

SÍLABO

Termodinámica 1

Código	ASUC01606	5	Carácter	Obligatorio
Prerrequisito	Física 2			
Créditos	4			
Horas	Teóricas	2	Prácticas	4
Año académico	2024			

I. Introducción

Termodinámica 1 es una asignatura obligatoria de facultad, que se ubica en el quinto periodo de la Escuela Profesional de Ingeniería Eléctrica y de Ingeniería Mecánica, y en el sexto periodo de la Escuela Profesional de Ingeniería Mecatrónica. Tiene como prerrequisito Física 2 y es prerrequisito de la asignatura Máquinas Térmicas de la carrera de Ingeniería Eléctrica y de Termodinámica 2 en Ingeniería Mecánica. Con esta asignatura se desarrolla en un nivel intermedio la competencia transversal Conocimientos de Ingeniería. En virtud de lo anterior, su relevancia reside en brindar al estudiante un panorama general de la Termodinámica.

Los contenidos generales que la asignatura desarrolla son los siguientes: definiciones fundamentales; energía; fluidos portadores de energía; la primera y la segunda ley de la termodinámica; aplicación de compresión de gases ideales.

II. Resultado de aprendizaje de la asignatura

Al finalizar la asignatura, el estudiante será capaz de reconocer e interpretar los principios de la termodinámica para aplicarlos en problemas reales.

III. Organización de los aprendizajes

	Duración	24			
Introducción	Introducción, definiciones fundamentales y sustancia pura				
	Al término de la primera unidad, el estudiante será capaz de				
Resultado de	desarrollar problemas complejos de termodinámica aplicados en la				
aprendizaje de	ingeniería de minas y eléctrica, utilizando los	conceptos	y leyes		
la unidad:	fundamentales de la termodinámica y de las sustancias puras,				
	propuestos en casos específicos.				
Introducción y definiciones básicas					
	Presión, volumen y temperatura				
Ejes temáticos:	• Sustancia pura (vapor de agua y refrig	jerantes, ta	blas de		
	propiedades)				
	Sustancia pura (aire con Z=1, gases ideales y re	eales)			

Energía, primero	Duración en horas	24	
Resultado de aprendizaje de la unidad:	Al finalizar la segunda unidad, el estudiante será principios de la primera y segunda ley propiedades y la energía, así como el calor y el procesos de sistemas cerrados y abiertos, den precisión y eficiencia en la solución de probletérmicas de la industria.	comprendie trabajo en d nostrando ex	ndo las iferentes kactitud,
Ejes temáticos:	 Calor y trabajo Primera ley de la termodinámica en sistemas c Primera ley de la termodinámica en sistemas a Segunda ley de la termodinámica y la máquin 	biertos	

La entropía y	Duración en horas	24		
Resultado de aprendizaje de la unidad:	Al finalizar la unidad, el estudiante será capaz de aplicar el principio de la entropía en los procesos isoentrópicos y en los ciclos de potencia considerando sus principales componentes y evaluando su eficiencia y potencia.			
Ejes temáticos:	 Entropía y cambios de entropía en líquidos, sól Procesos isotrópicos en turbina, compresor y bol Ciclo Carnot Ciclo Joule-Brayton (planta térmica con turbina) 	omba		

Aplicacione combus	Duración en horas	24	
Resultado de aprendizaje de la unidad:	Al finalizar la unidad el estudiante será capaz de leyes termodinámicas analizando y diseñando la motores de combustión interna y el ciclo de existentes en la industria nacional e internaciona el desarrollo del país, siguiendo los lineamien claridad y criterio.	os ciclos teó potencia a I y su implico	vapores ancia en
Ejes temáticos:	 Ciclo Otto Ciclo Diésel Ciclo Rankine (planta térmica con turbina a vo Ciclo Ericson y Stirling 	apor)	

IV. Metodología

Modalidad Presencial:

Las actividades se desarrollarán siguiendo una metodología activa centrada en las habilidades de los estudiantes.

Se utilizarán los siguientes métodos para el desarrollo del curso:

- Aprendizaje colaborativo
- Aprendizaje experiencial
- Flipped classroom
- Aprendizaje basado en proyectos
- Resolución de ejercicios y problemas
- Exposiciones (del profesor y de los estudiantes)

El uso de las TIC (diapositivas y videos) potenciará el desarrollo teórico-práctico creando un ambiente de aprendizaje colaborativo y participativo.

Modalidad A Distancia

Las actividades se desarrollarán siguiendo una metodología activa centrada en las habilidades de los estudiantes.

Se utilizarán los siguientes métodos para el desarrollo del curso:

- Aprendizaje colaborativo
- Aprendizaje basado en proyectos
- Resolución de ejercicios y problemas
- Exposiciones del profesor durante las videoclases

El uso de las TIC (diapositivas y videos) potenciará el desarrollo teórico-práctico creando un ambiente de aprendizaje colaborativo y participativo.

Modalidad Semipresencial

Las actividades se desarrollarán siguiendo una metodología activa centrada en las habilidades de los estudiantes.

Se utilizarán los siguientes métodos para el desarrollo del curso:

- Aprendizaje colaborativo
- Aprendizaje experiencial
- Aprendizaje basado en proyectos
- Resolución de ejercicios y problemas
- Exposiciones (del profesor y de los estudiantes)

El uso de las TIC (diapositivas y videos) potenciará el desarrollo teórico-práctico creando un ambiente de aprendizaje colaborativo y participativo.

V. Evaluación

Modalidad Presencial

Rubros	Unidad a evaluar	Fecha	Entregable/Instrumento	Peso parcial	Peso Total
Evaluación de entrada	Prerrequi sito	Primera sesión	Evaluación individual teórica / Prueba mixta	0	%
Consolidad o 1	1	Semana 3	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	50%	20 %
C1	2	Semana 6	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	50%	20 /6
Evaluación parcial EP	1 y 2	Semana 8	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	20 %	
Consolidad	3	Semana 11	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	40%	20.97
o 2 C2	4	Semana 14	Evaluación grupal de elaboración de proyectos / Rúbrica de evaluación	60%	20 %
Evaluación final EF	Todas las unidades	Semana 16	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	40 %	
Evalu	ıación sustitu	utoria	Aplica		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad A Distancia

Rubros	Unidad a evaluar	Fecha	Entregable/Instrumento	Peso Total
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación individual teórica / Prueba objetiva	0 %
Consolidado 1 C1	1	Semana 2	Evaluación individual teórico-práctica / Prueba mixta	20 %
Evaluación parcial EP	1 y 2	Semana 4	Evaluación individual teórico-práctica / Prueba de desarrollo	20 %
Consolidado 2 C2	3	Semana 6	Evaluación grupal de elaboración de proyectos / Rúbrica de evaluación	20 %
Evaluación final EF	Todas las unidades	Semana 8	Evaluación individual teórico-práctica / Prueba de desarrollo	40 %
Evaluación sustitutoria	Todas las unidades	Fecha posterior a evaluación final	Aplica	

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad Semipresencial - Virtual

Rubros	Unidad a evaluar	Fecha	Entregable/Instrumento	Peso Total
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación individual teórica / Prueba mixta	0 %
Consolidado 1	1	Semana 1-3	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	20 %
Evaluación parcial EP	1 y 2	Semana 4	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	20 %
Consolidado 2 C2	3	Semana 5-7	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	20 %
Evaluación final EF	Todas las unidades	Semana 8	Evaluación individual escrita teórico-práctica / Prueba de desarrollo	40 %
Evalua	ición sustitutoria	•	Aplica	

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Fórmula para obtener el promedio:

VI. Bibliografía

Básica

Cengel, Y. y Boles, M. (2019). Termodinámica (9.º ed.). McGraw-Hill. https://bit.ly/3Yv7hta

Complementaria:

Pooter, M. (2004). Termodinámica para ingenieros. 4° ed. España: McGraw-Hill Burgard, D. (1997). Introducción a la Termodinámica. 2ª ed. México: McGraw-Hill. Morán, M. & Shapiro, J. (2003). Termodinámica tomo I y II. 2ª ed. México: McGraw-Hill.

VII. Recursos digitales

García, G. (2016). *Termodinámica II*. Perú. Recuperado de: https://www.youtube.com/watch?v=n6d_UhOZVuA