

SÍLABO Física para Arquitectos

Código	ASUC01109		Carácter	Obligatorio
Prerrequisito	Matemática Superior			
Créditos	3			
Horas	Teóricas	2	Prácticas	2
Año académico	2024			

I. Introducción:

Física para Arquitectos es una asignatura obligatoria que se ubica en el segundo semestre de la carrera de Arquitectura. Tiene como prerrequisito la asignatura Matemática Superior. Es prerrequisito de Estructuras I y Acondicionamiento del Edificio I. Desarrolla a nivel inicial las competencias específicas Arquitectura y Materialidad, así como Arquitectura y Experimentación. En virtud de lo anterior, su relevancia reside en brindar al estudiante conocimientos básicos (teóricos y prácticos) de los principales fenómenos físicos.

Los contenidos generales que la asignatura desarrolla son los siguientes: Vectores; movimiento; fuerza; leyes del movimiento de Newton: equilibrio y movimiento; trabajo y energía, la deformación de los cuerpos sólidos por efecto de fuerzas externas, el movimiento oscilatorio y las ondas mecánicas como una forma de transmisión de energía, calor y termodinámica.

II. Resultado de aprendizaje:

Al finalizar la asignatura, el estudiante identifica y utiliza los fundamentos básicos de la física aplicada a la disciplina arquitectónica orientado a la solución de problemas de vectores, movimiento y equilibrio, tomando en cuenta la realidad concreta y la presencia de los fenómenos térmicos asociados al diseño arquitectónico.

III. Organización de los aprendizajes:

Unidad 1 Análisis vectorial		Duración en horas	16	
Resultado de aprendizaje:	Al finalizar la unidad, el estudiante reconoce la teoría básica de la física, a través del trabajo con cantidades físicas que tienen propiedades tanto numéricas como direccionales y resolviendo ejercicios y problemas, considerándolos como condicionantes en el proceso del diseño arquitectónico.			
Ejes temáticos:	 proceso del diseño arquitectónico. Sistema internacional de unidades Conversión de unidades Vectores: definición, elementos y notación Representación cartesiana de vectores en 2D Adición de vectores en 2D Representación cartesiana de vectores en 3D Adición de vectores en 3D Multiplicación entre vectores Producto escalar Producto vectorial 			

Unidad 2 Movimiento		Duración en horas	16	
Resultado de aprendizaje:	Al finalizar la unidad, el estudiante explica el movimiento, cantidades cinemáticas, movimiento rectilíneo, aplicados a la arquitectura.			
Ejes temáticos:	 arquitectura. Movimiento: definición, elementos del movimiento medidas del movimiento Velocidad instantánea Aceleración instantánea Movimiento con aceleración constante Caída Libre Movimiento en 2D Movimiento de proyectiles 			

Unidad 3 Leyes del movimiento de newton		Duración en horas	20	
Resultado de aprendizaje:	Al finalizar la unidad, el estudiante será capaz de determinarla influencia de la fuerza dentro del movimiento y su negación que viene a ser el equilibrio, aplicados a la arquitectura.			
Ejes temáticos:	 viene a ser el equilibrio, aplicados a la arquitectura. Fuerza: definición, fuerza resultante Leyes del movimiento de Newton Tipos de fuerzas Fuerzas de rozamiento estático Diagrama de cuerpo libre para una partícula Equilibrio de una partícula. (Primera condición de equilibrio) Diagrama de cuerpo libre para un cuerpo rígido Tipos de reacciones en cuerpos rígidos Torque o momento de una fuerza, respecto a un punto y a un eje Equilibrio de un cuerpo rígido. (Segunda condición de equilibrio) Segunda Ley de Newton. La fuerza gravitatoria y peso. Tercera Ley de Newton. Fuerzas de fricción Aplicación de la Segunda Ley de Newton 			

Unidad 4 CALOR Y TERMODINÁMICA		Duración en horas	12	
Resultado de aprendizaje:	Al finalizar la unidad, el estudiante comprende el concepto de temperatura y el fenómeno de transferencia de calor y la propiedad de los materiales como condicionantes para el diseño arquitectónico.			
Ejes temáticos:	 Temperatura Termómetros y escalas de tem Expansión Térmica Cantidad de calor Cambios de fase Trabajo al cambiar el volumer Energía interna y primera ley o Procesos termodinámicos Temperatura, escalas de med Calor, equilibrio térmico Transferencia de calor Máquinas de calor 	n de la termodinámi		

IV. Metodología:

Modalidad Presencial

Los contenidos propuestos se desarrollarán por unidades de aprendizaje que corresponden a una etapa del desarrollo de la asignatura en base a una metodología teórico – práctica, tomando como ejemplos **experiencias aplicadas a la carrera**, promoviendo el pensamiento reflexivo y el asesoramiento permanente de los proyectos.

El docente utiliza la estrategia de los saberes previos, así como prácticas dirigidas hacia el logro del propósito, discusión e indagación a través de la comprobación de las propiedades físicas en trabajos prácticos y estudio de casos. Los estudiantes realizan intercambio de ideas y experiencia; comunicados a través de la representación gráfica, la interacción con los estudiantes, la orientación de los trabajos prácticos y ejercicios planteados en clase en forma permanente a través del análisis de casos, tomados de referentes y dinámicas grupales, donde predomina el intercambio de ideas y experiencia, comunicados a través de un informe y aplicaciones de casos reales en el proceso del diseño arquitectónico.

V. Evaluación:

Modalidad Presencial

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso Parcial	Peso Total
Evaluación de entrada	Prerrequisito	Primera sesión	Prueba objetiva de opción múltiple que evalúa conocimientos previos	0 %	
Consolidado 1	1	Semana 1-4	Ficha de observación	40 %	20 %
C1	2	Semana 5-7	Prueba de desarrollo	60 %	20 /0
Evaluación parcial EP	1 y 2	Semana 8	Informe de prácticas Examen de desarrollo y/o virtual	20 %	
Consolidado 2 C2	3	Semana 9-12	Ficha de observación	40 %	20 %
	4	Semana 13-15	Prueba de desarrollo	60 %	20 %
Evaluación final EF	Todas las unidades	Semana 16	Examen de desarrollo	40 %	
Evaluación sustitutoria *	Todas las unidades	Fecha posterior a la evaluac ión final	Aplica		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Fórmula para obtener el promedio:

VI. Bibliografía

Básica:

Nottoli, H. (2015). Física aplicada a la arquitectura. Nobuko. https://cutt.ly/31PA8PE

Young, H., y Freedman, R. (2013). Sears y Zemansky Física universitaria (V.1). (13° ed.). Pearson. https://cutt.ly/n1PShA5

Serway, R., y Jevett, J. (2018). Física para ciencias e ingeniería. (10° ed.). Cengage Learning. https://cutt.ly/Z1PSmhb

Complementaria:

Alonso, M. & Finn, E. (2000). Física (Vol. 1). México D. F., México: Editorial F.E.I.S.A.

- Benson, H. (2000). Física universitaria (Vol. 1). México D. F., México: Editorial CECSA.
- Halliday, D. & Resnick, R. (2000). Física para estudiantes de ciencias e ingeniería (Vol. 1). México D. F., México: Editorial Continental.
- Tipler, P. & Mosca, G. (2006). Física para la ciencia y tecnología (Vol. 1). 5ª ed. Barcelona, España: Editorial Reverte.