

# SÍLABO Mecánica Vectorial – Estática

| Código           | ASUC00574 |   | Carácter  | Obligatorio |  |
|------------------|-----------|---|-----------|-------------|--|
| Prerrequisito    | Física 1  |   |           |             |  |
| Créditos         | 4         | 4 |           |             |  |
| Horas            | Teóricas  | 2 | Prácticas | 4           |  |
| Año<br>académico | 2024      |   |           |             |  |

#### I. Introducción

Mecánica Vectorial - Estática es una asignatura obligatoria de facultad que se ubica en el cuarto período de las escuelas profesionales de Ingeniería Civil, Ingeniería Mecánica e Ingeniería Mecatrónica. Tiene como prerrequisito a Física 1; es prerrequisito de Mecánica Vectorial - Dinámica y Mecánica de Materiales 1 en las escuelas profesionales de Ingeniería Civil e Ingeniería Mecánica; y de Fundamentos de Robótica en la Escuela Profesional de Ingeniería Mecatrónica. Con esta asignatura se desarrolla en un nivel inicial la competencia transversal Conocimientos de Ingeniería. En virtud de lo anterior, su relevancia reside en brindar al estudiante un panorama general de la estática de partículas y de cuerpos rígidos.

Los contenidos generales que la asignatura desarrolla son los siguientes: Sistemas generales de fuerzas. Equilibrio de cuerpos rígidos. Centroides y centros de gravedad. Fuerzas distribuidas. Análisis de estructuras (armaduras, marcos, fuerzas internas y rozamiento). Momentos de inercia y desplazamientos pequeños, y Método del trabajo virtual.

## II. Resultado de aprendizaje de la asignatura

Al finalizar la asignatura, el estudiante será capaz de reconocer e interpretar los principios de la Estática para aplicarlos en problemas realistas en cuerpos rígidos y partículas.



## III. Organización de los aprendizajes

|                 |                                             | Duración                                                                       | 24    |  |  |  |  |
|-----------------|---------------------------------------------|--------------------------------------------------------------------------------|-------|--|--|--|--|
|                 | Estátic                                     | en horas                                                                       | 24    |  |  |  |  |
| Resultado de    | Al final                                    | Al finalizar la unidad, el estudiante será capaz de analizar el equilibrio de  |       |  |  |  |  |
| aprendizaje     | partícu                                     | partículas con la aplicación de las condiciones de equilibrio en la resolución |       |  |  |  |  |
| de la unidad:   | de prol                                     | de problemas de contexto real.                                                 |       |  |  |  |  |
| Ejes temáticos: | 1.                                          | Introducción. Fuerzas en el Plano.                                             |       |  |  |  |  |
|                 | 2. Equilibrio de una partícula en el plano. |                                                                                |       |  |  |  |  |
|                 | 3. Fuerzas en el espacio.                   |                                                                                |       |  |  |  |  |
|                 | 4.                                          | Equilibrio de una partícula en el esp                                          | acio. |  |  |  |  |
|                 |                                             |                                                                                |       |  |  |  |  |

| Equilibrio de cu                             | Unidad 2<br>verpos rígidos, centroides y centros de<br>gravedad                                                                                                                                                             | Duración<br>en horas | 24 |  |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----|--|--|
| Resultado de<br>aprendizaje<br>de la unidad: | Al finalizar la unidad, el estudiante será capaz de analizar el equilibrio de cuerpos rígidos y determinar la ubicación de centroides, en la resolución de problemas de contexto real.                                      |                      |    |  |  |
| Ejes temáticos:                              | <ol> <li>Cuerpos rígidos y sistemas equivalentes de fuerzas.</li> <li>Equilibrio de cuerpos rígidos en el plano.</li> <li>Equilibrio de cuerpos rígidos en el espacio.</li> <li>Centroides y centro de gravedad.</li> </ol> |                      |    |  |  |

|                                              | Unidad 3                                                                                                                                                                                                                                                                          | Duración | 24 |  |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|--|--|
| Fuerzas distribu                             | uidas, análisis de estructuras y fricción                                                                                                                                                                                                                                         | en horas | 24 |  |  |
| Resultado de<br>aprendizaje<br>de la unidad: | Al finalizar la unidad, el estudiante será capaz de aplicar las ecuaciones de equilibrio estático del cuerpo rígido a estructuras; así como, analizar las características de la fuerza de fricción, con reflexión crítica para enfrentar problemas que contrasten con su entorno. |          |    |  |  |
| Ejes temáticos:                              | <ol> <li>Fuerzas Distribuidas.</li> <li>Análisis estructural I. Armaduras.</li> <li>Análisis estructural II. Armazones y máqui</li> <li>Fricción.</li> </ol>                                                                                                                      | nas.     |    |  |  |

| Fuerzas en vi   | gas y cables, momentos de inercia y                                               | Duración        | 24               |  |  |  |
|-----------------|-----------------------------------------------------------------------------------|-----------------|------------------|--|--|--|
| n               | nétodo del trabajo virtual                                                        | en horas        | 24               |  |  |  |
|                 | Al finalizar la unidad, el estudiante será capaz de analizar las fuerzas internas |                 |                  |  |  |  |
| Resultado de    | en vigas y cables; asimismo, determinar los r                                     | momentos de ine | ercia de cuerpos |  |  |  |
| aprendizaje     | compuestos, y aplicar el método del trabajo virtual a la determinación de         |                 |                  |  |  |  |
| de la unidad:   | fuerzas en un cuerpo rígido, con actitud para enfrentar problemas que             |                 |                  |  |  |  |
|                 | contrasten con la realidad.                                                       |                 |                  |  |  |  |
|                 | 1. Fuerzas en Vigas                                                               |                 |                  |  |  |  |
|                 | 2. Fuerzas en Cables.                                                             |                 |                  |  |  |  |
| Ejes temáticos: | 3. Momento de Inercia.                                                            |                 |                  |  |  |  |
|                 | 4. Método del trabajo virtual.                                                    |                 |                  |  |  |  |
|                 |                                                                                   |                 |                  |  |  |  |



## IV. Metodología

## a. Modalidad Presencial

La asignatura se desarrollará mediante el uso de las metodologías colaborativas:

- Aprendizaje colaborativo
- Flipped classroom
- Resolución de ejercicios y problemas
- Análisis y solución de casos y ejercicios

El docente utilizará estrategias de recojo de saberes previos como preguntas dirigidas hacia el logro del propósito de cada sesión y discusiones guiadas. Para la exposición de temas teóricos se utilizará el diálogo participativo con el uso permanente de los recursos del aula virtual. Los estudiantes desarrollarán estrategias de trabajo cooperativo para la resolución de ejercicios, problemas y casos en las clases prácticas.

#### b. Modalidad Semipresencial – Blended

La asignatura se desarrollará mediante el uso de metodologías colaborativas, antes y después de la sesión presencial, entre estas:

- Aprendizaje colaborativo
- Flipped classroom

Luego de las clases presenciales se desarrollarán las actividades virtuales que consisten en foros colaborativos, cuestionarios y productos académicos de resolución de problemas.

En las clases presenciales la exposición de temas teóricos utilizará el diálogo participativo, los estudiantes desarrollarán estrategias de trabajo cooperativo para la resolución de ejercicios, problemas y casos en las clases prácticas con la permanente asesoría del docente, luego, se usarán:

- Resolución de ejercicios y problemas
- Análisis y solución de casos y ejercicios



## V. Evaluación Modalidad Presencial

| Rubros                             | Unidad por<br>evaluar                                                           | Fecha                                          | Entregable/Instrumento                                                                     | Peso<br>Parcial | Peso<br>Total |  |
|------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------|---------------|--|
| Evaluación<br>de entrada           | Prerrequisito                                                                   | Primera<br>sesión                              | Evaluación individual teórico-<br>práctica / <b>Prueba de desarrollo</b>                   | 0               | 0%            |  |
|                                    | 1                                                                               | Semana<br>1-3                                  | Práctica calificada individual<br>teórico-práctica / <b>Prueba de</b><br><b>desarrollo</b> | 30 %            |               |  |
| Consolidad<br>o 1<br>C1            | 1                                                                               | Semana<br>4-5                                  | Ejercicios grupales de análisis de casos / <b>Rúbrica de evaluación</b>                    | 30 %            | 20 %          |  |
|                                    | 2                                                                               | Semana<br>6-7                                  | Evaluación individual teórico-<br>práctica / <b>Prueba de desarrollo</b>                   | 40 %            |               |  |
| Evaluación<br>parcial<br><b>EP</b> | 1 y 2                                                                           | Semana<br>8                                    | Evaluación individual teórico-<br>práctica / <b>Prueba de desarrollo</b>                   | 20              | 20%           |  |
| Consolidad<br>o 2<br>C2            | 3                                                                               | Semana<br>9-11                                 | Práctica calificada individual<br>teórico-práctica / <b>Prueba de</b><br><b>desarrollo</b> | 30 %            |               |  |
|                                    | 3                                                                               | Semana<br>12-13                                | Ejercicios grupales de análisis de casos / <b>Rúbrica de evaluación</b>                    | 30 %            | 20 %          |  |
|                                    | Semana Evaluación individual teórico-<br>práctica / <b>Prueba de desarrollo</b> | 40 %                                           |                                                                                            |                 |               |  |
| Evaluación<br>final<br><b>EF</b>   | Todas las<br>unidades                                                           | Semana<br>16                                   | Evaluación individual teórico-<br>práctica / <b>Prueba de desarrollo</b>                   | 40              | %             |  |
| Evaluación<br>sustitutoria *       | Todas las<br>unidades                                                           | Fecha<br>posterior a la<br>evaluación<br>final | Aplica                                                                                     |                 |               |  |

<sup>\*</sup> Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad semipresencial – Blended

| Rubros                             | Unidad por<br>evaluar | Fecha                                              | Entregable/Instrumento                                                                                                                  | Peso<br>parcial | Peso<br>Total |
|------------------------------------|-----------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|
| Evaluación de<br>entrada           | Prerrequisito         | Primera<br>sesión                                  | Evaluación individual teórico-práctica / <b>Prueba de desarrollo</b>                                                                    | 0%              |               |
|                                    |                       |                                                    | Actividades virtuales                                                                                                                   | 15 %            |               |
| Consolidado 1<br>C1                | 1                     | Semana<br>1-3                                      | Práctica individual teórico-práctica / Prueba de desarrollo Evaluación individual teórico-práctica de desarrollo / Prueba de desarrollo | 85 %            | 20 %          |
| Evaluación<br>parcial<br><b>EP</b> | 1 y 2                 | Semana<br>4                                        | Evaluación individual teórico-práctica de desarrollo / <b>Prueba de desarrollo</b>                                                      | 20 %            |               |
|                                    |                       |                                                    | Actividades virtuales                                                                                                                   | 15 %            |               |
| Consolidado 2<br>C2                | 3 y 4                 | Semana<br>5-7                                      | Análisis grupal de caso-informe/ <b>Rúbrica</b> de evaluación Práctica individual teórico-práctica / Prueba de desarrollo               | 85 %            | 20 %          |
| Evaluación<br>final<br><b>EF</b>   | Todas las<br>unidades | Semana<br>8                                        | Evaluación individual teórico-práctica / <b>Prueba de desarrollo</b>                                                                    | 40 %            |               |
| Evaluación<br>sustitutoria *       | Todas las<br>unidades | Fecha<br>posterior<br>a la<br>evaluac<br>ión final | Aplica                                                                                                                                  |                 |               |

<sup>\*</sup> Reemplaza la nota más baja obtenida en los rubros anteriores.



## Fórmula para obtener el promedio:

$$PF = C1 (20 \%) + EP (20 \%) + C2 (20 \%) + EF (40 \%)$$

## VI. Bibliografía

#### Básica

Beer, F., Johnston, E., Cornwell, P. y Self, B. (2021). Mecánica vectorial para ingenieros. Estática. (12.a ed.). McGraw-Hill. https://bit.ly/3DnHvze

## Complementaria:

Hibbeler, R. (2016). Ingeniería Mecánica. Estática. 14º ed. México D. F., México: Pearson.

Meriam, J., & Kraige, W. (2012). Mecánica para ingenieros. Estática. 7ª ed. México D. F., México: McGraw Hill.

## VII. Recursos digitales:

- Liebherr, J. (2015). Fuerzas y Vectores. Equilibrio de la Partícula. Monografía. Recuperado de <a href="http://assets.mheducation.es/bcv/guide/capitulo/8448146700.pdf">http://assets.mheducation.es/bcv/guide/capitulo/8448146700.pdf</a> [Consulta: 10/02/2019]. Disponible en Web: <a href="http://mecfunnet.faii.etsii.upm.es/http://www.sc.ehu.es/sbweb/">http://www.sc.ehu.es/sbweb/</a>
- Bedford, A., & Fowler, H. (2013). *Mecánica para ingeniería*. *Estática*. Recuperado de <a href="http://www.fiuxy.net/ebooks">http://www.fiuxy.net/ebooks</a> [Consulta: 10/02/2019]. Disponible en Web: <a href="http://www.fiuxy.net/ebooks-gratis/3743427-mecanica-para-ingenieria-estatica-5ta-edicion-anthony-bedford-y-wallace-fowler.html">http://www.fiuxy.net/ebooks-gratis/3743427-mecanica-para-ingenieria-estatica-5ta-edicion-anthony-bedford-y-wallace-fowler.html</a>
- Pytel, J., & Kiusalaas, v. (2014) Ingeniería Mecánica Estática. [Consulta: 10/02/2019].

  Recuperado de:

  <a href="https://issuu.com/cengagelatam/docs/ingenieria\_mecanica\_estatica\_andrew\_pytel">https://issuu.com/cengagelatam/docs/ingenieria\_mecanica\_estatica\_andrew\_pytel</a>