

SÍLABO

Balance de Materia y Energía

Código	ASUC01154	4	Carácter	Obligatorio
Prerrequisito	Física 2			
Créditos	5			
Horas	Teóricas	4	Prácticas	2
Año académico	2025-00			

I. Introducción

Balance de Materia y Energía es una asignatura obligatoria de especialidad que se ubica en el quinto periodo académico de la Escuela Profesional de Ingeniería Ambiental y tiene como prerrequisito a Física 2. Es prerrequisito de la asignatura de Calidad de Aire. Desarrolla a nivel intermedio la competencia transversal Conocimientos de Ingeniería; y a nivel inicial la competencia específica Uso de herramientas modernas. En virtud de lo anterior, su relevancia reside en desarrollar en el estudiante la capacidad de calcular consumos másicos y energéticos realizando balances de materia y energía en operaciones y procesos ambientales.

Los contenidos generales que la asignatura desarrolla son los siguientes: Introducción al balance de materia. Balance de materia en estado estacionario y sin reacción química. Balance de materia en estado estacionario con reacción química. Balance de energía. Fundamentos de termodinámica. Calor, trabajo, energía interna. Entalpía y primera Ley de la termodinámica. Entropía, segunda y tercera Ley de la termodinámica. Termoquímica y balance de energía con reacción química. Balance de materia en estado no estacionario.

II. Resultado de aprendizaje de la asignatura

Al finalizar la asignatura, el estudiante será capaz de calcular consumos másicos y energéticos realizando balances de materia y energía en operaciones y procesos ambientales.

III. Organización de los aprendizajes

	Duración	24			
Intro	Introducción al balance de materia				
Resultado de	Al finalizar la unidad, el estudiante será capaz	de calcular	el flujo		
aprendizaje de la	volumétrico y flujo másico de fluidos incluyendo	sus concentr	aciones		
unidad:	ambientales.				
	1. Áreas, volúmenes y densidad,				
	2. Presión y temperatura				
Eige tomáticos	3. Concentración y Composición porcentual				
Ejes temáticos:	4. Flujo y concentración				
	5. Concentraciones en agua, suelo, aire y gas				
	6. Flujo volumétrico y flujo másico				

	Duración	24			
Balanc	en horas	24			
Resultado de	Al finalizar la unidad, el estudiante será capaz d	e realizar el h	alance		
aprendizaje de la	·				
unidad:	de materia en sistemas ambientales que no teng	anreaccion	quimica		
	1. Ecuación general de balance de materia				
Ejes temáticos:	2. Ecuaciones derivadas y tipos de procesos				
	3. Balance de materia en sistemas de mezcla y separación				
	4. Balance de materia en operaciones simples y múltiples				

	Duración	24		
Balance	Balance de materia con reacción química			
Resultado de aprendizaje de la unidad:	Al finalizar la unidad, el estudiante será capaz de realizar el balance de materia en procesos que tengan reacciones químicas.			
Ejes temáticos:	 Fundamentos de estequiometria Reactivo limitante y exceso % conversión y sustancias impuras Balance de materia en procesos de combustión Balance de materia en procesos industriales con reacción química 			

	Duración	24			
Balance de ene	Balance de energía y balance en sistemas no estacionarios				
Resultado de	Al finalizar la unidad, el estudiante será capaz d	e realizar el b	alance		
aprendizaje de la	de energía en procesos ambientales y flujos ma	ásicos y volun	nétricos		
unidad:	en sistemas no estacionarios.				
	1. 1ra, 2da y 2ra Ley de la termodinámica				
Ejes temáticos:	2. Balance de energía mecánica				
	3. Termoquímica y balance de energía en reacciones químicas				
	4. Balance de materia en sistemas no estacionarios				

IV. Metodología

a. Modalidad Presencial

Las sesiones de la asignatura se desarrollarán con uso de la metodología activa en la resolución de ejercicios y problemas, propiciando el aprendizaje colaborativo dentro y fuera de aula. El docente utilizará conferencias magistrales que permitan comprender los temas de las sesiones de aprendizaje. Los estudiantes desarrollarán talleres de cálculo de resolución de problemas aplicados a la ingeniería ambiental. Al finalizar las sesiones los estudiantes resolverán ejercicios de control para verificar el logro del propósito. Los estudiantes construirán y emplearán equipos para prácticas experimentales en laboratorio y realizarán trabajos en campo como método experiencial de aprendizaje. Usarán apps móviles que facilite los cálculos necesarios que hagan de forma individual y grupal. Se utilizará la plataforma virtual de la universidad para la interacción docente-estudiante. Los estudiantes realizarán proyectos educativos que propicien la investigación bibliográfica y aplicación práctica de los fundamentos teóricos y afianzar las habilidades blandas.

b. Modalidad Semipresencial – Blended

Las sesiones de la asignatura se desarrollarán con uso de la metodología activa en la resolución de ejercicios y problemas, propiciando el aprendizaje colaborativo dentro y fuera de aula. El docente utilizará conferencias magistrales que permitan comprender los temas de las sesiones de aprendizaje. Los estudiantes desarrollarán talleres de cálculo de resolución de problemas aplicados a la ingeniería ambiental. Al finalizar las sesiones los estudiantes resolverán ejercicios de control para verificar el logro del propósito. Los estudiantes construirán y emplearán equipos para prácticas experimentales en laboratorio y realizarán trabajos en campo como método experiencial de aprendizaje. Usarán apps móviles que facilite los cálculos necesarios que hagan de forma individual y grupal. Se utilizará la plataforma virtual de la universidad para la interacción docente-estudiante. Los estudiantes realizarán proyectos educativos que propicien la investigación bibliográfica y aplicación práctica de los fundamentos teóricos y afianzar las habilidades blandas.

V. Evaluación

Modalidad Presencial

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso Parcial	Peso Total
Evaluación de entrada	Prerrequisito	Primera sesión	- Evaluación individual teórica / Prueba de desarrollo	0 %	
Consolidado	1	Semana 1-4	- Evaluación grupal de talleres y prácticas / Ficha de evaluación	40 %	20 %
c ₁	2	Semana 5-7	- Evaluación individual teórico-práctica / Prueba de desarrollo	60 %	
Evaluación parcial EP	1 y 2	Semana 8	Evaluación individual teórico-práctica / Prueba de desarrollo	20 %	
Consolidado 2 C2	3	Semana 9-12	Evaluación grupal de talleres y prácticas / Ficha de evaluación	40 %	20.97
	4	Semana 13-15	Evaluación individual teórico-práctica / Prueba de desarrollo	60 %	20 %
Evaluación final EF	Todas las unidades	Semana 16	Evaluación individual teórico-práctica / Prueba de desarrollo	40	%
Evaluación sustitutoria *	Todas las unidades	Fecha posterior a la evaluación final	Evaluación individual teórico-práctica / Prueba de desarrollo		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad Semipresencial -Blended

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso parcial	Peso total
Evaluación de entrada	Prerrequisito	Primera sesión	Evaluación individual teórica / Prueba de desarrollo	0 %	
Consolidado 1 C1	1	Semana 1-3	Actividades Virtuales Evaluación grupal de talleres y prácticas / Ficha de evaluación Evaluación individual teóricopráctica / Prueba de desarrollo	15 % 85 %	20 %
Evaluación parcial EP	1 y 2	Semana 4	Evaluación individual teórico- práctica / Prueba de desarrollo	20 %	%
Consolidado 2 C2	3	Semana 5-7	Actividades Virtuales Evaluación grupal de talleres y prácticas / Ficha de evaluación Evaluación individual teóricopráctica / Prueba de desarrollo	15 % 85 %	20 %
Evaluación final EF	Todas las unidades	Semana 8	Evaluación individual teórico- práctica / Prueba de desarrollo	40 %	%
Evaluación sustitutoria *	Todas las unidades	Fecha posterior a la evaluación final	Evaluación individual teórico- práctica / Prueba de desarrollo		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Fórmula para obtener el promedio:

$$PF = C1 (20 \%) + EP (20 \%) + C2 (20 \%) + EF (40 \%)$$

VI. Bibliografía

Básica

Monsalvo, R., y Romero, María. (2014). Balance de materia y energía: procesos industriales. Grupo Editorial Patria. https://bit.ly/3XU9I92

Complementaria:

- Felder, R. y Rousseau, R. (2008). *Principios Elementales de los Procesos Químicos.* 3° ed. México: Limusa Wiley.
- Ghasemm, N. y Henda, R. (2015). *Principles of Chemical Engineering Processes, Material And Energy Balances*. 2° ed. London: CRC Press Taylor & Francis Group.
- Nayef, G. y Redhouane, H. (2015). Principles of Chemical Engineering Processes: Material and Energy Balances. Florida, EEUU: CRC Press.

VII. Recursos digitales:

- Académica online. (2018). *Medición del flujo volumétrico*. Recuperado de: http://www.academiatesto.com.ar/cms/medicion-del-flujo-volumetrico
- Cedrón, J., Landa, V., Robles, J. (2011). Concentración y formas de expresarlo. Recuperado de:
 - http://corinto.pucp.edu.pe/quimicageneral/contenido/63-concentracion-y-formasde-expresarla.html
- Falconer, J. (2013). Material and Energy Balances. Educational Resources for chemical Engineering. Recuperado de:
 - http://www.learncheme.com/screencasts/mass-energy-balances
 - SIMAPRO. (Software de computadora).
 - Virtual Plant Complejo Ambiental. (Software de computadora).