

Sistemas Hidráulicos y Neumáticos

Guías de Laboratorio

Visión

Ser una de las 10 mejores universidades privadas del Perú al año 2020, reconocidos por nuestra excelencia académica y vocación de servicio, líderes en formación integral, con perspectiva global; promoviendo la competitividad del país.

Misión

Somos una universidad privada, innovadora y comprometida con el desarrollo del Perú, que se dedica a formar personas competentes, íntegras y emprendedoras, con visión internacional; para que se conviertan en ciudadanos responsables e impulsen el desarrollo de sus comunidades, impartiendo experiencias de aprendizaje vivificantes e inspiradoras; y generando una alta valoración mutua entre todos los grupos de interés.

Índice

VISIÓN	2
MISIÓN	2
ÍNDICE	3
APLICACIONES DE LOS SISTEMAS HIDRÁULICOS	4
APLICACIONES DE LOS SISTEMAS HIDRÁULICOS	6
GENERACIÓN DE CAUDAL Y PRESIÓN EN UN SISTEMA HIDRÁULICO	8
REPRESENTACIÓN DE CIRCUITO HIDRÁULICO BÁSICO	10
COMPONENTES DE CIRCUITOS BÁSICOS Y SECUENCIALES	12
COMPONENTES DE CIRCUITOS ELECTROHIDRÁULICOS	14
CIRCUITOS ELECTROHIDRÁULICOS	16
CIRCUITOS ELECTROHIDRÁULICOS SECUENCIALES	18
VENTAJAS Y DESVENTAJAS DE LA NEUMÁTICA	20
GENERACIÓN DEL AIRE COMPRIMIDO	22
UNIDADES DE CONTROL Y MANDO	24
REPRESENTACIÓN DE CIRCUITO NEUMÁTICO BÁSICO	26
COMPONENTES DE CIRCUITOS BÁSICOS Y SECUENCIALES	28
COMPONENTES DE CIRCUITOS ELECTRONEUMÁTICOS	30
CIRCUITOS ELECTRONEUMÁTICOS	32
CIRCUITOS ELECTRONEUMÁTICOS SECUENCIALES	34

Guía de práctica nº 1:

Guía de Práctica de Laboratorio de Sistemas Hidráulicos y **Neumáticos**

APLICACIONES DE LOS SISTEMAS HIDRÁULICOS

Sección	:998	Apellidos :
		Nombres :
Docente	: ERCILIOGARAY QUINTANA	Fecha : 17/03/2017 Duración: 90 min

Instrucciones: Revisar el material de clase y debatir con sus compañeros de grupo sobre la aplicaciones de los sistemas hidráulicos, luego completar la guía de práctica.

1. Tema:

Aplicaciones de los Sistemas Hidráulicos

2. Propósito/objetivo/logro/hipótesis:

Identificar las aplicaciones de los sistemas hidráulicos, reconocer las ventajas y desventajas de la Oleohidráulica, realizar la comparación con la neumática.

3. Equipos y materiales a utilizar:

- Módulo de hidráulica y electrohidráulica del laboratorio
- Material de enseñanza presentado por el docente.

4. Notas de seguridad:

El estudiante debe contar con su equipo de protección personal básico (mameluco, zapatos de seguridad, lente de protección, guante).

5. Procedimiento experimental:

- Los estudiantes agrupados expresarán sus experiencias de algunas aplicaciones de la hidráulica que haya visto o haya tenido la oportunidad de trabajar.
- Los estudiantes irán reconociendo y expresando las ventajas de la oleohidráulica respecto de otros tipos de energía como la eléctrica, mecánica o neumática.
- Los estudiantes compararán la energía hidráulica con respecto de la energía neumática.

6. Observaciones:

Los estudiantes harán un resumen de:

- Aplicaciones de la hidráulica en la industria:
- Ventajas de la Oleohidráulica:
- Comparación de la hidráulica con la neumática:

7	Co	nc	luci	ior	DC.
	$ \circ$	116	IU3I	U	IES.

El estudiante p	oresentará 02	conclusiones,	resultado de	la sesión:
-----------------	---------------	---------------	--------------	------------

- Roldán Viloria, José (2010). Neumática, Hidráulica y Electricidad aplicada. ed. Praraninfo.
 Sperry, Vickers (2012). Manual de oleohidráulica industrial. Ed Blume.

Guía de práctica nº 1:

Guía de Práctica de Laboratorio de Sistemas Hidráulicos y **Neumáticos**

APLICACIONES DE LOS SISTEMAS HIDRÁULICOS

Sección	:998	Apellidos :
		Nombres :
Docente	: ERCILIOGARAY QUINTANA	Fecha : 17/03/2017 Duración: 90 min

Instrucciones: Revisar el material de clase y debatir con sus compañeros de grupo sobre la aplicaciones de los sistemas hidráulicos, luego completar la guía de práctica.

1. Tema:

Aplicaciones de los Sistemas Hidráulicos

2. Propósito/objetivo/logro/hipótesis:

Identificar las aplicaciones de los sistemas hidráulicos, reconocer las ventajas y desventajas de la Oleohidráulica, realizar la comparación con la neumática.

3. Equipos y materiales a utilizar:

- Módulo de hidráulica y electrohidráulica del laboratorio
- Material de enseñanza presentado por el docente.

4. Notas de seguridad:

El estudiante debe contar con su equipo de protección personal básico (mameluco, zapatos de seguridad, lente de protección, guante).

5. Procedimiento experimental:

- Los estudiantes agrupados expresarán sus experiencias de algunas aplicaciones de la hidráulica que haya visto o haya tenido la oportunidad de trabajar.
- Los estudiantes irán reconociendo y expresando las ventajas de la oleohidráulica respecto de otros tipos de energía como la eléctrica, mecánica o neumática.
- Los estudiantes compararán la energía hidráulica con respecto de la energía neumática.

6. Observaciones:

Los estudiantes harán un resumen de:

- Aplicaciones de la hidráulica en la industria:
- Ventajas de la Oleohidráulica:
- Comparación de la hidráulica con la neumática:

7	Col	اء	mei	on	00
,	L . C)			cari	

El estudiante presentará 02 conclusiones, resultado de la sesión:

- Roldán Viloria, José (2010). Neumática, Hidráulica y Electricidad aplicada. ed. Praraninfo.
 Sperry, Vickers (2012). Manual de oleohidráulica industrial. Ed Blume.

Guía de práctica nº 3:

Guía de Práctica de Laboratorio de Sistemas Hidráulicos y **Neumáticos**

GENERACIÓN DE CAUDAL Y PRESIÓN EN UN SISTEMA HIDRÁULICO.

Sección	:998	Apellidos :
		Nombres :
Docente	: ING. ERCILIOGARAY QUINTANA	Fecha : 31/03/2017 Duración: 90 min

Instrucciones: Revisar el material de clase y debatir con sus compañeros de grupo sobre la generación de caudal y presión en los sistemas hidráulicos, luego completar la guía de práctica.

Generación de caudal y presión en un sistema hidráulico.

2. Propósito/objetivo/logro/hipótesis:

Evaluar el concepto de caudal o flujo volumétrico. Distinguir el efecto de generación de presión para un flujo en movimiento.

3. Equipos y materiales a utilizar:

- Módulo de hidráulica y electrohidráulica del laboratorio
- Manómetro 0-100bar
- Material de enseñanza presentado por el docente.

4. Notas de seguridad:

El estudiante debe contar con su equipo de protección personal básico (mameluco, zapatos de seguridad, lente de protección, guante).

5. Procedimiento experimental:

- Los estudiantes reconocerán un sistema hidrostático.
- Instalarán el módulo de oleohidráulica y harán mediciones de presión. Instalarán el módulo de oleohidráulica y harán mediciones de caudal. Reconocerán e instalarán válvulas y actuadores.

6. Observaciones:

Los estudiantes harán un resumen de:

- Ley de continuidad.
- Caudal en una bomba o motor en régimen contínuo.
- Generación de presión.

7. Conclusiones:

El estudiante presentará un informe de generación de caudal y presión en un sistema hidráulico.

- Roldán Viloria, José (2010). Neumática, Hidráulica y Electricidad aplicada. ed. Praraninfo. Sperry, Vickers (2012). Manual de oleohidráulica industrial. Ed Blume.

Guía de práctica nº 4:

Guía de Práctica de Laboratorio de Sistemas Hidráulicos y **Neumáticos**

REPRESENTACIÓN DE CIRCUITO HIDRÁULICO BÁSICO

Sección :998	Apellidos:
	Nombres:
Docente : ING. ERCILIOGARAY QUINTANA	Fecha : 07/04/2017 Duración: 90 min

Instrucciones: Revisar el material de clase y debatir con sus compañeros de grupo sobre la aplicaciones de los sistemas hidráulicos, luego completar la guía de práctica.

1. Tema:

Representación de circuito hidráulico básico

2. Propósito/objetivo/logro/hipótesis:

Utilizar el Software Fluid Sim / Automation Studio para simular circuitos hidráulicos básicos.

3. Equipos y materiales a utilizar:

- Computadoras personales con el Software Fluid Sim / Automatión Studio
- Módulo de hidráulica y electrohidráulica del laboratorio
- Material de enseñanzá presentado por el docente.

4. Notas de seguridad:

El estudiante debe contar con su equipo de protección personal básico (mameluco, zapatos de seguridad, lente de protección, guante).

5. Procedimiento experimental:

- Los estudiantes se familiarizarán con el entorno del Software Fluid Sim 4.2, identificarán los componentes de un circuito hidráulico básico
- Los estudiantes simularán el gobierno de un cilindro de simple y doble efecto con válvulas controladas manualmente, harán el control de la velocidad y fuerza de los actuadores.
- Instalarán en el módulo de oleohidráulica los circuitos simulados previamente y harán el control de la velocidad y fuerza de los actuadores.

6. Observaciones:

El estudiante en forma individual presentará un informe de los circuitos desarrollados en clase y los circuitos propuestos por el docente.

7. Conclusiones:

Los estudiantes explicarán las aplicaciones que se le puede dar a los circuitos previamente desarrollados.

Referencias bibliográficas consultadas y/o enlaces recomendados

Roldán Viloria, José (2010). Neumática, Hidráulica y Electricidad aplicada. ed. Praraninfo.

Sperry, Vickers (2012). Manual de oleohidráulica industrial. Ed Blume.

Guía de práctica nº 5:

Guía de Práctica de Laboratorio de Sistemas Hidráulicos y **Neumáticos**

COMPONENTES DE CIRCUITOS BÁSICOS Y SECUENCIALES

Sección :998	Apellidos:
	Nombres:
Docente : ING. ERCILIOGARAY QUINTANA	Fecha : 21/04/2017 Duración: 90 min

Instrucciones: Revisar el material de clase y debatir con sus compañeros de grupo sobre la aplicaciones de los sistemas hidráulicos, luego completar la guía de práctica.

Tema:

Representación de circuito hidráulico secuencial

2. Propósito/objetivo/logro/hipótesis:

Utilizar el Software Fluid Sim 4.2 / Automation Studio para simular circuitos hidráulicos secuenciales.

Instalar en el módulo de hidráulica circuitos secuenciales.

3. Equipos y materiales a utilizar:

- Computadoras personales con el Software Fluid Sim 4.2 / Automatión Studio
- Módulo de hidráulica y electrohidráulica del laboratorio.

4. Notas de seguridad:

El estudiante debe contar con su equipo de protección personal básico (mameluco, zapatos de seguridad, lente de protección, guante).

5. Procedimiento experimental:

- Los estudiantes utilizaran el Software Fluid Sim 4.2, para simular circuitos secuenciales con
- dos o tres actuadores accionados con válvulas 4/2 y 4/3 gobernadas manualmente. Los estudiantes instalarán en el módulo de oleohidráulica los circuitos simulados previamente y verificarán el comportamiento de los actuadores.

6. Observaciones:

- El estudiante desarrollará los diagramas de espacio-fase, espacio-tiempo de las
- secuencias desarrolladas y propuestas por el docente. El estudiante en forma individual presentará un informe de los circuitos desarrollados en clase y los circuitos propuestos por el docente.

7. Conclusiones:

- Los estudiantes presentarán esquemas de máquinas o procesos de las aplicaciones de los circuitos desarrollados.
 Los estudiantes explicarán las aplicaciones que se le puede dar a los circuitos
- previamente desarrollados.

Referencias bibliográficas consultadas y/o enlaces recomendados

• Roldán Viloria, José (2010). Neumática, Hidráulica y Electricidad aplicada. ed. Praraninfo.

Sperry, Vickers (2012). Manual de oleohidráulica industrial. Ed

Guía de práctica nº 6:

Guía de Práctica de Laboratorio de Sistemas Hidráulicos y **Neumáticos**

COMPONENTES DE CIRCUITOS ELECTROHIDRÁULICOS

Sección :998	Apellidos:
	Nombres:
Docente : ING. ERCILIOGARAY QUINTANA	Fecha : 21/04/2017 Duración: 90 min

Instrucciones: Revisar el material de clase y debatir con sus compañeros de grupo sobre la aplicaciones de los sistemas hidráulicos, luego completar la guía de práctica.

1. Tema:

Componentes de un circuito electrohidráulico

2. Propósito/objetivo/logro/hipótesis:

Reconocer los componentes de un circuito de mando electrohidráulico.

Utilizar el Software Fluid Sim 4.2 / Automation Studio para simular circuitos electrohidráulicos básicos.

Instalar en el módulo de electrohidráulica los componentes de mando.

3. Equipos y materiales a utilizar:

- Computadoras personales con el Software Fluid Sim 4.2 / Automation Studio
- Módulo de hidráulica y electrohidráulica del laboratorio.
- Relés de contactos, temporizadores, presostatos, finales de carrera, sensores.

4. Notas de seguridad:

El estudiante debe contar con su equipo de protección personal básico (mameluco, zapatos de seguridad, lente de protección, guante).

5. Procedimiento experimental:

- Los estudiantes reconocerán, probarán e instalarán los componentes de los circuitos de mando electrohidráulicos.
- Los estudiantes utilizaran el Software Fluid Sim 4.2, para simular circuitos electrohidráulicos
- Los estudiantes instalarán en el módulo de electrohidráulica los circuitos de fuerza y mando utilizando relés de contactos, temporizadores, presostatos, finales de carrera, sensores.

6. Observaciones:

- El estudiante desarrollará los diagramas de espacio-fase, espacio-tiempo y diagrama de mando de las secuencias desarrolladas y propuestas por el docente.
- El estudiante en forma individual presentará un informe de los circuitos desarrollados en clase y los circuitos propuestos por el docente.

7. Conclusiones:

- Los estudiantes presentarán un resumen del principio de funcionamiento y las aplicaciones de los captadores de señal.
- Los estudiantes explicarán las aplicaciones que se le puede dar a los circuitos previamente desarrollados.

- Roldán Viloria, José (2010). Neumática, Hidráulica y Electricidad aplicada. ed. Praraninfo.
- Sperry, Vickers (2012). Manual de oleohidráulica industrial. Ed Blume.

Guía de práctica nº 7:

Guía de Práctica de Laboratorio de Sistemas Hidráulicos y **Neumáticos**

CIRCUITOS ELECTROHIDRÁULICOS

Sección	:998	Apellidos:
		Nombres :
Docente	: ING. ERCILIOGARAY QUINTANA	Fecha : 28/04/2017 Duración: 90 min

Instrucciones: Revisar el material de clase y debatir con sus compañeros de grupo sobre la aplicaciones de los sistemas hidráulicos, luego completar la guía de práctica.

1. Tema:

Circuitos electrohidráulicos.

2. Propósito/objetivo/logro/hipótesis:

Con la ayuda del Software Fluid Sim 4.2 / Automation Studio Desarrollar circuitos de mando electrohidráulicos básicos. Gobernar actuadores de simple y doble efecto. Hacer control de fuerza y velocidad de los actuadores.

Instalar en el módulo de electrohidráulica los componentes del circuito de mando y fuerza.

3. Equipos y materiales a utilizar:

- Computadoras personales con el Software Fluid Sim 4.2 / Automation Studio
- Módulo de hidráulica y electrohidráulica del laboratorio.
- Relés de contactos, temporizadores, presostatos, finales de carrera, sensores, pulsadores, conectores eléctricos.
- Multímetro digital

4. Notas de seguridad:

El estudiante debe utilizar su equipo de protección personal básico (mameluco, zapatos de seguridad, lente de protección, guante de badana).

5. Procedimiento experimental:

En base al diagrama de movimientos propuesto:

- Los estudiantes utilizaran el Software Fluid Sim 4.2, para simular circuitos electrohidráulicos propuestos.
- Los estudiantes reconocerán, probarán e instalarán los componentes necesarios de los circuitos de mando electrohidráulicos.
- Los estudiantes instalarán en el módulo de electrohidráulica los circuitos de fuerza y mando utilizando relés de contactos, temporizadores, presostatos, finales de carrera, sensores.

6. Observaciones:

El estudiante en forma individual presentará un informe de los circuitos desarrollados en clase y los circuitos propuestos por el docente.

7. Conclusiones:

Los estudiantes explicarán el principio de funcionamiento y las ventajas de los sensores.

- Roldán Viloria, José (2010). Neumática, Hidráulica y Electricidad aplicada. ed. Praraninfo.
- Sperry, Vickers (2012). Manual de oleohidráulica industrial. Ed Blume.

Guía de práctica nº 8:

Guía de Práctica de Laboratorio de Sistemas Hidráulicos y **Neumáticos**

CIRCUITOS ELECTROHIDRÁULICOS SECUENCIALES

Sección :998	Apellidos :
	Nombres:
Docente : ING. ERCILIOGARAY QUINTANA	Fecha : 05/05/2017 Duración: 90 min

Instrucciones: Revisar el material de clase y debatir con sus compañeros de grupo sobre la aplicaciones de los sistemas hidráulicos, luego completar la guía de práctica.

Tema:

Circuitos electrohidráulicos secuenciales.

2. Propósito/objetivo/logro/hipótesis:

Con la ayuda del Software Fluid Sim 4.2 desarrollar circuitos de mando electrohidráulicos secuenciales con dos o más actuadores.

Instalar en el módulo de electrohidráulica los componentes del circuito de mando y fuerza de un circuito secuencial simple y compuesto.

3. Equipos y materiales a utilizar:

- Computadoras personales con el Software Fluid Sim 4.2 Hidrulic.
- Módulo de electrohidráulica del laboratorio.
- Cilindros de simple y doble efecto, electroválvulas 4/2 y 4/3 monoestables y biestables, relés de contactos, temporizadores, presostatos, finales de carrera, sensores, pulsadores, conectores eléctricos, mangueras hidráulicas con enchufe rápido.
- Multímetro digital.

4. Notas de seguridad:

El estudiante debe utilizar su equipo de protección personal básico (mameluco, zapatos de seguridad, lente de protección, guante de badana).

5. Procedimiento experimental:

En base al diagrama de movimientos propuesto:

- Los estudiantes con ayuda del Software Fluid Sim 4.2 desarrollarán los circuitos hidráulico y eléctrico secuenciales simples y compuestos de dos o más actuadores.
- Los estudiantes instalarán en el módulo de electrohidráulica los circuitos de fuerza y mando utilizando relés de contactos, temporizadores, presostatos, finales de carrera, sensores.

6. Observaciones:

Los estudiantes deberán estar conscientes de la importancia de la fuerza que se puede desarrollar con la hidráulica y los riesgos que se pueden correr al manipular presiones altas.

7. Conclusiones:

Los estudiantes en forma individual plantearán máquinas o procesos que permitan transformar los materiales, utilizando la electrohidráulica. (Presentarán un bosquejo de la máquina o proceso propuesto, el circuito electrohidráulico y los cálculos del diseño del proyecto)

- Roldán Viloria, José (2010). Neumática, Hidráulica y Electricidad aplicada. ed. Praraninfo.
- Sperry, Vickers (2012). Manual de oleohidráulica industrial. Ed Blume.

Guía de práctica nº 9:

Guía de Práctica de Laboratorio de Sistemas Hidráulicos y **Neumáticos**

VENTAJAS Y DESVENTAJAS DE LA NEUMÁTICA

Sección	:998	Apellidos :
		Nombres:
Docente	: ING. ERCILIOGARAY QUINTANA	Fecha : 19/05/2017 Duración: 90 min

Instrucciones: Revisar el material de clase y debatir con sus compañeros de grupo sobre la aplicaciones de los sistemas hidráulicos, luego completar la guía de práctica.

1. Tema:

Ventajas y desventajas de la Neumática

2. Propósito/objetivo/logro/hipótesis:

Identificar las principales ventajas de la aplicación de la neumática en la industria

3. Equipos y materiales a utilizar:

- Presentaciones de la aplicación de la neumática en la industria
- Componentes de un módulo de neumática.
- Material de enseñanza presentado por el docente.

4. Notas de seguridad:

El estudiante debe contar con su equipo de protección personal básico (mameluco, zapatos de seguridad, lente de protección, quante).

5. Procedimiento experimental:

- Los estudiantes reconocen las ventajas y desventajas de la neumática.
- El docente expone sobre las magnitudes fundamentales usadas en neumática.
- Los estudiantes agrupados participan reconociendo las características del aire. Los estudiantes reconocen los cambios de estado del aire.
- Los estudiantes aplican las leyes de los gases.
- El docente explica sobre volumen normal del aire.

6. Observaciones:

Los estudiantes harán una retroalimentación sobre las ventajas y desventajas del aire comprimido, las magnitudes fundamentales utilizadas, y las aplicaciones industriales de la Neumática.

7. Conclusiones:

El estudiante presentará un informe de los fundamentos de la Neumática y las leyes que rigen los gases.

Referencias bibliográficas consultadas y/o enlaces recomendados

Roldán Viloria, José (2010). Neumática, Hidráulica y Electricidad aplicada. ed. Praraninfo.

Sperry, Vickers (2012). Manual de oleohidráulica industrial. Ed

Guía de práctica nº 10:

Guía de Práctica de Laboratorio de Sistemas Hidráulicos y **Neumáticos**

GENERACIÓN DEL AIRE COMPRIMIDO

Sección	:998	Apellidos:
		Nombres:
Docente	: ING. ERCILIOGARAY QUINTANA	Fecha : 26/05/2017 Duración: 90 min

Instrucciones: Revisar el material de clase y debatir con sus compañeros de grupo sobre la aplicaciones de los sistemas hidráulicos, luego completar la guía de práctica.

Generación del aire comprimido

2. Propósito/objetivo/logro/hipótesis:

Reconocer y las partes del compresor de aire.

Operar y regular el compresor.

3. Equipos y materiales a utilizar:

- Compresores de aire (Compresor de pistón, Compresor de diafragma, Compresor de paletas, Compresor de tornillo, Compresor de Ióbulos, Turbo compresor axial, Turbo compresor radial)
- Juego de llaves mixtas mm.
- Juego de destornilladores estrella y planos
- Multímetro digital.

4. Notas de seguridad:

El estudiante debe contar con su equipo de protección personal básico (mameluco, zapatos de seguridad, lente de protección, guante).

5. Procedimiento experimental:

- Los estudiantes aprenden el principio de la generación del aire comprimido.
- Exposición de los distintos tipos de compresores que se utilizan en la industria
- Reconocimiento de las partes de un compresor.
- Identificación de cada componente del compresor.
- Pruebas de funcionamiento y regulación de compresores

6. Observaciones:

Recomendaciones sobre la utilización del compresor.

7. Conclusiones:

Los estudiantes presentarán un informe sobre la selección de compresores para la generación de aire comprimido.

- Roldán Viloria, José (2010). Neumática, Hidráulica y Electricidad aplicada. ed. Praraninfo.
- Sperry, Vickers (2012). Manual de oleohidráulica industrial. Ed Blume.

Guía de práctica nº 11:

Guía de Práctica de Laboratorio de Sistemas Hidráulicos y **Neumáticos**

UNIDADES DE CONTROL Y MANDO

Sección :998	Apellidos:
	Nombres:
Docente : ING. ERCILIOGARAY QUINTANA	Fecha : 26/05/2017 Duración: 90 min

Instrucciones: Revisar el material de clase y debatir con sus compañeros de grupo sobre la aplicaciones de los sistemas hidráulicos, luego completar la guía de práctica.

1. Tema:

Unidades de control y mando

2. Propósito/objetivo/logro/hipótesis:

Reconocer e instalar válvulas utilizadas en los circuitos neumáticos.

3. Equipos y materiales a utilizar:

- Módulo de neumática.
- Unidad de mantenimiento
- Válvulas distribuidoras
- Tipos de válvulas y características
- Válvulas de control de caudal
- Válvulas lógicas
- Válvulas temporizadoras
- Mangueras neumáticas

4. Notas de seguridad:

El estudiante debe contar con su equipo de protección personal básico (mameluco, zapatos de seguridad, lente de protección, guante).

5. Procedimiento experimental:

- El docente realizará la fundamentación del funcionamiento de las unidades de control y
- Principio de funcionamiento de las válvulas direccionales, clasificación y utilización.
- Reconocimiento y utilización de: Válvulas de control de caudal, Válvulas lógicas Válvulas temporizadoras

6. Observaciones:

Gestión Curricular

Las velocidades que pueden alcanzar los actuadores neumáticos pueden llegar a 1 m/s, lo cual indica que la respuesta de estos es muy rápida, por tanto pueden ser muy útiles e insustituible en algunas aplicaciones.

7. Conclusiones:

Los estudiantes presentaran un Informe del desarrollo de las prácticas de instalación y regulación de válvulas distribuidoras, válvulas de control de caudal, válvulas lógicas y válvulas temporizadoras.

Referencias bibliográficas consultadas y/o enlaces recomendados

Roldán Viloria, José (2010). Neumática, Hidráulica y Electricidad aplicada. ed. Praraninfo.

Sperry, Vickers (2012). Manual de oleohidráulica

Guía de práctica nº 12:

Guía de Práctica de Laboratorio de Sistemas Hidráulicos y **Neumáticos**

REPRESENTACIÓN DE CIRCUITO NEUMÁTICO BÁSICO

Sección :998	Apellidos:
	Nombres :
Docente : ING. ERCILIOGARAY QUINTANA	Fecha : 02/06/2017 Duración: 90 min

Instrucciones: Revisar el material de clase y debatir con sus compañeros de grupo sobre la aplicaciones de los sistemas hidráulicos, luego completar la guía de práctica.

Representación de circuito neumático básico

2. Propósito/objetivo/logro/hipótesis:

Utilizar el Software Fluid Sim 4.2 Neumatic para simular circuitos hidráulicos básicos...

3. Equipos y materiales a utilizar:

- Computadoras personales con el Software Fluid Sim 4.2
- Módulo de neumática.
- Material de enseñanza presentado por el docente.

4. Notas de seguridad:

El estudiante debe contar con su equipo de protección personal básico (mameluco, zapatos de seguridad, lente de protección, guante).

5. Procedimiento experimental:

- Los estudiantes se familiarizarán con el entorno del Software Fluid Sim 4.2, identificarán los componentes de un circuito neumático básico
- Los estudiantes simularán el gobierno de un cilindro de simple y doble efecto con válvulas controladas manualmente, harán el control de la velocidad y fuerza de los actuadores.
- Instalarán en el módulo de neumática los circuitos simulados previamente y harán el control de la velocidad y fuerza de los actuadores.

6. Observaciones:

estudiante en forma individual presentará un informe de los circuitos desarrollados en clase y los circuitos propuestos por el docente.

7. Conclusiones:

Los estudiantes explicarán las aplicaciones que se le puede dar a los circuitos previamente desarrollados.

- Roldán Viloria, José (2010). Neumática, Hidráulica y Electricidad aplicada. ed. Praraninfo. Sperry, Vickers (2012). Manual de oleohidráulica industrial. Ed Blume.

Guía de práctica nº 13:

Guía de Práctica de Laboratorio de Sistemas Hidráulicos y **Neumáticos**

COMPONENTES DE CIRCUITOS BÁSICOS Y SECUENCIALES

Sección	:998	Apellidos :
		Nombres :
Docente	: ING. ERCILIOGARAY QUINTANA	Fecha : 09/06/2017 Duración: 90 min

Instrucciones: Revisar el material de clase y debatir con sus compañeros de grupo sobre la aplicaciones de los sistemas hidráulicos, luego completar la guía de práctica.

Representación de circuito neumático secuencial

2. Propósito/objetivo/logro/hipótesis:

Utilizar el Software Fluid Sim 4.2 Neumatic para simular circuitos neumáticos secuenciales. Instalar en el módulo de hidráulica circuitos secuenciales.

3. Equipos y materiales a utilizar:

- Computadoras personales con el Software Fluid Sim 4.2
- Módulo de neumática.
- Material de enseñanza presentado por el docente.

4. Notas de seguridad:

El estudiante debe contar con su equipo de protección personal básico (mameluco, zapatos de seguridad, lente de protección, guante).

5. Procedimiento experimental:

- Los estudiantes utilizaran el Software Fluid Sim 4.2, para simular circuitos secuenciales con dos o tres actuadores accionados con válvulas 3/2 y 5/2 monoestables y biestables.
- Los estudiantes instalarán en el módulo de neumática los circuitos simulados previamente y verificarán el comportamiento de los actuadores.

6. Observaciones:

estudiante en forma individual presentará un informe de los circuitos desarrollados en clase y los circuitos propuestos por el docente.

7. Conclusiones:

Los estudiantes explicarán las aplicaciones que se le puede dar a los circuitos previamente desarrollados.

- Roldán Viloria, José (2010). Neumática, Hidráulica y Electricidad aplicada. ed. Praraninfo.
- Sperry, Vickers (2012). Manual de oleohidráulica industrial. Ed Blume.

Guía de práctica nº 14:

Guía de Práctica de Laboratorio de Sistemas Hidráulicos y **Neumáticos**

COMPONENTES DE CIRCUITOS ELECTRONEUMÁTICOS

Sección	:998	Apellidos :
		Nombres :
Docente	: ING. ERCILIOGARAY QUINTANA	Fecha : 16/06/2017 Duración: 90 min

Instrucciones: Revisar el material de clase y debatir con sus compañeros de grupo sobre la aplicaciones de los sistemas hidráulicos, luego completar la guía de práctica.

1. Tema:

Componentes de un circuito electroneumático

2. Propósito/objetivo/logro/hipótesis:

Reconocer los componentes de un circuito de mando electroneumático.

Utilizar el Software Fluid Sim 4.2 para simular circuitos electroneumáticos básicos.

Instalar en el módulo de electroneumática los componentes de mando.

3. Equipos y materiales a utilizar:

- Computadoras personales con el Software Fluid Sim 4.2
- Módulo de electroneumática.
- Relés de contactos, temporizadores, presostatos, finales de carrera, sensores.

4. Notas de seguridad:

El estudiante debe contar con su equipo de protección personal básico (mameluco, zapatos de seguridad, lente de protección, guante).

5. Procedimiento experimental:

- Los estudiantes reconocerán, probarán e instalarán los componentes de los circuitos de mando electroneumáticos.
- Los estudiantes utilizaran el Software Fluid Sim 4.2, para simular circuitos electroneumáticos básicos.
- Los estudiantes instalarán en el módulo de electroneumática los circuitos de fuerza y mando utilizando relés de contactos, temporizadores, finales de carrera, sensores.

6. Observaciones:

- El estudiante desarrollará los diagramas de espacio-fase, espacio-tiempo y diagrama de
- mando de las secuencias desarrolladas y propuestas por el docente. El estudiante en forma individual presentará un informe de los circuitos desarrollados en clase y los circuitos propuestos por el docente.

7. Conclusiones:

- Los estudiantes presentarán un resumen del principio de funcionamiento y las aplicaciones de los captadores de señal. Los estudiantes explicarán las aplicaciones que se le puede dar a los circuitos
- previamente desarrollados.

- Roldán Viloria, José (2010). Neumática, Hidráulica y Electricidad aplicada. ed. Praraninfo.
- Sperry, Vickers (2012). Manual de oleohidráulica industrial. Ed Blume.

Guía de práctica nº 15:

Guía de Práctica de Laboratorio de Sistemas Hidráulicos y **Neumáticos**

CIRCUITOS ELECTRONEUMÁTICOS

Sección :	:998	Apellidos:
		Nombres :
Docente :	: ING. ERCILIOGARAY QUINTANA	Fecha : 23/06/2017 Duración: 90 min

Instrucciones: Revisar el material de clase y debatir con sus compañeros de grupo sobre la aplicaciones de los sistemas hidráulicos, luego completar la guía de práctica.

1. Tema:

Circuitos electroneumáticos

2. Propósito/objetivo/logro/hipótesis:

Con la ayuda del Software Fluid Sim 4. 2 desarrollar circuitos de mando electroneumáticos básicos. Gobernar actuadores de simple y doble efecto.

Desarrollar control de fuerza y velocidad de los actuadores.

Instalar en el módulo de electroneumáticas los componentes del circuito de mando y fuerza.

3. Equipos y materiales a utilizar:

- Computadoras personales con el Software Fluid Sim 4.2
- Módulo de electroneumática
- Relés de contactos, temporizadores, presostatos, finales de carrera, sensores, pulsadores, conectores eléctricos.
- Multímetro digital

4. Notas de seguridad:

El estudiante debe contar con su equipo de protección personal básico (mameluco, zapatos de seguridad, lente de protección, guante).

5. Procedimiento experimental:

- Los estudiantes utilizaran el Software Fluid Sim 4.2, para simular circuitos electroneumáticos
- Los estudiantes reconocerán, probarán e instalarán los componentes necesarios de los circuitos de mando electroneumáticos.
- Los estudiantes instalarán en el módulo de electroneumática los circuitos de fuerza y

mando utilizando relés de contactos, temporizadores, presostatos, finales de carrera, sensores.

6. Observaciones:

El estudiante en forma individual presentará un informe de los circuitos desarrollados en clase y los circuitos propuestos por el docente.

7. Conclusiones:

Los estudiantes explicarán el principio de funcionamiento y las ventajas de los sensores.

Referencias bibliográficas consultadas y/o enlaces recomendados

Roldán Viloria, José (2010). Neumática, Hidráulica y Electricidad aplicada. ed. Praraninfo.

Sperry, Vickers (2012). Manual de oleohid

Guía de práctica nº 16:

Guía de Práctica de Laboratorio de Sistemas Hidráulicos y **Neumáticos**

CIRCUITOS ELECTRONEUMÁTICOS SECUENCIALES

Sección :998	Apellidos:
	Nombres:
Docente : ING. ERCILIOGARAY QUINTANA	Fecha : 23/06/2017 Duración: 90 min

Instrucciones: Revisar el material de clase y debatir con sus compañeros de grupo sobre la aplicaciones de los sistemas hidráulicos, luego completar la guía de práctica.

Circuitos electroneumáticos secuenciales.

2. Propósito/objetivo/logro/hipótesis:

Con la ayuda del Software Fluid Sim 4.2 desarrollar circuitos de mando electroneumáticos secuenciales con dos o más actuadores.

Instalar en el módulo de electroneumática los componentes del circuito de mando y fuerza de un circuito secuencial simple y compuesto.

3. Equipos y materiales a utilizar:

- Computadoras personales con el Software Fluid Sim 4.2.
- Módulo de electroneumática del laboratorio.
- Cilindros de simple y doble efecto, electroválvulas 3/2 y 5/2 monoestables y biestables, relés de contactos, temporizadores, finales de carrera, sensores, pulsadores, conectores eléctricos, mangueras neumáticas.
- Multímetro digital.

4. Notas de seguridad:

El estudiante debe contar con su equipo de protección personal básico (mameluco, zapatos de seguridad, lente de protección, guante).

5. Procedimiento experimental:

En base al diagrama de movimientos propuesto:

- Los estudiantes con ayuda del Software Fluid Sim 4.2 desarrollarán los circuitos neumático y eléctrico secuenciales simples y compuestos de dos o más actuadores.
- Los estudiantes instalarán en el módulo de electroneumática los circuitos de fuerza y mando utilizando relés de contactos, temporizadores, finales de carrera, sensores.

6. Observaciones:

Los estudiantes deberán interiorizarán que la neumática juntamente con la electricidad permite la automatización de procesos o máquinas.

7. Conclusiones:

Los estudiantes en forma individual plantearán máquinas o procesos que permitan transformar los materiales, utilizando la electroneumática. (Presentarán un bosquejo de la máquina o proceso propuesto, el circuito electrohidráulico y los cálculos del diseño del proyecto)

Referencias bibliográficas consultadas y/o enlaces recomendados

Roldán Viloria, José (2010). Neumática, Hidráulica y Electricidad aplicada. ed. Praraninfo.

Sperry, Vickers (2012). Manual de oleohidráulica industrial. E