

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería de Minas

Tesis

Influencia de la supervisión de las brocas de botónes para evaluar su vida útil en la Unidad Minera Colquijirca-Sociedad Minera El Brocal S.A.A.

Cristhian Yosser Huatuco Sovero

Para optar el Título Profesional de Ingeniero de Minas

Huancayo, 2019

Repositorio Institucional Continental Tesis digital

Obra protegida bajo la licencia de Creative Commons Atribución-NoComercial-SinDerivadas 2.5 Perú

AGRADECIMIENTO

Primero, agradezco a Dios Jehová, quien con su bendición me ha permitido llegar a este momento tan especial en mi vida.

Segundo, a mis padres Faustino Huatuco y Lourdes Sovero por brindarme una educación correcta, haciendo de mí un hombre de bien, lleno de buenos valores y modales.

De igual manera a mis hermanos por ser parte de inspiración en este proyecto, para así apoyarlos a seguir adelante en su educación profesional y crecer conjuntamente día a día.

Finalmente, a mi pareja Madeley Belleza por brindarme su apoyo incondicional, tiempo, paciencia y dedicación en el transcurso de la realización y culminación del presente proyecto. Pudiendo así lograr mis metas y objetivos trazados.

DEDICATORIA

A dios Jehová por guiar mi camino y protegerme en cada paso que voy dando en el transcurso de mi vida profesional y personal, asimismo a mis padres por su gran amor y apoyo incondicional que me han sabido brindar en todo momento.

ÍNDICE

ABST	RACT	12
INTRO	ODUCCIÓN	13
CAPÍ	TULO I: PLANTEAMIENTO DEL ESTUDIO	14
1.1.	Planteamiento del Problema	14
1.1.1.	Problema general	14
1.1.2.	Problemas específicos	14
1.2.	Objetivos	15
1.2.1.	Objetivo general	15
1.2.2.	Objetivos específicos	15
1.3.	Justificación	15
1.3.1.	Justificación metodológica	15
1.3.2.	Justificación práctica	15
1.4.	Hipótesis	16
1.4.1.	Hipótesis general	16
1.4.2.	Hipótesis específicas	16
1.5.	Identificación de Variables	16
1.5.1.	Variable independiente	16
1.5.2.	Variable dependiente	16
1.6.	Matriz de Operacionalización de Variables	17
CAPÍ	TULO II: MARCO TEÓRICO	18
2.1.	Antecedentes del Problema	18
2.2.	Bases Teóricas	19
2.2.1.	Principios de la perforación	19
2.2.2.	Sistemas de perforación	20
2.2.3.	Propiedades mecánicas de los aceros	21
2.2.4.	Evaluación del tipo de roca y macizo rocoso	21
2.2.5.	Características de las brocas empleadas en la U.M. Colquijirca	22
2.2.6.	Procedimiento para el cálculo de rendimiento de las brocas	30
2.2.7.	Parámetros para calcular precios unitarios (P.U.) del metro perfora	ado.
2.1.	Definición de Términos	31
2.2.	Generalidades de Mina	35
2.2.1.	Datos generales	35
CAPÍ	TULO III: METODOLOGÍA	38
3.1.	Métodos y Alcances de la Investigación	38

3.1.1.	Método general	38
3.1.2.	Tipo de investigación	38
3.1.3.	Nivel de investigación	38
3.2.	Diseño de Investigación	38
3.3.	Población y Muestra	38
3.3.1.	Población	38
3.3.2.	Muestra	39
3.4.	Técnicas e Instrumentos de Recolección de Datos	39
3.4.1.	Técnicas de recolección de datos	39
3.4.2.	Instrumentos de recolección de datos	39
CAPÍ	TULO IV: RESULTADOS Y DISCUSIÓN	40
4.1.	Análisis Enfocado al Afilado de Brocas	40
4.1.1.	Máquinas y equipos empleados para el afilado en la U.M. Colquijirca	40
4.1.2.	Procedimiento para tener un buen afilado	44
4.1.3.	Consideraciones para el buen afilado	47
4.1.4.	¿Por qué una broca debe de afilarse?	51
4.1.5.	¿Cuándo es buen afilado?	52
4.1.6.	Descarte de brocas	53
4.2.	Análisis enfocado al tipo de roca	56
4.2.1. broca	Pruebas realizadas para el cálculo de vida útil (rendimiento) de las s, antes y después del estudio	56
4.2.2.	Análisis del rendimiento de las brocas de ambas pruebas	95
4.2.3.	Recomendaciones para trabajar con el juego de brocas necesarias	96
4.3.	Análisis Enfocado a la Operatividad de los Equipos	98
4.3.1.	Equipos de perforación empleados en la U.M. Colquijirca	98
4.3.2.	Seguimiento de los equipos de perforación en la U.M. Colquijirca	99
4.4.	Análisis enfocado a otro tipo de supervisión complementaria 1	22
4.4.1.	Traslado adecuado de las brocas1	22
4.4.2.	Recepcionamiento de reportes1	23
4.4.3.	Corroboración de los datos de los reportes en el campo 1	25
4.4.4.	Transporte de las brocas con la camioneta (EPIROC)	26
4.4.5.	Marcado de las brocas1	27
4.4.6.	Engrase de las roscas de los hilos de las brocas1	28
4.4.7.	Cobro de remanentes1	28
4.5.	Discusión de Resultados	35
4.5.1.	Trabajos de supervisión realizados antes y después del estudio 1	35
4.5.2.	Metros perforados en la actualidad1	38

4.5.3.	Consumo de brocas	142
4.5.4.	Metro perforado vs consumo de brocas	145
4.5.5.	Costos de perforación	155
CONCL	USIONES	157
REFER	ENCIAS BIBLIOGRÁFICAS	159
ANEXO	S	161

ÍNDICE DE TABLAS

Tabla 1. Matriz operacional	17
Tabla 2. Brocas utilizadas en la UM Colquijirca	25
Tabla 3. Parámetros de influencia de las brocas	26
Tabla 4. Criterios de descarte de brocas	27
Tabla 5. Parámetros para calcular p.u. de la broca	31
Tabla 6. Medidas de muelas	42
Tabla 7. Medidas de copas de afilado	44
Tabla 8. Medidas de copas de devastado	44
Tabla 9.Parámetros de ángulo de afilado	48
Tabla 10. Criterios de descarte de brocas presentado en la Mina El Brocal-	
Colquijirca	
Tabla 11.Resultados de la vida útil antes del estudio	75
Tabla 12. Resultados de la vida útil después del estudio	94
Tabla 13. Análisis del rendimiento	
Tabla 14. Recomendación para solicitar el número de brocas necesarias	
Tabla 15 .Equipos de Perforaciónes Jrc-El Brocal	
Tabla 16. Cronograma de asistencias técnicas – El Brocal/Colquijirca	
Tabla 17. Parámetros de perforación del Jumbo 35	105
Tabla 18. Parámetros de perforación del jumbo 38	
Tabla 19. Parámetros de perforación del simba-26	
Tabla 20. Parámetros de perforación del simba-20	
Tabla 21. Parámetros de perforación del simba-18	
Tabla 22. Parámetros de perforación del simba-10	
Tabla 23. Fallas comunes de los equipos de perforación	120
Tabla 24. Detalles del acero de perforación	131
Tabla 25. Detalles del acero de perforación	
Tabla 26. Detalles del acero de perforación	133
Tabla 27. Trabajos de supervisión realizados antes y después del estudio	135
Tabla 28. Metros perforados (empernadores)	
Tabla 29. Metros perforados (jumbos)	
Tabla 30. Metros perforados de la columna t38	
Tabla 31. Metros perforados de la columna t45	
Tabla 30. Total de metros perforados de la columna (t45 y t38)	
Tabla 33. Resumen del total de metros perforados	
Tabla 34. Consumo de brocas por mes (empernadores)	142
Tabla 35. Consumo de brocas por mes (jumbos)	
Tabla 36. Consumo de brocas columna t-38	
Tabla 37. Consumo de brocas columna t-45	
Tabla 38. Consumo total de brocas de la columna t-45 y t-38	
Tabla 39. Resumen respecto al consumo de brocas	145
Tabla 40. Comparación de metros perforados vs consumo de brocas	
(empernadores)	
Tabla 41. Comparación de metros perforados vs consumo de brocas (taladro	
rimados)	147

Tabla 42.Comparación de metros perforados vs consumo de brocas (•
producción)	
Tabla 43. Comparación de metros perforados vs consumo de brocas rimados – t38)	•
Tabla 44. Comparación de metros perforados vs consumo de brocas producción – t38)	`
Tabla 45. Comparación de metros perforados vs consumo de brocas rimados – t45)	•
Tabla 46. Comparación de metros perforados vs consumo de brocas producción – t45)	`
Tabla 47. Comparación de metros perforados vs consumo de brocas rimados – t38 y t45)	`
Tabla 48. Comparación de metros perforados vs consumo de brocas producción – t38 y t45)	`
Tabla 49. Precio unitarios de JRC-El Brocal	155
Tabla 50. Valorización mensual de JRC-El Brocal, 2019	
Tabla 51. Columnas de perforación U.M. Colquijirca	162
Tabla 52. Plano de la mina nv-3960	165

ÍNDICE DE FIGURAS

Figura 1. Principios de la perforación	
Figura 2. Perforación top hammer	
Figura 3. Perforation down the hole	20
Figura 4. Perforación giratoria	
Figura 5. Pérdida del 30% de su tamaño	23
Figura 6. Desgaste de 1/3 del botón.	
Figura 7. Efecto contracono	
Figura 8. Piel de serpiente	24
Figura 9. Daños en los botones (Insertos)	24
Figura 10. Brocas de botones de perforación	
Figura 11. Barras de perforación	32
Figura 12. Acople de perforación.	33
Figura 13. Shank De Perforación.	
Figura 14. Afilado de brocas	
Figura 15. Copas de devastado	
Figura 16. Malla de perforación	
Figura 17. Ubicación geográfica de la U.M. Colquijirca	
Figura 18. Máquina afiladora Bq3	
Figura 19. Muelas de afilado	
Figura 20. Máquina Grind Matig Hg	
Figura 21. Copas de afilado y devastado	
Figura 22. Ángulo de inclinación	
Figura 23. Refrigeración para el afilado (agua)	
Figura 24. Desgaste prematuro de la muela (afilar sin agua)	
Figura 25. Centralización de la broca	
Figura 26. Deformación del inserto por centralización incorrecto	
Figura 27. Correcta centralización	
Figura 28. Fuerza de afilado (brazo)	
Figura 29. Achatamiento del inserto por demasiada fuerza	
Figura 30. Mal / buen afilado	
Figura 31. Formato de asistencia técnica	
Figura 32. Medición de las rpm.	
Figura 33. Baja presión de aire (3 bares).	
Figura 34. Desgaste del centralizador intermedio y delantero	
Figura 35. Medición de las rpm y temperatura de la columna	
Figura 36. Desgaste del centralizador intermedio	
Figura 37. Medición de las rpm y temperatura de la columna	
Figura 38. Perforación en paralelo (+)	110
Figura 39. Medición de las RPM y temperatura	110
Figura 40. Selector de brocas presenta fallas (no activa)	
Figura 41. Medición de las rpm y temperatura de la columna	
Figura 42. Perforación de chimenea slot-malla de perforación	
Figura 43. Perforación de taladros largos (+)	
Figura 44. Medición de las rpm y temperatura de la columna	
Figura 45. Realización de chimenea	
Figura 46. Medición de las rpm	
Figura 47. RPM muy bajo (133 rpm)	
Figura 48. Corrección de los rpm según el estándar	
rigara 70. Corrección de 103 ipin segun el estandar	110

Figura 49. Fallas comunes de los equipos de perforación	120
Figura 50. Maletas y cajas de transporte de brocas	122
Figura 51. Choque entre insertos	
Figura 52. Insetos quebrados por choque entre ellos	123
Figura 53. Brocas en el maletín	
Figura 54. Reporte de perforación-JRD / El Brocal	124
Figura 55. Reporte de perforación-Jrd / El brocal	
Figura 56. Medición en la labor_8832 y nivel 3952	125
Figura 57. Conteo de número de taladros en la labor_1713 y nivel 3986	
Figura 58. Medición de longitud en la labor_1342 y nivel 3952	126
Figura 59. Brocas afiladas en gran cantidad (antes)	126
Figura 60. Brocas afiladas en poca cantidad (ahora)	127
Figura 61. Brocas marcadas	127
Figura 62. Códigos de las brocas en los vales de salida	128
Figura 63. Engrase de brocas	128
Figura 64. Carrusel del Simba 20 con 8 barras t38-rd38-t38 5'	130
Figura 65. Barra t38-rd38-t38 5´ cortada	130
Figura 66. Barra rota a la altura de la rosca r32	132
Figura 67. Taladro tapado por la cantidad de carga, debido a la falta de	raspado
de pisode	133
Figura 68. Cuadro de remanentes junio 2019	134
Figura 69. Metros perforados totales (empernadores)	138
Figura 70. Metros perforados totales (jumbos)	
Figura 71. Total de metros perforados de la columna (t-45 y t-38)	141
Figura 72. Consumo de brocas por mes (empernadores)	
Figura 73. Consumo de brocas por mes (jumbos)	143
Figura 74. Consumo total de brocas de la columna t-45 y t-38	145
Figura 75. Comparación de metros perforados vs consumo de brocas	
(empernadores)	
Figura 76. Comparación de metros perforados vs consumo de brocas (t	
rimados)	
Figura 77. Comparación de metros perforados vs consumo de brocas (t	
producción)	148
Figura 78. Comparación de metros perforados vs consumo de brocas (t	
rimados – t38)	
Figura 79. Comparación de metros perforados vs consumo de brocas (t	
producción – t38)	150
Figura 80. Comparación de metros perforados vs consumo de brocas (t	
rimados – t45)	
Figura 81. Comparación de metros perforados vs consumo de brocas (t	
producción – t45)	
Figura 82. Comparación de metros perforados vs consumo de brocas (t	
rimados – t38 y t45)	
Figura 83. Comparación de metros perforados vs consumo de brocas (t	
producción – t38 y t45)	154

RESUMEN

La presente investigación respondió al siguiente problema general: ¿cómo influye la supervisión de las brocas de botones para evaluar su vida útil en la Unidad Minera Colquijirca-Sociedad Minera El Brocal S.A.A.? El objetivo general fue determinar cómo influye la supervisión de las brocas de botones para evaluar su vida útil en la Unidad Minera Colquijirca-Sociedad Minera El Brocal S.A.A., y la hipótesis general que se verificó fue la siguiente: la supervisión de las brocas de botones tiene influencia directa para evaluar su vida útil en la Unidad Minera Colquijirca-Sociedad Minera El Brocal S.A.A.

El método general de investigación fue el científico, el tipo de investigación fue aplicado, además el nivel fue explicativo-correlacional, y de diseño experimental. Asimismo, la población estuvo conformada por las labores pertenecientes al nivel 3960, el tipo de muestreo fue no probabilístico y por consiguiente no aleatoria, siendo la muestra la galería 8942 E (-).

La conclusión general de este estudio fue la siguiente: la supervisión influye directamente en hacer cumplir el rendimiento máximo que puede tener una broca, realizando el seguimiento oportuno de las diferentes actividades como el correcto afilado, la operatividad de los equipos y conocimiento de las características de la roca; llegando así a la reducción del consumo de brocas para la Unidad Minera Colquijirca-Sociedad Minera El Brocal S.A.A.

Palabras claves: afilado de brocas, operatividad de los equipos, características de la roca, y vida útil.

ABSTRACT

The present investigation responded to the following general problem: How does the supervision of the button bits influence the useful life of the Colquijirca Mining Unit - Sociedad Minera El Brocal S.A.A.? And the general objective was: To determine how the supervision of the button bits to evaluate their useful life in the Colquijirca Mining Unit - Sociedad Minera El Brocal S.A.A., and the general hypothesis that was verified was: The supervision of the button bits has direct influence to evaluate their life in the Colquijirca Mining Unit - Sociedad Minera El Brocal S.A.A.

The general method of research was the scientist, the type of research was applied, the level was explanatory - correlational, and experimental design. The population was made up of the work belonging to level 3960, the type of sampling was non-probabilistic and therefore not random, the gallery being 8942 E (-).

The general conclusion of this study was that: Supervision directly influences enforcing the maximum performance that a drill can have, carrying out timely monitoring of the different activities such as the correct sharpening, the operability of the equipment and knowledge of the characteristics of the rock. Thus reaching the reduction in the consumption of drill bits for the Colquijirca Mining Unit - Sociedad Minera El Brocal S.A.A.

Keywords: drill sharpening, equipment operability, rock characteristics, and useful life.

INTRODUCCIÓN

La presente tesis titulada "Influencia de la supervisión de las brocas de botones para evaluar su vida útil en la U.M. Colquijirca" tiene como finalidad hacer cumplir el máximo rendimiento que puede optar una broca de perforación. Se realiza un seguimiento adecuado a todas las acciones que se pueden presentar durante este proceso como el inadecuado afilamiento de la broca, la falta de conocimiento de las características de la roca, y la falta de inspección de los equipos para identificar las fallas mecánicas que pudieran tener.

Esta investigación se desarrolló en cinco capítulos, que se describen a continuación. En el capítulo I, se trata del problema de investigación, los objetivos, hipótesis, identificación de variables y justificación de la tesis.

En el capítulo II, se desarrolla el marco teórico, los antecedentes del problema, las bases teóricas, además se menciona las definiciones de términos y las generalidades de la mina.

En el capítulo III, se indica el método, tipo, nivel y alcances de la investigación, asimismo se señala el diseño de investigación, la población y muestra, y las técnicas e instrumentos de recolección de datos.

En el capítulo IV, se presentan los análisis de cada problema, también los resultados de algunas pruebas realizadas en campo, además se analiza globalmente los resultados puntuales.

Finalmente, se presentan las conclusiones, recomendaciones, las referencias bibliográficas y los anexos.

CAPÍTULO I: PLANTEAMIENTO DEL ESTUDIO

1.1. Planteamiento del Problema

Se sabe que la minería es una industria de potencia para el Perú y, por ende, se le debe brindar la atención adecuada. Cada trabajo que se realiza y sus actividades en las diferentes minas implican trabajos de alto riesgo. Estos riesgos que podrían traducirse en pérdidas de material, equipos o la vida del trabajador. Además, la perforación es una parte principal de la operación del ciclo de minado. En la Unidad Minera Colquijirca-Sociedad Minera El Brocal S.A.A., la contratista minera Epiroc Perú S. A. se enfoca en brindar los aceros de perforación, cuyo contrato es por metro perforado. En la actualidad presenta una rentabilidad negativa a partir de un alto consumo de brocas por las características y propiedades físicas de la roca, discontinuidades y deficiencia en la falta de control (seguimiento de las brocas).

La roca abrasiva de dura a semidura es un verdadero reto para las brocas. Una vida de servicio normal es de aproximadamente 250 metros perforados por broca teóricamente.

1.1.1. Problema general

¿Cómo influye la supervisión de las brocas de botones para evaluar su vida útil en la Unidad Minera Colquijirca-Sociedad Minera El Brocal S.A.A.?

1.1.2. Problemas específicos

- a) ¿Cómo influye el afilado de brocas para evaluar su vida útil en la Unidad Minera Colquijirca-Sociedad Minera El Brocal S.A.A.?
- b) ¿Cómo influye el tipo de roca para evaluar su vida útil en la Unidad Minera Colquijirca-Sociedad Minera El Brocal S.A.A.?
- c) ¿Cómo influye la operatividad de los equipos de perforación para evaluar la vida útil de las brocas en la Unidad Minera Colquijirca-Sociedad Minera El Brocal S.A.A.?

1.2. Objetivos

1.2.1. Objetivo general

Determinar cómo influye la supervisión de las brocas de botones para evaluar su vida útil en la Unidad Minera Colquijirca-Sociedad Minera El Brocal S.A.A.

1.2.2. Objetivos específicos

- a) Analizar cómo influye el afilado de brocas para evaluar su vida útil en la Unidad Minera Colquijirca-Sociedad Minera El Brocal S.A.A.
- b) Determinar cómo influye el tipo de roca para evaluar su vida útil de los aceros de perforación en la Unidad Minera Colquijirca-Sociedad Minera El Brocal S.A.A.
- c) Determinar cómo influye la operatividad de los equipos de perforación para evaluar la vida útil de las brocas en la Unidad Minera Colquijirca-Sociedad Minera El Brocal S.A.A.

1.3. Justificación

1.3.1. Justificación metodológica

Para el proceso de la investigación, el sustentante desarrollará instrumentos y metodologías y procedimientos propios, para la toma de datos de campo, de la misma manera estas metodologías servirán para el procesamiento y formulación de conclusiones.

Asimismo, estas metodologías aportadas por el investigador se podrán usar en el desarrollo de otras investigaciones similares.

1.3.2. Justificación práctica

El desarrollo de la presente investigación se justifica en la parte práctica, debido a que con la supervisión de los aceros de perforación se solucionará el problema de desgaste en forma prematura y por ende la reducción de la vida útil de los aceros.

1.4. **Hipótesis**

1.4.1. Hipótesis general

La supervisión de las brocas de botones tiene influencia directa para

evaluar su vida útil en la Unidad Minera Colquijirca-Sociedad Minera El Brocal

S.A.A.

1.4.2. Hipótesis específicas

a) El correcto afilado de los insertos de las brocas incide en la evaluación

de su vida útil en la Unidad Minera Colquijirca-Sociedad Minera El

Brocal S.A.A.

b) El tipo de roca influyen para evaluar su vida útil de los aceros de

perforación en la Unidad Minera Colquijirca-Sociedad Minera El

Brocal S.A.A.

La operatividad de los equipos de perforación influye para evaluar la c)

vida útil de las brocas en la Unidad Minera Colquijirca-Sociedad

Minera El Brocal S.A.A.

Identificación de Variables

1.5.1. Variable independiente

X1: Aceros de perforación

Indicadores:

Afilado de brocas

Tipo de roca

Operatividad de los equipos

1.5.2. Variable dependiente

X0: Vida útil

16

1.6. Matriz de Operacionalización de Variables

Tabla 1. Matriz operacional

Variable		Definición de variable	Definición operacional					
variable		Definición de Variable	Dimension	es	Subdimensiones	Indicadores		
V. I. Brocas perforación	de	Broca de perforación Una broca es un dispositivo o herramienta utilizado para realizar agujeros o pozos cilíndricos extrayendo el material sólido perforado (ver Tornillo de Arquímedes) por medio de un tornillo helicoidal rotatorio. El material es desplazado a lo largo del sentido del eje de rotación			 Afilado de brocas Tipo de roca Operatividad de los equipos 	 Calidad de afilado Brocas no sobreperforadas 		
			Herramienta perforación	de				
V.D. Vida útil		Vida útil La vida útil es la duración estimada que un objeto puede tener, cumpliendo correctamente con la función para el cual ha sido creado. Normalmente se calcula en metros de duración.	Duración estimada		➤ Vida útil	Metros perforados		

CAPÍTULO II: MARCO TEÓRICO

2.1. Antecedentes del Problema

Abanto y Vásquez (1) en su investigación sobre "Reducción de costos en las operaciones unitarias de perforación y voladura optimizando el mantenimiento de brocas de 45mm, rimadoras de 102mm y el consumo de explosivo en las labores de desarrollo que realiza la empresa CONMICIV S.A.C en CMH S.A." tuvo el objetivo reducir el costo de las operaciones unitarias de perforación y voladura, y llegaron a la conclusión que sí se consiguió aumentar el rendimiento de broca de 45mm Sandvick en la perforación con jumbos en 42.5 %, es decir, de 181 m/broca que se tenía inicialmente, se alcanzó un rendimiento de 258 m/broca, alcanzando un 29% más de su vida útil (de 200m/broca).

Gamarra (2) en su investigación: "Optimización de las brocas de botón de 45 mm* r32 para minimizar los costos de perforación en la compañía minera MILPO S.A.A. UEA El Porvenir tuvo el objetivo de optimizar las brocas de botón de 45MM*R32 para minimizar los costos de perforación y, por consecuente, minimizar los costos de perforación. Se llegó al a conclusión que se superó los rendimientos y eficiencias de los aceros de perforación de brocas, barras y shanks en un promedio de 5.6 %.

Mallma (3) en su investigación sobre "Optimizacion del uso de aceros de perforación en la UEA San Cristobal de Minera Bateas SAC" tuvo el objetivo de optimizar el uso de los aceros de perforación en la UEA San Cristóbal de Minera Bateas SAC, llegó a la conclusión que sí se alcanzó una óptima operatividad en los jumbos y máquinas convencionales (*jack leg*), adecuando a los procedimientos correctos de operatividad, evitando tener una pérdidas, ya sea por desgaste prematuro o por inadecuada operatividad de dichos equipos.

Palomino (4) en su investigación: "Evaluación de la perforación y voladura en labores de desarrollo nivel-420 en la mina Huarón-CIA minera Huarón S.A. Pan American Silver Peru-Corporation" propuso mejorar los avances en labores de desarrollo con un mejor diseño de mallas de perforación y uso adecuado de explosivos y accesorio de voladura en la Mina Huarón y llegó a la conclusión que el yacimiento se emplaza dentro de las capas rojas, constituidas por conglomerados, areniscas, *chert*, yeso, margas y piroclásticos.

Según Rojas (5) en su investigación: "Gestión para el mejoramiento del sistema de control del uso de los aceros de perforación en la mina Radomiro Tomic de la División Radomiro Tomic de Codelco-Chile" se propuso presentar una propuesta para el mejoramiento del sistema de control de uso de los aceros de perforación en la Mina Radomiro Tomic, luego llegó a la conclusiones siguientes:

- Los objetivos planteados para el desarrollo de este tema de investigación se cumplieron.
- El apoyo recibido por parte de Codelco-División Radomiro Tomic fue óptima para poder realizar con éxito la investigación, debido a que la empresa facilitó información, asesoramiento técnico y recursos económicos para el desarrollo del tema de investigación.
- El presente estudio puede aplicarse a cualquier empresa que cuente con el programa Jig Saw para el control de la perforación, específicamente para mejorar el control del uso de los aceros de perforación.
- El mayor inconveniente que se presentó en el desarrollo de este proyecto de estudio fue la operalización de las mejoras propuestas, debido a que llevaron mayor tiempo de lo planificado.

2.2. Bases Teóricas

2.2.1. Principios de la perforación

(Percusión: permite la penetración de la broca de perforación en la roca.
₩	Avance: mantiene la broca en estrecho contacto con la roca.
2	Rotación: hace girar la broca a una nueva posición antes del si- guiente impacto.
□	Barrido, limpia el barreno de los recortes de perforación.

Figura 1. Principios de la perforación. Adaptado de "Análisis de falla en los aceros de perforación como estrategia de incremento de la vida útil de los equipos top hammer", por A. Escobar, 2013. Tesis (título de ingeniero de minas)

2.2.2. Sistemas de perforación

A) Top Hammer (TH)

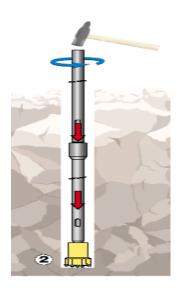


Figura 2. Perforación top hammer-Capacitación de sistemas de perforación-Atlas Copco. Adaptado de "Capacitación Productos Secoroc", por C. Soria-Atlas Copco. 29 de enero del 2005 [diapositiva]

B) Down The Hole (DTH)

Figura 3. Perforation down the hole. Adaptado de "Capacitación Productos Secoroc", por C. Soria-Atlas Copco. 29 de enero del 2005 [diapositiva]

C) Giratoria

Figura 4. Perforación giratoria. Adaptado de "Capacitación Productos Secoroc", por C. Soria-Atlas Copco. 29 de enero del 2005 [diapositiva]

2.2.3. Propiedades mecánicas de los aceros

Conocer las propiedades mecánicas de los aceros es muy importante, para poder elegir el acero óptimo para la columna de perforación. Existen propiedades mecánicas, como las siguientes:

✓ Límite de Fluencia
✓ Fricción

✓ Dureza
✓ Soldabilidad

✓ Resistencia a Tracción
✓ Plasticidad

✓ Elongación

2.2.4. Evaluación del tipo de roca y macizo rocoso

A) Macizo rocoso

En todo proyecto minero de excavación y explotación es de suma importancia tener con la información necesaria sobre las características físicas, químicas de la roca, litológicas, de los esfuerzos e hidrología de un macizo rocoso por ello se requiere llevar estas características del macizo rocoso a valores numéricos, a fin de planificar la obra y a sus etapas.

- a. Propiedades del macizo rocoso que afectan a la perforación
- ✓ Dureza
 ✓ Elasticidad
- ✓ Resistencia a la
 ✓ Plasticidad
 - compresión ✓ Textura
- ✓ Abrasividad

B) Perforabilidad

Se refleja en la capacidad de perforar con una broca una determinada roca.

- a. Factores que Afectan la perforabilidad y el desgaste de brocas
- ✓ Tipo de Mineral.
- ✓ Tamaño de Grano.
- ✓ Contenido de Sílice.
- ✓ Estructuras, etc.

2.2.5. Características de las brocas empleadas en la U.M.

Colquijirca

A. ¿Cuándo la broca debe de ser afilada?

El afilado oportuno se realiza cuando el botón ha perdido el 30% de su tamaño, el espacio entre los botones y la roca es demasiado pequeña. Entonces, es muy difícil que el detrito pase por ese espacio y permanecerá para ser retriturado (remolienda).

Además, el impacto del mecanismo no podrá penetrar en la roca de una manera eficiente debido al re-triturado producido, aumentándose el desgaste de la broca y reduciendo la velocidad de penetración.

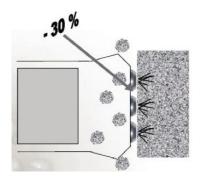


Figura 5. Pérdida del 30% de su tamaño. Adaptado de "Capacitación Productos Secoroc", por C. Soria-Atlas Copco. 29 de enero del 2005 [diapositiva]

✓ El desgaste del botón es 1/3 de su diámetro.

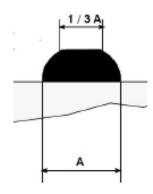


Figura 6. Desgaste de 1/3 del botón.

✓ Presenta el contra-cono.

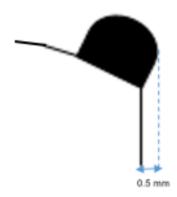


Figura 7. Efecto contracono

✓ Presenta los insertos de piel de serpiente.

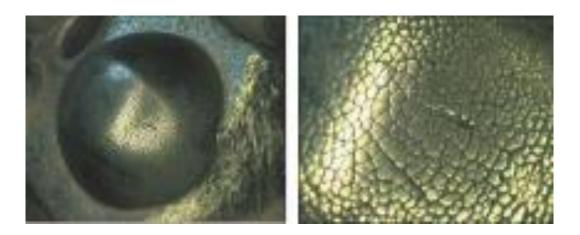


Figura 8. Piel de serpiente. Adaptado de "Análisis de falla en los aceros de perforación como estrategia de incremento de la vida útil de los equipos top hammer", por A. Escobar, 2013. Tesis (título de ingeniero de minas)

Figura 9. Daños en los botones (Insertos)

B. Características de las brocas empleadas en la U.M. Colquijirca

Conocer los diámetros y cantidades de insertos de las brocas nos ayudaran a escoger la muela o copa de afilado según lo necesario.

Tabla 2. Brocas utilizadas en la UM Colquijirca

	DDOOA	INSERTO		INSI	ERTO	
EQUIPO	BROCA DIÁMETRO	LATERAL		CEN	TRAL	FOTOGRAFÍA
	DIAMETRO	CANT.	BOTÓN	CANT.	BOTÓN	
	64 mm	6 Bot	11 mm	4 Bot	10 mm	
SIMBA	89 mm	12 Bot	13 mm	1 Bot	13 mm	
	127 mm	18 Bot	13 mm	1 Bot	13 mm	
JUMBO	51 mm	6 Bot	11 mm	3 Bot	9 mm	
COMBO	102 mm	16 Bot	13 mm	1 Bot	13 mm	
EMPERNADOR	38 mm	5 Bot	9 mm	2 Bot	7 mm	

C. Parámetros de influencia

Se realiza una descripción de los parámetros que pueden ayudar a mejor la broca para tener un mejor rendimiento:

Tabla 3. Parámetros de influencia de las brocas

Parámetros	Descripción
Cantidad de botones	
Tipo de botones	
Ángulo de los botones periféricos y centrales	
Diámetro de la broca	
Cantidad de orificios y canales de barrido	
Tipo de rosca	Rosca en el extremo de la broca Ejemplos: 02 = R25

	Grado de acero y de carburo
	Buen mantenimiento de la perforadora y el
	equipo de perforación
	Correcto y oportuno afilado
	Control adecuado de Presiones de trabajo
Otros	Operadores bien instruidos y bien
	motivados
	Avance adecuado
	Buen emboquillado
	Tipo de terreno
	Suministro de aire y agua apropiados

D. Criterio de descartes de brocas-teórico:

Para descartar una broca se tiene que tener los siguientes criterios como los siguientes:

Tabla 4. Criterios de descarte de brocas

	180
INSERTOS DESTRUIDOS BAJO EL NIVEL DEL CUERPO DE LA BROCA (MAYOR A 1 INSERTO)	
INSERTOS PICADOS (MAYOR A 1 INSERTO)	
INSERTOS TRITURADOS DENTRO DE LA BROCA (MAYOR A 1 INSERTO)	
ROTURA DE INSERTOS POR DEBAJO DEL CUERPO DE LA BROCA (MAYOR A 1 INSERTO)	
MICROFISURAS O PIEL DE SERPIENTE EN LOS INSERTOS (MAYOR A 1 INSERTO)	

PÉRDIDA DE INSERTOS (MAYOR A 1 INSERTO)	
ROTURA ANULAR EN EL CUERPO DE LA BROCA	
RAJADURA EN LA PARTE INFERIOR DE LOS INSERTOS	
GRIETA ENTRE LOS INSERTOS Y AGUJEROS DE LA BROCA	
ROTURA POR RAJADURA EN EL BORDE DE LA BROCA	

2.2.6. Procedimiento para el cálculo de rendimiento de las brocas

- Conocer las características generales del lugar a trabajar (unidad minera).
- II. Elegir los posibles productos a emplear según las características del lugar a trabajar y otras consideraciones.
- III. Verificar el estado inicial del producto nuevo del almacén (fallas de fábrica).
- IV. Capacitar al personal del trabajo a realizar.
- V. Distribución de los productos para trabajar en las diferentes situaciones para ejecutar las respectivas pruebas.
- VI. Brindar condiciones de trabajo al personal.
- VII. Verificar las condiciones de trabajo durante el desarrollo de las pruebas.
- VIII. Toma de datos (cantidad, eficiencias, satisfacción, etc.)
 - IX. Dar mantenimiento al producto, para seguir utilizándolas hasta llegar a cumplir con el objetivo.
 - X. Analizar el estado del producto para poder ser descartadas o seguir dando su mantenimiento respectivo.
 - XI. Analizar todos los datos obtenidos de las pruebas para tomar medidas correctivas o evaluar rendimientos, eficiencias, etc.

2.2.7. Parámetros para calcular precios unitarios (P.U.) del metro perforado.

DESCRIPCIÓN	UNIDAD
Rendimiento del shank de perforación.	m o pies
Rendimiento de las barras de perforación.	m o pies
Rendimiento de los acoples de perforación.	m o pies
Rendimiento de las brocas de perforación.	m o pies
Precio del <i>shank</i> de perforación.	\$ o S/.
Precio de las barras de perforación.	\$ o S/.
Precio de los acoples de perforación.	\$ o S/.
Precio de las brocas de perforación.	\$ o S/.
Gastos administrativos.	\$ o S/.
Costo de afilado de brocas (mantenimiento de los aceros de perforación).	\$ o S/.
Costo de transporte de los aceros de perforación (del almacén hacia obra)	\$ o S/.
Costo de almacenaje de los aceros de perforación	\$ o S/.
Gastos del personal calificado (supervisión).	\$ o S/.
Costo de mantenimiento de equipos y máquinarias.	\$ o S/.
Depreciación de los aceros de perforación.	\$ o S/.
Inversión y seguros.	\$ o S/.
Construcción de instalaciones para las pruebas.	\$ o S/.
Gastos del personal calificado para las pruebas (supervisión).	\$ o S/.
Otros gastos.	\$ o S/.

Tabla 5. Parámetros para calcular p.u. de la broca

2.1. Definición de Términos

A) Brocas de perforación

Es considerado como una herramienta de corte, lo cual tiene insertos periféricos y centrales, los insertos son de carburo de tungsteno. Además, el contacto de la broca es directamente con la roca. Asimismo, en la actualidad

existen varios tipos de brocas para la perforación y se clasifican en las siguientes: brocas de botones, brocas tricónicas, brocas especiales y broca de cortadores fijos.

Figura 10. Brocas de botones de perforación. Tomado de "Herramientas para perforación de rocas Secoroc-Perforación manual y accesorios", por Edipesa, 2015. Recuperado de https://www.edipesa.com.pe/images/PDF-productos/herramientas-neumaticas-para-perforacion-de-rocas.pdf

B) Barras de perforación

La barra de perforación se utiliza para transmitir el movimiento rotativo desde la perforadora. Es de material de acero e incluye un orificio en el centro longitudinalmente para llevar el agua, para que dicha agua nos sirva para el barrido en la perforación.

Figura 11. Barras de perforación. Tomado de "Herramientas para perforación de rocas Secoroc-Perforación manual y accesorios", por Edipesa, 2015. Recuperado de https://www.edipesa.com.pe/images/PDF-productos/herramientas-neumaticas-para-perforacion-de-rocas.pdf

C) Acoples de perforación

Es el segundo componente de una columna de perforación, el acople tiene la finalidad de unir la barra de perforación con el *shank* que sale de la perforadora. Además, existen diversos tipos de acoples, y estos se clasifican según el tipo de roscas, según el diámetro del *shank*, según el diámetro de la barra, etc.

Figura 12. Acople de perforación. Tomado de "Herramientas para perforación de rocas Secoroc-Perforación manual y accesorios", por Edipesa, 2015. Recuperado de https://www.edipesa.com.pe/images/PDF-productos/herramientas-neumaticas-para-perforacion-de-rocas.pdf

D) Shank de perforación

Es el primer componente de una columna de perforación donde cumple la función de transmitir la energía, rotación y empuje de la perforadora hacia toda la columna de perforación. Existen diversos tipos de *shank*, y estos se clasifican según el tipo de perforadora a utilizar, según el tipo de trabajo a realizar, etc.

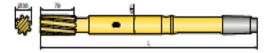


Figura 13. Shank De Perforación. Tomado de "Herramientas para perforación de rocas Secoroc-Perforación manual y accesorios", por Edipesa, 2015. Recuperado de https://www.edipesa.com.pe/images/PDF-productos/herramientas-neumaticas-para-perforacion-de-rocas.pdf

E) Afilado de brocas de perforación

Es la restauración del inserto de carburo a su estado original, devolviéndole la forma esférica o balística que tenía. El afilado oportuno se realiza cuando el desgaste del inserto alcance como máximo la tercera parte de su diámetro tanto en brocas de insertos esféricos o balísticos. Un buen afilado

es dejar a todos los insertos de la broca en casi su estado inicial (como cuando era nuevo).

Figura 14. Afilado de brocas Tomado de "Herramientas para perforación de rocas Secoroc-Perforación manual y accesorios", por Edipesa, 2015. Recuperado de https://www.edipesa.com.pe/images/PDF-productos/herramientas-neumaticas-para-perforacion-de-rocas.pdf

F) Devastado de brocas de perforación

La broca en algunas ocasiones suelen ser sobreperforadas por deficiencias del operador, equipo o el terreno. La sobreperforación se basa al desgaste elevado del inserto de la broca, notándose el inserto al ras del cuerpo de la broca, para ello se recomienda realizar el devastado, ya que al aplicar dicho trabajo de devastado comeremos al acero que se encuentra alrededor del inserto dándole una diferencia de altura entre el inserto y el cuerpo de la broca.

Figura 15. Copas de devastado. Tomado de "Herramientas para perforación de rocas Secoroc-Perforación manual y accesorios", por Edipesa, 2015. Recuperado de https://www.edipesa.com.pe/images/PDF-productos/herramientas-neumaticas-para-perforacion-de-rocas.pdf

G) Malla de perforación

Distribución adecuada de los taladros en un frente, la distribución de los taladros se hace con un previo cálculo del burden y espaciamiento, para una voladura eficiente (6).

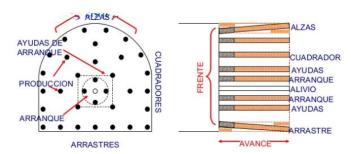


Figura 16. Malla de perforación. Adaptado de "Diseño de Malla de Perforación", por R. Caballero, 8 de abril del 2018. Recuperado de https://www.slideshare.net/anderssonlujanojeda/diseo-de-malla-de-perforacin

H) Perforación

Este método de fragmentación de roca se caracteriza por tener los siguientes elementos comunes: a) una fuente energía (perforadora, motores, pistones, etc.), b) un medio de transmisión de energía (varillaje, ejes, fluidos, etc.), c) elementos de corte (brocas, discos, rodillos, explosivos moldeados, cucharas, etc.), d) evacuación de la roca fragmentada (agente de barrido, scrapers, tornillos, cadenas, fajas, etc.). La primera operación que se realiza y tiene como finalidad abrir unos huecos, con la distribución y geometría adecuada dentro de los macizos, donde alojar a las cargas de explosivo y sus accesorios iniciadores (7).

2.2. Generalidades de Mina

2.2.1. Datos generales

A) Ubicación del área de estudio

La mina se encuentra a 8 km de la ciudad de Cerro de Pasco, a una altura de 4280 m.s.n.m. está ubicado en el Departamento de Pasco, provincia de Pasco y distrito de Tinyahuarco.

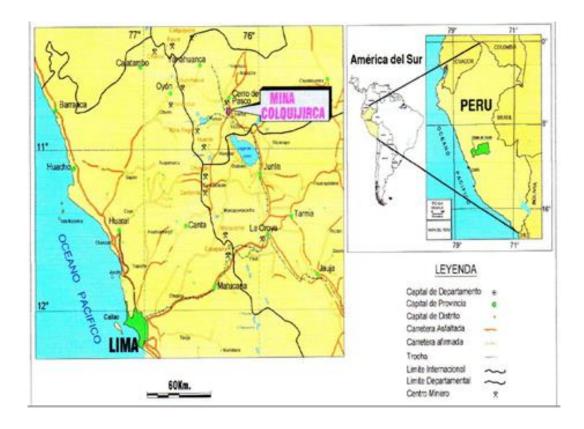


Figura 17. Ubicación geográfica de la U.M. Colquijirca. Adaptado de "Geología del distrito minero de Colquijirca y control estructural en Marcapunta y Smelter, Sociedad Minera el brocal S.A.A. Cerro de Pasco", por R. Caballero. Tesis (Título de Ingeniera de Minas)

B) Antecedentes

"Durante las dos primeras décadas del siglo XX, el yacimiento de Colquijirca llegó a ser, en diferentes años, el principal productor de plata en toda América. Poco después, a partir de 1930 la mina empezó a producir plomo, zinc y posteriormente cobre, debido al rápido agotamiento de sus ricas reservas argentíferas. Actualmente, la Sociedad Minera El Brocal S.A.A. continúa explotando minerales polimetálicos por tajo abierto y mina subterránea a un ritmo de 10,000 TM. /día con leyes de 3.5% en Zn 1.8% Pb, 2Oz/ TM. Ag y 1.8% de Cu". (8)

Ahlfeld (1932), Lindgren (1935) y Mckinstry (1936) publicaron estudios geológicos en relación a este importante asiento minero. Estos autores concluyeron que las concentraciones metálicas en forma de mantos se habrían depositados, a partir de soluciones hidrotermales, reemplazando selectivamente ciertos horizontes sedimentarios plegados de las Calizas Calera

"Aunque en menor grado, la edad de las rocas encajonantes también es materia de controversia científica, las Calizas Calera fueron consignadas por Mc. LcLaughlin (1924) y Jenks (1951) al Terciario; Ahlfeld (1932) y Boit (1953) asignan a la misma unidad litoestratigráfica una edad Triásico Superior" (8).

C) Accesibilidad

Vías de acceso: Lima-La Oroya-Cerro de Pasco

El acceso es por medio de la carretera central de Lima-La Oroya-Cerro de Pasco, a partir del km 294 se toma un cruce en el que va hacia la mina de Colquijirca.

CAPÍTULO III: METODOLOGÍA

3.1. Métodos y Alcances de la Investigación

3.1.1. Método general

El método general de la investigación es el científico y como método especifico es inductivo-deductivo.

3.1.2. Tipo de investigación

El tipo de investigación es aplicada, debido a que tiene por principio aplicar los conocimientos de la investigación básica, y bajo estos parámetros se propone solucionar el problema del desgaste de los aceros de perforación.

3.1.3. Nivel de investigación

El nivel de investigación es explicativo-correlacional, el propósito consiste en explicar el procedimiento de la supervisión de los aceros de perforación con la finalidad de evaluar su vida útil para solucionar el problema del desgaste prematuro, y en la parte correlacional se busca establecer la relación que existe entre las variables.

3.2. Diseño de Investigación

El trabajo de investigación es experimental, ya que el investigador empleará estrategias con la finalidad de manipular las variables en buscar de encontrar la respuesta a las incógnitas planteadas.

3.3. Población y Muestra

3.3.1. Población

La población está constituida por las labores pertenecientes al nivel 3960 Sociedad Minera El Brocal S.A.A. Unidad Minera Colquijirca 2019.

3.3.2. Muestra

La muestra es no probabilística y por consiguiente no aleatoria, está compuesta por la galería 8942 E (-) Sociedad Minera El Brocal S.A.A. Unidad Minera Colquijirca 2019.

3.4. Técnicas e Instrumentos de Recolección de Datos

3.4.1. Técnicas de recolección de datos

- a) La entrevista personalizada.
- b) Observación.
- c) Encuestas.

3.4.2. Instrumentos de recolección de datos

- a) Equipo de cómputo.
- b) Memorias USB.
- c) Cámara fotográfica.
- d) Flexómetro.
- e) Huincha
- f) Termómetro
- g) Tacómetro
- h) Equipo para centrar brocas
- i) Equipo de afilado de brocas

CAPÍTULO IV: RESULTADOS Y DISCUSIÓN

4.1. Análisis Enfocado al Afilado de Brocas

4.1.1. Máquinas y equipos empleados para el afilado en la U.M. Colquijirca

Para realizar nuestro trabajo de afilar las brocas y así seguir utilizándolos, empleamos las siguientes máquinas afiladoras:

A. Máquina afiladora BQ3: Para el afilado de brocas:

La cantidad de brocas por afilar en la U.M. Colquijirca son muchas, debido a que cuentan con muchos equipos y el terreno a perforar es muy duro (número de brocas que utilizan). Por eso implementamos las dos máquinas semiautomáticas y así poder cubrir la cantidad de brocas que salen por afilar.

Características	
Altura máxima de broca	200 mm
Diámetro máximo de broca	127 mm
Distancia mínima entre botones	3.5 mm
Salida, motor husillo	1.50 kW
Salida, motor de accionamiento de mesa de	0.37 kW
Salida, motor de la bomba de fluido refrigerante	0.44 Kw
Tensión, luces de trabajo (40 W E27)	24 V
Presión de aire, mínimo	80 psi / 5.5 bar
Presión de aire, máximo	101 psi / 7 bar
Consumo de aire	40 l/min
Velocidad, husillo (50 Hz)	14.900 r/min
Velocidad, husillo (60 Hz)	14.900 r/min
Velocidad, tabla (50 Hz)	62 r/min
Velocidad, tabla (60 Hz)	74 r/min
Capacidad del tanque de fluido refrigerante	22
Peso, exclusivo de embalaje	222 kg
Nivel de ruido durante la molienda **	96.5 dB(A)
Nivel de potencia acústica durante el rectificado ***	101 dB(A)
Nivel de vibración durante la molienda ****	< 2.5 m/s2

Figura 18. Máquina afiladora Bq3

> Muelas de afilado de brocas

Figura 19. Muelas de afilado

Para realizar el afilado de brocas tenemos que tener en cuenta que las brocas tienen dos tipos de insertos (periféricos y centrales), la cual cada uno de

estos tiene una medida diferente de copa la cual mostraremos en la siguiente tabla:

Tabla 6. Medidas de muelas

Diámetro	Medida de muela	Medida de muela	
Diametro	para los centrales	para los periféricos	
38mm	7 (87004554)	9 (87003969)	
45mm	9 (87003969)	10 (87003970)	
51mm	9 (87003969)	11 (87003971)	
64mm 10 (87003970)		11 (87003971)	
89 mm	13 (87003973)	13 (87003973)	
102mm	13 (87003973)	13 (87003973)	
127mm 13 (87003973)		13 (87003973)	
152mm	13 (87003973)	13 (87003973)	

B. Máquina Grind Matig HG, para el afilado y devastado de brocas:

La máquina manual, que es la Grind Matig HG, cumple con el trabajo de afilado y devastado. Pero el U.M. Colquijirca la empleamos puntualmente para el devastado, debido a que la mayoría de los terrenos para perforar son muy duros (las brocas salen muy sobre-perforadas).

Características Presión de aire, máx 7 bar Requisito de aire (a 6 bar) 50 l/s descarga 42 l/s carga Presión de agua, máx 4.5 bar 17000 r/min Speed, max Tamaños de manguera 12,5 mm (1/2 ") aire 6,3 mm (1/4") agua Peso excluyendo mangueras 2,8 kg Nivel de presión del sonido * 91 dB (A) Nivel de potencia acústica ** 104 dB (A) Nivel de vibración * ** <2.5 m / s2

Figura 20. Máquina Grind Matig Hg

Copas de afilado y devastado de brocas

Figura 21. Copas de afilado y devastado

Para poder afilar las diferentes brocas con la máquina GRIND MATIG HG.se tiene que tener en cuenta las diferentes medidas de copas como mostramos en el siguiente cuadro.

Tabla 7. Medidas de copas de afilado

	AFILADO				
Diámetro	Medida de copa para	Medida de copa para			
Diametro	los centrales	los periféricos			
38mm	7(87005110)	9 (87005112)			
45mm	8 (87005111)	9 (87005112)			
51mm	9 (87005112)	11 (87005114)			
64mm	10 (87005113)	11 (87005114)			
89 mm	13 (87005116)	13 (87005116)			
102mm	13 (87005116) esférico	13 (87003413) balístico			
127mm	13 (87005116)	13 (87005116)			
152mm	13 (87005116)	13 (87005116)			

Tabla 8. Medidas de copas de devastado

DEVASTADO			
DIÁMETRO DE COPA	Código		
7mm–8mm	87002700		
9mm–10mm	87002701		
11mm–12mm	87002702		
13mm–14mm	87002703		

4.1.2. Procedimiento para tener un buen afilado

Es muy importante conocer el funcionamiento correcto para tener un afilado de calidad con ambas máquinas, debido a que es muy importante para la perforación. Para ello se desarrolló el procedimiento adecuado para cumplir con dicho objetivo (calidad de afilado).

A. Con la máquina semiautomática Grind Matic BQ3

Antes

- Identificar Peligros, Evaluar Riesgos y Aplicar Controles (IPERC) en las tareas a realizar.
- Verificar el buen estado de los EPP, equipos, herramientas y materiales a utilizar.
- III. Verificar el suministro de aire (6 bares) en el manómetro del equipo y corriente eléctrica (440v) a la aguzadora semiautomática BQ3.
- IV. Abrir la válvula de aire hasta la mitad haciendo que purgue el aire para evitar la presencia e ingreso de agua a la aguzadora semiautomática BQ3.
- V. Clasificar las brocas en orden y de acuerdo a su desgaste, luego proceder a designarles muelas de aguzado.
- VI. Abrir en su totalidad la válvula de aire y activar el interruptor de energía eléctrica.

Durante

- VII. Posicionar el bit holder con el ángulo adecuado para afilar los insertos periféricos de acuerdo al tipo de broca (según manual).
- VIII. Colocar la broca devastada previamente sobre el *índexing template* para realizar el aguzado.
 - IX. Colocar la muela de aguzado correspondiente, según el tipo de broca, para realizar el aguzado.
 - Centralizar el inserto de la broca a aguzar con el brazo centralizador de botones.
 - XI. Iniciar el aguzado activando el botón de giro de plato y luego el de giro de muela de aguzado para que se posicione sobre el inserto.
- XII. Observar hasta que concluya el aguzado del inserto y desactivar ambos botones (giro de plato y giro de muela).
- XIII. Retirar la broca y colocar el plato en un ángulo de 90º para aguzar los insertos centrales.
- XIV. Colocar la muela de aguzado correspondiente al tipo de inserto a aguzar.
- XV. Realizar el mismo procedimiento de aguzado para los insertos centrales.

XVI. Luego de culminar con el aguzado de los insertos centrales, retirar la broca.

Después

- XVII. Retirar el *bit holder* colocado para posicionar las brocas.
- XVIII. Retirar la muela de aguzado de la aguzadora semiautomática BQ3.
 - XIX. Cerrar válvula de aire y desactivar el interruptor de energía eléctrica.
 - XX. Realizar la limpieza respectiva de la aguzadora semiautomática BQ3.
 - XXI. Realizar orden y limpieza en su zona de trabajo.

B. Con la afiladora neumática HG

Antes

- Identificar Peligros, Evaluar Riesgos y Aplicar Controles (IPERC) en las tareas a realizar.
- Verificar el buen estado de los EPP, equipos, herramientas y materiales a utilizar.
- III. Verificar el abastecimiento de aire (suficiente para el funcionamiento de la máquina aguzadora) a la aguzadora neumática HG.
- IV. Verificar el nivel de aceite de la lubricadora.
- V. Abrir la válvula de aire hasta la mitad haciendo que purgue el aire para evitar la presencia e ingreso de agua a la aguzadora neumática HG.
- VI. Clasificar las brocas en orden y de acuerdo a su desgaste; proceder a designarle copas de aguzado o devastadores según su requerimiento.
- VII. Abrir en su totalidad la válvula de aire.

Durante

- VIII. Posicionar las brocas a aguzar o devastar en el trípode de soporte de brocas.
 - IX. Posicionar las copas de aguzado o devastadores en el Mandril de acuerdo al tipo de inserto que se requiera aguzar o devastar (según manual).
 - Centralizar el inserto de la broca a aguzar ya se esto con la copa de afilado o el devastador.
 - XI. Iniciar con el aguzado.

- XII. Observar hasta que concluya el aguzado o devastado del inserto y cortar el flujo de aire una vez se haya alcanzado la forma ideal.
- XIII. Realizar el mismo procedimiento de aguzado o devastado para los insertos centrales con las medidas respectivas de copas o devastadores.
- XIV. Luego de culminar con el aguzado o devastado de los insertos centrales, retirar la broca.
- XV. Ponerse todos los implementos de protección personal
- XVI. Orden y limpieza
- XVII. Verificar el buen estado del equipo de aguzado y sus accesorios (engrase).
- XVIII. Clasificación de brocas según desgaste de los insertos con calibrador.
- XIX. Verificar la presión del aire comprimido, chequear el nivel de aceite de la lubricadora.
- XX. Colocar las brocas en orden y de acuerdo al desgaste que tengan, separándolas de acuerdo al desgaste, para designarle copas de aguzado según su desgaste.
- XXI. Se procede con el aguzado
- XXII. Una vez culminado el aguzado, cortar el flujo de aire comprimido, agua, limpiar la aguzadora y proceder a su engrase.
- XXIII. Dejar toda el área de aguzado ordenado y limpio.

Después

- XXIV. Retirar las copas de aguzado o devastado del Mandrill.
- XXV. Cerrar válvula de aire.
- XXVI. Realizar la limpieza respectiva de la máquina aguzadora HG.
- XXVII. Realizar orden y limpieza en su zona de trabajo.

4.1.3. Consideraciones para el buen afilado

Existen varios criterios para el optar el correcto afilado y son las siguientes:

Ángulo de Afilado

El ángulo de afilado nos ayudara a rectificar el efecto contra-cono, ya que el tamaño de los insertos de carburo debe mantener una holgura de 0.5 mm en relación al cuerpo de la broca (separación del cuerpo de la broca).

Tabla 9. Parámetros de ángulo de afilado

EQUIPO	BROCA DIÁMETRO	ÁNGULODE AFILADO
	64 mm	35°
SIMBA	89 mm	35°
	127 mm	35°
JUMBO	51 mm	35°
	102 mm	35°
EMPERNADOR	38 mm	30°

Figura 22. Ángulo de inclinación

Refrigeración

Se debe de utilizar el agua como refrigeración para así poder evitar el desgaste prematuro de los componentes para el afilado, evitar también el polvo metálico para prevenir alguna enfermedad ocupacional, y el recalentamiento de la broca y de la máquina afiladora.

Figura 23. Refrigeración para el afilado (agua)

Al no utilizar la refrigeración adecuada (agua) estaremos expuesto al desgaste prematuro de los insertos de la broca, copa de afilado o muelas de afilado.

Figura 24. Desgaste prematuro de la muela (afilar sin agua)

Centralización de la muela con el inserto:

Se debe de centralizar correctamente la muela con el inserto de la broca para poder evitar la deformación de los insertos y un desgaste inapropiado de la muela de afilado, esto llevara a generar deficiencia al realizar la perforación.

Figura 25. Centralización de la broca

Figura 26. Deformación del inserto por centralización incorrecto

Figura 27. Correcta centralización

Fuerza de afilado ejercida en el inserto:

Se debe de mantener una fuerza constante del brazo generando un adecuado afilado del inserto, debido a que al generar demasiada fuerza se tendrá el problema de desgaste inapropiado del inserto de carburo (achatamiento del inserto).

Figura 28. Fuerza de afilado (brazo)

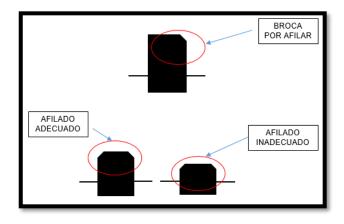


Figura 29. Achatamiento del inserto por demasiada fuerza

4.1.4. ¿Por qué una broca debe de afilarse?

- Prevenir da
 ños adicionales en la broca.
- Aumentar la vida útil de la broca y de toda la línea de varillaje.

- Aumentar la velocidad de penetración promedio durante la vida útil de la broca.
- Para cuidar los componentes de la perforadora.
- Para reducir el riesgo de daño en los botones (insertos).
- Incremento de la productividad.
- Disminución del consumo de aceros de perforación.
- Menor desviación de los taladros
- Mayor eficiencia de perforación.

4.1.5. ¿Cuándo es buen afilado?

- Cuando no hubo la reducción del tamaño del inserto (achatamiento).
- Cuando los insertos mantienen su misma forma (balístico o esférico).
- Cuando tienen el efecto contra-cono.
- Cuando no existe piel de serpiente.

En conclusión, se deja a todos los insertos (periféricos y centrales) de la broca casi en su estado esférico o balístico como cuando era nueva, para obtener una buena penetración de roca y una adecuada vida útil de todos los componentes de la perforadora.

Figura 30. Mal / buen afilado

4.1.6. Descarte de brocas

Teniendo en cuenta que cada broca tiene un rendimiento y una vida útil, en algunas circunstancias también se puede descartar por algunas ocurrencias no deseadas.

A. Descarte de brocas presentado más común en la U.M. Colquijirca:

Teniendo en cuenta que cada broca tiene un rendimiento y una vida útil también se puede descartar por algunas ocurrencias no deseadas. Para descartar una broca se tiene que tener criterios.

Tabla 10. Criterios de descarte de brocas presentado en la Mina El Brocal-Colquijirca

CONDICIÓN	FOTOGRAFÍA	CAUSA	RECOMENDACIÓN												
		Desgaste excesivo	 Ajustar parámetros 												
		del cuerpo.	de perforación a las												
		 Percusión en 	condiciones de roca.												
		vacío.	No percutar mucho al												
		Perforando en	menos que la broca												
PÉRDIDA DE		condiciones de roca	este pegada en la												
INSERTOS		900	9 37 7	9 37 7				no consolidadas.	roca.						
INOLICIOS									3000	3000					
		de tamaño entre	presión de avance.												
		botón y agujero	 Use presión de 												
		para el botón.	percusión reducido en												
		 Presión 	Presión	el emboquillado en											
		inadecuada de	superficies irregulares.												
		avance.													

INSERTOS PICADOS	 Intervalo de afilado inapropiado. Sobre-perforación con la roca. No hay contacto entre el botón y la roca en el impacto. Micro-fisuras. Sobre-perforación en roca suave y no abrasiva que deja la superficie de los botones con brillo. 	 Inspeccionar los insertos y afilarlos para evitar la piel de serpiente. Afilar el botón cuando el desgaste es de 1/3 del diámetro del botón. Seleccionar brocas con carburos adecuados a la dureza de la roca. No comenzar la percusión hasta que la broca este en contacto con la roca.
INSERTOS DESTRUIDO S BAJO EL NIVEL DEL CUERPO DE LA BROCA	 Piel de serpiente. Sobre-perforación en roca suave y no abrasiva que deja la superficie de los botones con brillo y fatiga en la superficie de los carburos cementados que se ven como piel de serpiente. Sobre-perforación. Intervalo de afilamiento incorrecto 	 No afilar en seco porque puede provocar piel de serpiente. Regularmente inspeccionar los botones y re-afilarlos, aunque no parezcan estar desgastados para remover las micro-fisuras en la superficie de los botones. Acotar los intervalos de afilado cuando se perfore en rocas no- abrasivas

			F
		∙Trabajar con	• Engrasar la rosca de
		barras desgastadas	la broca.
		en los hilos.	No ejercer
DESGASTE		Demasiada	demasiada rotación.
PREMATURO		rotación y empuje.	 Rotar las brocas y
DE HILOS		Por falta de	brocas.
	CONTRACTOR OF THE PARTY OF THE	engrase a las	Verificar el estado de
		roscas de las	los hilos de las roscas
		brocas.	de la barra.
		No colocar bien la	Reducir la percusión
		broca (suelto) y	y avance cuando se
		perforar	emboquilla.
RAJADURA		consecuentemente.	Desaflojar la broca
EN EL BORDE DE		Mal emboquillado	con el mecanismo de
		al momento de	impacto mientras se
LA BROCA		iniciar la perforación	apoya sobre la
		de un taladro.	superficie de la roca.
		 Perforación con 	■ No percutar en vacío.
		roscas gastadas.	
		Sobre-perforación.	◆Llevar un juego de
		 Falta de rotación 	brocas adecuado para
	BROCAS DESCARTE POR mm	de brocas.	la rotación de brocas.
DESCARTE	38 mm < 35 mm 45 mm < 43 mm	 Desgaste del 	 Afilado adecuado de
POR	51 mm < 46 mm 64 mm < 60 mm 89 mm < 84 mm	cuerpo de la broca	las brocas.
DIÁMETRO	102 mm < 95 mm 127 mm < 120 mm	por perforar en	Mantenimiento de las
	152 mm < 145 mm	terreno abrasivo.	brocas en su debido
			momento.

4.2. Análisis enfocado al tipo de roca

4.2.1. Pruebas realizadas para el cálculo de vida útil (rendimiento) de las brocas, antes y después del estudio

Desde el 01-05-2019 al 28-07-2019 en el turno día/noche con ayuda de los operadores de los equipos de jumbos, empernadores y simbas, se realizó las respectivas pruebas de las brocas en las diferentes galerías (tipo de roca) del nivel 3960 para adquirir como resultado la vida útil de las brocas.

Procedimiento. Se le brindó una broca nueva al operador de cada equipo codificado (marcado) con una nomenclatura a criterio. Al finalizar la guardia, el operador después de perforar entregó la broca usada para su respectivo afilado y el metraje obtenido con dicha broca. Una vez afilado, se le volvió a brindar al operador la broca para realizar la misma actividad de perforar y entregar la broca usada para el afilado y el metraje obtenido con la broca afilada después de finalizar la guardia. Esta acción se realizó hasta considerar un descarte adecuado de la broca.

Criterios a considerar hasta el descarte de la broca. Primero, el nivel a trabajar deberá de ser el mismo, porque el tipo y características del terreno será muy semejante. Segundo, el equipo utilizado deberá ser el mismo, porque tendrá las mismas características mecánicas. Tercero, el operador deberá ser la misma persona, porque la forma de trabajo es única. Cuarto, la broca deberá de ser bien marcada (martillo y marcador de acero) por una nomenclatura, porque al retornar la broca después de perforar se debe de notar dicha marca.

A. Calculo de la vida útil antes del estudio

Dicho cálculo del rendimiento de las brocas se realiza considerando la supervisión empleada anteriormente (estado inicial).

EQUIPO	EMPERNADOR - 700
NIVEL	NV_3960
LABOR	GL_1613
ACERO	BROCA SR28 X 38MM
CÓDIGO	"X-5"
EVIDENCIA	S X

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	W T. H.	12.6m	7.5 m Eig	La broca de 38mm en la GL_1613, tuvo una duración de 33.6 m.
N. DE TALADROS	7	6	3	
LONGITUD DE TALADRO	2.1 m	2.1 m	2.1 m	1
DIÁMETRO DE BROCA	36.9 mm	35.8 mm	34.8 mm	1
LONGITUD DE TALADRO	14.7 m	12.6 m	6.3 m	33.6 m

EQUIPO	EMPERNADOR - 700
NIVEL	NV_3960
LABOR	GL_1633
ACERO	BROCA SR28 X 38MM
CÓDIGO	"X-6"
EVIDENCIA	9 ×

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	we'hi	76 7	3 % 8	La broca de 38mm en la GL_1633, tuvo una duración de 30.3m.
N. DE TALADROS	7	6	5	
LONGITUD DE TALADRO	2.1 m	2.1 m	0.6 m	1
DIÁMETRO DE BROCA	36.5 mm	35.5 mm	34.3 mm	1
LONGITUD DE TALADRO	14.7 m	12.6 m	3 m	30.3m

EQUIPO	EMPERNADOR - 701
NIVEL	NV_3960
LABOR	GL_1653
ACERO	BROCA SR28 X 38MM
CÓDIGO	"X-7"
EVIDENCIA	S Z X

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	16.80	ws.o	wh 8	La broca de 38mm en la GL_1653, tuvo una duración de 35.7 m.
N. DE TALADROS	8	5	4	-
LONGITUD DE TALADRO	2.1 m	2.1 m	2.1 m	1
DIÁMETRO DE BROCA	36.8 mm	36 mm	34.6 mm	1
LONGITUD DE TALADRO	16.8 m	10.5 m	8.4 m	35.7 m

EQUIPO	EMPERNADOR - 701
NIVEL	NV_3960
LABOR	GL_1673
ACERO	BROCA SR28 X 38MM
CÓDIGO	"X-8"
EVIDENCIA	00 ×

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	12.6m	12, 6m	X8X	La broca de 38mm en la GL_1673, tuvo una duración de 33.3m.
N. DE TALADROS	6	6	9	
LONGITUD DE TALADRO	2.1 m	2.1 m	0.9 m	1
DIÁMETRO DE BROCA	37 mm	35.9 mm	35 mm	
LONGITUD DE TALADRO	12.6 m	12.6 m	8.1 m	33.3m

EQUIPO	JUMBO – 38
NIVEL	NV_3960
LABOR	GL_1593
ACERO	BROCA SR35 X 51MM
CÓDIGO	"5"
EVIDENCIA	Jumbo 31 S S S S S S S S S S S S S S S S S S S

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	un seater	36.58m	Jun 60 3 8	La broca de 51mm en la GL_1593, tuvo una duración de 102.58m.
N. DE TALADROS	15	10	7	
LONGITUD DE TALADRO	3 m	3.6 m	3 m]
DIÁMETRO DE BROCA	50 mm	48.5 mm	45.5 mm	1
LONGITUD DE TALADRO	45 m	36.58 m	21 m	102.58 m

EQUIPO	JUMBO – 35
NIVEL	NV_3960
LABOR	GL_1613
ACERO	BROCA SR35 X 51MM
CÓDIGO	"3"
EVIDENCIA	Jumbo 33 Au 39 52

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	36,58	36.58 n	Timber.	La broca de 51mm en la GL_1613, tuvo una duración de 106.08 m
N. DE TALADROS	10	10	9	
LONGITUD DE TALADRO	3.6 m	3.6 m	3.6 m	1
DIÁMETRO DE BROCA	50.5 mm	49 mm	45 mm	1
LONGITUD DE TALADRO	36.58 m	36.58 m	32.922 m	106.08 m

EQUIPO	JUMBO – 38
NIVEL	NV_3960
LABOR	GL_1653
ACERO	BROCA SR35 X 51MM
CÓDIGO	"Y-10"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	7-10" 7-10" 7-10"	36,88m (5)	363m	La broca de 51mm en la GL_1653, tuvo una duración de 109.46 m.
N. DE TALADROS	10	10	11	
LONGITUD DE TALADRO	3.6 m	3.6 m	3.3 m	1
DIÁMETRO DE BROCA	51.8 mm	48.9 mm	45.8 mm	1
LONGITUD DE TALADRO	36.58 m	36.58 m	36.3 m	109.46 m

EQUIPO	JUMBO – 38
NIVEL	NV_3960
LABOR	GL_1593
ACERO	BROCA DOMO 102MM
CÓDIGO	"C-5"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	*C5 21,6**	*C.5.	C5 9,9 1.	La broca rimadora de 102mm en la GL_1593, tuvo una duración de 49.5 m.
N. DE TALADROS	6	5	3	
LONGITUD DE TALADRO	3.6 m	3.6 m	3.3 m	
DIÁMETRO DE BROCA	101 mm	98.9 mm	95.8mm	
LONGITUD DE TALADRO	21.6 m	18 m	9.9 m	49.5 m

EQUIPO	JUMBO – 35
NIVEL	NV_3960
LABOR	GL_1613
ACERO	BROCA SR35 X 51MM
CÓDIGO	"C-7"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	C.7. 19,8	°C-3° 19,8 m	C-9 16,5 m	La broca rimadora de 102mm en la GL_1593, tuvo una duración de 56.1 m.
N. DE TALADROS	6	6	5	
LONGITUD DE TALADRO	3.3 m	3.3 m	3.3 m	
DIÁMETRO DE BROCA	100.9 mm	99.6 mm	95.6mm	
LONGITUD DE TALADRO	19.8 m	19.8 m	16.5 m	56.1 m

EQUIPO	JUMBO – 38
NIVEL	NV_3960
LABOR	GL_1653
ACERO	BROCA DOMO 102MM
CÓDIGO	"C-9"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	19,8	C-9 21,6°	C-9 9,9,	La broca rimadora de 102mm en la GL_1593, tuvo una duración de 51.3 m.
N. DE TALADROS	6	6	3	
LONGITUD DE TALADRO	3.3 m	3.6 m	3.3 m	
DIÁMETRO DE BROCA	100.5 mm	99.3 mm	97mm	
LONGITUD DE TALADRO	19.8 m	21.6 m	9.9 m	51.3 m

EQUIPO	SIMBA-20
NIVEL	NV_3960
LABOR	TJ_1633
ACERO	BROCA T38 X 64MM
CÓDIGO	"3"
EVIDENCIA	Simbor W. 3.80

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	33.46m	23,2 m	Sind 10	La broca de 64mm en el TJ_1633, tuvo una duración de 66.66 m.
N. DE TALADROS	3	2	1	
LONGITUD DE TALADRO	11.153 m	11.6 m	10 m	1
DIÁMETRO DE BROCA	63.5 mm	62 mm	60 mm	
LONGITUD DE TALADRO	33.46 m	23.2 m	10 m	66.66 m

EQUIPO	SIMBA-20
NIVEL	NV_3960
LABOR	TJ_1653
ACERO	BROCA T38 X 64MM
CÓDIGO	"L-2"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	33,3	5 L.2"	12,26 m	La broca de 64mm en el TJ_1653, tuvo una duración de 68.96 m.
N. DE TALADROS	3	2	1	
LONGITUD DE TALADRO	11.1 m	11.7 m	12.26 m	1
DIÁMETRO DE BROCA	63.5 mm	62.5 mm	60 mm	1
LONGITUD DE TALADRO	33.3 m	23.4 m	12.26 m	68.96 m

EQUIPO	SIMBA-20
NIVEL	NV_3960
LABOR	TJ_1633
ACERO	BROCA DOMO 127MM
CÓDIGO	"L-4"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	25cm	English 12,5 m	L4'/	La broca rimadora de 127mm en el TJ_1633, tuvo una duración de 50 m.
N. DE TALADROS	2	1	1	
LONGITUD DE TALADRO	12.5 m	12.5 m	12.5 m	
DIÁMETRO DE BROCA	126.2 mm	123 mm	122.8 mm	
LONGITUD DE TALADRO	25 m	12.5 m	12.5 m	50 m

EQUIPO	SIMBA-20
NIVEL	NV_3960
LABOR	TJ_1653
ACERO	BROCA DOMO 127MM
CÓDIGO	"L-5"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	2.5%	1-5" 14, a an	Lst.	La broca rimadora de 127mm en el TJ_1653, tuvo una duración de 56.34 m.
N. DE TALADROS	2	1	1	
LONGITUD DE TALADRO	14.09 m	14.09 m	14.09 m	
DIÁMETRO DE BROCA	125.9 mm	123.9 mm	123 mm	
LONGITUD DE TALADRO	28.18 m	14.09 m	14.09 m	56.36 m

EQUIPO	SIMBA – 27		
NIVEL	NV_3960		
LABOR	TJ_1613		
ACERO	BROCA T45 X 89MM		
CÓDIGO	"L-7"		
EVIDENCIA			

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	23.60	· L.7"	24,95	La broca de 89mm en el TJ_1613, tuvo una duración de 77.76 m.
N. DE TALADROS	3	3	3	
LONGITUD DE TALADRO	9.2 m	8.4 m	8.32 m	
DIÁMETRO DE BROCA	88.7 mm	87.5 mm	85.1 mm	
LONGITUD DE TALADRO	27.6 m	25.2 m	24.96 m	77.76 m

EQUIPO	SIMBA – 27
NIVEL	NV_3960
LABOR	TJ_1673
ACERO	BROCA T45 X 89MM
CÓDIGO	"L-8"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	L-8"	25.5%	26.06-	La broca de 89mm en el TJ_1673, tuvo una duración de 80.26 m.
N. DE TALADROS	2	2	2	
LONGITUD DE TALADRO	14.2 m	12.9 m	13.03 m	1
DIÁMETRO DE BROCA	88.9 mm	87.7 mm	84.8 mm	1
LONGITUD DE TALADRO	28.4 m	25.8 m	26.06 m	80.26 m

EQUIPO	SIMBA – 27
NIVEL	NV_3960
LABOR	TJ_1613
ACERO	BROCA T45 X 152MM
CÓDIGO	"L-10"
EVIDENCIA	Par de la companya de

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	L 10" 25,4"	L-10" 25,4"	L-10"	La broca rimadora de 152mm en el TJ_1613, tuvo una duración de 63.5 m.
N. DE TALADROS	2	2	1	
LONGITUD DE TALADRO	12.7 m	12.7 m	12.7 m	
DIÁMETRO DE BROCA	151.8 mm	149.8 mm	146.4 mm	
LONGITUD DE TALADRO	25.4 m	25.4 m	12.7 m	63.5 m

EQUIPO	SIMBA – 27
NIVEL	NV_3960
LABOR	TJ_1673
ACERO	BROCA T45 X 152MM
CÓDIGO	"L-11"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	L-11" 27,25,0	CN" 27,24	13'84 w	La broca rimadora de 152mm en el TJ_1673, tuvo una duración de 68.4 m.
N. DE TALADROS	2	2	1	7
LONGITUD DE TALADRO	13.64 m	13.64 m	13.64 m	1
DIÁMETRO DE BROCA	150.9 mm	148.7 mm	1146 mm	1
LONGITUD DE TALADRO	27.28 m	27.28 m	13.84 m	68.4 m

✓ Resumen de los resultados del rendimiento de las brocas antes del estudio

En el cuadro se puede observar los resultados obtenidos de las pruebas realizadas respecto al cálculo de vida útil (rendimiento) de las brocas, donde se registra las diferentes pruebas realizadas.

Tabla 11. Resultados de la vida útil antes del estudio

DESCRIPCIÓN DE LA				NIVEL 3960							
BROCA DIÁMETRO	DIÁMETRO	GL_1593		GL_1613		GL_1633		GL_1653		GL_1673	
BROOK		EQUIPO	METRAJE	EQUIPO	METRAJE	EQUIPO	METRAJE	EQUIPO	METRAJE	EQUIPO	METRAJE
BROCA BOTÓN SR28 X 38MM	38 mm	-	-	E-700	33.6 m	E-700	30.3 m	E-701	35.7 m	E-701	33.3 m
BROCA SR35 X 51MM BOT. ESF.	51 mm	J-38	102.58 m	J-35	106.08 m	-	-	J-38	109.46 m	-	-
BROCA DOMO SR35 102MM ESF.	102 mm	J-38	49.5 m	J-35	56.1 m		-	J-38	51.3 m	-	-
BROCA RETRAC. DC T38 X 64MM	64 mm	-	-	-	-	S-20	66.66 m	S-20	68.96 m	-	-
BROCA DOMO T38 X 127MM ESF.	127 mm	ı	1	1	-	S-20	50 m	S-20	56.36 m	ı	-
BROCA T45 x 89MM POWERBIT	89 mm	1	-	S-27	77.76 m	1	-	-	-	S-27	80.26 m
BROCA RIMADORA T45 152 MM	152 mm	-	-	S-27	63.5 m	-	-	-	-	S-27	68.40 m

B. Cálculo de la vida útil después del estudio

Dicho cálculo del rendimiento de las brocas se realiza considerando la supervisión empleada actualmente.

EQUIPO	EMPERNADOR - 700
NIVEL	NV_3960
LABOR	GL_1713
ACERO	BROCA SR28 X 38MM
CÓDIGO	"L-10"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	16.80	L10"	2 - 101. T	La broca de 38mm en la GL_1713, tuvo una duración de 39.9 m.
N. DE TALADROS	8	7	4]
LONGITUD DE TALADRO	2.1 m	2.1 m	2.1 m	1
DIÁMETRO DE BROCA	37 mm	36.5 mm	34.8 mm	1
LONGITUD DE TALADRO	16.8 m	14.7 m	8.4 m	39.9 m

EQUIPO	EMPERNADOR - 700
NIVEL	NV_3960
LABOR	GL_1733
ACERO	BROCA SR28 X 38MM
CÓDIGO	"L-11"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	16.30 "L-1"	14.3m	10.5m	La broca de 38mm en la GL_1733, tuvo una duración de 42 m.
N. DE TALADROS	8	7	5	
LONGITUD DE TALADRO	2.1 m	2.1 m	2.1 m	1
DIÁMETRO DE BROCA	37.5 mm	36.8 mm	34.5 mm	
LONGITUD DE TALADRO	16.8 m	14.7 m	10.5 m	42 m

EQUIPO	EMPERNADOR - 701
NIVEL	NV_3960
LABOR	GL_1773
ACERO	BROCA SR28 X 38MM
CÓDIGO	"L-12"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	16.8m	I LANGE	W 6 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	La broca de 38mm en la GL_1773, tuvo una duración de 40.5 m.
N. DE TALADROS	8	7	10	
LONGITUD DE TALADRO	2.1 m	2.1 m	0.9 m	1
DIÁMETRO DE BROCA	37.9 mm	37.3 mm	34.7 mm	1
LONGITUD DE TALADRO	16.8 m	14.7 m	9 m	40.5 m

EQUIPO	EMPERNADOR - 701
NIVEL	NV_3960
LABOR	GL_1793
ACERO	BROCA SR28 X 38MM
CÓDIGO	"L-13"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	15.10	14,7m	\$1-13"	La broca de 38mm en la GL_1793, tuvo una duración de 41.7 m.
N. DE TALADROS	9	7	9	
LONGITUD DE TALADRO	2.1 m	2.1 m	0.9 m	
DIÁMETRO DE BROCA	37.7 mm	36.5 mm	34.8 mm	
LONGITUD DE TALADRO	18.9 m	14.7 m	8.1 m	41.7 m

EQUIPO	JUMBO – 38
NIVEL	NV_3960
LABOR	GL_1713
ACERO	BROCA SR35 X 51MM
CÓDIGO	"C-10"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	C-10"	39,6m	Z-10" 39,6m	La broca de 51mm en la GL_1713, tuvo una duración de 122.4 m.
N. DE TALADROS	12	11	11	
LONGITUD DE TALADRO	3.6 m	3.6 m	3.6 m	
DIÁMETRO DE BROCA	50.8 mm	49 mm	46 mm	
LONGITUD DE TALADRO	43.2 m	39.6 m	39.6 m	122.4 m

EQUIPO	JUMBO – 35
NIVEL	NV_3960
LABOR	GL_1753
ACERO	BROCA SR35 X 51MM
CÓDIGO	"C-11"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	C-11"	C-11"	38.6m	La broca de 51mm en la GL_1753, tuvo una duración de 126 m
N. DE TALADROS	12	12	11	
LONGITUD DE TALADRO	3.6 m	3.6 m	3.6 m	
DIÁMETRO DE BROCA	50.5 mm	48.7 mm	45.9 mm	
LONGITUD DE TALADRO	43.2 m	43.2 m	39.6 m	126 m

EQUIPO	JUMBO – 38
NIVEL	NV_3960
LABOR	GL_1793
ACERO	BROCA SR35 X 51MM
CÓDIGO	"C-12"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	*C-12"1 119,2m		35,1 m	La broca de 51mm en la GL_1793, tuvo una duración de 121.5 m.
N. DE TALADROS	12	12	13	
LONGITUD DE TALADRO	3.6 m	3.6 m	2.7 m	1
DIÁMETRO DE BROCA	49 mm	47 mm	45.8 mm	1
LONGITUD DE TALADRO	43.2 m	43.2 m	35.1 m	121.5 m

EQUIPO	JUMBO – 38
NIVEL	NV_3960
LABOR	GL_1713
ACERO	BROCA DOMO 102MM
CÓDIGO	"C-15"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	C-45 21,6	C-15 21,6 **	C-15 21,6m	La broca rimadora de 102mm en la GL_1713, tuvo una duración de 64.8 m.
N. DE TALADROS	6	6	6	
LONGITUD DE TALADRO	3.6 m	3.6 m	3.6 m	1
DIÁMETRO DE BROCA	100.5 mm	99.3 mm	97mm	
LONGITUD DE TALADRO	21.6 m	21.6 m	21.6 m	64.8 m

EQUIPO	JUMBO – 35
NIVEL	NV_3960
LABOR	GL_1753
ACERO	BROCA DOMO 102MM
CÓDIGO	"C-16"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	C-16 21,6m	C-16 21,6 m	C-16 26,4	La broca rimadora de 102mm en la GL_1753, tuvo una duración de 69.6 m.
N. DE TALADROS	6	6	8	
LONGITUD DE TALADRO	3.6 m	3.6 m	3.3 m	1
DIÁMETRO DE BROCA	100.3 mm	98.8 mm	96mm	1
LONGITUD DE TALADRO	21.6 m	21.6 m	26.4 m	69.6 m

EQUIPO	JUMBO – 38
NIVEL	NV_3960
LABOR	GL_1793
ACERO	BROCA DOMO 102MM
CÓDIGO	"C-17"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	C-19/21,6 m	C-14	C-17-19,5m	La broca rimadora de 102mm en la GL_1793, tuvo una duración de 63 m.
N. DE TALADROS	6	6	6	
LONGITUD DE TALADRO	3.6 m	3.6 m	3.3 m	1
DIÁMETRO DE BROCA	101 mm	99.3 mm	95.8mm	1
LONGITUD DE TALADRO	21.6 m	21.6 m	19.8 m	63 m

EQUIPO	SIMBA-20
NIVEL	NV_3960
LABOR	TJ_1733
ACERO	BROCA T38 X 64MM
CÓDIGO	"X-10"
EVIDENCIA	X O

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	33.3	* X10" 34.2n	7.9m	La broca de 64mm en el TJ_1733, tuvo una duración de 75.4 m.
N. DE TALADROS	3	3	1	
LONGITUD DE TALADRO	11.1 m	11.4 m	7.9 m	1
DIÁMETRO DE BROCA	62.5 mm	61.5 mm	59.8 mm	1
LONGITUD DE TALADRO	33.3 m	34.2 m	7.9 m	75.4 m

EQUIPO	SIMBA-20
NIVEL	NV_3960
LABOR	TJ_1773
ACERO	BROCA T38 X 64MM
CÓDIGO	"X-11"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	34.5	34.5m.	, 11 X,	La broca de 64mm en el TJ_1773, tuvo una duración de 79.1 m.
N. DE TALADROS	3	2	1	
LONGITUD DE TALADRO	11.5 m	11.5 m	10.1 m	
DIÁMETRO DE BROCA	63.1 mm	62 mm	59.9 mm	
LONGITUD DE TALADRO	34.5 m	34.5 m	10.1 m	79.1 m

EQUIPO	SIMBA-20
NIVEL	NV_3960
LABOR	TJ_1733
ACERO	BROCA DOMO 127MM
CÓDIGO	"X-12"
EVIDENCIA	XI2

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	×-12". 2-6,02m	X-2 ^x 2-em	13 m	La broca rimadora de 127mm en el TJ_1733, tuvo una duración de 65.02 m.
N. DE TALADROS	2	2	1	
LONGITUD DE TALADRO	13.01 m	13 m	13 m	
DIÁMETRO DE BROCA	126.2 mm	124.7 mm	121.8 mm	
LONGITUD DE TALADRO	26.02 m	26 m	13 m	65.02 m

EQUIPO	SIMBA-20
NIVEL	NV_3960
LABOR	TJ_1773
ACERO	BROCA DOMO 127MM
CÓDIGO	"x-13"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA		*-u°	15.78°	La broca rimadora de 127mm en el TJ_1773, tuvo una duración de 68.9 m.
N. DE TALADROS	2	2	1	
LONGITUD DE TALADRO	13.78 m	13.78 m	13.78 m	
DIÁMETRO DE BROCA	126 mm	124.3 mm	121.4 mm	
LONGITUD DE TALADRO	27.56 m	27.56 m	13.78 m	68.9 m

EQUIPO	SIMBA – 27
NIVEL	NV_3960
LABOR	TJ_1713
ACERO	BROCA T45 X 89MM
CÓDIGO	"M-10"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	38m	M-10"	25,67m	La broca de 89mm en el TJ_1713, tuvo una duración de 90.4 m.
N. DE TALADROS	4	3	3	
LONGITUD DE TALADRO	9.5 m	8.92 m	8.54 m	1
DIÁMETRO DE BROCA	88.7 mm	86.5 mm	85 mm	1
LONGITUD DE TALADRO	38 m	26.76 m	25.64 m	90.4 m

EQUIPO	SIMBA – 27
NIVEL	NV_3960
LABOR	TJ_1773
ACERO	BROCA T45 X 89MM
CÓDIGO	"M-11"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	36.4m	27m	"M-11"	La broca de 89mm en el TJ_1773, tuvo una duración de 89.2 m.
N. DE TALADROS	4	3	3	
LONGITUD DE TALADRO	9.1 m	9 m	8.6 m	1
DIÁMETRO DE BROCA	88.7 mm	86.5 mm	85 mm	
LONGITUD DE TALADRO	36.4 m	27 m	25.8 m	89.2 m

EQUIPO	SIMBA – 27
NIVEL	NV_3960
LABOR	TJ_1713
ACERO	BROCA T45 X 152MM
CÓDIGO	"M-12"
EVIDENCIA	

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	M-12" 25,04"	'M-12" 25,04m	17-12" 25 pH m	La broca rimadora de 152mm en el TJ_1713, tuvo una duración de 75.12 m.
N. DE TALADROS	2	2	2	-
LONGITUD DE TALADRO	12.52 m	12.52 m	12.52 m	1
DIÁMETRO DE BROCA	151.1 mm	148.5 mm	146.9 mm	1
LONGITUD DE TALADRO	25.04 m	25.04 m	25.04 m	75.12 m

EQUIPO	SIMBA – 27
NIVEL	NV_3960
LABOR	TJ_1773
ACERO	BROCA T45 X 152MM
CÓDIGO	"M-13"
EVIDENCIA	MIS

	PRIMERO	SEGUNDO	TERCERO	OBSERVACIÓN
EVIDENCIA	74.06 24.00	M-13 ¹¹ M-13 ¹¹	M-13 tr	La broca rimadora de 152mm en el TJ_1773, tuvo una duración de 74.58 m.
N. DE TALADROS	2	2	2	
LONGITUD DE TALADRO	12.43 m	12.43 m	12.43 m	
DIÁMETRO DE BROCA	151.1 mm	148.5 mm	146.9 mm	1
LONGITUD DE TALADRO	24.86 m	24.86 m	24.86 m	74.58 m

[✓] Resumen de resultados del rendimiento de las brocas después del estudio:

En el cuadro se puede observar los resultados obtenidos de las pruebas realizadas respecto al cálculo de vida útil (rendimiento) de las brocas, donde se registra las diferentes pruebas realizadas después del estudio y colocando el resultado en cada galería respectiva del nivel 3960.

Tabla 12. Resultados de la vida útil después del estudio

						NIVE	L 3960				
DESCRIPCIÓN DE LA BROCA	DIÁMETRO	GL_1713		GL_1733		GL_1753		GL_1773		GL_1793	
		EQUIPO	METRAJE								
BROCA BOTÓN SR28 X 38MM	38 mm	E-700	39.9 m	E-700	42 m	-	-	E-701	40.5 m	E-701	41.7 m
BROCA SR35 X 51MM BOT. ESF.	51 mm	J-38	122.4 m	-	-	J-35	126 m	-	-	J-38	121.5 m
BROCA DOMO SR35 102MM ESF.	102 mm	J-38	64.8 m	-	-	J-35	69.6 m	-	-	J-38	63 m
BROCA RETRAC. DC T38 X 64MM	64 mm	-	-	S-20	75.4 m	-	-	S-20	79.1 m	-	-
BROCA DOMO T38 X 127MM ESF.	127 mm	-	-	S-20	65.02 m	-	-	S-20	68.9 m	-	-
BROCA T45 x 89MM POWERBIT	89 mm	S-27	90.4 m	-	-	-	-	S-27	89.2 m	-	-
BROCA RIMADORA T45 152 MM	152 mm	S-27	75.12 m	-	-	-	-	S-27	74.58 m	-	-

4.2.2. Análisis del rendimiento de las brocas de ambas pruebas

En el siguiente cuadro se muestra los resultados de ambas pruebas (antes y después del estudio), donde realizamos un promedio por cada tipo de broca (según diámetro). Consecuentemente se realiza una comparación y se saca el valor de cuanto porciento fue incrementado o disminuido entre las dos pruebas realizadas.

Tabla 13. Análisis del rendimiento

	PRIMERA PRUEBA (ANTES DEI	L ESTUDIO)	SEGUNDA PRUEBA (DESPUÉS I	DEL ESTUDIO)	INCREMENTO	
	PRUEBAS	PROMEDIO	PRUEBAS	PROMEDIO	INCREMENTO	
	33.60		39.90			
BROCA BOTÓN SR28 X 38MM	30.30	33.23	42.00	41.03	23.5%	
BROCA BOTON SR25 A 36MM	35.70	33.23	40.50	41.03	23.3 /0	
	33.30		41.70			
	102.58		122.40			
BROCA SR35 X 51MM BOT. ESF.	106.08	106.04	126.00	123.13	16.1%	
	109.46		121.00			
	49.50		64.80			
BROCA DOMO SR35 102MM ESF.	56.10	52.30	69.60	65.80	25.8%	18.9%
	51.30		63.00			10.9 /0
BROCA RETRAC. DC T38 X 64MM	66.66	67.81	75.40	77.25	13.9%	
BROCA RETRAC. DC 130 A 04MM	68.96	07.81	79.10	77.23	13.770	
BROCA DOMO T38 X 127MM ESF.	50.00	53.18	65.02	66.96	25.9%	
BROCA DOMO 136 A 127MM ESF.	56.36	33.16	68.90	00.50	23.770	
BROCA T45 x 89MM POWERBIT	77.76	79.01	90.40	89.80	13.7%	
DROCA 140 A 07/MINI I OWERDII	80.26	79.01	89.20	69.60	13.770	
BROCA RIMADORA T45 152 MM	63.50	65.95	75.12	74.85	13.5%	
BROCA RIMADORA 145 152 MINI	68.40	03.73	74.58	77.03	13.370	

Como se muestra en los resultados obtenidos en la Tabla 11, se puede observar que las pruebas realizadas después del estudio existen un incremento a partir de las primeras pruebas realizadas antes del estudio.

4.2.3. Recomendaciones para trabajar con el juego de brocas necesarias

Todos los días los operadores vienen solicitando brocas para realizar su trabajo (perforar), así que piden una cantidad de brocas no muy exacta, pidiendo hay veces muy pocas brocas y haciendo sobre-perforar las brocas por necesidad de culminar su labor, otros días pidiendo muchas brocas y para transportar padecen realizando sobre-esfuerzo humano. Hoy en día con las pruebas necesarias que se realizaron (rendimiento de una broca según el nivel a perforar), los resultados nos ayudan para que el operador pueda llevar con exactitud la cantidad de brocas necesarias para abastecerse y cumplir con el trabajo, sin necesidad de realizar sobre-esfuerzo humano, ni sobre-perforar las brocas. En el siguiente cuadro se muestra algunos resultados.

Tabla 14. Recomendación para solicitar el número de brocas necesarias

NIVEL	OBSERVACIÓN DEL TIPO DE TERRENO	DIÁMETRO DE BROCA	ESTADO DE BROCA	CANTIDAD DE METROS QUE DURA UNA BROCA SEGÚN EL ESTADO (M)	NÚMERO DE FRENETES O FILAS	NÚMERO DE TALADROS O PERNOS A PERFORAR	LONGITUD DE TALADRO (M)	LONGITUD TOTAL A PERFORAR (M)	NÚMERO DE BROCAS QUE NECESITA PARA PERFORAR DICHA LABOR (N. BROCAS)
	EL TERRENO ES	BROCA DE 38	NUEVO	40.79					5
3960	DURO	mm	1° AFILADA	36.58	2	42	2.1	176.4	5
			2° AFILADA	32.922					6
	EL TERRENO ES	BROCA DE 51	NUEVO	40.79					4
3960	DURO	mm	1° AFILADA	36.58	2	42	3.6	151.2	5
	20110		2° AFILADA	32.922				5	
	EL TERRENO ES DURO	BROCA DE 64	NUEVO	25.46					4
3960		mm	1° AFILADA	23.2	1	12	8	96	5
			2° AFILADA	10					9
	EL TERRENO ES	BROCA DE 89	NUEVO	27	1		9.5	133	5
3960	DURO DURO	mm	1° AFILADA	24.6		14			6
	Beke		2° AFILADA	23.54					6
	EL TERRENO ES	BROCA DE	NUEVO	24					1
3960	DURO	102 mm	1° AFILADA	20.54	2	4	3.6	14.4	1
	DUKO	102 mm	2° AFILADA	18.32					1
	EL TERRENO ES	BROCA DE	NUEVO	23.5					3
3960	DURO	127 mm	1° AFILADA	18.3	1	6	8	48	3
	DUKO	127 111111	2° AFILADA	16.3					3
	EL TERRENO ES	BROCA DE	NUEVO	23.6					3
3960	DURO	152 mm	1° AFILADA	15.8	1	6	9.5	57	4
	DUKU	132 11111	2° AFILADA	14.6					4

4.3. Análisis Enfocado a la Operatividad de los Equipos

4.3.1. Equipos de perforación empleados en la U.M. Colquijirca

Tabla 15. Equipos de Perforaciónes Jrc-El Brocal

	INVENTARIO DE EQUIPOS DE PERFORACIÓN EL LA U.M. COLQUIJIRCA													
N.	FLOTA	CÓDIGO	FAMILIA	MARCA	MODELO	AÑO								
	JUMBOS EMPERNADORES													
01	JUMBO EMPER.	2JE029	EMPERNADOR	SANDVICK	ROBOLT DS311	2017								
02	JUMBO EMPER.	2JE0706	EMPERNADOR	ATLAS	BOLTEC S	2013								
03	JUMBO EMPER.	2JE700 (Rent)	EMPERNADOR	ATLAS	BOLTEC 235	2012								
04	JUMBO EMPER.	2JE701 (Rent)	EMPERNADOR	ATLAS	BOLTEC 235	2012								
05	JUMBO EMPER.	2JE702 (Rent)	EMPERNADOR	ATLAS	BOLTEC 235	2012								
	JUMBOS FRONTONEROS													
06	JUMBO FRON.	2JF030	JUMBO	SANDVIK	DD311	2016								
07	JUMBO FRON.	2JF033	JUMBO	ATLAS	S1D	2016								
08	JUMBO FRON.	2JF035	JUMBO	ATLAS	RB282	2017								
08	JUMBO FRON.	2JF037	JUMBO	ATLAS	RB282	2017								
09	JUMBO FRON.	2JF038	JUMBO	ATLAS	RB282	2017								
			SIMBAS											
10	SIMBA	2JL010	SIMBA	ATLAS	S7D	2010								
11	SIMBA	2JL018	SIMBA	ATLAS	S7D	2013								
12	SIMBA	2JL020	SIMBA	ATLAS	S7D	2014								
13	SIMBA	2JL023	SIMBA	ATLAS	S7D	2016								
14	SIMBA	2JL026	SIMBA	ATLAS	S7D	2017								
15	SIMBA	2JL027	SIMBA	ATLAS	H1254	2017								

4.3.2. Seguimiento de los equipos de perforación en la U.M. Colquijirca

- A. El procedimiento que se debe de seguir para realizar una correcta asistencia técnica a los equipos de perforación es el siguiente:
 - El personal de RDT deberá recibir la capacitación de 5 minutos y su orden de trabajo para poder ingresar a interior mina. (Coordinar el trabajo a realizar).
 - II. El personal de RDT deberá verificar que cuente con los EPPS apropiados para realizar la asistencia técnica en Interior Mina.
 - III. Adicional a esto el personal deberá llevar el Tacómetro y Pirómetro para realizar la toma de datos tanto de RPM, así como de Temperatura en las uniones roscadas, no olvidar llevar el formato de Asistencia Técnica, así como el Acta de Capacitaciones.
 - IV. El personal de RDT deberá INSPECCIONAR la labor desde su ingreso, observando las condiciones del techo y hastiales, ubicación del equipo.
 - V. Una vez llegado a la señalización de bloqueo, solicitar el ingreso al Operador o ayudante.
 - VI. Acto seguido verificar que no haya inducción en el equipo, acercarse y coordinar con el Operador lo que se va a realizar.
 - VII. Para no interrumpir la labor del Operador, si está perforando se tomarán las presiones de trabajo observando los manómetros en el tablero y se tomara la temperatura en las uniones roscadas de la columna de perforación.

- VIII. Acto seguido y ya habiendo terminado el taladro de perforación, se coordina con el operador para realizar la medición de RPM mientras se está entubando el taladro.
 - IX. Luego de verificar las RPM, se coordina con el operador para verificar el estado de los aceros de perforación, tanto el *shank* como las barras y brocas que hay en el equipo. Adicional a ello se verifica el estado del *dowell*, alineamiento de los Brazos transportadores de barras, estado de la viga, estado de centralizador del *shank*, lubricación de la perforadora.
 - X. Mientras el operador continúa perforando se realiza la toma de tiempos de perforación (tiempo de penetración, tiempo promedio de perforación por taladro). Además, se deberá detectar el tipo de terreno que se perfora tanto en abrasividad, dureza y la presencia de fracturas.
 - XI. En plena perforación también se podrá detectar las fugas que pueda presentar el equipo, se podrá observar la condición de los acumuladores (si estos presentan excesiva vibración en sus mangueras hidráulicas es señal de que estén descargados).
- XII. Durante la perforación se podrá también observar el posicionamiento, emboquillado y desplazamiento.
- XIII. Ya para finalizar nuestra asistencia al equipo, se realiza la Capacitación al personal en la labor haciendo les firmar el Acta de Capacitación.
- XIV. Al terminar la asistencia, se hace la verificación de que los documentos estén correctamente llenados y firmados, se hace la limpieza de los instrumentos de medición, se le comunica al operador que ya se ha terminado la asistencia y se procede a retirar de la labor.

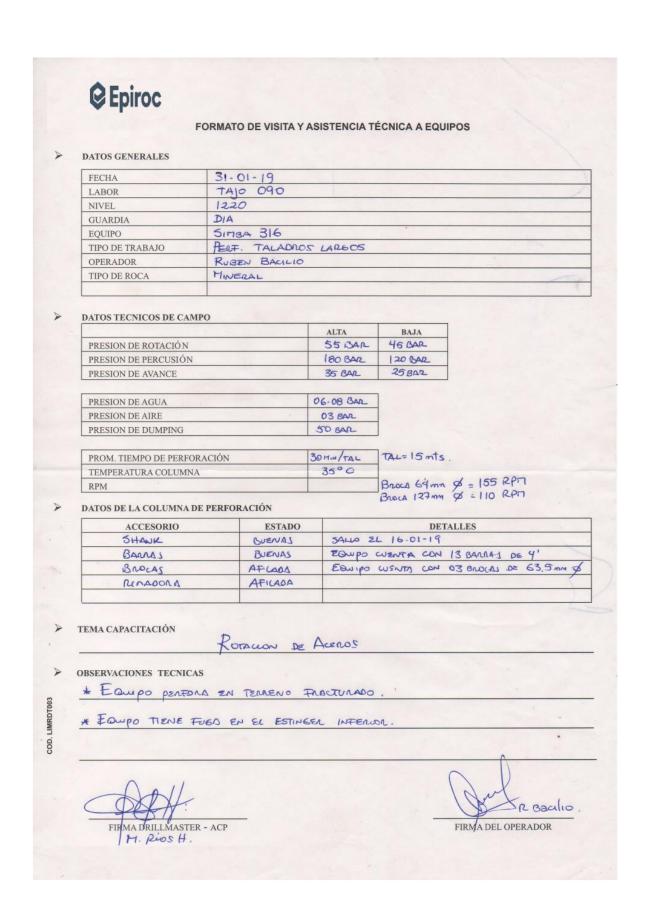


Figura 31. Formato de asistencia técnica

B. Cronograma de asistencia técnica

Dicho cronograma nos ayudó a planificar para llevar a cabo la realización de las asistencias técnicas para todos los equipos de perforación, con la finalidad de que todos los equipos sean inspeccionados.

Tabla 16. Cronograma de asistencias técnicas – El Brocal/Colquijirca

	CRONOGRAMA DE ASISTENCIAS TECNICAS											
N°	FOLUDO	CHARDIA DECDONCARIE		JUI	NIO		JULIO		CLIMBLINAIENTO	ODCEDVACIONEC		
IN	EQUIPO	GUARDIA RESPONSABLE	SEMANA 1	SEMANA 2	SEMANA 3	SEMANA 4	SEMANA 1	SEMANA 2	SEMANA 3	SEMANA 4	CUMPLIMIENTO	OBSERVACIONES
1	EMPERNADOR-29	А	DIA				DIA				100%	
2	EMPERNADOR-32	А	DIA				DIA				100%	
3	EMPERNADOR-700	С	NOCHE				NOCHE				100%	
4	EMPERNADOR-702	С	NOCHE				NOCHE				100%	
5	EMPERNADOR-706	В		DIA				DIA			100%	
6	JUMBO-30	В		DIA				DIA			100%	SE REALIZO OTRA FECHA
7	JUMBO-33	А		NOCHE				NOCHE			100%	
8	JUMBO-35	А		NOCHE				NOCHE			100%	
9	JUMBO-37	С			DIA				DIA		100%	
10	JUMBO-38	С			DIA				DIA		100%	
11	SIMBA-10	В			NOCHE				NOCHE		100%	
12	SIMBA-18	В			NOCHE				NOCHE		100%	SE REALIZO OTRA FECHA
13	SIMBA-20	А				DIA				DIA	100%	
14	SIMBA-23	А				DIA				DIA	100%	
15	SIMBA-26	С				NOCHE				NOCHE	100%	
16	SIMBA-27	С				NOCHE				NOCHE	100%	

C. Asistencias técnicas realizado a los equipos de perforación

Se lleva a cabo la realización de dichas asistencias técnicas según los cronogramas planificados, con la finalidad de identificar el estado actual de los equipos (relacionado a los componentes de perforación), posteriormente presentar un informe donde especificaremos que medidas correctivas le falta al equipo para tener un rendimiento óptimo.

I. ASISTENCIA TÉCNICA SIMBA 23

FECHA : 03-05-2019

TURNO : Día

OPERADOR : Arroyo Condori

NIVEL : 4012

TAJO : TJ 1493

Ocurrencia

El viernes 03 de mayo del presente año, en el turno día guardia C. Se realizó la asistencia técnica al S-23.

Observaciones

El equipo se encuentra perforando en el NV 4012 taladros en abanico, entre las observaciones tenemos las siguientes:

- La RPM muy elevada a 177 el cual se midió con el tacómetro.
- Baja presión de aire (3 bares), dificultando el barrido de los detritos.
- Raspado de piso irregular para la perforación en negativo.

Figura 32. Medición de las rpm.

Figura 33. Baja presión de aire (3 bares).

Conclusiones y recomendaciones

- Mejorar la presión de aire, para mejorar el barrido de los detritos, mucho más en taladros pasantes.
- Corregir la RPM del equipo a 145 que es lo normal.
- Mejorar en el raspado de piso de las labores.
- Hacer taladro de drenaje, para que no se empoce el agua.

II. ASISTENCIA TÉCNICA JUMBO 35 (B.I.)

FECHA : 17-05-2019

TURNO : Día

OPERADOR : Danny Falcon

NIVEL: 3952

TAJO : GL_1728

Ocurrencia

El día viernes 17 de mayo del presente año, en el turno día guardia A. Se realizó la asistencia técnica al J-35.

Observaciones

Se realizó la asistencia técnica al equipo frontonero (Jumbo-35) operador Sr. Danny Falcón, el cual se encontraba realizando los trabajos de perforación de frente en el GL_1728 en el NV_3952, así mismo se observó los parámetros de perforación, también se midió los rpm encontrándose bajo del intervalo y se observó el desgaste de los centralizadores intermedio y delantero.

Tabla 17. Parámetros de perforación del Jumbo 35

DATOS TÉCNICOS DE CAMPO	ALTA	BAJA
PRESIÓN DE ROTACIÓN	50 BAR	30 BAR
PRESIÓN DE PERCUSIÓN	180 BAR	140 BAR
PRESIÓN DE AVANCE	70 BAR	60 BAR
PRESIÓN D AGUA	03 BAR	
PRESIÓN DE AIRE	07 BAR	
PRESIÓN DE DUMPING	-	
	01:20 MINUTOS - 13	
PROMEDIO TIMPO DE PERFORACIÓN	PIES	
TEMPERATURA DE LA COLUMNA	32°C	
RPM	150	

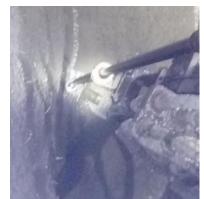


Figura 34. Desgaste del centralizador intermedio y delantero

Figura 35. Medición de las rpm y temperatura de la columna

Conclusiones y recomendaciones

- El equipo necesita programar el cambio del centralizador Intermedio y delantero que tiene un desgaste.
- Se recomienda regular los rpm a 180.
- Se recomienda llevar un juego de brocas de 12 a 14 und., debido a que el terreno es muy abrasivo.

III. ASISTENCIA TÉCNICA JUMBO-38 (B.D.)

FECHA : 17-05-2019

TURNO : Día

OPERADOR : Rómulo Casani

NIVEL : 3960

TAJO : GL_1693

Ocurrencia

El día viernes 17 de mayo del presente año, en el turno día guardia A. Se realizó la asistencia técnica al J-38.

Observaciones

Se realizó la asistencia técnica al equipo frontonero (Jumbo-38) operador Sr. Rómulo Casani el cual se encontraba realizando los trabajos de perforación de frente en el GL_1693 en el NV_3960. Se observó los aceros de perforación encontrándose en buen estado, también se midió los rpm encontrándose muy elevado y el centralizador se encuentra con desgaste.

Tabla 18. Parámetros de perforación del jumbo 38

DATOS TÉCNICOS DE CAMPO	ALTA	BAJA
PRESIÓN DE ROTACIÓN	40 BAR	30 BAR
PRESIÓN DE PERCUSIÓN	180 BAR	140 BAR
PRESIÓN DE AVANCE	90 BAR	50 BAR
PRESIÓN D AGUA	08 BAR	
PRESIÓN DE AIRE	06 BAR	
PRESIÓN DE DUMPING		
PROMEDIO TIMPO DE PERFORACIÓN	01:30 Minutos – 13 pies	
TEMPERATURA DE LA COLUMNA	29°C	
RPM	190	

Figura 36. Desgaste del centralizador intermedio

Figura 37. Medición de las rpm y temperatura de la columna

Conclusiones y recomendaciones

- El equipo de perforación de taladros largos (Simba 26) trabaja con los RPM elevado por lo cual necesita regular al intervalo de 120 – 140 rpm.
- Se recomienda llevar de 8 a 10 brocas por el tipo de terreno a perforar.

IV. ASISTENCIA TÉCNICA SIMBA - 26

FECHA : 20-05-2019

TURNO : Día

OPERADOR : Miguel Cotera

NIVEL : 4012

TAJO : TJ_1493

Ocurrencia

El día lunes 20 de mayo del presente año, en el turno día guardia A. Se realizó la asistencia técnica al S-26.

Observaciones

Se realizó la visita técnica al equipo de perforación de taladros largos (Simba-26) operador Sr. Miguel Cotera el cual se encontraba realizando los trabajos de perforación en el Nv_4012 / TJ_1493, se procedió a medir los rpm encontrándose muy elevados y a calcular la temperatura de la columna de perforación con el pirómetro.

Tabla 19. Parámetros de perforación del simba-26

DATOS TÉCNICOS DE CAMPO	ALTA	BAJA	
PRESIÓN DE ROTACIÓN	60 BAR	40 BAR	
PRESIÓN DE PERCUSIÓN	170 BAR	140 BAR	
PRESIÓN DE AVANCE	30 BAR	20 BAR	
PRESIÓN D AGUA	18 BAR		
PRESIÓN DE AIRE	2.8 BAR		
PRESIÓN DE DUMPING	55 BAR		
PROMEDIO TIMPO DE PERFORACIÓN	01:10 Minutos – 5 pies		
TEMPERATURA DE LA COLUMNA	23°C		
RPM		208	

Figura 38. Perforación en paralelo (+)

Figura 39. Medición de las RPM y temperatura

Conclusiones y recomendaciones

- Se recomienda el cambio del centralizador intermedio para evitar la desviación de la barra.
- Se recomienda regular los rpm a 180 para conservar el buen estado de la columna de perforación.

V. ASISTENCIA TÉCNICA SIMBA - 20

FECHA : 11-06-2019

TURNO : Día

OPERADOR : Melendez Paquiyauri

NIVEL : 4220

TAJO : GL_9157

OCURRENCIA

El día martes 11 de junio del presente año, en el turno día guardia A. Se realizó la asistencia técnica al S-20.

OBSERVACIONES

Se realizó la visita técnica al equipo de perforación de taladros largos (Simba-20) operador Sr. Melendez Paquiyauri, el cual se encontraba realizando los trabajos de perforación en el NV_4220 GL_9157. Se observó que el equipo presenta fallas de su selector de brocas, es así que el operador está perforando con el mismo RPM con la broca de 64 mm y rimando con la broca rimadora de 127 mm, también se realizó la medición de los rpm, donde se encontró dentro del intervalo y al calcular la temperatura de la columna de perforación con el pirómetro.

Tabla 20. Parámetros de perforación del simba-20

DATOS TÉCNICOS DE CAMPO	ALTA	BAJA	
PRESIÓN DE ROTACIÓN	60 BAR	40 BAR	
PRESIÓN DE PERCUSIÓN	190 BAR	150 BAR	
PRESIÓN DE AVANCE	50 BAR	40 BAR	
PRESIÓN D AGUA	09 BAR		
PRESIÓN DE AIRE	04	4 BAR	
PRESIÓN DE DUMPING	60 BAR		
PROMEDIO TIMPO DE PERFORACIÓN	01:32 Minutos – 5 pies		
TEMPERATURA DE LA COLUMNA	16°C		
RPM	140 - BF	ROCA 64mm	

Figura 40. Selector de brocas presenta fallas (no activa)

Figura 41. Medición de las rpm y temperatura de la columna

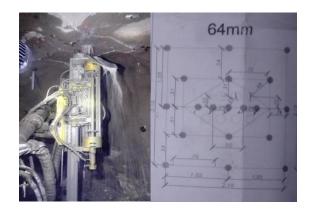


Figura 42. Perforación de chimenea slot-malla de perforación

Conclusiones y recomendaciones

- El equipo de perforación de taladros largos (Simba-20) trabaja con los RPM dentro del intervalo.
- Se necesita arreglar el selector de brocas para poder perforar los taladros de producción o los taladros de rimado con sus RPM recomendables de cada uno.
- Controlar los parámetros de perforación.

VI. ASISTENCIA TÉCNICA SIMBA - 18

FECHA : 11-06-2019

TURNO : Día

OPERADOR : Paul Bartolomé

NIVEL : 4220

TAJO : GL_9157

Ocurrencia

El día martes 11 de junio del presente año, en el turno día guardia A. Se realizó la asistencia técnica al S-18.

Observaciones

Se realizó la visita técnica al equipo de perforación de taladros largos (Simba-18) operador Sr. Paul Bartolomé, el cual se encontraba realizando los trabajos de perforación en el NV_4220 GL_9157. Se observó que el equipo cuenta con su columna de perforación en un buen estado, también se realizó la medición de los rpm, encontrándose dentro del intervalo y a calcular la temperatura de la columna de perforación con el pirómetro.

Tabla 21. Parámetros de perforación del simba-18.

DATOS TÉCNICOS DE CAMPO	ALTA	BAJA	
PRESIÓN DE ROTACIÓN	90 BAR	50 BAR	
PRESIÓN DE PERCUSIÓN	180 BAR	140 BAR	
PRESIÓN DE AVANCE	60 BAR	40 BAR	
PRESIÓN D AGUA	08 B	AR	
PRESIÓN DE AIRE	06 BAR		
PRESIÓN DE DUMPING	60 BAR		
PROMEDIO TIMPO DE PERFORACIÓN	01:05 Minuto	os – 5 pies	
TEMPERATURA DE LA COLUMNA	16°	С	
RPM	158 - BRO0	CA 64mm	

Figura 43. Perforación de taladros largos (+)

Figura 44. Medición de las rpm y temperatura de la columna

Conclusiones y recomendaciones

- El equipo de perforación de taladros largos (Simba-18) trabaja con los RPM dentro del intervalo.
- Se recomienda la rotación de las brocas para evitar la sobreperforación de estas y el cuidado de los componentes de la perforadora.
- Mejorar en el raspado de piso de las labores.

VII. ASISTENCIA TÉCNICA SIMBA-10

FECHA : 12-06-2019

TURNO : Noche

OPERADOR : Alcedo Soto

NIVEL : 4220

TAJO : CH_642

OCURRENCIA

El día miércoles 12 de junio del presente año, en el turno noche guardia A. Se realizó la asistencia técnica al S-10.

OBSERVACIONES

Se realizó la visita técnica al equipo de perforación de taladros largos (Simba-10) operador Sr. Alcedo Soto, el cual se encontraba realizando los trabajos de perforación en el NV_4220 CH_642. Se observó que el equipo cuenta con su columna de perforación en un estado regular, también se realizó la medición de los RPM encontrándose fuera de los parámetros.

Tabla 22. Parámetros de perforación del simba-10

DATOS TÉCNICOS DE CAMPO	ALTA	BAJA	
PRESIÓN DE ROTACIÓN	70 BAR	50 BAR	
PRESIÓN DE PERCUSIÓN	170 BAR	140 BAR	
PRESIÓN DE AVANCE	50 BAR	30 BAR	
PRESIÓN D AGUA	06 BAI	R	
PRESIÓN DE AIRE	05 BAR		
PRESIÓN DE DUMPING	60 BAI	R	
PROMEDIO TIMPO DE			
PERFORACIÓN	01:25 Minutos – 5 pies		
TEMPERATURA DE LA COLUMNA	21°C		
RPM	199 - BROC <i>l</i>	4 64mm	

Figura 45. Realización de chimenea

Figura 46. Medición de las rpm

CONCLUSIONES Y RECOMENDACIONES

- El equipo de perforación de taladros largos (Simba-10) necesita regular sus RPM dentro del intervalo.
- Se recomienda cambiar el *shank* porque presenta desgate del hilo de la rosca.
- Mejorar la presión de aire, para mejorar el barrido de taladro.

VIII. ASISTENCIA TÉCNICA SIMBA-18

FECHA : 15-06-2019

TURNO : Noche

OPERADOR : Clever Torres

NIVEL: 4220

TAJO : TJ 9157

Ocurrencia

El día sábado 15 de junio del presente año, en la guardia C turno día. Se realizó la asistencia técnica al S-18.

Observaciones

El equipo se encuentra perforando en el NV 4220 TJ 9157 taladros en abanicó positivas de 15 metros de longitud, entre las observaciones tenemos las siguientes:

- La RPM muy baja a 133, el cual se midió con el tacómetro.
- Baja presión de aire a 3 bares, dificultando el barrido de los detritos.
- Des alineamiento de los bracitos.
- La bomba de engrase de barras deficiente.

Figura 47. RPM muy bajo (133 rpm)

Figura 48. Corrección de los rpm según el estándar

Conclusiones y recomendaciones

 Mejorar la presión de aire, para mejorar el barrido de los detritos del taladro.

- Rotar la columna de barras, para que su desgaste se igual en toda la columna
- Rotar las brocas, para que no salgan sobre perforadas.
- Instalar una comprensora en el equipo para mejorar el barrido de los detritos y evitar el atascamiento de barras.

IX. Conclusiones generales de las asistencias técnicas

Se puede observar en las asistencias técnicas realizado a los equipos lo más común que es lo siguiente:

- ✓ Elevado las revoluciones por minuto (rpm), lo cual se recomienda reajustar o rectificar los rpm en un intervalo aceptable según las recomendaciones de los especialistas.
- ✓ Parámetros de perforación fuera del rango, lo cual se recomienda regular según lo necesario.
- ✓ Desgaste de los centralizadores (delanteros e intermedios), lo cual se recomienda el cambio de los centralizadores cuando presentan desde un pequeño desgaste.
- ✓ La bomba de engrase del equipo se encuentra inoperativo, lo cual no cumple con su trabajo de engrasar los hilos de las roscas de cada componente de la perforadora. se recomienda rectificar y poner la bomba en funcionamiento.
- ✓ La falta de operatividad del selector de brocas, lo cual no cumple con su trabajo porque no regula los rpm según la actividad que va a realizar (cambio de rpm para realizar taladros de alivio o taladros de carguío).
- ✓ La falta de rotación de los aceros de perforación como las barra y brocas,
 esto lleva como consecuencia el desgaste disparejo de esos

componentes mencionados. Lo cual se recomienda la rotación adecuada y constante de los aceros de perforación.

FALLAS MÁS COMUNES	PORCENTAJE
Revolución por minuto (RPM) elevado	20.00%
Centralizadores desgastados (intermedio y delantero)	15.00%
Parámetros de perforación inadecuados	13.00%
Falta de centralización entre la perforadora y el centralizador	13.00%
La bomba de engrase inoperativo	10.00%
Selector de brocas inoperativo	8.00%
Falta de rotación de las brocas (sobre-perforación)	8.00%
Deficiencia del aire en mina	5.00%
Deficiencia del agua en mina	5.00%
Otros	3.00%

Tabla 23. Fallas comunes de los equipos de perforación

Figura 49. Fallas comunes de los equipos de perforación

D. Objetivos de las asistencias técnicas

Al ejecutar las asistencias técnicas a todos los equipos de perforación, se llega a obtener los siguientes resultados de prevenir:

- ✓ El desgaste de los insertos periféricos por los RPM que se encuentran muy elevados o fuera del intervalo.
- ✓ El desgaste prematuro de los insertos por la inoperatividad del selector de brocas.
- ✓ Las rajaduras en el borde de las brocas por demasiada presión de percusión y avance.
- ✓ El desgaste de los hilos de las roscas de la broca por demasiada rotación, percusión y mal funcionamiento de la bomba de engrase.
- ✓ El desgaste prematuro de los insertos de la broca (remolienda del detritus) por tener deficiencia correspondiente al barrido.
- ✓ La sobreperforación de las brocas por falta de la rotación de las mismas.
- ✓ El desgaste de los insertos centrales por demasiada percusión.
- ✓ El plantado de la columna completa (brocas, barras, etc.) por trabajar con los niveles de agua y aire fuera del intervalo (insuficiente).
- ✓ La pérdida de los insertos periféricos y centrales por realizar percusión en vacío o presión inadecuada de avance.
- ✓ El desgaste prematuro del cuerpo de las brocas por falta de lubricación (agua) o terreno muy abrasivo.

4.4. Análisis enfocado a otro tipo de supervisión complementaria

4.4.1. Traslado adecuado de las brocas

Es un factor importante el cómo debemos de trasladar las brocas de perforación de nuestro taller hacia las labores de trabajo, por eso se le brindan a los operadores de cada equipo de perforación maletas y cajas para poder trasladar las brocas. La finalidad de emplear las maletas y cajas es muy importante porque evitaremos así el contacto o choque entre los insertos de las brocas, ya que eso tendrá como consecuencias la rotura de los insertos.

Figura 50. Maletas y cajas de transporte de brocas

Tenemos que evitar el choque entre los insertos de las brocas.

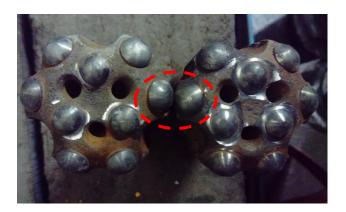


Figura 51. Choque entre insertos

Figura 52. Insertos quebrados por choque entre ellos

Para ello colocaremos las brocas en sentido contrario uno con otro, de la siguiente manera:

Figura 53. Brocas en el maletín

4.4.2. Recepcionamiento de reportes

Los reportes de perforación sirven para que el operador describa a detalle lo realizado durante la guardia, donde se registran como:

- ✓ Ubicación de trabajo (nivel y labor).
- ✓ NÚMERO de frentes.
- ✓ NÚMERO de taladros.
- ✓ Longitud de taladros.
- ✓ Horometro de perforación.
- ✓ Etc.

Figura 54. Reporte de perforación-JRD / El Brocal

Se implementó dentro del cuaderno de reporte de entrega de brocas un campo denominado "nombre del operador", para llevar un buen control de recepción de reportes de metro perforado. Debido a dos puntos muy importantes:

- Los operadores no estaban entregando los reportes a diario.
- Los operadores cambiaban de equipos de vez en cuando, pero estos sacaban brocas de otro equipo.

Hoy en día se generó un mejoramiento en la recepción de los reportes de metro perforado por parte de los operadores. Ya que la recepción se realiza por equipo y nombre del operador. Y a partir de ello podemos ver que operadores no entregaron los reportes para poder tomar medidas correctivas para el día siguiente.

Figura 55. Reporte de perforación-Jrd / El brocal

4.4.3. Corroboración de los datos de los reportes en el campo

Aleatoriamente, nos dirigimos hacia las labores de trabajo programados, con la finalidad de hacer un seguimiento a los equipos de perforación donde visualizamos los siguientes factores: medición de la longitud de los taladros perforados, cantidad de número de taladros, cantidad de frentes, etc.

Dichos resultados deberán de coincidir con los reportes que entregan los operadores al finalizar la guardia. De caso contrario se realizará una retroalimentación en el tema: "Llenado adecuado de los reportes de perforación".

Figura 56. Medición en la labor_8832 y nivel 3952

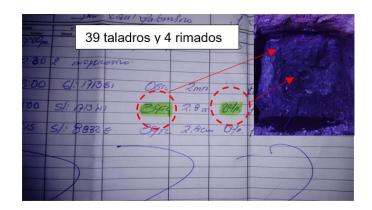


Figura 57. Conteo de número de taladros en la labor_1713 y nivel 3986

Figura 58. Medición de longitud en la labor_1342 y nivel 3952

4.4.4. Transporte de las brocas con la camioneta (EPIROC)

Uno de los motivos por el cual los operadores no quieren llevar brocas afiladas es debido al exceso de peso que sufren al transportar las brocas desde el punto del taller de Epiroc (brocas) hacia su labor. Esto es a partir de que el operador tiene que llevar las brocas suficientes para perforar todo lo planificado, entonces como una broca afilado perfora mucho menos que una broca nueva, los operadores prefieren llevar la mayoría brocas nuevas dejando de utilizar las brocas afiladas, y así las brocas afiladas no cumpliendo su vida útil.

Figura 59. Brocas afiladas en gran cantidad (antes)

A partir de esto se toma una alternativa como solución, donde los operadores que van a llevar brocas afiladas y en gran cantidad, se les va a llevar sus brocas hasta la misma labor de trabajo haciendo el uso de la movilidad (camioneta de Epiroc), y así el operador no tendrá el problema de transportar un exceso de carga. Y asimismo las brocas serán utilizadas hasta tener un descarte adecuado.

Figura 60. Brocas afiladas en poca cantidad (ahora)

4.4.5. Marcado de las brocas

Todas las brocas nuevas entregadas a los operadores tienen una codificación en letras y números con la finalidad de realizar un seguimiento ante una pérdida o robo.

Figura 61. Brocas marcadas

Parte del proceso consiste en anotar la codificación de la broca marcada en el vale de salida, con el objetivo de verificar cuando dicha broca retorna después de haber utilizado para perforación, donde debe de coincidir las codificaciones.

Figura 62. Códigos de las brocas en los vales de salida

4.4.6. Engrase de las roscas de los hilos de las brocas

El engrase de los hilos nos ayudara a prevenir el desgaste prematuro de las roscas de la broca, barra y *shank*. Es así que después de realizar el afilado se tiene que engrasar todas las brocas para su posterior uso.

Figura 63. Engrase de brocas

4.4.7. Cobro de remanentes

Al realizar las actividades de perforación están sometidos a suceder diferentes tipos de sucesos inesperados, uno de ellos son las roturas prematuras de los aceros de perforación. A partir de ello tenemos que cobrar remantes.

Las roturas prematuras usualmente pasan por algunos factores como los siguientes:

Falla mecánica de los equipos de perforación (parámetros de

perforación inadecuados).

Tipo de terreno (fallas y otras discontinuidades).

Experiencia de los operados (eficiencia y eficacia).

• Etc.

El término remanente lo utilizamos para los aceros con rotura prematura,

ya que todos los aceros tienen una vida útil o rendimiento que cumplir, se realiza

el cobro faltante cuando sucede este tipo de eventos, obteniendo dicho resultado

con los reportes de perforación y los vales de salida que registramos al entregar

los aceros de perforación.

Informe de los remanentes ocasionado en la U.M. Colquijirca

En estos informes se detalla el evento sucedido de la rotura prematura de

los aceros de perforación, y asimismo brindando recomendaciones para prevenir

dicho suceso posteriormente.

I. Remanente al Simba 20:

DETALLES DE LA OCURRENCIA

FECHA : 05 – 05 -2019

TURNO : Día.

OPERADOR : Wilmer Onofre.

AREA : Taller de manto JRC.

Descripción del evento

El día 03 de mayo el Simba 20 ingresa al taller de mantenimiento

mecánico de JRC con 8 barras T38-RD38-T38 5 puestas en el carrusel.

129

Figura 64. Carrusel del Simba 20 con 8 barras t38-rd38-t38 5'

El día 5 de mayo el operador del turno día reporta que el equipo solo cuenta con dos barras dentro del carrusel solicitando 6 barras T38-RD38-T38 5' para completar su columna de perforación. Luego, el personal Drillmaster de RDT se dirige inmediatamente al taller de mantenimiento a constatar lo reportado, los cuales confirman lo anunciado por el operador, ya que solo hay dos barras dentro del carrusel del Simba.

Inmediatamente procede a inspeccionar el taller de mantenimiento encontrando una barra tirada y otra cortada cerca al taller de soldadura, procede a indagar a los responsables del área de soldadura las cuales indican que las barras están desde inicio de guardia lo que evidencia que fueron cortadas durante la guardia noche.

Figura 65. Barra t38-rd38-t38 5' cortada

Se informa inmediatamente al Jefe de guardia de Long Hole. Ing. Miguel Villegas y al encargado del taller de mantenimiento para poder tomar las medidas correctivas.

Recomendaciones

Cada equipo antes de ingresar al taller de mantenimiento debería ingresar con un inventario puesto que no es la primera vez que vienen ocurriendo estos eventos.

Detalles del acero perdido

Tabla 24. Detalles del acero de perforación

EQUIPO	OPERADOR	CANT	Nº DE PARTE	DESCRIPCION	VIDA	OBSERVACIONES	METROS	SALDO	SALDO	FE	CHA
LQUII O	OI LIVADOIV	CANI.	N DEI AINIE		UTIL (mts)		PERFORADOS	VIDA.U(mts)	REMANENTE	INGRESO	DESCARTE
SIMBA 20	WILMER ONOFRE	5	90510720	BARRA T38-R38-T38x5'	400	PERDIDA EN TALLER DE MANTO	75.50	324.50	81.13%	1-May	3-May

II. Remanente al empernador 700

Detalles de la ocurrencia

FECHA: 14 de mayo del 2019

TURNO : Noche

OPERADOR : Percy Salazar

NIVEL : 3960

LABOR : RP. 1728

DESCRIPCIÓN DEL EVENTO

El operador del empernador 700 solicita una barra de 8´ y un *shank* Mont. Para la perforadora argumentando que al momento de que se encontraba en plena operación la barra sufre una rotura a la altura de la rosca R32 quedando parte de la rosca R32 dentro del *shank*.

Figura 66. Barra rota a la altura de la rosca r32

Detalle de los aceros descartados

Tabla 25. Detalles del acero de perforación

EQUIPO	OPERADOR	CANT	Nº DE PARTE	DESCRIPCION	VIDA	OBSERVACIONES	METROS	SALDO	FI	ECHA
Legon o	OI ENADON	OANI.	N DETAILE	DESCRIPTION	UTIL (mts)		PERFORADOS	VIDA.U(mts)	INGRESO	DESCARTE
E-700	SALAZAR	1	90029587	SHANK MONT.HC40/50	3500	ROTURA DE SHANK	403.25	3096.75	13-May	14-May
E-700	SALAZAR	1	90514370	BARRA R32-H28-SR28x8'	1500	ROTURA	522.40	977.60	10-May	14-May

III. Remanente al empernador 700

Detalles de la ocurrencia

FECHA : 22-06-2019

TURNO : Noche.

OPERADOR : Arroyo Condori.

NIVEL : 4185

TAJO : TJ 8948

Descripción del evento

El 22/06/2019 en el turno noche guardia C a inicio de guardia se le cambia la columna de 6 barras nuevas más 2 barras que se le entrego 3 guardias anteriores, siendo 2:00 am el operador Arroyo Condori reporta la rotura de 3

barras T45 nuevas a central, inmediatamente nos acercamos hacia la labor NV 4185 TJ 8948, donde se tuvo las siguientes observaciones.

Figura 67. Taladro tapado por la cantidad de carga, debido a la falta de raspado de piso.

Recomendaciones

- Falta raspar el piso de la labor.
- Baja presión de aire a 4 bares.
- Motor eléctrico deficiente, el equipo se está apagando.

Detalle de los aceros descartados:

Tabla 26. Detalles del acero de perforación

EQUIPO	OPERADOR	CANT.	N. DE	DESCRIPCIÓN	METROS	FECHA DE	FECHA DE
EQUIFO	OPERADOR	CANT.	PARTE	DESCRIPCION	PERFORADOS	ENTREGA	DESCARTE
SIMBA	ARROYO	2	90510730	ROTURA	30	22/06/2019	22/06/2019
23	CONDORI	3	90510730	ROTURA	30	22/06/2019	22/06/2019

IV. Resumen de eventos de cobro de remanentes correspondiente al mes de junio 2019

Como todos los meses se realiza la valorización mensual y dentro de ello realizamos el cobro de los remanentes (roturas prematuras de los aceros de perforación) que sucedió en transcurso del mes, presentando su respectivo informe al área de costos de la U.M. Colquijirca.

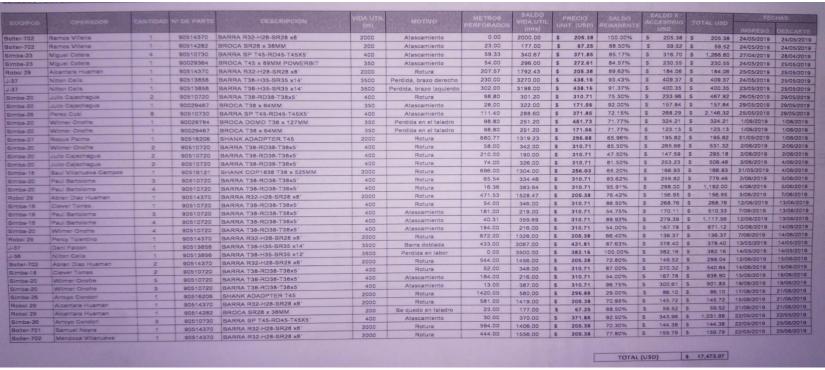


Figura 68. Cuadro de remanentes junio 2019

4.5. Discusión de Resultados

4.5.1. Trabajos de supervisión realizados antes y después del estudio

Al desarrollar la investigación realizamos un análisis de las actividades que se realizaban antes del estudio (estado inicial) y lo que se realiza después del estudio (estado actual), todo relacionado para poder obtener como resultado el máximo rendimiento de las brocas. Se muestra en el siguiente cuadro dichos resultados:

Tabla 27. Trabajos de supervisión realizados antes y después del estudio

ACTIVIDAD	SIN SUPERVISIÓN	CON SUPERVICIÓN
	Se descartaban las brocas que	Para las brocas que se encuentran
	se encuentran con el inserto	con el inserto demasiado plano
	demasiado plano (chupadas)	(chupadas) se realiza el devastado
	aun así que no presentan	para así posteriormente ser afilada y
	ninguna de las características	llegar a cumplir su mayor rendimiento.
	de descarte.	
	No se tomaba mucha	Se toma mucha consideración en
	consideración en cuanto al	cuanto al ángulo de afilado correcto,
	ángulo de afilado, la	la centralización adecuada, la
Afilado de	centralización, la refrigeración,	refrigeración, fuerza ejercida en el
brocas	etc.	inserto, etc.
	Se descartaban las brocas	Se maneja un mejor control cuando
	incorrectamente por falta de	se van a descartar las brocas a partir
	conocimiento.	de tener mayor conocimiento
		referente a los criterios de descarte
		por medio que se obtuvo dicho
		conocimiento en una capacitación
		internamente.
	Solamente se realizaba el	Se observa aleatoriamente la calidad
	afilado de manera correcta o	de afilado del personal de EPIROC,

	incorrecta, sin necesidad de	para posteriormente ser capacitado si
	observar la calidad.	presenta alguna deficiencia.
	Se realizaban cuando el	Se implementó un cronograma y las
	equipo solo presentaba	asistencias técnicas se realizan a
	perdida de aceros prematuros.	todos los equipos de manera
		preventiva y correctiva según lo
		planificado.
	Solo se le comunicaba de las	Se realizan informes y se presenta al
	Observaciones encontradas al	área de mantenimiento para su
	operador del equipo. Teniendo	corrección inmediata de dichas
	dificultad de comunicar el	Observaciones encontradas (se
Asistencias	operador al área de	trabaja directamente con dicha área).
técnicas	mantenimiento.	
toomous	No se realizaban	Se realiza una pequeña capacitación
	capacitaciones a los	al operador en lo que compete a los
	operadores.	temas operacionales del equipo y
		referentes a las características de los
		aceros de perforación (parámetros de
		perforación, parámetros de RPM,
		importancia de la rotación de los
		aceros de perforación, importancia
		del uso del agua, ¿Cuándo una broca
		debe de ser afilada?, etc.).
	No se contaba con el	Constantemente se realizan pruebas
	rendimiento de la vida útil de	para obtener el rendimiento de la vida
	las brocas. Se utilizaban datos	útil que puede tener las brocas en los
Tipo de	inexactos.	diferentes tipos de terrenos.
roca	La cantidad de brocas que	A partir del cálculo de rendimiento de
	llevan los operadores era de	vida útil de las brocas, los resultados
	una manera deficiente porque	nos ayudan a calcular el número de
	no sabían cuántas brocas iban	brocas necesarias para cumplir con
	a necesitar en dicho trabajo	su trabajo.

	No se realizaba la constatación	Aleatoriamente se va a las labores a
	de los datos entregado en los	constatar los datos que los
	reportes de perforación.	operadores colocan en los reportes
		de perforación.
	No se engrasaban los hilos de	El engrase de las roscas de las
	las roscas de las brocas.	brocas afiladas para poder conservar
		los hilos de las brocas.
	Los operadores llevaban sus	El traslado de manera correcta de las
	brocas en costales y de una	brocas desde el taller de EPIROC
	forma incorrecta, causando	hacia las labores.
	daños entre las brocas.	Personal que desconoce del tema es
		capacitado respecto al tema.
	Para el cobro de remanentes	Para el cobro de los remanentes de
	de las roturas prematuras de	las roturas prematuras de las brocas,
	las brocas, se utilizaban datos	se utilizan los resultados obtenidos a
	inexactos para su cálculo.	partir de las pruebas realizadas
		constantemente.
	No se apoyaba a los	Se apoya a los operadores en llevar
•	operadores en llevar las	las brocas de 89mm y 64mm
Otros	brocas de 89mm y 64mm hacia	(camioneta) hacia sus labores para
	sus labores. Acumulándose	así poder llegar a cumplir su
	las brocas afiladas en el taller	rendimiento máximo de la broca.
	de EPIROC porque solo	
	llevaban brocas nuevas.	
	No se controlaba de manera	Se implementó un formato adecuado
	eficiente el recepcionamiento	para así tener un mejor control al
	de reportes de perforación por	recepcionar los reportes de
	falta de tener un formato	perforación.
	adecuado para dicha acción.	
	No se realizaba el marcado de	Se realiza a diario con el marcado de
	brocas	brocas con una nomenclatura a
		criterio para poder controlar su uso
		hasta el final (evitar pérdidas).
		nasa or mar (ovitar pordidas).

4.5.2. Metros perforados en la actualidad

A diario se desarrolló el trabajo de perforación como parte del ciclo de minado, donde los equipos de perforación realizan trabajos de frentes, refugios, chimeneas, cunetas, sostenimiento con Split Set, sostenimiento con Python, taladros de producción, etc. Para lo cual los operadores reflejan dicha actividad mediante un reporte de perforación. Seguidamente se muestra la sumatoria de metros perforados por cada mes correspondiente al año 2019 de la U.M. Colquijirca

a. Empernadores

Tabla 28. Metros perforados (empernadores)

MES	PYTHON	SERVICIO	SPLIT SET	TOTAL
ENERO	18163	1727	6836	26727
FEBRERO	16730	1487	8101	26317
MARZO	16557	1576	7542	25675
ABRIL	12949	1575	5989	20513
MAYO	15035	1439	12105	28580
JUNIO	20205	1750	6759	28714
JULIO	16632	1977	11112	29720

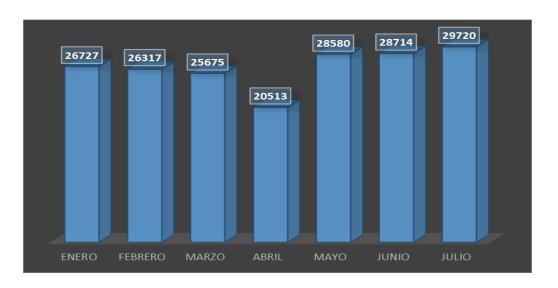


Figura 69. Metros perforados totales (empernadores)

b. Jumbos

Tabla 29. Metros perforados (jumbos)

MES	TALADROS RIMADOS	TALADROS PRODUCCIÓN	TOTAL
ENERO	4868	63036	67904
FEBRERO	4712	55390	60102
MARZO	5160	57654	62814
ABRIL	5748	66439	72187
MAYO	6117	68570	74687
JUNIO	5882	69297	75179
JULIO	5980	69460	75440

Figura 70. Metros perforados totales (jumbos)

c. Taladros Largos

COLUMNA T-38

Tabla 30. Metros perforados de la columna t38

COLUMNA T-38					
MES	TALADROS RIMADOS	TALADROS PRODUCCIÓN	TOTAL		
ENERO	2256	16638	18894		
FEBRERO	2384	17379	19763		
MARZO	2715	19843	22558		
ABRIL	3340	24548	27888		
MAYO	3224	23605	26829		
JUNIO	3344	25385	28729		
JULIO	3058	22266	25324		

COLUMNA T-45

Tabla 31. Metros perforados de la columna t45

COLUMNA T-45					
MES	TALADROS RIMADOS	TALADROS PRODUCCIÓN	TOTAL		
ENERO	2423	17470	19893		
FEBRERO	2129	15352	17481		
MARZO	2378	17177	19555		
ABRIL	2245	16075	18320		
MAYO	2565	18558	21123		
JUNIO	2457	17548	20005		
JULIO	2902	20952	23854		

COLUMNA T-45 Y T-38

Tabla 32. Total de metros perforados de la columna (t45 y t38)

TOTAL (COLUMNA T-45 Y T-38)					
MES	TALADROS RIMADOS	ROS RIMADOS TALADROS PRODUCCIÓN			
ENERO	4679	34108	38787		
FEBRERO	4513	32731	37244		
MARZO	5093	37019	42112		
ABRIL	5585	40623	46208		
MAYO	5789	42164	47953		
JUNIO	5801	42933	48734		
JULIO	5960	43218	49178		

Figura 71. Total de metros perforados de la columna (t-45 y t-38)

d. Resumen del total de metros perforados

Tabla 33. Resumen del total de metros perforados

MESES	JUMBROS	EMPERNADORES	SIMBAS T- 38	SIMBAS T- 45	TOTAL	PORCENTAJE DE INCREMENTO O DISMINUCIÓN
ENERO	26726.69	67904.20	18893.99	19893.14	133418.02	-
FEBRERO	26317.35	60102.44	19763.23	17481.14	123664.15	-7.3
MARZO	25674.83	62813.98	22557.85	19554.59	130601.25	5.6
ABRIL	20513.34	72187.20	27888.13	18319.81	138908.48	6.4
MAYO	28580.18	74686.96	26829.32	21123.18	151219.64	8.9
JUNIO	28714.29	75178.70	28729.03	20005.16	152627.18	0.9
JULIO	29720.44	75439.60	25324.00	23854.00	154338.04	1.1

4.5.3. Consumo de brocas

Para poder realzar el trabajo de perforación, los operadores solicitan a diario al área de perforación (EPIROC) brocas afiladas y brocas nuevas (juego de brocas) para poder utilizarlos en dicho trabajo.

Para lo siguiente se muestra el consumo de brocas por mes correspondiente al año 2019 de la U.M. Colquijirca.

a. Empernadores

Tabla 34. Consumo de brocas por mes (empernadores)

MES	TOTAL
ENERO	317
FEBRERO	397
MARZO	307
ABRIL	417
MAYO	390
JUNIO	315
JULIO	304

Figura 72. Consumo de brocas por mes (empernadores)

b. Jumbos

Tabla 35. Consumo de brocas por mes (jumbos)

MES	TALADROS RIMADOS	TALADROS PRODUCCIÓN	TOTAL
ENERO	51	567	618
FEBRERO	55	608	663
MARZO	36	429	465
ABRIL	42	508	550
MAYO	44	500	544
JUNIO	31	366	397
JULIO	29	350	379

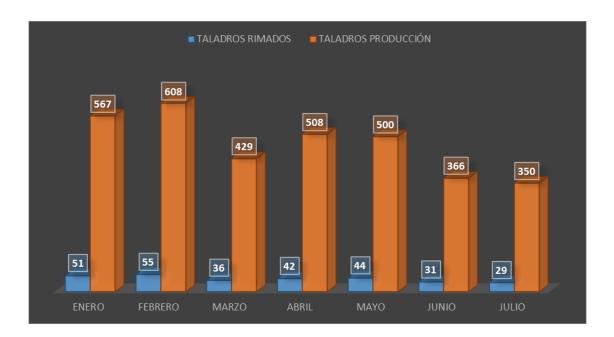


Figura 73. Consumo de brocas por mes (jumbos)

c. Taladros largos

COLUMNA T-38

Tabla 36. Consumo de brocas columna t-38

COLUMNA T-38				
MES	TALADROS RIMADOS	TALADROS PRODUCCIÓN	TOTAL	
ENERO	30	205	235	
FEBRERO	24	182	206	
MARZO	29	210	239	
ABRIL	24	193	217	
MAYO	26	202	228	
JUNIO	23	210	233	
JULIO	19	152	171	

COLUMNA T-45

Tabla 37. Consumo de brocas columna t-45

COLUMNA T-45				
MES	TALADROS RIMADOS	TALADROS PRODUCCIÓN	TOTAL	
ENERO	13	91	104	
FEBRERO	20	145	165	
MARZO	21	149	170	
ABRIL	22	172	194	
MAYO	14	100	114	
JUNIO	7	56	63	
JULIO	14	109	123	

COLUMNA T-45 Y T-38

Tabla 38. Consumo total de brocas de la columna t-45 y t-38

TOTAL (COLUMNA T-45 Y T-38)				
MES	TALADROS RIMADOS TOTALES	TALADROS PRODUCCIÓN TOTALES	TOTAL	
ENERO	43	296	339	
FEBRERO	44	327	371	
MARZO	50	359	409	
ABRIL	46	365	411	
MAYO	40	302	342	
JUNIO	30	266	296	
JULIO	33	261	294	

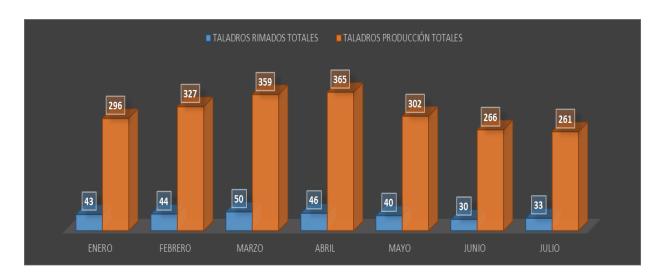


Figura 74. Consumo total de brocas de la columna t-45 y t-38

d. Resumen del consumo de brocas

Tabla 39. Resumen respecto al consumo de brocas

MESES	BROCA BOTÓN SR28 X 38MM	BROCA SR35 X 51MM BOT. ESF.	BROCA DOMO SR35 102MM ESF.	BROCA RETRAC. DC T38 X 64MM	BROCA DOMO T38 X 127MM ESF.	BROCA T45 x 89MM POWERBIT	BROCA RIMADORA T45 152 MM	TOTAL	PORCENTAJE DE INCREMENTO O DISMINUCIÓN
ENERO	317	567	51	205	30	91	13	1274	
FEBRERO	397	608	55	182	24	145	20	1431	+ 12.3
MARZO	307	429	36	210	29	149	21	1181	- 17.5
ABRIL	417	508	42	193	24	172	22	1378	+ 16.7
MAYO	390	500	44	202	26	100	14	1276	- 7.4
JUNIO	315	366	31	210	23	56	7	1008	- 21.0
JULIO	304	350	29	152	19	109	14	977	- 3.1

4.5.4. Metro perforado vs consumo de brocas

Se realiza el siguiente análisis entre los metros perforados y el consumo de brocas para poder observar a detalle como es el comportamiento de dichos factores.

Para lo siguiente se muestra el análisis entre metro perforado y consumo de brocas realizado por mes que corresponde al año 2019 de la U.M. Colquijirca.

a. Empernadores

Tabla 40. Comparación de metros perforados vs consumo de brocas (empernadores)

MES	TOTAL DE METROS PERFORADOS	TOTAL DE BROCAS UTILIZADOS
ENERO	26727	317
FEBRERO	26317	397
MARZO	25675	307
ABRIL	20513	417
MAYO	28580	390
JUNIO	28714	315
JULIO	29720	304

Figura 75. Comparación de metros perforados vs consumo de brocas (empernadores)

b. Jumbos

Taladros rimados

Tabla 41. Comparación de metros perforados vs consumo de brocas (taladros rimados)

TALADROS RIMADOS			
MES	TOTAL DE METROS PERFORADOS	TOTAL DE BROCAS UTILIZADOS	
ENERO	4868	51	
FEBRERO	4712	55	
MARZO	5160	36	
ABRIL	5748	42	
MAYO	6117	44	
JUNIO	5882	31	
JULIO	5980	29	

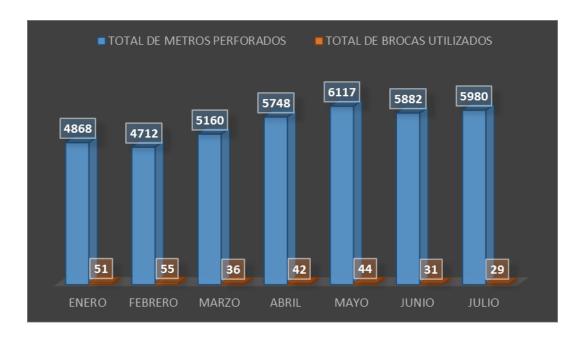


Figura 76. Comparación de metros perforados vs consumo de brocas (taladros rimados)

Taladros producción

Tabla 42. Comparación de metros perforados vs consumo de brocas (taladros producción)

	TALADROS PRODUCCIÓN				
MES	TOTAL DE METROS PERFORADOS	TOTAL DE BROCAS UTILIZADOS			
ENERO	63036	567			
FEBRERO	55390	608			
MARZO	57654	429			
ABRIL	66439	508			
MAYO	68570	500			
JUNIO	69297	366			
JULIO	69460	350			

Figura 77. Comparación de metros perforados vs consumo de brocas (taladros producción)

c. Taladros largos

COLUMNA T-38 (TALADROS RIMADOS)

Tabla 43. Comparación de metros perforados vs consumo de brocas (taladros rimados – t38)

	TALADROS RIMADOS T-38				
MES	METROS PERFORADOS	BROCAS UTILIZADOS			
ENERO	2256	30			
FEBRERO	2384	24			
MARZO	2715	29			
ABRIL	3340	24			
MAYO	3224	26			
JUNIO	3344	23			
JULIO	3058	19			

Figura 78. Comparación de metros perforados vs consumo de brocas (taladros rimados – t38)

COLUMNA T-38 (TALADROS PRODUCCIÓN)

Tabla 44. Comparación de metros perforados vs consumo de brocas (taladros producción – t38)

TALADROS PRODUCCIÓN T-38				
MES	METROS PERFORADOS	BROCAS UTILIZADOS		
ENERO	16638	205		
FEBRERO	17379	182		
MARZO	19843	210		
ABRIL	24548	193		
MAYO	23605	202		
JUNIO	25385	210		
JULIO	22266	152		

Figura 79. Comparación de metros perforados vs consumo de brocas (taladros producción – t38)

COLUMNA T-45 (TALADROS RIMADOS)

Tabla 45. Comparación de metros perforados vs consumo de brocas (taladros rimados – t45)

TALADROS RIMADOS T-45				
MES	METROS PERFORADOS	BROCAS UTILIZADOS		
ENERO	2423	13		
FEBRERO	2129	20		
MARZO	2378	21		
ABRIL	2245	22		
MAYO	2565	14		
JUNIO	2457	7		
JULIO	2902	14		

Figura 80. Comparación de metros perforados vs consumo de brocas (taladros rimados – t45)

COLUMNA T-45 (TALADROS PRODUCCIÓN)

Tabla 46. Comparación de metros perforados vs consumo de brocas (taladros producción – t45)

TALADROS PRODUCCIÓN T-45				
MES	METROS PERFORADOS	BROCAS UTILIZADOS		
ENERO	17470	91		
FEBRERO	15352	145		
MARZO	17177	149		
ABRIL	16075	172		
MAYO	18558	100		
JUNIO	17548	56		
JULIO	20952	109		

Figura 81. Comparación de metros perforados vs consumo de brocas (taladros producción – t45)

TOTAL COLUMNA T-38 Y T-45 (TALADROS RIMADOS)

Tabla 47. Comparación de metros perforados vs consumo de brocas (taladros rimados – t38 y t45)

TALADROS RIMADOS TOTALES (T38 Y T45)			
MES	TOTAL DE METROS PERFORADOS	TOTAL DE BROCAS UTILIZADOS	
ENERO	4679	43	
FEBRERO	4513	44	
MARZO	5093	50	
ABRIL	5585	46	
MAYO	5789	40	
JUNIO	5801	30	
JULIO	5960	33	

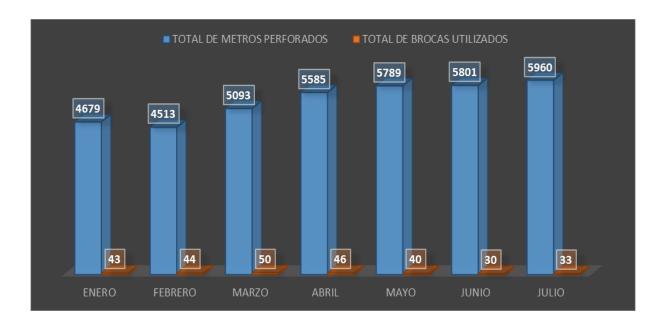


Figura 82. Comparación de metros perforados vs consumo de brocas (taladros rimados – t38 y t45)

TOTAL COLUMNA T-38 Y T-45 (TALADROS PRODUCCIÓN)

Tabla 48. Comparación de metros perforados vs consumo de brocas (taladros producción – t38 y t45)

TALADROS PRODUCCIÓN TOTALES (T38 Y T45)				
MES	TOTAL DE METROS PERFORADOS	TOTAL DE BROCAS UTILIZADOS		
ENERO	34108	296		
FEBRERO	32731	327		
MARZO	37019	359		
ABRIL	40623	365		
MAYO	42164	302		
JUNIO	42933	266		
JULIO	43218	261		

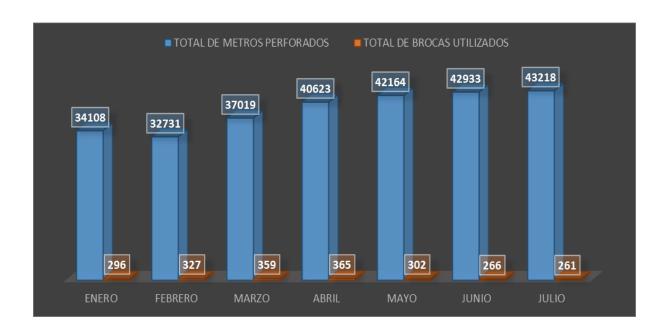


Figura 83. Comparación de metros perforados vs consumo de brocas (taladros producción – t38 y t45)

Se puede observar que hubo un incremento de metros perforados por parte de los equipos de perforación, debido al seguimiento oportuno que se realizó. Y, por otra parte, el consumo de brocas fue disminuyendo según el tiempo que pasaba. Por la tanto se puede apreciar una inversamente proporcional en cuanto a los metros perforados y el consumo de brocas, mayor metraje obtenido con pocas brocas utilizadas.

Respecto a lo que compete al área de costos de EPIROC, se mejoró en las últimas valorizaciones teniendo mayor rentabilidad, por el incremento de metraje y el consumo óptimo de brocas.

4.5.5. Costos de perforación

A. Precios unitarios (P.U.)

Precios unitarios

AÑO 2019

EMPRESA Epiroc Perú S. A.

TRABAJO Suministro de aceros por contrato metros perforados

ECM JRC INGENIERIA Y COSTRUCCION SAC

UNIDAD El Brocal

Tabla 49. Precio unitarios de JRC-El Brocal

ITEM	CONCEPTO	U. M.	P.U. (US \$)
1	PERFORACIÓN CON JUMBOS	m	0.460
2	PERFORACIÓN CON EMPERNADORES	m	0.700
3	PERFORACIÓN LONG HOLE T38	m	1.500
4	PERFORACIÓN LONG HOLE T45	m	2.415
5	SERVICIO DE AFILADO	m	0.075
6	PERSONAL RDT	MES	7400.000
7	ALQUILER DE CAMIONETA	MES	2400.000
8	ALQUILER DE VIVIENDA	MES	635.980

B. Valorización por metro perforado

Tabla 50. Valorización mensual de JRC-El Brocal, 2019

		PERFORA	PERFORACIÓ	PERFORACIÓ	DEDEODACIÓ		% DE
		CIÓN	N CON		PERFORACIÓ		INCREMEN
		CON	EMPERNAD	N LONG	N LONG	TOTAL	TO 0
		JUMBOS	ORES	HOLE T-38	HOLE T-45		DISMINUCI
		0.46 \$/m	0.7 \$/m	1.5 \$/m	2.415 \$/m		ÓN
ENERO	CANTIDAD	67904	26727.0	18894.0	19898.0		
ENERO	TOTAL (US \$)	31235.84	18708.9	28341.0	48053.7	\$ 126339.4	
FEBRERO	CANTIDAD	60102	26317.0	19763.0	17481.0		
FEBRERU	TOTAL (US \$)	27646.92	18421.9	29644.5	42216.6	\$ 117929.9	- 6.5%
MARZO	CANTIDAD	62814	25675.0	22558.0	19555.0		
	TOTAL (US \$)	28894.44	17972.5	33837.0	47225.3	\$ 127929.3	+ 8.5%
ABRIL	CANTIDAD	72187	20513.0	27888.0	18320.0		
, ibiliz	TOTAL (US \$)	33206.02	14359.1	41832.0	44242.8	\$ 133639.9	+ 4.5%
MAYO	CANTIDAD	74687	28580.0	26829.0	21123.0		
	TOTAL (US \$)	34356.02	20006.0	40243.5	51012.0	\$ 145617.6	+ 9.0%
JUNIO	CANTIDAD	75179	28714.0	28729.0	20005.0		
	TOTAL (US \$)	34582.34	20099.8	43093.5	48312.1	\$ 146087.7	+ 0.3%
JULIO	CANTIDAD	75440	29720.0	25324.0	23854.0		
702.0	TOTAL (US \$)	34702.4	20804.0	37986.0	57607.4	\$ 151099.8	+ 3.4%

CONCLUSIONES

- 1. La supervisión influye directamente en hacer llegar el rendimiento máximo de vida útil que puede tener una broca, por lo que se obtiene como resultado un 18.9% más de rendimiento que en un inicio (tabla 11). Dicho resultado final se llegó a tener gracias a un seguimiento oportuno de las diferentes actividades como: el correcto afilado, la operatividad de los equipos y tener conocimiento de las características de la roca.
- 2. Teniendo como resultado un correcto afilado de brocas, a partir de conocer el procedimiento adecuado y todos los criterios a considerar (ángulo de afilado, centralización de la muela con el inserto, refrigeración, etc.), nos ha servido para mejorar en el comportamiento de la cantidad de metros perforados. Respecto al punto mencionado se llegó incrementar los metros perforados desde el mes de marzo del 2019 hasta la actualidad julio del 2019 en un 5.6%, 6.4%, 8.9%, 0.9%, 1.1% respectivamente por cada mes (tabla 31).
- 3. Saber con exactitud el rendimiento de la vida útil de las brocas fue muy importante, porque nos ayuda a brindar el juego correcto de brocas. Asimismo, la finalidad de dicho trabajo es que los operadores lleguen a devolver todas las brocas que se le otorgó a inicio de guarda y no escondiéndolas o votándolas en las labores por exceso de peso, también para realizar la rotación adecuada de las brocas sin necesidad de ser sobre-perforada.
- 4. Realizando las asistencias técnicas a los equipos de perforación nos ayudó a determinar el estado de operatividad en el que se encuentran, para realizar las correcciones respectivas. Todo este trabajo es reflejado en el resultado de tener menos consumo de brocas, ya que, desde el mes de mayo del 2019 hasta la actualidad, julio de 2019 se ha llegado a reducir en un 7.4%, 21% y 3.1% (tabla 37). Definimos que el equipo cuando se encuentra operativo nos ayudara a cuidar y prevenir del

descarte prematuro de las brocas llegando cumplir el máximo rendimiento.

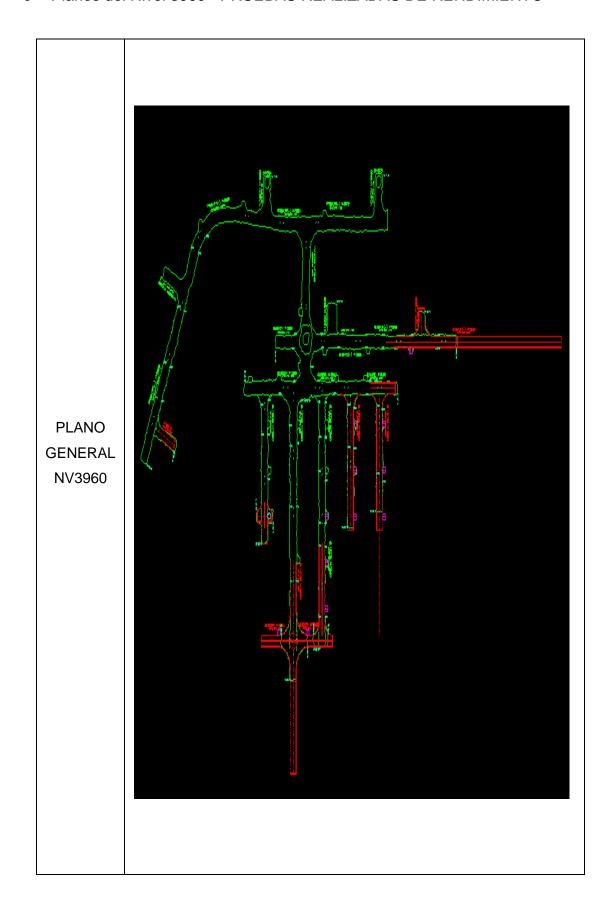
REFERENCIAS BIBLIOGRÁFICAS

- ABANTO, J. y BASQUEZ, J. Reducción de costos en las operaciones unitarias de. Universidad Nacional de Trujillo, Trujillo, Perú, 2016. Tesis (Título de Ingeniero de Minas)
- 2. GAMARRA, A. Optimización de las brocas de botón de 45 mm* r32 para minimizar los costos de perforación en la compañía Minera Milpo S.A.A. UEA El Porvenir. Universidad Nacional del Centro del Perú, Huancayo, Perú, 2011. Tesis (Título de Ingeniero de Minas)
- MALLMA, I. Optimización del uso de aceros de perforación en la UEA San Cristóbal de Minera Bateas SAC. Universidad Nacional del Centro del Perú, Huancayo, Perú, 2013. Tesis (Título de Ingeniero de Minas)
- PALOMINO, G. Evaluación de la perforación y voladura en labores de desarrollo nivel-420 en la Mina Huarón-CIA Minera Huarón s.a. PAN American Silver Perú-Corporation. Universidad Nacional de San Cristóbal de Huamanga, Ayacucho, Perú, 2015. (Título de Ingeniero de Minas)
- 5. ROJAS, C. Gestión para el mejoramiento del sistema de control del uso de los aceros de perforación en la mina Radomiro Tomic de la División Radomiro Tomic de Codelco-Chile. Universidad Central del Ecuador, Quito, Ecuador, 2013. (Título de Ingeniero de Minas)
- MALLMA, I. Optimización del uso de aceros de perforación en la UEA San Cristóbal de Minera Bateas SAC. Universidad Nacional del Centro del Perú, Huancayo, Perú, 2013. (Título de Ingeniero de Minas)
- 7. ESCOBAR, A. Análisis de falla en los aceros de perforación como estrategia de incremento de la vida útil de los equipos Top Hammer. Universidad Nacional de Ingeniería, Lima, Perú, 2013. (Título de Ingeniero de Minas)
- 8. CABALLERO, R. "Geología del distrito minero de Colquijirca y control estructural en Marcapunta y Smelter Sociedad Minera El Brocal S.A.A.

Cerro de Pasco". Universidad Nacional de ingeniería, Lima, Perú, 2012. (Título de Ingeniero Geólogo)

ANEXOS

o Columnas de perforación empleados en la U.M. Colquijirca


JUMBOS EMPERNADORES				
SHANK				
Atlas Copco COP 1435	Ingersoll Rand Hydrastar 200	Hc 50		
(90003556)	(90516090)	(90029587)		
ACOPLE	BARRA	BROCA		
R32 – R32 (90003560)	R32 – Hex 28mm – SR28 x 7'10."	SR28 x 38mm		
	(90514370)	(90514282)		

JUMBOS FRONTONEROS			
SHANK	ACOPLE		
Atlas Copco COP 1838 x 435mm (90516120)	T38 – T38 (90515737)		
BARRA	BROCA		
T38 - Hex 35mm - SR35 x 14'			
(90513858)	SR35 x	SR35 x	SR35 x
	45mm	51mm	102mm
T38 – Hex 35mm – SR35 x 8' 91/8" (90514159)	(90513841)	(90514649)	(90029808)

Tabla 51. Columnas de perforación U.M. Colquijirca

SIMBAS					
T 38					
SHANK	BARRA	BROCA			
	8				
Atlas Copco COP 1838 x 525mm (90516121)	T38 – RD 38mm – T38 x 5' (90510720)	T38 x 64mm Retráctil (90029467)	Broca rimadora domo 127mm (90029784)		
	T 45				
SHANK	BARRA	BROCA			
	8				
Atlas Copco COP 1845 x 525mm (90516206)	T45 – RD 45mm – T45 x 5' (90510730)	T45 x 89mm Retráctil (90029364)	Broca rimadora domo 152mm (90029606)		

Planos del Nivel 3960 - PRUEBAS REALIZADAS DE RENDIMIENTO

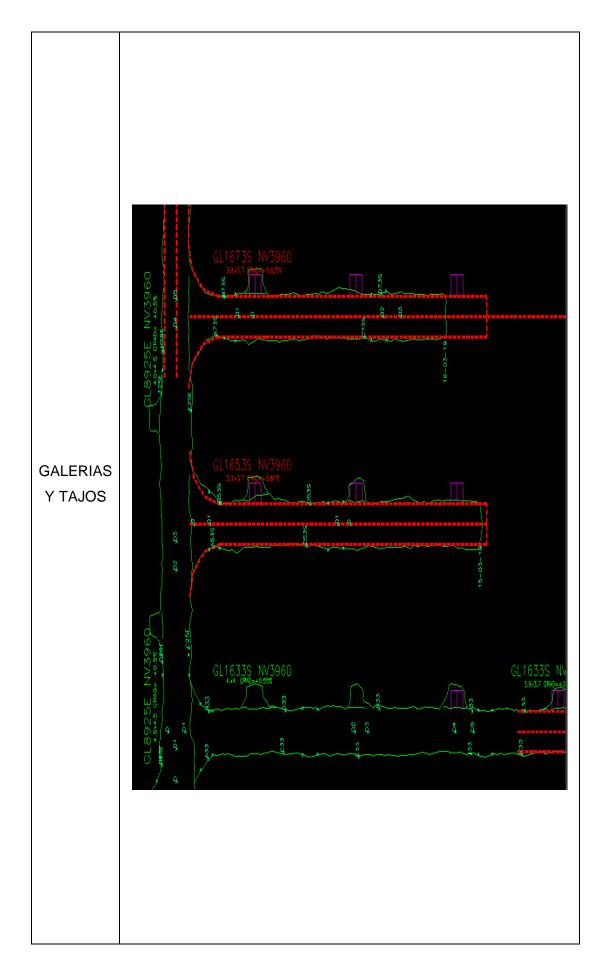


Tabla 52. Plano de la mina nv-3960