de i	nvestig	jación
DE	:	Jorge Aurelio Ticlla Rivera				

ASESOR

Ing. Jorge Aurelio Ticlla Rivera

AGRADECIMIENTO

Agradecimientos especiales a mi Asesor de Tesis, el Ing. Jorge Ticlla. Asimismo, a los Ingenieros Jose Álvarez, Carlos Guerra y Mauro Tazza, que me brindaron su apoyo y tiempo durante el proceso de tesis.

Finalmente, a todos mis amigos que aportaron con ideas o con palabras de aliento para la culminación de la presente tesis.

DEDICATORIA

Esta tesis está dedicada en primer lugar a Dios, a mi Madre Violeta Camargo; gracias por tu apoyo y amor incondicional.

A todos mis seres queridos que han sido el soporte necesario para ayudarme a perseguir mis metas. Dedicado en especial a mi novia Marianela por sus consejos y motivación para superarme cada día más.

ÍNDICE

AGRADE	CIMIENTO	iv
DEDICAT	ORIA	v
ÍNDICE		vi
ÍNDICE D	DE TABLAS	xi
ÍNDICE D	E FIGURAS	xvi
RESUME	N	xix
ABSTRAC	CT	xx
INTRODU	JCCIÓN	xxi
CAPÍTUL	O I PLANTEAMIENTO DEL PROBLEMA	23
1.1.	Planteamiento y formulación del problema	23
1.1.1.	Planteamiento del problema	23
1.1.2.	Formulación del problema	26
1.2.	Objetivos	27
1.2.1.	Objetivo general	27
1.2.2.	Objetivos específicos	27
1.3.	Justificación e importancia	28
1.3.1.	Justificación teórica	28
1.3.2.	Justificación práctica	28
1.3.3.	Justificación metodológica	28
1.4.	Delimitación del proyecto	29
1.4.1.	Delimitación conceptual	29
1.4.2.	Delimitación conceptual	29
1.4.3.	Delimitación espacial	29
1.5.	Hipótesis y descripción de variables	29
1.5.1.	Hipótesis general	29
1.5.2.	Hipótesis específicas	29
1.5.3.	Variables	30
CAPÍTUL	O II MARCO TEÓRICO	36
2.1.	Antecedentes del problema	36
2.2.	Bases teóricas	43
2.2.1.	Métodos de combinación de granulometrías	43
2.3.	Definición de términos básicos	52
CAPÍTUL	O III METODOLOGÍA	53
3.1.	Métodos y alcance de investigación	53
3.1.1.	Enfoque: Enfoque cuantitativo	53

3.1.2.	Tipo de investigación: Tipo aplicada	53
3.1.3.	Nivel o alcance: Nivel explicativo	54
3.2.	Diseño de la investigación	54
3.3.	Población y muestra	55
3.3.1.	Población	55
3.3.2.	Muestra	55
3.3.3.	Tipo de muestra	56
3.3.4.	Muestreo: Muestreo intencional	56
3.3.5.	Unidad de análisis	56
3.4.	Técnicas e instrumentos de recolección de datos	57
3.4.1.	Técnicas e instrumentos de investigación	57
3.4.2.	Validez de instrumentos de investigación	73
3.4.3.	Procedimientos de recolección de datos	86
3.4.4.	Confiabilidad de instrumentos de investigación	101
CAPÍTU	LO IV RESULTADOS Y DISCUSIÓN	102
4.1.	Métodos y alcance de investigación	102
4.1.1.	Resultados del tratamiento y análisis de la información	102
4.1.2.	Análisis estadístico descriptivo de los ensayos en estado fresco	163
4.1.3.	Análisis estadístico descriptivo de los ensayos en estado endurecido	216
4.2.	Prueba de hipótesis	247
4.2.1.	Prueba de normalidad	247
4.2.2.	Comprobación de hipótesis general	249
4.2.3.	Comprobación de hipótesis especifica 1	250
4.2.4.	Comprobación de hipótesis especifica 2	251
4.2.5.	Comprobación de hipótesis especifica 3	252
4.2.6.	Comprobación de hipótesis especifica 4	252
4.2.7.	Comprobación de hipótesis especifica 5	253
4.2.8.	Comprobación de hipótesis especifica 6	254
4.2.9.	Comprobación de hipótesis especifica 7	255
4.2.10	. Comprobación de hipótesis especifica 8	256
4.3.	Discusión de resultados.	256
CONCLU	JSIONES	267
RECOM	ENDACIONES	269
REFERE	NCIAS BIBLIOGRÁFICAS	271
ANEXO	S	276
Anexo 1	Ficha de validación de expertos, ficha de recolección de curvas gra	nulométricas
combinad	las.	276

Anexo 2. Ficha de validación de expertos de ficha de Recolección de Datos de Método
Shilstone, especialista 1
Anexo 3. Ficha de validación de expertos de ficha de Recolección de Datos de Consistencia,
especialista 1
Anexo 4. Ficha de validación de expertos de ficha de Recolección de Datos de Segregación,
especialista 1
Anexo 5. Ficha de validación de expertos de ficha de Recolección de Datos de Exudación,
especialista 1291
Anexo 6. Ficha de validación de expertos de ficha de Recolección de Contracción294
Anexo 7. Ficha de validación de expertos de ficha de Recolección de datos densidad de
concreto, especialista 1
Anexo 8. Ficha de validación de expertos de ficha de recolección de datos de esfuerzo a
compresión, especialista 1
Anexo 9. Ficha de validación de expertos de ficha de recolección de datos de esfuerzo a
tracción, especialista 1
Anexo 10. Ficha de validación de expertos de ficha de recolección de datos de esfuerzo a
flexión, especialista 1
Anexo 11. Ficha de validación de expertos de ficha de recolección de datos de curvas
granulométricas, especialista 2
Anexo 12. Ficha de validación de expertos de ficha de Recolección de Datos de Método
Shilstone., especialista 2
Anexo 13. Ficha de validación de expertos de ficha de Recolección de Datos de segregación.,
especialista 2
Anexo 14. Ficha de validación de expertos de ficha de Recolección de Datos de exudación.,
especialista 2
Anexo 15. Ficha de validación de expertos de ficha de Recolección de Datos de contracción.,
especialista 2
Anexo 16. Ficha de validación de expertos de ficha de Recolección de Datos de densidad del
concreto., especialista 2
Anexo 17. Ficha de validación de expertos de ficha de Recolección de Datos de esfuerzo a
compresión., especialista 2
Anexo 18. Ficha de validación de expertos de ficha de Recolección de Datos de esfuerzo a
tracción., especialista 2
Anexo 19. Ficha de validación de expertos de ficha de Recolección de Datos de esfuerzo a
flexión., especialista 2
Anexo 20. Ficha de validación de expertos de ficha de recolección de curvas granulométricas
combinadas., especialista 3

Anexo 21. Ficha de validación de expertos de ficha de Recolección de Datos de Métod	do
Shilstone., especialista 3	1 6
Anexo 22. Ficha de validación de expertos de ficha de Recolección de Datos de consistencia	a.,
especialista 3. 35	51
Anexo 23. Ficha de validación de expertos de ficha de Recolección de Datos de Segregación	n.,
especialista 3	54
Anexo 24. Ficha de validación de expertos de ficha de Recolección de Datos de Exudación	n.,
especialista 3.	57
Anexo 25. Ficha de validación de expertos de ficha de Recolección de Datos de contracción	n.,
especialista 3	50
Anexo 26. Ficha de validación de expertos de ficha de Recolección de datos densidad o	de
concreto, especialista 3.	53
Anexo 27. Ficha de validación de expertos de ficha de Recolección de datos de esfuerzo	a
compresión, especialista 3	56
Anexo 28. Ficha de validación de expertos de ficha de Recolección de datos de esfuerzo	a
tracción, especialista 3	59
Anexo 29. Ficha de validación de expertos de ficha de Recolección de datos de esfuerzo	a
flexión, especialista 3	72
Anexo 30. Características físicas de agregados, cantera Orcotuna	75
Anexo 31. Características físicas de agregados, cantera Matahuasi-Concepción	75
Anexo 32. Características físicas de agregados, cantera Matahuasi-Concepción37	77
Anexo 33. Ensayo de lavado por la malla #200	78
Anexo 34. Ensayo de granulometría de arena de cerro	78
Anexo 35. Ensayo de granulometría de arena de río	79
Anexo 36. Ensayo de granulometría de piedra chancada Huso #67	79
Anexo 37. Tamizaje de agregado, ensayo granulométrico	30
Anexo 38. Ensayo de peso específico de los agregados	30
Anexo 39. Ensayo de consistencia, medición de temperatura ambiente, medición o	de
temperatura de concreto y humedad relativa de la mezcla en estado fresco	31
Anexo 40. Ensayo de peso unitario y medición de aire atrapado	32
Anexo 41. Ensayo de esfuerzo a compresión	33
Anexo 42. Ensayo de esfuerzo a tracción.	34
Anexo 43. Ensayo de esfuerzo a flexión	35
Anexo 44. Elaboración de testigos cilíndricos	36
Anexo 45. Elaboración de vigas.	
Anexo 46. Elaboración de losas para control de contracción y fisuras	
Anexo 47. Medición y clasificación de fisuras	

Anexo 48. Medición de la cantidad de agua exudada	390
Anexo 49. Certificado de calibración de equipo medidor de aire confinado	39
Anexo 50. Certificado de fabricación de accesorio para vigueta a flexión	393
Anexo 51. Certificado de fabricación de accesorio para vigueta a flexión	394

ÍNDICE DE TABLAS

Tabla 1. Operacionalización de las variables que se utilizarán en la investigación
Tabla 2. Ficha de recolección de datos de curva granulométrica combinada5
Tabla 3. Ficha de recolección de datos de método Shilstone
Tabla 4. Ficha de recolección de datos de consistencia.
Tabla 5. Ficha de recolección de datos de segregación
Tabla 6. Ficha de recolección de datos de exudación
Tabla 7. Ficha de recolección de datos de contracción
Tabla 8. Ficha de recolección de densidad del concreto.
Tabla 9. Ficha de recolección de esfuerzo a compresión.
Tabla 10. Ficha de recolección de datos esfuerzo a tracción simple del concreto por compresión
diametral de un testigo cilíndrico
Tabla 11. Ficha de recolección de datos de esfuerzo a flexión
Tabla 12. Presentación de expertos.
Tabla 13. Tabla de Validez: Rango y Magnitud
Tabla 14. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolección
de datos de curvas granulométricas combinadas
Tabla 15. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolección
de datos de Método Shilstone
Tabla 16. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolección
de datos de consistencia
Tabla 17. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolección
de datos de segregación.
Tabla 18. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolección
de datos de exudación.
Tabla 19. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolección
de datos de contracción
Tabla 20. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolección
de datos de densidad del concreto
Tabla 21. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolección
de datos de esfuerzo a compresión
Tabla 22. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolecció
de datos de esfuerzo a tracción por comprensión diametral de testigos cilíndricos
Tabla 23. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolecció
de datos de esfuerzo a flexión.
Tabla 24. Confiabilidad por alfa de Cronbach del instrumento.

Tabla 25. Análisis granulométrico de la combinación final de agregados (COMBO 1))102
Tabla 26. Análisis granulométrico de la combinación final de agregados (COMBO 2))103
Tabla 27. Análisis granulométrico de la combinación final de agregados (COMBO 3))104
Tabla 28. Análisis granulométrico de la combinación final de agregados (COMBO 4))106
Tabla 29. Análisis granulométrico de la combinación final de agregados (COMBO 5))107
Tabla 30. Análisis granulométrico de la combinación final de agregados (COMBO 6))109
Tabla 31. Análisis granulométrico de la combinación final de agregados (COMBO 7)) 111
Tabla 32. Análisis granulométrico de la combinación final de agregados (COMBO 8))113
Tabla 33. Análisis granulométrico de la combinación final de agregados (COMBO 8))114
Tabla 34. Análisis granulométrico de la combinación final de agregados (COMBO 9)) 116
Tabla 35. Análisis granulométrico de la combinación final de agregados (COMBO 10	0)120
Tabla 36. Análisis granulométrico de la combinación final de agregados (COMBO 1	1)122
Tabla 37. Análisis granulométrico de la combinación final de agregados (COMBO 12	2)124
Tabla 38. Análisis granulométrico de la combinación final de agregados (COMBO 13	3)125
Tabla 39. Análisis granulométrico de la combinación final de agregados (COMBO 1-	4)127
Tabla 40. Análisis granulométrico de la combinación final de agregados (COMBO 1	5)128
Tabla 41. Análisis granulométrico de la combinación final de agregados (COMBO 1	6)129
Tabla 42. Análisis granulométrico de la combinación final de agregados (COMBO 1	7)131
Tabla 43. Análisis granulométrico de la combinación final de agregados (COMBO 13	8)132
Tabla 44. Análisis granulométrico de la combinación final de agregados (COMBO 19	9)133
Tabla 45. Análisis granulométrico de la combinación final de agregados (COMBO 20	0)135
Tabla 46. Análisis granulométrico de la combinación final de agregados (COMBO 2	1)136
Tabla 47. Análisis granulométrico de la combinación final de agregados (COMBO 22	2)137
Tabla 48. Análisis granulométrico de la combinación final de agregados (COMBO 2	3)139
Tabla 49. Análisis granulométrico de la combinación final de agregados (COMBO 24	4)140
Tabla 50. Análisis granulométrico de la combinación final de agregados (COMBO 2	5)141
Tabla 51. Análisis granulométrico de la combinación final de agregados (COMBO 20	6)143
Tabla 52. Análisis granulométrico de la combinación final de agregados (COMBO 2	7)144
Tabla 53. Análisis de las combinaciones granulométricas de agregados en	diferentes
combinaciones (Combo 1 a Combo 11)	147
Tabla 54. Análisis de las combinaciones granulométricas de agregados en	diferentes
combinaciones (Combo 12 a Combo 27)	148
Tabla 55. Análisis estadístico del módulo de finura	151
Tabla 56. Media, moda y mediana del análisis estadístico del módulo de finura	152
Tabla 57. Gráfico de Shilstone (combo 1 al combo 14)	154
Tabla 58. Gráfico de Shilstome (Combo 15 al 27)	155
Tabla 59. Análisis estadístico del factor grosor	157

Tabla 60. Media, mediana y moda del análisis estadístico del factor grosor.	.157
Tabla 61. Análisis estadístico de factor trabajabilidad.	. 159
Tabla 62. Análisis estadístico de factor trabajabilidad	.159
Tabla 63. Datos de validación de consistencia – Pérdida de trabajabilidad (combo 1 al 7)	. 163
Tabla 64. Datos de validación de consistencia – Pérdida de trabajabilidad (combo 8 al 14)	. 164
Tabla 65. Datos de validación de consistencia – Pérdida de trabajabilidad (combo 15 al	21)
	. 165
Tabla 66. Datos de validación de consistencia – Pérdida de trabajabilidad (combo 22 al	27)
	. 166
Tabla 67. Análisis estadístico de la consistencia.	.171
Tabla 68. Media, moda y mediana del análisis estadístico de la consistencia.	. 171
Tabla 69. Análisis estadístico de Temperatura.	. 173
Tabla 70. Media, moda y mediana del análisis estadística de Temperatura.	. 173
Tabla 71. Datos de Validación de Segregación (Combo 1 al combo 9).	. 175
Tabla 72. Datos de Validación de Segregación (Combo 10 al combo 18).	. 175
Tabla 73. Datos de Segregación (Combo 19 al Combo 27)	. 176
Tabla 74. Análisis estadístico del contenido de finos.	.178
Tabla 75. Media, moda y mediana del análisis estadístico del contenido de finos	. 178
Tabla 76. Análisis estadístico del tipo de Slump	. 180
Tabla 77. Datos de Validación de Exudación (Combo 1 al combo 6)	. 182
Tabla 78. Datos de Validación de Exudación (Combo 7 al Combo 12)	. 183
Tabla 79. Tabla de Datos de Validación de Exudación (Combo 13 al Combo 18)	. 184
Tabla 80. Tabla de Datos de Validación de Exudación (Combo 19 al Combo 23)	. 185
Tabla 81. Tabla de Datos de Validación de Exudación (Combo 24 al Combo 27)	. 186
Tabla 82. Análisis estadístico de exudación.	.188
Tabla 83. Media, moda y mediana del análisis del análisis estadístico de exudación	. 188
Tabla 84. Tabla de datos de validación de contracción (Combo 1)	. 190
Tabla 85. Tabla de datos de validación de contracción (Combo 2 y 3)	. 191
Tabla 86. Tabla de datos de validación de contracción (Combo 4)	. 193
Tabla 87. Tabla de datos de validación de contracción (Combo del 7 al 9)	. 194
Tabla 88. Tabla de datos de validación de contracción (Combo del 10 al 13)	. 196
Tabla 89. Tabla de datos de validación de contracción (Combo del 14 al 17)	. 197
Tabla 90. Tabla de datos de validación de contracción (Combo del 18 al 21)	. 199
Tabla 91. Tabla de datos de validación de contracción (Combo del 22 al 23)	.201
Tabla 92. Tabla de datos de validación de contracción (Combo del 24 al 27)	.203
Tabla 93. Análisis estadístico Contracción.	.206
Tabla 94. Media, moda v mediana del análisis estadístico de contracción.	.206

Tabla 95. Datos de validación de Densidad (Combo 1 al 7)
Tabla 96. Datos de validación de Densidad (Combo 8 al 14)20
Tabla 97. Datos de validación de Densidad (Combo 15 al 21)20
Tabla 98. Datos de validación de Densidad (Combo 22 al 27)210
Tabla 99. Análisis estadístico de Peso Unitario
Tabla 100. Media, moda y mediana del análisis estadístico de peso unitario21
Tabla 101. Análisis estadístico de aire atrapado21-
Tabla 102. Media, moda y mediana del análisis estadístico de aire atrapado21
Tabla 103. Análisis estadístico descriptivo de ensayos de resistencia a la compresión (Combo
al 4)210
Tabla 104. Análisis estadístico descriptivo de ensayos de resistencia a la compresión (Combo
al 8)21
Tabla 105. Análisis estadístico descriptivo de ensayos de resistencia a la compresión (Combo
al 12)21
Tabla 106. Análisis estadístico descriptivo de ensayos de resistencia a la compresión (Comb
13 al 16)
Tabla 107. Análisis estadístico descriptivo de ensayos de resistencia a la compresión (Comb
17 al 20)
Tabla 108. Análisis estadístico descriptivo de ensayos de resistencia a la compresión (Comb
21 al 24)22
Tabla 109. Análisis estadístico descriptivo de ensayos de resistencia a la compresión (Comb
25 al 27)
Tabla 110. Análisis estadístico de resistencia a compresión a 28 días22
Tabla 111. Media, moda y mediana del análisis estadístico de resistencia a compresión a 2
días224
Tabla 112. Análisis estadístico descriptivo de los ensayos de resistencia a la tracción (Combo
al 4)220
Tabla 113. Análisis estadístico descriptivo de los ensayos de resistencia a la tracción (Combo
al 8)22
Tabla 114. Análisis estadístico descriptivo de los ensayos de resistencia a la tracción (Combo
al 12)22 ^c
Tabla 115. Análisis estadístico descriptivo de los ensayos de resistencia a la tracción (Comb
13 al 16)23
Tabla 116. Análisis estadístico descriptivo de los ensayos de resistencia a la tracción (Comb
17 al 20)23
Tabla 117. Análisis estadístico descriptivo de los ensayos de resistencia a la tracción (Comb
21 al 24)

Tabla 118. Análisis estadístico descriptivo de los ensayos de resistencia a la tracci	ón (Combo
21 al 24)	233
Tabla 119. Análisis estadístico resistencia a tracción a 28 días	235
Tabla 120. Media, moda y mediana del análisis estadístico resistencia a tracción a 2	28 días. 235
Tabla 121. Análisis estadístico descriptivo de los ensayos de resistencia a la flexión	n (Combo 1
al 4)	237
Tabla 122. Análisis estadístico descriptivo de los ensayos de resistencia a la flexión	
al 8)	238
Tabla 123. Análisis estadístico descriptivo de los ensayos de resistencia a la flexión	
al 12)	239
Tabla 124. Análisis estadístico descriptivo de los ensayos de resistencia a la flexión	
al 16)	240
Tabla 125. Análisis estadístico descriptivo de los ensayos de resistencia a la flexión	
al 20)	241
Tabla 126. Análisis estadístico descriptivo de los ensayos de resistencia a la flexión	
al 24)	242
Tabla 127. Análisis estadístico descriptivo de los ensayos de resistencia a la flexión	(Combo 25
al 27)	243
Tabla 129. Media, moda y mediana del análisis estadístico de resistencia a flexión	
	245
Tabla 130.Prueba de normalidad	247
Tabla 131. Prueba de hipótesis general	249
Tabla 132. Prueba de hipótesis específica 1	250
Tabla 133. Prueba de hipótesis específica 2	251
Tabla 134. Prueba de hipótesis específica 3	252
Tabla 135. Prueba de hipótesis específica 4	253
Tabla 136. Prueba de hipótesis específica 5	254
Tabla 137. Prueba de hipótesis específica 6	254
Tabla 138. Prueba de hipótesis específica 7	255
Tabla 139. Prueba de hipótesis específica 8	256

ÍNDICE DE FIGURAS

Figura 1. Área considerable de cangrejeras. Tomada de "Control de calidad del concreto y
consideraciones en las operaciones para la reducción de costos de no calidad", por Pys
Concreto. 2020
Figura 2. Exceso de agregado grueso en estructura de losa aligerada, segregación de concrete
bombeable. Tomada en un proyecto de vivienda unifamiliar en el Tambo, Huancayo, Junín
2022
Figura 3. Fisuras en la estructura de losa aligerada, Deficiencia en la combinación de agregado
en el diseño del concreto bombeable. Tomada en un proyecto de vivienda unifamiliar en
Huancayo, Huancayo, Junín, 2022.
Figura 4. Concreto bombeable para losa aligerada con exceso de grava, Deficiencia en la
combinación de agregados en el diseño del concreto bombeable. Tomada en un proyecto de
vivienda unifamiliar en Chilca, Huancayo, Junín, 2022
Figura 5. Curva de Gradación para TNM 16 mm. Tomada de "Plain, reinforced and prestressed
concrete structures" - Part 2: Specification, properties, production an conformity of concrete
DIN 1045-2. 2001
Figura 6. Curva de Gradación para TNM 32 mm. Tomada de "Plain, reinforced and prestressed
concrete structures" - Part 2: Specification, properties, production an conformity of concrete
DIN 1045-2. 2001
Figura 7. Curva D.1 para Dmax 38.1 mm. Tomada de "Áridos para morteros y hormigones
Requisitos". NCh 163-2013 2013.Dmáx. 19 mm
Figura 8. Curva D.2 para Dmax 19 mm. Tomada de "Áridos para morteros y hormigones
Requisitos". NCh 163-2013 2013
Figura 9. Curva D.1 para Dmax 38.1 mm. Tomada de "Áridos para morteros y hormigones
Requisitos". NCh 163-2013 2013
Figura 10. Tabla de trabajabilidad – aspereza de Shilstone
Figura 11. Factor Rugosidad vs Factor de Trabajabilidad
Figura 12. Cartilla Power 45.
Figura 13. Distribución de mallas.
Figura 14. Granulometría combinada DIN 1045.
Figura 15. Gráfico Shilstone.
Figura 16. Cartilla Shilstone.
Figura 17. Curva Power 45.
Figura 18. Curva 8-18
Figura 19. Pérdida de fluidez de las mezclas.
Figura 20. Tipo de asentamiento.

Figura 21. Viga de concreto.	73
Figura 22. Viga de flexión.	73
Figura 23. Diagrama de flujo.	86
Figura 24. Zona de estudio 1	88
Figura 25. Zona de estudio 2.	88
Figura 26. Zona de estudio 3.	89
Figura 27. Muestra de agregados 1.	89
Figura 28. Muestra de agregados 1.	90
Figura 29. Ficha de datos de curvas granulométricas combinadas	91
Figura 30. Figura de las curvas granulométricas combinadas.	92
Figura 31. Ficha de datos para metodología Shilstone.	92
Figura 32. Carta de Shilstone.	93
Figura 33. Gráfico de carta Power 45.	93
Figura 34. Gráfico de curva 8-18	94
Figura 35. Pérdida de trabajabilidad.	95
Figura 36. Validación de consistencia.	96
Figura 37. Validación de exudación I	96
Figura 38. Validación de exudación II.	97
Figura 39. Validación de densidad.	97
Figura 40. Validación de esfuerzo a compresión.	98
Figura 41. Validación de esfuerzo a tracción diametral.	99
Figura 42. Validación de esfuerzo a tracción por compresión.	100
Figura 43. Validación de exudación.	101
Figura 44. Granulometría Combinada DIN 1045.	146
Figura 45. Gráfico de barras del módulo de finura de la combinación de agregados	150
Figura 46. Gráfico de barras de los datos agrupados.	153
Figura 47. Gráfico circular de los datos agrupados	153
Figura 48. Carta Shilstone.	156
Figura 49. Gráfico de barras de los datos agrupados del factor grosor	158
Figura 50. Gráfico circular de los datos agrupados del factor grosor	158
Figura 51. Gráfico de Barras de los datos agrupados del factor trabajabilidad	160
Figura 52. Gráfico de los datos agrupados del factor trabajabilidad	160
Figura 53. Curvas granulométricas de las combinaciones de agregados según el métod	o Power
45°	161
Figura 54. Curvas granulométricas de las combinaciones de agregados (COMBO 1 a C	COMBC
27).	162
Figura 55. Gráfico de pérdida de fluidez de las mezclas (combo 1 al combo 27)	168

Figura 56. Gráfico de pérdida de fluidez de las mezclas para diferentes combinaciones d	de
agregados (Combo 1 al Combo 27).	59
Figura 57. Análisis de las condiciones del concreto.	70
Figura 58. Gráfico de barras de los datos agrupados en Consistencia	72
Figura 59. Gráfico circular de los datos agrupados en Consistencia	72
Figura 60. Gráfico de barras de datos agrupados de Temperatura	74
Figura 61. Gráfico circular de los datos agrupados de Temperatura	74
Figura 62. Gráfico de Contenidos finos de diseños de mezcla.	77
Figura 63. Gráfico de barras de datos agrupados de contenidos finos	79
Figura 64. Gráfico de barras de datos agrupados de	79
contenidos finos	79
Figura 65. Gráfico de barras de datos agrupados Tipo de Slump	30
Figura 66. Gráfico circular de los datos agrupados Tipo de Slump	31
Figura 67. Gráfico porcentual de datos de validación de Exudación	37
Figura 68. Gráfico de barras de los datos agrupados en exudación	39
Figura 69. Gráfico circular de los datos agrupados en exudación	39
Figura 70. Gráfico de medición de fisura.)5
Figura 71. Gráfico de barras de los datos agrupados de contracción)7
Figura 72. Gráfico circular de los datos agrupados de contracción)7
Figura 73. Densidad del concreto.	11
Figura 74. Gráfico de barras de los datos agrupados del peso unitario	13
Figura 75. Gráfico circular de los datos agrupados del peso unitario	13
Figura 76. Gráficos de barras de los datos agrupados del aire atrapado21	15
Figura 77. Gráfico de los datos agrupados del aire atrapado	15
Figura 78. Gráfico de Resistencia a 28 días.	23
Figura 79. Gráfico de barras de los datos agrupados de resistencia a compresión a 28 días. 22	25
Figura 80. Gráfico circular de los datos agrupados de resistencia a compresión a 28 días 22	25
Figura 81. Gráfico de Resistencia a tracción a 28 días de ensayo	34
Figura 82. Gráfico de barras de los datos agrupados de resistencia atracción	36
Figura 83. Gráfico circular de los datos agrupados de resistencia atracción	36
Figura 84. Resistencia a flexión a 28 días de ensayo.	14
Tabla 128. Análisis estadístico de resistencia a flexión a 28 días	15
Análisis estadístico resistencia a flexión a 28 días	15
Figura 85. Gráfico de barras de los datos agrupados resistencia a flexión a 28 días24	16
Figura 86. Gráfico circular de los datos agrupados resistencia a flexión a 28 días24	1 6

RESUMEN

La investigación tuvo como objetivo analizar la influencia de metodologías modernas de combinación de agregados en las propiedades del concreto bombeable en estado fresco y endurecido en Huancayo, 2023. En la presente investigación se analizan dos metodologías de combinación de agregados: Método de Shilstone y método de combinación por curvas granulométricas. Se desarrolló bajo un enfoque cuantitativo, tipo aplicada, nivel explicativo y diseño cuasiexperimental. La muestra fue de 27 diseños de mezcla (15 experimentales y 12 de control), seleccionados mediante muestreo intencional. El principal instrumento fue una ficha de recolección de datos estructurada. Entre los resultados más destacados, las mezclas con combinación moderna (como el método Shilstone) mostraron mejoras notables: el asentamiento inicial fue de 9 ½" pulgadas, reduciéndose de forma controlada a 7 ½" pulgadas tras 120 minutos, lo que refleja una buena trabajabilidad. El porcentaje de exudación se redujo hasta en 38.46%, mientras que la densidad del concreto alcanzó 2412 kg/m³ y el contenido de aire se mantuvo en un nivel óptimo del 1.9%. En cuanto a las propiedades mecánicas en estado endurecido, la resistencia a compresión a los 28 días fue de 425 kg/cm², superando al diseño patrón (376.7 kg/cm²), lo que representa un incremento del 12.8%. También se registraron mejoras en la resistencia a tracción (32.1 kg/cm²) y a flexión (45.2 kg/cm²). En conclusión, el uso de metodologías modernas, especialmente el método Shilstone, optimiza el diseño del concreto bombeable, mejorando su desempeño físico y mecánico, reduciendo defectos comunes y favoreciendo una mayor eficiencia en el uso de materiales.

Palabras clave: Concreto bombeable, granulometría, resistencia a compresión, método Shilstone, trabajabilidad, exudación, optimización de mezclas.

ABSTRACT

The objective of the research was to analyze the influence of modern aggregate combination methodologies on the properties of pumpable concrete in its fresh and hardened state in Huancayo, 2023. This research analyzes two aggregate combination methodologies: the Shilstone method and the granulometric curve combination method. It was developed using a quantitative, applied, explanatory, and quasi-experimental design. The sample consisted of 27 mix designs (15 experimental and 12 control), selected through purposive sampling. The main instrument was a structured data collection form. Among the most notable results, mixtures with modern combinations (such as the Shilstone method) showed remarkable improvements: the initial slump was 9 ½ inches, reducing in a controlled manner to 7 ½ inches after 120 minutes, reflecting good workability. The bleeding percentage was reduced by up to 38.46%, while the concrete density reached 2412 kg/m³ and the air content remained at an optimal level of 1.9%. Regarding mechanical properties in the hardened state, compressive strength at 28 days reached 425 kg/cm², surpassing the control mix (376.7 kg/cm²), reflecting a 12.8% increase. Additionally, improvements were recorded in tensile strength (32.1 kg/cm²) and flexural strength (45.2 kg/cm²). In conclusion, the use of modern aggregate blending methodologies, particularly the Shilstone method, optimizes the design of pumpable concrete, enhances its physical and mechanical performance, reduces common defects, and promotes greater efficiency in the use of materials.

Keywords: Pumpable concrete, granulometry, compressive strength, Shilstone method, workability, bleeding, mix optimization.

INTRODUCCIÓN

En los últimos años, la industria de la construcción ha enfrentado desafíos significativos en el diseño y optimización del concreto bombeable, un material clave en la edificación de estructuras modernas. La calidad del concreto está influenciada por diversos factores, entre ellos, la combinación y proporción de los agregados utilizados en su fabricación. En la ciudad de Huancayo, la variabilidad de las canteras de agregados, provenientes tanto del río como del cerro, ha generado inconsistencias en la trabajabilidad y resistencia del concreto, afectando su desempeño en estado fresco y endurecido. Según estudios recientes como Carhuamaca (7) menciona que defectos como segregación, exudación y fisuración en elementos estructurales se asocian a un diseño inadecuado de la mezcla, evidenciando la necesidad de implementar metodologías más precisas en la selección y combinación de agregados.

En este contexto, las metodologías modernas de combinación de agregados han surgido como una alternativa prometedora para optimizar las propiedades del concreto bombeable. Investigaciones previas han demostrado que enfoques como el método Shilstone pueden mejorar la cohesión y resistencia del concreto, reduciendo defectos estructurales y optimizando el uso de cemento (9, 10). Sin embargo, la aplicación de estas metodologías en el contexto específico de Huancayo aún no ha sido plenamente explorada, lo que deja abierta la posibilidad de evaluar su impacto en la calidad del concreto bombeable local. La implementación de técnicas avanzadas en la combinación de agregados podría contribuir significativamente a la reducción de costos de no calidad y al cumplimiento de normativas técnicas más exigentes.

La relevancia de esta investigación radica en su contribución tanto al ámbito académico como a la industria de la construcción. En términos teóricos, el estudio permitirá ampliar el conocimiento sobre las metodologías modernas de combinación de agregados y su influencia en las propiedades del concreto bombeable. A nivel práctico, los resultados podrán ser aplicados por ingenieros y empresas constructoras para mejorar la eficiencia y calidad del concreto utilizado en sus proyectos, optimizando el uso de los materiales disponibles en la región. Asimismo, en el contexto de las políticas de sostenibilidad y reducción de emisiones de carbono en la industria del concreto, el estudio proporcionará una base técnica para la optimización de recursos y la minimización del impacto ambiental en la producción de concreto premezclado.

El presente documento se estructura en cinco capítulos. En el primer capítulo, se expone el planteamiento del problema, los objetivos de la investigación y la justificación del estudio. El segundo capítulo desarrolla el marco teórico, en el que se revisan antecedentes relevantes y se explican las bases conceptuales de las metodologías de combinación de agregados. En el tercer capítulo, se describe la metodología empleada para la recolección y análisis de datos, detallando

el diseño de la investigación y los procedimientos experimentales. El cuarto capítulo presenta los resultados obtenidos y su respectiva discusión, comparándolos con estudios previos en la materia. Finalmente, en el quinto capítulo, se exponen las conclusiones y recomendaciones, destacando las implicaciones prácticas y futuras líneas de investigación derivadas de este estudio.

CAPÍTULO I

PLANTEAMIENTO DEL PROBLEMA

1.1. Planteamiento y formulación del problema

1.1.1. Planteamiento del problema

La realidad del concreto a nivel mundial viene influenciada por múltiples consideraciones técnicas, actualmente la industria del cemento y del concreto se encamino en cero emisiones de carbono para el 2050, esto llevara a la optimización de los materiales, creación de nuevos cementos y aditivos adaptándose a la generación de nuevas consideraciones técnicas, métodos de ensayos y evaluación de la calidad del concreto (1, pp. 18-26).

Las normativas vigentes adoptaron procedimientos y técnicas de diseño de mezclas que permitían realizar diseños sobredimensionados; es así, que hasta hace unos cuantos años pasados aún se consideraba al agregado con un material inerte. Se usaban tablas para realizar combinaciones. Posteriormente aparecieron investigadores que trataron de buscar relaciones entre las combinaciones de agregados y las resistencias, creando curvas teóricas de combinación de agregados, pero, aun así, estas tienen limitantes y parámetros establecidos para las características físicas del agregado como el MF, el porcentaje de malla #200 y entre otros (2, p.30).

Normas internacionales de ciertos países modificaron sus normativas con el fin de adecuarlos a su realidad industrial y su avance tecnológico. Chile es uno de los ejemplos de avances en investigación, desarrollo de nuevas tecnologías y mejoras con respecto a tecnología del concreto, siendo uno de los primeros en adoptar metodologías de optimización de pavimentos con el fin de cumplir una mejor combinación de agregados y mejorar la calidad del producto final (3).

En Perú se utilizan normativas internaciones como las ASTM y ACI que han sido adecuadas a nuestra realidad que están en las NTP, estas no se centran en optimizar los diseños, no prestan especial interés en desarrollar nuevas metodologías con el fin de mejorar y optimizar el uso de los materiales en el concreto Shilstone (4, pp. 33-39).

La realidad de los agregados en Huancayo es más compleja, ya que existen diversas canteras y que son muy variables según se van explotando. En su defecto, tratar de elaborar un concreto uniforme y adecuado conlleva a múltiples criterios técnicos a considerar. Los agregados de Huancayo no cumplen con los requerimientos de la norma Andia (5, p. 17), por ende, una buena solución sería el de combinar agregados y usar métodos que nos permitan combinarlos para

lograr en algunos casos el cumplimiento de las normativas existentes. En todo caso tratar de lograr un mejor concreto optimizando el uso del cemento y otros materiales, para así optimizar los recursos de cualquier proyecto.

Según Pasquel (6, pp. 46-49), las fallas típicas en los proyectos concernientes al concreto lo consideran a cualquier problema que afecte la funcionalidad, capacidad o durabilidad estructural. Estos requieren evaluaciones y diagnósticos correctivos, pero involucran sobrecostos o costos no estipulados en las partidas. Así mismo indica que aproximadamente el 14% de fallas se pudieron analizar en el concreto o los materiales que le componen.

Según Carhuamaca (7), indica que una de las causas principales de los problemas en los costos de no calidad son las cangrejeras que se producen por la distribución de acero de refuerzo, geometría de la sección, acceso restringido para el vibrador e interferencias internas de las estructuras de vaciado. Otra de las causas son los errores en el diseño de mezcla por TNM inadecuado, inadecuada proporción arena/piedra, elección incorrecta del Slump, caída de Slump violenta y mal empleo de aditivos. Otro de los problemas frecuentes son las fisuras y las filtraciones que se producen en los elementos estructurales que se pueden generar por causas iguales o similares a las mencionadas anteriormente.

Figura 1. Área considerable de cangrejeras. Tomada de "Control de calidad del concreto y consideraciones en las operaciones para la reducción de costos de no calidad", por PyS Concreto. 2020.

Figura 2. Exceso de agregado grueso en estructura de losa aligerada, segregación de concreto bombeable. Tomada en un proyecto de vivienda unifamiliar en el Tambo, Huancayo, Junín, 2022.

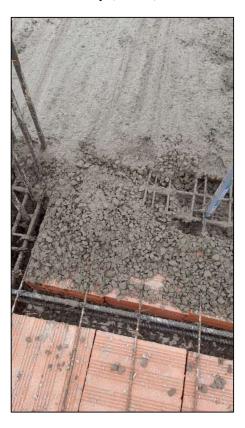


Figura 3. Fisuras en la estructura de losa aligerada, Deficiencia en la combinación de agregados en el diseño del concreto bombeable. Tomada en un proyecto de vivienda unifamiliar en Huancayo, Huancayo, Junín, 2022.

Figura 4. Concreto bombeable para losa aligerada con exceso de grava, Deficiencia en la combinación de agregados en el diseño del concreto bombeable. Tomada en un proyecto de vivienda unifamiliar en Chilca, Huancayo, Junín, 2022.

La idea fundamental debe ser la elaboración de un concreto de calidad que optimice los recursos y materiales, priorizando una adecuada combinación y mezcla de los componentes del concreto bombeable para obtener óptimas condiciones de resistencia mecánica y propiedades en estado fresco. Esta optimización de combinación de agregados debe de estar enfocada en los lineamientos de reducción de CO2 y gestión de recursos y eliminación de costos de no calidad.

1.1.2. Formulación del problema

1.1.2.1. Problema general

¿Cuál es la influencia de las metodologías modernas de combinación de agregados en las propiedades en estado fresco y endurecido del concreto bombeable en Huancayo, 2023?

1.1.2.2. Problemas específicos

• ¿De qué manera influye las metodologías modernas de combinación de agregados en la consistencia del concreto bombeable?

- ¿De qué manera influye las metodologías modernas de combinación de agregados en la segregación del concreto bombeable?
- ¿De qué manera influye metodologías modernas de combinación de agregados en la exudación del concreto bombeable?
- ¿De qué manera influye las metodologías modernas de combinación de agregados en la contracción del concreto bombeable?
- ¿De qué manera influye las metodologías modernas de combinación de agregados en la densidad del concreto bombeable?
- ¿De qué manera influye las metodologías modernas de combinación de agregados en la resistencia a compresión del concreto bombeable?
- ¿De qué manera influye las metodologías modernas de combinación de agregados en la resistencia a tracción del concreto bombeable?
- ¿De qué manera influye las metodologías modernas de combinación de agregados en la resistencia a flexión del concreto bombeable?

1.2. Objetivos

1.2.1. Objetivo general

Analizar la influencia que produce las metodologías modernas de combinación de agregados en las propiedades en estado fresco y endurecido del concreto bombeable en Huancayo 2023.

1.2.2. Objetivos específicos

- Evaluar la influencia de las metodologías modernas de combinación de agregados en la consistencia del concreto bombeable.
- Evaluar la influencia que produce las metodologías modernas de combinación de agregados en la segregación del concreto bombeable.
- Evaluar la influencia que producen las metodologías modernas de combinación de agregados en la exudación del concreto bombeable.
- Evaluar la influencia que producen las metodologías modernas de Combinación de agregados en la contracción del concreto bombeable.

- Evaluar la influencia que producen las metodologías modernas de combinación de agregados en la densidad del concreto bombeable.
- Evaluar la influencia que producen las metodologías modernas de combinación de agregados en la resistencia a compresión del concreto bombeable.
- Evaluar la influencia que produce las metodologías modernas de combinación de agregados en la resistencia a tracción del concreto bombeable.
- Evaluar la influencia que producen las metodologías modernas de combinación de agregados en la resistencia a flexión del concreto bombeable.

1.3. Justificación e importancia

1.3.1. Justificación teórica

Esta investigación se realiza con el propósito de aportar conocimiento existente sobre los métodos modernos de combinación de agregados, por lo que se pretende realizar ensayos del concreto y usar métodos de diseño muy poco usados en la actual tecnología del concreto bombeable.

1.3.2. Justificación práctica

Esta investigación se realiza porque existe la necesidad de mejorar los diseños de mezclas de concretos bombeables realizando una óptima combinación agregados con las metodologías modernas en la ciudad de Huancayo, ya que, muy a menudo los agregados de la ciudad son muy variables; y estos, no cumplen con los parámetros de la norma. La tendencia es el uso de agregados de manera descontrolada, por lo cual necesitamos tener información de cómo influyen las propiedades de los agregados combinados dentro de la mezcla del concreto bombeable.

1.3.3. Justificación metodológica

La importancia de la combinación de agregados está orientado a la mejora de la gestión de la construcción, diseños de concretos bombeables aplicables a la construcción, producción de concreto con plantas industrializadas y a la optimización de recursos que se obtendrán aplicando la metodología planteada en esta investigación.

1.4. Delimitación del proyecto

1.4.1. Delimitación conceptual

En la investigación se aplicarán las teorías de combinación de agregados y aquellas relacionadas con la teoría de agregados y las nuevas tendencias de la tecnología del concreto para analizar la influencia de los métodos modernos de combinación de agregados en las propiedades físicas y mecánicas del concreto bombeable, lo que permitirá abrir nuevas líneas de investigación.

1.4.2. Delimitación conceptual

Las muestras y los trabajos planteados de investigación se realizarán en el distrito de Huancayo, provincia de Huancayo y región Junín. En esta zona de estudio se muestrearán las canteras y se usarán para la investigación en concreto bombeable.

1.4.3. Delimitación espacial

La información recopilada y la propuesta investigativa corresponde al mes de octubre 2023 hasta el mes de junio de 2024.

1.5. Hipótesis y descripción de variables

1.5.1. Hipótesis general

Las metodologías modernas de combinación de agregados influyen positivamente en las propiedades en estado fresco y endurecido del concreto bombeable en Huancayo 2023.

1.5.2. Hipótesis específicas

- Las metodologías modernas de combinación agregados influyen significativamente la consistencia del concreto bombeable.
- Las metodologías modernas de combinación de agregados influyen positivamente en la disminución de la segregación del concreto bombeable.
- Las metodologías modernas de combinación de agregados influyen en la reducción de la exudación del concreto bombeable.
- Las metodologías modernas de Combinación de agregados influyen disminuyendo la contracción del concreto bombeable.

- Las metodologías modernas de combinación de agregados disminuyen la densidad del concreto bombeable.
- Las metodologías modernas de combinación de agregados influyen positivamente, mejorando la resistencia del concreto bombeable.
- Las metodologías modernas de combinación de agregados influyen negativamente en los resultados de la resistencia a tracción del concreto bombeable.
- Las metodologías modernas de combinación de agregados influyen negativamente en la resistencia a la flexión del concreto bombeable.

1.5.3. Variables

1.5.3.1. VI.-Metodologías modernas de combinación de agregados

Definición Conceptual: Son metodologías que emplean distintos conceptos para su aplicación como el porcentaje retenido o acumulado en un determinado tamiz, el módulo de fineza de la arena o el porcentaje de finos. Se pueden emplear para fabricar distintos tipos de mezclas de concreto, Aquí se da importancia a los agregados y sus características.

1.5.3.2. VD.-Propiedades del concreto

Las propiedades del concreto son las características físicas y mecánicas que determinan su comportamiento y desempeño en sus diferentes fases. Estas propiedades se dividen en dos estados principales: el estado fresco, donde el concreto mantiene su plasticidad y es manipulable antes de su fraguado (8, p. 94), y el estado endurecido, en el que adquiere resistencia y estabilidad para soportar cargas estructurales (7, p. 164).

1.5.3.3. Subvariable 1: Propiedades en estado fresco

Definición Conceptual: El concreto fresco está definido como un concreto completamente mezclado en un estado reológico que no ha perdido su Plasticidad. La etapa del concreto fresco cubre las etapas de hidratación del cemento I y II. El estado plástico del concreto fresco provee un lapso para el transporte, colocado, compactado, y el acabado superficial. Las propiedades del concreto fresco tienen una gran influencia en la velocidad de construcción y Toma de decisiones (8, p. 94).

1.5.3.4. Subvariable 2: Propiedades en estado endurecido

Definición Conceptual: Con el desarrollo de hidratación, el concreto cambiará de un fluido a un estado plástico, y por fin al estado endurecido, el concreto está listo a soportar cargas externas como un material estructural. Las propiedades más importantes de concreto endurecido incluyen fuerzas diversas, la estabilidad de dimensión, la relación completa de esfuerzo de tensión, varios módulos, coeficiente de Poisson y durabilidad (7, p. 164).

Tabla 1. Operacionalización de las variables que se utilizarán en la investigación

VARIABLES	DEFINICION CONCEPTUAL	DIMENSIONES	DEFINICION OPERACIONAL	INDICADORES	UNIDAD DE MEDIDA	TIPO DE VARIABLE	ESCALA DE MEDICION
VI: Metodologías modernas de combinación de agregados	Son metodologías que emplean distintos conceptos para su aplicación como el porcentaje	Método de curvas granulométricas combinadas	Las metodologías de combinación de agregados por método de curvas granulométricas se evaluarán de acuerdo a la incidencia de	I1: Incidencia de agregados	%	Cuantitativa continua	Razón
	retenido o acumulado en un determinado tamiz, el módulo de fineza de la arena o el porcentaje de finos. Se pueden emplear para fabricar distintos tipos de mezclas de concreto, Aquí se da importancia a los agregados y sus características (7).		agregados y a la obtención del módulo de fineza global o de combinación.	I2: Modulo de fine: global	Adimensional	Cuantitativa continua	Intervalo
		Método de Shilstone	Las metodologías de combinación de agregados por método Shilstone se analizarán		%	Cuantitativa continua	Razón
			la incidencia de los agregados,	I2: Factor grosor	Adimensional	Cuantitativa continua	Razón
			factor grosor, factor de trabajabilidad, el módulo de fineza global y el análisis de	I3: Factor trabajabilidad	Adimensional	Cuantitativa continua	Razón
			curvas como la de 8-18 y la curva Power 45.	I4: Modulo de fineza global	Adimensional	Cuantitativa continua	Intervalo

	titativa continua Interval
I6: Curva Power 45 % Cuan	titativa continua Razón

VARIABLE	DEFINICION CONCEPTUAL	SUBVARIABLE	DIMENSIONES	DEFINICION OPERACIONAL	INDICADORES	UNIDAD DE MEDIDA	TIPO DE VARIABLE	ESCALA DE MEDICION	
VD: Propiedades	Las propiedades del concreto son	Propiedades en estado fresco	Consistencia	La consistencia es una de las	I1: Asentamiento	Pulgadas	Cuantitativa continua	Razón	
del concreto	las características físicas y mecánicas que			propiedades en estado fresco que se necesitara evaluar el asentamiento, temperatura del concreto, fluidez y apariencia visual.	I2: Temperatura del concreto	° C	Cuantitativa continua	Razón	
	determinan su comportamiento y desempeño en sus diferentes fases. Estas propiedades				I3: Perdida de trabajabilidad	Pulgadas	Cuantitativa continua	Intervalo	
	se dividen en dos estados principales: el		Segregación	La segregación es una de las	I1: Contenido de finos	kg	Cuantitativa continua	Razón	
	donde el concreto mantiene su plasticidad y es manipulable antes de su fraguado (8,		el concreto ene su cidad y es ulable antes fraguado (8,		propiedades en estado fresco de la que se necesitara evaluar el contenido de finos y asentamiento	I2: Asentamiento	Pulgadas	Cuantitativa continua	Intervalo
	p. 94), y el estado endurecido, en el que adquiere resistencia y estabilidad para soportar cargas estructurales (7, p. 164).		Exudación o sangrado	La exudación es una de las propiedades en estado fresco de la que se necesitara evaluar la cantidad de agua exudada	I1: Cantidad de agua exudada	%	Cuantitativa continua	Razón	

Contracción	La exudación es una de las propiedades en estado fresco de la que se necesitara evaluar la cantidad de agua exudada.	I1: Control de fisuras	mm	Cuantitativa continua	Intervalo
Densidad	La densidad es una de las propiedades en estado fresco de la que se necesitara evaluar el peso unitario y el contenido de aire.	I1: Peso unitario	kg/ m³	Cuantitativa discreta	Razón
		I2: Contenido de aire	%	Cuantitativa continua	Razón

VARIABLE	DEFINICION CONCEPTUAL	SUBVARIABLE	DIMENSIONES	DEFINICION OPERACIONAL	INDICADORES	UNIDAD DE MEDIDA	TIPO DE VARIABLE	ESCALA DE MEDICION
		Propiedades en estado endurecido	Resistencia a la compresión	Una de las propiedades a analizar en estado endurecido es la resistencia a compresión	I1: Esfuerzo a compresión	kg/cm²	Cuantitativa continua	Razón
			Resistencia a la tracción	Una de las propiedades a analizar en estado endurecido es la resistencia a tracción	I1: Esfuerzo a tracción	kg/cm ²	Cuantitativa continua	Razón
			Resistencia a la flexión	Una de las propiedades a analizar en estado endurecido es la resistencia a flexión	I1: Esfuerzo a flexión	kg/cm²	Cuantitativa continua	Razón

Nota. Elaboración propia

CAPÍTULO II MARCO TEÓRICO

2.1. Antecedentes del problema

Larrain (9) presenta la tesis de grado, sobre la investigación con título Análisis anova del efecto de la granulometría dentro del gráfico de Shilstone en el desempeño global de los pavimentos de hormigón, a la Universidad Técnica Federico Santa María, Departamento de obras civiles, para optar el Título de Ingeniero Civil. Se investigó el problema de que los métodos de dosificación de hormigones han estado basados en métodos prescriptivos, el problema es la poca atención que se le da a los agregados. Plantea como objetivo determinar una correlación entre los parámetros del grafico Shilstone y el comportamiento que tendrán las mezclas ante los ensayos a flexo-tracción, compresión y docilidad. El autor siguiendo la metodología tipo aplicada, nivel explicativo y diseño experimental, de un grupo de 15 diseños de mezclas se analizaron en laboratorio y se hicieron combinaciones granulométricas, ha obtenido como resultados que los diseños realizados en el sector A de la zona 2 del Gráfico de Shilstone posee valores entre 15 y 50 mm, confirmando los límites establecidos por la norma ACI 325 para los resultados de Cono de Abrahams en la confección de pavimentos de hormigón para pavimentadoras.

Como conclusiones se constató que no existe relación entre FG y FT y el cono de Abrahams, la resistencia a compresión a 28 días ni la resistencia a flexo – tracción a 28 días. Respecto al ensayo de compresión existe una alta variación en los resultados al utilizar el método, obteniendo resistencia promedio de 47.22 Mpa, con una desviación estándar de 7.69 Mpa, y rango de 25.69 Mpa, esto demuestra la incidencia de la granulometría del árido combinado en la dispersión de los resultados. Así mismo, recomienda que la zona analizada de Shilstone se puede utilizar para construir pavimentos mediante trenes pavimentadores. También se propone ampliar la investigación en la zona 3 del gráfico de Shilstone, ya que se observa mejoras de resistencia hacia ese sector, y se necesita evaluar la durabilidad de la mezcla con el ensayo de permeabilidad.

Relevancia. - El valor de este estudio es relativamente aceptable porque ya deja claro el análisis de la zona II del gráfico de Shilstone y su uso en pavimentadoras. Así mismo el autor propone que se realicen mayor investigación en cuanto a la durabilidad y la combinación de las granulometrías del agregado. Las técnicas y los instrumentos utilizados en la investigación son rescatables para nuestra investigación.

Santa Cruz (10) presenta la tesis de grado, titulado efecto de la granulometría en las propiedades mecánicas de mezclas de hormigón para pavimentos, a la Universidad Católica de Chile, Escuela de Construcción Civil, para optar el Título Magister en construcción. Se investigó el problema de los métodos actuales no entregan un indicador claro del efecto de la gradación de los agregados sobre la trabajabilidad y resistencia de la mezcla, así mismo el objetivo de esta investigación es caracterizar las propiedades mecánicas de hormigones para pavimentos, confeccionados con granulometrías optimizadas y no optimizadas. El autor siguiendo el método tipo aplicada, nivel explicativo y diseño experimental, de un grupo de 2 diseños de mezclas elaboradas y analizadas en laboratorio, obtuvo como resultados que los diseños de granulometría optimizada presentan mejores resultados que aquellos diseños con granulometría no optimizada. Los diseños se analizaron en el sector B zona 2 del Gráfico de Shilstone, confirmando que estos diseños se pueden utilizar en vaciados de tipo mecánica y no manual. Como conclusiones la granulometría optimizada (G1) tuvo mayores valores de resistencia a la compresión, resistencia a la flexión de vigas y resistencia a la flexión de probetas comparada con la granulometría no optimizada. La resistencia a los 28 días de G1 es de 50.14 Mpa y G2 de 44.66 Mpa. En flexión a los 28 días en G1 fue de 7.60 Mpa y de g2 fue de 7.35 Mpa. Finalmente, la resistencia a flexión de las probetas en G1 fue de 6.72 y 6.29. Así mismo, recomienda incluir propuestas de normativas de otros países para la fabricación de hormigones y mejorar el desempeño del material.

Relevancia. - El valor de este estudio es relativamente aceptable porque deja claro las técnicas utilizadas, así mismo se resalta los resultados de diseño de mezclas con granulometría optimizada (Método Shilstone) que ofrecen mejores resultados.

Urquilla, Vásquez y Vivas (11) presentan el trabajo de graduación previo a la opción de Grado, titulado evaluación de granulometría Shilstone y curva de la tarántula, mediante el ensayo de la caja, en mezclas de concreto hidráulico para pavimento rígido en el Salvador, a la Universidad de El Salvador, Escuela de Ingeniería Civil, para optar el trabajo de graduación previo a la opción al Grado de Ingeniero Civil. Los autores siguiendo el método tipo aplicada, nivel explicativo y diseño experimental, de un grupo de 13 combinaciones de agregados en laboratorio y análisis de curvas granulométricas, obtuvieron los siguientes resultados, después de analizar en la gráfica de porcentajes retenidos, carta de factor grosor y curva Power 45 dan una aproximación al comportamiento de la mezcla de concreto en estado fresco. En conclusión, se observó un elevado porcentaje en la malla Nº 4 y en la malla de ½", provocando que los puntos de la granulometría se encuentran fuera de los límites.

Relevancia. - El valor de este estudio es aceptable porque brindan las técnicas utilizadas para combinar agregados finos y gruesos, así mismo se resalta los resultados gráficos y cálculos realizados para la combinación de los agregados y la obtención de resultados.

Yupanqui (12) presenta la tesis de Grado, titulado influencia de la combinación de agregados y diseño de mezcla en la calidad de concreto para pavimentos rígidos, Huancayo 2021, a la Universidad Cesar Vallejo, Escuela Profesional de Ingeniería Civil, para obtener el título profesional de Ingeniero Civil. La autora siguiendo la metodología con enfoque cuantitativo, tipo aplicada, nivel explicativo y diseño experimental de 4 diseños de mezclas en laboratorio, Como resultado se obtuvo que, los ensayos de resistencia a la compresión arrojaron que empleando la metodología Shilstone se logra mejores resultados comparados con los de la metodología ACI, al mismo tiempo en la metodología Shilstone es la zona C la que ofrece mayor resistencia a la compresión de 395 kg/cm2 a diferencia de la muestra patrón que fue de 363 kg/cm2. Asi mismo la flexión en la zona C fue de 41.08 kg/cm2 en comparación del patrón que obtuvo 31.83 kg/cm2. En la evaluación de costos, el diseño en la zona C, obtuvo un costo de 359.30 soles y el patrón de 359.56 soles.

En conclusión, la metodología Shilstone permite optimizar la dosificación de los componentes del concreto, y se requiere menor dosificación hasta un 1.39% a comparativo del método ACI. Como recomendación sugiere seguir investigando la influencia de la metodología Shilstone y ACI en las otras propiedades del concreto como: exudación, segregación, permeabilidad, etc.

Relevancia. - El valor de esta investigación es relevante para la tesis porque se obtuvo buenos resultados con la metodología Shilstone en aplicación de concreto para pavimento, así mismo se logró optimizar el diseño.

Romero y Cabanillas (13) presenta la tesis de Grado, sobre el estudio comparativo de 3 métodos de diseño de mezclas en la resistencia a la compresión del concreto, a la Universidad Nacional de Trujillo, Escuela Profesional de Ingeniería Agrícola, para obtener el título profesional de Ingeniero Agrícola. Los autores siguiendo una metodología tipo cualitativo, cuantitativo y diseño cuasiexperimental, realizo 6 diseños de mezclas con 72 probetas que fueron ensayadas en laboratorio, obteniendo como resultados y conclusiones que, con el diseño de Walker se obtiene un concreto más denso y con resistencia superior en un 47% más que los otros dos diseños (Modulo de fineza y ACI 211). La resistencia máxima del concreto obtenida a los 28 días de los métodos de diseño de mezclas en la resistencia de 210 kg/cm2: Walker es de 301 kg/cm2, Modulo de fineza es de 194 kg/cm2 y de ACI 211 es de 207 kg/cm2 y de diseño de mezclas de 175 kg/cm2: Walker es de 215 kg/cm2, Modulo de fineza es de 187 kg/c2 y del ACI es de 194 kg/cm2.

Relevancia. - El valor de esta investigación es relevante para la tesis porque se obtuvo buenos resultados con otra metodología de diseño de mezclas, así mismo tiene relevancia por el tipo de diseño de investigación utilizada.

Reymundo (14) presenta la tesis de Grado, titulado Mantensor de trabajabilidad del concreto bombeado adicionado con sacarosa, a la Universidad Federico Villarreal, Escuela Universitaria de Posgrado, para obtener el Grado Académico de Doctor en Ingeniería Civil. El autor siguiendo la metodología de investigación tipo aplicada y diseño experimental de 9 diseños de mezclas en laboratorio, Obtuvo como resultados y conclusiones que, con el aumento de dosis de sacarosa aumenta el revenimiento del concreto bombeable con una dosis de hasta 0.34% logrando un incremento de asentamiento hasta 129.41%, así mismo recomienda que se debe de vigilar la granulometría global para no generar segregación en el concreto bombeable.

Relevancia. - El valor de esta investigación es relevante para la tesis por la metodología utilizada, así mismo resaltar el énfasis en la granulometría combinada o global para el diseño de concreto bombeable.

Burga (19) en su tesis titulada "Influencia de la superficie específica de los agregados; de río y de cerro, en la resistencia a la compresión de un concreto de f'c = 210 kg/cm² en Cajamarca", tuvo como objetivo determinar la influencia de la superficie específica de los agregados de río y de cerro en la resistencia a compresión de un concreto de f'c=210 kg/cm². La investigación, de tipo aplicada y de nivel descriptivo, explicativo y comparativo, consistió en la elaboración de 90 especímenes de concreto para cada diseño de mezcla, los cuales fueron ensayados a los 7, 14 y 28 días, evaluando sus propiedades en estado fresco y endurecido. Los resultados indicaron que la resistencia a compresión del concreto elaborado con agregados de río fue superior en un 10.54% respecto a la obtenida con agregados de cerro a los 28 días. Se concluyó que la superficie específica de los agregados influye en la consistencia del concreto, afectando la demanda de pasta y disminuyendo la resistencia a medida que aumenta la superficie específica, manteniendo constante la relación agua/cemento.

Relevancia. - Este antecedente las propiedades mecánicas del concreto, proporcionando una base comparativa para el análisis de metodologías modernas de combinación de agregados en concreto bombeable.

Chipana (20), en su tesis titulada "Análisis y caracterización de las propiedades mecánicas y físicas de los agregados de las tres canteras para el diseño de mezcla de concreto f'c = 210 kg/cm² en la ciudad de Cusco, 2023", tuvo como objetivo analizar y caracterizar las propiedades mecánicas y físicas de los agregados provenientes de las canteras de Huambutio, Pisac y Zurite,

para el diseño de mezcla de concreto f'c = 210 kg/cm²; mediante una investigación cuantitativa de tipo descriptiva, se trabajó con 36 especímenes de concreto elaborados con agregados de dichas canteras. Los resultados mostraron que la cantera de Huambutio requería 9 bolsas de cemento por m³, 0.234 m³ de agua, 0.482 m³ de agregado fino y 0.553 m³ de agregado grueso, mientras que la de Zurite presentó una combinación intermedia respecto a Pisac. En conclusión. se resaltó que las dosificaciones específicas para cada cantera influyeron en la trabajabilidad y consistencia del hormigón fresco, evidenciando diferencias en el contenido de aire y el asentamiento del cono de Abrams según el origen de los agregados.

Relevancia. - Este antecedente evidencia la influencia de las características de los agregados en el diseño y desempeño del concreto, destacando la importancia de adaptar las dosificaciones según el origen de los materiales.

Alcántara y Santiago (21), en su tesis titulada "Tratamiento superficial de partículas de polietileno de alta densidad (HDPE) en un concreto autoconsolidante (SCC) f'c=450 kg/cm² con agregados gruesos plásticos para aumentar su capacidad resistente en compresión y tracción", tuvieron como objetivo incrementar en al menos 20% y 5% las resistencias a compresión y tracción mediante el tratamiento superficial de partículas de HDPE. A través de una metodología cuantitativa, se analizaron mezclas con reemplazos de agregado grueso de 0%, 10%, 15%, 20% y 25%, utilizando cemento Portland Tipo HS y una relación agua/cemento de 0.45. Los resultados evidenciaron que los diseños D3-15% y D5-25% fueron óptimos, destacando la mezcla D3-15% por su mejor capacidad de relleno y segregación, alcanzando un f'c de 537 kg/cm² y un fct de 28.84 kg/cm². Se concluyó que el tratamiento superficial con escoria de acero incrementó las resistencias a compresión hasta en 31% y a tracción hasta en 8%, validando la eficacia del tratamiento para mejorar la adherencia entre el plástico y la matriz cementante.

Relevancia. - Este antecedente proporciona evidencia del impacto de tratamientos superficiales en agregados no convencionales, lo que orienta el análisis de metodologías modernas de combinación de agregados en la mejora de las propiedades mecánicas del concreto bombeable.

Muñoz et al. (22), en su artículo titulado "Uso del aditivo mineral como modificador de las propiedades mecánicas en el concreto: una revisión", tuvo como objetivo presentar los aditivos minerales y los aspectos a considerar antes y después de su experimentación, destacando sus aportes positivos y negativos en las propiedades mecánicas del concreto; mediante una revisión de 50 artículos indexados entre 2010 y 2021, provenientes de las bases de datos Scopus, ScienceDirect, Springer y SciELO, se abordaron los efectos de la escoria de alto horno granulada (EAHG), cenizas volantes (CV), humo de sílice (HS) y ceniza de cascarilla de arroz

(CCA). Los resultados indicaron que las CV y la EAHG, con adiciones del 40% y 20% respectivamente, mejoraron la trabajabilidad, la exudación y la segregación del concreto fresco, mientras que la CCA, con un 10%, incrementó la formación de poros hasta en un 49,04%. Además, se destacó que la EAHG redujo la contracción autógena mediante una disminución gradual de la relación agua/cemento.

Relevancia. - Este antecedente proporciona información sobre el desempeño de aditivos minerales en las propiedades del concreto fresco y endurecido, facilitando la comparación con los efectos de la combinación de agregados en el concreto bombeable.

Mayta y Sucari (23), en la tesis titulada "Efecto del agregado fino reemplazado por residuos mineros (Cuarzo - Ignimbrita) triturados con Ball Mill en las propiedades del concreto, Puno, 2022", realizada por, se tuvo como objetivo determinar el efecto del agregado fino reemplazado por residuos mineros de cuarzo e ignimbrita en las propiedades del concreto estructural. Se empleó un diseño cuasiexperimental, con enfoque cuantitativo y alcance explicativo, utilizando como muestra 105 probetas cilíndricas y 15 prismáticas, obtenidas de 0.87 m³ de concreto. La trituración de los residuos se realizó mediante el método de Ball Mill, y se aplicó la observación directa con fichas e instrumentos de ensayo. Los resultados indicaron que, con 35% de cuarzo y 25% de ignimbrita, se logró un mejor desempeño, destacando una resistencia a la compresión aumentada en 14.17%, a la tracción indirecta en 14.32% y a la flexión en 26.21%, observarse una mayor exudación. Se concluyó que dicha combinación optimizó las propiedades mecánicas del concreto.

Relevancia. - Este antecedente resulta relevante al evidenciar cómo la variación en la composición de agregados influye en las propiedades mecánicas del concreto, lo que sustenta la importancia del análisis de metodologías modernas de combinación de agregados en concretos bombeables.

Sarapura (24), en la tesis titulada "Utilización de hueso triturado de vacuno como agregado fino para el mejoramiento de las propiedades del concreto", tuvo como objetivo determinar la influencia de la adición de huesos triturados de vacuno como agregado fino en las propiedades del concreto. El estudio se desarrolló mediante el método científico, con un enfoque cuantitativo, de tipo aplicada y tecnológica, nivel descriptivo-explicativo y diseño cuasi experimental. La población estuvo conformada por diseños de mezcla de concreto convencional y con adición de hueso triturado en proporciones del 5%, 10% y 15%. Los resultados mostraron que la exudación fue de 0% en la muestra patrón, mientras que para las mezclas con 5%, 10% y 15% de adición fue de 0.4%, 0.75% y 0.1%, respectivamente. Se concluyó que la adición de

hueso triturado reduce significativamente la exudación, favoreciendo la retención de agua en la mezcla.

Relevancia. - Este antecedente aporta en el uso de materiales no convencionales como agregados puede mejorar propiedades clave del concreto, orientando el análisis hacia el comportamiento de mezclas bombeables con combinaciones modernas de agregados.

Velásquez y Zakhia (25), en su tesis titulada "Determinación de las propiedades del concreto a partir de la sustitución parcial de agregado fino por vidrio molido", se enfocaron en analizar la resistencia a compresión del concreto mediante la sustitución parcial del agregado fino con vidrio molido. La metodología consistió en realizar diversas pruebas de laboratorio utilizando vidrio molido como agregado fino, distribuido en concentraciones variables y elaboradas a diferentes tiempos, lo que permitió evaluar las propiedades obtenidas de las mezclas. Los resultados mostraron que el material reciclable estudiado presentó reducciones significativas en densidad aparente, densidad aparente saturada con superficie seca y densidad nominal, con una disminución de 6.81%, 7.72% y 9.16% respectivamente en comparación con la arena lavada. Las conclusiones indicaron que los valores obtenidos para las propiedades estudiadas se encuentran fuera del rango estándar para un agregado fino convencional, especialmente en lo que respecta a la densidad aparente, que se alejó en un 6.44% de dicho rango.

Relevancia. - Este antecedente proporciona evidencia sobre nuevas metodologías en la combinación de agregados para el concreto bombeable.

Vargas (26), en su tesis titulada "Agregado fino de mineral hierro molido para mejorar las propiedades mecánicas del concreto F'c 210 kg/cm2, Andahuaylas – 2023", determinó que el uso de agregado fino de mineral hierro molido en la dosificación del concreto F'c 210 kg/cm2 mejora significativamente las propiedades mecánicas del mismo, específicamente en la resistencia a la tracción indirecta. Utilizó una metodología aplicada de tipo cuasiexperimental con enfoque cuantitativo y nivel explicativo, trabajando con una población de 36 especímenes y 6 vigas prismáticas. Se observó que, al incorporar el mineral hierro molido en proporciones de 0, 15% y 30%, la mezcla presentó mejoras en la resistencia a la tracción, destacándose una mejora significativa cuando se utilizó un 30% como sustituto del agregado fino, logrando un aumento del 34.05% en la resistencia, alcanzando 33.1 kg/cm2 a los 28 días. Concluyó que esta proporción del 30% es la más eficiente para la mejora de las propiedades mecánicas tales como la flexión del concreto estructural.

Relevancia. - Este antecedente proporciona evidencia de cómo la adición de minerales específicos puede optimizar las propiedades mecánicas del concreto en estado endurecido.

Además, refuerza la relevancia de explorar diferentes combinaciones de agregados para mejorar la resistencia del concreto.

Arbelaez et al. (27), en su artículo titulado "Factores de emisión de concretos modificados con residuos de vidrio en reemplazo de los agregados finos", investigó la viabilidad de utilizar residuos de vidrio como reemplazo parcial de los agregados finos en la preparación de concreto, con el objetivo de reducir el uso de recursos naturales y abordar problemas de contaminación ambiental. Se elaboraron diversas mezclas, sustituyendo los agregados finos por porcentajes que variaron entre el 5% y el 50% en peso de residuos de vidrio. Se realizaron especímenes cilíndricos de concreto con un diámetro de 0,15 m y una longitud de 0,3 m, para evaluar el asentamiento y la resistencia a la compresión. Los resultados indicaron que los agregados gruesos presentaron una mayor densidad (2770 Kg/m³) que los finos (2580 Kg/m³), lo que implicó el requerimiento de mayor cantidad de pasta de mortero para mantener la trabajabilidad de la mezcla. Finalmente, las conclusiones revelaron que los residuos de vidrio pueden reemplazar los agregados finos, lo cual representa una alternativa sostenible para la gestión de residuos y la producción de concreto.

Relevancia. - Este antecedente proporciona un enfoque alternativo de materiales reciclados para mejorar las propiedades del concreto, lo cual puede ser relevante para la investigación sobre concreto bombeable.

2.2. Bases teóricas

2.2.1. Métodos de combinación de granulometrías

Existen diversas metodologías relacionadas con la optimización de la granulometría para la fabricación de una mezcla de hormigón. Estas metodologías emplean distintos conceptos para su aplicación como el porcentaje retenido o acumulado en un determinado tamiz, el módulo de fineza de la arena o el porcentaje de finos. Se pueden emplear para fabricar distintos tipos de mezclas incluyendo las utilizadas en pavimentos de hormigón. Tipos de métodos de combinación de granulometrías.

2.2.1.1. Método de Combinación de curvas granulométricas

La composición granulométrica del agregado para hormigón queda caracterizada mediante curvas granulométricas y, de ser necesario, mediante un coeficiente relacionado con esas curvas para la distribución de los granos o de la exigencia de agua.

Por un agregado formado por elementos pétreos con pesos específicos substancialmente diferentes, las curvas granulométricas no deben relacionarse con la participación en peso de los ingredientes de a mezcla de agregados, sino con los volúmenes que intervienen.

La composición de los grupos individuales de granos y del agregado se determina mediante ensayos granulométricos con los tamices de prueba.

De acuerdo a DIN 1045 en el anexo L, el análisis granulométrico del árido se caracteriza por curvas granulométricas (L1 a L4) y, donde es necesario un parámetro relacionado que represente la distribución del tamaño de las partículas o el requerimiento de agua. La composición de las fracciones granulométricas y de los agregados se determina según lo especificado en los ensayos de tamizado según DIN EN 933-1 con tamices de ensayo según DIN ISO 3310-1 o DIN ISO 3310-2. Las curvas de clasificación pueden ser discontinuas o estables.

De acuerdo a esta norma, se clasifican en los siguientes rangos:

- 1) Grueso
- 2) Gradación discontinua
- 3) Grueso a medio grueso
- 4) Medio grueso a fino
- 5) Fino

Figura 5. Curva de Gradación para TNM 16 mm. Tomada de "Plain, reinforced and prestressed concrete structures" – Part 2: Specification, properties, production an conformity of concrete. DIN 1045-2. 2001.

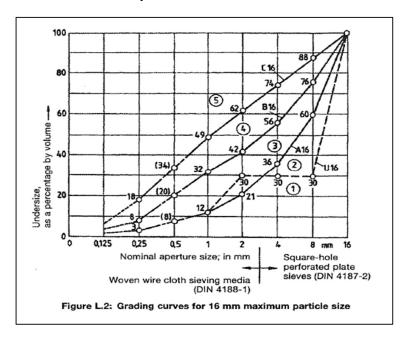
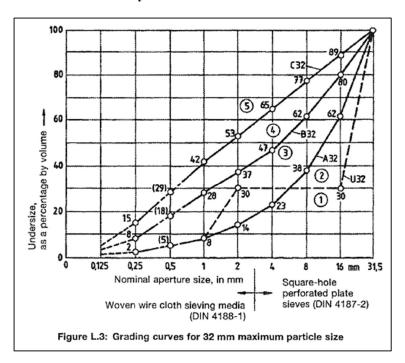



Figura 6. Curva de Gradación para TNM 32 mm. Tomada de "Plain, reinforced and prestressed concrete structures" – Part 2: Specification, properties, production an conformity of concrete. DIN 1045-2. 2001.

De acuerdo a la NCH 163 Cuando se decida usar áridos que no clasifiquen en Tablas de la norma, se recomienda considerar la influencia del árido en la compacidad y segregación de morteros y hormigones.

Para cumplir con las condiciones de compacidad, docilidad y otras del hormigón, se pueden recomendar las zonas que se muestran en Figuras D.1 y D.2, cuyas curvas límites se indican en Tabla D.2.

Las zonas tienen el significado siguiente:

Dmáx. 38,1 mm:

- Zona 1 Aceptable para pavimentos, entre curva A y B.
- Zona 2 Construcción corriente, entre curvas límites: B y C.
- Zona 3 Construcción especial entre curvas C y D con altas dosis de cemento.

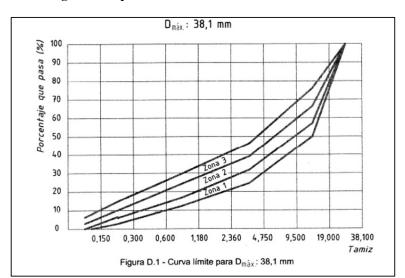


Figura 7. Curva D.1 para Dmax 38.1 mm. Tomada de "Áridos para morteros y hormigones. Requisitos". NCh 163-2013 2013.Dmáx. 19 mm.

- Zona 1 Construcción corriente de poco espesor (menor a 15 cm) entre curva A y B.
- Zona 2 Construcción con alta densidad de enfierradura, entre curvas límites: B y C, con altas dosis de cemento.

La curva del árido combinado debe tener en lo posible una formación similar (paralela) a las curvas límites, y no debe cruzar de una zona a otra.

Figura 8. Curva D.2 para Dmax 19 mm. Tomada de "Áridos para morteros y hormigones. Requisitos". NCh 163-2013 2013.

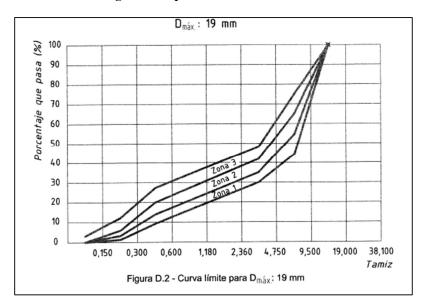


Figura 9. Curva D.1 para Dmax 38.1 mm. Tomada de "Áridos para morteros y hormigones. Requisitos". NCh 163-2013 2013.

T!-		D _{máx.} 3	8,1 mm			D _{máx.}	19 mm	
Tamiz	9	% que pasa	acumulad	0	9	6 que pasa	acumulad	o
mm	Curva 1	Curva 2	Curva 3	Curva 4	Curva 1	Curva 2	Curva 3	Curva 4
38,10	100	100	100	100	-	H	-	-
19,00	50	58	67	75	100	100	100	100
9,50	36	44	52	60	45	55	65	75
4,75	24	32	40	47	30	35	42	48
2,36	18	25	31	38	23	28	35	42
1,18	12	17	24	30	16	21	28	34
0,60	7	12	17	23	9	14	21	27
0,30	3	7	11	15	2	3	5	12
0,15	0	0	2	5	0	0	0	2

2.2.1.2. Método de Shilstone

De acuerdo con Larrain (9). Este método tiene su origen en James Shilstone quien a finales de los años 80's propuso un procedimiento para el diseño de mezclas de hormigón basado en la dosificación de los agregados utilizando una gradación combinada dosificando adecuadamente los agregados.

Mediante algunos estudios experimentales, Shilstone encontró que las propiedades del hormigón se veían afectadas por factores relacionados con la gradación del agregado por lo que su trabajo se concentró en la trabajabilidad de la mezcla con la posibilidad de realizar ajustes a la granulometría. Concluyó que se podían fabricar mezclas de hormigón con mayores resistencias y mejor trabajabilidad a una menor relación agua-cemento, comparadas con mezclas fabricadas por los métodos tradicionales, al combinar los agregados y el material cementicio de forma óptima. El método Shilstone permite la reducción en el contenido de pasta gracias al uso de los tamaños intermedios de los agregados, los cuales permiten suficiente volumen de pasta para llenar los vacíos y proveer trabajabilidad. Dentro de los beneficios que se le atribuyen a este método están la reducción de la retracción del hormigón, el menor costo, las mayores resistencias y mejora de la trabajabilidad del hormigón.

Shilstone se basa en tres gráficos que gradúa la granulometría para obtener mezclas con granulometrías optimizadas. Estos gráficos son el gráfico araña, el gráfico factor de rugosidad vs factor de trabajabilidad y el gráfico exponente 0,45. o Power 45.

A. Tabla de trabajabilidad – aspereza de Shilstone

James Shilstone reveló un proceso de diseño de mezclas basado en la dosificación del agregado utilizando para combinar agregados y así poder proporcionar un grupo de tamaños de tamiz que pueden clasificarse como agregado grueso, intermedio y fino. Diseñó un gráfico y dos ecuaciones proporcionales a partir de 20 diseños de mezclas en Arabia Saudita y confirmó el gráfico y las ecuaciones utilizando agregados del área de Dallas. A partir de las experiencias de Shilstone, determinó que la viabilidad podría ser suficiente en ciertas áreas del gráfico y lo dividió en zonas como se muestra a continuación. Además, se desarrollaron dos ecuaciones diferentes para dosificar el agregado por grupos. El factor de aspereza proporciona la cantidad porcentual de grueso a intermedio y el factor de trabajabilidad proporciona el porcentaje de arena más cemento a grueso e intermedio.

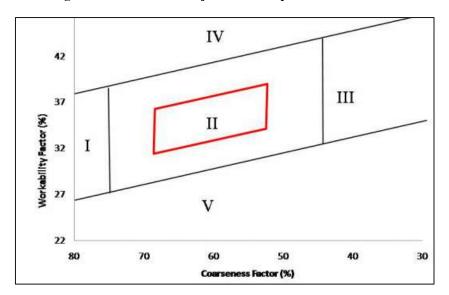


Figura 10. Tabla de trabajabilidad – aspereza de Shilstone.

Factor de aspereza (CF) = (Q/R) *100

Factor de trabajabilidad (WF) = W + (2.5(C-564)/94)

- Q= % acumulado retenido en el tamiz 3/8
- R= % acumulado retenido en el no. 8 tamiz
- W= % pasando el no. 8 tamiz
- C= contenido de material cementoso en lb/yd³

Para utilizar la tabla de espesor de Shilstone, se debe seleccionar un punto en la tabla y volver a calcular para encontrar las proporciones del agregado. Sin embargo, la zona donde se encuentra el punto seleccionado refleja las diferentes propiedades proporcionales. Mientras que se supone que la Zona I está nivelada con muy pequeñas cantidades de intermedio, se supone que la Zona II está bien nivelada y es la ubicación de la gradación óptima para un diseño de mezela de concreto. La Zona III tiene una gran mayoría de agregado intermedio y muy poco grueso. La Zona IV y la Zona V se correlacionan con la extrema arenisidad y rocosidad. Se ha prestado gran atención al uso de múltiples regiones de la zona II para determinadas aplicaciones. Muchos DOT utilizan un paralelogramo en el medio de la zona II para cumplir con los requisitos de dosificación de agregados en pavimentos de conformado deslizante. Sin embargo, Shilstone sugirió que la parte inferior de la zona II sería la mejor para esta aplicación. Desafortunadamente, Shilstone u otros han publicado pocos datos de prueba para validar el gráfico.

B. Factor Rugosidad vs Factor de Trabajabilidad

Se define como el porcentaje acumulado retenido en el tamiz de 3/8" (9.5 mm) la fracción gruesa. Se aplica en función a la trabajabilidad del hormigón fresco de la mezcla y su idoneidad en el tipo de construcción.

Una vez definida la granulometría de los agregados combinados se calculan los dos factores: factor grueso (FG) y factor de trabajabilidad (FT).

El cálculo del factor de grosor permite evaluar el tamaño y la homogeneidad de la distribución de los agregados cuando se dé la combinación de canteras balanceando en la mezcla el contenido de agregado fino. Por otro lado, el factor de trabajabilidad admite la evaluación del porcentaje de agregado fino que está sometido a corrección con el contenido de cemento.

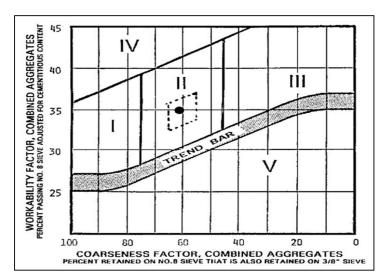


Figura 11. Factor Rugosidad vs Factor de Trabajabilidad.

C. Cartilla Power 45

Utilizado masivamente en mezclas asfálticas también se emplea para la fabricación de mezclas de hormigón. Investigaciones anteriores determinaron que al utilizar partículas de tamaño intermedio los hormigones podían obtener la máxima resistencia. Una línea recta en este grafico desde el origen hasta el punto en el que el 100 por ciento pasa el agregado de tamaño máximo representa la gradación más densa de un agregado que tiene ese tamaño de grano máximo. Esta optimización reduce la necesidad de agua permite la producción de hormigón con una relación agua – cemento inferior al 0.45 especificado. A continuación, se muestra una copia de la ilustración de Creegan con líneas de gradación combinadas óptimas trazadas para agregados de ½", ¾, 1" y 1 ½".

SIEVE SIZES IN MICRONS, RAISED TO 0.45 POWER

100

80

80

90

80

90

80

90

80

90

80

90

80

20

20

Figura 12. Cartilla Power 45.

D. Gráfico 8 - 18

Un método para evaluar cada distribución exacta de cada tamaño de tamiz ha sido la tabla de porcentaje retenido individual. El gráfico puede mostrar fácilmente los tamaños de tamiz sobrantes o faltantes de una gradación combinada. Según la experiencia, la gente ha especificado un límite máximo de 18-22% y un límite mínimo de 5-12% retenido en cada tamiz. No se ha realizado ninguna investigación conocida para demostrar los límites.

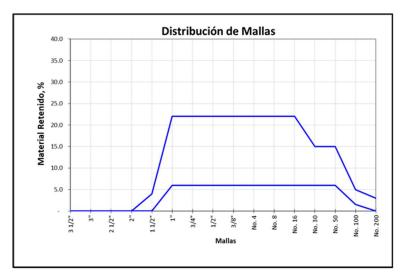


Figura 13. Distribución de mallas.

2.3. Definición de términos básicos

Concreto u hormigón: Mezcla de cemento, agua y agregados (gravas y arenas), eventualmente con aditivos y/o adiciones, usada en construcción.

Durabilidad: El concreto debe ser capaz de resistir la intemperie, acción de productos químicos y desgastes, así como efectos de climas extremas, a los cuales estará sometido en el colocado.

Impermeabilidad: Es una importante propiedad del concreto que puede mejorarse, con frecuencia, reduciendo la cantidad de agua en la mezcla.

Mixer: Es un camión equipado con una hormigonera o mezclador. Debido a esta disposición, le es posible transportar concreto premezclado al mismo tiempo que procede a su amasado.

Probeta o espécimen: Muestra de concreto tomado en estado fresco en moldes cilíndricos de dimensiones estándar 6" x 12" o 4" x 8", elaborada generalmente al momento de su colocación en obra, y que se empleará para comprobar las resistencias del concreto a diferentes edades (generalmente 7 y 28 días) al someterla a fractura por compresión. El moldeo y curado de las probetas se hace siguiendo la metodología establecida en la norma ASTM C172 y C31.

Resistencia: Es una propiedad del concreto que, casi siempre, es motivo de preocupación. Por lo general se determina por la resistencia final de una probeta en compresión. Como el concreto suele aumentar su resistencia en un periodo largo, la resistencia a la compresión a los 28 días es la medida más común de esta propiedad.

Slump: Consistencia o asentamiento del concreto, determinada a través del ensayo con el Cono de Abrams, norma establecida ASTM C143.

Trabajabilidad: Es una propiedad importante para muchas aplicaciones del concreto. En esencia, es la facilidad con la cual pueden mezclarse los ingredientes y la mezcla resultante pueden manejarse, transportarse y colocarse con poca perdida de la homogeneidad.

CAPÍTULO III METODOLOGÍA

3.1. Métodos y alcance de investigación

3.1.1. Enfoque: Enfoque cuantitativo

HERNANDEZ ROBERTO Sampieri et. AL (9, p. 3), el enfoque cuantitativo denota un conjunto de procesos, es secuencial y probatoria. Cada fase está precedida por una anterior y no podemos saltarnos ni eludir ningún paso. Si bien podemos cambiar algunas fases, deben estar en orden. El proceso comienza con la definición de una idea, luego la definición de objetivos y preguntas de investigación, y la revisión de la literatura para construir un marco o perspectiva teórica. Todas estas acciones se siguen para lograr el éxito. La tarea es establecer hipótesis basadas en preguntas, identificar variables, crear un plan para probarlas (diseño), medir variables en contextos arbitrarios, analizar los resultados utilizando métodos estadísticos y sacar

conclusiones sobre las hipótesis.

Argumento:

La investigación se argumenta en un enfoque cuantitativo porque se iniciará observando una problemática en las propiedades en estado fresco y endurecido del concreto bombeable en Huancayo, se tomarán datos de campo y se analizarán. Por estas consideraciones se aplicarán el método científico aplicado en un enfoque cuantitativo.

3.1.2. Tipo de investigación: Tipo aplicada

ESTEBAN (15, p. 3), el objetivo de la investigación tipo aplicada es abordar los desafíos que

se enfrentan en la producción y distribución, incluido el consumo de bienes y servicios.

También se denomina aplicado porque en base a la investigación científica básica, pura o formal se utiliza para formular problemas e hipótesis de trabajo y atacar los desafíos que enfrenta el funcionamiento productivo de la sociedad incluido en una aplicación tecnológica.

Argumento:

La investigación se argumenta en tipo aplicada porque se analizará y aplicará el conocimiento básico y teórico de las metodologías modernas de combinación de agregados para la evaluación en las propiedades del concreto bombeable en estado fresco y endurecido. Por estas la

investigación es aplicada.

53

3.1.3. Nivel o alcance: Nivel explicativo

HERNANDEZ ROBERTO Sampieri et. AL (9, p. 95) La investigación explicativa no se trata sólo de explicar conceptos y/o fenómenos o de establecer relaciones entre conceptos. Es decir, lo que pretende es dar respuesta a las causas de acontecimientos o fenómenos físicos o sociales. Como su nombre indica su preocupación se centra en explicar por qué se produce un fenómeno, en qué condiciones aparece o por qué se relacionan dos o más variables.

Argumento:

La investigación planteada se basará establecer los efectos que se producen al manipular la variable metodologías de combinación de agregados en las propiedades en estado fresco y endurecido del concreto bombeable. Por ende, esta investigación es explicativa.

3.2. Diseño de la investigación

Baena (18, p.9) asevera que, un diseño de investigación experimental se caracteriza porque se manipula una variable experimental bajo condiciones controladas con el propósito de explicar porque sucede ciertos eventos.

Cuasi experimental, son diseños de investigación experimental en las cuales antes del experimento ya se tenía un grupo control intacto (17, 4), para el caso se tiene como grupo control al diseño control, y los grupos experimentales al diseño de mezcla bombeable con agregado combinado.

Esquema de diseño:

Donde:

GE1	X1	O1
GE1	X1	O2
GE1	X1	О3
GE1	X1	O4
GE1	X1	O5
GE1	X1	O6
GE1	X1	O7

GE1 X1 O8
GC - O9

- GE =Grupo experimental
- GC = Grupo control
- O1 = Medición o prueba
- O2 = Pos prueba
- X = Tratamiento experimental
- = Ausencia del experimento

3.3. Población y muestra

3.3.1. Población

La población es el conjunto de todos los elementos a los cuales refiere una investigación, también representa al conjunto de unidades de muestreo (10, 110).

La tesis tiene como población 420 combinaciones de agregados (incluido el patrón).

3.3.2. Muestra

La muestra es "el subgrupo de la población sobre el cual se recolectarán los datos, de igual forma representan a la población" (9, p.108).

La tesis tiene como muestra 27 muestras los cuales nos permitirán evaluar y recolectar la información de propiedades en estado fresco y endurecido del concreto bombeable.

Se comprenden por 12 muestras de control y 15 muestras que cuentan con la metodología moderna de combinación de agregados

CÁLCULO DEL TAMAÑO DE LA UNA MUESTRA PARA UNA POBLACIÓN FINITA

$$n = \frac{N * Z^2 * p * (1 - p)}{(N - 1) * e^2 + Z^2 * p * (1 - p)}$$

Datos:

- N = 420 - Z = 1.64

-
$$\mathbf{e} = 15\%$$
 - $\mathbf{q} = 50\%$
- $\mathbf{p} = 50\%$

$$n = \frac{282.408}{10.352976} = 27.278$$

Donde:

n = Tamaño de la muestra

N = Tamaño de la Población o Universo

Z = Parámetro estadístico que depende del Nivel de confianza

e = Error de estimación máximo aceptado

p = Probabilidad de que ocurra el evento

Nivel de confianza Z (1-α)	90%	95%	95,50%	99%
Coeficiente de confianza	1,64	1,96	2	2,58

3.3.3. Tipo de muestra

La tesis tiene una muestra no probabilística, El muestreo no probabilístico se utiliza cuando el lugar de muestreo de interés ya es conocido o en casos en que no hay necesidad de muestrear en otros lugares. Aquí, los elementos que componen la muestra se seleccionan mediante métodos no aleatorios. Este tipo de muestreo tiene menos probabilidades de producir muestras representativas.

3.3.4. Muestreo: Muestreo intencional

Es una técnica de muestreo en la cual la persona a cargo de realizar la investigación se basa en su propio juicio para elegir a los integrantes que formarán parte del estudio.

3.3.5. Unidad de análisis

Se utilizará combinaciones de agregados de acuerdo al tipo de muestreo. Así mismo se evaluarán los comportamientos en estado fresco y estado endurecido.

3.4. Técnicas e instrumentos de recolección de datos

3.4.1. Técnicas e instrumentos de investigación

3.4.1.1. Técnicas de recolección de datos

Es el conjunto de herramientas, instrumentos y medios por el cual se lleva a cabo el método y sólo es aplicable a una ciencia.

Método y técnica se diferencian en que el método es el conjunto de pasos y etapas utilizados en una investigación, que son relevantes para diferentes disciplinas científicas, mientras que la técnica es el conjunto de herramientas utilizadas para efectuar el método (16).

Al tratarse de una investigación con enfoque cuantitativo, se usará la técnica de la observación; se elige esta técnica porque nos sirve para recolectar, agrupar y analizar los datos de los efectos que ocasionarán las metodologías modernas de combinación de agregados en las propiedades en estado fresco y endurecido del concreto bombeable.

3.4.1.2. Instrumentos de recolección de datos

Un instrumento de recolección de datos principalmente es cualquier recurso que usa un investigador para acercarse a los fenómenos y extraer de ellos información necesaria de acuerdo a lo que se encuentra investigando (17, p. 99).

Para la evaluar las metodologías modernas de combinación de agregados en la variable dependiente, se usará fichas recolección de datos estructuradas de elaboración propia porque nos permitirán obtener la información necesaria según la investigación que se realiza, basadas en los lineamientos exigidos en las normas estandarizadas. Así se recolectarán datos de Curvas granulométricas combinadas, datos de método Shilstone, datos de consistencia, datos de segregación, datos de exudación, datos de contracción, datos de densidad del concreto, datos de esfuerzo a compresión, datos de esfuerzo a tracción simple por compresión diametral de la probeta cilíndrica y datos de esfuerzo a flexión.

Indicaciones:

- 1. Obtener los pasantes acumulados de cada uno de los agregados a usar y rellenarlos en A, B, C, D, E y F.
- 2.-Para calcular el combinado de piedras, calcular la suma total de A * Pasante en cada malla + B* Pasante en cada malla + C* Pasante en cada malla.

- 3.- Para calcular el combinado de arenas, calcular la suma total de D * Pasante en cada malla + E* Pasante en cada malla + F* Pasante en cada malla.
- 4.- Determinar X e Y. Calcular el combinado final como sigue: X*A*Pasante+X*B*Pasante+X*C*Pasante+Y*D*Pasante+Y*E*Pasante+Y*F*Pasante.

Tabla 2. Ficha de recolección de datos de curva granulométrica combinada.

			REGA RUES		AG	REGA FINO		AGREGADOS (COMBINADO DE AGREGADOS							
Tamiz	Abertu ra	AG 1 (% Pasa	AG 2 (% Pasa	AG 3 (% Pasa	AF 1 (% Pasa	AF 2 (% Pasa	AF 3 (% Pasa	COMBINADO PIEDRAS	COMBINADO ARENAS	PD	X	%	AREN A	Y	%	COMBINADO FINAL
	(mm)	A	В	C	D	E	F	A*P1+B*P1+C* P1	D*P1+E*P1+F* P1	X*A* P	X*B* P	X*C* P	Y*D* P	Y*E * P	Y*F*P	
2 1/2"	63															
2"	50.80															
1 1/2"	38.10															
1"	25.40															
3/4"	19.05															
1/2"	12.70															
3/8"	9.53															

Nº4	4.76					
Nº8	2.38					
Nº16	1.19					
N°30	0.60					
N°50	0.30					
Nº100	0.15					
						 MFG

MOD FINURA

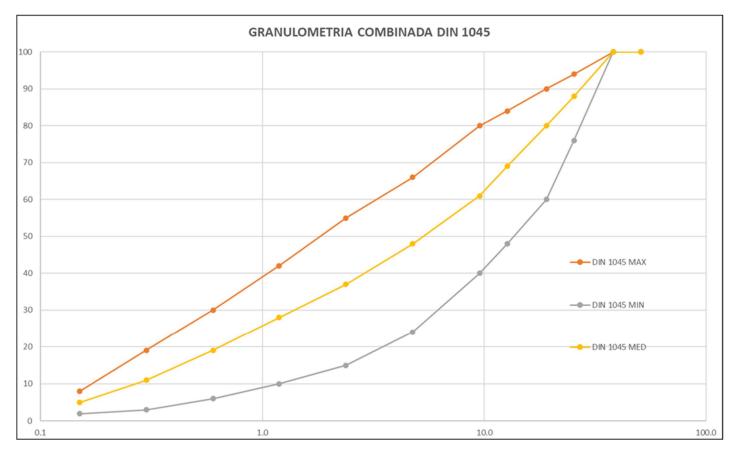


Tabla 3. Ficha de recolección de datos de método Shilstone.

		1	GREGA GRUES		AG	REGA FINO	DO	AGREGADOS	COMBINADOS		COMB	INADO I	DE AGRE	GADOS		
Tamiz	Abertura (mm)	(%	AG 2 (% Pasa)	AG 3 (% Pasa)	AF 1 (% Pasa)	AF 2 (% Pasa)	AF 3 (% Pasa)	COMBINADO PIEDRAS	COMBINADO ARENAS	PD	X	%	ARENA	Y	%	COMBINADO FINAL
		A	В	С	D	E	F	A*P1+B*P1+C*P1	D*P1+E*P1+F*P1	X*A*P	X*B*P	X*C*P	Y*D*P	Y*E *P	Y*F*P	
2 1/2"	63															
2"	50.80															
1 1/2"	38.10															
1"	25.40															
3/4"	19.05															
1/2"	12.70															
3/8"	9.53															
Nº4	4.76															
Nº8	2.38															
Nº16	1.19															
N°30	0.60															

N°50	0.30					
N°100	0.15					
						MFG
MOD FI	NIETO A					

Figura 15. Gráfico Shilstone.

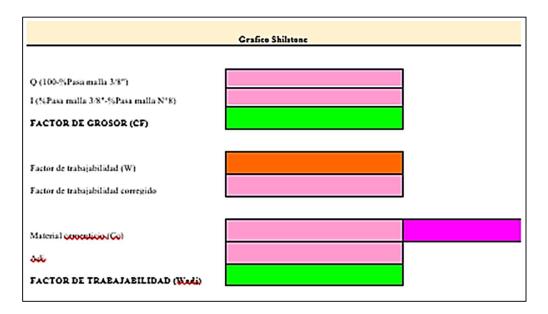


Figura 16. Cartilla Shilstone.

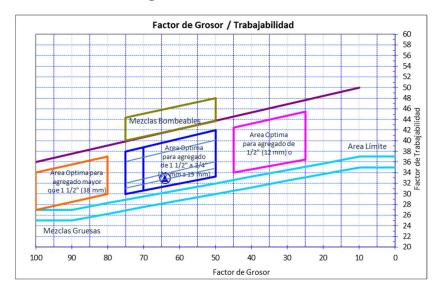


Figura 17. Curva Power 45.

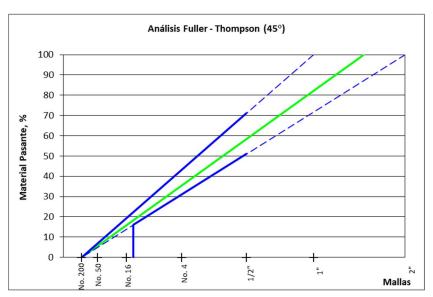


Figura 18. Curva 8-18.

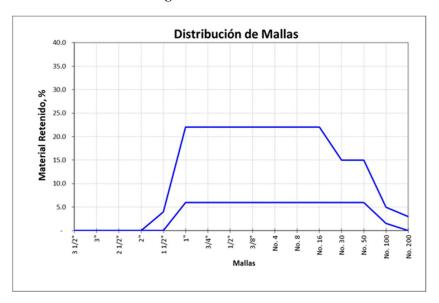


Tabla 4. Ficha de recolección de datos de consistencia.

	PÉ	RDIDA D	E TRABA	JABILID	AD		
FRECUENCIA	T° (CERO min)	T° (30 min)	T° (60 min)	T° (90 min)	T° (120 min)	T° (150 min)	T° (180 min)
PÉRDIDA SLUMP (Pulg)							
EXTENSIBILID AD (cm)							
T° AMBIENTE (°C)							
T° CONCRETO							

Figura 19. Pérdida de fluidez de las mezclas.

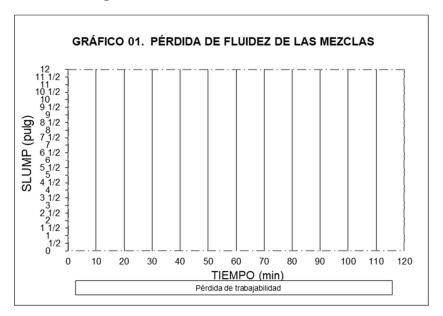


Tabla 5. Ficha de recolección de datos de segregación.

DATOS OBTENIDOS DE LABORATORIO
Código de mezcla
Pasante en la malla # 30 combinada (%) (a)
Peso de la arena (kg) (b)
Peso del material calculada en la malla # 30 (kg) (a*b=c)
Cemento (kg) (d)
Total de finos (kg) (c) +(d)

Figura 20. Tipo de asentamiento.

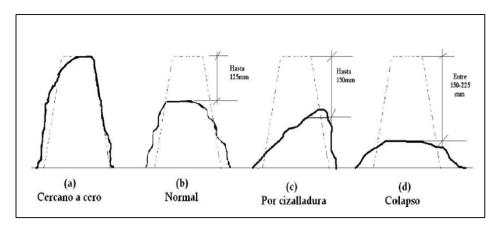


Tabla 6. Ficha de recolección de datos de exudación.

DATOS OBTENIDOS DE LABORATORIO
Código de mezcla
Dosificación de la mezcla
Arena, kg
Grava, kg
Cemento, kg
Agua, Lt
Procedencia del material
Método Empleado (A o B)
Volumen de agua exudada por unidad de superficie (ml/cm2)
Volumen de agua acumulada (ml)
% Exudación
Tiempo requerido para que cese la exudación (min)

Tabla 7. Ficha de recolección de datos de contracción.

		CODIGO 1	DE MEZCLA:					
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDAD DEL VIENTO AL BROTAR LA FISURA (m/s)	T° A	HR	CLASIFICACION SEGÚN EL ANCHO
F1								
F2								
F3								
F4								
F5								
F6								
F7								
F8								
F9								
F10								
F11								
F12								
F13								
SUMA								

Tabla 8. Ficha de recolección de densidad del concreto.

CODIGO DE MEZCLA:	
TIEMPO DE MEZCLADO	
TEMPERATURA. (°C)	
Ambiente	°C
Concreto	°C
PESO UNITARIO (ASTM C 1	38)
Tara + concreto	Kg
Tara	Kg
Volumen de recipiente	m^3
PU	Kg/m³
Rendimiento	-
Aire atrapado (ASTM C 231)	%

Tabla 9. Ficha de recolección de esfuerzo a compresión.

CODIGO	f´cr (kg/cm2)	FECHA ELAB	FECHA DE Rotura		CARGA	UNIDAD	Longitud (cm)	Diámetro (cm)	AREA	Resistencia a compresión f'c (kg/cm2)	PROMEDIO	% EVAL	Dispersión
				1									
				3									
				7									
				14									
				28									

Tabla 10. Ficha de recolección de datos esfuerzo a tracción simple del concreto por compresión diametral de un testigo cilíndrico.

CODIG	f'cr (kg/cm2)	FECHA DE MUESTRE O	FECHA DE ROTUR A	EDAD (DÍAS)	CARG A	UNIDA D (KN)	Longitu d (cm)	Diámetr o (cm)	AREA (cm2	Resistenci a a tracción f´c (kg/cm2)	PROMEDIO (muestra s hermanas	% de 1 f' c	EVA L	Dispersió n de muestras hermanas (%)
				3										
				7										
				14										
				28										

Tabla 11. Ficha de recolección de datos de esfuerzo a flexión.

	FICHA DE DATOS DE ESFUERZO A FLEXION											
Código		UNIDAD	1	2	3							
Fecha de muestreo												
Fecha de ensayo												
Tiempo de curado												
Asentamiento												
Tipo de concreto												
Altura (d)												
Ancho (b)												
Largo (L viga)												
P	Carga Máxima	kg										
L	Luz libre entre apoyos	cm										
a	Distancia entre la línea de falla y el apoyo más cercano	cm										
Mr	Resistencia a la flexión (Módulo de rotura)	kg/cm2										

Figura 21. Viga de concreto.

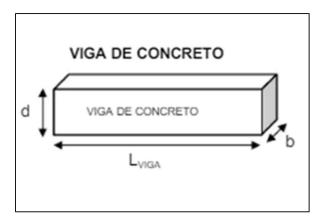
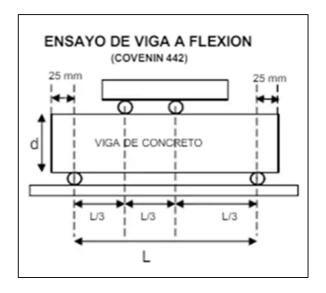



Figura 22. Viga de flexión.

3.4.2. Validez de instrumentos de investigación

Se refiere al grado en que un instrumento mide realmente la variable que pretende medir. (18, p. 200).

3.4.2.1. Validez de contenido

Grado en que un instrumento refleja un dominio específico de contenido de lo que se mide. Es el grado en el que la medición representa al concepto o variable medida (18, p. 201).

3.4.2.2. Validez de criterio

Se establece al comparar sus resultados con los de algún criterio externo que pretende medir lo mismo (18, p. 202).

3.4.2.3. Validez de constructo

Se refiere a qué tan bien un instrumento representa y mide un concepto teórico. Es la más importante ya que, está vinculado con los conceptos teóricos. Por ende, relaciona lo que se está midiendo y como opera para medirlo (18, p.203).

3.4.2.4. Validez total

Es la suma de validez de contenido, validez de criterio y validez de constructo (18, p. 204).

Tabla 12. Presentación de expertos.

	Nombres y	Profesión	Colegiatura	Cargo	Experiencia laboral
Ítem	apellidos				
1	Carlos	Ingeniero	CIP 55171	Jefe de	Profesional con más de 20 años de
	Adolfo	químico		Control de	experiencia. Ingeniero Químico de
	Guerra			calidad de la	la Universidad Nacional Mayor de
	Cisneros			Empresa	San Marcos. Maestría en Ciencias
				Mixercon	Administrativas (MSc).
				S.A.	Maestría Ejecutiva en
					Administración de Empresas
					(MBA).
					Consultor e Investigador en
					Temas de Tecnología de Concreto
					y Materiales a fines. Capacitación
					Técnica en EEUU, Colombia,
					Chile, México y Alemania.
					Miembro del Comité Técnico del
					Concreto y Agregados de
					INACAL. Miembro del Comité
					Técnico del Cemento, Cales y
					Yeso de INACAL. Miembro del
					ACI Internacional. Miembro de la
					ISO. Experto Técnico de Cemento
					INACAL DA. Evaluador de
					Certificaciones de Cementos en

					Intertek. Ex Miembro de Grup Técnico de Pavimento de Concret de ASOCEM.
2	José Álvarez Cangahuala	Ingeniero	CIP 58077	Gerente corporativo de investigación y desarrollo del grupo concretero Unicon y Concremax	Ingeniero civil de la Universida Nacional de Ingeniería — UN Cuenta con más de 22 años de trayectoria en la industria de concreto premezclado y afines Conferencista internaciona Director y Past presidente del ACI PERU. Miembro activo de ASTM. Gerente corporativo de investigación y desarrollo de Gripo concretero Unicon Concremax. Miembro especializado del comit permanente de normalización revisión de normas técnicas de cemento, agregados, concreto
3	Mauro	Ingeniero	CIP 91189	Jefe de	concreto armado INDECOPI. Egresado de la Universida
	Wilfredo	civil	CH 71107	Planta	Peruana Los Andes. Magister e
	Tazza	CIVII		Unicon	Diseño, gestión y dirección d
	Chaupis			Cincon	proyectos UCSUR-Universida
					Europea Miguel de Cervante
					España. Especialista en gestión o
					proyectos (PMI). Diplomado
					auditor en Sistemas Integrados o
					Gestión. Supervisor en gerencia d
					proyectos UNACEM SAA. Jefe d
					planta en UNICON. Jefe de oficir
					técnica en ICCGSA. Especialista
					consultor en tecnología de
					concreto.

Tabla 13. Tabla de Validez: Rango y Magnitud.

Rango	Magnitud
0.00 - 0.79	Débil
0.80 - 0.89	Aceptable
0.90 - 1.00	Fuerte

Tabla 14. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolección de datos de curvas granulométricas combinadas.

Ítems	Juez			Suma de acuerdos	V de Aiken	Descripción	
	Experto 01	Experto 02	Experto 03	total (S)			
C 1	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE	
C2	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE	
С3	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE	
C4	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE	
C5	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE	
C6	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE	
C7	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE	

C8	2	2	3	7	7/(3*(4-1))= 0.78	DEBIL
С9	3	2	2	7	7/(3*(4-1))= 0.78	DEBIL
C10	2	2	3	7	7/(3*(4-1))= 0.78	DEBIL
				Media	0.91	FUERTE

Tabla 15. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolección de datos de Método Shilstone.

Ítems	Juez			Suma de acuerdos	V de Aiken	Descripción
	Experto 01	Experto 02	Experto 03	total (S)		
C1	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C2	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
С3	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C4	3	3	2	8	8/(3*(4-1))= 0.89	ACEPTABLE
C5	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C6	2	3	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
С7	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C8	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE

С9	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C10	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
				Media	0.95	FUERTE

Tabla 16. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolección de datos de consistencia.

Ítems	Juez			Suma de acuerdos	V de Aiken	Descripción
	Experto 01	Experto 02	Experto 03	total (S)		
C1	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C2	3	3	3	8	8/(3*(4-1))= 1.00	ACEPTABLE
С3	2	3	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
C4	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C5	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C6	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C7	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C8	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
С9	3	3	2	8	8/(3*(4-1))= 0.89	ACEPTABLE

C10	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
				Media	0.98	FUERTE

Tabla 17. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolección de datos de segregación.

Ítems	Juez			Suma de acuerdos	V de Aiken	Descripción
	Experto 01	Experto 02	Experto 03	total (S)		
C 1	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C2	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
С3	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
C4	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C5	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
С6	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C7	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C8	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
С9	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C10	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE

Media 0.98 FUERTE

Nota. Elaboración propia.

Tabla 18. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolección de datos de exudación.

Ítems	Juez			Suma de acuerdos	V de Aiken	Descripción
	Experto 01	Experto 02	Experto 03	total (S)		
C1	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C2	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
С3	2	3	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
C4	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C5	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
С6	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C7	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C8	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
С9	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C10	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
				Media	0.97	FUERTE

Tabla 19. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolección de datos de contracción.

Ítems	Juez			Suma de acuerdos	V de Aiken	Descripción
	Experto 01	Experto 02	Experto 03	total (S)		
C 1	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C2	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
С3	2	2	3	7	7/(3*(4-1))= 0.78	DEBIL
C4	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C5	2	3	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
C6	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C7	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
C8	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
С9	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C10	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
				Media	0.95	FUERTE

Tabla 20. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolección de datos de densidad del concreto.

Ítems	Juez			Suma de acuerdos	V de Aiken	Descripción
	Experto 01	Experto 02	Experto 03	total (S)		
C1	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C2	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
С3	2	3	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
C4	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C5	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
C6	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
C7	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C8	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
С9	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C10	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
				Media	0.95	FUERTE

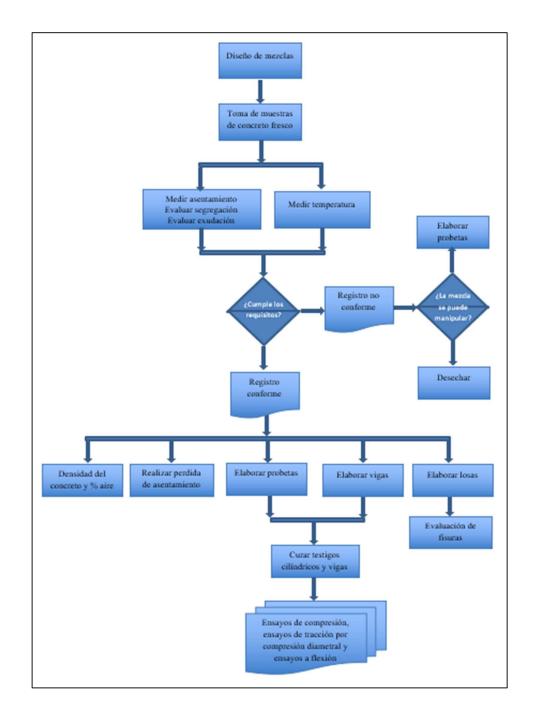
Tabla 21. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolección de datos de esfuerzo a compresión.

Ítems	Juez			Suma de acuerdos	V de Aiken	Descripción
	Experto 01	Experto 02	Experto 03	total (S)		
C1	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C2	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
С3	2	3	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
C4	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C5	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
С6	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
C7	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C8	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
С9	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C10	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
				Media	0.95	FUERTE

Tabla 22. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolección de datos de esfuerzo a tracción por comprensión diametral de testigos cilíndricos.

Ítems	Juez			Suma de acuerdos	V de Aiken	Descripción
	Experto 01	Experto 02	Experto 03	total (S)		
C 1	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C2	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
С3	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C4	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C5	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
C6	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
C7	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C8	2	2	3	7	7/(3*(4-1))= 0.78	DEBIL
С9	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C10	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
				Media	0.95	FUERTE

Tabla 23. Coeficiente de validez (V de Aiken) mediante juicio de expertos. Ficha de recolección de datos de esfuerzo a flexión.


Ítems	Juez			Suma de acuerdos	V de Aiken	Descripción
	Experto 01	Experto 02	Experto 03	total (S)		
C 1	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C2	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
С3	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C4	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C5	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
C6	3	2	3	8	8/(3*(4-1))= 0.89	ACEPTABLE
C7	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C8	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
С9	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
C10	3	3	3	9	9/(3*(4-1))= 1.00	FUERTE
				Media	0.98	FUERTE

3.4.3. Procedimientos de recolección de datos

3.4.3.1. Diagrama de flujo

Figura 23. Diagrama de flujo.

3.4.3.2. Ubicación de la zona de estudio

La zona de estudio se encuentra ubicada en el departamento de Junín en la sierra central de Perú por la que pasa la cordillera de los Andes, formando parte del Valle del Mantaro ya que el río del mismo nombre recorre prácticamente todo el lugar. Las condiciones de la zona de estudio se encuentran por áreas delimitadas por las siguientes coordenadas:

Cantera piedra ½": Cantera 1 18L 463170.63 m E, 8685353.15 m S, 3287 m

Cantera arena cerro: Cantera 2 18 L 467703.44 m E, 8674634.08 m S, 3316 m

Cantera arena rio: Cantera 3 181 463296.52 m E, 8685392.92 m S, 3290 m

En Huancayo, los veranos son cortos, cómodos y nublados; los inviernos son cortos, fríos y parcialmente nublados y está seco durante todo el año. Temperatura promedio anual es de 12.4 °C, una temperatura promedio de 20.2 °C en el día y 4.6 °C durante la noche, siendo los meses de abril, mayo, junio y julio los meses más fríos, con una precipitación cuyo valor promedio total anual es de 707.9 mm.

Figura 24. Zona de estudio 1.

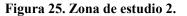


Figura 26. Zona de estudio 3.

3.4.3.3. Estudios previos

A. Estudios de Laboratorio

Después de obtener las muestras representativas en cantera, se procedió a realizar la caracterización de los agregados (agregado grueso, agregado fino). Posteriormente los estudios de laboratorio que se realizaron fue la combinación de agregados por metodologías modernas. Con la combinación de los agregados se inició los diseños de mezclas para verificar las propiedades en estado fresco y endurecido del concreto bombeable.

i. Obtención de muestras de agregados

Luego de mapear las canteras correspondientes a la zona de estudios, se procedió a realizar el muestre correspondiente para iniciar con los ensayos respectivos de caracterización de agregados.

Figura 27. Muestra de agregados 1.

Figura 28. Muestra de agregados 1.

ii. Caracterización física de agregados

Los agregados que se muestrearon en cantera se llevó a cabo la caracterización de agregados, para obtener las propiedades físicas, entre ellas está la granulometría, que nos permitirá determinar la combinación de agregados por metodologías modernas de combinación de agregados.

3.4.3.4. Combinación de agregados por metodologías modernas de combinación de agregados

Con la granulometría de cada una de las muestras, se procedió a realizar las respectivas combinaciones que se mostraran en los cuadros adjuntos.

Cada una de las combinaciones se usarán para el diseño de mezclas respectivos. Los agregados se combinarán con el método ACI, metodología de curvas granulométricas y método Shilstone (Factor grosor, factor trabajabilidad, curva Power 45 y curva 8-18).

Figura 29. Ficha de datos de curvas granulométricas combinadas.

			FICHA	DE DATO	OS DE VA	LIDACIO	DE CUR	Was grain	TULOMETRICA	S COMBI	NADAS				
		AGREGADO GRUESO			AGR	EGADO FI	NO		EGADOS BINADOS		90/10			80/20	
Tamiz	Abertura (mm)	AG 1	AG 2	AG 3	AF 1	AF 2	AF 3	ADO	COMBINADO ARENAS	0	. 9	0.1	0	.8	0.2
		1	0	0	1	0	0	PIEDRA	ARENAS	0.900	0.000	0.100	0.800	0.000	0.200
4	100	100.00			100.00	100.00		100.00	100.00		100.00			100.00	
3 1/2"	90	100.00			100.00	100.00		100.00	100.00		100.00			100.00	(
3	75	100.00			100.00	100.00		100.00	100.00		100.00			100.00	<u>(</u>
2 1/2"	63	100.00			100.00	100.00		100.00	100.00		100.00			100.00	ė į
2''	50.80	100.00			100.00	100.00		100.00	100.00		100.00			100.00	į.
1 1/2"	38.10	100.00			100.00	100.00		100.00	100.00		100.00			100.00	
1''	25.40	100.00			100.00	100.00		100.00	100.00		100.00			100.00	
3/4"	19.05	98.10			100.00	100.00		98.10	100.00		98.29			98.48	
1/2''	12.70	48.18			100.00	100.00		48.18	100.00		53.36			58.54	
3/8''	9.53	15.69			99.26	99.77		15.69	99.26		24.05			32.41	
N°4	4.76	1.14			88.54	73.17		1.14	88.54		9.88			18.62	
N°8	2.38	0.72			76.84	51.13		0.72	76.84		8.34			15.95	
Nº16	1.19	0.72			68.82	36.06		0.72	68.82		7.53			14.34	
N°30	0.60	0.72			58.77	23.25		0.72	58.77		6.53			12.33	
N°50	0.30	0.72			25.19	10.90		0.72	25.19		3.17			5.62	
N°100	0.15	0.72			6.67	4.19		0.72	6.67		1.32			1.91	
MOD E	PINURA	6.81			2.76	4.02		6.81	2.76		6.41			6.00	

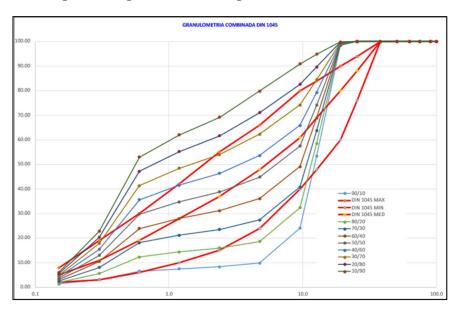


Figura 31. Ficha de datos para metodología Shilstone.

Grafico Shilstone	COMBO 90/10	COMBO 80/20
Q (100-%Pasa malla 3/8")	75.95	67.59
I (%Pasa malla 3/8"-%Pasa malla N°8)	15.72	16.46
FACTOR DE GROSOR (CF)	82.86	80.42
Factor de trabajabilidad (W)	8.34	15.95
Factor de trabajabilidad corregido	8.34	15.95
Material cementicio (Cc)	407.00	407.00
Adj	3.21	3.21
FACTOR DE TRABAJABILIDAD (Wadj)	11.55	19.16

Figura 32. Carta de Shilstone.

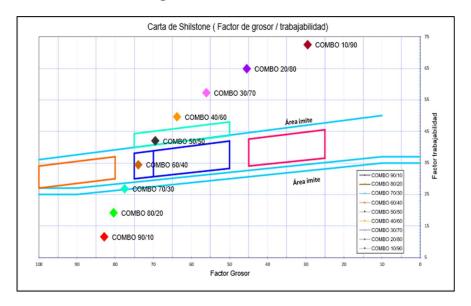
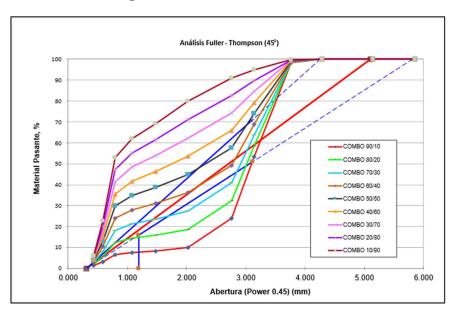



Figura 33. Gráfico de carta Power 45.

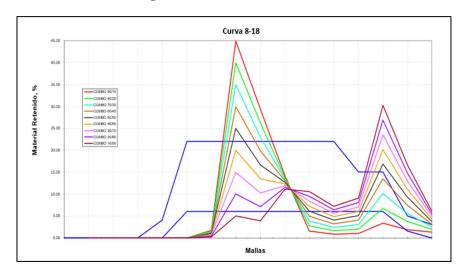


Figura 34. Gráfico de curva 8-18

3.4.3.5. Diseño de mezclas

El diseño de mezcla es un proceso de proporción de materiales como los agregados, cemento, agua, aditivos, algunas adiciones y fibras. El diseño de mezclas debe de cumplir los requerimientos y especificaciones técnicas del proyecto. En este caso se utilizará la metodología del ACI para concretos bombeables como diseños patrones. En el caso de las combinaciones de agregados por cualquiera de los dos métodos se usarán criterios técnicos.

a) Selección de materiales

Agregado grueso: Piedra chancada de ½", retenido en el tamiz N°4 según ASTM C33.

Agregado fino: material retenido entre los tamices 3/8" mm y N°100 según ASTM C33.

Cemento: el más comerciable es Andino Tipo I que cumple con la ASTM C 150.

Agua: se utilizará la que cumple con la ASTM C 1602.

Aditivo: Se utilizará dos aditivos (Reductor de agua Tipo A y F / Retardante de fraguado Tipo B) de la marca SOQUIMIC, cumple con la norma ASTM C494.

3.4.3.6. Ensayos en estado fresco

Determinado los diseños de mezcla se procedieron a realizar los ensayos en estado fresco. Parra ello se utilizaron los formatos.

A. Ensayo de consistencia

De acuerdo a la información revisada, se midió el asentamiento, temperatura del concreto y la perdida de asentamiento de cada una de las muestras.

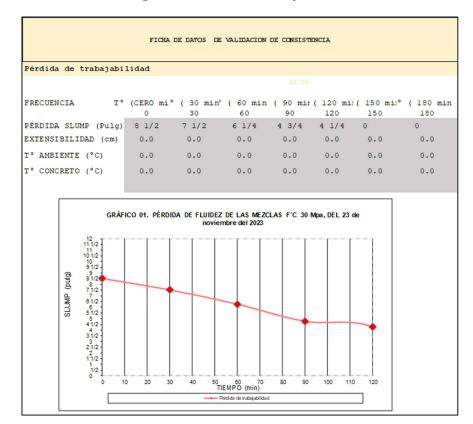


Figura 35. Pérdida de trabajabilidad.

B. Ensayo de segregación

Se evaluaron los contenidos de finos calculados de los cada una de las combinaciones, así mismo se midió el asentamiento y se analizó e tipo de asentamiento de cada una de estas.

FICHA DE DATOS DE VALIDACION DE CONSISTENCIA Codigo de Mezcla % Pasante en la malla #30 combinada 16.95 Peso de la arena 1100 kg Peso del material calculado en la malla # 186.42 EVA 350.00 Cemento, kg kg Total de finos, kg 536.42 0 OK Slump inicial (plg) Tipo de slump Tone 150-225 (a) (b) (c) (d) Cercano a cero Normal Por cizalladura Colapso

Figura 36. Validación de consistencia.

C. Ensayo de exudación

En cada uno de los diseños se procedió a elaborar una muestra para evaluar la exudación y en qué tiempo cesaba completamente.

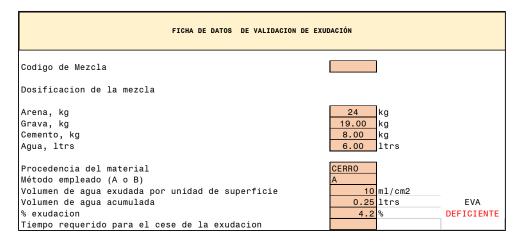
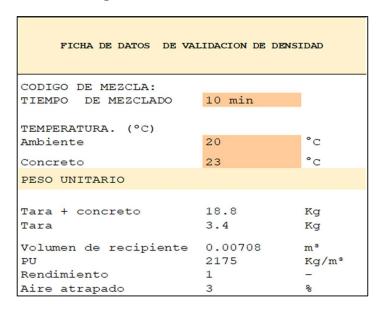


Figura 37. Validación de exudación I.


Figura 37. Validación de exudación II.

		FICHA DE DATOS	DE VALIDACION DE	E EZUDACIÓN		
E MEZCLA:						
	PROM. DE		T° C AL	VIENTO AL		
HORA DE	BROTE	LONGITUD DE	BROTAR LA	BROTAR LA		CLASIFICACION
BROTE	(mm)	FISURA (mm)	FISURA	FISURA (m/s)	T° A	SEGÚN EL ANCH
09:00	3	10	23	10	19	TIPO I
	HORA DE BROTE	PROM. DE HORA DE BROTE BROTE (mm)	E MEZCLA: PROM. DE HORA DE BROTE LONGITUD DE BROTE (mm) FISURA (mm)	E MEZCLA: PROM. DE T° C AL HORA DE BROTE LONGITUD DE BROTAR LA BROTE (mm) FISURA (mm) FISURA	PROM. DE T° C AL VIENTO AL HORA DE BROTE LONGITUD DE BROTAR LA BROTAR LA BROTE (mm) FISURA (mm) FISURA FISURA (m/s)	E MEZCLA: PROM. DE T° C AL VIENTO AL HORA DE BROTE LONGITUD DE BROTAR LA BROTAR LA BROTE (mm) FISURA (mm) FISURA (m/s) T° A

D. Ensayo de Densidad

Luego de realizar los en fresco y evaluar las mezclas que mejor se desempeñaban, se procedió a tomar los pesos unitarios y contenidos de aire con el equipo de Washington. Se obtuvieron los datos como se muestran en la ficha.

Figura 38. Validación de densidad.

3.4.3.7. Ensayos en estado endurecido

A. Ensayos de esfuerzo a compresión

Se obtuvieron testigos cilíndricos de 4" *8" que se llevaron a una poza de curado, donde se dejaron curando con cal (3 g/l). Las edades para ensayar con 1, 3, 7, 14, 28 y 56 días. Se muestran los resultados.

Figura 39. Validación de esfuerzo a compresión.

					FICHA DE DATOS	S DE VALIDA	CION DE ESFUERZO A	A COMPRESION					
copigo	f'er (kg/cm2)	FECHA ELAB	FECHA DE ROTURA	EDAD	CARGA	UNIDAD	Longitud (cm)	Diametro (cm)	AREA	Resistencia a compresion f'c (kg/cm2)	PROMEDIO	*	EVAL
	210	20/05/2023	21/05/2023	1	112 126 130	KN KN KN	20.32 20.32 20.3	10.16 10.16 10.2	81.0732 81.0732 81.0732	140.9 158.5 163.5	154.3	73.5	ок
	210	20/05/2023	23/05/2023	3			20.32 20.32 20.3	10.16 10.16 10.2	81.0732 81.0732 81.0732	0.0	0.0	0.0	CUIDADO
1210H67BA6-4	210	20/05/2023	27/05/2023	7			20.32 20.32 20.3	10.16 10.16 10.2	81.0732 81.0732 81.0732	0.0	0.0	0.0	CUIDADO
	210	20/05/2023	03/06/2023	14			20.32 20.32 20.3	10.16 10.16 10.2	81.0732 81.0732 81.0732	0.0	0.0	0.0	CUIDADO
	210	20/05/2023	17/06/2023	28			20.32 20.32 20.3	10.16 10.16 10.2	81.0732 81.0732 81.0732	0.0	0.0	0.0	CUIDADO

B. Ensayos de esfuerzo a tracción diametral

Con la elaboración de muestras de testigos y después del curado se ensayaron los testigos de 4" * 8", 3 por cada muestra. Se les realizo en ensayo de compresión diametral. Se obtuvieron los resultados en el cuadro mostrado.

Figura 40. Validación de esfuerzo a tracción diametral.

			FICHA DE DATO	S DE VALID	ACION DE ESFU	JERSO A TRACC	ION POR COMPRESION	N DIAMETRAL DE PR	OBETAS CIL	INDRICAS			
CODIGO	f'cr (kg/cm2)	FECHA ELAB	FECHA DE ROTURA	EDAD	CARGA	UNIDAD	Longitud (cm)	Diametro (cm)	AREA	Resistencia a tracción f'c (kg/cm2)	PROMEDIO	ŧ	EV A L
	210	20/05/2023	21/05/2023	1	40 45 50	EON EON	20.32 20.32 20.3	10.16 10.16 10.2	81.0732 81.0732 81.0732	12.6 14.1 15.7	14.1	6.7	OK
	210	20/05/2023	23/05/2023	3			20.32 20.32 20.3	10.16 10.16 10.2	81.0732 81.0732 81.0732	0.0 0.0 0.0	0.0	0.0	CUIDADO
1210H67BA6-4	210	20/05/2023	27/05/2023	7			20.32 20.32 20.3	10.16 10.16 10.2	81.0732 81.0732 81.0732	0.0 0.0 0.0	0.0	0.0	CUIDADO
	210	20/05/2023	03/06/2023	14			20.32 20.32 20.3	10.16 10.16 10.2	81.0732 81.0732 81.0732	0.0 0.0 0.0	0.0	0.0	CUIDADO
·	210	20/05/2023	17/06/2023	28			20.32 20.32 20.3	10.16 10.16 10.2	81.0732 81.0732 81.0732	0.0 0.0 0.0	0.0	0.0	CUIDADO

C. Ensayos de esfuerzo a flexión

Con las muestras aprobadas, se muestrearon en vigas para los ensayos a flexión. Los moldes que se utilizaron fueron de las siguientes medidas 0.15 m*0.15 m*0.50 m.

Figura 41. Validación de esfuerzo a tracción por compresión.

FICHA DE DATOS	DE VALIDACION DE ESFUERZO A PROBETAS CILI		ON DIAM	ETRAL DE
Código	UNIDAD	1	2	3
Viga N°				
Fecha de elab		12/10/2024		
Fecha de ensayo		26/10/2024		
Tiempo de curado		14 dias		
Asentamiento		6"		
Tipo de concreto		BOMBEABLE		
Altura (d)		15		
Ancho (b)		15		
Largo (L viga)		50		
P	Carga Máxima kg			
L	Luz libre entr∈cm			
а	Distancia entr cm			
Mr	Resistencia a I kg/cm2	20		

B. Estudios de campo

Los estudios de campo es la selección de lugar donde se confeccionaron los paños de prueba para el control de fisuras y al mismo tiempo tan bien se estudió la influencia del clima, tales como la velocidad del viento, temperatura del ambiente, estos puntos son de vital importancia, pues influyen en el origen de las fisuras cuando el concreto se encuentra en estado plástico.

3.4.3.8. Ensayo de contracción

Aquellos diseños que fueron calificados como válidos se les procedió a elaborar losas de 1.50 m*1.50 m*0.15 m, con el fin de evaluar los distintos tipos de fisuras que se presentan durante el proceso de fraguado final y posterior al fraguado final.

Figura 42. Validación de exudación.

			FICHA DE DATOS	DE VALIDACION D	E EXUDACIÓN		
CODIGO D	E MEZCLA:						
FISURA	HORA DE BROTE	PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VIENTO AL BROTAR LA FISURA (m/s)	T° A	CLASIFICACION SEGÚN EL ANCHO
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12	09:00	3	10	23	10	19	TIPO I
F13 SUMA							

3.4.4. Confiabilidad de instrumentos de investigación

El análisis de fiabilidad de la ficha de recolección de datos arrojó un Alfa de Cronbach de 0.828, lo que indica una alta consistencia interna entre los 15 ítems evaluados. Este resultado sugiere que los datos recopilados son confiables y coherentes, lo que refuerza la validez del instrumento para medir el fenómeno en estudio. Dado que el valor supera el umbral de 0.8, se considera que la ficha proporciona información estable y reproducible, adecuada para su uso en la investigación.

Tabla 24. Confiabilidad por alfa de Cronbach del instrumento.

Estadísticas d	e fiabilidad
Alfa de Cronbach	N de elementos
.828	15

CAPÍTULO IV RESULTADOS Y DISCUSIÓN

- 4.1. Métodos y alcance de investigación
- 4.1.1. Resultados del tratamiento y análisis de la información
- 4.1.1.1. Análisis estadístico descriptivo de la combinación de agregados y del método Shilstone

Tabla 25. Análisis granulométrico de la combinación final de agregados (COMBO 1).

		AGREGAD O GRUESO	AGRE FII	GADO NO		AG	COM	IBO 1		
(#)	(mm)	sa)	sa)	sa)	56.00%			44.00%		
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AG1	AG2	AG3	AF1	AF2	AF3
Agre		mbinados (com combinado aren		edra /	100.00	0.00	0.00	100.00	0.00	0.00
	(Combinación fin	ıal		56.00%	0.00 %	0.00	44.00%	0.00	0.00 %
4	100	100.00	100.0	100.0			100.0			
3 1/2"	90	100.00	100.0	100.0			100.0			
3	75	100.00	100.0	100.0			100.0			
2 1/2"	63	100.00	100.0	100.0			100.0			
2''	50	100.00	100.0	100.0			100.0			
1 1/2''	37.50	100.00	100.0	100.0			100.0			
1''	25.40	100.00	100.0	100.0			100.0			
3/4''	19.00	98.10	100.0	100.0			98.94			
1/2''	12.50	48.18	100.0	100.0			70.98			

3/8''	9.50	15.69	99.26	99.77	52.47
Nº4	4.75	1.14	88.54	73.17	39.60
N°8	2.36	0.72	76.84	51.13	34.21
Nº16	1.18	0.72	68.82	36.06	30.69
N°30	0.60	0.72	58.77	23.25	26.27
N°50	0.30	0.72	25.19	10.90	11.49
Nº10 0	0.15	0.72	6.67	4.19	3.34
M(FIN		6.81	2.76	4.02	5.03

Tabla 26. Análisis granulométrico de la combinación final de agregados (COMBO 2).

		AGREGAD AGREGADO O GRUESO FINO			COMBO 2							
						AG						
(M (#)	OSI	pasa)	oasa)	asa)		57.00%		43.00%				
Tamiz AST	Tamiz ASTM (#) Abertura ISO	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AG1	AG2	AG3	AF1	AF2	AF3		
Agre		nbinados (comb ombinado arena		edra /	100.00 %	0.00 %	0.00 %	0.00	100.00 %	0.00 %		
	C	ombinación fin	al		57.00%	0.00 %	0.00 %	0.00	43.00%	0.00 %		
4	100	100.00	100.0	100.0			100.0					
3 1/2"	90	100.00	100.0	100.0			100.0					
3	75	100.00	100.0	100.0			100.0					
2 1/2"	63	100.00	100.0	100.0			100.0					
2"	50	100.00	100.0	100.0			100.0					
1 1/2''	37.50	100.00	100.0	100.0			100.0					
1''	25.40	100.00	100.0	100.0			100.0					

3/4''	19.00	98.10	100.0 0	100.0	98.92
1/2''	12.50	48.18	100.0	100.0	70.46
3/8''	9.50	15.69	99.26	99.77	51.85
Nº4	4.75	1.14	88.54	73.17	32.12
N°8	2.36	0.72	76.84	51.13	22.40
N°16	1.18	0.72	68.82	36.06	15.92
N°30	0.60	0.72	58.77	23.25	10.41
N°50	0.30	0.72	25.19	10.90	5.10
N°10 0	0.15	0.72	6.67	4.19	2.21
	OD URA	6.81	2.76	4.02	5.61

Tabla 27. Análisis granulométrico de la combinación final de agregados (COMBO 3).

		GADO JESO	AGR	EGADO F			COM	во 3			
							AG			AF	
M (#)	ISO	asa)	asa)	asa)	AF 3 (% pasa)		60.00%		4	0.00%	
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)		AG1	AG2	AG3	AF1	AF2	AF3
Agregad	os combir	nados (coml aren	-	edra / com	binado	100.0 0%	0.00	0.00	100.00	0.00	0.00
		Combinaci	ión final			60.00 %	0.00 %	0.00	40.00 %	0.00	0.00 %
4	100	100.00	100.0	100.00	100.0			100. 00			
3 1/2"	90	100.00	100.0	100.00	100.0			100. 00			
3	75	100.00	100.0	100.00	100.0			100. 00			
2 1/2"	63	100.00	100.0	100.00	100.0			100. 00			
2"	50	100.00	100.0	100.00	100.0			100. 00			

MOD FINU RA	6.9	81	2.76	4.02	2.52	5.19
N°100	0.15	0.72	6.67	4.19	7.33	3.10
N°50	0.30	0.72	25.19	10.90	34.76	10.5 1
N°30	0.60	0.72	58.77	23.25	51.88	23.9 4
Nº16	1.18	0.72	68.82	36.06	70.22	27.9 6
N°8	2.36	0.72	76.84	51.13	86.35	31.1 7
N°4	4.75	1.14	88.54	73.17	97.68	36.1 0
3/8"	9.50	15.69	99.26	99.77	100.0	49.1 2
1/2"	12.50	48.18	100.0	100.00	100.0	68.9 1
3/4"	19.00	98.10	100.0	100.00	100.0	98.8 6
1"	25.40	100.00	100.0	100.00	100.0	100. 00
1 1/2"	37.50	100.00	100.0	100.00	100.0	100. 00

Tabla 28. Análisis granulométrico de la combinación final de agregados (COMBO 4).

		AGREGAD O GRUESO	AGR	EGADO 1	FINO			COMI	30 4		
		JUNUESO					AG			AF	
#	(WW	(a)	(a	æ	a)		59.00%		4	1.00%	
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AF 3 (% pasa)	AGI	AG2	AG3	AF1	AF2	AF3
Agrega	ados coml	binados (coml aren	ıbinado	100.0 0%	0.00	0.00	100.0 0%	0.00	0.00		
		Combinaci	ón final			59.00 %	0.00 %	0.00	41.00	0.00	0.00
4	100	100.00	100.0	100.0	100.0			100.0			
3 1/2"	90	100.00	100.0	100.0	100.0			100.0			
3	75	100.00	100.0	100.0	100.0			100.0			
2 1/2"	63	100.00	100.0	100.0	100.0			100.0			
2"	50	100.00	100.0	100.0	100.0			100.0			
1 1/2''	37.5 0	100.00	100.0	100.0	100.0			100.0			
1"	25.4 0	100.00	100.0	100.0	100.0			100.0			
3/4''	19.0 0	98.10	100.0	100.0	100.0			98.88			
1/2''	12.5 0	48.18	100.0	100.0	100.0			69.42			
3/8''	9.50	15.69	99.26	99.77	100.0			49.96			
Nº4	4.75	1.14	88.54	73.17	97.68			36.97			
Nº8	2.36	0.72	76.84	51.13	86.35			31.93			
Nº16	1.18	0.72	68.82	36.06	70.22			28.64			
N°30	0.60	0.72	58.77	23.25	51.88			24.52			
N°50	0.30	0.72	25.19	10.90	34.76			10.75			

N°10 0	0.15	0.72	6.67	4.19	7.33	3.16
MC FINU		6.81	2.76	4.02	2.52	5.15

Tabla 29. Análisis granulométrico de la combinación final de agregados (COMBO 5).

		AGREG ADO	AGR	EGADO I	FINO			COM	IBO 5			
		GRUES O					AG			AF		
1 (#)	(mm)	ısa)	sa)	AF 2 (% pasa)	(sa)		58.00%		42.00%			
Tamiz ASTN	Tamiz ASTM (#) Abertura ISO (mm) AG1 (% pasa)	AG1 (% ps	AF 1 (% pasa)		AF 3 (% pasa)	AGI	AG2	AG3	AF1	AF2	AF3	
A	gregados	combinados combinad		ado piedı	100.0 0%	0.00 %	0.00	100.00	0.00 %	0.00		
		Combinac	ión final			58.00 %	0.00	0.00	42.00 %	0.00 %	0.00	
4	100	100.00	100.0	100.0	100.0			100. 00				
3 1/2"	90	100.00	100.0	100.0	100.0			100. 00				
3	75	100.00	100.0	100.0	100.0			100. 00				
2 1/2"	63	100.00	100.0	100.0	100.0			100. 00				
2"	50	100.00	100.0	100.0	100.0			100. 00				
1 1/2''	37.50	100.00	100.0	100.0	100.0			100. 00				
1"	25.40	100.00	100.0	100.0	100.0			100. 00				
3/4''	19.00	98.10	100.0	100.0	100.0			98.9 0				
1/2''	12.50	48.18	100.0	100.0	100.0			69.9 4				
3/8''	9.50	15.69	99.26	99.77	100.0			50.7 9				

MO FINU		6.81	2.76	4.02	2.52	5.11
N°10 0	0.15	0.72	6.67	4.19	7.33	3.22
N°50	0.30	0.72	25.19	10.90	34.76	11.0 0
N°30	0.60	0.72	58.77	23.25	51.88	25.1 1
Nº16	1.18	0.72	68.82	36.06	70.22	29.3 2
N°8	2.36	0.72	76.84	51.13	86.35	32.6 9
N°4	4.75	1.14	88.54	73.17	97.68	37.8 5

Tabla 30. Análisis granulométrico de la combinación final de agregados (COMBO 6).

					AGRE	GADO GR	RUESO	AGI	REGADO 1	FINO			COM	IBO 6		
												AG			AF	
Tamiz ASTM (#)	Abertura ISO (mm)	Power 45	Límite inf 8	Límite sup 18	AG1 (% pasa)	AG 2 (% pasa)	AG 3 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AF 3 (% pasa)	5	7.00%		4;	3.00%	
Tamiz /	Abertura	Ром	Lími	Límito	AG1 (AG 2 (AG3 (AF 1 (AF 2 (AF 3 (AG1	AG2	AG3	AF1	AF2	AF3
		Agreg	gados co	mbinados	(combinad	lo piedra / o	combinado	arena)			100.00%	0.00%	0.00%	100.00%	0.00%	0.00%
				C	ombinació	n final					57.00%	0.00%	0.00%	43.00%	0.00%	0.00%
4	100	7.943	0.00	0.00	100.00	100.00	100.00	100.00	100.00	100.00		10	00.00			
3 1/2"	90	7.575	0.00	0.00	100.00	100.00	100.00	100.00	100.00	100.00		10	00.00			
3	75	6.979	0.00	0.00	100.00	100.00	100.00	100.00	100.00	100.00		10	00.00			
2 1/2"	63	6.452	0.00	0.00	100.00	100.00	100.00	100.00	100.00	100.00		10	00.00			
2''	50	5.815	0.00	0.00	100.00	100.00	100.00	100.00	100.00	100.00		10	00.00			
1 1/2"	37.50	5.109	0.00	22.00	100.00	100.00	100.00	100.00	100.00	100.00		10	00.00			
1"	25.40	4.287	6.00	22.00	100.00	100.00	97.95	100.00	100.00	100.00			00.00			

3/4''	19.00	3.762	6.00	22.00	98.10	91.35	57.55	100.00	100.00	100.00	98.92
1/2''	12.50	3.116	6.00	22.00	48.18	27.92	15.64	100.00	100.00	100.00	70.46
3/8''	9.50	2.754	6.00	22.00	15.69	6.14	6.91	99.26	99.77	100.00	51.63
N°4	4.75	2.016	6.00	22.00	1.14	0.05	1.65	88.54	73.17	97.68	38.72
N°8	2.36	1.472	6.00	22.00	0.72	0.05	1.47	76.84	51.13	86.35	33.45
Nº16	1.18	1.077	6.00	22.00	0.72	0.00	0.00	68.82	36.06	70.22	30.01
N°30	0.60	0.795	6.00	15.00	0.72	0.00	0.00	58.77	23.25	51.88	25.69
N°50	0.30	0.582	6.00	15.00	0.72	0.00	0.00	25.19	10.90	34.76	11.24
N°100	0.15	0.426	1.80	5.00	0.72	0.00	0.00	6.67	4.19	7.33	3.28
N°200	0.08	0.312	0.00	3.00							
MOD FI			-	_	6.81	7.02	7.32	2.76	4.02	2.52	5.07

Tabla 31. Análisis granulométrico de la combinación final de agregados (COMBO 7).

		AGREGADO GRUESO	A.(GREGADO FIN	VO			СОМ	BO 7		
		AGREGADO GROESO	A	JKEGADO I II		1	AG			AF	
(#)	(mm)	sa)	sa)	(sa)	8a)		55.00%		45.00%		
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AF 3 (% pasa)	AGI	AG2	AG3	AF1	AF2	AF3
	Agregad	os combinados (combinado p	oiedra / combir	nado arena)		100.00%	0.00%	0.00%	100.00%	0.00%	0.00%
		Combinación f	nal			55.00%	0.00%	0.00%	45.00%	0.00%	0.00%
4	100	100.00	100.00	100.00	100.00			100.00			
3 1/2"	90	100.00	100.00	100.00	100.00			100.00			
3	75	100.00	100.00	100.00	100.00			100.00			
2 1/2"	63	100.00	100.00	100.00	100.00			100.00			
2"	50	100.00	100.00	100.00	100.00			100.00			
1 1/2"	37.50	100.00	100.00	100.00	100.00			100.00			
	25.40	100.00	100.00	100.00	100.00			100.00			

MOD FI	INURA	6.81	2.76	4.02	2.52	4.99
Nº100	0.15	0.72	6.67	4.19	7.33	3.40
N°50	0.30	0.72	25.19	10.90	34.76	11.73
N°30	0.60	0.72	58.77	23.25	51.88	26.85
Nº16	1.18	0.72	68.82	36.06	70.22	31.37
Nº8	2.36	0.72	76.84	51.13	86.35	34.97
Nº4	4.75	1.14	88.54	73.17	97.68	40.47
3/8"	9.50	15.69	99.26	99.77	100.00	53.30
1/2"	12.50	48.18	100.00	100.00	100.00	71.50
3/4"	19.00	98.10	100.00	100.00	100.00	98.96

Tabla 32. Análisis granulométrico de la combinación final de agregados (COMBO 8).

		AGREGADO GRUESO	AGR	EGADO	FINO			СОМ	BO 8		
							AG			AF	
	Î						60.00%			40.00%	
Tamiz ASTM (#)	Abertura ISO (mm)	AG1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AF 3 (% pasa)	AG1	AG2	AG3	AF1	AF2	AF3
Agre	gados co	mbinados (combi		ra / comb	oinado	100.0 0%	0.00	0.00	0.00	100.0 0%	0.00
		Combinació	n final			60.00	0.00 %	0.00	0.00	40.00	0.00
4	100	100.00	100.0	100.0	100.0			100. 00			
3 1/2"	90	100.00	100.0	100.0	100.0			100. 00			
3	75	100.00	100.0	100.0	100.0			100. 00			
2 1/2"	63	100.00	100.0	100.0	100.0			100. 00			
2"	50	100.00	100.0	100.0	100.0			100. 00			
1 1/2''	37.5 0	100.00	100.0	100.0	100.0			100. 00			
1"	25.4 0	100.00	100.0	100.0	100.0			100. 00			
3/4''	19.0 0	98.10	100.0	100.0	100.0			98.8 6			
1/2''	12.5 0	48.18	100.0	100.0	100.0			68.9 1			
3/8''	9.50	15.69	99.26	99.77	100.0			49.3			
N°4	4.75	1.14	88.54	73.17	97.68			29.9 6			
N°8	2.36	0.72	76.84	51.13	86.35			20.8			

N°50 0.30 0.72 25.19 N°10 0.15 0.72 6.67	4.19	7.33	2.11
N°50 0.30 0.72 25.19	10.90	34.76	4.80
N°30 0.60 0.72 58.77	23.25	51.88	9.73
N°16 1.18 0.72 68.82	36.06	70.22	14.8 6

Tabla 33. Análisis granulométrico de la combinación final de agregados (COMBO 8).

		AGREGADO GRUESO	AGR	EGADO 1	FINO			COM	IBO 8			
							AG			AF		
							60.00%)		40.00%		
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AF 3 (% pasa)	AG1	AG2	AG3	AF1	AF2	AF3	
Agreg	gados cor	nbinados (comb arena		dra / com	binado	100. 00%	0.00 %	0.00 %	0.00 %	100.0 0%	0.00 %	
Agreg	gados cor)	dra / com	binado							
Agreg	gados con	arena)	100.0 0	100.0 0	60.0	0.00	0.00	0.00	40.00	0.00	
		Combinació	on final	100.0	100.0	60.0	0.00	% 0.00 % 100.0	0.00	40.00	0.00	
4	100	Combinació	50 final 100.0 0 100.0	100.0 0	100.0	60.0	0.00	% 0.00 % 100.0 0 100.0	0.00	40.00	0.00	
4 3 1/2"	100	100.00	100.0 0 100.0 0	100.0 0 100.0 0	100.0 0 100.0 0	60.0	0.00	0.00 % 100.0 0 100.0 0	0.00	40.00	0.00	

0 MO FINI)D	6.81	2.76	4.02	2.52	5.69
N°10	0.15	0.72	6.67	4.19	7.33	2.11
N°50	0.30	0.72	25.19	10.90	34.76	4.80
N°30	0.60	0.72	58.77	23.25	51.88	9.73
N°16	1.18	0.72	68.82	36.06	70.22	14.86
N°8	2.36	0.72	76.84	51.13	86.35	20.89
N°4	4.75	1.14	88.54	73.17	97.68	29.96
3/8''	9.50	15.69	99.26	99.77	100.0	49.33
1/2"	12.5 0	48.18	100.0	100.0	100.0	68.91
3/4''	19.0 0	98.10	100.0	100.0	100.0	98.86
1"	25.4 0	100.00	100.0	100.0	100.0	100.0
1 1/2"	37.5 0	100.00	100.0	100.0	100.0	100.0 0

Tabla 34. Análisis granulométrico de la combinación final de agregados (COMBO 9).

		AGREGADO GRUESO		REGADO FINO	,			COM	BO 9		
							AG			AF	
(#)	(mm)	(es	(ag	(BS	,		59.00%			41.00%	
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)		AG1	AG2	AG3	AF1	AF2	AF3
Agregad	os combi	nados (combinado arena)	o piedra /	combina	do	100.0 0%	0.00	0.00	0.00	100.0 0%	0.00
		Combinación fir	nal			59.00 %	0.00 %	0.00 %	0.00 %	41.00 %	0.00 %
4	100	100.00	100.0	100.00	1			100.0			
			0		0			0			
					0						
					0						
					0						
3 1/2"	90	100.00	100.0	100.00	1			100.0			
			0		0			0			
					0						
					0						
					0						
3	75	100.00	100.0	100.00	1			100.0			
			0		0			0			
					0						
					0						
					0						

2 1/2"	63	100.00	100.0	100.00	1	100.0	
			0		0	0	
					0		
					0		
					0		
2''	50	100.00	100.0	100.00	1	100.0	
			0		0	0	
					0		
					0		
					0		
1 1/2''	37.5	100.00	100.0	100.00	1	100.0	
	0		0		0	0	
					0		
					0		
					0		
1''	25.4	100.00	100.0	100.00	1	100.0	
	0		0		0	0	
					0		
					0		
					0		
3/4''	19.0	98.10	100.0	100.00	1	98.88	
	0		0		0		
					0		
					0		
					0		

1/2''	12.5	48.18	100.0	100.00	1	69.42
	0		0		0	
					0	
					0	
					0	
3/8''	9.50	15.69	99.26	99.77	1	50.17
					0	
					0	
					0	
					0	
N°4	4.75	1.14	88.54	73.17	9	30.68
					7	
					6	
					8	
N°8	2.36	0.72	76.84	51.13	8	21.39
					6	
					3	
					5	
N°16	1.18	0.72	68.82	36.06	7	15.21
					0	
					2	
					2	
N°30	0.60	0.72	58.77	23.25	5	9.96
					1	

					8		
					8		
N°50	0.30	0.72	25.19	10.90	3	4.90	
					4		
					7		
					6		
N°100	0.15	0.72	6.67	4.19	7	2.14	
					3		
					3		
MOD)	6.81	2.7	6 4.02	2 2	5.67	
FINUR	A						
					5		
					2		

Nota. Elaboración propia.

Tabla 35. Análisis granulométrico de la combinación final de agregados (COMBO 10).

	AGREGADO GRUESO			EGADO I	FINO	COMBO 10						
		GRUESO				AG			AF			
IM (#)	O (mm)	pasa)	pasa)	pasa)	pasa)	58.00%		42.00%				
Tamiz ASTM (#)	Tamiz ASTM (#) Abertura ISO (mm)	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AF 3 (% pasa)	AG1	AG2	AG3	AF1	AF2	AF3	
Agreg	ados com	ibinados (combina	ido piedra /	combinad	lo arena)	100.0 0%	0.00	0.00%	0.00	100.0 0%	0.00	
		Combinaci	ión final			58.00 %	0.00 %	0.00%	0.00 %	42.00 %	0.00 %	
4	100	100.00	100.00	100.00	100.00			100.00				
3 1/2"	90	100.00	100.00	100.00	100.00			100.00				
3	75	100.00	100.00	100.00	100.00			100.00				
2 1/2"	63	100.00	100.00	100.00	100.00			100.00				
2"	50	100.00	100.00	100.00	100.00			100.00				
1 1/2''	37.5 0	100.00	100.00	100.00	100.00			100.00				
1"	25.4	100.00	100.00	100.00	100.00			100.00				
3/4"	19.0	98.10	100.00	100.00	100.00			98.90				
1/2''	12.5	48.18	100.00	100.00	100.00			69.94				
3/8''	9.50	15.69	99.26	99.77	100.00			51.01				

Nº4	4.75	1.14	88.54	73.17	97.68	31.40
N°8	2.36	0.72	76.84	51.13	86.35	21.90
Nº16	1.18	0.72	68.82	36.06	70.22	15.57
N°30	0.60	0.72	58.77	23.25	51.88	10.18
N°50	0.30	0.72	25.19	10.90	34.76	5.00
N°10 0	0.15	0.72	6.67	4.19	7.33	2.18
M(6.81	2.76	4.02	2.52	5.64

Tabla 36. Análisis granulométrico de la combinación final de agregados (COMBO 11).

		AGREGAD O GRUESO		GREGADO) FINO			COM	BO 11		
							AG 56.00%			AF 44.00%	
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AF 3 (% pasa)	AGI	AG2	AG3	AF1	AF2	AF3
Agreg	ados con	nbinados (com arei		iedra / coi	mbinado	100. 00%	0.00	0.00	0.00	100.0 0%	0.00
		Combinac	ción final			56.0 0%	0.00	0.00	0.00	44.00	0.00
4	100	100.00	100.00	100.00	100.00			100.0			
3 1/2"	90	100.00	100.00	100.00	100.00			100.0			
3	75	100.00	100.00	100.00	100.00			100.0			
2 1/2"	63	100.00	100.00	100.00	100.00			100.0			
2''	50	100.00	100.00	100.00	100.00			100.0			
1 1/2''	37.5 0	100.00	100.00	100.00	100.00			100.0			
1"	25.4 0	100.00	100.00	100.00	100.00			100.0			
3/4"	19.0 0	98.10	100.00	100.00	100.00			98.94			
1/2''	12.5 0	48.18	100.00	100.00	100.00			70.98			
3/8''	9.50	15.69	99.26	99.77	100.00			52.69			
Nº4	4.75	1.14	88.54	73.17	97.68			32.84			

MC FINU		6.81	2.76	4.02	2.52	5.58
N°10 0	0.15	0.72	6.67	4.19	7.33	2.25
N°50	0.30	0.72	25.19	10.90	34.76	5.20
N°30	0.60	0.72	58.77	23.25	51.88	10.63
Nº16	1.18	0.72	68.82	36.06	70.22	16.27
Nº8	2.36	0.72	76.84	51.13	86.35	22.90

Tabla 37. Análisis granulométrico de la combinación final de agregados (COMBO 12).

		AGREGA DO GRUESO	AGRE	EGADO	FINO –			COMB	SO 12		
						AG				AF	
((E	_				55.	.00%		,	45.00%	
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AF 3 (% pasa)	AGI	AG2	AG3	AF1	AF2	AF3
Aį	gregado	s combinados combinad			dra /	100.00	0.00 %	0.00	0.00	100.00	0.00
		Combinac	ión final	I		55.00 %	0.00 %	0.00 %	0.00 %	45.00 %	0.00 %
4	100	100.00	100. 00	100. 00	100. 00		1	00.0			
3 1/2"	90	100.00	100. 00	100. 00	100. 00		1	00.0			
3	75	100.00	100. 00	100. 00	100. 00		1	00.0			
2 1/2"	63	100.00	100. 00	100. 00	100. 00		1	00.0			
2''	50	100.00	100. 00	100. 00	100. 00		1	00.0			
1 1/2''	37.5 0	100.00	100. 00	100. 00	100. 00		1	00.0			
1''	25.4 0	100.00	100. 00	100. 00	100. 00			00.0			
3/4''	19.0 0	98.10	100. 00	100. 00	100. 00		9	8.96			
1/2''	12.5	48.18	100. 00	100. 00	100. 00		7	1.50			
3/8''	9.50	15.69	99.2 6	99.7 7	100. 00		5	3.53			
Nº4	4.75	1.14	88.5 4	73.1 7	97.6 8	33.56					
Nº8	2.36	0.72	76.8 4	51.1	86.3 5		2	3.41			

N°1 00	0.15	0.72	6.67	4.19	7.33	2.28
	0.15	0.72				2.28
N°5 0	0.30	0.72	25.1 9	10.9 0	34.7 6	5.31
N°3 0	0.60	0.72	58.7 7	23.2	51.8	10.86
6 Nº2	0.60	0.72	2	6	2	10.92
Nº1	1.18	0.72	68.8	36.0	70.2	16.63

Tabla 38. Análisis granulométrico de la combinación final de agregados (COMBO 13).

		AGREGAD O GRUESO										
						AG			AF			
(#	(H				:	50.00% 50.0				.00%		
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AGI	AG1 AG2 AG3	AF2	AF3				
Agre		mbinados (comb		edra /	100.00	0.00	0.00	100.00	0.00	0.00		
	(Combinación fin	al		50.00%	0.00	0.00	50.00%	0.00	0.00 %		
4	100	100.00	100.0	100.0			100.0					
3 1/2"	90	100.00	100.0	100.0			100.0					
3	75	100.00	100.0	100.0			100.0					
2 1/2"	63	100.00	100.0	100.0			100.0					
2"	50	100.00	100.0	100.0			100.0					

1 1/2''	37.50	100.00	100.0	100.0	100.0 0
1''	25.40	100.00	100.0	100.0	100.0 0
3/4''	19.00	98.10	100.0	100.0	99.05
1/2''	12.50	48.18	100.0	100.0	74.09
3/8''	9.50	15.69	99.26	99.77	57.48
N°4	4.75	1.14	88.54	73.17	44.84
Nº8	2.36	0.72	76.84	51.13	38.78
Nº16	1.18	0.72	68.82	36.06	34.77
N°30	0.60	0.72	58.77	23.25	29.75
N°50	0.30	0.72	25.19	10.90	12.96
N°10 0	0.15	0.72	6.67	4.19	3.70
MO FIN		6.81	2.76	4.02	4.79

Tabla 39. Análisis granulométrico de la combinación final de agregados (COMBO 14).

		AGREGAD O GRUESO	AGRE FII	GADO NO			COM	BO 14		
						AG			AF	
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)		50.00%			50.00%	
Tamiz	Tamiz Abertur	AG 1	AF 1 (AF 2 (AGI	AG2	AG3	AF1	AF2	AF3
Agre		mbinados (comb ombinado arena		edra /	100.00	0.00	0.00	0.00	100.00	0.00
	C	Combinación fin	al		50.00%	0.00	0.00	0.00	50.00%	0.00
4	100	100.00	100.0	100.0			100.0			
3 1/2"	90	100.00	100.0	100.0			100.0			
3	75	100.00	100.0	100.0			100.0			
2 1/2"	63	100.00	100.0	100.0			100.0			
2"	50	100.00	100.0	100.0			100.0			
1 1/2"	37.50	100.00	100.0	100.0			100.0			
1"	25.40	100.00	100.0	100.0			100.0			
3/4"	19.00	98.10	100.0	100.0			99.05			
1/2"	12.50	48.18	100.0	100.0			74.09			
3/8"	9.50	15.69	99.26	99.77			57.73			
Nº4	4.75	1.14	88.54	73.17			37.16			
Nº8	2.36	0.72	76.84	51.13			25.93			
Nº16	1.18	0.72	68.82	36.06			18.39			
N°30	0.60	0.72	58.77	23.25			11.98			

N°50	0.30	0.72	25.19	10.90	5.81
N°100	0.15	0.72	6.67	4.19	2.45
M(FINU		6.81	2.76	4.02	5.41

Tabla 40. Análisis granulométrico de la combinación final de agregados (COMBO 15).

		AGREGAD O GRUESO	AGRE FII	GADO NO			СОМ	IBO 15				
						AG			AF			
						45.00%			55.00%			
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AGI	AG2	AG3	AF1	AF2	AF3		
Agreg		nbinados (comb ombinado arena		edra /	100.00	0.00	0.00	100.00	0.00	0.00		
	C	Combinación fin	al		45.00%	0.00	0.00	55.00%	0.00	0.00		
4	100	100.00	100.0	100.0			100.0					
3 1/2"	90	100.00	100.0	100.0			100.0					
3	75	100.00	100.0	100.0			100.0					
2 1/2"	63	100.00	100.0	100.0			100.0					
2"	50	100.00	100.0	100.0			100.0					
1 1/2"	37.50	100.00	100.0	100.0			100.0					
1"	25.40	100.00	100.0	100.0			100.0					
3/4"	19.00	98.10	100.0	100.0			99.15					

1/2"	12.50	48.18	100.0	100.0	76.68
3/8"	9.50	15.69	99.26	99.77	61.66
N°4	4.75	1.14	88.54	73.17	49.21
N°8	2.36	0.72	76.84	51.13	42.59
Nº16	1.18	0.72	68.82	36.06	38.18
N°30	0.60	0.72	58.77	23.25	32.65
N°50	0.30	0.72	25.19	10.90	14.18
N°100	0.15	0.72	6.67	4.19	3.99
MC FINU		6.81	2.76	4.02	4.58

Tabla 41. Análisis granulométrico de la combinación final de agregados (COMBO 16).

		AGREGA DO	AGRI	EGADO	FINO			COMI	BO 16			
		GRUESO					AG					
	a				-	4	45.00%		55.00%			
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AF 3 (% pasa)	AG1	AG2	AG3	AF1	AF2	AF3	
Ag	regados	combinados combinado		ado pied	ra /	100.00	0.00	0.00	0.00	100.00	0.00	
		Combinaci	ón final			45.00 %	0.00	0.00	0.00 %	55.00 %	0.00	
4	100	100.00	100.0	100.0	100.0			100.0				
3 1/2"	90	100.00	100.0	100.0	100.0			100.0				
3	75	100.00	100.0	100.0	100.0			100.0				
2 1/2"	63	100.00	100.0	100.0	100.0			100.0				

0.15	0.72	6.67	4.19	7.33	2.63
0.15	0.72	6.67	4.19	7.33	2.63
0.30	0.72	25.19	10.90	34.76	6.32
0.60	0.72	58.77	23.25	51.88	13.11
1.18	0.72	68.82	36.06	70.22	20.16
2.36	0.72	76.84	51.13	86.35	28.45
4.75	1.14	88.54	73.17	97.68	40.76
9.50	15.69	99.26	99.77	100.0	61.94
12.5	48.18	100.0	100.0	100.0	76.68
19.0 0	98.10	100.0	100.0	100.0	99.15
25.4 0	100.00	100.0	100.0	100.0	100.0
37.5 0	100.00	100.0	100.0	100.0	100.0 0
50	100.00	100.0	100.0	100.0	100.0
	37.5 0 25.4 0 19.0 0 12.5 0 9.50 4.75 2.36 1.18	37.5 100.00 0 100.00 19.0 98.10 0 12.5 48.18 0 15.69 4.75 1.14 2.36 0.72 1.18 0.72 0.60 0.72	0 37.5 100.00 100.0 25.4 100.00 100.0 19.0 98.10 100.0 0 0 0 12.5 48.18 100.0 0 0 0 9.50 15.69 99.26 4.75 1.14 88.54 2.36 0.72 76.84 1.18 0.72 68.82 0.60 0.72 58.77	0 0 37.5 100.00 100.0 100.0 25.4 100.00 100.0 100.0 19.0 98.10 100.0 100.0 0 0 0 0 12.5 48.18 100.0 100.0 0 0 0 0 9.50 15.69 99.26 99.77 4.75 1.14 88.54 73.17 2.36 0.72 76.84 51.13 1.18 0.72 68.82 36.06 0.60 0.72 58.77 23.25	0 0 0 37.5 100.00 100.0 100.0 100.0 25.4 100.00 100.0 100.0 100.0 19.0 98.10 100.0 100.0 100.0 0 0 0 0 0 12.5 48.18 100.0 100.0 100.0 0 0 0 0 0 9.50 15.69 99.26 99.77 100.0 0 0 0 0 0 4.75 1.14 88.54 73.17 97.68 2.36 0.72 76.84 51.13 86.35 1.18 0.72 68.82 36.06 70.22 0.60 0.72 58.77 23.25 51.88

Nota. Elaboración propia.

Tabla 42. Análisis granulométrico de la combinación final de agregados (COMBO 17).

		AGREGA DO	AGRI	EGADO	FINO .	COMBO 17					
		GRUESO				AG					
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AF 3 (% pasa)	AGI	40.00 <u>%</u> 423	AG3	AF1	W00.00	AF3
A	gregados	combinados (do piedr	ra /	100.00	0.00	0.00	100.00	0.00	0.00
		Combinació	n final			40.00 %	0.00	0.00	60.00 %	0.00 %	0.00
4	100	100.00	100.0	100.0	100.0			100.0			
3 1/2"	90	100.00	100.0	100.0	100.0			100.0			
3	75	100.00	100.0	100.0	100.0			100.0			
2 1/2"	63	100.00	100.0	100.0	100.0			100.0			
2"	50	100.00	100.0	100.0	100.0			100.0			
1 1/2"	37.5 0	100.00	100.0	100.0	100.0			100.0			
1"	25.4	100.00	100.0	100.0	100.0			100.0			
3/4"	19.0 0	98.10	100.0	100.0	100.0			99.24			
1/2"	12.5	48.18	100.0	100.0	100.0			79.27			
3/8"	9.50	15.69	99.26	99.77	100.0			65.84			
N°4	4.75	1.14	88.54	73.17	97.68			53.58			
Nº8	2.36	0.72	76.84	51.13	86.35			46.39			
Nº16	1.18	0.72	68.82	36.06	70.22			41.58			

M(FIN		6.81	2.76	4.02	2.52	4.38	
N°20 0	0.08						
N°10 0	0.15	0.72	6.67	4.19	7.33	4.29	
N°50	0.30	0.72	25.19	10.90	34.76	15.40	
N°30	0.60	0.72	58.77	23.25	51.88	35.55	

Tabla 43. Análisis granulométrico de la combinación final de agregados (COMBO 18).

		AGREGAD O GRUESO										
			AG					AF				
	(E)				4	40.00%			60.00%			
Tamiz ASTM (#)	Abertura ISO (mm)	AG1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AGI	AG2	AG3	AF1	AF2	AF3		
Agre		mbinados (comb ombinado arena		edra /	100.00	0.00	0.00	0.00	100.00	0.00		
	C	Combinación fin	al		40.00%	0.00 %	0.00 %	0.00	60.00%	0.00 %		
4	100	100.00	100.0	100.0			100.0					
3 1/2"	90	100.00	100.0	100.0			100.0					
3	75	100.00	100.0	100.0			100.0					
2 1/2"	63	100.00	100.0	100.0			100.0					
2''	50	100.00	100.0	100.0			100.0					
1 1/2"	37.50	100.00	100.0	100.0			100.0					

	0.15				
N°100	0.15	0.72	6.67	4.19	2.80
N°50	0.30	0.72	25.19	10.90	6.83
N°30	0.60	0.72	58.77	23.25	14.24
Nº16	1.18	0.72	68.82	36.06	21.93
N°8	2.36	0.72	76.84	51.13	30.97
N°4	4.75	1.14	88.54	73.17	44.36
3/8"	9.50	15.69	99.26	99.77	66.14
1/2"	12.50	48.18	100.0	100.0	79.27
3/4"	19.00	98.10	100.0	100.0	99.24
1"	25.40	100.00	100.0	100.0	100.0 0

Tabla 44. Análisis granulométrico de la combinación final de agregados (COMBO 19).

		AGREGADO GRUESO									
						AG			AF		
(#)	nm)	=	<u> </u>	=		50.00%				50.00%	
Tamiz ASTM (#)	Abertura ISO (mm)	AG1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AGI	AG2	AG3	AF1	AF2	AF3	
Agre	gados c	ombinados (comb combinado arena		dra /	100.00 %	0.00 %	0.00 %	75.00 %	25.00 %	0.00 %	
		Combinación fina	al		50.00%	0.00	0.00	37.50 %	12.50 %	0.00	
4	100	100.00	100.0	100.0			100.0				
3 1/2"	90	100.00	100.0	100.0			100.0				
3	75	100.00	100.0	100.0			100.0				

MC FINU		6.81	2.76	4.02	4.94
Nº100	0.15	0.72	6.67	4.19	3.39
N°50	0.30	0.72	25.19	10.90	11.17
N°30	0.60	0.72	58.77	23.25	25.31
Nº16	1.18	0.72	68.82	36.06	30.68
Nº8	2.36	0.72	76.84	51.13	35.57
Nº4	4.75	1.14	88.54	73.17	42.92
3/8"	9.50	15.69	99.26	99.77	57.54
1/2"	12.5 0	48.18	100.0	100.0	74.09
3/4"	19.0 0	98.10	100.0	100.0	99.05
1''	25.4 0	100.00	100.0	100.0	100.0
1 1/2"	37.5 0	100.00	100.0	100.0	100.0
2''	50	100.00	100.0	100.0	100.0 0
2 1/2"	63	100.00	100.0	100.0	100.0 0

Tabla 45. Análisis granulométrico de la combinación final de agregados (COMBO 20).

		AGREGAD O GRUESO		GADO NO			СОМ	ВО 20			
						AG			AF		
(#	(H		_	_		50.00%			50.00%		
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AG1	AG2	AG3	AF1	AF2	AF3	
Agre		mbinados (comb ombinado aren:		edra /	100.00	0.00	0.00	50.00 %	50.00	0.00	
	C	Combinación fin	al		50.00%	0.00	0.00	25.00 %	25.00 %	0.00	
4	100	100.00	100.0	100.0			100.0				
3 1/2"	90	100.00	100.0	100.0			100.0				
3	75	100.00	100.0	100.0			100.0				
2 1/2"	63	100.00	100.0	100.0			100.0				
2''	50	100.00	100.0	100.0			100.0				
1 1/2"	37.50	100.00	100.0	100.0			100.0				
1''	25.40	100.00	100.0	100.0			100.0				
3/4"	19.00	98.10	100.0	100.0			99.05				
1/2"	12.50	48.18	100.0	100.0			74.09				
3/8"	9.50	15.69	99.26	99.77			57.61				
Nº4	4.75	1.14	88.54	73.17			41.00				
Nº8	2.36	0.72	76.84	51.13			32.35				
Nº16	1.18	0.72	68.82	36.06			26.58				
N°30	0.60	0.72	58.77	23.25			20.87				

N°100 MC	0.15	0.72 6.81	6.67 2.76	4.19 4.02	3.08 5.10	
N°50	0.30	0.72	25.19		9.39	

Tabla 46. Análisis granulométrico de la combinación final de agregados (COMBO 21).

		AGREGAD O GRUESO	AGRE FII	GADO NO			COM	BO 21		
						AG			AF	
TM (#)	(mm) O9	pasa)	pasa)	pasa)		50.00%			50.00%	
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AGI	AG2	AG3	AF1	AF2	AF3
Agre		mbinados (comb		edra /	100.00	0.00	0.00	25.00 %	75.00 %	0.00
	(Combinación fin	al		50.00%	0.00	0.00	12.50	37.50 %	0.00 %
4	100	100.00	100.0	100.0			100.0			
3 1/2"	90	100.00	100.0	100.0			100.0			
3	75	100.00	100.0	100.0			100.0			
2 1/2"	63	100.00	100.0	100.0			100.0			
2"	50	100.00	100.0	100.0			100.0			
1 1/2''	37.50	100.00	100.0	100.0			100.0			
1"	25.40	100.00	100.0	100.0			100.0			
3/4''	19.00	98.10	100.0	100.0			99.05			
1/2''	12.50	48.18	100.0	100.0			74.09			

MO FINI	OD URA	6.81	2.76	4.02	5.26
Nº10 0	0.15	0.72	6.67	4.19	2.77
N°50	0.30	0.72	25.19	10.90	7.60
N°30	0.60	0.72	58.77	23.25	16.43
Nº16	1.18	0.72	68.82	36.06	22.49
Nº8	2.36	0.72	76.84	51.13	29.14
N°4	4.75	1.14	88.54	73.17	39.08
3/8''	9.50	15.69	99.26	99.77	57.67

Tabla 47. Análisis granulométrico de la combinación final de agregados (COMBO 22).

		AGREGAD O GRUESO		GADO NO			COM	BO 22		
						AG			AF	
(#	(H		AF 1 (% pasa)	AF 2 (% pasa)	45.00%				55.00%	
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)			AGI	AG2	AG3	AF1	AF2	AF3
Agreg		mbinados (comb ombinado arena		edra /	100.00	0.00 %	0.00 %	75.00 %	25.00 %	0.00
	(Combinación fin	al		45.00%	0.00 %	0.00 %	41.25 %	13.75	0.00
4	100	100.00	100.0	100.0			100.0			
3 1/2"	90	100.00	100.0	100.0			100.0			
3	75	100.00	100.0	100.0			100.0			
2 1/2"	63	100.00	100.0	100.0			100.0			
2''	50	100.00	100.0	100.0			100.0			

1 1/2"	37.50	100.00	100.0	100.0	100.0 0
1"	25.40	100.00	100.0	100.0	100.0 0
3/4"	19.00	98.10	100.0	100.0	99.15
1/2"	12.50	48.18	100.0	100.0	76.68
3/8"	9.50	15.69	99.26	99.77	61.73
N°4	4.75	1.14	88.54	73.17	47.10
N°8	2.36	0.72	76.84	51.13	39.05
N°16	1.18	0.72	68.82	36.06	33.67
N°30	0.60	0.72	58.77	23.25	27.77
N°50	0.30	0.72	25.19	10.90	12.22
N°100	0.15	0.72	6.67	4.19	3.65
MC FINU		6.81	2.76	4.02	4.76

Nota. Elaboración propia.

Tabla 48. Análisis granulométrico de la combinación final de agregados (COMBO 23).

		AGREGAD O GRUESO	AGRE FI	GADO NO			СОМ	ВО 23			
					AG 45.00%			AF			
(#	(M								55.00%		
Tamiz ASTM (#)	Abertura ISO (mm)	AG1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AG1	AG2	AG3	AF1	AF2	AF3	
Agre		nbinados (comb ombinado arena		edra /	100.00	0.00	0.00	50.00 %	50.00 %	0.00	
	C	Combinación fin	al		45.00%	0.00	0.00	27.50 %	27.50 %	0.00 %	
4	100	100.00	100.0	100.0			100.0				
3 1/2"	90	100.00	100.0	100.0			100.0				
3	75	100.00	100.0	100.0			100.0				
2 1/2"	63	100.00	100.0	100.0			100.0				
2''	50	100.00	100.0	100.0			100.0				
1 1/2"	37.50	100.00	100.0	100.0			100.0				
1"	25.40	100.00	100.0	100.0			100.0				
3/4"	19.00	98.10	100.0	100.0			99.15				
1/2"	12.50	48.18	100.0	100.0			76.68				
3/8"	9.50	15.69	99.26	99.77			61.80				
Nº4	4.75	1.14	88.54	73.17			44.99				
Nº8	2.36	0.72	76.84	51.13			35.52				
Nº16	1.18	0.72	68.82	36.06			29.17				
N°30	0.60	0.72	58.77	23.25			22.88				

N°50	0.30	0.72	25.19	10.90	10.25	
N°100	0.15	0.72	6.67	4.19	3.31	
MC FINU		6.81	2.76	4.02	4.93	

Tabla 49. Análisis granulométrico de la combinación final de agregados (COMBO 24).

		AGREGAD O GRUESO		GADO NO		(СОМВО	24		
						AG			AF	
(#)	ım)		AF 1 (% pasa)			45.00%			55.00%	
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)		AF 2 (% pasa)	AG1	AG2	AG3	AF1	AF2	AF3
Agre		mbinados (comb ombinado arena		edra /	100.00 %	0.00 %	0.00 %	25.00 %	75.00 %	0.00 %
	C	Combinación fina	al		45.00%	0.00	0.00	13.75	41.25	0.00 %
4	100	100.00	100.0	100.0			100.0	0.00	0.00	
3 1/2"	90	100.00	100.0	100.0			100.0	0.00	0.00	
3	75	100.00	100.0	100.0			100.0	0.00	0.00	
2 1/2"	63	100.00	100.0	100.0			100.0	0.00	0.00	
2''	50	100.00	100.0	100.0			100.0	0.00	0.00	
1 1/2''	37.50	100.00	100.0	100.0			100.0	0.00	0.00	
1''	25.40	100.00	100.0	100.0			100.0	0.00	0.85	
3/4"	19.00	98.10	100.0	100.0			99.15	0.85	22.47	
1/2"	12.50	48.18	100.0	100.0			76.68	23.32	14.81	

N°8 2.36 0.72 76.84 51.13 31.98 68.02 N°16 1.18 0.72 68.82 36.06 24.66 75.34 N°30 0.60 0.72 58.77 23.25 18.00 82.00 N°50 0.30 0.72 25.19 10.90 8.29 91.71 N°10 0.15 0.72 6.67 4.19 2.97 97.03 0	
N°16 1.18 0.72 68.82 36.06 24.66 75.34 N°30 0.60 0.72 58.77 23.25 18.00 82.00	2.97
№16 1.18 0.72 68.82 36.06 24.66 75.34	5.32
	9.71
N°8 2.36 0.72 76.84 51.13 31.98 68.02	6.67
	7.32
N°4 4.75 1.14 88.54 73.17 42.87 57.13	10.89
3/8'' 9.50 15.69 99.26 99.77 61.87 38.13	18.99

Tabla 50. Análisis granulométrico de la combinación final de agregados (COMBO 25).

		AGREGAD O GRUESO	AGRE FII	GADO NO			COM	BO 25		
						AG			AF	
(#)	mm)	(a)	(a)	a)		40.00%			60.00%	
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AG1	AG2	AG3	AF1	AF2	AF3
Agre		ombinados (com combinado aren		edra /	100.00 %	0.00 %	0.00 %	75.00 %	25.00 %	0.00 %
	(Combinación fin	ıal		40.00%	0.00	0.00	45.00 %	15.00 %	0.00 %
4	100	100.00	100.0	100.0			100.0			
3 1/2"	90	100.00	100.0	100.0			100.0			
3	75	100.00	100.0	100.0			100.0			
2 1/2"	63	100.00	100.0	100.0			100.0			
2''	50	100.00	100.0	100.0			100.0			

37.50	100.00	100.0	100.0	100.0 0
25.40	100.00	100.0	100.0	100.0 0
19.00	98.10	100.0	100.0	99.24
12.50	48.18	100.0	100.0	79.27
9.50	15.69	99.26	99.77	65.91
4.75	1.14	88.54	73.17	51.27
2.36	0.72	76.84	51.13	42.54
1.18	0.72	68.82	36.06	36.67
0.60	0.72	58.77	23.25	30.22
0.30	0.72	25.19	10.90	13.26
0.15	0.72	6.67	4.19	3.92
OD URA	6.81	2.76	4.02	4.57
	25.40 19.00 12.50 9.50 4.75 2.36 1.18 0.60 0.30 0.15	25.40 100.00 19.00 98.10 12.50 48.18 9.50 15.69 4.75 1.14 2.36 0.72 1.18 0.72 0.60 0.72 0.30 0.72 0.15 0.72 DD 6.81	0 25.40 100.00 100.0 19.00 98.10 100.0 12.50 48.18 100.0 9.50 15.69 99.26 4.75 1.14 88.54 2.36 0.72 76.84 1.18 0.72 68.82 0.60 0.72 58.77 0.30 0.72 25.19 0.15 0.72 6.67 DD 6.81 2.76	0 0 25.40 100.00 100.0 100.0 19.00 98.10 100.0 100.0 12.50 48.18 100.0 100.0 9.50 15.69 99.26 99.77 4.75 1.14 88.54 73.17 2.36 0.72 76.84 51.13 1.18 0.72 68.82 36.06 0.60 0.72 58.77 23.25 0.30 0.72 25.19 10.90 0.15 0.72 6.67 4.19 DD 6.81 2.76 4.02

Nota. Elaboración propia.

Tabla 51. Análisis granulométrico de la combinación final de agregados (COMBO 26).

		AGREGA DO		EGAD INO			COM	BO 26		
		GRUESO				AG			AF	
(#)	(mm)	sa)	(ga	(ag	4	10.00%			60.00%	
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa)	AF 1 (% pasa)	AF 2 (% pasa)	AGI	AG2	AG3	AF1	AF2	AF3
Agreg		nbinados (con ombinado are		piedra	100.00	0.00 %	0.00	50.00 %	50.00 %	0.00 %
	Co	ombinación fi	nal		40.00 %	0.00 %	0.00 %	30.00	30.00 %	0.00 %
4	100	100.00	100.0	100.0			100.0			
3 1/2"	90	100.00	100.0	100.0			100.0			
3	75	100.00	100.0	100.0			100.0			
2 1/2"	63	100.00	100.0	100.0			100.0			
2''	50	100.00	100.0	100.0			100.0			
1 1/2"	37.50	100.00	100.0	100.0			100.0			
1"	25.40	100.00	100.0	100.0			100.0			
3/4"	19.00	98.10	100.0	100.0			99.24			
1/2"	12.50	48.18	100.0	100.0			79.27			
3/8"	9.50	15.69	99.26	99.77			65.99			
N°4	4.75	1.14	88.54	73.17			48.97			
Nº8	2.36	0.72	76.84	51.13			38.68			
Nº16	1.18	0.72	68.82	36.06			31.75			
N°30	0.60	0.72	58.77	23.25			24.90			

M	OD URA	6.81	2.76	4.02	4.76	
Nº10 0	0.15	0.72	6.67	4.19	3.55	
N°50	0.30	0.72	25.19	10.90	11.12	

Tabla 52. Análisis granulométrico de la combinación final de agregados (COMBO 27).

		AGREGAD O GRUESO		GADO NO			СОМ	BO 27		
						AG			AF	
M (#)	(mm) C	oasa)	AF 1 (% pasa)	asa)		40.00%			60.00%	
Tamiz ASTM (#) Abertura ISO (mm)	Abertura ISC	AG 1 (% pasa)		AF 2 (% pasa)	AG1	AG2	AG3	AF1	AF2	AF3
Agre		mbinados (coml combinado aren		edra /	100.00	0.00	0.00	25.00 %	75.00 %	0.00
	(Combinación fin	al		40.00%	0.00	0.00	15.00 %	45.00 %	0.00
4	100	100.00	100.0	100.0			100.0			
3 1/2"	90	100.00	100.0	100.0 0			100.0			
3	75	100.00	100.0	100.0			100.0			
2 1/2"	63	100.00	100.0	100.0			100.0			
2"	50	100.00	100.0	100.0			100.0			
1 1/2''	37.50	100.00	100.0	100.0			100.0			
1''	25.40	100.00	100.0	100.0			100.0			
3/4"	19.00	98.10	100.0	100.0			99.24			

1/2''	12.50	48.18	100.0	100.0	79.27
3/8''	9.50	15.69	99.26	99.77	66.06
Nº4	4.75	1.14	88.54	73.17	46.67
Nº8	2.36	0.72	76.84	51.13	34.83
Nº16	1.18	0.72	68.82	36.06	26.84

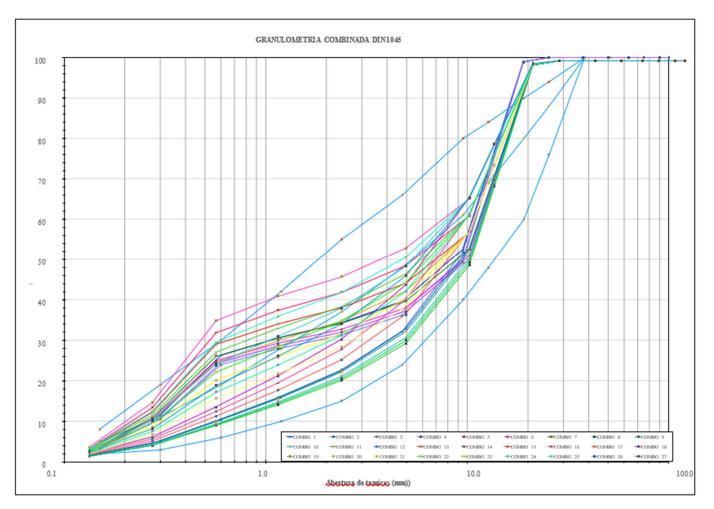
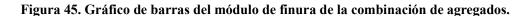


Tabla 53. Análisis de las combinaciones granulométricas de agregados en diferentes combinaciones (Combo 1 a Combo 11).


	A	AGREGADO GRUESO	AGREG FIN		COMBO 1	COMBO 2	COMBO 3	COMBO 4	COMBO 5	COMBO 6	COMBO 7	COMBO 8	COMBO 9	COMBO 10	СОМВО 11
Tamiz ASTM (#)	Abertura ISO (mm)	AG 1 (% pasa) - PIEDRA 1/2"	AF 1 (% pasa) -	AF 2 (% pasa) -	PIEDRA 56/	PIEDRA 57/	PIEDRA 60/	PIEDRA 59/	PIEDRA 58/	PIEDRA 57/	PIEDRA 55 CERRO	PIEDRA GO CERRO	PIEDRA 59 CERRO	PIEDRA 58 CERRO	PIEDRA SK CERRO
4	100	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
3 1/2"	90	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
3	75	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
2 1/2"	63	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
2''	50	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
1 1/2"	37.50	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
1"	25.40	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
3/4"	19.00	98.10	100.00	100.00	98.94	98.92	98.86	98.88	98.90	98.92	98.96	98.86	98.88	98.90	98.94
1/2"	12.50	48.18	100.00	100.00	70.98	70.46	68.91	69.42	69.94	70.46	71.50	68.91	69.42	69.94	70.98
3/8"	9.50	15.69	99.26	99.77	52.47	51.85	49.12	49.96	50.79	51.63	53.30	49.33	50.17	51.01	52.69
N°4	4.75	1.14	88.54	73.17	39.60	32.12	36.10	36.97	37.85	38.72	40.47	29.96	30.68	31.40	32.84
N°8	2.36	0.72	76.84	51.13	34.21	22.40	31.17	31.93	32.69	33.45	34.97	20.89	21.39	21.90	22.90

Nº16	1.18	0.72	68.82	36.06	30.69	15.92	27.96	28.64	29.32	30.01	31.37	14.86	15.21	15.57	16.27
Nº30	0.60	0.72	58.77	23.25	26.27	10.41	23.94	24.52	25.11	25.69	26.85	9.73	9.96	10.18	10.63
N°50	0.30	0.72	25.19	10.90	11.49	5.10	10.51	10.75	11.00	11.24	11.73	4.80	4.90	5.00	5.20
N°100	0.15	0.72	6.67	4.19	3.34	2.21	3.10	3.16	3.22	3.28	3.40	2.11	2.14	2.18	2.25
MOD F	INURA	6.81	2.76	4.02	5.03	5.61	5.19	5.15	5.11	5.07	4.99	5.69	5.67	5.64	5.58

Tabla 54. Análisis de las combinaciones granulométricas de agregados en diferentes combinaciones (Combo 12 a Combo 27)

		AGREGAD O GRUESO	AGRE0 FIN	_	COMBO 13	COMBO 14	COMBO 15	COMBO 16	COMBO 17	COMBO 18	COMBO 19	COMBO 20	COMBO 21	COMBO 22	COMBO 23	COMBO 24	COMBO 25	COMBO 26	COMBO 27
Tamiz	Abertura	AG 1 (% pasa) - PIEDRA 1/2"	AF 1 (%	AF 2 (%	PIEDRA 50	PIEDRA 50	PIEDRA 45	PIEDRA 45	PIEDRA 40	PIEDRA 40	PIEDRA 50	PIEDRA 50	PIEDRA 50	PIEDRA 45	PIEDRA 45	PIEDRA 45	PIEDRA 40	PIEDRA 40	PIEDRA 40
4	100	100.00	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
3 1/2"	90	100.00	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
3	75	100.00	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

2 1/2"	63	100.00	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
2"	50	100.00	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1 1/2''	37.50	100.00	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1"	25.40	100.00	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
3/4''	19.00	98.10	100.0	100.0	99.05	99.05	99.15	99.15	99.24	99.24	99.05	99.05	99.05	99.15	99.15	99.15	99.24	99.24	99.24
1/2''	12.50	48.18	100.0	100.0	74.09	74.09	76.68	76.68	79.27	79.27	74.09	74.09	74.09	76.68	76.68	76.68	79.27	79.27	79.27
3/8"	9.50	15.69	99.26	99.77	57.48	57.73	61.66	61.94	65.84	66.14	57.54	57.61	57.67	61.73	61.80	61.87	65.91	65.99	66.06
N°4	4.75	1.14	88.54	73.17	44.84	37.16	49.21	40.76	53.58	44.36	42.92	41.00	39.08	47.10	44.99	42.87	51.27	48.97	46.67
Nº8	2.36	0.72	76.84	51.13	38.78	25.93	42.59	28.45	46.39	30.97	35.57	32.35	29.14	39.05	35.52	31.98	42.54	38.68	34.83
N°16	1.18	0.72	68.82	36.06	34.77	18.39	38.18	20.16	41.58	21.93	30.68	26.58	22.49	33.67	29.17	24.66	36.67	31.75	26.84
N°30	0.60	0.72	58.77	23.25	29.75	11.98	32.65	13.11	35.55	14.24	25.31	20.87	16.43	27.77	22.88	18.00	30.22	24.90	19.57
N°50	0.30	0.72	25.19	10.90	12.96	5.81	14.18	6.32	15.40	6.83	11.17	9.39	7.60	12.22	10.25	8.29	13.26	11.12	8.97
Nº10 0	0.15	0.72	6.67	4.19	3.70	2.45	3.99	2.63	4.29	2.80	3.39	3.08	2.77	3.65	3.31	2.97	3.92	3.55	3.17
MO FIN		6.81	2.76	4.02	4.79	5.41	4.58	5.27	4.38	5.13	4.94	5.10	5.26	4.76	4.93	5.10	4.57	4.76	4.95

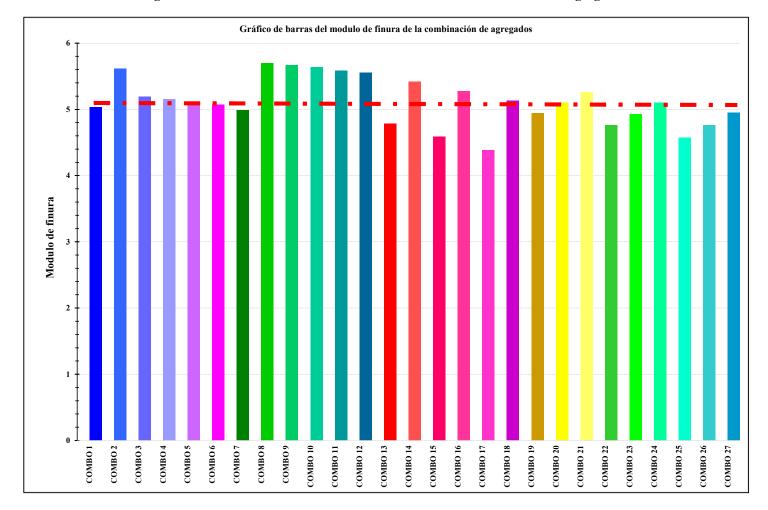


Tabla 55. Análisis estadístico del módulo de finura.

Análisis estadístico módulo de finura

M.f	Ls	Xi (marca de clase)	Frecuen cia absolut a (fi)	Frecuen cia Relativa (hi)	Frecuen cia Porcent ual (pi%)	Frecuen cia Absolut a Acumul ada (Fi)	Frecuen cia Relativa Acumul ada (Hi)	Frecuen cia Porcent ual Acumul ada (Pi%)	Frecuen cia gradual (Si)	xi*fi	xi*xpr om	(xi*xprom) ^2	$V(x) = s=V(x)^{\wedge}$ $s^{\wedge}2 = 0.5$	CV= s/xprom*1 00%
4.3												0.3974		
4.6 1	4.8 4	4.725	3	0.111	11.111%	6	0.222	22.222%	40.00°	14.1 8	-0.4004	0.1603	0.0178	
4.8	5.0 7	4.955	5	0.185	18.519%	11	0.407	40.741%	66.67°	24.7	-0.1704	0.0290	0.0054	
5.0 7	5.3 0	5.185	9	0.333	33.333%	20	0.741	74.074%	120.00°	46.6 7	0.0596	0.0036	0.0012	

5.3 5.5 0 3	5.415	1	0.037	3.704%	21	0.778	77.778%	13.33 °	5.42	0.2896	0.0839	0.0031	_	
5.5 5.7 3 6	5.645	6	0.222	22.222%	27	1.000	100.000 %	80.00°	33.8 7	0.5196	0.2700	0.0600		
Σ	No aplica	27	1.000	100.000 %	No aplica	No aplica	No aplica	360.00°	138. 39	No aplica	No aplica	0.1316	0.3628	7.08%

Tabla 56. Media, moda y mediana del análisis estadístico del módulo de finura.

n =	27	Med	ia	Mo	oda	Med	liana
Rango =	1.313	Xprom	5.13	Li=	5.07	Li=	4.84
				fi=	9	(n/2) =	13.5
k =	6			fi-1=	5	Fi-1=	6
				fi+1=	1	fi=	5
a =	0.23			a=	0.23	a=	0.23
				Mo=	5.15	Me=	5.18

Figura 46. Gráfico de barras de los datos agrupados.

Figura 47. Gráfico circular de los datos agrupados

- El promedio de módulo de finura del análisis de datos de las 27 combinaciones de agregados es de 5.13
- Del 50% de los módulos de finura analizados se encuentran menores o iguales a 5.18.
- El módulo de finura más frecuente es de 5.15.
- La dispersión de los módulos de finura de los 27 datos analizados es de aproximadamente de 0.3628 con respecto al módulo de finura promedio.
- Los módulos de finura de las combinaciones de agregados analizados se caracterizan por tener datos muy homogéneos, ya que presenta un coeficiente de variabilidad de 7.08% que se encuentra ene l intervalo desde 0% hasta 10%.

Tabla 57. Gráfico de Shilstone (combo 1 al combo 14).

Gráfico Shilstone	COMBO 1	COMBO 2	COMBO 3	COMBO 4	COMBO 5	COMBO 6	COMBO 7	COMBO 8	COMBO 9	COMBO 10	COMBO 11	COMBO 12	COMBO 13	COMBO 14
Q (100-%Pasa malla 3/8")	47.53	48.15	50.88	50.04	49.21	48.37	46.70	50.67	49.83	48.99	47.31	46.47	42.52	42.27
I (%Pasa malla 3/8"-%Pasa malla N°8)	18.25	29.45	17.95	18.03	18.10	18.18	18.33	28.44	28.77	29.11	29.78	30.12	18.70	31.80
FACTOR DE GROSOR (CF)	72.26	62.05	73.92	73.52	73.11	72.69	71.82	64.05	63.40	62.73	61.37	60.67	69.46	57.06
Factor de trabajabilidad (W)	34.21	22.40	31.17	31.93	32.69	33.45	34.97	20.89	21.39	21.90	22.90	23.41	38.78	25.93
Factor de trabajabilidad corregido	34.21	22.40	31.17	31.93	32.69	33.45	34.97	20.89	21.39	21.90	22.90	23.41	38.78	25.93
Material cementicio (Cc)	407.00	407.00	407.00	407.00	407.00	407.00	407.00	407.00	407.00	407.00	407.00	407.00	407.00	407.00
Adj	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.21
FACTOR DE TRABAJABILIDAD (Wadj)	37.43	25.61	34.38	35.14	35.91	36.67	38.19	24.10	24.61	25.11	26.12	26.62	41.99	29.14

Tabla 55. Gráfico de Shilstome (Combo 15 al 27).

Gráfico Shilstone	COMBO 15	COMBO 16	COMBO 17	COMBO 18	COMBO 19	COMBO 20	COMBO 21	COMBO 22	COMBO 23	COMBO 24	COMBO 25	COMBO 26	COMBO 27
Q (100-%Pasa malla 3/8")	38.34	38.06	34.16	33.86	42.46	42.39	42.33	38.27	38.20	38.13	34.09	34.01	33.94
I (%Pasa malla 3/8"-%Pasa malla N°8)	19.07	33.49	19.44	35.17	21.98	25.25	28.53	22.68	26.28	29.88	23.38	27.31	31.24
FACTOR DE GROSOR (CF)	66.78	53.20	63.73	49.05	65.89	62.67	59.74	62.79	59.25	56.06	59.32	55.47	52.07
Factor de trabajabilidad (W)	42.59	28.45	46.39	30.97	35.57	32.35	29.14	39.05	35.52	31.98	42.54	38.68	34.83
Factor de trabajabilidad corregido	42.59	28.45	46.39	30.97	35.57	32.35	29.14	39.05	35.52	31.98	42.54	38.68	34.83
Material cementicio (Cc)	407.0	407.0 0											
Adj	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.21	3.21
FACTOR DE TRABAJABILIDAD (Wadj)	45.80	31.66	49.61	34.18	38.78	35.57	32.36	42.27	38.73	35.20	45.75	41.89	38.04

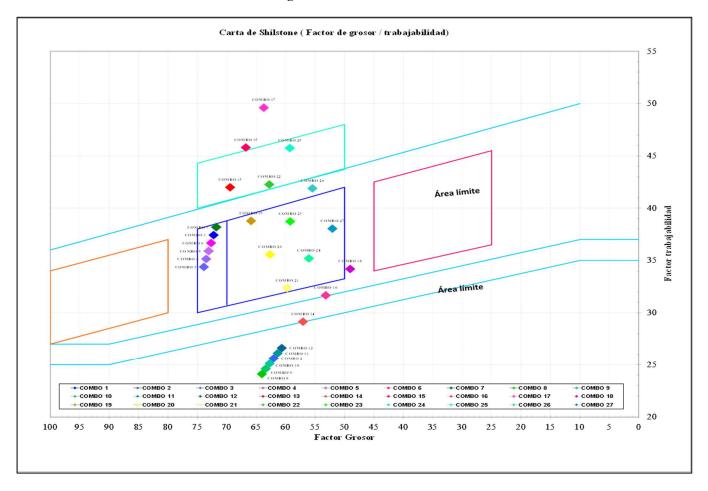


Tabla 59. Análisis estadístico del factor grosor.

							Análisis e	stadístico fac	ctor grosor						
M Li	Ls	Xi (marca de clase)	Frecuenci a absoluta (fi)	Frecuenci a Relativa (hi)	Frecuenci a Porcentu al (pi%)	Frecuenci a Absoluta Acumulad a (Fi)	Frecuenci a Relativa Acumulad a (Hi)	Frecuenci a Porcentua l Acumulad a (Pi%)	Frecuenci a gradual (Si)	xi*fi	xi*xpro m	(xi*xprom) ^2	V(x) = s^2	s=V(x)^0.	CV= s/xprom*100 %
49.05	53.39	51.220	3	0.111	11.111%	3	0.111	11.111%	40.00°	153.66	-11.8948	141.4866	15.7207		
53.39	57.73	55.560	3	0.111	11.111%	6	0.222	22.222%	40.00°	166.68	-7.5548	57.0752	6.3417	•	
57.73	62.07	59.900	6	0.222	22.222%	12	0.444	44.444%	80.00°	359.40	-3.2148	10.3350	2.2967		
62.07	66.41	64.240	7	0.259	25.926%	19	0.704	70.370%	93.33 °	449.68	1.1252	1.2660	0.3282	•	
66.41	70.75	68.580	2	0.074	7.407%	21	0.778	77.778%	26.67 °	137.16	5.4652	29.8682	2.2125	•	
70.75	75.09	72.920	6	0.222	22.222%	27	1.000	100.000%	80.00°	437.52	9.8052	96.1417	21.3648	•	
Σ	2	No aplica	27	1.000	100.000%	No aplica	No aplica	No aplica	360.00°	1704.10	No aplica	No aplica	48.2646	6.9473	11.01%

Tabla 56. Media, mediana y moda del análisis estadístico del factor grosor.

n =	27	Media	Mo	oda	Medi	ana
Rango =	24.867	63.11	Li=	62.07	Li=	57.73
			fi=	7	(n/2) =	13.50
k =	6		fi-1=	6	Fi-1=	6
			fi+1=	2	fi=	6
a =	4.34		a=	4.34	a=	4.34
			Mo=	62.79	Me=	63.16

Figura 44. Gráfico de barras de los datos agrupados del factor grosor

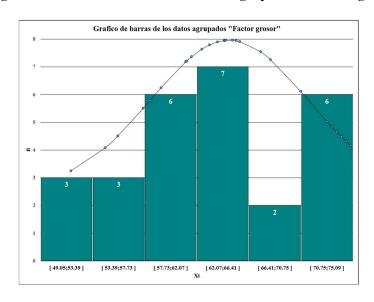
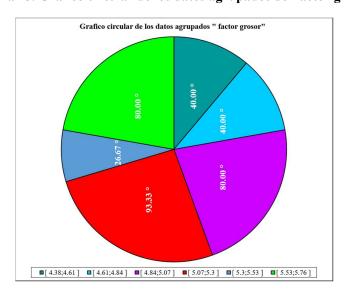



Figura 45. Gráfico circular de los datos agrupados del factor grosor

- El promedio del factor grosor del análisis de datos de las 27 combinaciones de agregados es de 63.11
- Del 50% de los factores grosor analizados se encuentran menores o iguales a 63.16
- El factor grosor más frecuente es de 62.79
- La dispersión del factor grosor de los 27 datos analizados es de aproximadamente de 6.9473 con respecto al factor grosor promedio

Tabla 57. Análisis estadístico de factor trabajabilidad.

Análisis estadístico factor trabajabilidad Frecuenci Frecuenci Frecuencia Frecuencia Frecuencia Frecuencia Xi M.f Absoluta a Relativa Porcentual Acumulada a gradual xi*fi V(x) = $s=V(x)^0$. CV=s/xprom*100(marca (xi*xprom) absoluta Relativa Porcentu Acumulada Acumulad s^2 de m al (pi%) (Pi%) clase) (fi) (hi) (Fi) a (Hi) 24.10 28.56 **26.330** 6 0.222 22.222% 6 0.222 22.222% 80.00° 157.98 -9.0852 82.5406 18.3424 28.56 33.02 **30.790** 3 0.111 11.111% 9 0.333 33.333% 40.00° 92.37 -4.6252 21.3923 2.3769 33.02 37.48 **35.250** 282.00 -0.1652 0.296 29.630% 0.630 62.963% 106.67° 0.0273 17 0.0081 37.48 41.94 **39.710** 5 18.519% 22 81.481% 66.67° 198.55 4.2948 18.4454 0.185 0.815 3.4158 41.94 46.40 44.170 4 0.148 14.815% 26 0.963 96.296% 53.33° 176.68 8.7548 76.6468 11.3551 27 13.33 ° 46.40 50.86 **48.630** 0.037 3.704% 1.000 100.000% 48.63 13.2148 174.6313 6.4678 No No aplica 27 1.000 100.000% No aplica No aplica 360.00 956.21 No aplica No aplica 41.9661 6.4781 18.29% aplica

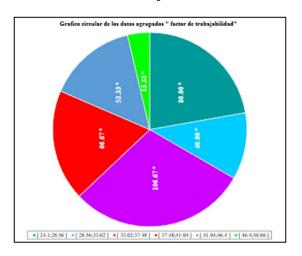
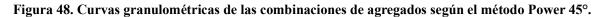
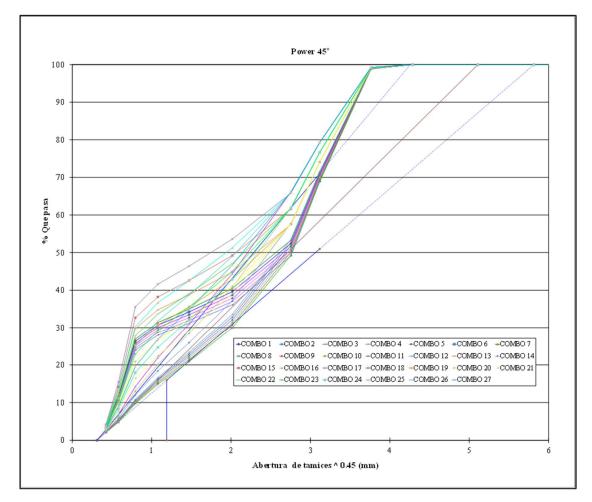
Nota. Elaboración propia.

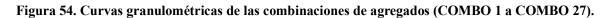
Interpretación: El factor grosor de las combinaciones de agregados analizados se caracterizan por tener datos regularmente homogéneos, ya que presenta un coeficiente de variabilidad de 11.01% que se encuentra en el intervalo desde 10% hasta 15%.

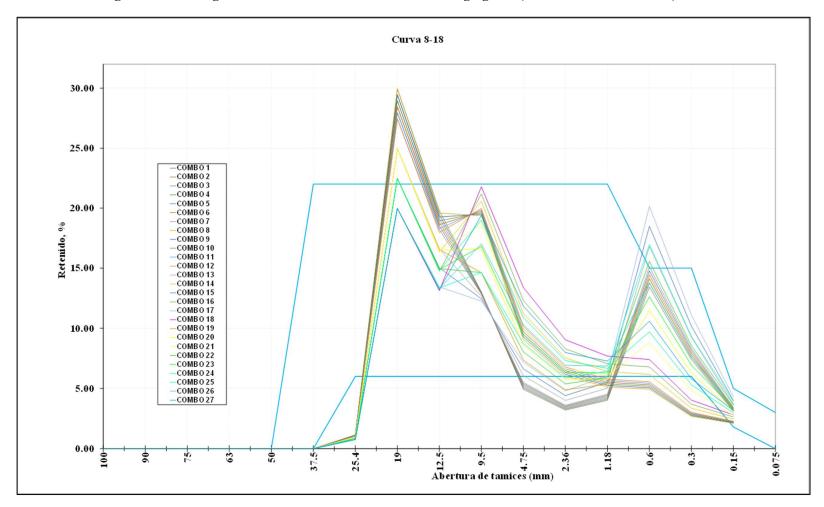
Tabla 58. Análisis estadístico de factor trabajabilidad

n =	27	Med	Mo	oda	Mediana		
Rango =	25.504	X prom	35.42	Li=	37.48	Li=	33.02
				fi=	8	(n/2) =	13.50
k =	6			fi-1=	3	Fi-1=	9
				fi+1=	5	fi=	8
a =	4.46			a=	4.46	a=	4.46
				Mo=	40.26	Me=	35.53

Figura 46. Gráfico de Barras de los datos agrupados del factor trabajabilidad.


Figura 47. Gráfico de los datos agrupados del factor trabajabilidad.



- El promedio del factor trabajabilidad del análisis de datos de las 27 combinaciones de agregados es de 35.42
- Del 50% de los factores trabajabilidad analizados se encuentran menores o iguales a 35.53
- El factor trabajabilidad más frecuente es de 40.26
- La dispersión del factor trabajabilidad de los 27 datos analizados es de aproximadamente de 6.4781 con respecto al factor grosor promedio
- El factor trabajabilidad de las combinaciones de agregados analizados se caracterizan por tener datos regularmente homogéneos, ya que presenta un coeficiente de variabilidad de 18.29% que se encuentra en el intervalo desde 15% hasta 20%.

4.1.2. Análisis estadístico descriptivo de los ensayos en estado fresco

4.1.2.1. Análisis estadístico descriptivo de la consistencia

Tabla 59. Datos de validación de consistencia – Pérdida de trabajabilidad (combo 1 al 7).

FICHA DE DATOS DE VALIDACIÓN DE CONSISTENCIA Pérdida de trabajabilidad												
		Pérdida de tra	bajabilidad									
	FRECUENCIA	T° (CERO min)	T° (30 min)	T° (60 min)	T° (90 min)	T° (120 min)						
		0	30	60	90	120						
СОМВО	PÉRDIDA SLUMP (Pulg)	9	8 1/4	8	7 1/2	7 1/4						
1	T° AMBIENTE (°C)	24.0	23.5	21.5	21.5	20.0						
	T° CONCRETO (°C)	23.5	23.5	20.0	20.0	20.0						
	HUMEDAD RELATIVA (%)	39.0	41.0	44.0	46.0	47.0						
СОМВО	PÉRDIDA SLUMP (Pulg)	9 1/4	8 1/2	8 1/4	8	7 1/2						
2	T° AMBIENTE (°C)	23.5	23.5	23.5	21.5	20.0						
	T° CONCRETO (°C)	22.0	22.0	22.0	21.0	22.0						
	HUMEDAD RELATIVA (%)	41.0	40.0	41.0	44.0	45.0						
СОМВО	PÉRDIDA SLUMP (Pulg)	9	8	7 3/4	7 1/4	7						
3	T° AMBIENTE (°C)	23.0	22.0	22.0	21.0	20.0						
	T° CONCRETO (°C)	21.0	21.0	21.0	21.0	21.0						
	HUMEDAD RELATIVA (%)	45.0	47.0	45.0	45.0	43.0						
СОМВО	PÉRDIDA SLUMP (Pulg)	9 1/4	8 1/4	8	7 3/4	7						
4	T° AMBIENTE (°C)	22.5	22.0	22.0	21.5	21.5						
	T° CONCRETO (°C)	22.0	21.5	21.5	21.5	21.5						
	HUMEDAD RELATIVA (%)	42.0	45.0	45.0	45.0	43.0						
СОМВО	PÉRDIDA SLUMP (Pulg)	9 1/4	8	7 1/2	7 1/4	6 3/4						
5	T° AMBIENTE (°C)	23.0	23.0	23.0	22.0	22.0						
	T° CONCRETO (°C)	21.0	21.0	20.0	20.0	20.0						
	HUMEDAD RELATIVA (%)	41.0	41.0	41.0	45.0	46.0						
СОМВО	PÉRDIDA SLUMP (Pulg)	9	8 1/2	8 1/4	8	7 1/4						
6	T° AMBIENTE (°C)	23.0	23.0	23.0	23.0	21.0						
	T° CONCRETO (°C)	22.0	22.0	21.0	21.0	21.0						
	HUMEDAD RELATIVA (%)	45.0	46.0	46.0	46.0	47.0						

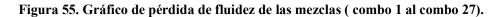
COMBO	PÉRDIDA SLUMP (Pulg)	9	8 1/4	8	7 3/4	7 1/4
7	T° AMBIENTE (°C)	22.0	21.0	21.5	21.5	21.0
	T° CONCRETO (°C)	22.0	21.5	21.0	21.0	21.0
	HUMEDAD RELATIVA (%)	45.0	44.0	45.0	45.0	43.0

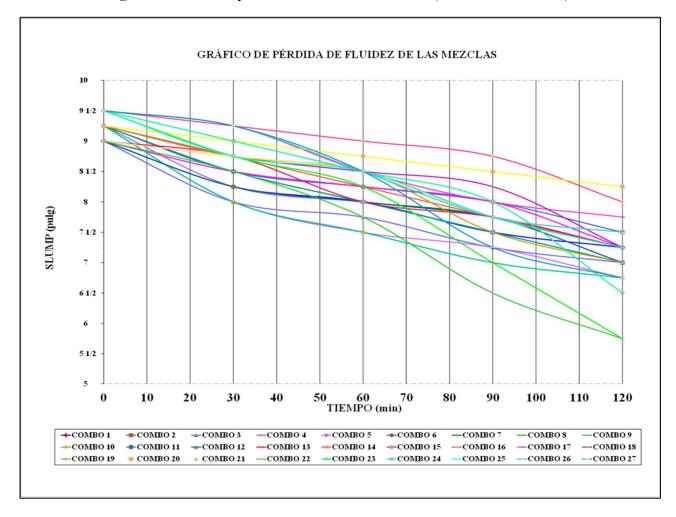
Tabla 60. Datos de validación de consistencia – Pérdida de trabajabilidad (combo 8 al 14).

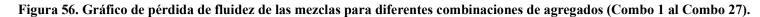
		Pérdida de trabajabilidad												
	FRECUENCIA	T° (CERO min)	T° (30 min)	T° (60 min)	T° (90 min)	T° (120 min)								
		0	30	60	90	120								
COMBO	PÉRDIDA SLUMP (Pulg)	9 1/4	8 1/2	8	7 1/2	7								
8	T° AMBIENTE (°C)	24.0	23.5	23.0	23.0	22.0								
	T° CONCRETO (°C)	21.0	21.0	20.0	20.0	20.0								
	HUMEDAD RELATIVA (%)	46.0	45.0	44.0	44.0	43.0								
СОМВО	PÉRDIDA SLUMP (Pulg)	9 1/4	8	7 1/2	7	6 3/4								
9	T° AMBIENTE (°C)	23.0	22.5	22.0	22.0	22.0								
	T° CONCRETO (°C)	23.0	22.5	22.5	22.0	22.0								
	HUMEDAD RELATIVA (%)	39.0	40.0	41.0	44.0	45.0								
СОМВО	PÉRDIDA SLUMP (Pulg)	9	8 1/4	8	7 3/4	7 1/4								
10	T° AMBIENTE (°C)	22.0	21.0	21.0	20.0	220.0								
	T° CONCRETO (°C)	22.0	22.0	22.0	21.5	21.5								
	HUMEDAD RELATIVA (%)	40.0	41.0	42.0	44.0	45.0								
COMBO	PÉRDIDA SLUMP (Pulg)	9 1/4	8 1/2	8	7 1/2	7								
11	T° AMBIENTE (°C)	20.0	20.0	19.0	18.0	18.0								
	T° CONCRETO (°C)	21.0	22.0	215	21.0	21.0								
	HUMEDAD RELATIVA (%)	39.0	40.0	41.0	44.0	45.0								
СОМВО	PÉRDIDA SLUMP (Pulg)	9	8 1/4	8	7 3/4	7								
12	T° AMBIENTE (°C)	20.0	20.0	20.0	21.5	20.5								
	T° CONCRETO (°C)	20.0	21.0	21.0	21.0	21.5								
	HUMEDAD RELATIVA (%)	40.0	42.0	44.0	45.0	46.0								
	PÉRDIDA SLUMP (Pulg)	9	8 3/4	8 1/2	7 3/4	7 1/4								

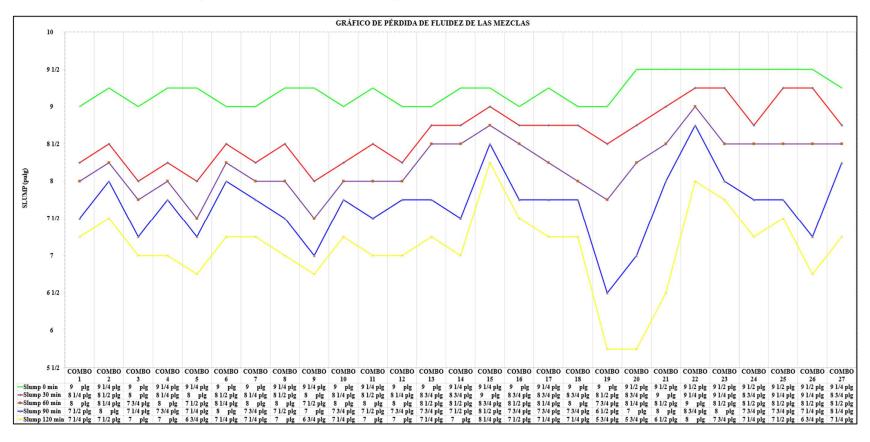
COMBO	T° AMBIENTE (°C)	20.5	21.0	22.0	23.0	23.0
13	T° CONCRETO (°C)	20.0	20.0	20.0	20.0	19.0
	HUMEDAD RELATIVA (%)	55.0	52.0	49.0	49.0	45.0
COMBO	PÉRDIDA SLUMP (Pulg)	9 1/4	8 3/4	8 1/4	7 3/4	7 1/4
14	T° AMBIENTE (°C)	24.0	22.0	20.0	19.5	19.5
	T° CONCRETO (°C)	24.0	22.0	21.0	21.0	21.0
	HUMEDAD RELATIVA (%)	39.0	54.0	53.0	53.0	52.0

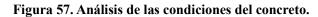
Tabla 61. Datos de validación de consistencia – Pérdida de trabajabilidad (combo 15 al 21).


	FICHA DE DA	TOS DE VALIDA	ACIÓN DE CO	ONSISTENCL	A	
		Pérdida de tral	bajabilidad			
	FRECUENCIA	T° (CERO min)	T° (30 min)	T° (60 min)	T° (90 min)	T° (120 min)
		0	30	60	90	120
СОМВО	PÉRDIDA SLUMP (Pulg)	9	8 3/4	8	7 3/4	7 1/4
15	T° AMBIENTE (°C)	25.0	24.0	24.5	23.0	23.0
	T° CONCRETO (°C)	24.0	23.0	22.5	22.5	22.5
	HUMEDAD RELATIVA (%)	44.0	45.0	44.0	41.0	40.0
СОМВО	PÉRDIDA SLUMP (Pulg)	9 1/2	9 1/4	9	8 3/4	8
16	T° AMBIENTE (°C)	25.0	20.0	18.5	18.5	19.5
	T° CONCRETO (°C)	21.5	21.0	20.0	20.0	19.0
	HUMEDAD RELATIVA (%)	65.0	62.0	60.0	64.0	58.0
СОМВО	PÉRDIDA SLUMP (Pulg)	9 1/2	9 1/4	8 1/2	8	7 3/4
17	T° AMBIENTE (°C)	18.0	18.5	18.5	18.0	18.0
	T° CONCRETO (°C)	21.0	21.0	20.0	20.5	19.5
	HUMEDAD RELATIVA (%)	67.0	60.0	60.0	62.0	64.0
СОМВО	PÉRDIDA SLUMP (Pulg)	9 1/4	8 3/4	8 1/2	8 1/4	7 1/4
18	T° AMBIENTE (°C)	21.0	24.0	23.5	23.5	25.0
	T° CONCRETO (°C)	20.0	19.5	20.0	19.5	19.5
	HUMEDAD RELATIVA (%)	47.0	45.0	40.0	38.0	36.0


СОМВО	PÉRDIDA SLUMP (Pulg)	9 1/4	8 3/4	8 1/2	7 1/2	7
19	T° AMBIENTE (°C)	23.5	24.5	24.5	25.0	25.0
	T° CONCRETO (°C)	21.0	21.0	21.0	20.5	21.0
	HUMEDAD RELATIVA (%)	42.0	39.0	37.0	33.0	33.0
СОМВО	PÉRDIDA SLUMP (Pulg)	9 1/4	9	8 3/4	8 1/2	8 1/4
20	T° AMBIENTE (°C)	23.5	25.0	25.0	25.0	25.5
	T° CONCRETO (°C)	20.0	22.0	22.0	22.5	22.5
	HUMEDAD RELATIVA (%)	38.0	37.0	34.0	34.0	31.0
СОМВО	PÉRDIDA SLUMP (Pulg)	9	8 3/4	8 1/2	7 3/4	7 1/2
21	T° AMBIENTE (°C)	22.5	24.0	24.0	26.0	25.5
	T° CONCRETO (°C)	22.5	22.0	22.0	21.0	21.0
	HUMEDAD RELATIVA (%)	42.0	38.0	40.0	37.0	32.0


Tabla 62. Datos de validación de consistencia – Pérdida de trabajabilidad (combo 22 al 27).


	FICHA DE DA	TOS DE VALIDA	ACIÓN DE CO	ONSISTENCL	A	
		Pérdida de tral	pajabilidad			
	FRECUENCIA	T° (CERO min)	T° (30 min)	T° (60 min)	T° (90 min)	T° (120 min)
		0	30	60	90	120
СОМВО	PÉRDIDA SLUMP (Pulg)	9	8 1/2	7 3/4	6 1/2	5 3/4
22	T° AMBIENTE (°C)	23.5	23.5	26.0	25.0	26.0
	T° CONCRETO (°C)	21.5	21.0	21.0	21.5	22.0
	HUMEDAD RELATIVA (%)	49.0	40.0	37.0	32.0	32.0
СОМВО	PÉRDIDA SLUMP (Pulg)	9 1/2	8 3/4	8 1/4	7	5 3/4
23	T° AMBIENTE (°C)	26.0	25.5	26.5	26.0	24.5
	T° CONCRETO (°C)	23.0	23.5	24.0	24.0	24.5
	HUMEDAD RELATIVA (%)	30.0	36.0	34.0	29.0	32.0
	PÉRDIDA SLUMP (Pulg)	9 1/2	9	8 1/2	8	6 1/2
24	T° AMBIENTE (°C)	22.0	21.5	24.5	24.0	26.0
	T° CONCRETO (°C)	22.0	21.0	21.5	21.5	21.0


HUMEDAD RELATIVA (%)	41.0	41.0	38.0	37.0	35.0
PÉRDIDA SLUMP (Pulg)	9 1/2	8 3/4	8 1/2	7 3/4	7 1/4
T° AMBIENTE (°C)	22.0	23.0	21.0	21.0	21.0
T° CONCRETO (°C)	22.5	22.5	22.0	20.0	20.0
HUMEDAD RELATIVA (%)	52.0	47.0	49.0	52.0	51.0
PÉRDIDA SLUMP (Pulg)	9 1/2	9 1/4	8 1/2	7 3/4	7 1/2
T° AMBIENTE (°C)	24.5	26.0	24.0	25.0	23.5
T° CONCRETO (°C)	22.5	24.0	23.0	23.0	22.0
HUMEDAD RELATIVA (%)	38.0	36.0	36.0	35.0	35.0
PÉRDIDA SLUMP (Pulg)	9 1/2	9 1/4	8 1/2	7 1/4	6 3/4
T° AMBIENTE (°C)	25.0	23.5	26.0	24.5	24.0
T° CONCRETO (°C)	23.0	23.5	23.0	22.0	21.5
HUMEDAD RELATIVA (%)	43.0	37.0	37.0	38.0	37.0
	PÉRDIDA SLUMP (Pulg) T° AMBIENTE (°C) T° CONCRETO (°C) HUMEDAD RELATIVA (%) PÉRDIDA SLUMP (Pulg) T° AMBIENTE (°C) T° CONCRETO (°C) HUMEDAD RELATIVA (%) PÉRDIDA SLUMP (Pulg) T° AMBIENTE (°C) T° CONCRETO (°C)	PÉRDIDA SLUMP (Pulg) 9 1/2 T° AMBIENTE (°C) 22.0 T° CONCRETO (°C) 22.5 HUMEDAD RELATIVA (%) 52.0 PÉRDIDA SLUMP (Pulg) 9 1/2 T° AMBIENTE (°C) 24.5 T° CONCRETO (°C) 22.5 HUMEDAD RELATIVA (%) 38.0 PÉRDIDA SLUMP (Pulg) 9 1/2 T° AMBIENTE (°C) 25.0 T° CONCRETO (°C) 23.0	PÉRDIDA SLUMP (Pulg) 9 1/2 8 3/4 T° AMBIENTE (°C) 22.0 23.0 T° CONCRETO (°C) 22.5 22.5 HUMEDAD RELATIVA (%) 52.0 47.0 PÉRDIDA SLUMP (Pulg) 9 1/2 9 1/4 T° AMBIENTE (°C) 24.5 26.0 T° CONCRETO (°C) 22.5 24.0 HUMEDAD RELATIVA (%) 38.0 36.0 PÉRDIDA SLUMP (Pulg) 9 1/2 9 1/4 T° AMBIENTE (°C) 25.0 23.5 T° CONCRETO (°C) 23.0 23.5	PÉRDIDA SLUMP (Pulg) 9 1/2 8 3/4 8 1/2 T° AMBIENTE (°C) 22.0 23.0 21.0 T° CONCRETO (°C) 22.5 22.5 22.0 HUMEDAD RELATIVA (%) 52.0 47.0 49.0 PÉRDIDA SLUMP (Pulg) 9 1/2 9 1/4 8 1/2 T° AMBIENTE (°C) 24.5 26.0 24.0 T° CONCRETO (°C) 22.5 24.0 23.0 HUMEDAD RELATIVA (%) 38.0 36.0 36.0 PÉRDIDA SLUMP (Pulg) 9 1/2 9 1/4 8 1/2 T° AMBIENTE (°C) 25.0 23.5 26.0 T° CONCRETO (°C) 23.0 23.5 26.0	PÉRDIDA SLUMP (Pulg) 9 1/2 8 3/4 8 1/2 7 3/4 T° AMBIENTE (°C) 22.0 23.0 21.0 21.0 T° CONCRETO (°C) 22.5 22.5 22.0 20.0 HUMEDAD RELATIVA (%) 52.0 47.0 49.0 52.0 PÉRDIDA SLUMP (Pulg) 9 1/2 9 1/4 8 1/2 7 3/4 T° AMBIENTE (°C) 24.5 26.0 24.0 25.0 T° CONCRETO (°C) 22.5 24.0 23.0 23.0 HUMEDAD RELATIVA (%) 38.0 36.0 36.0 35.0 PÉRDIDA SLUMP (Pulg) 9 1/2 9 1/4 8 1/2 7 1/4 T° AMBIENTE (°C) 25.0 23.5 26.0 24.5 T° CONCRETO (°C) 25.0 23.5 26.0 24.5

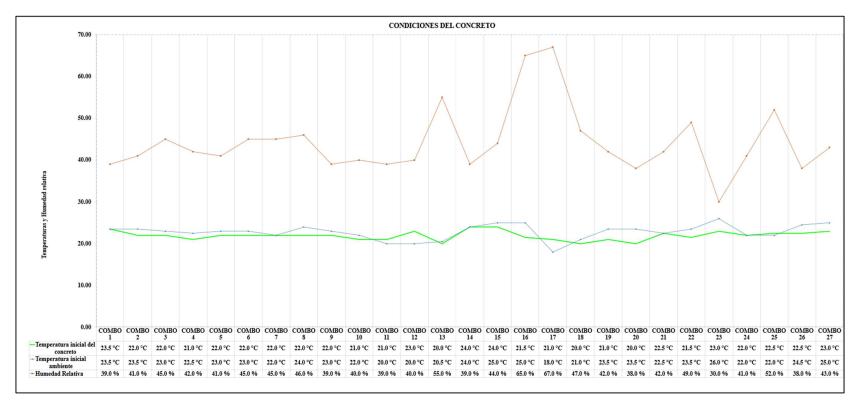


Tabla 67. Análisis estadístico de la consistencia.

							Análisis	estadístico co	nsistencia						
N	M.f		a absoluta	a Relativa		Frecuencia Absoluta Acumulad	Frecuenci a Relativa Acumulad		a gradual		xi*xpro m	(xi*xprom)^	$V(x) = s^2$	s=V(x)^0.	CV= s/xprom*100
Li	Ls	de clase)	(fi)	(hi)	(pi%)	a (Fi)	a (Hi)	(Pi%)	(Si)						70
8 3/4	9	8.875	10	0.370	37.037%	10	0.370	37.037%	133.33 °	88.75	-0.2222	0.0494	0.0183		
9	9 1/4	9.125	10	0.370	37.037%	20	0.741	74.074%	133.33 °	91.25	0.0278	0.0008	0.0003		
9 1/4	9 1/2	9.375	7	0.259	25.926%	27	1.000	100.000%	93.33 °	65.625	0.2778	0.0772	0.0200		
9 1/2	9 3/4	9.625	0	0.000	0.000%	27	1.000	100.000%	0.00°	0	0.5278	0.2785	0.0000		
9 3/4	10	9.875	0	0.000	0.000%	27	1.000	100.000%	0.00°	0	0.7778	0.6049	0.0000		
10	10 1/4	10.125	0	0.000	0.000%	27	1.000	100.000%	0.00°	0	1.0278	1.0563	0.0000		
	Σ	No aplica	27	1.000	100.000	No aplica	No aplica	No aplica	360.00°	245.63	No aplica	No aplica	0.0386	0.1964	2.16%

Tabla 63. Media, moda y mediana del análisis estadístico de la consistencia.

n =	27	Media		Mo	da	Mediana		
Rango =	0.500	X prom 9.10		Li=	8.75	Li=	8.75	
				fi=	10	(n/2) =	13.50	
k =	6			fi-1=	0	Fi-1=	0	
				fi+1=	10	fi=	10	
a =	0.25			a=	0.25	a=	0.25	
				Mo=	9.00	Me=	9.09	

Figura 49. Gráfico de barras de los datos agrupados en Consistencia

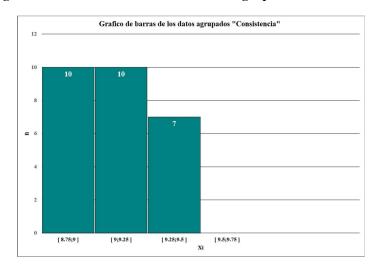
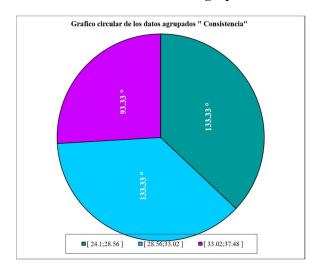



Figura 50. Gráfico circular de los datos agrupados en Consistencia

- El promedio de la consistencia inicial del análisis de datos de las 27 combinaciones de agregados es de 9".
- Del 50% de las consistencias iniciales analizadas se encuentran menores o iguales a 9".
- La consistencia inicial más frecuente es de 9".
- La dispersión de la consistencia inicial de los 27 datos analizados es de aproximadamente de 0.1964 o ¼" con respecto a la consistencia inicial promedio.

Tabla 64. Análisis estadístico de Temperatura.

							Análisis e	stadístico ten	peratura						
M	.f	Xi (marca		Frecuenci a Relativa		Absoluta	a Relativa	Frecuencia Porcentual Acumulada	Frecuenci a gradual	xi*fi	xi*xpro	(xi*xprom)^	V(x) = s^2	$s=V(x)^{\wedge}0.$	CV= s/xprom*100
Li	Ls	de clase)	(fi)	(hi)	(pi%)	(Fi)	a (Hi)	(Pi%)	(Si)		m	2	5 2	3	%
20.00	20.70	20.350	3	0.111	11.111%	3	0.111	11.111%	40.00°	61.05	-1.5556	2.4198	0.2689	=	
20.70	21.40	21.050	5	0.185	18.519%	8	0.296	29.630%	66.67 °	105.25	-0.8556	0.7320	0.1356		
21.40	22.10	21.750	10	0.370	37.037%	18	0.667	66.667%	133.33 °	217.50	-0.1556	0.0242	0.0090		
22.10	22.80	22.450	3	0.111	11.111%	21	0.778	77.778%	40.00°	67.35	0.5444	0.2964	0.0329		
22.80	23.50	23.150	4	0.148	14.815%	25	0.926	92.593%	53.33 °	92.60	1.2444	1.5486	0.2294	_	
23.50	24.20	23.850	2	0.074	7.407%	27	1.000	100.000%	26.67°	47.70	1.9444	3.7809	0.2801	_	
Σ		No aplica	27	1.000	100.000%	No aplica	No aplica	No aplica	360.00°	591.45	No aplica	No aplica	0.9558	0.9777	4.46%

Interpretación: La consistencia de las combinaciones de agregados analizados se caracteriza por tener datos muy homogéneos, ya que presenta un coeficiente de variabilidad de 2.16 % que se encuentra en el intervalo desde 0% hasta 10%.

Tabla 65. Media, moda y mediana del análisis estadística de Temperatura.

n =	27	Med	Media		oda	Medi	Mediana		
Rango =	4.000	X porm	X porm 21.91		21.40	Li=	21.40		
				fi=	10	(n/2) =	13.50		
k =	6		24.00	fi-1=	5	Fi-1=	8		
		min	20.00	fi+1=	3	fi=	10		
a =	0.70			a=	0.70	a=	0.70		
					21.69	Me=	21.78		

Figura 51. Gráfico de barras de datos agrupados de Temperatura.

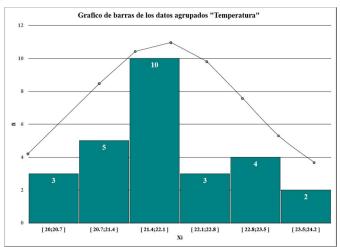
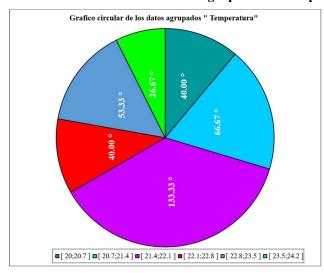



Figura 61. Gráfico circular de los datos agrupados de Temperatura.

- El promedio de la temperatura inicial del análisis de datos de las 27 combinaciones de agregados es de 21.91 °C.
- Del 50% de las temperaturas iniciales analizadas se encuentran menores o iguales a 21.78 °C.
- La temperatura inicial más frecuente es de 21.69 °C.
- La dispersión de la temperatura inicial de los 27 datos analizados es de aproximadamente de 0.9777 °C o 1 °C con respecto a la consistencia inicial promedio.
- La consistencia de las combinaciones de agregados analizados se caracteriza por tener datos muy homogéneos, ya que presenta un coeficiente de variabilidad de 4.46 % que se encuentra en el intervalo desde 0% hasta 10%.

4.1.2.2. Análisis estadístico descriptivo de la segregación

Tabla 71. Datos de Validación de Segregación (Combo 1 al combo 9).

FICHA DE DATOS DE VALIDACION DE SEGREGACION										
Código de Mezcla		CO MB O 1	CO MB O 2	CO MB O 3	CO MB O 4	CO MB O 5	CO MB O 6	CO MB O 7	CO MB O 8	CO MB O 9
% Pasante en la malla #30 combinada	(%)	41.0 9	17.7 2	37.5 6	38.4 4	39.3	40.2	41.9 8	16.6 4	17.0 0
Peso de la arena	kg	693	710	630	646	662	678	709	657	674
Peso del material calculado en la malla # 30	kg	284. 79	125. 83	236. 61	248. 33	260. 33	272. 62	297. 63	109. 31	114. 58
Cemento	kg	407. 00								
Total de finos	kg	691. 79	532. 83	643. 61	655. 33	667. 33	679. 62	704. 63	516. 31	521. 58
Slump inicial	pl gs	9	9 1/4	9	9 1/4	9 1/4	9	9	9 1/4	9 1/4
Tipo de slump		D	D	С	С	С	D	D	С	С

Tabla 66. Datos de Validación de Segregación (Combo 10 al combo 18).

FICHA	DE I	DATOS	DE VAI	IDACIO	ON DE S	SEGRE	GACIO	N		
Código de Mezcla		CO MB O 10	CO MB O 11	CO MB O 12	CO MB O 13	CO MB O 14	CO MB O 15	CO MB O 16	CO MB O 17	CO MB O 18
% Pasante en la malla #30 combinada	(%)	17.3 6	18.0	18.4 5	46.4 0	20.2	50.8	22.0 6	55.2 5	23.8
Peso de la arena	kg	690	723	740	788	826	866	909	944	991
Peso del material calculado en la malla # 30	kg	119. 79	130. 75	136. 50	365. 65	167. 30	440. 14	200. 54	521. 54	236. 55
Cemento	kg	407. 00								
Total de finos	kg	526. 79	537. 75	543. 50	772. 65	574. 30	847. 14	607. 54	928. 54	643. 55

Slump inicial	pl gs	9 1/4	9 1/4	9 1/4	9	9 1/4	9	9 1/2	9 1/2	9 1/4
Tipo de slump		D	D	С	D	D	D	D	D	D

Tabla 67. Datos de Segregación (Combo 19 al Combo 27).

FICHA DE DATOS DE VALIDACION DE SEGREGACION										
Código de Mezcla		CO MB O 19	CO MB O 20	CO MB O 21	CO MB O 22	CO MB O 23	CO MB O 24	CO MB O 25	CO MB O 26	CO MB O 27
% Pasante en la malla #30 combinada	(%)	39.8 7	33.3	26.7 9	43.6	36.4 4	29.2 5	47.4 0	39.5 6	31.7
Peso de la arena	kg	796	805	816	875	885	897	954	965	975
Peso del material calculado en la malla # 30	kg	317. 33	268. 29	218. 62	381. 80	322. 52	262. 40	452. 23	381. 74	309. 22
Cemento	kg	407. 00								
Total de finos	kg	724. 33	675. 29	625. 62	788. 80	729. 52	669. 40	859. 23	788. 74	716. 22
Slump inicial	pl gs	9 1/4	9 1/4	9	9	9 1/2	9 1/2	9 1/2	9 1/2	9 1/2
Tipo de slump		D	D	D	D	D	D	D	D	D

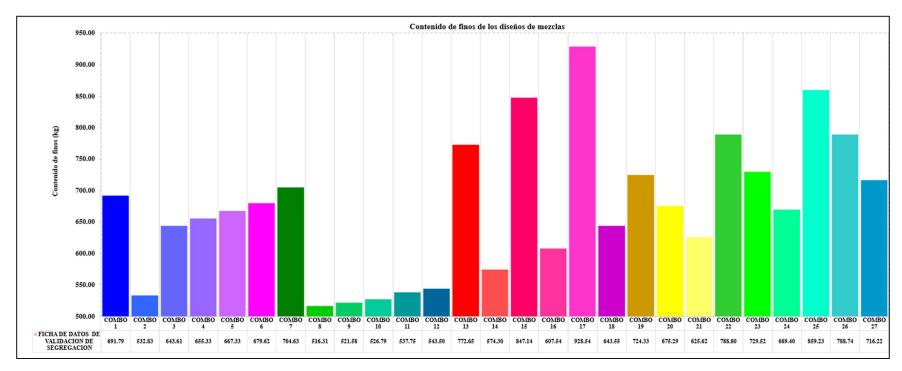


Tabla 74. Análisis estadístico del contenido de finos.

	Análisis estadístico contenido de finos														
M Li	Ls	Xi (marca de clase)	Frecuenci a absoluta (fi)	Frecuenci a Relativa (hi)	Frecuenci a Porcentu al (pi%)	Frecuenci a Absoluta Acumula da (Fi)	Frecuenci a Relativa Acumula da (Hi)	Frecuenci a Porcentua l Acumula da (Pi%)	Frecuenci a gradual (Si)	xi*fi	xi- xprom	(xi-xprom) ^2	V(x) = s^2	s=V(x)^0.	CV= s/xprom*100 %
516.31	588.33	552.320	7	0.259	25.926%	7	0.259	25.926%	93.33 °	3866.24	-120.03	14408.0011	3735.4077		
588.33	660.35	624.340	5	0.185	18.519%	12	0.444	44.444%	66.67 °	3121.7	-48.01	2305.2802	426.9037		
660.35	732.37	696.360	9	0.333	33.333%	21	0.778	77.778%	120.00°	6267.24	24.01	576.3200	192.1067		
732.37	804.39	768.380	3	0.111	11.111%	24	0.889	88.889%	40.00°	2305.14	96.03	9221.1207	1024.5690		
804.39	876.41	840.400	2	0.074	7.407%	26	0.963	96.296%	26.67 °	1680.8	168.05	28239.6822	2091.8283		
876.41	948.43	912.420	1	0.037	3.704%	27	1.000	100.000%	13.33 °	912.42	240.07	57632.0044	2134.5187		
Σ	Σ	No aplica	27	1.000	100.000%	No aplica	No aplica	No aplica	360.00°	18153.54	No aplica	No aplica	9605.3341	98.0068	14.58%

Tabla 68. Media, moda y mediana del análisis estadístico del contenido de finos.

n =	27	Me	Media		oda	Mediana		
Rango =	412.227	X porm	X porm 672.35		660.35	Li=	588.33	
				fi=	9	(n/2) =	13.50	
k =	6			fi-1=	5	Fi-1=	7	
				fi+1=	3	fi=	5	
a =	72.02			a=	72.02	a=	72.02	
				Mo=	689.16	Me=	681.96	

Figura 52. Gráfico de barras de datos agrupados de contenidos finos.

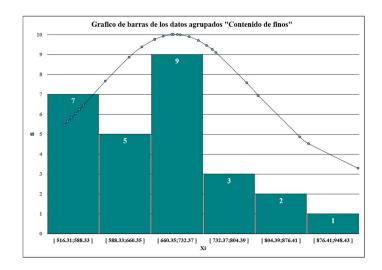
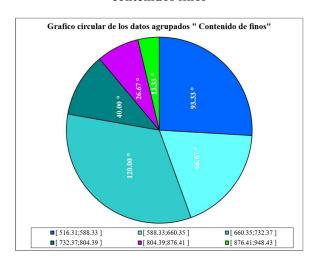



Figura 64. Gráfico de barras de datos agrupados de contenidos finos

- El promedio del contenido de finos del análisis de datos de las 27 combinaciones de agregados es de 672.35 kg/m³.
- Del 50% del contenido de finos analizados se encuentran menores o iguales a 681.96 kg/m³.
- El contenido de finos más frecuente es de 689.16 kg/m³.
- La dispersión del contenido de finos de los 27 datos analizados es de aproximadamente de 98.0068 kg/m³ con respecto al contenido de finos promedio.
- El contenido de finos de las combinaciones de agregados analizados se caracteriza por tener datos regularmente homogéneos, ya que presenta un coeficiente de variabilidad de 14.58 % que se encuentra en el intervalo desde 10% hasta 15%.

Tabla 76. Análisis estadístico del tipo de Slump.

Análisis estadístico del tipo de Slump

Valor	Frecuencia absoluta	Frecuencia acumulada	Frecuencia relativa	Frec. relativa acumulada	Frecuencia porcentual	Frec. porcentual acumulada	Frec. Gradual
A	0	0	0.000	0.000	0.00%	0.00%	0.00°
В	0	0	0.000	0.000	0.00%	0.00%	0.00°
С	6	6	0.222	0.222	22.22%	22.22%	80.00°
D	21	27	0.778	1.000	77.78%	100.00%	280.00°
Total	27		1.000		100.00%		360.00°

Figura 53. Gráfico de barras de datos agrupados Tipo de Slump.

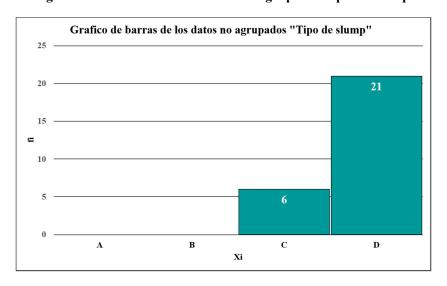


Figura 54. Gráfico circular de los datos agrupados Tipo de Slump.

Interpretación:

- El 77.78% de los datos se encuentran en el tipo de Slump D, que se presenta como colapso por el tipo de diseño bombeable y el Slump alto determinado (9").
- El promedio del contenido de finos del análisis de datos de las 27 combinaciones de agregados es de 672.35 kg/m³.
- Del 50% del contenido de finos analizados se encuentran menores o iguales a 681.96 kg/m³.
- El contenido de finos más frecuente es de 689.16 kg/m³.
- La dispersión del contenido de finos de los 27 datos analizados es de aproximadamente de 98.0068 kg/m³ con respecto al contenido de finos promedio.
- El contenido de finos de las combinaciones de agregados analizados se caracteriza por tener datos regularmente homogéneos, ya que presenta un coeficiente de variabilidad de 14.58 % que se encuentra en el intervalo desde 10% hasta 15%.

4.1.2.3. Análisis estadístico descriptivo de exudación

Tabla 69. Datos de Validación de Exudación (Combo 1 al combo 6)

FICHA	DE DATOS	S DE VALID	ACIÓN I	DE EXUD	ACIÓN			
Código de Mezcla			COMBC	COMBC	COMBO	COMBC	COMBC	COM
J			1	2	3	4	5	O 6
Dosificación de la mezcla								
Cemento		kg	40.700	40.700	40.700	40.700	40.700	40.70
								0
Agua		kg	16.740	17.650	17.180	17.070	16.960	16.85
								0
Arena cerro		kg	76.130	0.000	69.220	70.950	72.680	74.40
								0
Arena rio		kg	0.000	76.590	0.000	0.000	0.000	0.000
Piedra		kg	90.010	92.100	96.450	94.840	93.230	91.62
								0
Aditivo 1		kg	0.366	0.020	0.356	0.357	0.359	0.362
Total		kg	223.94	227.06	223.90	223.91	223.92	223.9
			6	0	6	7	9	32
Procedencia del material			CERR	RIO	CERR	CERR	CERR	CER
			O		O	O	O	RO
Método empleado (A o B)			A	A	A	A	A	A
Volumen de agua acumulado (D)		g	0	44	3	2	3	3
Área		cm2	172.03	172.03	172.03	172.03	172.03	172.0
			361	361	361	361	361	3361
Volumen de agua exudada por	ml/cm2	0.00	0.2	26 0.0	0.0	0.0	0.0)2
unidad de superficie								
Masa de la muestra de ensayo (s)		g	5592.0	5910.0	5650.0	5720.0	5625.0	5580.
			00	0	0	0	0	00
Masa de agua en el espécimen	g	418.002	459	.40 433	.51 436	.05 426	.02 419	.87
de ensayo (C)			0	7	6	8	3	i
% exudación		%	0.00 %	9.58 %	0.69 %	0.46 %	0.70 %	0.71
								%
Tiempo requerido para el cese	min	240	18	0 20	0 21	0 20	0 21	0
de la exudación								

Tabla 70. Datos de Validación de Exudación (Combo 7 al Combo 12).

FICHA DE	DATOS	DE VALII	DACIÓN D	E EXUDA	CIÓN		
Código de Mezcla		COMB O 7	COMB O 8	COMB O 9	COMB O 10	COMB O 11	COMB O 12
Dosificación de la mezcla							
Cemento	kg	40.700	40.700	40.700	40.700	40.700	40.700
Agua	kg	16.630	17.920	17.830	17.740	17.560	17.470
Arena cerro	kg	77.860	0.000	0.000	0.000	0.000	0.000
Arena rio	kg	0.000	71.250	73.030	74.810	78.370	80.150
Piedra	kg	88.400	96.960	95.340	93.720	90.490	88.870
Aditivo 1	kg	0.366	0.018	0.018	0.018	0.020	0.020
Total	kg	223.956	226.848	226.918	226.988	227.140	227.210
Procedencia del material		CERR O	RIO	RIO	RIO	RIO	RIO
Método empleado (A o B)		A	A	A	A	A	A
Volumen de agua acumulado (D)	g	2	46	45	43	42	40
Área	cm2	172.033 61	172.033 61	172.033 61	172.033 61	172.033 61	172.033 61
Volumen de agua exudada por unidad de superficie	ml/c m2	0.01	0.27	0.26	0.25	0.24	0.23
Masa de la muestra de ensayo (s)	g	5680.00	5764.00	5595.00	5598.00	5615.00	5638.00
Masa de agua en el espécimen de ensayo (C)	g	421.772	455.331	439.625	437.506	434.091	433.501
% exudación	%	0.47 %	10.10 %	10.24 %	9.83 %	9.68 %	9.23 %
Tiempo requerido para el cese de la exudación	min	240	160	170	180	180	180

Tabla 79. Tabla de Datos de Validación de Exudación (Combo 13 al Combo 18)

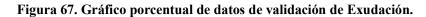

FICHA DE DAT	OS DE	VALIDA	CIÓN DE	EXUDAC	CIÓN		
Código de Mezcla		COMB O 13	COMB O 14	COMB O 15	COMB O 16	COMB O 17	COMB O 18
Cemento	kg	40.700	40.700	40.700	40.700	40.700	40.700
Agua	kg	16.090	18.080	19.300	17.670	19.290	18.450
Arena cerro	kg	86.510	0.000	91.580	0.000	100.09	0.000
Arena rio	kg	0.000	88.310	0.000	97.140	0.000	105.23
Piedra	kg	80.360	80.480	71.950	72.430	63.520	63.940
Aditivo 1	kg	0.366	0.020	0.448	0.020	0.448	0.020
Total	kg	224.02 6	227.59 0	223.97 8	227.96 0	224.04 8	228.34
Procedencia del material		CERR O	RIO	CERR O	RIO	CERR O	RIO
Método empleado (A o B)		A	A	A	A	A	A
Volumen de agua acumulado (D)	g	0	20	0	20	0	20
Área	cm2	172.03 361	172.03 361	172.03 361	172.03 361	172.03 361	172.03 361
Volumen de agua exudada por unidad de superficie	ml/c m2	0.00	0.12	0.00	0.12	0.00	0.12
Masa de la muestra de ensayo (s)	g	5610.0 0	5697.0 0	5598.0 0	5603.0 0	5589.0 0	5590.0 0
Masa de agua en el espécimen de ensayo (C)	g	402.92 1	452.57 5	482.37 5	434.30 8	481.20 0	451.67 4
% exudación	%	0.00 %	4.42 %	0.00 %	4.61 %	0.00 %	4.43 %
Tiempo requerido para el cese de la exudación	min	210	200	240	120	200	170

Tabla 71. Tabla de Datos de Validación de Exudación (Combo 19 al Combo 23).

FICHA DE DAT	OS DE	VALIDACI	ON DE EXU	DACION		
Código de Mezcla		COMBO 19	COMBO 20	COMBO 21	COMBO 22	COMBC 23
Cemento	kg	40.700	40.700	40.700	40.700	40.700
Agua	kg	19.780	17.890	18.330	16.900	17.390
Arena cerro	kg	62.630	43.180	21.630	71.100	47.470
Arena rio	kg	21.810	43.800	65.820	24.040	48.150
Piedra	kg	79.490	79.770	79.920	71.650	71.750
Aditivo 1	kg	0.368	0.304	0.183	0.434	0.342
Total	kg	224.778	225.644	226.583	224.824	225.802
Procedencia del material		CERRO/ RIO	CERRO/ RIO	CERRO/ RIO	CERRO/ RIO	CERRO RIO
Método empleado (A o B)		A	A	A	A	A
Volumen de agua acumulado (D)	g	5	16	18	8	2
Área	cm2	172.0336 1	172.0336 1	172.0336 1	172.0336 1	172.0330
Volumen de agua exudada por unidad de superficie	ml/c m2	0.03	0.09	0.10	0.05	0.01
Masa de la muestra de ensayo (s)	g	5620.00	5585.00	5635.00	5620.00	5576.00
Masa de agua en el espécimen de ensayo (C)	g	494.548	442.802	455.857	422.456	429.432
% exudación	%	1.01 %	3.61 %	3.95 %	1.89 %	0.47 %
Tiempo requerido para el cese de la exudación	min	170	265	190	210	150

Tabla 72. Tabla de Datos de Validación de Exudación (Combo 24 al Combo 27)

FICHA DE DATO	OS DE V	<u>ALIDACIÓN</u>	DE EXUDA	CIÓN		
Código de Mezcla		COMBO 24	COMBO 25	COM	ИВО 26	COMBO 27
Dosificación de la mezcla						
Cemento	kg	40.700	40.700	40	0.700	40.700
Agua	kg	17.870	16.360	18	3.140	18.060
Arena cerro	kg	23.790	77.550	50	0.270	25.140
Arena rio	kg	72.390	26.220	52	2.230	78.370
Piedra	kg	71.910	63.670	64	1.190	64.210
Aditivo 1	kg	0.195	0.448	0	.407	0.386
Total	kg	226.855	224.948	22	5.937	226.866
Procedencia del material		CERRO/ RIO	CERRO/ RIO	CERI	RO/RIO	CERRO, RIO
Método empleado (A o B)		A	A		A	A
Volumen de agua acumulado (D)	g	16	1		2	18
Área	cm2	172.033 17 61	72.0336 17 1	72.0336	172.03 361	
Volumen de agua exudada por unidad de superficie	ml/cn	n2 0.09	0.01	0.01	0.10	-
Masa de la muestra de ensayo (s)	g	5592.	00 5615. 00	5638. 00	5608.0 0	
Masa de agua en el espécimen de ensayo (C)	g	440.4	97 408.3 68	452.6 63	446.43	-
% exudación	%	3.63	3.63 % 0.24 %		4.03 %	-
Tiempo requerido para el cese de la exudación	min	120	90	180	170	-

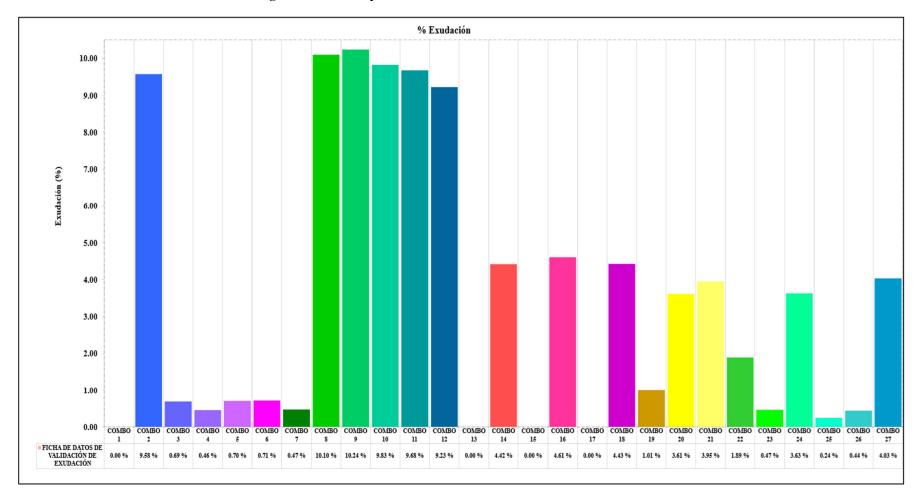


Tabla 73. Análisis estadístico de exudación.

							Anális	is estadístico e	xudación						
	I.f	Xi (marca	absoluta	Frecuencia Relativa	Porcentual	Frecuencia Absoluta Acumulada	Frecuencia Relativa Acumulada	Frecuencia Porcentual Acumulada	Frecuencia gradual	xi*fi	xi-xprom	(xi-xprom)^2	$V(x) = s^2$	s=V(x)^0.5	CV=s/xprom*100%
Li	Ls	de clase)	(fi)	(hi)	(pi%)	(Fi)	(Hi)	(Pi%)	(Si)						
0.00	1.79	0.895	13	0.481	48.148%	13	0.481	48.148%	173.33 °	11.64	-2.983	8.9003	4.2853		
1.79	3.58	2.685	1	0.037	3.704%	14	0.519	51.852%	13.33 °	2.69	-1.193	1.4240	0.0527		
3.58	5.37	4.475	7	0.259	25.926%	21	0.778	77.778%	93.33 °	31.33	0.597	0.3560	0.0923		
5.37	7.16	6.265	0	0.000	0.000%	21	0.778	77.778%	0.00°	0.00	2.387	5.6962	0.0000		
7.16	8.95	8.055	0	0.000	0.000%	21	0.778	77.778%	0.00°	0.00	4.177	17.4445	0.0000		
8.95	10.74	9.845	6	0.222	22.222%	27	1.000	100.000%	80.00 °	59.07	5.967	35.6011	7.9114		
2	Σ	No aplica	27	1.000	100.000%	No aplica	No aplica	No aplica	360.00	104.72	No aplica	No aplica	12.3417	3.5131	90.58%

Tabla 74. Media, moda y mediana del análisis del análisis estadístico de exudación.

n =	27	Media		Mo	da	Mediana		
Rango =	10.24	X porm	3.88	Li=	0.00	Li=	0.00	
				fi=	13	(n/2) =	13.50	
k =	6			fi-1=	0	Fi-1=	0	
				fi+1=	1	fi=	13	
a =	1.79			a=	1.79	a=	1.79	
				Mo=	0.93	Me=	1.86	

Figura 55. Gráfico de barras de los datos agrupados en exudación.

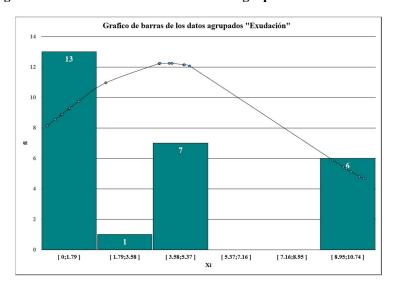


Figura 56. Gráfico circular de los datos agrupados en exudación.

Interpretación:

- El promedio de exudación de las muestras analizadas de las 27 combinaciones de agregados es de 3.88%.
- Del 50% de datos analizados con respecto a la exudación se encuentran menores o iguales a 1.86%.
- La exudación más frecuente es de 0.93%
- La dispersión de exudación de los 27 datos analizados es de aproximadamente de 3.5131 con respecto a la exudación promedio.
- La exudación de las combinaciones de agregados analizados se caracteriza por tener datos muy variables, ya que presenta un coeficiente de variabilidad de 90.58 % que se encuentra en el intervalo mayor a 25%.

4.1.2.4. Análisis estadístico descriptivo de contracción

Tabla 84. Tabla de datos de validación de contracción (Combo 1).

FICHA DE DATOS DE VALIDACIÓN DE CONTRACCIÓN											
CODIGO DE MEZCLA:				COMBO 1							
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDAD DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACION SEGÚN EL ANCHO			
F1	12:00	0.20	45	19.5	8.9	23	51	TIPO III			
F2	12:20	0.10	50	19.5	8.0	23	49	TIPO I			
F3	12:20	0.15	28	19.5	7.7	23	48	TIPO II			
F4	12:25	0.10	45	19.5	7.7	23	51	TIPO I			
F5	12:30	0.10	25	19.5	7.8	23	50	TIPO I			
F6	12:30	0.10	22	19.5	7.5	23	50	TIPO I			
F7	13:05	0.10	23	19.5	8.6	23	46	TIPO I			
F8	13:30	0.10	25	19.5	8.6	23.5	42	TIPO I			
F9	13:35	0.15	55	19.5	8.5	23.5	39	TIPO II			
F10	13:40	0.10	25	20.0	8.5	23	42	TIPO I			
F11	13:40	0.10	20	20.0	7.7	23	42	TIPO I			
F12	14:00	0.10	55	20.0	7.8	23	41	TIPO I			
F13	14:00	0.10	15	20.0	7.8	23	42	TIPO I			
F14	14:00	0.10	45	20.0	8.5	23	43	TIPO I			
F15	14:00	0.10	25	20.0	8.5	23	42	TIPO I			
F16	14:00	0.10	30	20.0	8.5	23	42	TIPO I			
F17	14:00	0.10	66	20.0	8.9	23	42	TIPO I			
F18	14:10	0.20	53	20.0	8.9	23	41	TIPO III			
F19	14:10	0.15	30	20.0	8.9	23	41	TIPO II			
F20	14:10	0.15	27	20.0	8.9	23	41	TIPO II			
F21	14:10	0.10	78	20.0	8.9	23	41	TIPO I			

F22	14:10	0.10	30	20.0	8.9	23	42	TIPO I
F23	14:10	0.10	70	20.0	8.9	23	42	TIPO I
F24	14:10	0.10	48	20.0	8.9	23	42	TIPO I
F25	14:10	0.10	76	20.0	8.9	23	42	TIPO I
F26	14:25	0.10	40	20.0	13.2	23	42	TIPO I
F27	14:25	0.10	45	20.0	13.2	23	40	TIPO I
F28	14:25	0.10	50	20.0	13.2	23	41	TIPO I
F29	14:25	0.10	30	20.0	13.2	23	41	TIPO I
F30	14:59	0.15	40	20.0	13.2	23	41	TIPO II
F31	14:59	0.10	55	20.0	13.2	23	41	TIPO I
F32	14:59	0.10	38	20.0	13.2	23	41	TIPO I
F33	14:59	0.10	21	20.0	13.2	20	41	TIPO I
F34	15:09	0.10	40	20.0	14.9	20	41	TIPO I
SUMA		0.11	1370					

Tabla 75. Tabla de datos de validación de contracción (Combo 2 y 3)

		FICHA	DE DATOS D	E VALIDA	CION DE CON	ΓRACC	CIÓN	
CODIGO DE MEZCLA:	:			COMBO 2				
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDA D DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACION SEGÚN EL ANCHO
F1								
SUMA		0.00	0					
CODIGO DE MEZCLA:	:			СОМВО 3				
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDAD DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACION SEGÚN EL ANCHO

F1	12:10	0.15	35	20.0	8.8	22	50	TIPO III
F2	12:15	0.15	42	20.0	8.5	22	50	TIPO I
F3	12:25	0.15	45	20.0	7.8	22	50	TIPO II
F4	12:30	0.20	32	20.0	7.8	21. 5	52	TIPO I
F5	12:35	0.15	28	20.0	7.6	21. 5	51	TIPO I
F6	12:40	0.20	15	20.0	7.4	21	51	TIPO I
F7	12:52	0.10	17	20.0	8.5	21	51	TIPO I
F8	13:05	0.10	23	20.0	8.5	21	50	TIPO I
F9	13:12	0.10	45	20.0	8.4	21	50	TIPO II
F10	13:18	0.10	32	20.0	8.4	21	50	TIPO I
F11	13:22	0.10	18	20.0	7.8	21	50	TIPO I
F12	13:25	0.10	35	20.0	7.8	21	50	TIPO I
F13	13:35	0.10	42	20.0	7.8	21	50	TIPO I
F14	13:40	0.10	35	20.0	8.3	21	48	TIPO I
F15	13:50	0.10	30	20.0	8.3	21	48	TIPO I
F16	13:55	0.10	20	20.0	8.3	21	49	TIPO I
F17	14:00	0.10	46	20.0	8.3	21	50	TIPO I
F18	14:05	0.10	54	20.0	8.3	21	51	TIPO III
F19	14:05	0.10	52	20.0	8.3	21	51	TIPO II
F20	14:06	0.15	45	20.0	8.3	21	51	TIPO II
F21	14:30	0.10	69	20.0	8.5	21	50	TIPO I
F22	14:35	0.10	23	20.0	8.5	21	50	TIPO I
F23	15:00	0.10	10	20.0	8.5	21	49	TIPO I
F24	15:05	0.10	15	20.0	8.5	21	49	TIPO I
SUMA		0.12	808					

Tabla 86. Tabla de datos de validación de contracción (Combo 4)

FICHA DE DATOS DE VALIDACION DE CONTRACCIÓN											
CODIGO DE MEZCLA:											
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDAD DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO			
F1	12:20	0.15	17	20.0	8.5	22	45	TIPO III			
F2	12:25	0.15	30	21.0	8.5	22. 5	47	TIPO I			
F3	12:32	0.15	25	21.0	7.9	22. 5	49	TIPO II			
F4	12:35	0.10	25	21.0	7.0	22	52	TIPO I			
F5	12:45	0.10	30	21.0	7.8	23	50	TIPO I			
F6	12:52	0.10	31	20.5	7.5	22	48	TIPO I			
F7	12:58	0.15	30	20.5	8.2	22. 5	49	TIPO I			
F8	13:20	0.20	18	20.0	8.1	22	50	TIPO I			
F9	13:25	0.20	22	20.0	8.2	22	50	TIPO II			
F10	13:25	0.10	19	20.0	8.6	22. 5	46	TIPO I			
F11	13:25	0.20	15	20.5	8.2	23	45	TIPO I			
F12	13:32	0.20	25	20.5	8.0	23	45	TIPO I			
F13	13:35	0.20	27	20.0	8.0	23	45	TIPO I			
F14	13:52	0.15	35	20.0	8.3	22	45	TIPO I			
F15	13:55	0.10	32	20.0	8.3	22	43	TIPO I			
F16	13:59	0.10	30	20.0	8.6	22	43	TIPO I			
F17	14:05	0.20	50	20.0	8.9	22	40	TIPO I			
F18	14:10	0.10	52	20.0	8.7	22	40	TIPO III			
F19	14:10	0.15	20	20.0	8.7	22	40	TIPO II			
F20	14:25	0.20	19	20.0	8.8	22	40	TIPO II			

15:00	0.10	20	20.0	8.8	22	39	TIPO I
15:12	0.10	20	20.0	8.8	22	40	TIPO I
15:18	0.10	32	20.0	8.9	22	40	TIPO I
15:25	0.15	32	20.0	8.9	22	40	TIPO I
	0.14	656					
	15:12 15:18	15:12 0.10 15:18 0.10 15:25 0.15	15:12 0.10 20 15:18 0.10 32 15:25 0.15 32	15:12 0.10 20 20.0 15:18 0.10 32 20.0 15:25 0.15 32 20.0	15:12 0.10 20 20.0 8.8 15:18 0.10 32 20.0 8.9 15:25 0.15 32 20.0 8.9	15:12 0.10 20 20.0 8.8 22 15:18 0.10 32 20.0 8.9 22 15:25 0.15 32 20.0 8.9 22	15:12 0.10 20 20.0 8.8 22 40 15:18 0.10 32 20.0 8.9 22 40 15:25 0.15 32 20.0 8.9 22 40

Tabla 87. Tabla de datos de validación de contracción (Combo del 7 al 9).

	FICHA I	DE DATOS DE	VALIDAC	ION DE CONTR	RACCI	ÓN	
:			СОМВО 7				
HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDAD DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO
13:20	0.15	20	21.0	8.0	21	40	TIPO II
13:40	0.15	26	21.0	8.0	21	42	TIPO II
13:45	0.15	35	21.0	8.0	21	42	TIPO III
13:50	0.10	35	21.0	8.0	21. 5	45	TIPO I
13:55	0.10	35	21.0	8.0	215	45	TIPO I
14:00	0.10	40	21.0	8.0	21. 5	45	TIPO I
14:10	0.10	35	21.0	8.2	21. 5	45	TIPO I
14:20	0.10	12	21.0	8.2	21. 5	45	TIPO I
14:25	0.10	65	21.0	8.2	21. 5	45	TIPO I
14:25	0.10	75	21.0	8.2	22	45	TIPO I
14:25	0.10	30	21.0	8.2	22	45	TIPO I
14:26	0.10	30	20.0	8.2	22	45	TIPO I
14:35	0.20	25	20.0	8.2	22	45	TIPO I
14:38	0.10	35	20.0	8.5	22	45	TIPO I
	HORA DE BROTE 13:20 13:40 13:45 13:50 14:00 14:10 14:25 14:25 14:25 14:25 14:25	HORA DE BROTE (mm) 13:20 0.15 13:40 0.15 13:45 0.15 13:50 0.10 14:00 0.10 14:10 0.10 14:20 0.10 14:25 0.10 14:25 0.10 14:25 0.10 14:26 0.10 14:35 0.20	HORA DE PROM. DE FISURA (mm) 13:20 0.15 20 13:40 0.15 26 13:45 0.15 35 13:50 0.10 35 14:00 0.10 40 14:10 0.10 35 14:25 0.10 65 14:25 0.10 75 14:25 0.10 30 14:26 0.10 30	HORA DE BROTE (mm) 13:20 13:40 13:45 13:55 14:00 14:10 14:25 14:25 14:25 14:25 14:26 14:35 COMBO 7 LONGITUD T° C AL BROTAR LA FISURA (mm) DE FISURA (mm) DE FISURA BROTE (mm) 10 21.0 11 21.0 12 21.0 14:25 14:25 14:25 14:26 14:26 14:25 14:26 14:25 14:26 14:25 14:26 14:25 14:26 14:25 14:26 14:25 14:26 14:25 14:26 14:25 14:26 14:25 14:26 14:25 14:26 14:25 14:26 14:25 14:26 14:25 14:26 14:25 10 14:25 10 14:26 10 10 10 10 10 10 10 10 10 1	HORA DE BROTE PROM. DE FISURA (mm) T° C AL DE VELOCIDAD DE FISURA (mm) LA FISURA (km/h) 13:20	HORA DE PROM. DE FISURA RISURA (mm) DE BROTE (mm) DE SURA (mm) DE VIENTO AL BROTAR LA FISURA (mm/h) DE SURA (mm/h) DE VIENTO AL BROTAR LA FISURA (mm/h) DE VIENTO AL BROTAR DEL VIENTO AL BROTAR (mm/h) DE SURA (mm/h	HORA DE PROM. DE FISURA (mm) 13:20 0.15 20 21.0 8.0 21 42 13:45 0.15 35 21.0 8.0 21 42 13:55 0.10 35 21.0 8.0 21 45 14:20 0.10 35 21.0 8.0 21 45 14:25 0.10 30 21.0 8.0 21. 45 5 14:25 0.10 30 21.0 8.0 21. 45 14:25 0.10 30 21.0 8.0 21. 45 14:25 0.10 30 21.0 8.0 21. 45 14:25 0.10 30 21.0 8.0 21. 45 14:25 0.10 30 21.0 8.0 21. 45 14:25 14:25 0.10 30 21.0 8.0 21. 45 14:25 14:25 0.10 30 21.0 8.0 21. 45 5 45 45 45 45 45 45 45 45

F15	14:40	0.10	40	20.0	8.5	22	45	TIPO I
F16	14:55	0.10	42	20.0	8.6	22	42	TIPO I
F17	15:00	0.10	45	20.0	8.7	22	42	TIPO I
F18	15:20	0.15	45	20.0	8.5	21	42	TIPO I
F19	15:25	0.20	27	20.0	8.5	21	42	TIPO I
F20	15:40	0.20	55	20.0	8.5	21	40	TIPO II
F21	15:45	0.20	30	20.5	8.5	21	40	TIPO II
F22	16:00	0.20	30	20.5	8.5	21	40	TIPO II
SUMA		0.13	812					
CODIGO DE MEZCLA				COMBO 8				
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDAD DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO
F1								
SUMA		0.00	0					
CODIGO DE MEZCLA				СОМВО 9				
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)		VELOCIDAD DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO
F1								
SUMA		0.00	0					

Tabla 88. Tabla de datos de validación de contracción (Combo del 10 al 13).

		FICHA D	E DATOS DE	VALIDACIÓ	N DE CONTRA	ACCIÓ	N	
CODIGO DE MEZCLA:				COMBO 10				
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDAD DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO
F1								
SUMA		0.00	0					
CODIGO DE MEZCLA:				COMBO 11				
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDAD DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO
F1								
SUMA		0.00	0					
CODIGO DE MEZCLA:				COMBO 12				
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDAD DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO
F1								
SUMA		0.00	0					
CODIGO DE MEZCLA:				COMBO 13				
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDAD DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO

13:10	0.10	33	19.0	8.6	23.5	46	TIPO I
13:55	0.10	20	20.0	8.6	23	43	TIPO I
14:27	0.10	45	20.0	13.2	23	43	TIPO I
14:27	0.10	50	20.0	13.2	23	43	TIPO I
14:30	0.10	70	20.0	13.2	23	40	TIPO I
14:41	0.15	35	20.5	13.2	23	40	TIPO II
14:41	0.10	50	20,5	13.2	23	40	TIPO I
14:41	0.15	38	20.5	13.2	23	41	TIPO II
15:21	0.10	36	20.0	14.9	23	41	TIPO I
15:30	0.15	47	20.0	14.9	23	43	TIPO II
15:30	0.10	50	20.0	14.9	23	43	TIPO I
15:41	0.25	130	20.0	14.9	23	43	TIPO IV
	0.13	604					
	13:55 14:27 14:27 14:30 14:41 14:41 15:21 15:30 15:30	13:55 0.10 14:27 0.10 14:27 0.10 14:30 0.10 14:41 0.15 14:41 0.15 15:21 0.10 15:30 0.15 15:41 0.25	13:55 0.10 20 14:27 0.10 45 14:27 0.10 50 14:30 0.10 70 14:41 0.15 35 14:41 0.10 50 14:41 0.15 38 15:21 0.10 36 15:30 0.15 47 15:30 0.10 50 15:41 0.25 130	13:55 0.10 20 20.0 14:27 0.10 45 20.0 14:27 0.10 50 20.0 14:30 0.10 70 20.0 14:41 0.15 35 20.5 14:41 0.10 50 20,5 14:41 0.15 38 20.5 15:21 0.10 36 20.0 15:30 0.15 47 20.0 15:30 0.10 50 20.0 15:41 0.25 130 20.0	13:55 0.10 20 20.0 8.6 14:27 0.10 45 20.0 13.2 14:27 0.10 50 20.0 13.2 14:30 0.10 70 20.0 13.2 14:41 0.15 35 20.5 13.2 14:41 0.10 50 20,5 13.2 14:41 0.15 38 20.5 13.2 15:21 0.10 36 20.0 14.9 15:30 0.15 47 20.0 14.9 15:30 0.10 50 20.0 14.9 15:41 0.25 130 20.0 14.9	13:55 0.10 20 20.0 8.6 23 14:27 0.10 45 20.0 13.2 23 14:27 0.10 50 20.0 13.2 23 14:30 0.10 70 20.0 13.2 23 14:41 0.15 35 20.5 13.2 23 14:41 0.10 50 20,5 13.2 23 14:41 0.15 38 20.5 13.2 23 15:21 0.10 36 20.0 14.9 23 15:30 0.15 47 20.0 14.9 23 15:30 0.10 50 20.0 14.9 23 15:41 0.25 130 20.0 14.9 23	13:55 0.10 20 20.0 8.6 23 43 14:27 0.10 45 20.0 13.2 23 43 14:27 0.10 50 20.0 13.2 23 43 14:30 0.10 70 20.0 13.2 23 40 14:41 0.15 35 20.5 13.2 23 40 14:41 0.10 50 20.5 13.2 23 40 14:41 0.15 38 20.5 13.2 23 41 15:21 0.10 36 20.0 14.9 23 41 15:30 0.15 47 20.0 14.9 23 43 15:30 0.10 50 20.0 14.9 23 43 15:41 0.25 130 20.0 14.9 23 43

Tabla 89. Tabla de datos de validación de contracción (Combo del 14 al 17).

		FICHA DE	DATOS DE	VALIDACIO	ON DE CONTRA	.CCIÓ	N	
CODIGO DE MEZCLA:				COMBO 14				
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDA D DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO
F1								
SUMA		0.00	0					
CODIGO DE MEZCLA:				COMBO 15				
FISURA	HORA DE BROT E	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDAD DEL VIENTC AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO

F1	13:10	0.10	20	17.0	12.7	21.	48	TIPO I
F2	13:10	0.10	18	17.5	12.7	21.	48	TIPO I
F3	13:10	0.10	38	17.5	12.7	21. 5	48	TIPO I
F4	13:20	0.20	100	18.0	11.0	21. 5	41	TIPO III
F5	13:25	0.25	78	18.0	11.0	21. 5	41	TIPO IV
F6	13:50	0.25	84	19.0	11.0	22. 5	40	TIPO IV
F7	14:15	0.15	44	19.0	4.6	24	40	TIPO II
F8	14:30	0.10	18	19.0	4.6	24	39	TIPO I
SUMA		0.16	400					
CODIGO DE MEZCLA:				COMBO 16	6			
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDA D DEL VIENTO AL BROTAR LA	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO
		(mm)			FISURA (km/h)			
F1								
F1 SUMA			0					
		(mm)	0	COMBO 17	(km/h)			
SUMA CODIGO DE	HORA DE BROTE	(mm)	0 LONGITUD DE FISURA (mm)		(km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO
SUMA CODIGO DE MEZCLA:	DE	O.00 ANCHO PROM. DE BROTE	LONGITUD DE FISURA	COMBO 17 T° C AL BROTAR LA	VELOCIDAD DEL VIENTO AL BROTAR LA FISURA	T° A	HR 62	SEGÚN EL
SUMA CODIGO DE MEZCLA: FISURA	DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	COMBO 17 T° C AL BROTAR LA FISURA	VELOCIDAD DEL VIENTO AL BROTAR LA FISURA (km/h)			SEGÚN EL ANCHO
SUMA CODIGO DE MEZCLA: FISURA	DE BROTE	ANCHO PROM. DE BROTE (mm) 0.15	LONGITUD DE FISURA (mm)	COMBO 17 T° C AL BROTAR LA FISURA	VELOCIDAD DEL VIENTO AL BROTAR LA FISURA (km/h)	18	62	SEGÚN EL ANCHO TIPO II
SUMA CODIGO DE MEZCLA: FISURA F1 F2	DE BROTE 14:25 14:25	ANCHO PROM. DE BROTE (mm) 0.15	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDAD DEL VIENTO AL BROTAR LA FISURA (km/h) 4.9	18	62 62	SEGÚN EL ANCHO TIPO II

F5	14:50	0.20	26	16.5	6.2	19	55	TIPO III
F6	14:50	0.10	39	16.5	6.2	19	55	TIPO I
F7	15:15	0.10	21	16.5	6.2	20	52	TIPO I
SUMA		0.15	227					

Tabla 76. Tabla de datos de validación de contracción (Combo del 18 al 21).

	J	FICHA DE	DATOS DE V	ALIDACIO	ON DE CONTRA	ACCIÓ	N	
CODIGO DE MEZCLA:				COMBO 18	3			
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDA D DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO
F1	15:15	0.15	143	17.0	5.1	20	52	TIPO II
F2								
SUMA		0.15	143					
CODIGO DE MEZCLA:				COMBO 19)			
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDA D DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO
F1	14:17	0.10	21	17.5	4.9	17. 5	66	TIPO I
F2	14:17	0.15	33	17.5	4.9	17. 5	66	TIPO II
F3	14:30	0.20	26	17.0	6.2	18	62	TIPO III
F4	14:30	0.15	16	17.0	6.2	18	62	TIPO II
F5	14:50	0.15	41	17.0	6.2	19	57	TIPO II
F6	14:50	0.10	18	17.0	6.2	19	57	TIPO I
F7	15:10	0.10	51	17.0	6.5	20	59	TIPO I

F8	15:10	0.15	32	17.0	6.5	20	59	TIPO II
F9	15:15	0.10	22	17.0	5.1	20	51	TIPO I
F10	15:15	0.10	23	17.0	5.1	20	51	TIPO I
SUMA		0.13	283					
CODIGO				COMBO 20)			
DE MEZCLA:								
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDA D DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO
F1	12:15	0.10	18	17.0	6.9	23	42	TIPO I
F2								
SUMA		0.10	18					
CODIGO DE MEZCLA:				COMBO 2	1			
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDA D DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO
F1	12:25	0.25	31	18.0	6.9	22	45	TIPO IV
F2								
SUMA		0.25	31					

Tabla 77. Tabla de datos de validación de contracción (Combo del 22 al 23).

CODIGO DE MEZCLA:				COMBO 22	2			
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDA D DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR (CLASIFICACIÓN SEGÚN EL ANCHO
F1	12:00	0.25	68	17.5	6.9	23. 5	44	TIPO IV
F2	12:00	0.15	46	17.5	6.9	23. 5	44	TIPO II
F3	12:15	0.15	61	17.0	6.9	23	42	TIPO II
F4	12:15	0.15	38	17.0	6.9	23	42	TIPO II
F5	12:28	0.20	41	17.5	6.9	22	46	TIPO III
F6	12:30	0.15	70	17.5	6.9	22	46	TIPO II
F7	12:30	0.25	125	17.5	8.7	22	46	TIPO IV
F8	12:30	0.15	72	17.5	8.7	22	46	TIPO II
F9	12:30	0.20	90	17.5	8.7	22	46	TIPO III
F10	12:32	0.20	56	17.5	8.7	22	46	TIPO III
F11	12:35	0.20	67	17.5	6.9	22	46	TIPO III
F12	12:35	0.15	57	17.5	6.9	22	46	TIPO II
F13	12:40	0.20	55	17.5	8.7	22. 5	46	TIPO III
F14	12:40	0.25	35	17.5	8.7	22. 5	46	TIPO IV
F15	12:40	0.10	55	17.5	8.7	22. 5	46	TIPO I
F16	12:40	0.15	54	17.5	8.7	22. 5	46	TIPO II
F17	12:40	0.10	44	17.5	8.7	22. 5	46	TIPO I
F18	12:40	0.20	38	17.5	8.7	22. 5	46	TIPO III
F19	12:50	0.25	95	17.5	8.7	23. 5	46	TIPO IV

F20	12:50	0.25	70	17.5	8.7	23. 5	46	TIPO IV
SUMA		0.19	1237					
CODIGO DE MEZCLA:				COMBO 23	3			
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDAD DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO
F1	17:30	0.10	89	17.0	7.8	16	68	TIPO I
F2	17:30	0.15	22	17.0	7.8	16	68	TIPO II
F3	18:00	0.10	88	17.0	6.7	15. 5	71	TIPO I
F4	18:00	0.20	145	17.5	6.7	15. 5	71	TIPO III
F5	18:00	0.15	42	17.5	6.7	15. 5	71	TIPO II
F6	18:00	0.15	64	17.5	6.7	15. 5	71	TIPO II
F7	18:00	0.10	35	17.5	6.7	15. 5	72	TIPO I
F8	18:30	0.20	23	17.0	7.2	15	79	TIPO III
SUMA		0.14	508					

Tabla 92. Tabla de datos de validación de contracción (Combo del 24 al 27).

CODIGO	J	TICHA DE	DATUS DE V	COMBO 24	ON DE CONTRA	HUUIU	71 1	
DE MEZCLA:								
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDA D DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO
F1								
SUMA		0.00	0					
CODIGO DE MEZCLA:				COMBO 25	5			
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDA D DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO
F1					·			
SUMA		0.00	0					
CODIGO DE MEZCLA:				COMBO 26	5			
FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDA D DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO
F1	15:30	0.15	35	19.0	4.9	24	44	TIPO II
F2								
SUMA		0.15	35					
CODIGO DE MEZCLA:				COMBO 27	7			

FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDA D DEL VIENTO AL BROTAR LA FISURA (km/h)	T° A	HR	CLASIFICACIÓN SEGÚN EL ANCHO
F1	15:25	0.30	50	18.0	4.9	24. 5	42	TIPO V
F2	15:30	0.20	42	18.0	4.9	24. 5	44	TIPO III
F3	15:30	0.15	65	18.0	4.9	24. 5	44	TIPO II
SUMA		0.22	157					

Figura 70. Gráfico de medición de fisura.

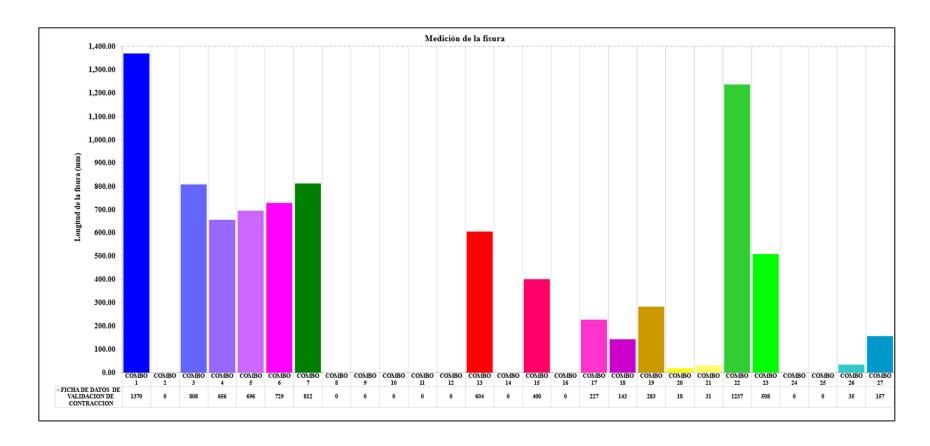


Tabla 78. Análisis estadístico Contracción.

							Análisis	s estadístico C	ontracción						
Li	Ls	Xi (marca de clase)	Frecuencia absoluta (fi)	Frecuencia Relativa (hi)	Frecuencia Porcentual (pi%)	Absoluta	Frecuencia Relativa Acumulada (Hi)	Porcentual	Frecuencia gradual (Si)	xi*fi	xi-xprom	(xi-xprom)^2	$V(x) = s^2$	s=V(x)^0.5	CV=s/xprom*100%
0.00	239.36	119.680	16	0.593	59.259%	16	0.593	59.259%	213.33 °	1914.88	-257.09	66095.4585	39167.6791		
239.36	478.72	359.040	2	0.074	7.407%	18	0.667	66.667%	26.67 °	718.08	-17.73	314.3660	23.2864		
478.72	718.08	598.400	4	0.148	14.815%	22	0.815	81.481%	53.33 °	2393.60	221.63	49119.6927	7276.9915		
718.08	957.44	837.760	3	0.111	11.111%	25	0.926	92.593%	40.00 °	2513.28	460.99	212511.4386	23612.3821		
957.44	1196.80	1077.120	0	0.000	0.000%	25	0.926	92.593%	0.00°	0.00	700.35	490489.6037	0.0000		
1196.80	1436.16	1316.480	2	0.074	7.407%	27	1.000	100.000%	26.67 °	2632.96	939.71	883054.1880	65411.4213	·	
2	Σ	No aplica	27	1.000	100.000%	No aplica	No aplica	No aplica	360.00	10172.80	No aplica	No aplica	135491.7604	368.0921	97.70%

Tabla 79. Media, moda y mediana del análisis estadístico de contracción.

n =	27	Me	dia	M	oda	Med	iana
Rango =	1370.00	X porm 376.77		Li=	0.00	Li=	0.00
				fi=	16	(n/2) =	13.50
k =	6			fi-1=	0	Fi-1=	0
				fi+1=	2	fi=	16
a =	239.36			a=	239.36	a=	239.36
				Mo=	127.66	Me=	201.96

Figura 71. Gráfico de barras de los datos agrupados de contracción.

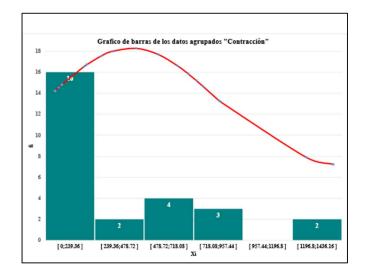
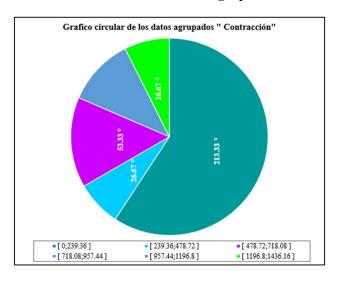



Figura 57. Gráfico circular de los datos agrupados de contracción

Interpretación:

- El promedio de contracción de las muestras analizadas de las 27 combinaciones de agregados es de 376.77 mm.
- Del 50% de datos analizados con respecto a la contracción se encuentran menores o iguales a 201.96 mm.
- La contracción más frecuente es de 127.66 mm.
- La dispersión de la contracción de los 27 datos analizados es de aproximadamente de 368.0921 mm con respecto a la contracción promedio.
- La contracción de las combinaciones de agregados analizados se caracteriza por tener datos muy variables, ya que presenta un coeficiente de variabilidad de 97.70 % que se encuentra en el intervalo mayor a 25%.

4.1.2.5. Análisis estadístico descriptivo de contracción

Tabla 80. Datos de validación de Densidad (Combo 1 al 7)

CODIGO DE		COMBO	COMBO	COMBO	COMBO	COMBO	СОМВО	COMBO
MEZCLA:		1	2	3	4	5	6	7
WEZCLA;		<u> </u>			4	<u> </u>		
TIEMPO DE	min	10	10	10	10	10	10	10
MEZCLADO								
TEMPERATURA.								
(°C)								
Ambiente	°C	24.00	23.50	23.00	22.50	23.00	23.00	22.00
Concreto	°C	23.50	22.00	21.00	22.00	21.00	22.00	22.00
PESO UNITARIO								
Tara + concreto	Kg	20.03	20.112	20.055	20.089	20.039	20.054	20.08
Tara	Kg	3.687	3.687	3.687	3.687	3.687	3.687	3.687
Volumen de	m^3	0.00708	0.00708	0.00708	0.00708	0.00708	0.00708	0.00708
recipiente		508	508	508	508	508	508	508
PU	Kg/	2306.68	2318.25	2310.21	2315.01	2307.95	2310.07	2313.74
	m³							
PU Teórico	Kg/	2236.70	2268.50	2239.00	2239.00	2239.10	2239.20	2239.30
	m ³							
Rendimiento	-	0.97	0.98	0.97	0.97	0.97	0.97	0.97
Aire atrapado	%	1.1	1.4	1.0	1.1	1.0	1.0	1.1

Tabla 81. Datos de validación de Densidad (Combo 8 al 14)

	FIC	HA DE DAT	OS DE VA	LIDACIO	N DE DENS	SIDAD		
CODIGO DE MEZCLA:		COMBO 8	COMBO 9	COMBO 10	COMBO 11	COMBO 12	COMBO 13	COMBC
TIEMPO DE MEZCLADO	min	10	10	10	10	10	10	10
Ambiente	°C	24.00	23.00	22.00	20.00	20.00	20.5	25
Concreto	°C	21.00	23.00	22.00	21.00	20.00	20	20.5
Tara + concreto	Kg	20.124	20.139	20.16	20.117	20.096	19.918	20.147
Tara	Kg	3.687	3.687	3.687	3.687	3.687	3.687	3.687
Volumen de recipiente	m³	0.00708 508						
PU	Kg/ m³	2319.95	2322.06	2325.03	2318.96	2315.99	2290.87	2323.19
PU Teórico	Kg/ m³	2268.40	2269.20	2269.90	2271.40	2272.10	2237.60	2272.70
Rendimiento	-	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Aire atrapado	%	1.5	1.4	1.3	1.4	1.3	0.8	1.1

Tabla 97. Datos de validación de Densidad (Combo 15 al 21).

FICHA DE DATOS DE VALIDACION DE DENSIDAD													
CODIGO DE MEZCLA:		COMBO 15	COMBO 16	COMBO 17	COMBO 18	COMBO 19	COMBO 20	COMBO 21					
TIEMPO DE MEZCLADO	min	10	10	10	10	10	10	10					
TEMPERATURA(°C)													
Ambiente	°C	25	25	18	21	23.5	23.5	22.5					
Concreto	°C	24	21.5	21	20	21	20	22.5					

PESO UNITARIO								
Tara + concreto	Kg	19.926	20.105	19.906	19.899	20.001	19.956	19.885
Tara	Kg	3.687	3.687	3.687	3.687	3.687	3.687	3.687
Volumen de recipiente	m³	0.00708 508						
PU	Kg/ m³	2292.00	2317.26	2289.18	2288.19	2302.59	2296.23	2286.21
PU Teórico	Kg/ m³	2237.70	2277.20	2238.40	2281.20	2246.30	2254.90	2264.30
Rendimiento	-	0.98	0.98	0.98	1.00	0.98	0.98	0.99
Aire atrapado	%	1.0	1.4	1.0	2.2	0.8	1.0	1.1

Tabla 98. Datos de validación de Densidad (Combo 22 al 27).

	FICHA	DE DATOS	DE VALIDA	CIÓN DE I	DENSIDAD		
CODIGO DE		COMBO	COMBO	COMBO	COMBO	COMBO	COMBO
MEZCLA:		22	23	24	25	26	27
TIEMPO DE	min	10	10	10	10	10	10
MEZCLADO							
TEMPERATURA. (°C)							
Ambiente	°C	23.5	26.0	22.0	22.0	24.5	25.0
Concreto	°C	21.5	25.0	22.0	22.5	22.5	23.0
PESO UNITARIO							
Tara + concreto	Kg	20.047	20.08	20.110	19.882	20.105	20.232
Tara	Kg	3.687	3.687	3.687	3.687	3.687	3.687
Volumen de recipiente	m³	0.007085	0.007085	0.007085	0.007085	0.007085	0.007085
		08	08	08	08	08	08
PU	Kg/	2309.08	2313.74	2317.97	2285.79	2317.26	2335.19
	m^{3}						
PU Teórico	Kg/	2246.80	2256.50	2267.10	2248.00	2258.00	2266.20
	m^3						
Rendimiento	-	0.97	0.98	0.98	0.98	0.97	0.97
Aire atrapado	%	0.6	0.8	0.7	0.6	1.0	0.7

Tabla 99. Análisis estadístico de Peso Unitario.

							Análisis est	adístico Peso	unitario						
N	A.f	Xi (marca de	Frecuenc ia absoluta	Frecuenc ia Relativa	Frecuenc ia Porcentu	Frecuenci a Absoluta Acumula	Frecuenci a Relativa Acumula	Frecuenci a Porcentu al	Frecuenc ia gradual	xi*fi	xi- xprom	(xi-xprom)	V(x) = s^2	s=V(x)^0	CV= s/xprom*100 %
Li	Ls	clase)	(fi)	(hi)	al (pi%)	da (Fi)	da (Hi)	Acumula da (Pi%)	(Si)						70
2285.79	2294.42	2290.105	6	0.222	22.222%	6	0.222	22.222%	80.00°	13740.63	-18.858	355.6298	79.0288		
2294.42	2 2303.05	2298.735	2	0.074	7.407%	8	0.296	29.630%	26.67 °	4597.47	-10.228	104.6150	7.7493		
2303.05	2311.68	2307.365	5	0.185	18.519%	13	0.481	48.148%	66.67 °	11536.83	-1.598	2.5541	0.4730		
2311.68	3 2320.31	2315.995	10	0.370	37.037%	23	0.852	85.185%	133.33 °	23159.95	7.032	49.4469	18.3137		
2320.31	2328.94	2324.625	3	0.111	11.111%	26	0.963	96.296%	40.00 °	6973.88	15.662	245.2936	27.2548		
2328.94	2337.57	2333.255	1	0.037	3.704%	27	1.000	100.000%	13.33 °	2333.26	24.292	590.0941	21.8553		
	Σ	No aplica	27	1.000	100.000%	No aplica	No aplica	No aplica	360.00	62342.01	No aplica	No aplica	154.6749	12.4368	0.54%

Tabla 100. Media, moda y mediana del análisis estadístico de peso unitario.

		Me	dia	M	loda	Mediana		
				fi =	10	(n/2) =	13.50	
<i>K</i> =	6	Max	2335.19	fi-1=	5	Fi-1=	8	
		min	2285.79	fi+1=	3	fi=	10	
A =	8.63			a=	8.63	a=	8.63	
				Mo=	2315.28	Me=	2370.80	

Figura 58. Gráfico de barras de los datos agrupados del peso unitario

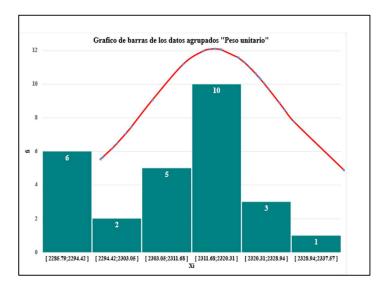
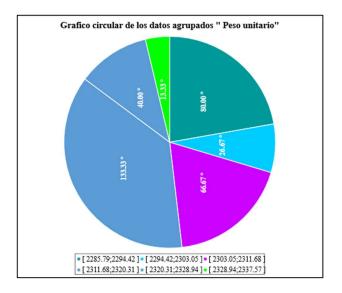



Figura 59. Gráfico circular de los datos agrupados del peso unitario.

Interpretación:

- El promedio del peso unitario del análisis de datos de las 27 combinaciones de agregados es de 2308.96 kg/m³.
- Del 50% de los pesos unitarios analizados se encuentran menores o iguales a 2307.80 kg/m³.
- El peso unitario más frecuente es de 2315.28 kg/m³.
- La dispersión del peso unitario de los 27 datos analizados es de aproximadamente de 12.4368 kg/m³ con respecto al peso unitario promedio.

Tabla 101. Análisis estadístico de aire atrapado

							Análisis e	stadístico air	e atrapado						
Li	I.f Ls	Xi (marca de clase)	Frecuenci a absoluta (fi)	Frecuenci a Relativa (hi)	Frecuenci a Porcentua 1 (pi%)	Frecuenci a Absoluta Acumulad a (Fi)	Frecuenci a Relativa Acumulad a (Hi)	Frecuenci a Porcentual Acumulad a (Pi%)	Frecuenci a gradual (Si)	xi*fi	xi- xprom	(xi-xprom) ^2	V(x) = s^2	s=V(x)^0.	CV= s/xprom*100 %
0.60	0.88	0.740	7	0.259	25.926%	7	0.259	25.926%	93.33 °	5.18	-0.332	0.1101	0.0286		
0.88	1.16	1.020	12	0.444	44.444%	19	0.704	70.370%	160.00°	12.24	-0.052	0.0027	0.0012		
1.16	1.44	1.300	6	0.222	22.222%	25	0.926	92.593%	80.00°	7.80	0.228	0.0521	0.0116		
1.44	1.72	1.580	1	0.037	3.704%	26	0.963	96.296%	13.33 °	1.58	0.508	0.2582	0.0096		
1.72	2.00	1.860	0	0.000	0.000%	26	0.963	96.296%	0.00°	0.00	0.788	0.6212	0.0000		
2.00	2.28	2.140	1	0.037	3.704%	27	1.000	100.000%	13.33 °	2.14	1.068	1.1409	0.0423		
	Σ	No aplica	27	1.000	100.000%	No aplica	No aplica	No aplica	360.00	28.94	No aplica	No aplica	0.0931	0.3052	28.47%

Interpretación: El peso unitario de las combinaciones de agregados analizados se caracteriza por tener datos muy homogéneos, ya que presenta un coeficiente de variabilidad de 0.54 % que se encuentra en el intervalo desde 0% hasta 10%.

Tabla 82. Media, moda y mediana del análisis estadístico de aire atrapado.

n =	27	Med	ia	Mo	da	Mediana		
Rango =	1.60	X porm	1.07	Li=	0.88	Li=	0.88	
				fi=	12	(n/2) =	13.50	
k =	6			fi-1=	7	Fi-1=	7	
				fi+1=	6	fi=	12	
a =	0.28			a=	0.28	a=	0.28	
				Mo=	1.01	Me=	1.03	

Figura 60. Gráficos de barras de los datos agrupados del aire atrapado

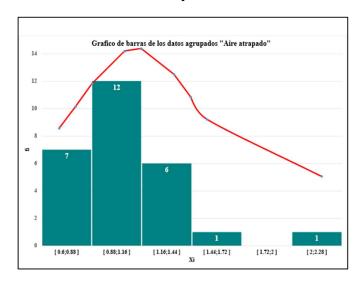


Figura 77. Gráfico de los datos agrupados del aire atrapado

Interpretación:

- El promedio del aire atrapado del análisis de datos de las 27 combinaciones de agregados es de 1.07%.
- Del 50% de los aires atrapados analizados se encuentran menores o iguales a 1.03%.
- El aire atrapado más frecuente es de 1.01%.
- La dispersión del aire atrapado de los 27 datos analizados es de aproximadamente de 0.3052 con respecto al aire atrapado promedio.
- El aire atrapado de las combinaciones de agregados analizados se caracteriza por tener datos muy variables, ya que presenta un coeficiente de variabilidad de 28.47 % que se encuentra en el intervalo mayor a 25%.

4.1.3. Análisis estadístico descriptivo de los ensayos en estado endurecido

4.1.3.1. Análisis estadístico descriptivo de los ensayos de resistencia a la compresión

Tabla 83. Análisis estadístico descriptivo de ensayos de resistencia a la compresión (Combo 1 al 4).

CÓDIGO	DISEÑO f'c	FECHA DE ELAB.	FECHA DE ENSAYO	EDAD (DÍAS)	CARGA (KN)	CARGA (Kg-F)	RESISTENCIA (KG/CM2)	PROMEDIO (MPa)	RESISTENCIA PROMEDIO (kg/cm²)	% RESISTENCIA PROMEDIO	DISPERCIÓN	EVAL
COMBO 1		17/02/2024	16/03/2024	28	291.11	29684.96	377.96	36.33	370.44	176%	5.54%	ок
	210				275.31	28073.81	357.45					
					289.54	29524.86	375.92					
COMBO 2		17/02/2024	16/03/2024	28	298.79	30468.10	387.93	38.01	387.55	185%	5.44%	OK
	210				290.22	29594.20	376.81					
					306.47	31251.24	397.90					
COMBO 3		17/02/2024	16/03/2024	28	283.52	28910.99	368.11	36.06	367.69	175%	1.68%	OK
	210				280.65	28618.34	364.38					
					285.42	29104.74	370.57					
COMBO 4	210	17/02/2024	16/03/2024	28	285.26	29088.42	370.37	36.50	372.22	177%	2.06%	OK
					290.36	29608.48	376.99					
					284.45	29005.83	369.31					

Tabla 84. Análisis estadístico descriptivo de ensayos de resistencia a la compresión (Combo 5 al 8).

CÓDIGO	DISEÑO f'c	FECHA DE ELAB.	FECHA DE ENSAYO	EDAD (DÍAS)	CARGA (KN)	CARGA (Kg-F)	RESISTENCIA (Kg/cm²)	PROMEDIO (MPa)	RESISTENCIA PROMEDIO (kg/cm²)	% RESISTENCIA PROMEDIO	DISPERCIÓN	EVAL
					290.65	29638.05	377.36					
COMBO 5	210	17/02/2024	16/03/2024	28	292.35	29811.40	379.57	37.23	379.60	181%	1.19%	ок
					294.12	29991.89	381.87					
					287.25	29291.35	372.95					
COMBO 6	210	17/02/2024	16/03/2024	28	292.36	29812.42	379.58	36.97	376.98	180%	1.76%	ОК
					291.45	29719.63	378.40					
					292.56	29832.82	379.84					
COMBO 7	210	17/02/2024	16/03/2024	28	288.64	29433.09	374.75	36.87	375.97	179%	1.73%	ок
					287.54	29320.92	373.33					
					299.15	30504.81	388.40					
COMBO 8	210	18/02/2024	17/03/2024	28	297.25	30311.06	385.93	38.02	387.71	185%	0.74%	OK
					299.45	30535.40	388.79					

Tabla 85. Análisis estadístico descriptivo de ensayos de resistencia a la compresión (Combo 9 al 12).

CÓDIGO	DISEÑO f'c	FECHA DE ELAB.	FECHA DE ENSAYO	EDAD (DÍAS)	CARGA (KN)	CARGA (Kg-F)	RESISTENCIA (kg/cm2)	PROMEDIO (MPa)	RESISTENCIA PROMEDIO (kg/cm²)	% RESISTENCIA PROMEDIO	DISPERCIÓN	EVAL
					298.15	30402.84	387.10	-				
COMBO 9	210	18/02/2024	17/03/2024	28	296.14	30197.88	384.49	37.86	386.10	184%	0.68%	OK
					297.85	30372.25	386.71					
					302.15	30810.73	392.29	_				
COMBO 10	210	18/02/2024	17/03/2024	28	303.14	30911.68	393.58	38.39	391.43	186%	1.32%	ОК
					299.16	30505.83	388.41					
					298.25	30413.04	387.23	_				
COMBO 11	210	18/02/2024	17/03/2024	28	299.47	30537.44	388.81	38.01	387.59	185%	0.54%	OK
-					297.85	30372.25	386.71					
					305.26	31127.86	396.33	_				
COMBO 12	210	18/02/2024	17/03/2024	28	306.58	31262.46	398.05	39.05	398.19	190%	0.97%	OK
					308.24	31431.73	400.20					

Tabla 106. Análisis estadístico descriptivo de ensayos de resistencia a la compresión (Combo 13 al 16).

CÓDIGO	DISEÑO f'c	FECHA DE ELAB.	FECHA DE ENSAYO	EDAD (DÍAS)	CARGA (KN)	CARGA (Kg-F)	RESISTENCIA (kg/cm2)	PROMEDIO (MPa)	RESISTENCIA PROMEDIO (kg/cm²)	% RESISTENCIA PROMEDIO	DISPERCIÓN	EVAL
					285.41	29103.72	370.56	-				
COMBO 13	210	18/02/2024	17/03/2024	28	298.60	30448.73	387.69	37.07	378.01	180%	4.53%	ОК
					289.44	29514.67	375.79					
					296.48	30232.55	384.93	=				
COMBO 14	210	18/02/2024	17/03/2024	28	290.73	29646.21	377.47	37.65	383.93	183%	3.11%	ОК
					299.92	30583.33	389.40					
					274.78	28019.76	356.76	_				
COMBO 15	210	19/02/2024	18/03/2024	28	268.13	27341.65	348.12	35.09	357.82	170%	5.72%	ок
					283.89	28948.72	368.59					
					289.41	29511.61	375.75	_				
COMBO 16	210	20/02/2024	19/03/2024	28	283.95	28954.84	368.66	36.72	374.42	178%	2.72%	OK
					291.79	29754.30	378.84					

Tabla 86. Análisis estadístico descriptivo de ensayos de resistencia a la compresión (Combo 17 al 20)

CÓDIGO	DISEÑO f'c	FECHA DE ELAB.	FECHA DE ENSAYO	EDAD (DÍAS)	CARGA (KN)	CARGA (Kg-F)	RESISTENCIA (kg/cm2)	PROMEDIO (MPa)	RESISTENCIA PROMEDIO (kg/cm²)	% RESISTENCIA PROMEDIO	DISPERCION	EVAL
					277.66	28313.44	360.50					
COMBO 17	210	20/02/2024	19/03/2024	28	276.98	28244.10	359.62	35.04	357.32	170%	2.42%	OK
					271.00	27634.31	351.85					
					294.63	30043.90	382.53	_				
COMBO 18	210	21/02/2024	20/03/2024	28	292.35	29811.40	379.57	37.73	384.74	183%	3.26%	ОК
					302.02	30797.47	392.13					
					284.81	29042.54	369.78					
COMBO 19	210	21/02/2024	20/03/2024	28	290.16	29588.09	376.73	36.64	373.61	178%	1.86%	OK
					288.30	29398.42	374.31					
					317.53	32379.05	412.26					
COMBO 20	210	21/02/2024	20/03/2024	28	343.69	35046.63	446.23	41.82	426.45	203%	7.96%	CUIDADO
					324.15	33054.10	420.86					

Tabla 87. Análisis estadístico descriptivo de ensayos de resistencia a la compresión (Combo 21 al 24)

CODIGO	DISENO f'c	FECHA DE ELAB.	FECHA DE ENSAYO	EDAD (DÍAS)	CARGA (KN)	CARGA (Kg-F)	RESISTENCIA (kg/cm2)	PROMEDIO (MPa)	RESISTENCIA PROMEDIO (kg/cm²)	% RESISTENCIA PROMEDIO	DISPERCION	EVAL
					316.89	32313.79	411.43					
COMBO 21	210	22/02/2024	21/03/2024	28	297.11	30296.79	385.75	39.03	398.02	190%	6.45%	ок
					305.67	31169.67	396.86					
					314.49	32069.06	408.32					
COMBO 22	210	22/02/2024	21/03/2024	28	302.54	30850.49	392.80	39.27	400.41	191%	3.87%	ОК
					308.17	31424.59	400.11					
					289.90	29561.57	376.39	-				
COMBO 23	210	22/02/2024	21/03/2024	28	302.10	30805.63	392.23	38.22	389.76	186%	6.23%	OK
					308.59	31467.42	400.66					
					286.46	29210.79	371.92					
COMBO 24	210	23/02/2024	22/03/2024	28	299.06	30495.63	388.28	37.72	384.66	183%	5.68%	OK
					303.29	30926.97	393.77					

Tabla 88. Análisis estadístico descriptivo de ensayos de resistencia a la compresión (Combo 25 al 27)

CÓDIGO	DISEÑO f'c	FECHA DE ELAB.	FECHA DE ENSAYO	EDAD (DÍAS)	CARGA (KN)	CARGA (Kg-F)	RESISTENCIA (kg/cm2)	PROMEDIO (MPa)	RESISTENCIA PROMEDIO (kg/cm²)	% RESISTENCIA PROMEDIO	DISPERCIÓN	EVAL
					304.72	31072.79	395.63					
COMBO 25	210	24/02/2024	23/03/2024	28	290.76	29649.27	377.51	37.67	384.09	183%	4.72%	OK
					292.01	29776.73	379.13					
					329.92	33642.48	428.35					
COMBO 26	210	23/02/2024	22/03/2024	28	310.49	31661.17	403.12	41.04	418.53	199%	6.03%	OK
					326.67	33311.07	424.13					
					344.15	35093.53	446.82					
COMBO 27	210	23/02/2024	22/03/2024	28	338.11	34477.62	438.98	42.86	437.05	208%	4.92%	OK
					327.60	33405.90	425.34					

Figura 78. Gráfico de Resistencia a 28 días.

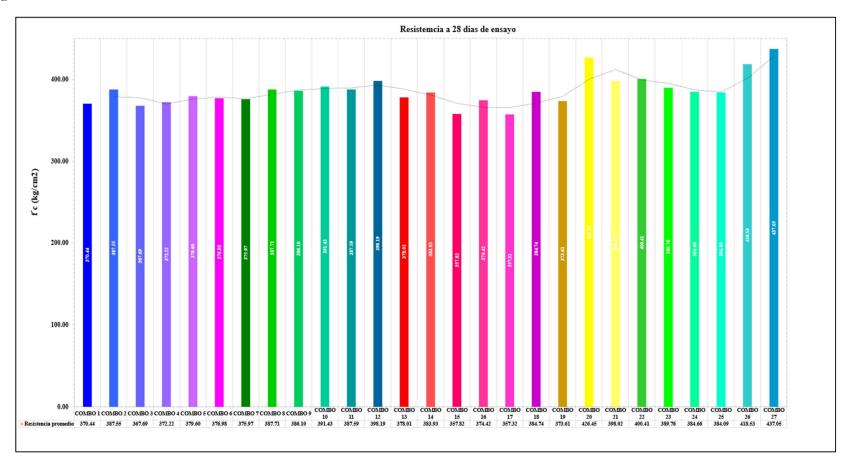


Tabla 89. Análisis estadístico de resistencia a compresión a 28 días.

						Análisis e	stadístico re	sistencia a c	ompresión a	28 días					
N	A.f	Xi	Frecuenci	Frecuenci	Frecuenci	Frecuenci	Frecuenci	Frecuenci a	Frecuenci						CV=
Li	Ls	(marca de clase)	a absoluta (fi)Z	a Relativa (hi)	a Porcentu al (pi%)	a Absoluta Acumula da (Fi)	a Relativa Acumula da (Hi)	Porcentua l Acumula da (Pi%)	a gradual (Si)	xi*fi	xi- xprom	(xi- xprom)^2	$V(x) = s^2$	s=V(x)^0.	s/xprom*100 %
357.32	371.25	364.285	4	0.148	14.815%	4	0.148	14.815%	53.33 °	1457.14	-22.185	492.1660	72.9135		
371.25	385.18	378.215	11	0.407	40.741%	15	0.556	55.556%	146.67°	4160.37	-8.255	68.1420	27.7615		
385.18	399.11	392.145	8	0.296	29.630%	23	0.852	85.185%	106.67 °	3137.16	5.675	32.2077	9.5430		
399.11	413.04	406.075	1	0.037	3.704%	24	0.889	88.889%	13.33 °	406.08	19.605	384.3633	14.2357		
413.04	426.97	420.005	2	0.074	7.407%	26	0.963	96.296%	26.67 °	840.01	33.535	1124.6086	83.3043		
426.97	440.90	433.935	1	0.037	3.704%	27	1.000	100.000%	13.33 °	433.94	47.465	2252.9438	83.4424		
	Σ	No aplica	27	1.000	100.000%	No aplica	No aplica	No aplica	360.00	10434.69	No aplica	No aplica	291.2004	17.0646	4.42%

Tabla 90. Media, moda y mediana del análisis estadístico de resistencia a compresión a 28 días.

n =	27	Me	dia	M	oda	Med	iana
Rango =	79.73	X porm	386.47	Li=	371.25	Li=	371.25
				fi=	11	(n/2) =	13.50
k =	6			fi-1=	4	Fi-1=	4
				fi+1=	8	fi=	11
a =	13.93			a=	13.93	a=	13.93
				Mo=	381.00	Me=	383.28

Figura 79. Gráfico de barras de los datos agrupados de resistencia a compresión a 28 días.

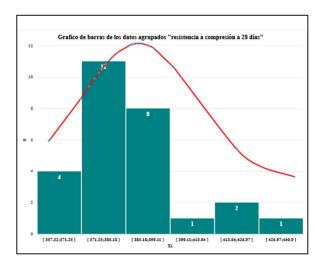


Figura 80. Gráfico circular de los datos agrupados de resistencia a compresión a 28 días.

Interpretación:

- El promedio de la resistencia a compresión a los 28 días del análisis de datos de las 27 combinaciones de agregados es de 386.47 kg/cm².
- Del 50% de los resultados de resistencia a compresión a los 28 días analizados se encuentran menores o iguales a 383.28 kg/cm².
- La resistencia a compresión a los 28 días más frecuente es de 381.00 kg/cm².
- La dispersión de la resistencia a compresión a los 28 días de los 27 datos analizados es de aproximadamente de 17.0646 kg/cm² con respecto a la resistencia a compresión a los 28 días promedio.
- La resistencia a compresión a los 28 días de las combinaciones de agregados analizados se caracteriza por tener datos muy homogéneos, ya que presenta un coeficiente de variabilidad de 4.42 % que se encuentra en el intervalo desde 0% hasta menos de 10%.

4.1.3.2. Análisis estadístico descriptivo de los ensayos de resistencia a la tracción

Tabla 91. Análisis estadístico descriptivo de los ensayos de resistencia a la tracción (Combo 1 al 4)

CÓDIGO	DISENO	FECHA DE MUESTRE O	FECHA DE ENSAY O	EDA D (DÍAS)	ALTUR A (cm)	DIAMETR O cm	AREA EN (cm2)		RESISTENCI A (Kg/cm2)	PROMEDI O (MPa)	RESISTENCI A PROMEDIO (kg/cm²)	% RESISTENCI A PROMEDIO	DISPERCIO N	EVA L
					200.00	100.00	7853.9 8	103.82	33.70					
COMB O 1	210	17/02/2024	16/03/202	28	200.00	100.00	7853.9 8	105.96	34.39	3.36	34.27	16.3%	2.96%	OK
01					200.00	100.00	7853.9 8	106.94	34.71					
					200.00	100.00	7853.9 8	125.21	40.64					
COMB O 2	210	17/02/2024	16/03/202	28	200.00	100.00	7853.9 8	128.54	41.72	4.06	41.37	19.7%	2.67%	ОК
					200.00	100.00	7853.9 8	128.61	41.75					

					200.00	100.00	7853.9 8	102.25	33.19					
COMB O 3	210	17/02/2024	16/03/202	28	200.00	100.00	7853.9 8	104.56	33.94	3.33	33.94	16.2%	4.44%	ОК
					200.00	100.00	7853.9 8	106.89	34.70					
					200.00	100.00	7853.9 8	103.45	33.58					
COMB O 4	210	17/02/2024	16/03/202	28	200.00	100.00	7853.9 8	104.12	33.80	3.33	33.92	16.2%	2.34%	ОК
					200.00	100.00	7853.9 8	105.89	34.37					

Nota. Elaboración propia.

Tabla 113. Análisis estadístico descriptivo de los ensayos de resistencia a la tracción (Combo 5 al 8)

CODIG O	DISEÑ O f'c	FECHA DE MUESTRE O	FECHA DE ENSAY O	EDA D (DÍAS)	ALTUR A (cm)	DIAMETR O cm	AREA EN (cm2)	CARG A (KN)	RESISTENCI A (Kg/cm2)	PROMEDI O (MPa)	RESISTENCI A PROMEDIO (kg/cm²)	% RESISTENCI A PROMEDIO	DISPERCIO N	EVA L
					200.00	100.00	7853.98	104.25	33.84					
COMBO 5	210	17/02/2024	16/03/2024	28	200.00	100.00	7853.98	104.87	34.04	3.34	34.02	16.2%	1.02%	OK
					200.00	100.00	7853.98	105.32	34.19					
					200.00	100.00	7853.98	103.56	33.61					
COMBO 6	210	17/02/2024	16/03/2024	28	200.00	100.00	7853.98	102.35	33.22	3.29	33.53	16.0%	1.61%	OK
					200.00	100.00	7853.98	104.01	33.76					
					200.00	100.00	7853.98	104.56	33.94					
COMBO 7	210	17/02/2024	16/03/2024	28	200.00	100.00	7853.98	103.56	33.61	3.31	33.76	16.1%	0.96%	ОК
	7 210 17				200.00	100.00	7853.98	103.89	33.72					
					200.00	100.00	7853.98	127.25	41.30					
COMBO 8	210	17/02/2024	16/03/2024	28	200.00	100.00	7853.98	128.65	41.76	4.09	41.68	19.8%	1.64%	OK
					200.00	100.00	7853.98	129.36	41.99					

Tabla 92. Análisis estadístico descriptivo de los ensayos de resistencia a la tracción (Combo 9 al 12)

CÓDIGO	DISEÑO f'c	FECHA DE MUESTREO	FECHA DE ENSAYO	EDAD (DÍAS)	ALTURA (cm)	DIAMETRO cm	AREA EN (cm2)	CARGA (KN)	RESISTENCIA (Kg/cm2)	PROMEDIO (MPa)	RESISTENCIA PROMEDIO (kg/cm²)	% RESISTENCIA PROMEDIO	DISPERCION	EVAL
					200.00	100.00	7853.98	129.65	42.08					
COMBO 9	210	17/02/2024	16/03/2024	28	200.00	100.00	7853.98	130.65	42.41	4.15	42.36	20.2%	1.19%	ОК
					200.00	100.00	7853.98	131.20	42.59					
					200.00	100.00	7853.98	130.69	42.42	<u>-</u>				
COMBO 10	210	17/02/2024	16/03/2024	28	200.00	100.00	7853.98	132.25	42.93	4.24	43.21	20.6%	4.33%	OK
					200.00	100.00	7853.98	136.45	44.29					
					200.00	100.00	7853.98	132.25	42.93	_				
COMBO 11	210	17/02/2024	16/03/2024	28	200.00	100.00	7853.98	131.98	42.84	4.22	43.05	20.5%	1.28%	OK
					200.00	100.00	7853.98	133.68	43.39					
					200.00	100.00	7853.98	135.62	44.02	_				
COMBO 12	210	17/02/2024	16/03/2024	28	200.00	100.00	7853.98	132.98	43.16	4.28	43.64	20.8%	1.96%	ок
					200.00	100.00	7853.98	134.78	43.75					

Tabla 93. Análisis estadístico descriptivo de los ensayos de resistencia a la tracción (Combo 13 al 16)

CÓDIGO	DISEÑO f'c	FECHA DE MUESTREO	FECHA DE ENSAYO	EDAD (DÍAS)	ALTURA (cm)	DIAMETRO cm	ÁREA EN (cm2)	CARGA (KN)	RESISTENCIA (Kg/cm2)	PROMEDIO (MPa)	RESISTENCIA PROMEDIO (kg/cm²)	% RESISTENCIA PROMEDIO	DISPERCION	EVAL
					200.00	100.00	7853.98	115.48	37.48					
COMBO 13	210	18/02/2024	17/03/2024	28	200.00	100.00	7853.98	116.41	37.79	3.72	37.91	18.1%	2.61%	ОК
					200.00	100.00	7853.98	118.53	38.47					
					200.00	100.00	7853.98	114.90	37.30	-				
COMBO 14	210	18/02/2024	17/03/2024	28	200.00	100.00	7853.98	118.12	38.34	3.72	37.95	18.1%	2.75%	ок
					200.00	100.00	7853.98	117.77	38.23					
					200.00	100.00	7853.98	111.01	36.03					
COMBO 15	210	19/02/2024	18/03/2024	28	200.00	100.00	7853.98	110.64	35.91	3.49	35.54	16.9%	3.81%	ок
					200.00	100.00	7853.98	106.84	34.68					
					200.00	100.00	7853.98	105.34	34.19					
COMBO 16	210	20/02/2024	19/03/2024	28	200.00	100.00	7853.98	108.57	35.24	3.40	34.67	16.5%	3.02%	ок
10					200.00	100.00	7853.98	106.54	34.58					

Tabla 94. Análisis estadístico descriptivo de los ensayos de resistencia a la tracción (Combo 17 al 20)

CODIGO	DISEÑO f'c	FECHA DE MUESTREO	FECHA DE ENSAYO	EDAD (DÍAS)	ALTURA (cm)	DIAMETRO cm	AREA EN (cm2)	CARGA (KN)	RESISTENCIA (Kg/cm2)	PROMEDIO (MPa)	RESISTENCIA PROMEDIO (kg/cm²)	% RESISTENCIA PROMEDIO	DISPERCION	EVAL
					200.00	100.00	7853.98	113.91	36.97					
COMBO 17	210	20/02/2024	19/03/2024	28	200.00	100.00	7853.98	109.36	35.50	3.54	36.13	17.2%	4.09%	ОК
					200.00	100.00	7853.98	110.65	35.92					
					200.00	100.00	7853.98	120.70	39.18	_				
COMBO 18	210	21/02/2024	20/03/2024	28	200.00	100.00	7853.98	120.76	39.20	3.85	39.27	18.7%	0.69%	ОК
					200.00	100.00	7853.98	121.53	39.45					
					200.00	100.00	7853.98	112.93	36.66	_				
COMBO 19	210	21/02/2024	20/03/2024	28	200.00	100.00	7853.98	111.27	36.12	3.60	36.76	17.5%	3.79%	ОК
					200.00	100.00	7853.98	115.56	37.51					
					200.00	100.00	7853.98	114.20	37.07	_				
COMBO 20	210	21/02/2024	20/03/2024	28	200.00	100.00	7853.98	118.99	38.62	3.70	37.70	18.0%	4.12%	ОК
					200.00	100.00	7853.98	115.23	37.40					

Tabla 95. Análisis estadístico descriptivo de los ensayos de resistencia a la tracción (Combo 21 al 24)

CODIGO	DISEÑO f'c	FECHA DE MUESTREO	FECHA DE ENSAYO	EDAD (DÍAS)	ALTURA (cm)	DIAMETRO cm	AREA EN (cm2)	CARGA (KN)	RESISTENCIA (Kg/cm2)	PROMEDIO (MPa)	RESISTENCIA PROMEDIO (kg/cm²)	% RESISTENCIA PROMEDIO	DISPERCION	EVAL
					200.00	100.00	7853.98	121.66	39.49	-				
COMBO 21	210	22/02/2024	21/03/2024	28	200.00	100.00	7853.98	123.57	40.11	3.90	39.73	18.9%	1.56%	ОК
					200.00	100.00	7853.98	121.97	39.59					
					200.00	100.00	7853.98	113.67	36.90					
COMBO 22	210	22/02/2024	21/03/2024	28	200.00	100.00	7853.98	117.25	38.06	3.63	37.06	17.6%	4.95%	ОК
					200.00	100.00	7853.98	111.60	36.22					
					200.00	100.00	7853.98	120.54	39.13					
COMBO 23	210	22/02/2024	21/03/2024	28	200.00	100.00	7853.98	118.32	38.41	3.80	38.75	18.5%	1.86%	ок
					200.00	100.00	7853.98	119.27	38.71					
					200.00	100.00	7853.98	126.12	40.94					
COMBO 24	210	23/02/2024	22/03/2024	28	200.00	100.00	7853.98	128.18	41.61	4.07	41.52	19.8%	2.62%	ок
					200.00	100.00	7853.98	129.47	42.02					

Tabla 96. Análisis estadístico descriptivo de los ensayos de resistencia a la tracción (Combo 21 al 24)

CODIGO	DISEÑO f'c	FECHA DE MUESTREO	FECHA DE ENSAYO	(DÍAC)	ALTURA (cm)	DIAMETRO cm	AREA EN (cm2)	CARGA (KN)	RESISTENCIA (Kg/cm2)	PROMEDIO (MPa)	RESISTENCIA PROMEDIO (kg/cm²)		DISPERCION	EVAL
					200.00	100.00	7853.98	110.34	35.81	<u>.</u>				
COMBO 25	210	24/02/2024	23/03/2024	28	200.00	100.00	7853.98	111.87	36.31	3.56	36.32	17.3%	2.78%	OK
					200.00	100.00	7853.98	113.45	36.82					
					200.00	100.00	7853.98	126.52	41.07					
COMBO 26	210	23/02/2024	22/03/2024	28	200.00	100.00	7853.98	132.42	42.98	4.11	41.95	20.0%	4.56%	ОК
					200.00	100.00	7853.98	128.80	41.81					
					200.00	100.00	7853.98	123.06	39.94					
COMBO 27	210	23/02/2024	22/03/2024	28	200.00	100.00	7853.98	118.65	38.51	3.83	39.10	18.6%	3.66%	ок
					200.00	100.00	7853.98	119.67	38.84					

Figura 61. Gráfico de Resistencia a tracción a 28 días de ensayo

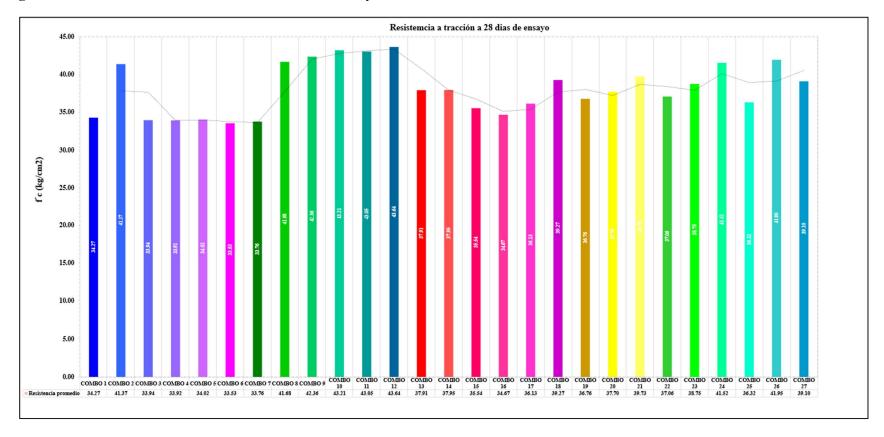


Tabla 97. Análisis estadístico resistencia a tracción a 28 días.

-						Anális	is estadístico	resistencia a	tracción a	28 días					
N	M.f	Xi	Frecuenci	Frecuenci	Frecuenci	Frecuenci a	Frecuenci	Frecuencia				<i>(</i> •)	N/()	Y // \ \ \ 0	CV=
Li	Ls	(marca de clase)	a absoluta (fi)	a Relativa (hi)	a Porcentu al (pi%)	Absoluta Acumulad a (Fi)	Acumulad a (Hi)	Porcentual Acumulada (Pi%)		xi*fi	xi- xprom	(xi-xprom) ^2	$V(x) = s^2$	$s=V(x)^0$.	s/xprom*100 %
33.53	35.30	34.415	7	0.259	25.926%	7	0.259	25.926%	93.33 °	240.91	-3.737	13.9627	3.6200		
35.30	37.07	36.185	5	0.185	18.519%	12	0.444	44.444%	66.67 °	180.93	-1.967	3.8678	0.7163		
37.07	38.84	37.955	4	0.148	14.815%	16	0.593	59.259%	53.33 °	151.82	-0.197	0.0387	0.0057		
38.84	40.61	39.725	3	0.111	11.111%	19	0.704	70.370%	40.00 °	119.18	1.573	2.4754	0.2750		
40.61	42.38	41.495	5	0.185	18.519%	24	0.889	88.889%	66.67 °	207.48	3.343	11.1779	2.0700		
42.38	44.15	43.265	3	0.111	11.111%	27	1.000	100.000%	40.00°	129.80	5.113	26.1462	2.9051		
	Σ	No aplica	27	1.000	100.000%	No aplica	No aplica	No aplica	360.00	1030.10	No aplica	No aplica	9.5921	3.0971	8.12%

Tabla 120. Media, moda y mediana del análisis estadístico resistencia a tracción a 28 días.

n =	27	Med	dia	Mo	oda	Medi	ana
Rango =	10.11	Xprom	38.15	Li=	33.53	Li=	35.30
				fi=	7	(n/2) =	13.50
k =	6			fi-1=	0	Fi-1=	7
				fi+1=	5	fi=	5
a =	1.77			a=	1.77	a=	1.77
				Mo=	34.90	Me=	37.60

Figura 82. Gráfico de barras de los datos agrupados de resistencia atracción.

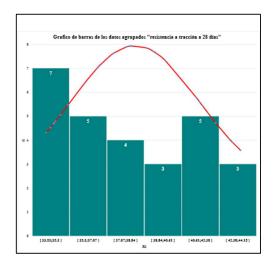
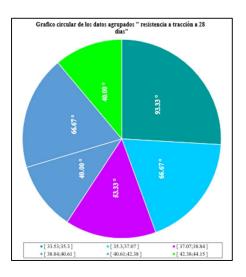



Figura 83. Gráfico circular de los datos agrupados de resistencia atracción.

Interpretación:

- El promedio de la resistencia a tracción a los 28 días del análisis de datos de las 27 combinaciones de agregados es de 38.15 kg/cm².
- Del 50% de los resultados de resistencia a tracción a los 28 días analizados se encuentran menores o iguales a 37.60 kg/cm².
- La resistencia a tracción a los 28 días más frecuente es de 34.90 kg/cm².
- La dispersión de la resistencia a tracción a los 28 días de los 27 datos analizados es de aproximadamente de 3.0971 kg/cm² con respecto a la resistencia a tracción a los 28 días promedio.
- La resistencia a tracción a los 28 días de las combinaciones de agregados analizados se caracteriza por tener datos muy homogéneos, ya que presenta un coeficiente de variabilidad de 8.12 % que se encuentra en el intervalo desde 0% hasta menos de 10%.

4.1.3.3. Análisis estadístico descriptivo de los ensayos de resistencia a la flexión

Tabla 98. Análisis estadístico descriptivo de los ensayos de resistencia a la flexión (Combo 1 al 4)

ITEM	DISEÑO f'c	FECHA DE MUESTREO	FECHA DE ENSAYO	EDAD DE CURADO (DÍAS)	Base (mm)	d (mm)	LONGITUD ENTRE APOYOS (mm)	CARGA (KN)	CARGA (Kg-F)	RESISTENCIA (Kg/cm2)	PROMEDIO (MPa)	MR = RESISTENCIA FLEXION PROMEDIO (kg/cm²)	% RESISTENCIA PROMEDIO	DISPERCIÓ N	EVA L
COMBO	210	27/02/2024	26/03/2024	28	150.00	150.00	450.00	29.27	2984.71	39.80	3.82	38.97	18.6%	4.22%	OK
1					150.00	150.00	450.00	28.06	2861.32	38.15					
COMBO 2	210	27/02/2024	26/03/2024	28	150.00 150.00	150.00 150.00	450.00 450.00	39.68 40.94	4046.23 4174.72	53.95 55.66	5.37	54.81	26.1%	3.13%	OK
COMBO 3	210	27/02/2024	26/03/2024	28		150.00 150.00	450.00 450.00	29.56	3014.28 2935.76	40.19 39.14	3.89	39.67	18.9%	2.64%	ок
COMBO 4	210	27/02/2024	26/03/2024	28		150.00 150.00	450.00 450.00	30.45 29.87	3105.04 3045.89	41.40	4.02	41.01	19.5%	1.92%	OK

Tabla 99. Análisis estadístico descriptivo de los ensayos de resistencia a la flexión (Combo 5 al 8)

ITEM	DISENO f'c	FECHA DE MUESTR EO	FECHA DE ENSAYO	EDAD DE CURA DO (DÍAS)	Base (mm)	d (mm)	LONGITU D ENTRE APOYOS (mm)	CARGA (KN)	CARGA (Kg-F)	RESISTEN CIA (Kg/cm2)	PROMEDI O (MPa)	MR = RESISTENCI A FLEXION PROMEDIO (kg/cm²)	% RESISTENCI A PROMEDIO	DISPERCION	EVAL
СОМВО					150.00	150.00	450.00	29.87	3045.89	40.61	-				
5	210	27/02/2024	26/03/2024	28	150.00	150.00	450.00	30.15	3074.44	40.99	4.00	40.80	19.4%	0.93%	OK
СОМВО	210	27/22/224	.	•	150.00	150.00	450.00	30.25	3084.64	41.13	-	40.04	10.407		0.77
6	210	27/02/2024	26/03/2024	28	150.00	150.00	450.00	29.78	3036.71	40.49	4.00	40.81	19.4%	1.57%	OK
СОМВО					150.00	150.00	450.00	30.25	3084.64	41.13	_				
7 7	210	27/02/2024	26/03/2024	28	150.00	150.00	450.00	29.78	3036.71	40.49	4.00	40.81	19.4%	1.57%	OK
G01/T-					150.00	150.00	450.00	40.12	4091.10	54.55					
COMBO 8	210	27/02/2024	26/03/2024	28	150.00	150.00	450.00	40.75	4155.34	55.40	5.39	54.98	26.2%	1.56%	ОК

Tabla 123. Análisis estadístico descriptivo de los ensayos de resistencia a la flexión (Combo 9 al 12)

ITEM	DISEÑO f'c	FECHA DE MUESTREO	FECHA DE ENSAYO	EDAD DE CURADO (DÍAS)	Base (mm)	d (mm)	LONGITUD ENTRE APOYOS (mm)	CARGA (KN)	CARGA (Kg-F)	RESISTENCIA (Kg/cm2)	PROMEDIO (MPa)	MR = RESISTENCIA FLEXION PROMEDIO (kg/cm²)	% RESISTENCIA PROMEDIO	DISPERCIÓN	EVAL
COMBO					150.00	150.00	450.00	40.56	4135.97	55.15					
9	210	27/02/2024	26/03/2024	28	150.00	150.00	450.00	39.68	4046.23	53.95	5.35	54.55	26.0%	2.19%	OK
COMBO					150.00	150.00	450.00	41.24	4205.31	56.07	_				
10	210	27/02/2024	26/03/2024	28	150.00	150.00	450.00	40.58	4138.01	55.17	5.45	55.62	26.5%	1.61%	OK
20100					150.00	150.00	450.00	38.56	3932.03	52.43					
COMBO 11	210	27/02/2024	26/03/2024	28	150.00	150.00	450.00	39.12	3989.13	53.19	5.18	52.81	25.1%	1.44%	OK
					150.00	150.00	450.00	39.63	4041.14	53.88					
COMBO 12	210	27/02/2024	26/03/2024	28	150.00	150.00	450.00	40.28	4107.42	54.76	5.33	54.32	25.9%	1.63%	OK

Tabla 100. Análisis estadístico descriptivo de los ensayos de resistencia a la flexión (Combo 13 al 16)

ITEM	DISEÑO f'c	FECHA DE MUESTREO	FECHA DE ENSAYO	EDAD DE CURADO (DÍAS)	Base (mm)	d (mm)	LONGITUD ENTRE APOYOS (mm)	CARGA (KN)	CARGA (Kg-F)	RESISTENCIA (Kg/cm2)	PROMEDIO (MPa)	MR = RESISTENCIA FLEXION PROMEDIO (kg/cm²)	% RESISTENCIA PROMEDIO	DISPERCIÓN	EVAL
COMBO					150.00	150.00	450.00	39.38	4015.64	53.54					
13	210	27/02/2024	26/03/2024	28	150.00	150.00	450.00	39.22	3999.33	53.32	5.24	53.43	25.4%	0.41%	OK
COMBO					150.00	150.00	450.00	42.51	4334.81	57.80					
14	210	28/02/2024	27/03/2024	28	150.00	150.00	450.00	44.99	4587.70	61.17	5.83	59.48	28.3%	5.67%	OK
COMBO	210	20/02/2024	27/02/2024	20	150.00	150.00	450.00	38.57	3933.05	52.44		52.50	25.00/	0.220/	OV.
15	210	28/02/2024	27/03/2024	28	150.00	150.00	450.00	38.66	3942.22	52.56	5.15	52.50	25.0%	0.23%	OK
COMBO	210	10/02/2024	10/02/2024	20	150.00	150.00	450.00	35.01	3570.03	47.60	- 4.70	40.71	22.20/	4.700/	OV.
16	210	19/02/2024	18/03/2024	28	150.00	150.00	450.00	36.65	3737.26	49.83	4.78	48.71	23.2%	4.58%	OK

Tabla 101. Análisis estadístico descriptivo de los ensayos de resistencia a la flexión (Combo 17 al 20)

ITEM	DISENO f'c	FECHA DE MUESTREO	FECHA DE ENSAYO	EDAD DE CURADO (DÍAS)	Base (mm)	d (mm)	LONGITUD ENTRE APOYOS (mm)	CARGA (KN)	CARGA (Kg-F)	RESISTENCIA (Kg/cm2)	PROMEDIO (MPa)	MR = RESISTENCIA FLEXION PROMEDIO (kg/cm²)	% RESISTENCIA PROMEDIO	DISPERCION	EVAL
COMBO	210	28/02/2024	27/03/2024	28	150.00	150.00	450.00	33.83	3449.70	46.00	- 4.49	45.83	21.8%	0.74%	OK
17	210	20,02,202	2770072021	20	150.00	150.00	450.00	33.58	3424.21	45.66		15.05	21.070	01/1/0	
COMPO					150.00	150.00	450.00	45.88	4678.46	62.38	_				
COMBO 18	210	29/02/2024	28/03/2024	28	150.00	150.00	450.00	43.85	4471.46	59.62	5.98	61.00	29.0%	4.52%	OK
					150.00	150.00	450.00	43.08	4392.94	58.57					
COMBO 19	210	29/02/2024	28/03/2024	28	150.00	150.00	450.00	41.13	4194.09	55.92	5.61	57.25	27.3%	4.63%	OK
					150.00	150.00	450.00	28.94	2951.06	39.35					
COMBO 20	210	21/02/2024	20/03/2024	28	150.00	150.00	450.00	28.48	2904.15	38.72	3.83	39.03	18.6%	1.60%	OK

Tabla 102. Análisis estadístico descriptivo de los ensayos de resistencia a la flexión (Combo 21 al 24)

ITEM	DISENO f'c	FECHA DE MUESTREO	FECHA DE ENSAYO	EDAD DE CURADO (DÍAS)	Base (mm)	d (mm)	LONGITUD ENTRE APOYOS (mm)	CARGA (KN)	CARGA (Kg-F)	RESISTENCIA (Kg/cm2)	PROMEDIO (MPa)	MR = RESISTENCIA FLEXION PROMEDIO (kg/cm²)	% RESISTENCIA PROMEDIO	DISPERCION	EVAL
COMBO 21	210	29/02/2024	28/03/2024	28	150.00	150.00	450.00	44.22	4509.19	60.12	5.79	59.01	28.1%	3.78%	OK
					150.00	150.00	450.00	42.58	4341.95	57.89					
COMBO	210	1/03/2024	29/03/2024	28	150.00	150.00	450.00	46.29	4720.27	62.94	- 6.27	63.91	30.4%	3.06%	OK
22	210	1/03/2024	29/03/2024	28	150.00	150.00	450.00	47.73	4867.11	64.89	6.27	63.91	30.4%	3.00%	OK
COMBO					150.00	150.00	450.00	32.11	3274.31	43.66	_				
COMBO 23	210	22/02/2024	21/03/2024	28	150.00	150.00	450.00	30.98	3159.08	42.12	4.21	42.89	20.4%	3.58%	OK
COMPO					150.00	150.00	450.00	46.28	4719.25	62.92					
COMBO 24	210	1/03/2024	29/03/2024	28	150.00	150.00	450.00	48.68	4963.98	66.19	6.33	64.55	30.7%	5.05%	OK

Tabla 103. Análisis estadístico descriptivo de los ensayos de resistencia a la flexión (Combo 25 al 27)

ITEM	DISEÑO f'c	FECHA DE MUESTREO	FECHA DE ENSAYO	EDAD DE CURADO (DÍAS)	Base (mm)	d (mm)	LONGITUD ENTRE APOYOS (mm)	CARGA (KN)	CARGA (Kg-F)	RESISTENCIA (Kg/cm2)	PROMEDIO (MPa)	MR = RESISTENCIA FLEXION PROMEDIO (kg/cm²)	% RESISTENCIA PROMEDIO	DISPERCIÓN	EVAL
COMBO 25	210	24/02/2024	23/03/2024	28	150.00		450.00 450.00	38.73	3949.36 3817.82	52.66 50.90	5.08	51.78	24.7%	3.39%	ОК
COMBO 26	210	1/03/2024	29/03/2024	28	150.00		450.00 450.00	45.84	4674.38 4464.32	62.32 59.52	5.97	60.92	29.0%	4.60%	ок
COMBO 27	210	2/03/2024	30/03/2024	28	150.00		450.00 450.00	41.76	4258.33 4133.93	56.78 55.12	5.49	55.95	26.6%	2.96%	ОК

Figura 62. Resistencia a flexión a 28 días de ensayo.

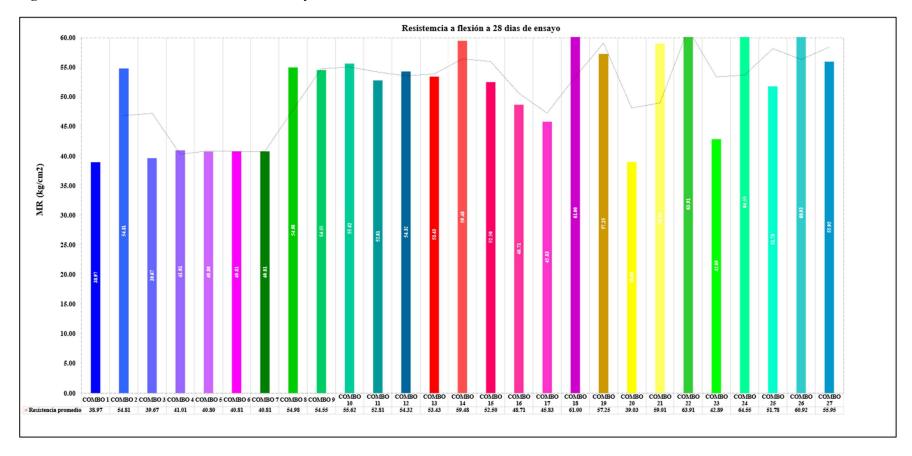


Tabla 128. Análisis estadístico de resistencia a flexión a 28 días.

Análisis estadístico resistencia a flexión a 28 días

1	M.f		Frecuenci		Frecuenci	Frecuenci	Frecuenci	Frecuenci a							
Li	Ls	Xi (marca de clase)	a absoluta (fi)	Frecuenci a Relativa (hi)	a Porcentu al (pi%)	a Absoluta Acumulad a (Fi)		Porcentua 1 Acumulad a (Pi%)	Frecuenci a gradual (Si)	xi*fi	xi- xprom	(xi-xprom) ^2	$V(x) = s^2$	s=V(x)^0. 5	CV= s/xprom*100 %
38.97	43.44	41.205	8	0.296	29.630%	8	0.296	29.630%	106.67 °	329.64	-10.264	105.3588	31.2174		
43.44	47.91	45.675	1	0.037	3.704%	9	0.333	33.333%	13.33 °	45.68	-5.794	33.5756	1.2435		
47.91	52.38	50.145	2	0.074	7.407%	11	0.407	40.741%	26.67°	100.29	-1.324	1.7542	0.1299		
52.38	56.85	54.615	9	0.333	33.333%	20	0.741	74.074%	120.00°	491.54	3.146	9.8945	3.2982		
56.85	61.32	59.085	5	0.185	18.519%	25	0.926	92.593%	66.67 °	295.43	7.616	57.9967	10.7401		
61.32	65.79	63.555	2	0.074	7.407%	27	1.000	100.000%	26.67°	127.11	12.086	146.0607	10.8193		
	Σ	No aplica	27	1.000	100.000%	No aplica	No aplica	No aplica	360.00	1389.68	No aplica	No aplica	57.4485	7.5795	14.73%

Nota. Elaboración propia.

Tabla 129. Media, moda y mediana del análisis estadístico de resistencia a flexión a 28 días.

n =	27	Media	Mo	oda	Medi	ana
Rango =	25.58	51.47	Li=	52.38	Li=	47.91
			fi=	9	(n/2) =	13.50
k =	6		fi-1=	2	Fi-1=	9
			fi+1=	5	fi=	2
a =	4.47		a=	4.47	a=	4.47
			Mo=	55.22	Me=	57.97

Figura 85. Gráfico de barras de los datos agrupados resistencia a flexión a 28 días.

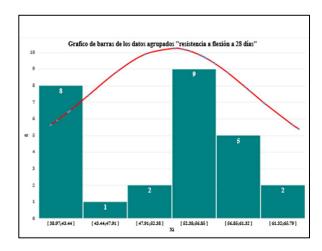


Figura 86. Gráfico circular de los datos agrupados resistencia a flexión a 28 días

Interpretación:

- El promedio de la resistencia a flexión a los 28 días del análisis de datos de las 27 combinaciones de agregados es de 51.47 kg/cm².
- Del 50% de los resultados de resistencia a flexión a los 28 días analizados se encuentran menores o iguales a 57.97 kg/cm².
- La resistencia a flexión a los 28 días más frecuente es de 55.22 kg/cm².
- La dispersión de la resistencia a flexión a los 28 días de los 27 datos analizados es de aproximadamente de 7.5795 kg/cm² con respecto a la resistencia a flexión a los 28 días promedio.
- La resistencia a flexión a los 28 días de las combinaciones de agregados analizados se caracteriza por tener datos regularmente homogéneos, ya que presenta un coeficiente de variabilidad de 14.73 % que se encuentra en el intervalo desde 10% hasta menos de 15%.

4.2. Prueba de hipótesis

4.2.1. Prueba de normalidad

Antes de desarrollar las pruebas de hipótesis estadísticas fue necesario realizar la prueba de normalidad, en este caso se realizó con el software SPSS v26 según los datos recolectados.

Tabla 104.Prueba de normalidad

	Kolmogorov-Smirnov ^a			Shapiro-Wilk				
	Grupo	Estadístico	GL	Sig.	Estadístico	gl	Sig.	
Propiedad del concreto	Antes		12			12	·	
	Después	,535	15	,000	,284	15	,000	
Consistencia	Antes		12			12		
	Después		15			15		
Segregación	Antes		12			12		
	Después		15			15	•	
Exudación	Antes	,331	12	,001	,650	12	,000	
	Después	,350	15	,000	,643	15	,000	
Contracción	Antes	,331	12	,001	,650	12	,000	

	Después	,301	15	,001	,722	15	,000
Densidad	Antes		12		•	12	
	Después	,419	15	,000	,603	15	,000
Resistencia a la compresión	Antes	,331	12	,001	,650	12	,000
	Después	,371	15	,000	,686	15	,000
Resistencia a la tracción	Antes	,331	12	,001	,650	12	,000
	Después	,251	15	,012	,798	15	,003
Resistencia a la flexión	Antes	,331	12	,001	,650	12	,000
	Después	,440	15	,000	,596	15	,000

Regla decisión:

Si: $p \le 0.05$, entonces los datos son no normales

Si: p > 0.05, entonces los datos son normales

La tabla 35 muestra los resultados de la prueba de normalidad mediante Shapiro-Wilk, aplicada debido al tamaño de la muestra menor a 50. Los valores de significancia (p) obtenidos son menores a 0,05 para todas las propiedades del concreto, tanto antes como después de aplicar las metodologías modernas de combinación de agregados.

Según la regla de decisión, esto indica que ninguna de las variables analizadas sigue una distribución normal. En consecuencia, debido a la falta de normalidad en los datos, se justifica la utilización de la prueba no paramétrica U de Mann-Whitney para comparar los resultados antes y después de la aplicación de las metodologías modernas de combinación de agregados.

4.2.2. Comprobación de hipótesis general

H0: Las metodologías modernas de combinación de agregados no influyen positivamente en las propiedades en estado fresco y endurecido del concreto bombeable en Huancayo 2023.

H1: Las metodologías modernas de combinación de agregados influyen positivamente en las propiedades en estado fresco y endurecido del concreto bombeable en Huancayo 2023.

Regla decisión:

Si: $p \le 0.05$, entonces se acepta H1 y se rechaza H0

Si: p > 0.05, entonces se acepta H0 y se rechaza H1

Tabla 105. Prueba de hipótesis general

	Propiedad del
	concreto
U de Mann-Whitney	84,000
W de Wilcoxon	162,000
Z	-,894
Sig. asintótica(bilateral)	,371

Interpretación: La tabla 36 de resultados estadísticos muestra que la aplicación de metodologías modernas de combinación de agregados no tiene un efecto significativo en las propiedades en estado fresco y endurecido del concreto bombeable en Huancayo, 2023. Los valores obtenidos en la prueba U de Mann-Whitney (84,000), W de Wilcoxon (162,000) y la significancia asintótica bilateral (0,371), que es mayor a 0,05, indican que no existe una diferencia significativa. Por lo tanto, se acepta la hipótesis nula y se concluye que las metodologías modernas de combinación de agregados no influyen positivamente en las propiedades del concreto bombeable.

4.2.3. Comprobación de hipótesis especifica 1

H0: Las metodologías modernas de combinación agregados no influyen significativamente la consistencia del concreto bombeable.

H1: Las metodologías modernas de combinación agregados influyen significativamente la consistencia del concreto bombeable.

Regla decisión:

Si: $p \le 0.05$, entonces se acepta H1 y se rechaza H0

Si: p > 0.05, entonces se acepta H0 y se rechaza H1

Tabla 106. Prueba de hipótesis específica 1

	Consistencia
U de Mann-Whitney	90,000
W de Wilcoxon	210,000
Z	,000
Sig. asintótica(bilateral)	1,000

Interpretación: La tabla 37 de resultados estadísticos muestra que la aplicación de metodologías modernas de combinación de agregados no tiene un efecto significativo en la consistencia del concreto bombeable. Los valores obtenidos en la prueba U de Mann-Whitney (90,000), W de Wilcoxon (210,000) y la significancia asintótica bilateral (1,000), que es mayor a 0,05, indican que no existe una diferencia significativa. Por lo tanto, se acepta la hipótesis nula y se concluye que las metodologías modernas de combinación de agregados no influyen significativamente en la consistencia del concreto bombeable.

4.2.4. Comprobación de hipótesis especifica 2

H0: Las metodologías modernas de combinación de agregados no influyen positivamente en la disminución de la segregación del concreto bombeable.

H1: Las metodologías modernas de combinación de agregados influyen positivamente en la disminución de la segregación del concreto bombeable.

Regla decisión:

Si: $p \le 0.05$, entonces se acepta H1 y se rechaza H0

Si: p > 0.05, entonces se acepta H0 y se rechaza H1

Tabla 107. Prueba de hipótesis específica 2

	Segregación
U de Mann-Whitney	90,000
W de Wilcoxon	210,000
Z	0,000
Sig. asintótica(bilateral)	1,000

Interpretación: La tabla 38 de resultados estadísticos muestra que la aplicación de metodologías modernas de combinación de agregados no tiene un efecto significativo en la disminución de la segregación del concreto bombeable. Los valores obtenidos en la prueba U de Mann-Whitney (90,000), W de Wilcoxon (210,000) y la significancia asintótica bilateral (1,000), que es mayor a 0,05, indican que no existe una diferencia significativa. Por lo tanto, se acepta la hipótesis nula y se concluye que las metodologías modernas de combinación de agregados no influyen positivamente en la disminución de la segregación del concreto bombeable.

4.2.5. Comprobación de hipótesis especifica 3

H0: Las metodologías modernas de combinación de agregados no influyen en la reducción de la exudación del concreto bombeable.

H1: Las metodologías modernas de combinación de agregados influyen en la reducción de la exudación del concreto bombeable.

Regla decisión:

Si: $p \le 0.05$, entonces se acepta H1 y se rechaza H0

Si: p > 0.05, entonces se acepta H0 y se rechaza H1

Tabla 108. Prueba de hipótesis específica 3

	Exudación
U de Mann-Whitney	87,000
W de Wilcoxon	165,000
Z	-,169
Sig. asintótica(bilateral)	,866

Interpretación: La tabla 39 de resultados estadísticos muestra que la aplicación de metodologías modernas de combinación de agregados no tiene un efecto significativo en la reducción de la exudación del concreto bombeable. Los valores obtenidos en la prueba U de Mann-Whitney (87,000), W de Wilcoxon (165,000) y la significancia asintótica bilateral (0,866), que es mayor a 0,05, indican que no existe una diferencia significativa. Por lo tanto, se acepta la hipótesis nula y se concluye que las metodologías modernas de combinación de agregados no influyen en la reducción de la exudación del concreto bombeable.

4.2.6. Comprobación de hipótesis especifica 4

H0: Las metodologías modernas de Combinación de agregados no influyen disminuyendo la contracción del concreto bombeable.

H1: Las metodologías modernas de Combinación de agregados influyen disminuyendo la contracción del concreto bombeable.

Regla decisión:

Si: $p \le 0.05$, entonces se acepta H1 y se rechaza H0

Si: p > 0.05, entonces se acepta H0 y se rechaza H1

Tabla 109. Prueba de hipótesis específica 4

	Contracción
U de Mann-Whitney	87,000
W de Wilcoxon	165,000
Z	-,164
Sig. asintótica(bilateral)	,870

Interpretación: La tabla 40 de resultados estadísticos muestra que la aplicación de metodologías modernas de combinación de agregados no tiene un efecto significativo en la disminución de la contracción del concreto bombeable. Los valores obtenidos en la prueba U de Mann-Whitney (87,000), W de Wilcoxon (165,000) y la significancia asintótica bilateral (0,870), que es mayor a 0,05, indican que no existe una diferencia significativa. Por lo tanto, se acepta la hipótesis nula y se concluye que las metodologías modernas de combinación de agregados no influyen disminuyendo la contracción del concreto bombeable.

4.2.7. Comprobación de hipótesis especifica 5

H0: Las metodologías modernas de combinación de agregados no disminuyen la densidad del concreto bombeable.

H1: Las metodologías modernas de combinación de agregados disminuyen la densidad del concreto bombeable.

Regla decisión:

Si: $p \le 0.05$, entonces se acepta H1 y se rechaza H0

Si: p > 0.05, entonces se acepta H0 y se rechaza H1

Tabla 110. Prueba de hipótesis específica 5

	Densidad
U de Mann-Whitney	60,000
W de Wilcoxon	138,000
Z	-2,174
Sig. asintótica(bilateral)	,030

Interpretación: La tabla 41 de resultados estadísticos muestra que la aplicación de metodologías modernas de combinación de agregados tiene un efecto significativo en la disminución de la densidad del concreto bombeable. Los valores obtenidos en la prueba U de Mann-Whitney (60,000), W de Wilcoxon (138,000) y la significancia asintótica bilateral (0,030), que es menor a 0,05, indican una diferencia significativa y justifican el rechazo de la hipótesis nula. Esto demuestra que la implementación de estas metodologías influye positivamente en la disminución de la densidad del concreto bombeable.

4.2.8. Comprobación de hipótesis especifica 6

H0: Las metodologías modernas de combinación de agregados no influyen positivamente, mejorando la resistencia del concreto bombeable.

H1: Las metodologías modernas de combinación de agregados influyen positivamente, mejorando la resistencia del concreto bombeable.

Regla decisión:

Si: $p \le 0.05$, entonces se acepta H1 y se rechaza H0

Si: p > 0.05, entonces se acepta H0 y se rechaza H1

Tabla 111. Prueba de hipótesis específica 6

	Resistencia
	a la
	compresión
U de Mann-Whitney	87,000
W de Wilcoxon	165,000
Z	-,164
Sig. asintótica(bilateral)	,870

Interpretación: La tabla 42 de resultados estadísticos muestra que la aplicación de metodologías modernas de combinación de agregados no tiene un efecto significativo en la mejora de la resistencia a la compresión del concreto bombeable. Los valores obtenidos en la prueba U de Mann-Whitney (87,000), W de Wilcoxon (165,000) y la significancia asintótica bilateral (0,870), que es mayor a 0,05, indican que no existe una diferencia significativa. Por lo tanto, se acepta la hipótesis nula y se concluye que las metodologías modernas de combinación de agregados no influyen positivamente en la mejora de la resistencia a la compresión del concreto bombeable.

4.2.9. Comprobación de hipótesis especifica 7

H0: Las metodologías modernas de combinación de agregados no influyen negativamente en los resultados de la resistencia a tracción del concreto bombeable.

H1: Las metodologías modernas de combinación de agregados influyen negativamente en los resultados de la resistencia a tracción del concreto bombeable.

Regla decisión:

Si: $p \le 0.05$, entonces se acepta H1 y se rechaza H0

Si: p > 0.05, entonces se acepta H0 y se rechaza H1

Tabla 112. Prueba de hipótesis específica 7

	Resistencia
	a la tracción
U de Mann-Whitney	78,000
W de Wilcoxon	156,000
Z	-,628
Sig. asintótica(bilateral)	,530

Interpretación: La tabla 43 de resultados estadísticos muestra que la aplicación de metodologías modernas de combinación de agregados no tiene un efecto negativo significativo en los resultados de la resistencia a tracción del concreto bombeable. Los valores obtenidos en la prueba U de Mann-Whitney (78,000), W de Wilcoxon (156,000) y la significancia asintótica bilateral (0,530), que es mayor a 0,05, indican que no existe una diferencia significativa. Por lo tanto, se acepta la hipótesis nula y se concluye que las metodologías modernas de combinación de agregados no influyen negativamente en la resistencia a tracción del concreto bombeable.

4.2.10. Comprobación de hipótesis especifica 8

H0: Las metodologías modernas de combinación de agregados no influyen negativamente en la resistencia a la flexión del concreto bombeable.

H1: Las metodologías modernas de combinación de agregados influyen negativamente en la resistencia a la flexión del concreto bombeable.

Regla decisión:

Si: $p \le 0.05$, entonces se acepta H1 y se rechaza H0

Si: p > 0.05, entonces se acepta H0 y se rechaza H1

Tabla 113. Prueba de hipótesis específica 8

	Resistencia
	a la flexión
U de Mann-Whitney	63,000
W de Wilcoxon	141,000
Z	-1,547
Sig. asintótica(bilateral)	,122

Interpretación: La tabla 44 de resultados estadísticos muestra que la aplicación de metodologías modernas de combinación de agregados no tiene un efecto negativo significativo en la resistencia a la flexión del concreto bombeable. Los valores obtenidos en la prueba U de Mann-Whitney (63,000), W de Wilcoxon (141,000) y la significancia asintótica bilateral (0,122), que es mayor a 0,05, indican que no existe una diferencia significativa. Por lo tanto, se acepta la hipótesis nula y se concluye que las metodologías modernas de combinación de agregados no influyen negativamente en la resistencia a la flexión del concreto bombeable.

4.3. Discusión de resultados

En cuanto al objetivo general de la investigación, se planteó analizar si las metodologías modernas de combinación de agregados influyen positivamente en las propiedades en estado fresco y endurecido del concreto bombeable en Huancayo, 2023. Para ello, se aplicó la prueba U de Mann-Whitney, obteniéndose un valor de U = 84,000, W de Wilcoxon = 162,000, un estadístico Z = -0,894 y una significancia asintótica bilateral (p) = 0,371. Dado que p > 0,05, se aceptó la hipótesis nula y se rechazó la hipótesis alternativa, concluyéndose que no existe una influencia significativa de dichas metodologías en las propiedades del concreto bombeable.

Este hallazgo sugiere que, en el contexto específico de esta investigación, la implementación de metodologías modernas de combinación de agregados no logró generar mejoras significativas en las propiedades del concreto evaluado. Esto puede deberse a múltiples factores, como la naturaleza de los agregados locales, el diseño de mezcla utilizado o las condiciones de ejecución de los ensayos. En ese sentido, los resultados contrastan con estudios como el de Yupanqui (12), quien evidenció que el uso de la metodología Shilstone mejoró notablemente la resistencia a la compresión y la flexión en concreto para pavimentos rígidos, incluso reduciendo costos de producción. Del mismo modo, Santa Cruz (10) encontró que las mezclas con granulometría optimizada presentaron mayor desempeño mecánico, validando la importancia de un control detallado en la distribución de los tamaños de partículas.

De manera complementaria, Larraín (9) también resaltó la relación entre el uso adecuado de combinaciones granulométricas y el desempeño global del concreto en pavimentos, aunque mencionó una alta variabilidad de los resultados, lo que podría vincularse con lo observado en este estudio. Urquilla et al. (11) señalaron que el comportamiento en estado fresco del concreto puede verse afectado si los agregados no cumplen ciertos criterios de proporción y retención en mallas clave. Estas observaciones respaldan la idea de que el impacto de las metodologías modernas no es automático, sino que depende de una implementación rigurosa y adaptada a las condiciones locales.

Adicionalmente, autores como Muñoz et al. (22) y Chipana (20) han mencionado que la trabajabilidad, segregación, contenido de aire y otras propiedades están fuertemente influenciadas por el origen, forma, textura y dosificación de los agregados. Si bien estos factores fueron considerados en la presente investigación, su control pudo no haber sido lo suficientemente diferenciado entre grupos, lo que explicaría la falta de significancia estadística en los resultados generales.

En conclusión, se identificó que las metodologías modernas de combinación de agregados no influyeron significativamente en las propiedades generales del concreto bombeable en este estudio. Este hallazgo plantea la necesidad de revisar y ajustar los criterios de selección y dosificación de agregados, considerando la posibilidad de explorar otros parámetros de combinación granulométrica o complementar estas metodologías con aditivos o técnicas adicionales que potencien su efecto.

En cuanto al primer objetivo específico de la investigación, se planteó determinar si las metodologías modernas de combinación de agregados influyen significativamente en la consistencia del concreto bombeable. Para contrastar esta hipótesis, se aplicó la prueba de U de Mann-Whitney, obteniéndose un valor de U = 90,000, W de Wilcoxon

= 210,000, un estadístico Z = 0,000 y una significancia asintótica bilateral (p) = 1,000. Dado que p > 0,05, se aceptó la hipótesis nula y se rechazó la hipótesis alternativa, concluyéndose que la aplicación de estas metodologías no influye significativamente en la consistencia del concreto bombeable.

Este hallazgo sugiere que, al menos en las condiciones del presente estudio, la implementación de metodologías modernas para la combinación de agregados no modificó de forma significativa el asentamiento ni la fluidez del concreto en estado fresco. Esta conclusión contrasta con lo reportado por Burga (19), quien señaló que la superficie específica de los agregados puede afectar directamente la demanda de pasta, influyendo así en la consistencia. En esa misma línea, Chipana (20) evidenció que la procedencia y características físicas de los agregados modifican parámetros como el contenido de aire y el asentamiento, los cuales inciden en la trabajabilidad del concreto.

Asimismo, el estudio de Reymundo (14) enfatiza que una adecuada combinación granulométrica es esencial para mantener la trabajabilidad en concreto bombeado, ya que una mala proporción puede generar obstrucciones en el sistema de bombeo. Sin embargo, los resultados del presente trabajo podrían explicarse por una baja variabilidad en las mezclas utilizadas, lo que habría limitado la sensibilidad estadística para detectar diferencias en la consistencia. También es posible que las metodologías aplicadas no hayan generado una distribución granulométrica lo suficientemente diferenciada entre los grupos evaluados.

Por otro lado, Velásquez y Zakhia (25) encontraron que la sustitución parcial del agregado fino por vidrio molido sí influía en propiedades como la densidad y la trabajabilidad, lo que refuerza la idea de que el tipo de material y su tratamiento previo son aspectos determinantes en la respuesta del concreto fresco. En este caso, el tipo y condición de los agregados usados pudieron haber influido más que la metodología de combinación en sí.

En conclusión, se identificó que las metodologías modernas de combinación de agregados no influyeron significativamente en la consistencia del concreto bombeable. Este resultado resalta la importancia de revisar los criterios de selección de materiales y controlar con mayor precisión la granulometría de los agregados, ya que la

consistencia es una propiedad sensible a múltiples factores que van más allá del esquema de combinación utilizado.

Respecto al segundo objetivo específico de la investigación, se planteó analizar si las metodologías modernas de combinación de agregados influyen positivamente en la disminución de la segregación del concreto bombeable. Para ello, se aplicó la prueba U de Mann-Whitney, obteniéndose un valor de U = 90,000, W de Wilcoxon = 210,000, un estadístico Z = 0,000 y una significancia asintótica bilateral (p) = 1,000. Al ser p > 0,05, se aceptó la hipótesis nula y se rechazó la hipótesis alternativa, indicando que las metodologías modernas de combinación de agregados no influyen significativamente en la disminución de la segregación del concreto bombeable.

Este hallazgo sugiere que, en las condiciones específicas del estudio, las técnicas modernas de combinación granulométrica no lograron controlar de manera efectiva el fenómeno de separación de materiales dentro del concreto bombeable. Esta conclusión se aleja de lo encontrado por Reymundo (14), quien sostuvo que una combinación adecuada de agregados ayuda a mantener la cohesión del concreto durante el bombeo, evitando la segregación, especialmente cuando se controla la granulometría global.

Por otro lado, Muñoz et al. (22) señalaron que el uso de ciertos aditivos minerales como la escoria de alto horno puede mejorar la cohesión y reducir la segregación, lo cual puede complementar los efectos de una buena combinación de agregados. Además, Alcántara y Santiago (21) observaron que, al utilizar tratamientos superficiales en agregados no convencionales, se mejora la adherencia con la matriz cementante, disminuyendo la tendencia a la separación de fases.

Los resultados del presente estudio podrían explicarse por una distribución de tamaños de partículas que, aunque optimizada según la metodología aplicada, no fue suficiente para crear un esqueleto granular estable. Además, es posible que el contenido de agua o la relación agua/cemento haya sido dominante en el comportamiento reológico del concreto, diluyendo el efecto esperado de la combinación de agregados sobre la segregación.

En conclusión, se identificó que las metodologías modernas de combinación de agregados no influyeron significativamente en la disminución de la segregación del concreto bombeable. Esto pone de manifiesto la necesidad de integrar estas

metodologías con un control más riguroso del diseño de mezcla y el uso de aditivos que ayuden a estabilizar la mezcla, asegurando una adecuada cohesión durante el transporte y bombeo del concreto.

El tercer objetivo específico de esta investigación fue determinar si las metodologías modernas de combinación de agregados influyen en la reducción de la exudación del concreto bombeable. Para evaluar esta hipótesis, se aplicó la prueba U de Mann-Whitney, obteniéndose un valor de U = 87,000, W de Wilcoxon = 165,000, un estadístico Z = -0,169 y una significancia asintótica bilateral (p) = 0,866. Al ser p > 0,05, se aceptó la hipótesis nula y se rechazó la hipótesis alternativa, lo que indica que no se evidenció una influencia significativa de las metodologías modernas de combinación de agregados en la reducción de la exudación del concreto bombeable.

Este resultado sugiere que, en las condiciones experimentales del estudio, la aplicación de metodologías granulométricas modernas no fue suficiente para controlar el ascenso de agua libre a la superficie del concreto fresco. Este hallazgo no coincide con lo planteado por Sarapura (24), quien encontró que la inclusión de agregados no convencionales, como el hueso triturado, reduce significativamente la exudación al favorecer la retención de agua en la matriz. De forma similar, Muñoz et al. (22) concluyeron que el uso de aditivos minerales como la escoria de alto horno y las cenizas volantes puede disminuir la exudación al modificar la demanda de agua y la estructura interna del concreto.

Asimismo, el estudio de Mayta y Sucari (23) evidenció que, aunque la incorporación de residuos mineros mejoró propiedades mecánicas, también aumentó la exudación en ciertos porcentajes, resaltando que esta propiedad depende no solo de la combinación de agregados, sino también del tipo y forma del material. Por ello, es posible que en el presente estudio, las metodologías aplicadas no hayan optimizado suficientemente la curva granulométrica, o que los agregados utilizados presentaran características de absorción, forma o textura que no favorecieron el control de la exudación.

Otro aspecto para considerar es que, según Chipana (20), la dosificación precisa según el origen de los agregados tiene un impacto significativo en la trabajabilidad y el contenido de agua libre del concreto. Si bien se utilizaron metodologías modernas, la

variabilidad de los materiales locales podría haber disminuido su efectividad en esta propiedad específica.

En conclusión, se determinó que las metodologías modernas de combinación de agregados no influyeron significativamente en la reducción de la exudación del concreto bombeable. Esto refuerza la necesidad de integrar estas metodologías con un enfoque más completo que considere el tipo de agregado, la dosificación exacta, el uso de aditivos y el control de la relación agua/cemento para mitigar este fenómeno en el concreto fresco.

El cuarto objetivo específico de la investigación fue determinar si las metodologías modernas de combinación de agregados influyen en la disminución de la contracción del concreto bombeable. Para contrastar esta hipótesis, se aplicó la prueba U de Mann-Whitney, obteniéndose un valor de U = 87,000, W de Wilcoxon = 165,000, un estadístico Z = -0,164 y una significancia asintótica bilateral (p) = 0,870. Al ser p > 0,05, se aceptó la hipótesis nula y se rechazó la hipótesis alternativa, lo cual indica que no se encontró una influencia significativa de las metodologías modernas de combinación de agregados en la disminución de la contracción del concreto bombeable.

Este resultado sugiere que la aplicación de metodologías modernas no logró incidir de forma relevante sobre el comportamiento volumétrico del concreto durante su proceso de endurecimiento. Contrario a lo esperado, los agregados combinados según técnicas como la metodología Shilstone no redujeron significativamente la retracción del material. Esto difiere de los hallazgos de Muñoz et al. (22), quienes reportaron que ciertos aditivos minerales, como la escoria de alto horno, disminuyen la contracción autógena al modificar la relación agua/cemento y mejorar la densificación de la matriz.

Del mismo modo, Santa Cruz (10) destacó que una granulometría bien diseñada contribuye a una mejor distribución de vacíos y, en consecuencia, a un menor contenido de agua necesario para lograr la trabajabilidad, lo que reduce la posibilidad de contracción plástica. En el presente estudio, la ausencia de este efecto podría atribuirse a una limitada variabilidad granulométrica entre los grupos o a la falta de control de otros factores que también afectan la contracción, como la temperatura, humedad ambiental o el curado.

Además, Larraín (9) encontró una alta dispersión en los resultados de resistencia en mezclas ajustadas según el gráfico de Shilstone, lo que evidencia que, si bien estas metodologías son útiles para el diseño, su aplicación práctica puede presentar variaciones significativas si no se controla el resto de variables involucradas en el comportamiento del concreto.

En conclusión, se determinó que las metodologías modernas de combinación de agregados no influyeron significativamente en la disminución de la contracción del concreto bombeable. Este resultado evidencia que el control de la contracción requiere no solo de una adecuada combinación granulométrica, sino también de estrategias complementarias como el uso de aditivos, una relación agua/cemento optimizada y condiciones de curado apropiadas para mitigar este fenómeno.

El quinto objetivo específico de la investigación fue determinar si las metodologías modernas de combinación de agregados disminuyen la densidad del concreto bombeable. Para ello, se aplicó la prueba U de Mann-Whitney, obteniéndose un valor de U = 60,000, W de Wilcoxon = 138,000, un estadístico Z = -2,174 y una significancia asintótica bilateral (p) = 0,030. Dado que p < 0,05, se aceptó la hipótesis alternativa y se rechazó la hipótesis nula, lo cual indica que las metodologías modernas de combinación de agregados influyen significativamente en la disminución de la densidad del concreto bombeable.

Este hallazgo sugiere que la aplicación de estas metodologías permite obtener concretos con menor masa por unidad de volumen, lo que podría representar una ventaja en aplicaciones donde se requieran elementos estructurales más ligeros o donde el control del peso sea determinante. Esta disminución puede estar asociada a una distribución granulométrica más eficiente, que reduce la cantidad de vacíos llenados por pasta de cemento, o al uso de agregados con menor densidad relativa.

Este resultado coincide con lo reportado por Velásquez y Zakhia (25), quienes encontraron que la sustitución parcial del agregado fino por vidrio molido redujo significativamente la densidad aparente, saturada y nominal del concreto, generando mezclas más ligeras. De igual forma, Vargas (26) evidenció que el uso de mineral de hierro molido como agregado fino, dependiendo de su proporción, puede modificar la densidad del concreto y mejorar su rendimiento estructural. En el presente estudio, la

aplicación de combinaciones granulométricas modernas parece haber logrado un acomodo más eficiente de partículas, resultando en una densidad menor sin comprometer otras propiedades evaluadas.

Asimismo, Arbelaez et al. (27) señalaron que los agregados reciclados, como los residuos de vidrio, también permiten alcanzar mezclas de menor peso con desempeños aceptables, lo cual respalda el potencial de optimización a través de metodologías alternativas de diseño. En este contexto, la metodología empleada en esta investigación ofrece evidencia de que un enfoque adecuado en la combinación de agregados puede influir favorablemente sobre la densidad del concreto.

En conclusión, se determinó que las metodologías modernas de combinación de agregados influyen significativamente en la disminución de la densidad del concreto bombeable. Este hallazgo refuerza la viabilidad técnica de aplicar este tipo de enfoques en situaciones donde se requiera reducir la carga estructural sin comprometer otras propiedades relevantes del concreto.

El sexto objetivo específico de la investigación fue determinar si las metodologías modernas de combinación de agregados influyen positivamente, mejorando la resistencia del concreto bombeable. Para comprobar esta hipótesis, se aplicó la prueba U de Mann-Whitney, obteniéndose un valor de U = 87,000, W de Wilcoxon = 165,000, un estadístico Z = -0,164 y una significancia asintótica bilateral (p) = 0,870. Al ser p > 0,05, se aceptó la hipótesis nula y se rechazó la hipótesis alternativa, lo que indica que las metodologías modernas de combinación de agregados no influyen significativamente en la mejora de la resistencia a la compresión del concreto bombeable.

Este hallazgo sugiere que, en el contexto específico de este estudio, las técnicas modernas de combinación granulométrica no generaron un impacto estadísticamente relevante sobre la resistencia a la compresión del concreto. Esta conclusión resulta contraria a los hallazgos de Yupanqui (12), quien demostró que la metodología Shilstone permitió obtener concretos con resistencias superiores a las logradas mediante el método tradicional ACI, particularmente en la zona C del gráfico, donde se reportaron resistencias de hasta 395 kg/cm². Asimismo, Santa Cruz (10) evidenció que

las granulometrías optimizadas presentaban mejores resultados tanto en compresión como en flexión, lo cual reafirma la importancia de un diseño granulométrico eficiente.

Del mismo modo, Romero y Cabanillas (13) señalaron que el método de Walker, al enfocarse en el acomodo granular, logró resistencias a compresión un 47% superiores respecto a los métodos tradicionales, destacando el rol de la distribución de tamaños de partículas. No obstante, los resultados del presente estudio podrían explicarse por limitaciones en la implementación práctica de las metodologías, una posible similitud en las curvas granulométricas entre los grupos comparados o una falta de control sobre otros factores que influyen directamente en la resistencia, como el tipo de cemento, la relación agua/cemento o el curado.

Además, estudios como los de Vargas (26) y Mayta y Sucari (23) demostraron que la incorporación de agregados alternativos —mineral de hierro, residuos mineros—puede modificar las propiedades mecánicas del concreto, siempre que se controle su porcentaje y forma. En este sentido, el presente hallazgo pone de relieve que la mera aplicación de una metodología moderna no garantiza mejoras en la resistencia si no se integran otros elementos técnicos en el diseño y ejecución de la mezcla.

En conclusión, se determinó que las metodologías modernas de combinación de agregados no influyeron significativamente en la mejora de la resistencia del concreto bombeable. Este resultado evidencia la necesidad de considerar un enfoque integral que incluya no solo la optimización granulométrica, sino también el ajuste de la dosificación, el uso de aditivos y condiciones de curado adecuadas para alcanzar mejoras sustanciales en el desempeño mecánico del concreto.

El séptimo objetivo específico de la investigación fue determinar si las metodologías modernas de combinación de agregados influyen negativamente en los resultados de la resistencia a tracción del concreto bombeable. Para evaluar esta hipótesis, se aplicó la prueba U de Mann-Whitney, obteniéndose un valor de U = 78,000, W de Wilcoxon = 156,000, un estadístico Z = -0,628 y una significancia asintótica bilateral (p) = 0,530. Dado que p > 0,05, se aceptó la hipótesis nula y se rechazó la hipótesis alternativa, lo cual indica que no se evidenció una influencia negativa significativa de las metodologías modernas de combinación de agregados sobre la resistencia a tracción del concreto bombeable.

Este resultado sugiere que las metodologías modernas aplicadas no afectaron negativamente la capacidad del concreto para resistir esfuerzos de tracción. Es decir, la implementación de estas técnicas no debilitó esta propiedad, pero tampoco produjo mejoras estadísticamente significativas. Esta conclusión difiere de lo observado por Alcántara y Santiago (21), quienes lograron incrementar la resistencia a tracción en mezclas con agregados plásticos tratados, alcanzando mejoras de hasta un 8%, al mejorar la adherencia de los agregados a la matriz cementante.

De forma similar, Vargas (26) evidenció un aumento del 34,05% en la resistencia a tracción indirecta al utilizar agregado fino de mineral hierro molido en proporciones controladas, lo que demuestra que ciertos ajustes en el tipo y proporción de los agregados sí pueden modificar esta propiedad. Sin embargo, en el presente estudio, al no aplicarse sustituciones específicas ni tratamientos superficiales a los agregados, el efecto de la metodología de combinación granulométrica por sí sola no fue suficiente para alterar la resistencia a tracción.

Cabe señalar que la resistencia a tracción es una propiedad particularmente sensible a la calidad de la interfase pasta-agregado, a la forma y textura del agregado, y al contenido de micro fisuras. Así, según Larraín (9), una distribución granulométrica óptima no siempre se traduce en mejoras directas en todas las propiedades mecánicas, especialmente cuando no se controla el resto de variables que afectan la cohesión interna del concreto.

En conclusión, se determinó que las metodologías modernas de combinación de agregados no influyeron negativamente en la resistencia a tracción del concreto bombeable. Este resultado es relevante, ya que permite descartar efectos adversos de estas metodologías sobre esta propiedad, pero también pone de manifiesto la necesidad de complementarlas con otras estrategias que permitan potenciar su impacto, especialmente en aspectos relacionados con la resistencia a esfuerzos de tracción.

El octavo y último objetivo específico de la investigación fue determinar si las metodologías modernas de combinación de agregados influyen negativamente en la resistencia a la flexión del concreto bombeable. Para comprobar esta hipótesis, se aplicó la prueba U de Mann-Whitney, obteniéndose un valor de U = 63,000, W de Wilcoxon = 141,000, un estadístico Z = -1,547 y una significancia asintótica bilateral (p) = 0,122.

Al ser p > 0,05, se aceptó la hipótesis nula y se rechazó la hipótesis alternativa, concluyéndose que no se evidenció una influencia negativa significativa de las metodologías modernas de combinación de agregados en la resistencia a la flexión del concreto bombeable.

Este resultado indica que la implementación de metodologías modernas para la combinación de agregados no afectó de forma adversa la capacidad del concreto bombeable para resistir esfuerzos de flexión. En otras palabras, no se observó un debilitamiento de esta propiedad estructural como resultado de las técnicas aplicadas. Esta conclusión se diferencia de lo observado por Santa Cruz (10), quien reportó que las mezclas con granulometría optimizada obtuvieron mejores resultados en resistencia a la flexión tanto en vigas como en probetas, lo que se atribuyó a un mejor acomodo granular y a la mejora de la estructura interna del concreto.

Yupanqui (12), por su parte, encontró que las mezclas diseñadas en la zona C del gráfico de Shilstone lograron una resistencia a la flexión de 41,08 kg/cm², superior al patrón tradicional de 31,83 kg/cm². Estos hallazgos refuerzan la idea de que una correcta combinación de agregados puede tener un impacto positivo en esta propiedad, lo cual no fue reflejado estadísticamente en el presente estudio.

La ausencia de efecto significativo también podría estar relacionada con factores externos como la calidad de los agregados, el proceso de curado o la proporción de cemento utilizada. Según Romero y Cabanillas (13), incluso cuando se usan métodos alternativos de diseño de mezcla, como el método Walker, es necesario un control riguroso de todos los componentes para que la resistencia a la flexión se vea impactada positivamente.

En conclusión, se determinó que las metodologías modernas de combinación de agregados no influyeron negativamente en la resistencia a la flexión del concreto bombeable. Aunque este resultado es favorable en términos de seguridad estructural, también sugiere que estas metodologías, por sí solas, no son suficientes para mejorar esta propiedad, por lo que se recomienda integrarlas con otros elementos del diseño de mezcla para optimizar el desempeño flexional del concreto.

CONCLUSIONES

- La prueba U de Mann-Whitney (U = 84,000; p = 0,371) mostró que las metodologías modernas de combinación de agregados no influyen significativamente en las propiedades en estado fresco y endurecido del concreto bombeable. Esto sugiere que, bajo las condiciones del estudio, no se encontraron diferencias estadísticamente significativas entre los diseños patrón y los diseños con combinaciones modernas, aunque sí se observaron mejoras prácticas en algunas propiedades.
- Para la consistencia del concreto bombeable, los resultados de la prueba U de Mann-Whitney (U = 90,000; p = 1,000) indicaron que no hubo diferencias estadísticamente significativas al aplicar metodologías modernas. La mezcla mantuvo su asentamiento entre 7.5 y 9.5 pulgadas, pero sin evidencia inferencial que respalde una mejora atribuible a la combinación granulométrica utilizada.
- En el análisis de la segregación, se encontró que el valor de U = 90,000 con p = 1,000 indica que no hubo una disminución significativa con el uso de metodologías modernas. La mezcla se mantuvo homogénea, pero la estadística no respalda diferencias notables frente al diseño tradicional en cuanto a estabilidad de los componentes.
- Respecto a la exudación, la prueba inferencial arrojó U = 87,000 y p = 0,866, por lo que no se halló una reducción significativa de agua libre. Aunque se reportó una mejora visual hasta un 1.39% de exudación, estadísticamente no se puede afirmar que la metodología aplicada influyera directamente en esa reducción.
- En cuanto a la contracción, la prueba U de Mann-Whitney (U = 87,000; p = 0,870) evidenció que no hubo una disminución significativa en los anchos de fisura. A pesar de que se mantuvieron por debajo de 0.3 mm, los resultados no permiten confirmar que este efecto esté relacionado con las metodologías de combinación de agregados empleadas.
- Para la densidad, se encontró una diferencia significativa (U = 60,000; p = 0,030), lo que demuestra que las metodologías modernas influyen en su reducción. Se obtuvo una densidad promedio de 2376.67 kg/m³, y este cambio es estadísticamente válido, lo que respalda la efectividad del enfoque aplicado en esta propiedad.
- En el caso de la resistencia a compresión, la prueba U = 87,000 con p = 0,870 indicó que no hubo una mejora significativa, a pesar de haberse alcanzado 395 kg/cm² frente a los 363 kg/cm² del diseño patrón. Por tanto, la diferencia observada no puede ser atribuida con certeza a la metodología de combinación granulométrica aplicada.

- Sobre la resistencia a tracción, los valores U = 78,000 y p = 0,530 mostraron que no hubo una influencia negativa ni positiva significativa. La resistencia aumentó levemente de 25.66 a 27.37 kg/cm², pero sin evidencia estadística que sustente este cambio como resultado del tratamiento experimental.
- Finalmente, para la resistencia a flexión, la prueba inferencial (U = 63,000; p = 0,122) no evidenció diferencias significativas, a pesar del incremento de 31.83 a 41.08 kg/cm². Esto indica que, aunque hubo un cambio favorable, este no puede atribuirse de manera estadísticamente válida al uso de metodologías modernas.

RECOMENDACIONES

- Se recomienda implementar metodologías de combinación de agregados asistidas por inteligencia artificial (IA), capaces de analizar bases de datos locales de agregados, condiciones climáticas y requerimientos estructurales para generar diseños óptimos de mezcla. Mediante algoritmos de aprendizaje automático, se podrían predecir las propiedades del concreto antes de su elaboración, reduciendo así los ensayos físicos repetitivos y permitiendo un control de calidad más eficiente y automatizado en plantas de producción.
- Para mejorar la consistencia del concreto bombeable, se sugiere integrar sensores electrónicos en las tolvas y camiones mezcladores que monitoreen parámetros como el asentamiento, la temperatura y la viscosidad en tiempo real. Estos datos podrían conectarse a un sistema de control automático que regule la dosificación de agua o aditivos durante el transporte. Esto garantizaría que el concreto mantenga su trabajabilidad hasta el momento del vaciado, evitando pérdidas de calidad por variaciones no detectadas.
- En cuanto a la segregación, una alternativa innovadora es la incorporación de sistemas de escaneo por imagen o sensores ultrasónicos en el punto de descarga del concreto. Estos dispositivos pueden identificar en tiempo real la separación de fases o partículas dentro de la mezcla. Al detectar anomalías, podrían emitir alertas o activar mecanismos de corrección, como remezclado automático o aplicación de aditivos, asegurando una mezcla uniforme y de alta calidad estructural.
- Para reducir la exudación, se recomienda la incorporación de aditivos nanoestructurados de última generación, que actúan como reguladores inteligentes de la liberación de agua durante el fraguado. Estos materiales, al ser añadidos en pequeñas cantidades, aumentan la retención de agua en la matriz cementicia sin comprometer la trabajabilidad, y mejoran la cohesión interna del concreto. Esto es especialmente útil en zonas con altas temperaturas o climas secos, donde la exudación puede ser más pronunciada.
- Con el fin de controlar eficazmente la contracción y prevenir micro fisuras, se sugiere utilizar fibras poliméricas recicladas de alto desempeño, obtenidas a partir de materiales como PET o polipropileno. Estas fibras, al distribuirse de forma tridimensional en la mezcla, actúan como micro refuerzos que restringen la formación y propagación de fisuras durante el secado inicial. Además, esta medida tiene un beneficio ambiental importante al reutilizar residuos plásticos en la construcción.

- Dado que la metodología Shilstone influyó positivamente en la densidad, se recomienda explorar el uso de agregados reciclados tratados con estabilizantes químicos, como silicato de sodio o polímeros selladores. Estos tratamientos mejoran la adherencia entre las partículas y la matriz cementicia, reducen la absorción de agua y ayudan a mantener una densidad estable. Esta práctica no solo optimiza el comportamiento mecánico del concreto, sino que también contribuye a la economía circular en la industria de la construcción.
- Aunque no se encontró una diferencia estadísticamente significativa en la resistencia a compresión, se propone complementar el diseño de mezcla con software especializado como OptiAgg, AggregateLab o modelos de simulación numérica. Estas herramientas permiten optimizar la combinación de agregados de forma más precisa, reducir la variabilidad entre lotes y predecir con mayor exactitud la resistencia final del concreto, aumentando la confiabilidad del proceso productivo.
- En cuanto a la resistencia a tracción, se recomienda incorporar polímeros superabsorbentes (SAP) que actúan como reservorios internos de agua. Durante el fraguado, estos polímeros liberan humedad de forma controlada, mejorando la hidratación de la pasta cementicia y reduciendo la formación de microgrietas internas. Esta técnica contribuye a mejorar la tenacidad y la capacidad tensil del concreto, sin necesidad de aumentar la relación agua/cemento.
- Para incrementar la resistencia a flexión de forma más significativa, se sugiere desarrollar mezclas con gradaciones específicas para elementos estructurales sometidos a esfuerzos de flexión, utilizando el método Shilstone como base y combinándolo con ensayos paramétricos de laboratorio. Asimismo, se puede incorporar fibras metálicas o híbridas (acero-polímero) en proporciones calibradas, que incrementan la ductilidad y capacidad de absorción de energía del concreto, optimizando su desempeño en vigas, losas o pavimentos.

REFERENCIAS BIBLIOGRÁFICAS

- 1. SANJUÁN, Miguel Ángel. *En respuesta al objetivo 2030 de reducción del 55% de las emisiones de GEI*. Revista Técnica Cemento Hormigón N.º 1007. 2022, vol. 1, pp. 18-26 consulta: 05 diciembre 2023. Disponible en: https://url-shortener.me/4J4M.
- SENCICO. Reglamento Nacional de Edificaciones. RNE E.060 Concreto Armado. 1° ed. Lima: SENCICO,2020. consulta: 05 diciembre 2023. ISBN 978-612-48427-4-0. Disponible en: https://www.gob.pe/institucion/sencico/informes-publicaciones/887225-normas-del-reglamento-nacional-de-edificaciones-rne. https://drive.google.com/file/d/19EYUVMgwvm6rDs47GV374avco2ylU5Kz/view.
- 3. SALGADO TORRES, Mauricio. Lo que nos deja la más reciente Actualización del Manual de Carreteras. Instituto del cemento y del hormigón de Chile. Chile, 11 octubre 2021 consulta: 05 diciembre 2023. Disponible en: https://ich.cl/sin-categoria/lo-que-nos-deja-la-mas-reciente-actualizacion-del-manual-de-carreteras/.
- SHILSTONE, James SM et al. Optimización de la mezcla de hormigón. Concreto Internacional. 1990, vol. 12, núm. 6, pág. 33-39. [consulta: 05 diciembre 2023]. Disponible en: https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=detai ls&i=2309.
- ANDIA, Janet. Evaluación geotécnica del agregado morrénico y su influencia en la resistencia a la compresión y durabilidad del concreto-Sapallanga-Huancayo-Junín. Tesis (Magister en Geología con mención en Geotecnia) Lima: Universidad Nacional Mayor de San Marcos, 2019 [consulta: 05 diciembre 2023]. 146 pp. Disponible en: https://hdl.handle.net/20.500.12672/10339.
- PASQUEL CARBAJAL, Enrique. Entendiendo el concreto. Lima, Perú, 200? [consulta: 05 diciembre 2023]. 68 pp. Disponible en: https://www.controlmixexpress.com/entendiendo.php.
 https://www.controlmixexpress.com/docs/EntendiendoElConcreto.pdf.
- CARHUAMACA, Julio. Control de calidad del concreto y consideraciones en las operaciones para la reducción de costos de no calidad. En: Curso virtual de PyS Concreto (1°; 2020; Lima, Perú). Lima, Perú: PyS Concreto, 2020.

- 8. ZONGJIN LI. *Advanced concrete technology*. Canadá, Fondo Editorial Jhon Wiley & Sons, INC,2011 [fecha de consulta: 11 de noviembre de 2023]. ISBN 978-0-470-90239-4 (ebk); ISBN 978-0-470-90241-7 (ebk); ISBN 978-0-470-90243-1 (ebk); ISBN 978-0-470-9506-7 (ebk); ISBN 978-0-470-95166-8 (ebk); ISBN 978-0-470-95188-0 (ebk) Disponible en: https://books.google.com.pe/books?id=1lthdPkTS9wC&printsec=frontcover&redir_esc= y#v=onepage&q&f=false.
- LARRAÍN BOFILL, Blas Alejandro Ramón. Análisis anova del efecto de la granulometría dentro del gráfico de Shilstone en el desempeño global de los pavimentos de hormigón. Tesis (Título de ingeniero civil) Valparaíso: Universidad Técnica Federico Santa María, 2019 [consulta: 05 diciembre 2023]. 104 pp. Disponible en: https://hdl.handle.net/11673/48021.
- 10. SANTA CRUZ PAREDES, Johan Luis. Efecto de la granulometría en las propiedades mecánicas de mezclas de hormigón para. Tesis (Título de Magister en construcción) Chile: Universidad Católica de Chile, 2021 [consulta: 07 diciembre 2023]. 83 pp. Disponible en: https://renati.sunedu.gob.pe/bitstream/sunedu/3079952/1/SantaCruzParedesJL.pdf.
- 11. URQUILLA, Roxana, VASQUEZ, Adonay y VIVAS, Ingrid. Evaluación de granulometría Shilstone y curva de la tarántula, mediante el ensayo de la caja, en mezclas de concreto hidráulico para pavimento rígido en el Salvador. Tesis (Trabajo de graduación) El Salvador: Universidad de El Salvador, 2021 [consulta: 08 diciembre 2023].
 231 pp. Disponible en: https://ri.ues.edu.sv/id/eprint/24041/1/Evaluaci%C3%B3n%20de%20granulometr%C3% ADa%20Shilstone%20y%20curva%20de%20la%20tar%C3%A1ntula%2C%20mediante %20el%20ensayo%20de%20la%20caja%2C%20en%20mezclas%20de%20concreto%20 hidr%C3%A1ulico%20para%20pavimento%20r%C3%ADgido%20en%20El%20Salvad or.pdf.
- TUPAC YUPANQUI MACHACA, Katia. Influencia de la combinación de agregados y diseño de mezcla en la calidad del concreto para pavimentos rígidos, Huancayo 2021.
 Tesis (Título de ingeniero civil). Lima, Universidad César Vallejo, 2021. [fecha de consulta: 04 noviembre 2023]. Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/81579.

- 13. ROMERO SÁNCHEZ, Hernán Luis Carlos. Estudio comparativo de 3 métodos de diseño de mezclas en la resistencia de compresión del concreto. Tesis (Título de ingeniero agrícola). Trujillo, Universidad Nacional de Trujillo, 2019. [fecha de consulta: 05 noviembre 2023]. Disponible en: https://dspace.unitru.edu.pe/items/7736de6b-7f55-43f9-ad26-b9304a91597b.
- 14. REYMUNDO GAMARRA, Richard Hugo. Mantensor de la trabajabilidad del concreto bombeado adicionado con sacarosa. Tesis (Título de Doctor en Ingeniería Civil). Lima, Universidad Nacional Federico Villareal, 2022. [fecha de consulta: 05 noviembre 2023]. Disponible en: http://repositorio.unfv.edu.pe:8080/bitstream/handle/20.500.13084/6585/UNFV_EUPG_Reymundo_Gamarra_Richard_Hugo_Doctorado_2022.pdf?sequence=1&isAllowed=y .
- 15. ESTEBAN, Nicomedes. *Tipos de investigación*. Repositorio USDG.2018 [consulta: 26 diciembre 2023]. 4 p. Disponible en: https://core.ac.uk/reader/250080756.
- REDACTA, Ena Ramos Chagoya. Métodos y técnicas de investigación. Lima, Perú, 2008 [consulta: 12 de enero 2024]. Disponible en: https://gestiopolis.com/metodos-y-tecnicas-de-investigacion/.
- 17. SABINO. *Proceso de investigación*. Venezuela, Fondo Editorial Panapo de Venezuela. 2002 [fecha de consulta: 12 de enero de 2024]. ISBN 980-366-270-8, pp. 150.
- 18. HERNANDEZ SAMPIERI, Roberto et al. *Metodología de la investigación*. México, Fondo Editorial Mc Graw Hill,2014 [fecha de consulta: 12 de noviembre de 2023]. ISBN 978-1-4562-2396-0. Disponible en: https://books.google.com.pe/books?id=1lthdPkTS9wC&printsec=frontcover&redir_esc= y#v=onepage&q&f=false.
- BURGA, Wendy. Influencia de la superficie específica de los agregados; de río y de cerro, en la resistencia a la compresión de un concreto de f'c = 210Kg/cm² en Cajamarca.
 Online. Tesis de pregrado. Universidad Nacional de Cajamarca, 2022. [Accessed 16 February 2025]. Available from: https://repositorio.unc.edu.pe/handle/20.500.14074/4925

- 20. CHIPANA, Jaime. Análisis y caracterización de las propiedades mecánicas y físicas de los agregados de las tres canteras para el diseño de mezcla de concreto f'c = 210 kg/cm² en la ciudad de Cusco, 2023. Online. Tesis de pregrado. Universidad Continental, 2024. [Accessed 16 February 2025]. Available from: https://repositorio.continental.edu.pe/handle/20.500.12394/16064
- 21. ALCÁNTARA, Martha and SANTIAGO, Yasminda. Tratamiento superficial de partículas de polietileno de alta densidad (HDPE) en un concreto autoconsolidante (SCC) f'c=450 kg/cm2 con agregados gruesos plásticos para aumentar su capacidad resistente en compresión y tracción. Online. Tesis de pregrado. Universidad Peruana de Ciencias Aplicadas, 2024. [Accessed 16 February 2025]. Available from: https://repositorioacademico.upc.edu.pe/handle/10757/674757
- 22. MUÑOZ, Pedro, BURGA, Jonathan, CÓRDOVA, Renato, CASTRO, Jesús, BONILLA, Kristell and RAMOS, Sandro. Uso del aditivo mineral como modificador de las propiedades mecánicas en el concreto: una revisión. Métodos y materiales. Online. 2021. Vol. 11. [Accessed 16 February 2025]. Available from: https://revistas.ucr.ac.cr/index.php/materiales/article/view/46106/48885
- 23. MAYTA, Sinofereiner and SUCARI, Analía. Efecto del agregado fino reemplazado por residuos mineros (Cuarzo Ignimbrita) triturados con Ball Mill en las propiedades del concreto, Puno, 2022. Online. Tesis de pregrado. Universidad César Vallejo, 2022. [Accessed 16 February 2025]. Available from: https://hdl.handle.net/20.500.12692/96410
- 24. SARAPURA, Luis. Utilización de hueso triturado de vacuno como agregado fino para el mejoramiento de las propiedades del concreto. Online. Tesis de pregrado. Universidad Peruana Los Andes, 2021. [Accessed 16 February 2025]. Available from: https://hdl.handle.net/20.500.12848/6277
- 25. VELÁSQUEZ, Eulises and ZAKHIA, Youssef. Determinación de las propiedades del concreto a partir de la sustitución parcial de agregado fino por vidrio molido. Online. Tesis de pregrado. Universidad Católica Andrés Bello, 2021. [Accessed 16 February 2025]. Available https://apifrom: saber.ucab.edu.ve/server/api/core/bitstreams/a43e8f14-6c9e-4aac-98b5-3bbd52476504/content

- 26. VARGAS, Eliel. Agregado fino de mineral hierro molido para mejorar las propiedades mecánicas del concreto F'c 210 kg/cm2, Andahuaylas 2023. Online. Tesis de pregrado. Universidad Nacional José Faustino Sánchez Carrión, 2025. [Accessed 16 February 2025]. Available from: http://hdl.handle.net/20.500.14067/10475
- 27. ARBELAEZ, Oscar, AGUDELO, Juan, ACEVEDO, Mateo and VALENCIA, Santiago. Factores de emisión de concretos modificados con residuos de vidrio en reemplazo de los agregados finos. Ingeniare. Revista chilena de ingeniería. June 2022. Vol. 30, no. 2, p. 368–377. DOI 10.4067/S0718-33052022000200368.

ANEXOS

Anexo 1. Ficha de validación de expertos, ficha de recolección de curvas granulométricas combinadas.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Mg. Ing. Carlos Guerra Cisneros

Considerando su actitud académica y trayectoria profesional, permítame nombrarlo
como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de
datos:

FICHA DE RECOLECCIÓN DE DATOS DE CURVAS GRANULOMETRICAS COMBINADAS

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

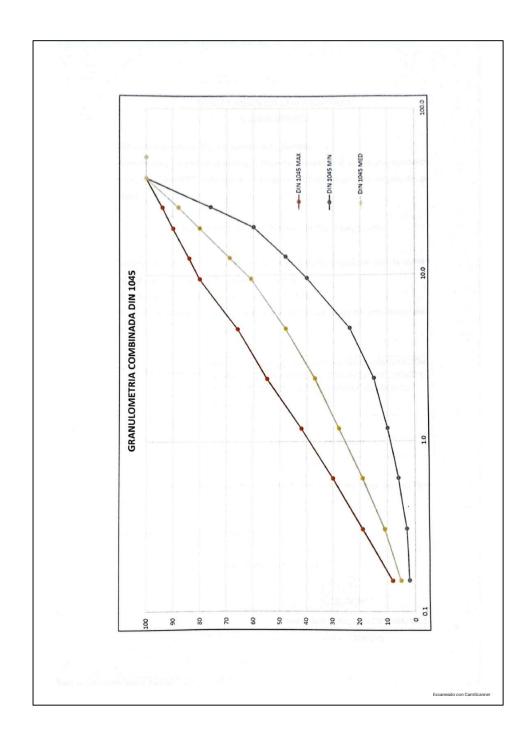
El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Título del proyecto de tesis:	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
• Línea de investigación:	Gestión de la Construcción

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024


Tesista: Bach. POOL SAID SOTOMAYOR C.

D.N.I: 73230525

Escaneado con CamScanne

		Forma	o de Validación	de Criter	ine	do		artas		
. Datos Ge		roma	o de Validaciói	i de Criter	103	ue	CAP	ertos		
echa			16/01	12024	-					
/alidador			Carbs	Guerra	ci	ne	res			7
Cargo e ins abora	go e institución donde ora Jefe de Cali			da	d	,	Mixercon	50		
nstrumento a	nento a validar FICHA DE RECOLECCIÓN DE COMBINADAS			DA	TOS	DE	CURVAS GR	ANULOMETRICA	ıs	
Objetivo del in	strument	to	determinar las pr de curva granulor		de d	cada	un	o de los agreg	ados y su grafi	00
Autor(es) del i	nstrumen	ito	Bach. POOL SAID	SOTOMAYO	RC	-	-			
	100 0 000	a uno de	los indicadores de	la ficha ten	iend	o ei	ı cu	enta:		1
Deficient Regular	te (D) S	Si menos	del 30% de los íter	ms cumplen	con	el ir	ndica	ador		, -
	te (D) S	Si menos Si entre d	del 30% de los íter	ms cumplen i ítems cump	con	el ir	ndica el in	ador adicador		
Regular (te (D) S	Si menos Si entre d	del 30% de los íter I 31% y 70% de los	ms cumplen i ítems cump	con olen n el	el ir	el in	ador idicador or	ervación]
Regular	te (D) S (R) S B) S	si menos si entre e si más de ms mide	del 30% de los íter I 31% y 70% de los I 70% de los ítems Indicadores n lo previsto en lo	ns cumplen items cump cumplen co	con olen n el	el ir con indi	el in	ador idicador or	ervación	
Regular (Buena (E	te (D) S (R) S (R) S (R) S (R) S (R) S	si menos si entre e si más de ms mide ms mide estigación den a l	del 30% de los íter I 31% y 70% de los I 70% de los ítems Indicadores In lo previsto en lo	ns cumplen items cump cumplen co es objetivos	con olen n el	el ir	el in	ador idicador or	ervación	
Regular (E Buena (E Criterios PERTINENCIA	(R) S	si menos si entre d si más do ms mide sstigación den a l e, dimen acorde c	del 30% de los íter I 31% y 70% de los I 70% de los ítems Indicadores n lo previsto en lo	items cumplen co cumplen co so objetivos dedir en la	con olen n el	el ir	el in	ador idicador or	ervación	
Regular (Buena (E Criterios PERTINENCIA COHERENCIA	(R) S	si menos si entre e si más de ms mide estigación den a l e, dimen acorde c ogía.	del 30% de los íter I 31% y 70% de los I 70% de los ítems Indicadores In lo previsto en lo Io que se debe m Isiones e indicadores	ins cumplen co cumplen co is objetivos nedir en la es.	con olen n el	el ir	el in	ador idicador or	ervación	
Regular (E Buena (E Criterios PERTINENCIA COHERENCIA CONGRUENCIA	Los íter de inverses exponentes e	ms mide estigación den a le, dimen acorde cogía. ficientes ores de lesan en	del 30% de los iten 1 31% y 70% de los 1 70% de los items Indicadores n lo previsto en lo to que se debe m siones e indicadore on el avance de l en cantidad para	ins cumplen couplen couplen couplen couplen couplen couplen coupled in couple coupled in couple coup	con olen n el	el ir	el in	ador idicador or	ervación	
Regular (Buena (E Criterios PERTINENCIA COHERENCIA CONGRUENCIA SUFICIENCIA OBJETIVIDAD	Los iter de inve Respon variable Están a tecnolo Son sul indicad: Se exprobserva Se han	si menos si entre e si más de ms mide estigación de, dimen acorde c ogía. ficientes ores de resan en ables y v formula	del 30% de los íter il 31% y 70% de los il 70% de los ítems Indicadores in lo previsto en lo ilio ilio que se debe m siones e indicadore on el avance de l en cantidad para a variable. comportamientos	items cumplen co cumplen co is objetivos nedir en la es. a ciencia y medir los y acciones	con olen n el	el ir	el in	ador idicador or	ervación	
Regular (Buena (E Criterios PERTINENCIA COHERENCIA CONGRUENCIA SUFICIENCIA	Los íter de inve Respon variable Están a tecnolo Son sul indicad Se expr observa Se han las dim Son sec	si menos si entre o si más do ms mide sitigación den a l e, dimen acorde co ogía. ficientes ores de resan en ables y y formula ensiones cuenciales	Indicadores Indicadores In o que se debe misiones e indicadores In la vance de la en cantidad para a variable. Indicadores Ind	ns cumplen co cumplen co s objetivos s objetivos s dedir en la ss. a ciencia y medir los y acciones a teoría de	con olen n el	el ir	el in	ador idicador or	ervación	
Regular (Buena (E Criterios PERTINENCIA COHERENCIA CONGRUENCIA OBJETIVIDAD CONSISTENCIA ORGANIZACIÓN	Los íter de inve Respono variable Están a tecnolo Son sul indicad Se exprosperva Se han las dime Son sec dimensi Están r	si menos si entre di si más di más di más di más midden a l di más midden a l di más midden a l di más midden a l di más di más	Indicadores In lo previsto en lo o que se debe m siones e indicadore on el avance de l en cantidad para a variable. comportamientos erificables. de la variable.	ns cumplen course sobjetivos sedir en la ss. a ciencia y a medir los y acciones a teoría de acuerdo a	con olen n el	el ir	el in	ador dicador or Obs	ervación Unidazles	
Regular (Buena (E Criterios PERTINENCIA COHERENCIA CONGRUENCIA SUFICIENCIA OBJETIVIDAD CONSISTENCIA	Los íter de inve Respon variable Están a tecnolo Son sui indicad. Se exprobserva Se han las dimensi Están rentendi	si menos si entre e si más de mas mide	Indicadores In operation of the company of the comp	items cumplen co cumplen co is objetivos is objetivos dedir en la es. a ciencia y medir los y acciones a teoría de e acuerdo a	con olen n el	el ir	el in	ador dicador or Obs		
Regular (Buena (E Criterios PERTINENCIA COHERENCIA CONGRUENCIA OBJETIVIDAD CONSISTENCIA ORGANIZACIÓN CLARIDAD	Los íter de inve Respon variable Están a tecnolo Son sud indicad Se exproberva Se han las dime son sec dimensi Están rentendi El instradecua	si menos si entre e si más de mas mide	Indicadores In lo previsto en lo Indicadores Indicador	is sumplen co is objetivos is objetivos dedir en la es. a ciencia y medir los y acciones a teoría de a cuerdo a je claro y momento ucciones y	con olen n el	el ir	B (3)	Obs		

La presente ficha de recolección tiene como objetivo determinar las proporciones de cada uno de los agregados y su grafico de curva granulomètrica Instrucciones: A continuación, se presenta un formato para completar los porcentajes pasantes en las mallas de los agregados y grafico de curva describaciones.		
Instrucciones: A continuación, se presenta un formato para completar los porcentajes pa	no de los agregados y su grafico de curva g	ranulometrica
granuomicurca.	isantes en las mallas de los agregados y g	grafico de cur
FICHA DE RECOLECCION DE DATOS DE INCIDENCIA DE AGREGADOS Y CURVA GRANULOMETRICA COMBINADA	VA GRANULOMETRICA COMBINADA	
AGREGADO GRUESO AGRECADO FINO AGREGADOS COMBINADOS	ADOS COMBINADO DE AGRECADOS	
Tamiz Abertura (mm) AG1 (%) AG2 (%) AG3 (%) AF1 (%) AF2 AF3 (%) AF3 COMBINADO (COMBINADO	COMBINADO PD % ARENA %	COMBINADO
2112" 63		
\$0.80		
11/2" 38.10		
3/4" 19.05		
12.70		
3/8" 9.53		
N°4 4.76		
N*8 2.38		
Nº16 1.19		
09:0 0:00		
N-50 0.30 N-50		
Nº100 0.15		

Anexo 2. Ficha de validación de expertos de ficha de Recolección de Datos de Método Shilstone, especialista 1.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Mg. Ing. Carlos Guerra Cisneros

Considerando su actitud académica y trayectoria profesional, permítame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos:

FICHA DE RECOLECCIÓN DE DATOS DE METODO SHILSTONE

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Título del proyecto de tesis:	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
Línea de investigación:	Gestión de la Construcción

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024

Tesista: Bach. POOL SAID SOTOMAYOR C.

D.N.I: 73230525

scaneado con CamScanne

Formato de Validación de Criterios de Expertos

Fecha	
recia	1610112024
Validador	Carlos Guerra Cisneros
Cargo e institución donde labora	Jefe de Calidad Mixerion So
Instrumento a validar	FICHA DE RECOLECCIÓN DE DATOS DE METODO SHILSTONE
Objetivo del instrumento	Determinar las proporciones de cada uno de los agregados y su grafico de curva Shilstone, factor grosor, factor de trabajabilidad, módulo de fineza global, curva 8-18 y curva Power 45.
Autor(es) del instrumento	Bach. POOL SAID SOTOMAYOR C

II. Criterios de validación del instrumento Revisar cada item del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta:

1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el indicador
3	Buena (B)	Si más del 70% de los ítems cumplen con el indicador

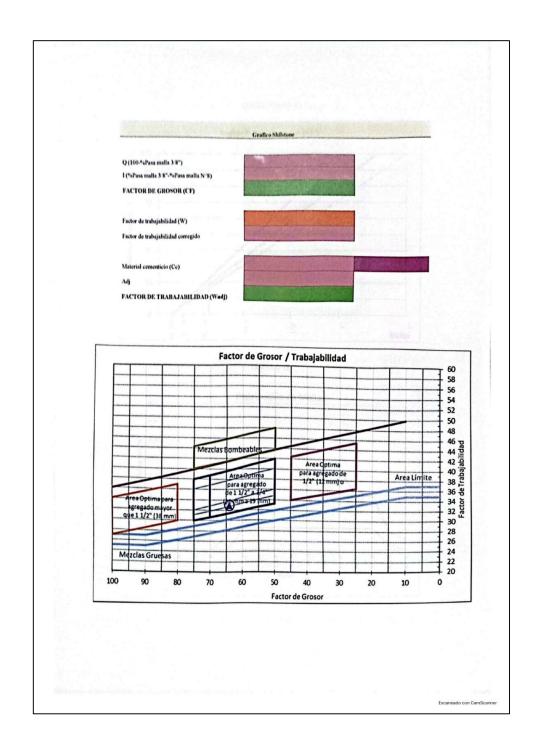
Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			X	
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.			X	
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnología.			4	and the second
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.			X	
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.			x	
CONSISTENCIA	Se han formulado en relación a la teoría de las dimensiones de la variable.		6		complementar los pasantes como ab.
ORGANIZACIÓN	Son secuenciales y distribuidos de acuerdo a dimensiones.			4	
CLARIDAD	Están redactados en un lenguaje claro y entendible.			×	
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.			P	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.			Ø	
	TOTAL	30	2	27	

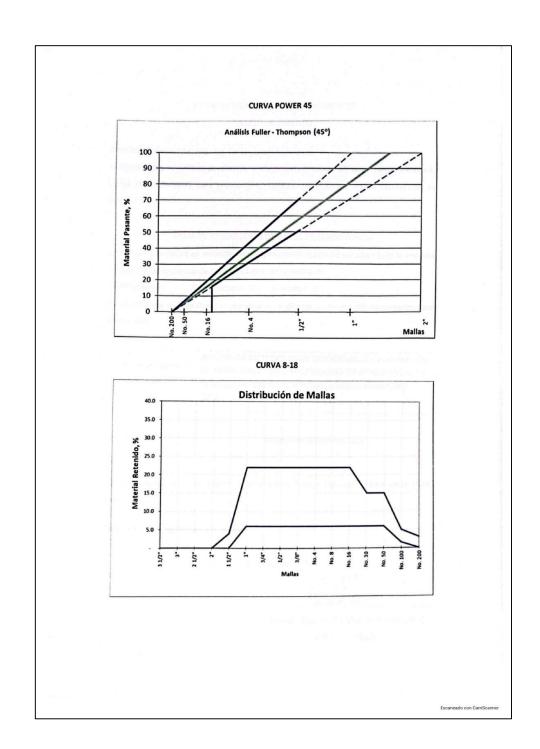
III. Coeficiente de Validez

 $\frac{D+R+B}{30} = 0.97$

Certo Grane. C.

FICHA DE RECOLECCIÓN DE DATOS DE METODO SHILSTONE (INCIDENCIA DE AGREGADOS, FACTOR GROSOR, FACTOR TRABAJABILIDAD, MODULO DE FINEZA GLOBAL, CURVA 8-18, CURVA POWER 45)


La presente ficha de recolección tiene como objetivo determinar las proporciones de cada uno de los agregados y su grafico de curva Shilstone, factor grosor, factor de trabajabilidad, módulo de fineza global, curva 8-18 y curva Power 45.


Instrucciones: A continuación, se presenta un formato para completar los porcentajes pasantes en las mallas de los agregados, calcular el factor de trabajabilidad y el factor grosor, en función a los datos obtenidos de las granulometrías y el contenido de cemento. Así mismo analizar el Punto Shilstone, curva 8-18 y curva Power 45.

FICHA DE RECOLECCION DE DATOS DE INCIDENCIA DE AGREGADOS Y CURVA GRANULOMETRICA AGREGAD AGREGAD AGREGADOS COMBINADO DE AGREGADOS O FINO COMBINADOS AGREGADOS

ESO O FINO	COMBINADOS	AGREGADOS	COMBINA DO FINAL
A AF AF AF 3 (% (% (%))))	COMBINA DO PIEDRAS COMBINA DO ARENAS		
		A THE RESERVE OF THE	
ton to the			
			MFG

Escaneado con CamScanne

Anexo 3. Ficha de validación de expertos de ficha de Recolección de Datos de Consistencia, especialista 1.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO Estimado Especialista: Mg. Ing. Carlos Guerra Cisneros Considerando su actitud académica y trayectoria profesional, permítame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos: FICHA DE RECOLECCIÓN DE DATOS DE CONSISTENCIA Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque: Cualitativo () 2. Cuantitativo (X) 3. Mixto () El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto: ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN Título del proyecto de DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y tesis: ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, Línea de investigación: Gestión de la Construcción Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera De antemano le agradezco sus aportes. Lima, 15 de enero del 2024 Tesista: Bach. POOL SAID SOTOMAYOR C. D.N.I: 73230525

Formato de Validación de Criterios de Expertos

 Datos Generales 	many and the control of the control		
Fecha	16/01/2024		
Validador	Carlos Guerro Cisneros		
Cargo e institución donde labora	Jefe de calidad Mixenon So		
Instrumento a validar	FICHA DE RECOLECCIÓN DE DATOS DE CONSISTENCIA		
Objetivo del instrumento	Determinar la consistencia, temperatura y perdida de trabajabilidad de la mezcia de concreto.		
Autor(es) del instrumento	Bach. POOL SAID SOTOMAYOR C		

II. Criterios de validación del Instrumento Revisar cada item del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta:

1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador				
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el indicador				
3	Buena (B)	Si más del 70% de los ítems cumplen con el indicador				

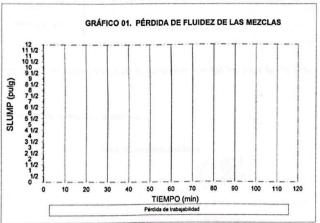
Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			X	
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.			X	en terren ele
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnología.		X		alshe otros metados al mediation
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.			X	
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.			X	I In I The
CONSISTENCIA	Se han formulado en relación a la teoría de las dimensiones de la variable.			P	
Organización	Son secuenciales y distribuidos de acuerdo a dimensiones.			X	
CLARIDAD	Están redactados en un lenguaje claro y entendible.		1	X	
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.			P	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.			X	
TOTAL			2	27	

D+R+B
30

= 0.97

Evaluador:

Cortor Guerre (1) process


FICHA DE RECOLECCIÓN DE DATOS DE CONSISTENCIA (ASENTAMIENTO, TEMPERATURA DEL CONCRETO Y PERDIDA DE ASENTAMIENTO)

La presente ficha de recolección tiene como objetivo determinar el asentamiento, temperatura del concreto y la perdida de asentamiento de la mezcla de concreto.

Instrucciones: A continuación, se presenta un formato para completar la perdida de asentamiento y la temperatura del concreto.

Pérdida de trabajabilidad

Escaneado con CamScanner

Anexo 4. Ficha de validación de expertos de ficha de Recolección de Datos de Segregación, especialista 1.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO Estimado Especialista: Mg. Ing. Carlos Guerra Cisneros Considerando su actitud académica y trayectoria profesional, permítame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos: FICHA DE RECOLECCIÓN DE DATOS DE SEGREGACION Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque: 2. Cuantitativo (X) 3. Mixto () Cualitativo () El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto: ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN Título del proyecto de DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, tesis: 2023 Línea de investigación: Gestión de la Construcción Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera De antemano le agradezco sus aportes. Lima, 15 de enero del 2024 Tesista: Bach. POOL SAID SOTOMAYOR C. D.N.I: 73230525

Formato de Validación de Criterios de Expertos **Datos Generales** fecha 16/01/2024 Validador carlos Guerra Cisneros Cargo e institución donde Jepe de calidad Mixercon SA labora Instrumento a validar FICHA DE RECOLECCIÓN DE DATOS DE SEGREGACION Objetivo del instrumento determinar el asentamiento y el contenido de finos Autor(es) del instrumento Bach. POOL SAID SOTOMAYOR C II. Criterios de validación del instrumento Revisar cada ítem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta: Deficiente (D) Si menos del 30% de los ítems cumplen con el indicador Regular (R) Si entre el 31% y 70% de los ítems cumplen con el indicador Buena (B) Si más del 70% de los ítems cumplen con el indicador D R B (1) (2) (3) Observación Criterios Indicadores Los ítems miden lo previsto en los objetivos PERTINENCIA de investigación. Responden a lo que se debe medir en la COHERENCIA variable, dimensiones e indicadores. Están acorde con el avance de la ciencia y CONGRUENCIA tecnología. Son suficientes en cantidad para medir los SUFICIENCIA indicadores de la variable. Se expresan en comportamientos y acciones OBJETIVIDAD observables y verificables. Se han formulado en relación a la teoría de CONSISTENCIA las dimensiones de la variable. Son secuenciales y distribuldos de acuerdo a 4 **ORGANIZACIÓN** dimensiones. Están redactados en un lenguaje claro y 4 CLARIDAD entendible. El instrumento se aplica en un momento OPORTUNIDAD 4 adecuado. El instrumento cuenta con instrucciones y ESTRUCTURA opciones de respuesta bien definidas. TOTAL (Elosua & Bully, 2012) III. Coeficiente de Validez CARLOS A-CUERRA CISCUEROS
LIGORIAMO CLIP 065171
Evaluador: D+R+B Caro Gusta Cispay

FICHA DE RECOLECCIÓN DE DATOS DE SEGREGACION (ASENTAMIENTO Y CONTENIDO DE FINOS) La presente ficha de recolección tiene como objetivo determinar el asentamiento y el contenido Instrucciones: A continuación, se presenta un formato para completar los porcentajes pasantes en las mallas de los agregados y grafico de curva granulométrica. DATOS OBTENIDOS DE LABORATORIO Código de mezcla % pasante en la malla # 30 combinada Peso de la arena Peso del material calculada en la malla # 30 Cemento, kg Total de finos Slump inicial (plg) Tipo de slump (a) Cercano a cero (b) Normal (c) Por cizalladura (d) Colapso

Anexo 5. Ficha de validación de expertos de ficha de Recolección de Datos de Exudación, especialista 1.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO Estimado Especialista: Mg. Ing. Carlos Guerra Cisneros Considerando su actitud académica y trayectoria profesional, permítame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos: FICHA DE RECOLECCIÓN DE DATOS DE EXUDACION Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque: 2. Cuantitativo (X) 3. Mixto () El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto: ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN Título del proyecto de DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y tesis: ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, Línea de investigación: Gestión de la Construcción Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla De antemano le agradezco sus aportes. Lima, 15 de enero del 2024 Tesista: Bach. POOL SAID SOTOMAYOR C. D.N.I: 73230525

Fecha	Datos	Forma Generales	to de Validación de Crite	erios	de	Ex	perto	15	
		Generales	16/01/2024			-			
Validado	,		Carlos Guerro		7.0	200	es		
Cargo d	instituc	ión donde	Jefe de milidad Hixerion SA						
Instrume	nto a valid	lar	FICHA DE RECOLECCIÓN DE DATOS DE EXUDACION						
Objetivo	del instru	mento	determinar la cantidad de a	gua d	le ex	ud	ación	de la mezcia de concret	
Autor(es) del instru	ımento	Bach. POOL SAID SOTOMA	OR C		_			
2 Re	ficiente (C gular (R) ena (B)	Si entre		del 30% de los ítems cumplen con el indicador 131% y 70% de los ítems cumplen con el indicador					
3 80	ena (B)	31 mas d	1 70% de los Rems cumpien con el indicador						
Crite	rios	in the sale of	Indicadores	D (1)	R (2)	B (3	,	Observación	
PERTINE		s ítems mid	en lo previsto en los objetivo		T	×		P\$4 1499	
COHERE	Re	sponden a	lo que se debe medir en nsiones e indicadores.	la	T	×		Her - Har	
CONGRU	ENCIA ES		con el avance de la ciencia	y	7	C	A	gregar unidades	
SUFICIEN	CIA SC	n suficiente	s en cantidad para medir lo	os	1	7	1	, 31:	
OBJETIVI	Se Se		n comportamientos y accione	es	T	1	4		
OBJETIVE	Se Se		ado en relación a la teoría o	le	1	1			
CONSIST			es de la variable. les y distribuidos de acuerdo	a	-	1;	4		
		mensiones.		у	-	7	1		
Consist	di Es	tán redacta	dos en un lenguaje claro		1	1_	-		
CONSIST	D ES	tán redacta itendible. instrument	dos en un lenguaje claro o se aplica en un moment	0	T	X	1		
Consisti Organiz Clarida	D ES er NIDAD EI ac	tán redacta tendible. instrument ecuado. instrument				Y			

FICHA DE RECOLECCIÓN DE DATOS DE EXUDACION (CANTIDAD DE AGUA EXUDADA)

La presente ficha de recolección tiene como objetivo determinar la cantidad de agua de exudación de la mezcla de concreto.

Instrucciones: A continuación, se presenta un formato para completar la dosificación e la mezela, arena, grava, cemento, agua, procedencia del material, volumen de agua exudada por unidad de superficie, volumen de agua acumulada y el tiempo requerido para que cese o finalice la exudación.

DATOS OBTENIDOS DE LABORATORIO

Código de mezcla
Dosificación de la mezcla
Arena, kg
Grava, kg
Cemento, kg
Agua, Lt
Procedencia del material
Método Empleado (A o B)
Volumen de agua exudada por unidad de superficie
Volumen de agua acumulada
Tiempo requerido para que cese la exudación

Anexo 6. Ficha de validación de expertos de ficha de Recolección de Contracción.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Mg. Ing. Carlos Guerra Cisneros

Considerando su actitud académica y trayectoria profesional, permítame nombrarlo
como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de
datos:

FICHA DE RECOLECCIÓN DE DATOS DE CONTRACCION

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Título del proyecto de tesis:	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
Línea de investigación:	Gestión de la Construcción

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024

Tesista: Bach. POOL SAID SOTOMAYOR C.

D.N.I: 73230525

Formato de Validación de Criterios de Expertos Fecha 16/01/2024 Validador Carlos Guerra Cisneros Cargo e institución donde Jefe de calidad Mixeron so labora FICHA DE RECOLECCIÓN DE DATOS DE CONTRACCION Instrumento a validar Objetivo del instrumento Determinar las fisuras y realizar un control de estas. Bach. POOL SAID SOTOMAYOR C Autor(es) del instrumento Criterios de validación del Instrumento Revisar cada ítem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta: Deficiente (D) Si menos del 30% de los ítems cumplen con el indicador Regular (R) Si entre el 31% y 70% de los ítems cumplen con el indicador Si más del 70% de los ítems cumplen con el indicador Buena (B) Indicadores Observación Criterios (1) (2) (3) Los ítems miden lo previsto en los objetivos PERTINENCIA de investigación. Responden a lo que se debe medir en la COHERENCIA variable, dimensiones e indicadores. Están acorde con el avance de la ciencia y relativa CONGRUENCIA tecnología. Son suficientes en cantidad para medir los SUFICIENCIA indicadores de la variable. grafico o monogra Se expresan en comportamientos y acciones OBJETIVIDAD observables y verificables. Se han formulado en relación a la teoría de CONSISTENCIA las dimensiones de la variable. Son secuenciales y distribuidos de acuerdo a ORGANIZACIÓN Están redactados en un lenguaje claro y entendible. El instrumento se aplica en un momento OPORTUNIDAD adecuado. El instrumento cuenta con instrucciones y **ESTRUCTURA** opciones de respuesta bien definidas. TOTAL 4 24 III. Coeficiente de Validez

295

FICHA DE RECOLECCIÓN DE DATOS DE CONTRACCION (CONTROL DE FISURAS)

La presente ficha de recolección tiene como objetivo determinar las fisuras y realizar un control de estas.

Instrucciones: A continuación, se presenta un formato para completar datos de las fisuras como hora de brote, ancho, longitud, temperatura, velocidad del viento, temperatura ambiente y clasificación de la fisura.

FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDAD DEL VIENTO AL BROTAR LA FISURA (m/s)	T°A	CLASIFICACION SEGÚN EL ANCHO
F1		Day U.S.			a mark to be to		
F2							
F3							
F4							
F5							
F6							
F7				Land of		O'M	
F8							
F9							
F10							
F11							
F12							
F13							
SUMA							

Anexo 7. Ficha de validación de expertos de ficha de Recolección de datos densidad de concreto, especialista 1.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Mg. Ing. Carlos Guerra Cisneros

Considerando su actitud académica y trayectoria profesional, permitame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos:

FICHA DE RECOLECCIÓN DE DATOS DENSIDAD DEL CONCRETO

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Título del proyecto de tesis:	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
Línea de investigación:	Gestión de la Construcción

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024

Tesista: Bach. POOL SAID SOTOMAYOR C.

D.N.I: 73230525

Formato de Validación de Criterios de Expertos Fecha 16/01/2024 Validador Carlos Guerra Cisneros Cargo e institución donde Jefe de alidad Mixercon SD labora Instrumento a validar FICHA DE RECOLECCIÓN DE DATOS DENSIDAD DEL CONCRETO Objetivo del instrumento Determinar el peso unitario y el contenido de aire del concreto para cada una de las mezclas a realizar. Bach. POOL SAID SOTOMAYOR C Autor(es) del instrumento II. Criterios de validación del instrumento Revisar cada ítem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta: Deficiente (D) Si menos del 30% de los ítems cumplen con el indicador Si entre el 31% y 70% de los items cumplen con el indicador Regular (R) Buena (B) Si más del 70% de los ítems cumplen con el indicador D R B (1) (2) (3) Indicadores Observación Criterios Los ítems miden lo previsto en los objetivos PERTINENCIA de investigación. Responden a lo que se debe medir en la P COHERENCIA variable, dimensiones e indicadores. Están acorde con el avance de la ciencia y tecnología. Son suficientes en cantidad para medir los K SUFICIENCIA indicadores de la variable. Se expresan en comportamientos y acciones 0 OBJETIVIDAD observables y verificables. Se han formulado en relación a la teoría de las dimensiones de la variable. 4 CONSISTENCIA Son secuenciales y distribuidos de acuerdo a ORGANIZACIÓN Están redactados en un lenguaje claro y CLARIDAD entendible. Agregar unidades
para la toma comeda El instrumento se aplica en un momento adecuado. El instrumento cuenta con instrucciones y ESTRUCTURA opciones de respuesta bien definidas. 2 27 TOTAL (Elosua & Bully, 2012) III. Coeficiente de Validez D+R+B 0.97

Evaluador:

Culs Caroles (SNe101

FICHA DE RECOLECCIÓN DE DATOS DENSIDAD DEL CONCRETO (PESO UNITARIO Y CONTENIDO DE AIRE)

La presente ficha de recolección tiene como objetivo determinar el peso unitario y el contenido de aire del concreto para cada una de las mezclas a realizar.

Instrucciones: A continuación, se presenta un formato para completar la tara y el concreto, la masa de la tara, el volumen del recipiente, el peso unitario, el rendimiento y el aire atrapado.

CODIGO DE MEZCLA:	to the section of the
TIEMPO DE MEZCLADO	
TEMPERATURA. (%	
Ambiente	°C
Concreto	°C
PESO UNITARIO	STATES EN FETADO FREMON
Tara + concreto	Kg
Tara	Kg
Volumen de recipiente	m³
PU	Kg/m³
Rendimiento	-
Aire atrapado	%

Anexo 8. Ficha de validación de expertos de ficha de recolección de datos de esfuerzo a compresión, especialista 1.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Mg. Ing. Carlos Guerra Cisneros

Considerando su actitud académica y trayectoria profesional, permítame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos:

FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A COMPRESION

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Título del proyecto de tesis:	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
Línea de investigación:	Gestión de la Construcción

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024

 ${\it Tesista: Bach. POOL SAID SOTOMAYOR C.}$

D.N.I: 73230525

			Forma	to de Validación de Cri	terios	de	Exp	pertos	
l.	Da	tos G	enerales			_			
Fecha				16/01/2024					
Validador				carlos Guero	2	21'3	nei	201	
Cargo e institución donde labora			donde	Jere de a	alie	la	ď	Mixerson	50
Instrume	nto a v	alidar		FICHA DE RECOLECCIÓN	DE D	ATC	S D	E ESFUERZO A C	OMPRESION
Objetivo	del ins	trume	nto	Determinar el esfuerzo a o	ompre	sió	n de	los testigos cilíndo	icos
Autor(es)	del in:	strum	ento	Bach. POOL SAID SOTOMA	YOR C		-		
-	ficiente	e (D)	Si menos	e los indicadores de la ficha s del 30% de los ítems cumpl	en con	el i	ndic	ador	
2 Reg	ficiente gular (F ena (B)	e (D)	Si menos		en con	el i	ndic el ir	ador	
2 Reg	gular (F ena (B)	e (D)	Si menos	s del 30% de los ítems cumpl el 31% y 70% de los ítems cu	mplen con el	el i	ndic el ir icado	ador ndicador or	ción
Reg Bue	gular (F ena (B)	e (D)	Si menos Si entre d Si más do	el 30% de los ítems cumple el 31% y 70% de los ítems cu el 70% de los ítems cumplen Indicadores en lo previsto en los objetiv	en con mplen con el	el i	ndic el ir	ador ndicador or	ción
2 Reg Bue Criteri PERTINEN	gular (F ena (B) los	Los it de inv	Si menos Si entre e Si más de tems mide vestigación	e del 30% de los items cumple el 31% y 70% de los items cu el 70% de los items cumplen Indicadores en lo previsto en los objetiv n.	mplen con el	el i	el iricado	ador ndicador or Observa	ıción
2 Reg 3 Bue Criteri PERTINEN COHERENCE	gular (F ena (B) ios CIA	Los it de inv	Si menos Si entre d Si más do etems mide vestigación onden a ble, dimen	s del 30% de los ítems cumpi el 31% y 70% de los ítems cu el 70% de los ítems cumplen Indicadores en lo previsto en los objetiv n.	mplen con el D (1) os	el i	ndic el ir icado	ador ndicador or Observa	
2 Reg 3 Bue Criteri PERTINEN COHERENI CONGRUE	gular (F ena (B) los CIA	Los it de inv Respo varial Están tecno	Si menos Si entre o Si más do seems mideo vestigació ponden a l ble, dimen acorde o ología.	el 30% de los ítems cumple el 31% y 70% de los ítems cu el 70% de los ítems cumplen Indicadores en lo previsto en los objetiv n. lo que se debe medir en isiones e indicadores.	mplen con el [1] os	el i	B (3)	ador ndicador or Observa	
Criteri PERTINEN COHERENCE SUFICIENCE	gular (F ena (B) los CIA CIA	Los it de inv Respo varial Están tecno Son s indica	Si menos Si entre de la más de la má	el 30% de los ítems cumple el 31% y 70% de los ítems cu el 70% de los ítems cumplen Indicadores en lo previsto en los objetivo. lo que se debe medir en isiones e indicadores. con el avance de la ciencia de na cantidad para medir la la variable.	mplen con el D (1) os la y	el i	el iricado	ador ndicador or Observa	
2 Reg 3 Bue Criteri PERTINEN COHERENI CONGRUE	gular (Fena (B)	Los it de introduced to the constant technology and technology and technology are indicated to the constant technology and technology are the constant technology are the	Si menos Si entre d Si más de Si más de sems mide vestigació onden a l ble, dimen a corde c ología. suficientes adores de presan en vables y m	el 30% de los ítems cumple el 31% y 70% de los ítems cu el 70% de los ítems cumplen Indicadores en lo previsto en los objetivo. lo que se debe medir en isiones e indicadores. con el avance de la ciencia en cantidad para medir la la variable. I comportamientos y accion erificables.	mplen con el Con el (1) y os	el i	B (3)	ador ndicador or Observa	
Criteri PERTINEN COHERENCE SUFICIENCE	gular (Fena (B)	Los it de invarial Estano Son s indica sobser Se ha las diel	Si menos Si entre e Si más de sems mide vestigació pole, dimen acorde c ología. suficientes dores de presan en vables y v n formulas mensiones	el 30% de los ítems cumple el 31% y 70% de los ítems cu el 70% de los ítems cumplen en lo previsto en los objetivo. lo que se debe medir en issiones e indicadores. con el avance de la ciencia en cantidad para medir la la variable. comportamientos y accion erificables. do en relación a la teoría o se de la variable.	D (1) os la y oss es ele le	el i	B (3)	ador ndicador or Observa	
Criteri PERTINEN COHERENI CONGRUE SUFICIENC OBJETIVID	gular (F ena (B) los ccia ncia ncia	Los it de invarial Están tecno son se include cas obser Se ha las directors Son se cas conservativas de las directors son se cas conservativas de las directors de la conservación de	Si menos Si entre e Si más de sems mide vestigació pole, dimen acorde c ología. suficientes dores de presan en vables y v n formulas mensiones	el 30% de los ítems cumple el 31% y 70% de los ítems cu el 70% de los ítems cumplen indicadores en lo previsto en los objetiva. no que se debe medir en isiones e indicadores. con el avance de la ciencia de ne cantidad para medir la la variable. comportamientos y accion erificables.	D (1) os la y oss es ele le	el i	B (3)	ador ndicador or Observa	
Criteri PERTINEN COHERENI CONGRUE SUFICIENC OBJETIVIO CONSISTER	gular (F) (B) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	Los it de invo varial Están tecno Son s indica Se ex obser Se ha las din Son s dimer	Si menos Si entre de sems mide de sens mide de vestigació ponden a lobe, dimen acorde cología. Sufficientes dores de presan en vvables y v n formula mensiones ecuencial mensiones. redactado	el 30% de los ítems cumple el 31% y 70% de los ítems cu el 70% de los ítems cumplen en lo previsto en los objetivo. lo que se debe medir en issiones e indicadores. con el avance de la ciencia en cantidad para medir la la variable. comportamientos y accion erificables. do en relación a la teoría o se de la variable.	D (1) Con el (1) y y de de de a	el i	B (3)	ador ndicador or Observa	
Criteri PERTINEN COHERENI CONGRUE SUFICIENC OBJETIVIO CONSISTEN ORGANIZA	gular (F(B)) ena (B) e	Los it de inv Respo varial Están tecnos sindica Se ex obser Se ha las dir	Si menos Si entre o Si más do sems mide vestigació onden a l ble, dimen acorde o ología. suficientes dores de presan en vables y v n formula mensiones ecuenciale siciones. redactad dible. strumento	el 30% de los ítems cumple el 31% y 70% de los ítems cu el 70% de los ítems cumplen Indicadores en lo previsto en los objetiva, lo que se debe medir en isiones e indicadores. con el avance de la ciencia de ne cantidad para medir la la variable. comportamientos y accion erificables. do en relación a la teoría de de la variable. es y distribuidos de acuerdo	D (1) Con el V Os P Os	el i	B (3)	ador ndicador or Observa	

NLECCIÓN DE DATOS DE ESFUERZO A COMPRESION (CARGA Usión tiene como objetivo determinar el esfuerzo a compresión de los testi, es presenta un formato para completar El código, fecha de muestreo, sia a compresión calculada. FECHA DE EDAD CARGA UNIDAD LONGITUA DIÁMETRO AREA ELAB ROTURA 3 3 3 28 28		LTIMA Y RESISTENCIA A COMPRESI	os cilíndricos.	fecha de ensayo, edad, altura, diámetro, á	Resistencia compressión PROMEDIO X EVAL Dispe f.c (Kg/cm2)						
ECOLECCIÓN DE DATOS DE ESFUERZO A solección tiene como objetivo determinar el esfue ación, se presenta un formato para completar E stencia a compressión calculada. FECMA FECMA DE EDAD CARGA UNIDAD 3 3 3 28 28		COMPRESION (CARGA U	rzo a compresión de los testig	l código, fecha de muestreo,	R (cm) (cm) AREA						
ECOLECCIÓN DE I soción tiene como o mación, se presenta un stencia a compresión e la secua per secua per secua soción de la sociona de la soci		DATOS DE ESFUERZO A	objetivo determinar el esfue	n formato para completar E calculada.	EDAD CARGA UNIDAD	-	3	,	3	28	
		ECOLECCIÓN DE 1	ección tiene como	iación, se presenta un stencia a compresión	f'cr FECHA FECHA (kg/cm2) ELAB ROTURA						

Anexo 9. Ficha de validación de expertos de ficha de recolección de datos de esfuerzo a tracción, especialista 1.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Mg. Ing. Carlos Guerra Cisneros

Considerando su actitud académica y trayectoria profesional, permítame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos:

FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A TRACCION

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Título del proyecto de tesis:	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
investigación:	Gestión de la Construcción

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024

Tesista: Bach. POOL SAID SOTOMAYOR C.

D.N.I: 73230525

	nera	

Fecha	16/01/2024
Validador	Carlos Guerra Cisneros
Cargo e institución donde labora	Jefe de calidad Mixeron so
Instrumento a validar	FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A TRACCION
Objetivo del instrumento	Determinar el esfuerzo a tracción de los testigos cilíndricos
Autor(es) del instrumento	Bach. POOL SAID SOTOMAYOR C

II. Criterios de validación del Instrumento

Revisar cada item del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta:

1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el indicador
3	Buena (B)	Si más del 70% de los items cumplen con el indicador

Criterios	Indicadores	D (1)	R	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			X	1-2-
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.			X	1
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnología.			×	14.55
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.			X	
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.			4	
CONSISTENCIA	Se han formulado en relación a la teoría de las dimensiones de la variable.			(
ORGANIZACIÓN	Son secuenciales y distribuidos de acuerdo a dimensiones.			×	
CLARIDAD	Están redactados en un lenguaje claro y entendible.		6		rombre completo de
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.		,	+	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.			C	
Sene/	TOTAL		2	27	

III. Coeficiente de Validez

(Elosua & Bully, 2012)

D + R +B 30

0.97

Evaluador:

CIVE CALCULA Segundo con Camiscanner

CODIGO	f, q.	FECHA	FECHA	EDAD	CARGA	UNIDAD	Longitud	Diámetro	AREA 3	EDAD CARGA UNIDAD Longitud Diâmetro AREA a tracción	PROMEDIO X	PROMEDIO % EVAL Dispersión
							9 8 9	Ì	180	c (kg/cm2)		
			an said	н			Marot Dos En O Del C			y spani	Tron Tron	estado o Astronomia Astronomia
			V CALL	m	216		HELDGE LIG PAC DIVEREN		Anto	adionalta marenta		
	35						5 A (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			23		
				7								
See				7			NESTA NESTA		let on	2002	1	
				4			SAF NOO!		True	bent bent		
				88								

Anexo 10. Ficha de validación de expertos de ficha de recolección de datos de esfuerzo a flexión, especialista 1.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO Estimado Especialista: Mg. Ing. Carlos Guerra Cisneros Considerando su actitud académica y trayectoria profesional, permítame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos: FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A FLEXION Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque: 2. Cuantitativo (X) 3. Mixto () El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto: ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN Título del proyecto de DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y tesis: ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023 Línea de investigación: Gestión de la Construcción Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera De antemano le agradezco sus aportes. Lima, 15 de enero del 2024 Tesista: Bach. POOL SAID SOTOMAYOR C. D.N.I: 73230525 Escaneado con CamScanner

Fecha	16/01/2024
Validador	Carlos Guerra Cioneros
Cargo e institución donde labora	Jefe calidad de Mixeron SA
Instrumento a validar	FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A FLEXION
Objetivo del instrumento	Determinar el esfuerzo a flexión del concreto.
Autor(es) del instrumento	Bach. POOL SAID SOTOMAYOR C

II. Criterios de validación del instrumento Revisar cada ítem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta;

1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador
2	Regular (R)	Si entre el 31% y 70% de los items cumplen con el indicador
3	Buena (B)	Si más del 70% de los ítems cumplen con el indicador

Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			K	
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.			X	
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnología.			×	
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.			4	
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.			Y	
CONSISTENCIA	Se han formulado en relación a la teoría de las dimensiones de la variable.			7	
ORGANIZACIÓN	Son secuenciales y distribuidos de acuerdo a dimensiones.			X	
CLARIDAD	Están redactados en un lenguaje claro y entendible.			X	
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.			4	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.			K	
	TOTAL			30	

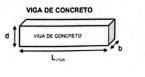
III. Coeficiente de Validez

D + R +B 30

(Elosua & Bully, 2012)

CARLOS A CICERA CISCHERIS

EVALUATION OF CHARLES


EVALUATION OF CHAR

FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A FLEXION (RESISTENCIA A FLEXIÓN)

La presente ficha de recolección tiene como objetivo determinar el esfuerzo a flexión del concreto.

Instrucciones: A continuación, se presenta un formato para completar los datos como Identificación, carga máxima, luz libre entre apoyos, distancia entre línea de falla y resistencia a flexion.

	FICHA DE DA	TOS DE ESFUE	ERZO A FLEX	ION	
Código		UNIDAD	1	2	3
Viga N°			9 11 7 11		
Fecha de elab					
Fecha de ensayo	47,000,000				
Tiempo de curado					
Asentamiento		the selection			
Tipo de concreto					
Altura (d)				1-4 AT	
Ancho (b)			-1777		
Largo (L viga)				2/28 20	
P	Carga Máxima	kg	Sec. 114.73	kida ila	
L	Luz libre entre apoyos	cm			
a	Distancia entre la línea de falla y el apoyo más cercano	cm			
Mr	Resistencia a la flexión (Módulo de rotura)	kg/cm2	W - 1 × 1	1841	

Anexo 11. Ficha de validación de expertos de ficha de recolección de datos de curvas granulométricas, especialista 2.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Ing. Mauro Tazza Chaupis

Considerando su actitud académica y trayectoria profesional, permítame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos:

FICHA DE RECOLECCIÓN DE DATOS DE CURVAS GRANULOMETRICAS COMBINADAS

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo ()

2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Título del proyecto de tesis:	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
Línea de investigación:	Gestión de la Construcción

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.

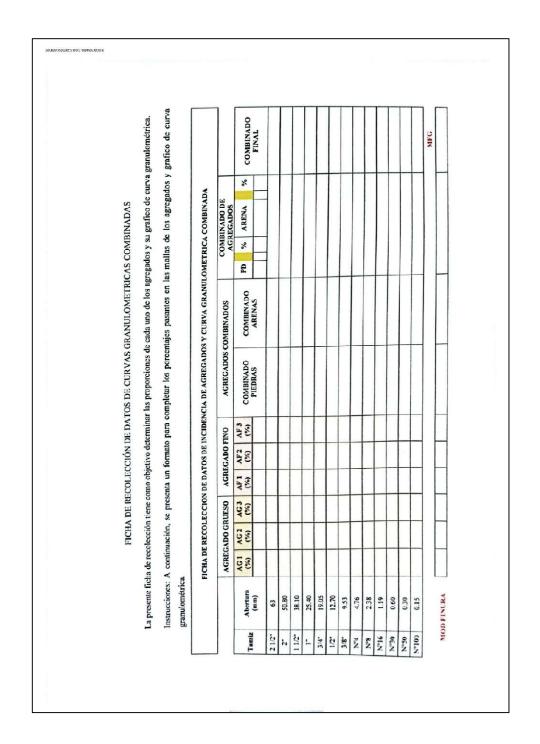
Lima, 15 de enero del 2024

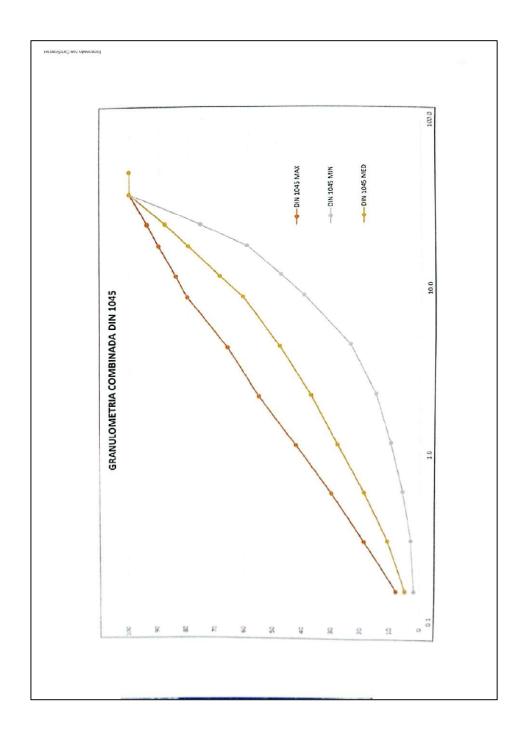
Tesista: Bach. POOL SAID SOTOMAYOR C.

D.N.I: 73230525

Datos Generales Fecha 22/01/2024 Validador Ing. Mg. Mauro Tazza Chaupis Ing. Jefe de Planta Megapuerto de Chancay - UNION DE CONCRETERAS. Cargo e institución donde UNICON labora FICHA DE RECOLECCIÓN DE DATOS DE CURVAS GRANULOMETRICAS Instrumento a validar COMBINADAS Objetivo del instrumento determinar las proporciones de cada uno de los agregados y su grafico de curva granulométrica. Autor(es) del instrumento Bach. POOL SAID SOTOMAYOR C

II. Criterios de validación del instrumento Revisar cada (tem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta:


1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el indicador
3	Buena (B)	Si más del 70% de los ítems cumplen con el indicador


Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			Х	
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.			X	
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnología.			X	
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.			X	
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.			X	
Consistencia	Se han formulado en relación a la teoría de las dimensiones de la variable.			X	
ORGANIZACIÓN	Son secuenciales y distribuidos de acuerdo a dimensiones.		_	X	
CLARIDAD	Están redactados en un lenguaje claro y entendible.			X	
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.		X		unsidera las
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.			X	
Mildely Co.	TOTAL		2	27	

III. Coeficiente de Validez

D + R +B 30 0.97

(Elosua & Bully, 2012)

Anexo 12. Ficha de validación de expertos de ficha de Recolección de Datos de Método Shilstone., especialista 2.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Ing. Mauro Tazza Chaupis

Considerando su actitud académica y trayectoria profesional, permítame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos:

FICHA DE RECOLECCIÓN DE DATOS DE METODO SHILSTONE

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Título del proyecto de tesis:	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
Línea de investigación:	Gestión de la Construcción

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024

Tesista: Bach. POOL SAID SOTOMAYOR C.

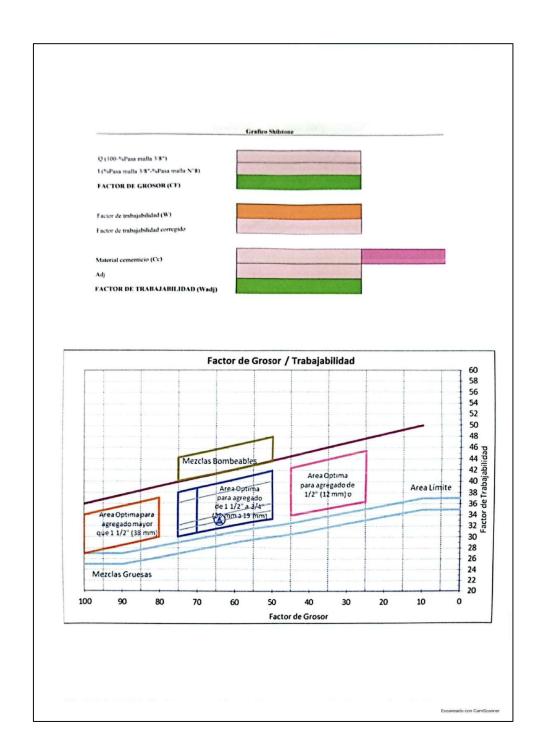
D.N.I: 73230525

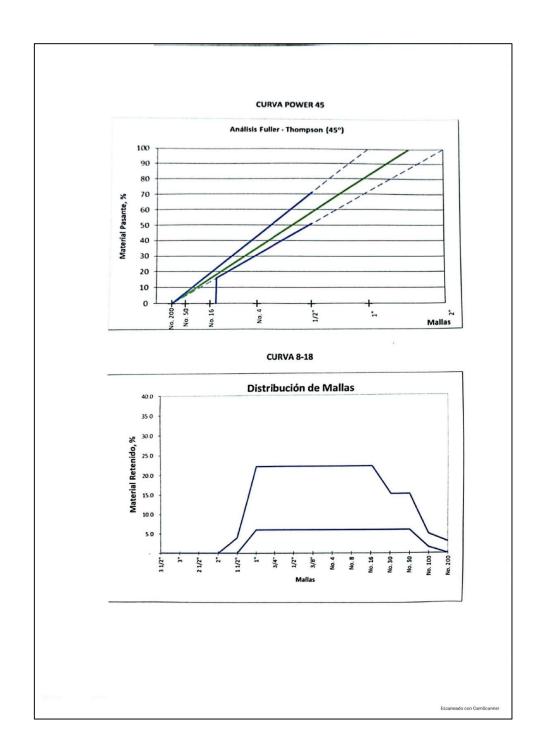
	de Validacion de Citterios de Expertos
I. Datos Generales	
Fecha	22/01/2024
Validador	Ing. Mg. Mauro Tazza Chaupis
Cargo e institución donde labora	Ing. Jefe de Planta Megapuerto de Chancay — UNION DE CONCRETERAS. UNICON
Instrumento a validar	FICHA DE RECOLECCIÓN DE DATOS DE METODO SHILSTONE
Objetivo del instrumento	Determinar las proporciones de cada uno de los agregados y su grafico de curva Shilstone, factor grosor, factor de trabajabilidad, módulo de fineza global, curva 8-18 y curva Power 45.
Autor(es) del instrumento	Bach. POOL SAID SOTOMAYOR C

II. Criterios de validación del instrumento Revisar cada ítem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta:

1	Deficiente (D)	Si menos del 30% de los items cumplen con el indicador	
2	Regular (R)	Si entre el 31% y 70% de los items cumplen con el indicador	
3	Buena (B)	Si más del 70% de los items cumplen con el indicador	

Criterios	Indicadores	_	R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			X	
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.			X	
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnología.			X	
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.		X		unidades cloras
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.			X	
CONSISTENCIA	Se han formulado en relación a la teoría de las dimensiones de la variable.			X	
ORGANIZACIÓN	Son secuenciales y distribuidos de acuerdo a dimensiones.			X	
CLARIDAD	Están redactados en un lenguaje claro y entendible.			X	
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.			X	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.			X	
	TOTAL	0	2	27	


ESTRUCTURA	El instru	mento cu	enta con instru	icciones y	+	X	
opciones de respuesta bien definidas. TOTAL				2	27	Property and the same of	
	te de Valid	ez =	0.97				(Elosua & Bully, 2012)
	30		1.7-1			=	Evalyador


FICHA DE RECOLECCIÓN DE DATOS DE METODO SHILSTONE (INCIDENCIA DE AGREGADOS, FACTOR GROSOR, FACTOR TRABAJABILIDAD, MODULO DE FINEZA GLOBAL, CURVA 8-18, CURVA POWER 45)

La presente ficha de recolección tiene como objetivo determinar las proporciones de cada uno de los agregados y su grafico de curva Shilstone, factor grosor, factor de trabajabilidad, módulo de fineza global, curva 8-18 y curva Power 45.

Instrucciones: A continuación, se presenta un formato para completar los porcentajes pasantes en las mallas de los agregados, calcular el factor de trabajabilidad y el factor grosor, en función a los datos obtenidos de las granulometrías y el contenido de cemento. Así mismo analizar el Punto Shilstone, curva 8-18 y curva Power 45.

FICHA DE RECOLECCION DE DATOS DE INCIDENCIA DE AGREGADOS Y CURVA GRANULOMETRICA AGREGADOS COMBINADOS COMBINADO DE AGREGADOS A G 2 (% ARE NA COMBINA COMBINA COMBINA DO FINAL Tam ra (mm) DO DO PIEDRAS ARENAS 2 1/2" 63 50.80 2" 1 1/2" 38.10 1" 25.40 3/4" 19.05 1/2" 12.70 3/8" 9.53 Nº4 4.76 Nº8 2.38 Nº16 1.19 N°30 0.60 N°50 0.30 N°10 0.15 MFG

Anexo 13. Ficha de validación de expertos de ficha de Recolección de Datos de consistencia., especialista 2.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Ing. Mauro Tazza Chaupis

Considerando su actitud académica y trayectoria profesional, permítame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos:

FICHA DE RECOLECCIÓN DE DATOS DE CONSISTENCIA

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

tesis: Línea de	ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
investigación:	Gestión de la Construcción

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024

Tesista: Bach. POOL SAID SOTOMAYOR C.

D.N.I: 73230525

I. Datos Generales	
Fecha	22/01/2024
Validador	Ing. Mg. Mauro Tazza Chaupis
Cargo e institución donde labora	Ing. Jefe de Planta Megapuerto de Chancay – UNION DE CONCRETERAS. UNICON
Instrumento a validar	FICHA DE RECOLECCIÓN DE DATOS DE CONSISTENCIA
Objetivo del instrumento	Determinar el asentamiento inicial, temperatura y la pérdida de asentam.
Autor(es) del instrumento	Bach. POOL SAID SOTOMAYOR C

II. Criterios de validación del instrumento

Revisar cada ítem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta:

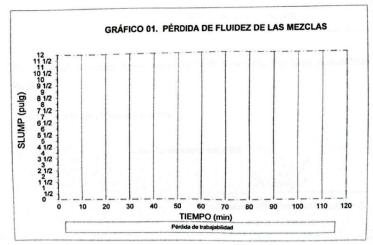
1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador	
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el indicador	
3	Buena (B)	Si más del 70% de los ítems cumplen con el indicador	

Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			X	
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.			X	
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnología.			X	
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.			X	
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.			Х	
CONSISTENCIA	Se han formulado en relación a la teoría de las dimensiones de la variable.			X	
ORGANIZACIÓN	Son secuenciales y distribuidos de acuerdo a dimensiones.			×	
CLARIDAD	Están redactados en un lenguaje claro y entendible.			X	
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.		X		de caido zhrs
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.			X	
a february	TOTAL		2	27	

III. Coeficiente de Validez

D + R +B 30 0.97

(Elosua & Bully, 2012)


FICHA DE RECOLECCIÓN DE DATOS DE CONSISTENCIA (ASENTAMIENTO, TEMPERATURA DEL CONCRETO Y PERDIDA DE TRABAJABILIDAD)

La presente ficha de recolección tiene como objetivo determinar el asentamiento, temperatura del concreto y perdida de asentamiento.

Instrucciones: A continuación, se presenta un formato para completar la temperatura y la pérdida de asentamiento.

Pérdida de trabajabilidad

FRECUENCIA	T° (CERO min)	T° (30 min)	T° (60 min)	T° (90 min)	T° (120 min)	T° (150 min)	T° (180 min)
PÉRDIDA SLUMP (Pulg) EXTENSIBILIDA D (cm)							
T° AMBIENTE (°C) T° CONCRETO (°C)							

Anexo 13. Ficha de validación de expertos de ficha de Recolección de Datos de segregación., especialista 2.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Ing. Mauro Tazza Chaupis

Considerando su actitud académica y trayectoria profesional, permítame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos:

FICHA DE RECOLECCIÓN DE DATOS DE SEGREGACION

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Título del proyecto de tesis:	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
Línea de investigación:	Gestión de la Construcción

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024

Tesista: Bach. POOL SAID SOTOMAYOR C.

D.N.I: 73230525

Fecha	22/04/2024
Validador	Ing. Mg. Mauro Tazza Chaupis
Cargo e institución donde labora	Ing. Jefe de Planta Megapuerto de Chancay — UNION DE CONCRETERAS. UNICON
Instrumento a validar	FICHA DE RECOLECCIÓN DE DATOS DE SEGREGACION
Objetivo del instrumento	determinar el asentamiento y el contenido de finos
Autor(es) del instrumento	Bach. POOL SAID SOTOMAYOR C

II. Criterios de validación del instrumento
Revisar cada ítem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta;

1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador	
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el indicador	
3	Buena (B)	Si más del 70% de los ítems cumplen con el indicador	

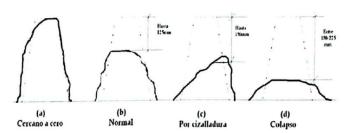
Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			X	
COHERENCIA	Responden a lo que se debe medir en la			X	
CONGRUENCIA	Están acorde con el avance de la ciencia y			X	
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.				
OBJETIVIDAD Se expresan en comportamientos y acciones observables y verificables.				Х	
CONSISTENCIA	Se han formulado en relación a la teoría de las			X	
Organización dimensiones.				X	
CLARIDAD	Están redactados en un lenguaje claro y entendible.			X	
OPORTUNIDAD El instrumento se aplica en un momento adecuado.				X	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.			X	
No. of the last	TOTAL	1	W	30	

111.	Coeficiente d	le Validez	

D+R+B 30

(Elosua & Bully, 2012)

FICHA DE RECOLECCIÓN DE DATOS DE SEGREGACION (ASENTAMIENTO Y CONTENIDO DE FINOS)


La presente ficha de recolección tiene como objetivo determinar el asentamiento y el contenido de finos

Instrucciones: A continuación, se presenta un formato para completar los porcentajes pasantes en las mallas de los agregados y grafico de curva granulométrica.

DATOS OBTENIDOS DE LABORATORIO

Código de mezcla % pasante en la malla # 30 combinada Peso de la arena Peso del material calculada en la malla # 30 Cemento, kg Total de finos

Slump inicial (plg) Tipo de slump

323

Anexo 14. Ficha de validación de expertos de ficha de Recolección de Datos de exudación., especialista 2.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Ing. Mauro Tazza Chaupis

Considerando su actitud académica y trayectoria profesional, permítame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos:

FICHA DE RECOLECCIÓN DE DATOS DE EXUDACION

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Línea de investigación:	Gestión de la Construcción
Título del proyecto de tesis:	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024

Tesista: Bach. POOL SAID SOTOMAYOR C.
D.N.I: 73230525

I. Datos Generales	
Fecha	22/01/2024
Validador	Ing. Mg. Mauro Tazza Chaupis
Cargo e institución donde labora	Ing. Jefe de Planta Megapuerto de Chancay – UNION DE CONCRETERAS UNICON
Instrumento a validar	FICHA DE RECOLECCIÓN DE DATOS DE EXUDACION
Objetivo del instrumento	determinar la cantidad de agua de exudación de la mezcla de concreto.
Autor(es) del instrumento	Bach. POOL SAID SOTOMAYOR C

II. Criterios de validación del instrumento Revisar cada ítem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta:

1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el indicador
3	Buena (B)	Si más del 70% de los ítems cumplen con el indicador

Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			Ø	
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.			X	
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnología.			X	
Suficiencia	Son suficientes en cantidad para medir los indicadores de la variable.			X	
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.			X	
Consistencia	Se han formulado en relación a la teoría de las dimensiones de la variable.			X	
ORGANIZACIÓN	Son secuenciales y distribuidos de acuerdo a dimensiones.			X	
CLARIDAD	Están redactados en un lenguaje claro y entendible.			Х	
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.			Х	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.			X	
	TOTAL			30	

тот	AL 30
Coeficiente de Validez	(Elosua, & Bully, 2012)
$\frac{D+R+B}{30} = $	Nature (10)
	Evaluador:

FICHA DE RECOLECCIÓN DE DATOS DE EXUDACION (CANTIDAD DE AGUA EXUDADA)

La presente ficha de recolección tiene como objetivo determinar la cantidad de agua de exudación de la mezela de concreto.

Instrucciones: A continuación, se presenta un formato para completar la dosificación e la mezcla, arena, grava, cemento, agua, procedencia del material, volumen de agua exudada por unidad de superficie, volumen de agua acumulada y el tiempo requerido para que cese o finalice la exudación.

DATOS OBTENIDOS DE LABORATORIO

Dosificación de la mezcla
Arena, kg
Grava, kg
Cemento, kg
Agua, Lt
Procedencia del material
Método Empleado (A o B)
Volumen de agua exudada por unidad de superficie
Volumen de agua acumulada
Tiempo requerido para que cese la exudación

Código de mezcla

Anexo 15. Ficha de validación de expertos de ficha de Recolección de Datos de contracción., especialista 2.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Ing. Mauro Tazza Chaupis

Considerando su actitud académica y trayectoria profesional, permitame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos:

FICHA DE RECOLECCIÓN DE DATOS DE CONTRACCION

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Línea de investigación:	Gestión de la Construcción
Título del proyecto de tesis: Línea de	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024

Tesista: Bach. POOL SAID SOTOMAYOR C.
D.N.I: 73230525

Fecha	22/01/2024
Validador	Ing. Mg. Mauro Tazza Chaupis
Cargo e institución donde labora	Ing. Jefe de Planta Megapuerto de Chancay – UNION DE CONCRETERAS. UNICON
Instrumento a validar	FICHA DE RECOLECCIÓN DE DATOS DE CONTRACCION
Objetivo del instrumento	Determinar las fisuras y realizar un control de estas.
Autor(es) del instrumento	Bach. POOL SAID SOTOMAYOR C

II. Criterios de validación del instrumento Revisar cada ítem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta:

1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador	
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el indicador	
3	Buena (B)	Si más del 70% de los ítems cumplen con el indicador	

Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			×	
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.			X	
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnología.			X	
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.			X	
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.			Х	
CONSISTENCIA	Se han formulado en relación a la teoría de las dimensiones de la variable.			X	
ORGANIZACIÓN	Son secuenciales y distribuidos de acuerdo a dimensiones.			X	
CLARIDAD	Están redactados en un lenguaje claro y entendible.			X	
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.			y	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.			X	
	TOTAL			3d	

ESTRUCTURA		respuesta bien	definidas.	X		
			TOTAL	30		
	nte de Validez D + R +B 30	= 1		0	(Elgsua & Bully, 2012) Multi-La Manus Fara-Champus Ingginero Civil EVA 10128 EVA 10128 EVA 10128	

FICHA DE RECOLECCIÓN DE DATOS DE CONTRACCION (CONTROL DE FISURAS)

La presente ficha de recolección tiene como objetivo determinar las fisuras y realizar un control de estas.

Instrucciones: A continuación, se presenta un formato para completar datos de las fisuras como: hora de brote, ancho, longitud, temperatura, velocidad del viento, temperatura ambiente y clasificación de la fisura.

FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDAD DEL VIENTO AL BROTAR LA FISURA (m/s)	T*A	CLASIFICACION SEGÚN EL ANCHO
F1							7-61177
F2							
F3							
F4							
F5							
F6							
F7							
F8							
F9							
F10							
F11							
F12							
F13							
CLINAA							1

Anexo 16. Ficha de validación de expertos de ficha de Recolección de Datos de densidad del concreto., especialista 2.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Ing. Mauro Tazza Chaupis Considerando su actitud académica y trayectoria profesional, permítame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos:

FICHA DE RECOLECCIÓN DE DATOS DENSIDAD DEL CONCRETO

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Título del proyecto de tesis:	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
Línea de investigación:	Gestión de la Construcción

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024

Tesista: Bach. POOL SAID SOTOMAYOR C.

D.N.I: 73230525

| Political Poli

II. Criterios de validación del instrumento Revisar cada ítem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta:

1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador	
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el indicador	
3	Buena (B)	Si más del 70% de los ítems cumplen con el indicador	

Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			X	
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.			X	
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnología.			Х	
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.			Х	
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.			X	
CONSISTENCIA	Se han formulado en relación a la teoría de las dimensiones de la variable.			X	
ORGANIZACIÓN	Son secuenciales y distribuidos de acuerdo a dimensiones.			X	
CLARIDAD	Están redactados en un lenguaje claro y entendible.			Х	
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.			X	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.			X	
	TOTAL			30	

I. Coeficiente de Validez		(Elosua & Bully, 2012)
<u>D + R +B</u> 30	= 1	Apple (b)
	-	Evaluadon

FICHA DE RECOLECCIÓN DE DATOS DENSIDAD DEL CONCRETO (PESO UNITARIO Y CONTENIDO DE AIRE)

La presente ficha de recolección tiene como objetivo determinar el peso unitario y el contenido de aire del concreto para cada una de las mezelas a realizar.

Instrucciones: A continuación, se presenta un formato para completar la tara y el concreto, la masa de la tara, el volumen del recipiente, el peso unitario, el rendimiento y el aire atrapado.

CODIGO DE MEZCLA:	
TIEMPO DE MEZCLADO	so dat else núe:
TEMPERATU	URA. (°C)
Ambiente	°C
Concreto	°C
PESO UNI	TARIO
Tara + concreto	Kg
Гага	Kg
Volumen de recipiente	m³
PU	Kg/m³
Rendimiento	- Land 1987
Aire atrapado	%

Anexo 17. Ficha de validación de expertos de ficha de Recolección de Datos de esfuerzo a compresión., especialista 2.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Ing. Mauro Tazza Chaupis

Considerando su actitud académica y trayectoria profesional, permítame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos:

FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A COMPRESION

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Título del proyecto de tesis:	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
Línea de investigación:	Gestión de la Construcción

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024

 ${\bf Tesista: Bach.\ POOL\ SAID\ SOTOMAYOR\ C.}$

D.N.I: 73230525

Formato de Validación de Criterios de Expertos Datos Generales

22/01/2024
Ing. Mg. Mauro Tazza Chaupis
Ing. Jefe de Planta Megapuerto de Chancay — UNION DE CONCRETERAS UNICON
FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A COMPRESION
Determinar el esfuerzo a compresión de los testigos cilíndricos
Bach. POOL SAID SOTOMAYOR C

II. Criterios de validación del instrumento

Revisar cada item del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta:

1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador	
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el indicador	
3	Buena (B)	Si más del 70% de los ítems cumplen con el indicador	

Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			X	
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.			X	
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnología.			X	
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.			×	
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.			X	
Consistencia	Se han formulado en relación a la teoría de las dimensiones de la variable.			X	
Organización	Son secuenciales y distribuidos de acuerdo a dimensiones.			У	
CLARIDAD	Están redactados en un lenguaje claro y entendible.			X	
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.			×	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.			×	
	TOTAL			30	

III. Coeficiente de Validez

D + R +B 30

(Elosua & Bully, 2012)

Evaluador:

FRANDE RECOLLECTION DE DATOS DE ESPOENZO A COMPRESION (CARGOS DE LIMBA E PRESENTE FISHE de recolección tiene como objetivo determinar el esfuerzo a compresión de los testigos cilindricos. Instrucciones A continuación, se presenta un formato para completar El código, fecha de muestreo, fecha de ensaja registrada y la resistencia a compresión calculada.	THERA DE RECOLECCION DE DATOS DE ESPECIENCO A COMPRESSON (CARGA DELIMA A RESISTENCIA A COMPRESSON DE PENANCIA A COMPRESSON DE LA PROPERTION DE
CARGA UNIDAD	Longitud Diámetro Resistencia a (cm) (cm) (cm) (kg/cm2)
е.	
2	
25	
28	

Anexo 18. Ficha de validación de expertos de ficha de Recolección de Datos de esfuerzo a tracción., especialista 2.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Ing. Mauro Tazza Chaupis

Considerando su actitud académica y trayectoria profesional, permítame nombrario como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos:

FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A TRACCION

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Título del proyecto de tesis:	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
Línea de investigación:	Gestión de la Construcción

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024

Tesista: Bach. POOL SAID SOTOMAYOR C.

D.N.I: 73230525

II. Criterios de validación del instrumento Revisar cada ítem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta:

1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador	
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el indicador	
3	Buena (B)	Si más del 70% de los ítems cumplen con el indicador	

Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			X	
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.			Х	
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnología.			X	
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.			Х	
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.			Х	
CONSISTENCIA	Se han formulado en relación a la teoría de las dimensiones de la variable.			X	
ORGANIZACIÓN	Son secuenciales y distribuidos de acuerdo a dimensiones.			X	
CLARIDAD	Están redactados en un lenguaje claro y entendible.			X	
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.			X	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.			X	
	TOTAL			30	

111	Coeficiente	de	Validez

D+R+B 30 = (Elosua & Bully, 2012)

Evaluador

arga, resistenci	Dispersión						
CION)							
FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A TRACCION (RESISTENCIA A TRACCION) La presente ficha de recolección tiene como objetivo determinar el esfuerzo a tracción del concreto. Instrucciones: A continuación, se presenta un formato para completar los datos como fecha de muestreo, fecha de ensayo, altura, diámetro, carga, resistencia a tracción.	PROMEDIO % EVAL		1 1 1		_ ===	=9	
ON (RESISTE Treo, fecha de e	Resistencia a tracción fe (kg/cm2)				-	^	
RACCI mcreto. de muesi	AREA						
FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A TRACCI La presente ficha de recolección tiene como objetivo determinar el esfuerzo a tracción del concreto. Instrucciones: A continuación, se presenta un formato para completar los datos como fecha de mues tracción.	Dlámetro (cm)				_ =		
SS DE ESFE fuerzo a tra	Longitud (cm)				del ^T		
S DATC nar el es ompleta	UNIDAE						
IÓN DI determi	EDAD CARGA UNIDAD	Mark of	guilled at	- May 17		METERS OF	
OLECC bjetivo e		1		1	7	82	
DE REC	FECHA DE ROTURA						
FICHA Jión tiene	FECHA	uuvu.					
de recolec	for (kg/cm2)		nto Hair Survey	Autorida Dia pago	umers:		
e ficha	CODIGO	The Pro-					

Anexo 19. Ficha de validación de expertos de ficha de Recolección de Datos de esfuerzo a flexión., especialista 2.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Ing. Mauro Tazza Chaupis

Considerando su actitud académica y trayectoria profesional, permítame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos:

FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A FLEXION

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Título del proyecto de tesis:	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
Línea de investigación:	Gestión de la Construcción

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024

Tesista: Bach. POOL SAID SOTOMAYOR C.

D.N.I: 73230525

I. Datos Generales	
Fecha	22/01/2024
Validador	Ing. Mg. Mauro Tazza Chaupis
Cargo e institución donde labora	Ing. Jefe de Planta Megapuerto de Chancay — UNION DE CONCRETERAS. UNICON
Instrumento a validar	FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A FLEXION
Objetivo del instrumento	Determinar el esfuerzo a flexión del concreto.
Autor(es) del instrumento	Bach. POOL SAID SOTOMAYOR C

II. Criterios de validación del instrumento

Revisar cada ítem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta:

1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador	
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el indicador	
3	Buena (B)	Si más del 70% de los ítems cumplen con el indicador	

Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			X	
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.			Х	
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnología.			X	
Suficiencia	Son suficientes en cantidad para medir los indicadores de la variable.			X	
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.			×	
CONSISTENCIA	Se han formulado en relación a la teoría de las dimensiones de la variable.			χ	
ORGANIZACIÓN	Son secuenciales y distribuidos de acuerdo a dimensiones.			X	
CLARIDAD	Están redactados en un lenguaje claro y entendible.			X	
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.			×	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.			X	
arme - In	TOTAL			30	

III. Coeficiente de Validez

D+R+B 30 = 1 (Elosua & Bully, 2012)

FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A FLEXION (RESISTENCIA A FLEXIÓN)

La presente ficha de recolección tiene como objetivo determinar el esfuerzo a flexión del concreto.

Instrucciones: A continuación, se presenta un formato para completar los datos como Identificación, carga máxima, luz libre entre apoyos, distancia entre línea de falla y resistencia a flexión.

FICHA DE DATOS DE ESFUERZO A FLEXION											
Código		UNIDAD	1	2	3						
Viga N°				У М	12, 1						
Fecha de elab					- 43-						
Fecha de ensayo											
Tiempo de curado											
Asentamiento											
Tipo de concreto											
Altura (d)											
Ancho (b)											
Largo (L viga)											
P	Carga Máxima	kg									
L	Luz libre entre apoyos	cm									
a	Distancia entre la línea de falla y el apoyo más cercano	cm									
Mr	Resistencia a la flexión (Módulo de rotura)	kg/cm2			101						

Anexo 20. Ficha de validación de expertos de ficha de recolección de curvas granulométricas combinadas., especialista 3.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Ing. José Álvarez Cangahuala

Considerando su actitud académica y trayectoria profesional, permítame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos:

FICHA DE RECOLECCIÓN DE DATOS DE CURVAS GRANULOMETRICAS COMBINADAS

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

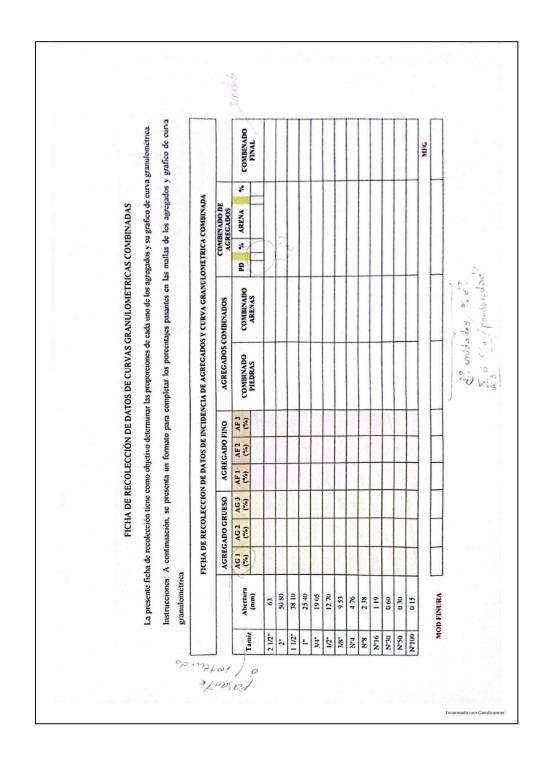
Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

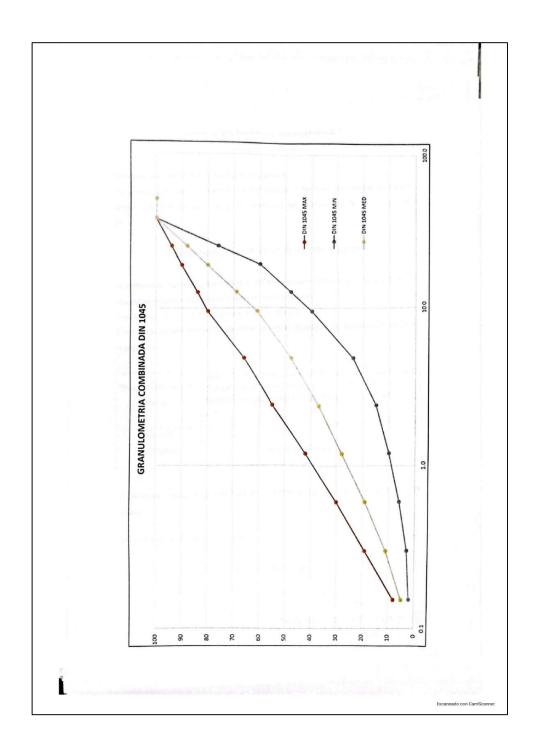
El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Línea de investigación:	Gestión de la Construcción
Título del proyecto de tesis:	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACION DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.


Lima, 15 de enero del 2024


Tesista: Bach. POOL SAID SOTOMAYOR C.

D.N.I: 73230525

Formato de Validación de Criterios de Expertos **Datos Generales** Fecha 20/01/2024 Validador José Alvarez Cangahuala Cargo e institución donde Presidente Aci PERU labora FICHA DE RECOLECCIÓN DE DATOS DE CURVAS GRANULOMETRICAS Instrumento a validar COMBINADAS determinar las proporciones de cada uno de los agregados y su grafico Objetivo del instrumento de curva granulométrica. Autor(es) del instrumento Bach. POOL SAID SOTOMAYOR C II. Criterios de validación del instrumento Revisar cada ítem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta: Deficiente (D) Si menos del 30% de los ítems cumplen con el indicador Si entre el 31% y 70% de los ítems cumplen con el indicador Regular (R) Si más del 70% de los ítems cumplen con el indicador Buena (B) D R B (1) (2) (3) Observación Criterios Indicadores Agregar unidades Los ítems miden lo previsto en los objetivos PERTINENCIA de investigación. Agregar Instructions Responden a lo que se debe medir en la COHERENCIA variable, dimensiones e indicadores Están acorde con el avance de la ciencia y CONGRUENCIA tecnología. Son suficientes en cantidad para medir los SUFICIENCIA indicadores de la variable. Se expresan en comportamientos y acciones OBJETIVIDAD observables y verificables. Se han formulado en relación a la teoría de X CONSISTENCIA las dimensiones de la variable. Son secuenciales y distribuidos de acuerdo a ORGANIZACIÓN dimensiones. colocar unidades Están redactados en un lenguaje claro y CLARIDAD entendible. Engatizar encate ades El instrumento se aplica en un momento OPORTUNIDAD adecuado. El instrumento cuenta con instrucciones y Agregor instructions ESTRUCTURA opciones de respuesta bien definidas. 10 15 III. Coeficiente de Validez 0+10+15 D + R +B 0.83

Evaluador:
JOSE ALLAREZ C.
DM 07445472
CIP 58077

Anexo 21. Ficha de validación de expertos de ficha de Recolección de Datos de Método Shilstone., especialista 3.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Ing. José Álvarez Cangahuala

Considerando su actitud académica y trayectoria profesional, permitame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos:

FICHA DE RECOLECCIÓN DE DATOS DE METODO SHILSTONE

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Título del proyecto de tesis:	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
Línea de investigación:	Gestión de la Construcción

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlia Rivera

De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024

Tesista: Bach. POOL SAID SOTOMAYOR C.

D.N.I: 73230525

 Datos Generales 	
Fecha	20/01/2024
Validador	JOSE AWARES CANGAHUALA
Cargo e institución donde labora	PRESIDENTE DO PERU
Instrumento a validar	FICHA DE RECOLECCIÓN DE DATOS DE METODO SHILSTONE
Objetivo del instrumento	Determinar las proporciones de cada uno de los agregados y su grafico de curva Shilstone, factor grosor, factor de trabajabilidad, módulo de fineza global, curva 8-18 y curva Power 45.
Autor(es) del instrumento	Bach POOL SAID SOTOMAYOR C

II. Criterios de validación del instrumento Revisar cada item del instrumento de recolección de datos y marcar con una equis (X) segun corresponda a cada uno de los indicadores de la ficha teniendo en cuenta.

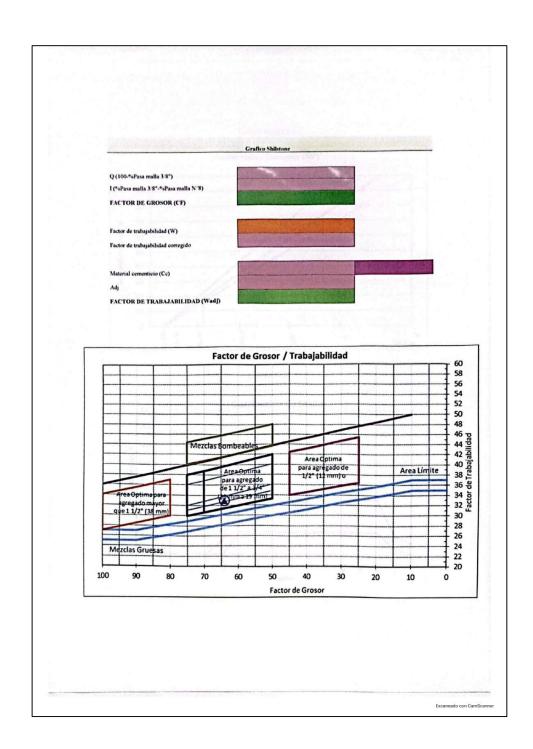
1	Deficiente (D)	Si menos del 30% de los items cumplen con el indicador
2	Regular (R)	Si entre el 31% y 70% de los items cumplen con el indicador
3	Buena (B)	Si más del 70% de los items cumplen con el indicador

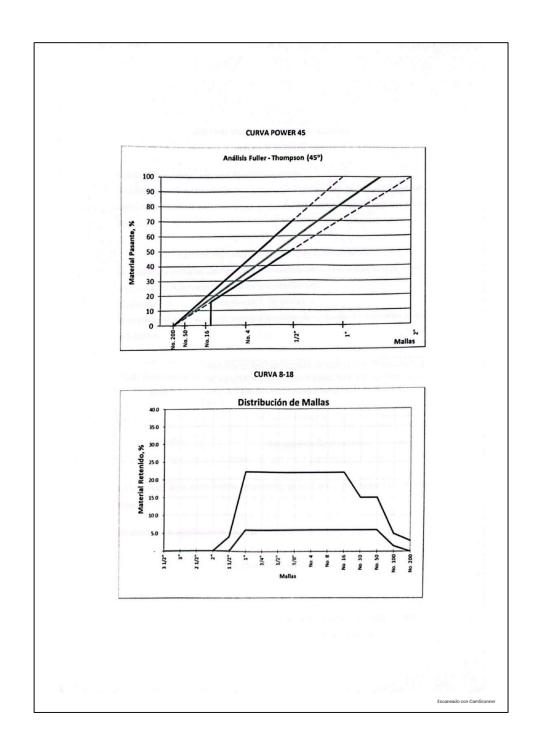
Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los items miden la prevista en los objetivos de investigación.			X	_
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.		X		porte de la gran se u
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnologia.			Х	
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.			Х	
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.			X	
Consistencia	Se han formulado en relación a la teoria de las dimensiones de la variable.			X	
ORGANIZACIÓN	Son secuenciales y distribuidos de acuerdo a dimensiones.			Χ	
CLARIDAD	Estan redactados en un lenguaje claro y entendible.		Χ		Syragor Unidades
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.			X	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.		X		tyregor instructions
	TOTAL		6	21	

III. Coeficiente de Validez

 $\frac{D+R+B}{30} = \left[\frac{O+6+21}{30} \right] = 0.90$

Evaluador: JOSE ALVAREZ DVI 07445472


FICHA DE RECOLECCIÓN DE DATOS DE METODO SHILSTONE (INCIDENCIA DE AGREGADOS, FACTOR GROSOR, FACTOR TRABAJABILIDAD, MODULO DE FINEZA GLOBAL, CURVA 8-18, CURVA POWER 45)


La presente ficha de recolección tiene como objetivo determinar las proporciones de cada uno de los agregados y su grafico de curva Shilstone, factor grosor, factor de trabajabilidad, módulo de fineza global, curva 8-18 y curva Power 45.

Instrucciones: A continuación, se presenta un formato para completar los porcentajes pasantes en las mallas de los agregados, calcular el factor de trabajabilidad y el factor grosor, en función a los datos obtenidos de las granulometrías y el contenido de cemento. Así mismo analizar el Punto Shilstone, curva 8-18 y curva Power 45.

FICHA DE RECOLECCION DE DATOS DE INCIDENCIA DE AGREGADOS Y CURVA GRANULOMETRICA AGREGAD AGREGAD AGREGADOS COMBINADO DE

		00	GRU	ESO	C	FIN	O	COMB	INADOS		AGR	EGADO!		
Tam iz	Abertu ra (mm)	AG 1 (%)	A G 2 (%)	A G 3 (%)	AF 1 (%)	AF 2 (%)	AF 3 (%)	COMBINA DO PIEDRAS	COMBINA DO ARENAS	P D	%	AREN A	%	COMBINA DO FINAL
1/2*	63	10.	3/4	H					1					
2"	50.80			9		177								
1/2"	38.10													-13-
1.	25.40		1997	10	-	100	ner i							
3/4"	19.05	Dr.	tib-	P					in many		W.			
1/2"	12.70				11	-								
3/8"	9 53		fale.	1		(20)	1		1					
Nº4	4.76	1	1	Bu			100		P					
Nº8	2.38	To the	lie.	Ro-	Qu'							1		
N°16	1.19	1	35	190	3	196	73.85						\neg	
N°30	0.60	1935	in a	1										
N°50	0.30		13.5	1								77/37/0		
N°10 0	0.15	W.		L					danie i					
														MFG

Anexo 22. Ficha de validación de expertos de ficha de Recolección de Datos de consistencia., especialista 3.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO Estimado Especialista: Ing. José Álvarez Cangahuala Considerando su actitud académica y trayectoria profesional, permitame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos: FICHA DE RECOLECCIÓN DE DATOS DE CONSISTENCIA Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque: 2. Cuantitativo (X) 3. Mixto () Cualitativo () El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto: ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN Título del proyecto de DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, tesis: 2023 Línea de investigación: Gestión de la Construcción Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera De antemano le agradezco sus aportes. Lima, 15 de enero del 2024 Tesista: Bach. POOL SAID SOTOMAYOR C. D.N.I: 73230525

Datos Generales

Fecha	20101/2024				
Validador	JOSÉ ALVAREZ CANGAHUALA				
Cargo e institución donde labora	PREYDENTE OCI PERÚ				
Instrumento a validar	FICHA DE RECOLECCIÓN DE DATOS DE CONSISTENCIA				
Objetivo del instrumento	Determinar la consistencia, temperatura y perdida de trabajabilidad de la mezcla de concreto.				
Autor(es) del instrumento	mento Bach. POOL SAID SOTOMAYOR C				

II. Criterios de validación del instrumento

Revisar cada ítem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta:

1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el indicador
3	Buena (B)	Si más del 70% de los ítems cumplen con el indicador

Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			X	
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.	_		X	
CONGRUENCIA	Están acorde con el avance de la ciencia y			X	
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.			X	
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.	L		X	
CONSISTENCIA	Se han formulado en relación a la teoria de las dimensiones de la variable.			X	
ORGANIZACIÓN	Son secuenciales y distribuidos de acuerdo a dimensiones.			X	
CLARIDAD	Están redactados en un lenguaje claro y entendible.			X	
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.			X	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.			X	
	TOTAL			30	,

 $\frac{D+R+B}{30} = \frac{O+O+3O}{3O} = \frac{1}{2}$

Dui 07445477

FICHA DE RECOLECCIÓN DE DATOS DE CONSISTENCIA (ASENTAMIENTO, TEMPERATURA DEL CONCRETO Y PERDIDA DE ASENTAMIENTO)

La presente ficha de recolección tiene como objetivo determinar el asentamiento, temperatura del concreto y la perdida de asentamiento de la mezcla de concreto.

Instrucciones: A continuación, se presenta un formato para completar la perdida de asentamiento y la temperatura del concreto.


Pérdida de trabajabilidad

FRECUENCIA

T° (CERO T° (30 T° (60 T° (90 T° (120 T° (150 T° (180 min) min) min) min) min) min) min)

PÉRDIDA SLUMP (Pulg) EXTENSIBILIDA D (cm)

T° AMBIENTE (°C) T° CONCRETO (°C)

Anexo 23. Ficha de validación de expertos de ficha de Recolección de Datos de Segregación., especialista 3.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Ing. José Álvarez Cangahuala

Considerando su actitud académica y trayectoria profesional, permítame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos:

FICHA DE RECOLECCIÓN DE DATOS DE SEGREGACION

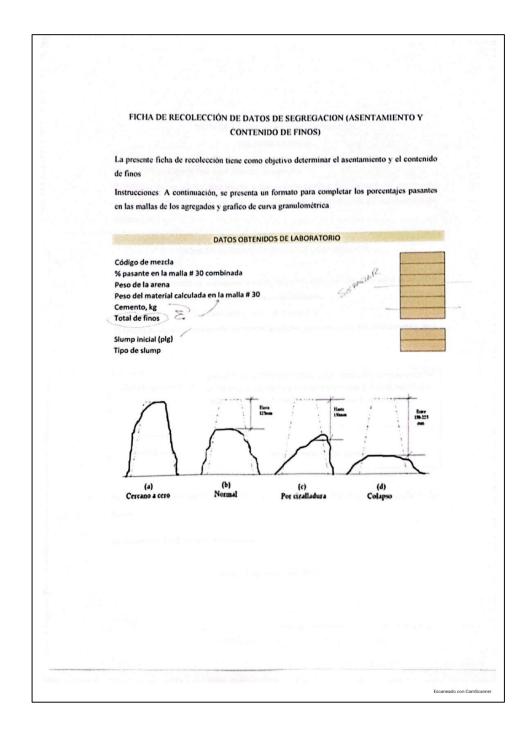
Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Título del proyecto de tesis:	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
Línea de investigación:	Gestión de la Construcción

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla


De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024

Tesista: Bach. POOL SAID SOTOMAYOR C.

D.N.I: 73230525

Formato de Validación de Criterios de Expertos **Datos Generales** Fecha 20/01/2024 Validador JOSÉ AVADEZ CANGONALA Cargo e institución donde PRESIDENTE AU PERÚ FICHA DE RECOLECCIÓN DE DATOS DE SEGREGACION Objetivo del instrumento determinar el asentamiento y el contenido de finos Autor(es) del instrumento Bach. POOL SAID SOTOMAYOR C II. Criterios de validación del Instrumento Revisar cada item del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta: Deficiente (D) Si menos del 30% de los items cumplen con el indicador Si entre el 31% y 70% de los items cumplen con el indicador Regular (R) Si más del 70% de los items cumplen con el indicador Buena (B) D R B (1) (2) (3) Observación Criterios Indicadores Los items miden lo previsto en los objetivos X PERTINENCIA de investigación. Responden a lo que se debe medir en la X COHERENCIA variable, dimensiones e indicadores. Están acorde con el avance de la ciencia y nétodos pro met. CONGRUENCIA tecnologia. Son suficientes en cantidad para medir los SUFICIENCIA indicadores de la variable. Se expresan en comportamientos y acciones OBJETTVIDAD observables y verificables. Se han formulado en relación a la teoría de CONSISTENCIA las dimensiones de la variable. Son secuenciales y distribuidos de acuerdo a X ORGANIZACIÓN dimensiones. Están redactados en un lenguaje claro y 85 toblecor CLARIDAD entendible. unidades claras El instrumento se aplica en un momento OPORTUNIDAD adecuado. El instrumento cuenta con instrucciones y X ESTRUCTURA opciones de respuesta bien definidas. TOTAL 424 III. Coeficiente de Validez (Elosup & Bully, 2012) 28 = 0.93 D + R +B 0+4+24 Evaluador: 1652 ACEANET C DVI 07445477

Anexo 24. Ficha de validación de expertos de ficha de Recolección de Datos de Exudación., especialista 3.

	CHA DE VALIDACIÓN DE INSTRUMENTOS
Adjust the second second	JUICIO DE EXPERTO
	JOICIO DE EXPERTO
Estimado Especialista: I	ng. José Álvarez Cangahuala
Considerando su actitu	d académica y trayectoria profesional, permitame nombrarlo
como JUEZ EXPERTO	para revisar el contenido del instrumento de recolección de
datos:	
FICH	A DE RECOLECCIÓN DE DATOS DE EXUDACION
Le presento la matriz d	e consistencia y operacionalización de variables para la revisión
	de tesis que tiene como enfoque:
Cualitativo () 2	. Cuantitativo (X) 3. Mixto ()
El resultado de esta ev	aluación permitirá la validez de contenido del instrumento para
el proyecto:	
	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN
Título del proyecto de	DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y
tesis:	ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
Línea de	The same was south by
investigación:	Gestión de la Construcción
Dicho trabajo tiene con	mo Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla
Rivera	
De antemano le agrade	zco sus aportes.
	Lima, 15 de enero del 2024
	0 000
	(Dawy)
	Taskets Park POOL SAID SOTOMANOD C
	Tesista: Bach. POOL SAID SOTOMAYOR C.
	D.N.I: 73230525

I. Datos Generales	
Fecha	20/01/2024
Validador	AJOHADNAS SERAVIA BOL
Cargo e institución donde labora	PRESIDENTE AU FERN
Instrumento a validar	FICHA DE RECOLECCIÓN DE DATOS DE EXUDACION
Objetivo del instrumento	determinar la cantidad de agua de exudación de la mezcla de concreto
Autor(es) del instrumento	Bach. POOL SAID SOTOMAYOR C

II. Criterios de validación del instrumento Revisar cada item del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta;

1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador	
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el indicador	
3	Buena (B)	Si más del 70% de los items cumplen con el indicador	

Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los items miden lo previsto en los objetivos de investigación.			X	
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.			X	1 1 1 1 1
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnología.			X	
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.			X	
OBJETTVIDAD	Se expresan en comportamientos y acciones observables y verificables.			X	1 × 1 × 1
CONSISTENCIA	Se han formulado en relación a la teoría de las dimensiones de la variable.			X	
ORGANIZACIÓN	Son secuenciales y distribuidos de acuerdo a dimensiones.			X	
CLARIDAD	Están redactados en un lenguaje claro y entendible.		X		Agregar Unidades
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.		L	X	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.		X		Agregor Instrum
	TOTAL	0	4	24	

FICHA DE RECOLECCIÓN DE DATOS DE EXUDACION (CANTIDAD DE AGUA EXUDADA)

La presente ficha de recolección tiene como objetivo determinar la cantidad de agua de exudación de la mezela de concreto.

Instrucciones: A continuación, se presenta un formato para completar la dosificación e la mezela, arena, grava, cemento, agua, procedencia del material, volumen de agua exudada por unidad de superficie, volumen de agua acumulada y el tiempo requerido para que cese o finalice la exudación.

DATOS OBTENIDOS DE LABORATORIO

Código de mezcla
Dosificación de la mezcla
Arena, kg
Grava, kg
Cemento, kg
Agua, Lt
Procedencia del material
Método Empleado (A o B)

Volumen de agua exudada por unidad de superficie Volumen de agua acumulada

Tiempo requerido para que cese la exudación

deluic ind corse

Anexo 25. Ficha de validación de expertos de ficha de Recolección de Datos de contracción., especialista 3

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO Estimado Especialista: Ing. José Álvarez Cangahuala Considerando su actitud académica y trayectoria profesional, permitame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos: FICHA DE RECOLECCIÓN DE DATOS DE CONTRACCION Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque: 2. Cuantitativo (X) 3. Mixto () Cualitativo () El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto: ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN Título del proyecto de DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, tesis: Línea de investigación: Gestión de la Construcción Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla De antemano le agradezco sus aportes. Lima, 15 de enero del 2024 Tesista: Bach. POOL SAID SOTOMAYOR C. D.N.I: 73230525

I. Datos Generales

Fecha	20/01/2024
Validador	JOSÉ ALVAREZ CANGAHVALA
Cargo e institución donde labora	PRESIDENTE ACI PERÚ
Instrumento a validar	FICHA DE RECOLECCIÓN DE DATOS DE CONTRACCION
Objetivo del instrumento	Determinar las fisuras y realizar un control de estas.
Autor(es) del instrumento	Bach. POOL SAID SOTOMAYOR C

II. Criterios de validación del instrumento Revisar cada ítem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta:

1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el Indicador
3	Buena (B)	Si más del 70% de los ítems cumplen con el indicador

Criterios	Indicadores		R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			X	PAR - I
COHERENCIA	Responden a lo que se debe medir en la variable dimensiones e indicadores.		X		Falta monegrana
CONGRUENCIA	Están acorde con el avance de la ciencia y		X		Falls HR
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.			X	
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.			X	185
CONSISTENCIA	Se han formulado en relación a la teoría de las dimensiones de la variable.			X	
ORGANIZACIÓN	Son secuenciales y distribuidos de acuerdo a		X		Agresav unidades
CLARIDAD	Están redactados en un lenguaje claro y entendible.			X	
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.			X	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.		_	X	
	TOTAL	200	6	21	AND THE RESIDENCE OF THE PARTY

III. Coeficiente de Validez $\begin{array}{c}
D+R+B \\
30
\end{array} = \begin{array}{c}
O+6+21 \\
30
\end{array} = 0.90$ Evaluador: Dxi O 7445477

Escaneado con CamScanne

CIP 58077

FICHA DE RECOLECCIÓN DE DATOS DE CONTRACCION (CONTROL DE FISURAS)

La presente ficha de recolección tiene como objetivo determinar las fisuras y realizar un control de ceres

Instrucciones: A continuación, se presenta un formato para completar datos de las fisuras como: hora de brote, ancho, longitud, temperatura, velocidad del viento, temperatura ambiente y clasificación de la fisura.

Freh HB

CODIGO DE MEZCLA:

FISURA	HORA DE BROTE	ANCHO PROM. DE BROTE (mm)	LONGITUD DE FISURA (mm)	T° C AL BROTAR LA FISURA	VELOCIDAD DEL VIENTO AL BROTAR LA FISURA (m/s)	T° A	CLASIFICACION SEGÚN EL ANCHO
F1							
F2							
F3							
F4							
F5							
F6							
F7							
F8							
F9							
F10							
F11							
F12							
F13							
SUMA							

Escaneado con CamScanne

Anexo 26. Ficha de validación de expertos de ficha de Recolección de datos densidad de concreto, especialista 3.

FI	CHA DE VALIDACIÓN DE INSTRUMENTOS
	JUICIO DE EXPERTO
	JOIN DE LA ENTO
Estimado Especialista: I	ng. José Álvarez Cangahuala
Considerando su actitu	d académica y trayectoria profesional, permítame nombrarlo
como JUEZ EXPERTO P	para revisar el contenido del instrumento de recolección de
datos:	
FICHA DE RE	COLECCIÓN DE DATOS DENSIDAD DEL CONCRETO
	e consistencia y operacionalización de variables para la revisión
respectiva del proyecto	de tesis que tiene como enfoque:
Cualitativo () 2.	Cuantitativo (X) 3. Mixto ()
El resultado de esta eva	aluación permitirá la validez de contenido del instrumento para
el proyecto:	
Título del proyecto de	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN
tesis:	DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO,
tesis.	2023
Línea de	
investigación:	
The state of the s	Gestión de la Construcción
	· ·
Dicho trabajo tiene con	no Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla
Rivera	
D	
De antemano le agradez	cco sus aportes.
	Lima, 15 de enero del 2024
	A ON
	Cauly S
	T
	Tesista: Bach. POOL SAID SOTOMAYOR C. D.N.I: 73230525
	D.N.I: 75250525

 Datos Generales 	
Fecha	20/01/2024
Validador	JOSÉ ALVAREZ CANGAHUALA
Cargo e institución donde labora	PRESIDENTE ALI PERÍ
Instrumento a validar	FICHA DE RECOLECCIÓN DE DATOS DENSIDAD DEL CONCRETO
Objetivo del instrumento	Determinar el peso unitario y el contenido de aire del concreto para cada una de las mezclas a realizar.
Autor(es) del instrumento	Bach. POOL SAID SOTOMAYOR C

II. Criterios de validación del instrumento Revisar cada ítem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta:

1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el indicador
3	Buena (B)	Si más del 70% de los ítems cumplen con el indicador

Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			X	
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.			X	
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnología.		X		Existen nueves metados
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.			X	
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.			X	
CONSISTENCIA	Se han formulado en relación a la teoría de las dimensiones de la variable.		Х		solo Fallo ramo
Organización	Son secuenciales y distribuidos de acuerdo a dimensiones.			X	
CLARIDAD	Están redactados en un lenguaje claro y entendible.		X		Especifican
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.			X	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.		X		y tipo de normo
	TOTAL	0	18	18	

(Elosua & Bully, 2012) III. Coeficiente de Validez Evaluador: SDOR ALCARET C AVI 07445472 CIP 58077

364

Escaneado con CamScanner

FICHA DE RECOLECCIÓN DE DATOS DENSIDAD DEL CONCRETO (PESO UNITARIO Y CONTENIDO DE AIRE)

La presente ficha de recolección tiene como objetivo determinar el peso unitario y el contenido de aire del concreto para cada una de las mezclas a realizar.

Instrucciones: A continuación, se presenta un formato para completar la tara y el concreto, la masa de la tara, el volumen del recipiente, el peso unitario, el rendimiento y el aire atrapado.

undedes

CODIGO DE MEZCLA:	
TIEMPO DE MEZCLADO	
TEMPERATURA. (°C	
Ambiente	°C
Concreto	°C
PESO UNITARIO	THE PRESIDENT PROJECT
Tara + concreto	Kg
Tara	Kg
Volumen de recipiente	m³
PU	Kg/m³
Rendimiento Formula	-
Aire atrapado Corneli	%

The same

Anexo 27. Ficha de validación de expertos de ficha de Recolección de datos de esfuerzo a compresión, especialista 3.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Ing. José Álvarez Cangahuala

Considerando su actitud académica y trayectoria profesional, permítame nombrarlo
como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de
datos:

FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A COMPRESION

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuant

2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

tesis: Línea de	DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
investigación:	Gestión de la Construcción

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024

Tesista: Bach. POOL SAID SOTOMAYOR C.

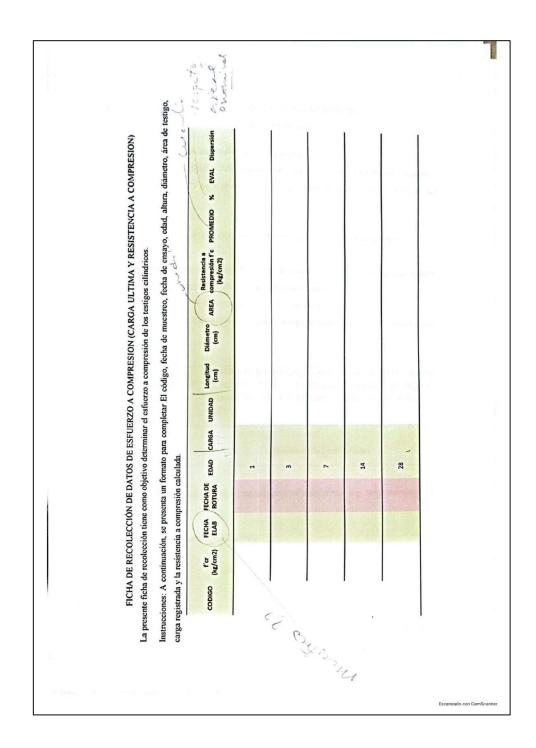
D.N.I: 73230525

Escaneado con CamScanner

Datos Generale

 Datos Generales 	
Fecha	20/01/2024
Validador	JOSÉ DIVIDER CONGOHUMA
Cargo e institución donde labora	PRESIDENTE ACI PLEÚ
Instrumento a validar	FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A COMPRESION
Objetivo del instrumento	Determinar el esfuerzo a compresión de los testigos cilindricos
Autor(es) del instrumento	Bach. POOL SAID SOTOMAYOR C

II. Criterios de validación del Instrumento


Revisar cada ítem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta:

1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador	
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el indicador	
3	Buena (B)	Si más del 70% de los ítems cumplen con el indicador	-

Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			X	
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.			X	7 7 4 7 7 7 7
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnología.			Х	
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.			X	2 7 7 7 7 7 7
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.		X		Especipion tipo de dispersión
CONSISTENCIA	Se han formulado en relación a la teoría de las dimensiones de la variable.		X		Agregar midades
ORGANIZACIÓN	Son secuenciales y distribuidos de acuerdo a dimensiones.			X	
CLARIDAD	Están redactados en un lenguaje claro y entendible.		X		Especificar el tipo de the often
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.			X	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.		X		Especificar unidades
Telephone Service	TOTAL	0	8	16	

Coeficiente de Valider		(Elosua & Bully, 2012)
D + R +B 30	= 0+8+16 = 0.87	t Ja
		10se Accare 7

Escaneado con CamScanne

Anexo 28. Ficha de validación de expertos de ficha de Recolección de datos de esfuerzo a tracción, especialista 3.

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTO

Estimado Especialista: Ing. José Álvarez Cangahuala

Considerando su actitud académica y trayectoria profesional, permítame nombrarlo como JUEZ EXPERTO para revisar el contenido del instrumento de recolección de datos:

FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A TRACCION

Le presento la matriz de consistencia y operacionalización de variables para la revisión respectiva del proyecto de tesis que tiene como enfoque:

Cualitativo () 2. Cuantitativo (X) 3. Mixto ()

El resultado de esta evaluación permitirá la validez de contenido del instrumento para el proyecto:

Título del proyecto de tesis:	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
Línea de investigación:	Gestión de la Construcción

Dicho trabajo tiene como Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla Rivera

De antemano le agradezco sus aportes.

Lima, 15 de enero del 2024

Tesista: Bach. POOL SAID SOTOMAYOR C.

D.N.I: 73230525

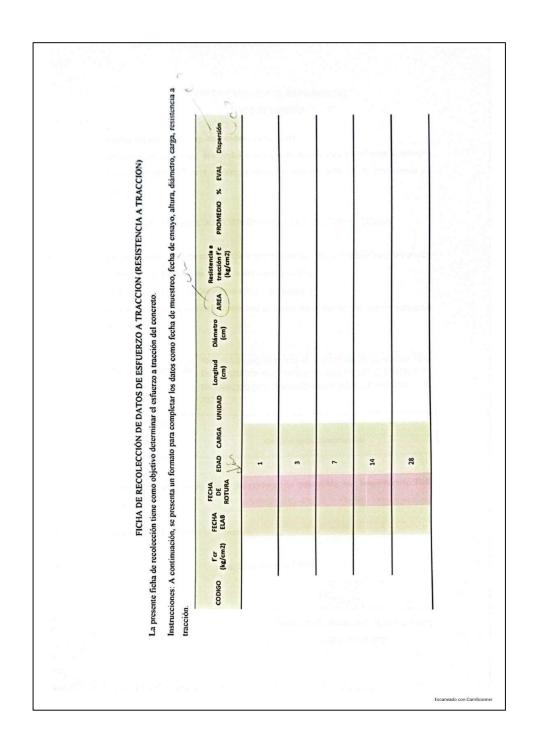
Datos Generales

Fecha	20/01/2024
Validador	JOSÉ ALVAREZ CANGAHVALA
Cargo e institución donde labora	PREHOENTE AU PERU
Instrumento a validar	FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A TRACCION
Objetivo del instrumento	Determinar el esfuerzo a tracción de los testigos cilíndricos
Autor(es) del instrumento	Bach. POOL SAID SOTOMAYOR C

II. Criterios de validación del instrumento

Revisar cada (tem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta:

1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el indicador
3	Buena (B)	Si más del 70% de los ítems cumplen con el indicador


Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			X	LA HIGH
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.			X	
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnología.			X	
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.			X	
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.		X		Establicer noturas a que edades
CONSISTENCIA	Se han formulado en relación a la teoría de las dimensiones de la variable.		X		se recomiendo exalla
Organización	Son secuenciales y distribuidos de acuerdo a dimensiones.			X	THE RESERVE
CLARIDAD	Están redactados en un lenguaje claro y entendible.		X		dispersion
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.			X	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.		X		Instrumes
A SUPERIOR	TOTAL	o	8	18	

III. Coeficiente de Validez

 $\frac{D+R+B}{30} = \frac{0+3+13}{50} = 0.89$

(Elosua & Bully, 2012)

OIP 58077 DSE AZEVAJUADOS: C 201 OTHE SUPE

Anexo 29. Ficha de validación de expertos de ficha de Recolección de datos de esfuerzo a flexión, especialista 3.

	ICHA DE VALIDACIÓN DE INSTRUMENTOS
	JUICIO DE EXPERTO
Estimado Especialista:	Ing. José Álvarez Cangahuala
Considerando su actito	ud académica y trayectoria profesional, permítame nombrario
como JUEZ EXPERTO	para revisar el contenido del instrumento de recolección de
datos:	
FICHA DE RI	ECOLECCIÓN DE DATOS DE ESFUERZO A FLEXION
Le presento la matriz d	e consistencia y operacionalización de variables para la revisión
respectiva del proyecto	de tesis que tiene como enfoque:
Cualitativo () 2.	Cuantitativo (X) 3. Mixto ()
El resultado de esta eva	aluación permitirá la validez de contenido del instrumento para
el proyecto:	
Avetage Cha	ANÁLISIS DE METODOLOGÍAS MODERNAS DE COMBINACIÓN
Título del proyecto de	DE AGREGADOS EN LAS PROPIEDADES EN ESTADO FRESCO Y
tesis:	ENDURECIDO DEL CONCRETO BOMBEABLE, HUANCAYO, 2023
Línea de	return representation
investigación:	Gestión de la Construcción
	A DESCRIPTION OF THE PROPERTY
	o Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla
Dicho trabajo tiene com	io Asesor del proyecto de tesis al Mg. Ing. Jorge Aurelio Ticlla
Rivera	co sus aportes.
Rivera	
Rivera	co sus aportes.
Rivera	co sus aportes. Lima, 15 de enero del 2024 Lima
Rivera	Lima, 15 de enero del 2024 Lima, 15 de enero del 2024 Tesista: Bach. POOL SAID SOTOMAYOR C.
Rivera	co sus aportes. Lima, 15 de enero del 2024 Lima
Rivera	Lima, 15 de enero del 2024 Lima, 15 de enero del 2024 Tesista: Bach. POOL SAID SOTOMAYOR C.

Fecha	20/01/2024
Validador	JOSÉ ALVADES CANGABUALA
Cargo e institución donde labora	PRESIDENTE DU PERÚ
Instrumento a validar	FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A FLEXION
Objetivo del instrumento	Determinar el esfuerzo a flexión del concreto.
Autor(es) del instrumento	Bach. POOL SAID SOTOMAYOR C

II. Criterios de validación del instrumento

Revisar cada (tem del instrumento de recolección de datos y marcar con una equis (X) según corresponda a cada uno de los indicadores de la ficha teniendo en cuenta:

1	Deficiente (D)	Si menos del 30% de los ítems cumplen con el indicador
2	Regular (R)	Si entre el 31% y 70% de los ítems cumplen con el indicador
3	Buena (B)	Si más del 70% de los ítems cumplen con el indicador

Criterios	Indicadores	D (1)	R (2)	B (3)	Observación
PERTINENCIA	Los ítems miden lo previsto en los objetivos de investigación.			X	
COHERENCIA	Responden a lo que se debe medir en la variable, dimensiones e indicadores.			X	
CONGRUENCIA	Están acorde con el avance de la ciencia y tecnología.			X	
SUFICIENCIA	Son suficientes en cantidad para medir los indicadores de la variable.			X	
OBJETIVIDAD	Se expresan en comportamientos y acciones observables y verificables.		X		unidades
CONSISTENCIA	Se han formulado en relación a la teoría de las dimensiones de la variable.		X		establecer codiso
ORGANIZACIÓN	Son secuenciales y distribuidos de acuerdo a dimensiones.			X	Like Serie
CLARIDAD	Están redactados en un lenguaje claro y entendible.			X	
OPORTUNIDAD	El instrumento se aplica en un momento adecuado.		4	X	
ESTRUCTURA	El instrumento cuenta con instrucciones y opciones de respuesta bien definidas.	1	14	X	
	TOTAL	1	4	24	

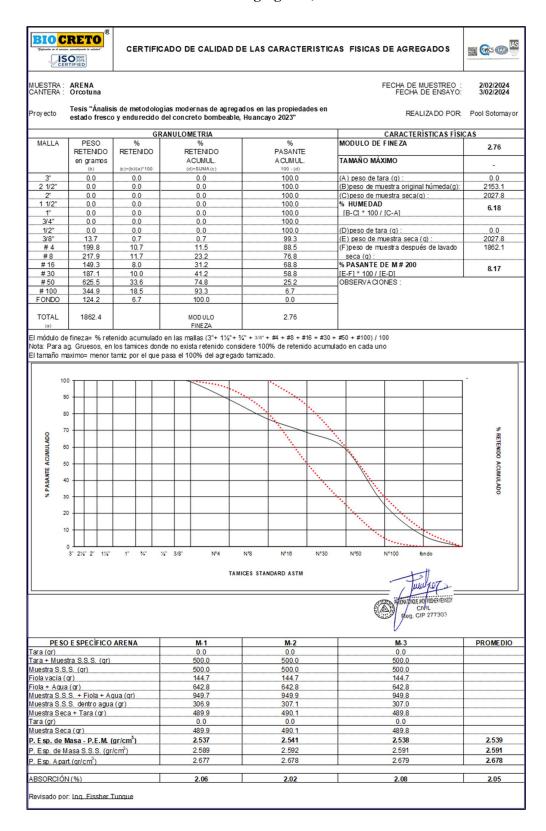
III. Coeficiente de Validez

 $\frac{D+R+B}{30} = \frac{0+1+24}{30} = 0.0$

(Elosua & Bully, 2012)

CIP 58077

JOSE ACLAJE 7 C


Evaluador:

MM 07445471.

caneado con CamScanner

FICHA DE RECOLECCIÓN DE DATOS DE ESFUERZO A FLEXION (RESISTENCIA A FLEXIÓN) La presente ficha de recolección tiene como objetivo determinar el esfuerzo a flexión del Instrucciones: A continuación, se presenta un formato para completar los datos como Identificación, carga máxima, luz libre entre apoyos, distancia entre línea de falla y resistencia a flexion. FICHA DE DATOS DE ESFUERZO A FLEXION Código UNIDAD 2 1 3 Viga Nº Fecha de elab Fecha de ensayo Tiempo de curado Asentamiento Tipo de concreto Altura (d) Ancho (b) Largo (L viga) Carga Máxima Luz libre entre L cm apoyos Distancia entre la línea de falla y el cm apoyo más cercano Resistencia a la flexión (Módulo de Mr kg/cm2 ENSAYO DE VIGA A FLEXION (COVENIN 442) VIGA DE CONCRETO VIGA DE CONCRETO

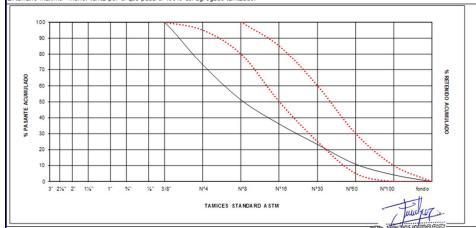
Anexo 30. Características físicas de agregados, cantera Orcotuna.

Anexo 31. Características físicas de agregados, cantera Matahuasi-Concepción.

CERTIFICADO DE CALIDAD DE LAS CARACTERISTICAS FISICAS DE AGREGADOS

MUESTRA: **ARENA** CANTERA: **Matahuasi**-Concepción

FECHA DE MUESTREO : FECHA DE ENSAYO:

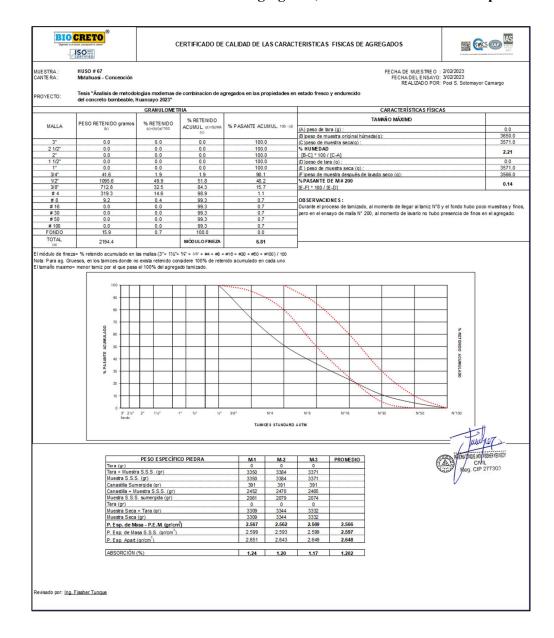

Tesis "Ánalisis de metodologías modernas de agregados en las propiedades en Proy ecto estado fresco y endurecido del concreto bombeable, Huancayo 2023"

REALIZADO POR:

Pool Sotomay or

		GRAN	ULOMETRIA		CARACTERÍSTICAS F	ÍSICAS
MALLA	PESO RETENIDO	% RETENIDO	% RETENIDO ACUMUL	% PASANTE ACUMUL.	MODULO DE FINEZA TAMAÑO MÁXIMO	4.02
	en gramos	(c)=(b)(a)*100	(d)=SUMA(c)	100 - (d)	I AMANO MAXIMO	
3"	0.0	0.0	0.0	100.0	(A) peso de tara (g) :	0.0
2 1/2"	0.0	0.0	0.0	100.0	(B)peso de muestra original húr	2414.9
2"	0.0	0.0	0.0	100.0	(C)peso de muestra seca(q):	2240.0
1 1/2"	0.0	0.0	0.0	100.0	% HUMEDAD	7.81
1"	0.0	0.0	0.0	100.0	[B-C] * 100 / [C-A]	
3/4"	0.0	0.0	0.0	100.0		
1/2"	0.0	0.0	0.0	100.0	(D)peso de tara (q) :	0.0
3/8"	4.8	0.2	0.2	99.8	(E) peso de muestra seca (q):	2240.7
# 4	558.6	26.6	26.8	73.2	(F)peso de muestra después de	2101.1
# 8	462.9	22.0	48.9	51.1	seca (q):	
# 16	316.5	15.1	63.9	36.1	% PASANTE DE M # 200	6.23
# 30	269.2	12.8	76.8	23.2	[E-F] * 100 / [E-D]	0.23
# 50	259.2	12.3	89.1	10.9	OBSERVACIONES:	
# 100	141.1	6.7	95.8	4.2		
FONDO	87.9	4.2	100.0	0.0		
TOTAL (a)	2100.2		MO DULO FINE ZA	4.02		

El módulo de fineza= % retenido acumulado en las mallas (3"+ 1½"+ ¾" + 3/8" + #4 + #8 + #16 + #30 + #50 + #100) / 100 Nota: Para ag. Gruesos, en los tamices donde no exista retenido considere 100% de retenido acumulado en cada uno El tamaño maximo= menor tamiz por el que pasa el 100% del agregado tamizado.



Revisado por: _

PESO E SPECÍFICO ARENA	M-1	M-2	M-3	PROMEDIO
Tara (gr)	0.0	0.0	0.0	FILOMEDIO
Tara + Muestra S.S.S. (gr)	500.0	500.0	500.0	
Muestra S.S.S. (gr)	500.0	500.0	500.0	
Fiola vacia (gr)	144.7	144.7	144.7	
Fiola + A qua (qr)	642.8	642.8	642.8	
Muestra S.S.S. + Fiola + Aqua (qr)	954.2	954.1	954.3	
Muestra S.S.S. dentro aqua (gr)	311.4	311.3	311.5	
Muestra Seca + Tara (gr)	494.5	493.3	493.8	
Tara (gr)	0.0	0.0	0.0	
Muestra Seca (gr)	494.5	493.3	493.8	
P. Esp. de Masa - P.E.M. (gr/cm ³)	2.622	2.614	2.620	2.619
P. Esp. de Masa S.S.S. (gr/cm3)	2.651	2.650	2.653	2.651
P. Esp. Apart (gr/cm ³)	2.701	2.710	2.709	2.707
ABSORCIÓN (%)	1.11	1.36	1.26	1.24

Revisado por: <u>Inq. Fissher Tunque</u>

Anexo 32. Características físicas de agregados, cantera Matahuasi-Concepción.

Anexo 33. Ensayo de lavado por la malla #200.

Anexo 34. Ensayo de granulometría de arena de cerro.

Anexo 35. Ensayo de granulometría de arena de río.

Anexo 36. Ensayo de granulometría de piedra chancada Huso #67.

Anexo 37. Tamizaje de agregado, ensayo granulométrico.

Anexo 38. Ensayo de peso específico de los agregados.

Anexo 39. Ensayo de consistencia, medición de temperatura ambiente, medición de temperatura de concreto y humedad relativa de la mezcla en estado fresco.

Anexo 40. Ensayo de peso unitario y medición de aire atrapado.

Anexo 41. Ensayo de esfuerzo a compresión.

Anexo 42. Ensayo de esfuerzo a tracción.

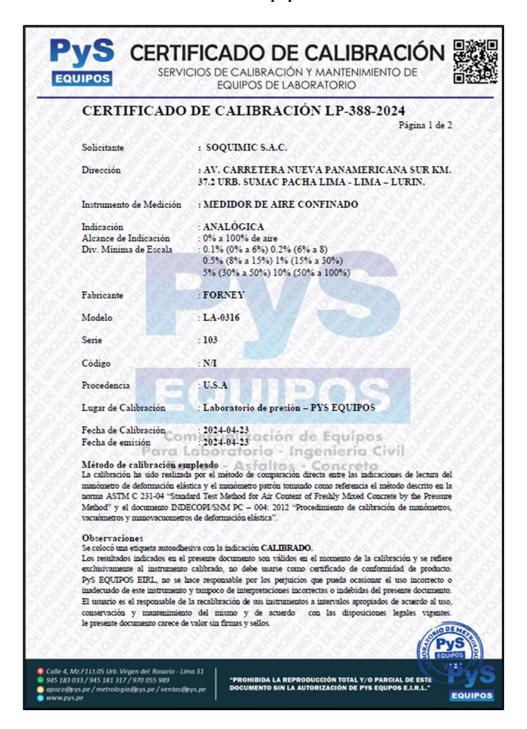
Anexo 43. Ensayo de esfuerzo a flexión.

Anexo 44. Elaboración de testigos cilíndricos.

Anexo 45. Elaboración de vigas.

Anexo 46. Elaboración de losas para control de contracción y fisuras.

Anexo 47. Medición y clasificación de fisuras.



Anexo 48. Medición de la cantidad de agua exudada.

Anexo 49. Certificado de calibración de equipo medidor de aire confinado.

CERTIFICADO DE CALIBRACIÓN SERVICIOS DE CALIBRACIÓN Y MANTENIMIENTO DE

EQUIPOS DE LABORATORIO

CERTIFICADO DE CALIBRACIÓN LP-388-2024

TRAZABILIDAD

Los resultados de la calibración realizada son trazables a la Unidad de Medida de los patrones nacionales de Masa del Servicio Nacional de Metrología SNM-INDECOPI en concordancia con el Sistema Internacional de Unidades de Medida (SI) y el Sistema Legal de Unidades del Perú (SLUMP).

PATRONES DE REFERENCIA

Trazabilidad	Patrón Utilizado	Certificado de Calibración
Patrones de Referencia de DSI PERU AUTOMATION E.I.R.L.	Juego de Pesas	M-0012-2024, M-0013-2024
Patron de referencia de INACAL	Instrumento de Medición de Presión Relativa	LFP - 093 - 2023

RESULTADOS DE MEDICION

Lectura Patrón (PSI)	Lectura L1 (PSI)	Lectura L2 (PSI)	Promedio (PSI)	Error (PSI)
0 0	0	0	0.00	0.00
50	5.08	5.13	5.11	0.04
10	10.13	10.15	10.14	0.01
15	15.17	15.17	15.17	0.00

Humedad de ensayo % de aire	Ensayo del instrumento a calibrar
%	%
5	5.4
10	10.0
15	15.0

Recipient	e de Medición	Datos Adicionales	
Diámetro	203.18mm	Peso del agua para llenar el vaso de calibración	355 Gr
Altura	217.81 mm	Peso del agua para llenar el recipiente de Medición	7082Gr
Masa	3621 Granero	ica i z ca c i Posición de la guja en cero o s	3%

Los resultados indicados en el presente documento son válidos en el momento de la calibración y se refieren exclusivamente al instrumento calibrado.

PYS EQUIPOS E.I.R.L. No se hace responsable por los perjuicios de sus instrumentos a intervalos apropiados de acuerdo al uso, conservación y mantenimiento del mismo y de acuerdo con las disposiciones legales vigentes.

Observaciones:

Se colocó una etiqueta autoadhesiva con la indicación de "CALIBRADO".

Revisado por:

Dpto. de Metrología

Calle 4, Mz.F1Lt.05 Urb. Virgen del Rosario - Lima 31 9 945 183 033 / 945 181 317 / 970 055 989

🔵 apozo@pys.pe / metrologia@pys.pe / ventas@pys.pe

Eler Pozo S.

Calibrado por Diego Palacios A Dpto. de Metrolog

"PROHIBIDA LA REPRODUCCIÓN TOTAL Y/O PARCIAL DE ESTE DOCUMENTO SIN LA AUTORIZACIÓN DE PYS EQUPOS E.I.R.L."

EQUIPOS

Anexo 50. Certificado de fabricación de accesorio para vigueta a flexión.

PERUTEST S.A.C.

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE FABRICACION ACCESORIO PARA VIGUETA DE FLEXION

MANUFACTURADO POR

PERUTEST S.A.C.

EQUIPOS DE LABORATORIO

Rodillos diámetro	38 mm
Rodillos largos	160 mm
Rodillos	4 unidades
Distancia entre rodillos Sup.	100 mm o 150 mm
Distancia entre rodillos Inf.	300 mm o 450 mm
Vigas de concreto	100 x 100 x 400 -500 mm
Vigas de concreto	150 x 150 x 750 mm
Ancho	310 mm
Serie	0118

El accesorio para vigueta de flexión para concreto ha sido Fabricado examinado y ensayado en nuestros talleres de acuerdo con las especificaciones de las normas:

Norma de ensayo: ASTM C78 / ASTM C-293

Lima, 13 de febrero del 2024

PERUTEST S.A.C.

ACEANDRO FLORES MINAYA
DEN TRONCO Y METROLOGÍA

Aprobado:

- 913 028 621 / 913 028 622
- **9** 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC

Anexo 51. Certificado de fabricación de accesorio para vigueta a flexión.

PERUTEST S.A.C.

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE FABRICACION CALENTADOR PARA TANQUE DE CURADO CON REGULADOR DE TEMPERATURA TERMOSTATO

MANUFACTURADO POR

PERUTEST S.A.C.

EQUIPOS DE LABORATORIO

Rango de medición	0 °C - 90 °C	
Tolerancia	± 1.5 °C	
Alimentación	220 VAC	
Potencia	2500 WATT	
Largo de resistencia	50 cm	
Tipo de sensor	TERMOCUPLA	
Tipo de controlador	TERMOSTATO ANALOGICO	
Serie	0114	

El equipo de calentador para tanque de curado con regulador de temperatura termostato ha sido Fabricado examinado y ensayado en nuestros talleres de acuerdo con las especificaciones de las normas:

Norma de ensayo: ASTM C 192, C511

Lima, 13 de febrero del 2024

PERUTEST S.A.C.

ALLIANDRO PLORES MINAYA
DER TECHNO Y METROLOGÍA

Aprobado:

- 913 028 621 / 913 028 622
- 913 028 623 / 913 028 624
- www.perutest.com.pe
- O Av. Chillon Lote 50B Comas Lima Lima
- ventas@perutest.com.pe
- O PERUTEST SAC