

SÍLABO Mecánica de Materiales 1

Código	ASUC 0141	3	Carácter	Obligatorio	
Prerrequisito	Mecánica Vectorial - Estática				
Créditos	4				
Horas	Teóricas	2	Prácticas	4	
Año académico	2025				

I. Introducción

Mecánica de Materiales 1 es una asignatura obligatoria de facultad que se ubica en el quinto periodo académico de las escuelas profesionales de Ingeniería Civil y Mecánica, y que tiene como prerrequisito la asignatura Mecánica Vectorial - Estática. Es prerrequisito de la asignatura Mecánica de Materiales 2 en las carreras profesionales de Ingeniería Civil y Mecánica. Con esta asignatura se desarrolla en un nivel intermedio la competencia transversal Conocimientos de Ingeniería. Los contenidos generales que la asignatura desarrolla son los siguientes: esfuerzo: equilibrio de un cuerpo deformable. Propiedades mecánicas de los materiales. Tensión, compresión. Ley de Hooke. Módulo de elasticidad. Relación de Poisson. Carga axial. Torsión: transmisión de potencia, ángulo de torsión. Flexión. Cargas combinadas. Recipientes de presión de paredes delgadas: recipientes cilíndricos y esféricos. Transformación del esfuerzo: círculo de Mohr. Diseño de vigas y flechas.

II. Resultado de aprendizaje de la asignatura

Al finalizar la asignatura, el estudiante será capaz de reconocer y aplicar los fundamentos de esfuerzos y deformaciones en elementos que forman parte de estructuras y componentes de máquinas.

III. Organización de los aprendizajes

Organizacion de						
Esfuerzo. Prop	Duración en horas	24				
Resultado de	Al finalizar la unidad, el estudiante será capo	ız de identi	ficar los			
aprendizaje	esfuerzos axiales de los elementos estructurales, y sus propiedades					
de la unidad:	mecánicas para resolver problemas de aplicación.					
	1.Introducción. Esfuerzos en elementos estructura	les				
	2.Equilibrio de un cuerpo deformable					
Ejes temáticos:	3. Propiedades mecánicas de los materiales					
	4.Esfuerzo de tensión, de compresión y cortante.					

Ley de Hook. M	Unidad 2 ódulo de elasticidad. Relación de Poisson. Carga axial.	Duración en horas	24
Resultado de aprendizaje de la unidad:	Al finalizar la unidad, el estudiante será capa esfuerzos y deformaciones axiales de los elemen módulo de elasticidad y relación de Poisson para de aplicación.	tos estructur	ales y el
Ejes temáticos:	Ley de Hooke y el Módulo de elasticidad Relación de Poisson Carga axial Carga multiaxial		

	Unidad 3	Duración	24			
To	Torsión. Flexión. Cargas combinadas					
Resultado de	Al finalizar la unidad, el estudiante será capaz de aplicar el esfuerzo d					
aprendizaje	torsión, de flexión y cargas combinadas de elementos estructurales y					
de la unidad:	componentes de máquinas.	componentes de máquinas.				
	1.Torsión					
	2.Flexión Pura y selección de viga más económica					
Ejes temáticos:	3.Flexión de elementos hechos de varios materiales					
	4.Carga axial excéntrica en un plano de simetría					
	5.Flexión de elementos curvos.					

Recipientes de	Duración en horas	24			
Resultado de	Al finalizar la unidad, el estudiante será capaz de aplicar el cálculo de				
aprendizaje	diseño de esfuerzos en recipientes de presión, d	• ,	cnas ae		
de la unidad:	elementos estructurales y componentes de máquinas.				
Ejes temáticos:	1. Círculo de Mohr 2. Esfuerzos en recipientes cilíndricos y esféricos de pared delgada a presión 3. Esfuerzos cortantes en vigas y elementos de pared delgada 4. Uso de funciones de singularidad para determinar la pendiente y deflexión de una viga				

IV. Metodología

a. Modalidad Presencial:

El desarrollo de los contenidos de la asignatura se realizará utilizando el método basado en proyectos, aprendizaje basado en retos y resolución de problemas de aplicación, empleando materiales didácticos y colaborativos durante el desarrollo de las sesiones de aprendizaje, se utilizará el aprendizaje basado en retos; el trabajo digital se realizará mediante el uso del aula virtual para la interacción con los estudiantes.

b. Modalidad Semipresencial - Blended

El desarrollo de los contenidos de la asignatura se realizará utilizando metodologías colaborativas en la resolución de problemas de aplicación, empleando materiales didácticos colaborativos durante el desarrollo de las sesiones de aprendizaje; los trabajos colaborativos digitales se alcanzarán mediante la interacción de los estudiantes a través del uso del aula virtual.

V. Evaluación

Modalidad Presencial

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso parcial	Peso total
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación individual diagnóstica / Prueba de desarrollo	0 %	
Consolidado 1 C1	1	Semana 1-4	Evaluación individual teórico-práctica / Prueba de desarrollo	25%	
	1	Semana 5	Evaluación grupal primer avance de proyecto / Rúbrica de evaluación	50%	20 %
Ci	2	Semana 6-7	Evaluación individual teórico-práctica / Prueba de desarrollo	25%	
Evaluación parcial EP	1 y 2	Semana 8	Evaluación individual teórico-práctica / Prueba de desarrollo	20 %	
Consolidado 2 C2	3	Semana 9-12	Evaluación individual teórico-práctica / Prueba de desarrollo	25%	
	1, 2 y 3	Semana 13	Elaboración de un proyecto para identificar y aplicar herramientas tecnológicas, que permitan modelar el diseño de vigas (reto) / Rúbrica de evaluación	50%	20 %
	4	Semana 14-15	Evaluación individual teórico-práctica / Prueba de desarrollo	25%	
Evaluación final EF	Todas las unidades	Semana 16	Evaluación individual teórico-práctica / Prueba de desarrollo	40 %	
Evaluación sustitutoria*	Todas las unidades	Fecha posterior a la evaluació n final	Evaluación individual teórico-práctica / Prueba de desarrollo		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad Semipresencial – Blended

Rubros	Unidad a evaluar	Fecha	Entregable/Instrumento	Peso parcial	Peso total
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación individual diagnóstica / Prueba de desarrollo	0 %	
Consolidado	1 y 2	Semana	Actividades virtuales 1 y 2 / Cuestionario	15 %	20 %
C1	1 y Z	1-3	Evaluación individual teórico-práctica / Prueba de desarrollo	85 %	85 % 20 %
Evaluación parcial EP	1 y 2	Semana 4	Evaluación individual teórico-práctica / Prueba de desarrollo	20)%
Consolidado 2	3 y 4	Semana	Actividades virtuales 3 y 4 / Cuestionario	15 %	20 %
C2	3 y 4	5-7	Evaluación grupal proyecto concluido / Rúbrica de evaluación	85 %	20 /
Evaluación final EF	Todas las unidades	Semana 8	Evaluación individual teórico-práctica / Prueba de desarrollo	40 %	
Evaluación sustitutoria*	Todas las unidades	Fecha posterior a la evaluación final	Evaluación individual teórico-práctica / Prueba de desarrollo		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Fórmula para obtener el promedio:

VI. Bibliografía

Beer, F., Johnston, E., y Mazurek, D. (2021). Mecánica vectorial para ingenieros: estática. (12.a ed.). McGraw-Hill. https://bit.ly/3HrSLM1

Beer, F., Johnston, E., y Dewolf, J. (2021). Mecánica de materiales. (8.a ed.). McGraw-Hill. https://bit.ly/40n9mJK

Básica

Beer, F., Johnston, E., y Eisenberg, E. (2017). *Mecánica vectorial para ingenieros*: estática. (11.ª ed.). McGraw-Hill. https://bit.ly/3xDEBCi

Dewolf, J. (2017). Mecánica de materiales. (7.ª ed.). McGraw-Hill. https://bit.ly/31dMFxL

Complementaria:

Hibbeler, R. (2013). *Mecánica de materiales (8^Q ed.)*. México: Pearson Educación. Código. 620.1123/H51

VII. Recursos digitales

Gere, J. (2012). *Mecánica de materiales*. 7º ed. México: Editorial Cengage Learning Editores. Recuperado de:

[https://ia801601.us.archive.org/0/items/MecanicaDeMateriales7maEdicionJamesM.Gere FREELIBROS.ORG/Mec%C3%A1nica%20de%20materiales%2C%207ma%20Edici%C3%B3n%2 0-%20James%20M.%20Gere-FREELIBROS.ORG.pd]

Rivera, J. (2011). Diagramas de momento flector y cortante. Descartes - Ministerio de Educación, Cultura y Deporte de España. Descargado de:

[https://proyectodescartes.org/ingenieria/materiales_didacticos/estructuras-JS/index.htm]

Descartes (software libre especializado para DFC y DMF)