

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Eléctrica

Tesis

Regulación del perfil de tensión en el sistema eléctrico de Paita-Piura usando un controlador basado en teoría de redes neuronales

Nick Alex Astorayme Beraún

Para optar el Título Profesional de Ingeniero Electricista

Huancayo, 2019

Repositorio Institucional Continental Tesis digital

Esta obra está bajo una Licencia "Creative Commons Atribución 4.0 Internacional".

AGRADECIMIENTOS

Agradezco a Dios por permitirme llegar hasta esta etapa de mi vida, ya que sin Él nada sería posible.

A mi madre Rosa por su apoyo incondicional en cada uno de mis proyectos, a mi familia por todas las palabras y motivaciones que me dieron a lo largo de mi carrera y a mi padre Vladimir, por apoyarme en mi decisión de estudiar esta carrera y elegir esta Universidad.

Agradecer a mis asesores Dr. Daniel Gamarra, Dr. Celso De La Cruz e Ing. Héctor Verizueta por apoyarme en el planteamiento y análisis propuesto.

A la Ing. Jeysi Ochoa Laguna, por su apoyo y constante seguimiento en esta tesis.

A los profesores que, en su labor ardua de impartir conocimientos, compartieron el deseo de profundizar los temas de sistemas eléctricos de potencia y análisis de dato y a la Universidad Continental por brindarme los mejores ambientes y tecnología a la altura para poder elaborar esta investigación.

DEDICATORIA

Para mis padres, quienes siempre estuvieron a mi lado brindando su apoyo y comprensión, por tener el arte de decir las palabras adecuadas en cada etapa de mi vida.

A Dios quien es el que dirige mi vida.

A Rosa Beraún Vásquez, mi madre, quien es el modelo de superación, paciencia, y constancia en este mundo para mí.

A mi padre Vladimir Astorayme, que con su profesión me inspiró para seguir este camino, por sus sabias palabras para realizar todas las cosas con amor y mucho más dentro de esta bella profesión.

ÍNDICE DE CONTENIDO

POR	TADA	i
AGR	ADECIMIENTOS	ii
DED	ICATORIA	iii
ÍNDI	CE DE CONTENIDO	iv
ÍNDI	CE DE FIGURAS	V i
ÍNDI	CE DE TABLAS	. Vii
ÍNDI	CE DE GRÁFICOS	Viii
RES	UMEN	ix
ABS	TRAC	X
INTF	RODUCCIÓN	X
CAP	ÍTULO I	12
PLAI	NTEAMIENTO DEL ESTUDIO	12
1.1.	Caracterización del problema	12
1.2.	Formulación del problema	13
2.1.	Objetivo general	14
2.2.	Objetivos específicos	14
3.	Justificación y delimitación	14
3.1.	Justificación	14
3.2.	Delimitación	17
4.	Hipótesis y descripción de variables	17
4.1.	Hipótesis	17
4.2.	Hipótesis específicas	18
4.3.	Variables	18
CAP	ÍTULO II	19
MAR	CO TEÓRICO	19
2.	Antecedentes de la investigación	19
2.1	Artículos relacionados	19
2.2	Tesis relacionadas	20
2.3	Bases teóricas	22
2.3.1	Generación	22
232	Subestaciones	23

2.3.3 Transmisión eléctrica		24
2.3.4 Distr	ibución	24
2.3.5 Siste	emas de potencia	26
2.3.6 Esta	bilidad de Sistema de Potencia	27
2.3.7 Regu	ulación de tensión	28
2.3.8 Cond	ceptos de control de voltaje	29
2.3.9 Elem	nentos para el control de voltaje	30
2.3.10 Co	mpensador estático – Static Var Compensation (SVC)	31
2.3.10.1	Principio de funcionamiento	31
2.3.10.2	Tipos de compensadores estáticos	32
2.3.10.3	Características dinámicas de los SVC	34
2.3.11 Red	des Neuronales	34
2.3.12 Tip	os de redes neuronales más usadas	37
2.3.13 Per	ceptrón Multicapa	38
CAPÍTUL	O III	40
METODO	LOGÍA	40
CAPÍTUL	O IV	46
RESULTA	ADOS Y DISCUSIÓN	46
CONCLU	SIONES	63
RECOME	NDACIONES	64
REFEREN	NCIAS BIBLIOGRÁFICAS	65
ANEXOS		67

ÍNDICE DE FIGURAS

Figura 1. Parámetros de entrada	16
Figura 2. Controlador básico del SVC	17
Figura 3. Potencia efectiva de generación en el Perú	22
Figura 4. Diagrama de Carga - marzo 2019	23
Figura 5. Configuración clásica de un sistema SVC en un Subestación	24
Figura 6. Sistema eléctrico	25
Figura 7. Estabilidad Angular	27
Figura 8. Estabilidad de Tensión	27
Figura 9. Estabilidad de tensión según el factor de potencia	28
Figura 10. Control jerárquico de voltaje	30
Figura 11. Efectos del retraso en el ángulo de disparo en un TCR	32
Figura 12. Capacitor Fijo- Reactor controlado por tiristores	33
Figura 13.Condensador con Interruptores Mecánicos	33
Figura 14. Control jerárquico de voltaje	34
Figura 15. Estructura de una neurona	35
Figura 16. Respuesta temporal de la neurona	36
Figura 17. Modelo de una neurona artificial	37
Figura 18. Red neuronal multicapa	39
Figura 19. Diagrama de aprendizaie supervisado	42

ÍNDICE DE TABLAS

Tabla 1. Variables	18
Tabla 2. Escenarios de simulación	42
Tabla 3. Porcentaje de precisión según la cantidad neuronas en la capa oculta .	43
Tabla 4. Escenario de validación del modelo entrenado	44
Tabla 6. Casos de estudio	46
Tabla 7. Avenida Máxima demanda- Nivel de Tensión	48
Tabla 8. Estiaje Máxima demanda- Nivel de Tensión	50
Tabla 9. Avenida Mínima demanda- Nivel de Tensión	52
Tabla 10. Estiaje Máxima demanda- Nivel de Tensión	55
Tabla 11. Avenida Máxima demanda- Nivel de Tensión	57
Tabla 12. Estiaje Máxima demanda- Nivel de Tensión	59
Tabla 13. Análisis de varianza en el caso 1	60
Tabla 14. Análisis de varianza en el caso 2	61
Tabla 15. Análisis de varianza en el caso 3	61
Tabla 16. Análisis de varianza en el caso 4	61
Tabla 17. Análisis de varianza en el caso 5	62
Tabla 18. Análisis de varianza en el caso 6	62

ÍNDICE DE GRÁFICOS

Gráfico 1. Núm. de Neuronas en la capa oculta vs. Porcentaje de precisión	43
Gráfico 2. Comparación de la regulación propuesta entre el control clásico y el	
control RNN	47
Gráfico 3. Compensación para el caso 1	47
Gráfico 4. Perfil de tensión para el caso 1	48
Gráfico 5. Compensación para el caso 2	49
Gráfico 6. Perfil de tensión para el caso 2	50
Gráfico 7. Compensación para el caso 3	51
Gráfico 8 Perfil de tensión para el caso 3	52
Gráfico 9. Compensación para caso 4	54
Gráfico 10. Perfil de tensión para el caso 4	54
Gráfico 11. Compensación para el caso 5	56
Gráfico 12. Perfil de tensión para el caso 5	56
Gráfico 13. Compensación para el caso 6	58
Gráfico 14. Perfil de tensión para el caso 6	. 58

RESUMEN

En el presente trabajo de investigación busco desarrollar un controlador para el sistema

SVC Static Var Compensation, el cual fue propuesto como solución a los problemas de

regulación de tensión en el Sistema Eléctrico de Potencia, originado, a la migración de

demanda y por la implementación de fuentes de generación alternativas. Este sistema tiene

un control de potencia reactiva del SVC complejo, puesto que utiliza muchas variables,

como alternativa se propuso utilizar la teoría de redes neuronales entrenado un modelo,

que será utilizado dentro del control lógico del SVC, con el objetivo de mantener el perfil

de regulación del sistema dentro de los parámetros fijados por los entes reguladores, y

disminuir paramentos de entradas.

El controlador basado en redes neuronales fue entrenado con los datos obtenidos a

partir de las simulaciones del sistema en los escenarios críticos obteniendo un 96% de

precisión después del entrenamiento, un comportamiento adecuado simplificará el análisis

lógico utilizando menos parámetro para realizar la regulación del Perfil de tensión, en

comparación con los que utilizan los controladores clásicos.

El entrenamiento de red, debe ser revisado cada vez que el sistema de potencia sufre

un cambio topológico, ya que puede generarse tienen nuevos escenarios que podrían

ocurrir y entrenar nuevamente a la red.

Para comprobar el desempeño del controlador se utilizaron programas de análisis de

flujos de potencia como el Digsilent Power Factory, en el cual se simularon los escenarios

del sistema previstos para los años 2018, 2019 y 2020 obteniendo un 97% de precisión en

todos los escenarios simulados.

Finalmente se compara estadísticamente el perfil de tensión sin regulación y el obtenido

con la regulación del controlador neuronal entrenado, obteniendo varianza menor al 0.05.

Lo que indica que el perfil de tensión sufrió un cambio significativo.

Palabras clave: tensión, sistema eléctrico, controlador básico, SVC

ix

ABSTRACT

In the present research work I seek to develop a controller for the SVC Static Var

Compensation system, which was proposed as a solution to the problems of voltage

regulation in the Electric Power System, originated, to the migration of demand and

for the implementation of alternative generation sources. This system has a complex

SVC reactive power control, since it uses many variables, as an alternative it was

proposed to use the theory of trained neural networks a model, which will be used

within the SVC logical control, in order to maintain the profile of regulation of the

system within the parameters set by the regulatory entities, and decrease input

parameters.

The controller based on neural networks was trained with the data obtained from

the simulations of the system in the critical scenarios obtaining 96% accuracy after

training, adequate behavior will simplify the logical analysis using less parameter to

perform the regulation of the Profile of voltage, compared to those used by classic

controllers.

The network training should be reviewed every time the power system undergoes a

topological change, since it can be generated they have new scenarios that could

occur and train the network again.

To check the performance of the controller, power flow analysis programs such as

the Digsilent Power Factory were used, in which the system scenarios planned for

the years 2018, 2019 and 2020 were simulated obtaining 97% accuracy in all

simulated scenarios.

Finally, the voltage profile without regulation and that obtained with the regulation of

the trained neuronal controller are compared statistically, obtaining variance less

than 0.05. This indicates that the tension profile underwent a significant change.

Keywords: voltage, electrical system, basic controller

Х

INTRODUCCIÓN

En el norte del Perú se encuentra la región de Piura, zona costera que tiene un gran crecimiento económico, y una diversidad de actores económicos con la extracción de minerales como el hierro, fosfato y sal; a esto se suma la industria petrolera con la refinería de Talara que representa cerca del 33 % de la producción nacional del Perú.

El crecimiento económico se refleja en el aumento de la demanda energética. En esta región se encuentra el sistema eléctrico de potencia de Paita, la cual, debido al incremento de demanda y la instalación de nuevas fuentes de generación, viene presentando problemas de estabilidad de la tensión, críticas en fallas importantes como la salida intempestiva de la Central Térmica Tablazo y por el incremento de la demanda de la empresa agrícola de Chira.

El dinamismo económico alcanzado por la región exige que el suministro de energía eléctrica sea continua y confiable, cuya interrupción prolongada e intempestiva causaría gran impacto social y económico en la población, el cual no debe admitirse.

La empresa concesionaria del área geográfica en la que se ubica la zona en cuestión contrató una consultoría para solucionar este problema, como solución se propuso la instalación de un Sistema Compensador Estático de Potencia Reactiva, *Static Var Compensator*, (SVC) para la regulación de tensión y factor de potencia.

La presente tesis propone un controlador basado en redes neuronales, para el control lógico del compensador estático de potencia reactiva en el sistema eléctrico de potencia de Paita que logre mantener el perfil de tensión óptimo.

El autor.

CAPÍTULO I

PLANTEAMIENTO DEL ESTUDIO

1. Caracterización y formulación del problema

1.1. Caracterización del problema

La inversión económica del estado en favor de fortalecer la matriz energética en los últimos 20 años se ha materializado en la construcción y puesta en servicio de nuevas centrales de generación, muchas de estas centrales fueron de energías no convencionales como centrales fotovoltaicas, centrales eólicas y centrales de biomasa.

Conforme el Sistema Eléctrico Interconectado Nacional (SEIN) aumentaron las variedades de fuentes de generación y nacieron nuevos retos en el sistema. Para mantener los parámetros de estabilidad y calidad en el SEIN dentro de lo indicado en la Norma Técnica de Calidad de Servicio (NTCSE), a su vez el Comité de Operación Económica del Sistema Interconectado COES-SEIN el responsable de supervisar la operación dentro del Sistema Eléctrico Interconectado Nacional, necesitaba tener un margen de operación, para brindar la confiabilidad al sistema ante posibles fallas que pudieran ocurrir.

Es así como, en el año 2013 en el norte del Perú la empresa concesionaria tuvo problemas en la regulación de tensión crítica en dos subestaciones en la ciudad de Piura. A lo cual mediante un estudio se propone la implementación de un equipo que pueda regular la tensión en el nivel de 60 kW que buscó garantizar los niveles de tensión de entrega en la SET Paita y la SET Tierra Colorada ante las salidas intempestivas de la Central Térmica Tablazo, a esto se le sumo el incremento de la demanda de la empresa agrícola de Chira.

Para dar solución a esto se propuso la instalación de un sistema *Stact Var Compensation* SVC, de 50 Mvar de compensación en la Subestación de Potencia de Paita, la cual tendría la capacidad necesaria para regular el perfil de tensión.

El sistema propuesto SVC tiene un controlador clásico de lazo cerrado, el cual requiere de gran cantidad de parámetros de entrada para brindar una salida de regulación adecuada según los parámetros indicados, debido a esto es complejo de diseñar.

Ante esto nace la propuesta de una alternativa al sistema de control del Sistema SVC, el cual buscará simplificar el proceso de regulación, la presente tesis plantea utilizar la teoría de redes neuronales para realizar el control lógico del sistema de control del SVC, para esto se entrenará un modelo predictivo que cumpla con los parámetros de regulación del sistema.

1.2. Formulación del problema

A) Problema general

¿Cómo elaborar un control lógico alternativo al sistema *Static Var Compensation* que regule la tensión de la SEP Paita?

B) Problemas específicos

- ¿Cuántos parámetros de entrada de la Red Neuronal serán necesarios para el controlador lógico basado en redes neuronales para el SVC?
- ¿Cuál será la estructura de la red neuronal para que el control lógico alcance una precisión mayor o igual al 95 %?

2. Objetivos

2.1. Objetivo general

Implementar un control lógico basado en redes neuronales para el SVC (Sistema *Static Var Compensation*) para regular la tensión p.u en más o menos 5 %.

2.2. Objetivos específicos

- 1. Utilizar menos parámetros de entrada en el control lógico usado por el Sistema *Static Var Compensation*.
- 2. Obtener un error menor al 5 % en el aprendizaje de red neuronal.

3. Justificación y delimitación

3.1. Justificación

Mantener los parámetros de los sistemas eléctricos de potencia, que es una tarea que aumenta su complejidad y la creciente demanda; los aspectos técnicos como la cargabilidad de las líneas de transmisión y las subestaciones de potencia son factores que limitan la confiabilidad y ponen el riesgo a los sistemas ante eventos no predecibles. La normativa vigente obliga a las empresas concesionarias a mantener la continuidad del servicio público (LCE), y penaliza la interrupción prolongada (NTCSE) por lo que exige que el servicio sea de calidad y confiable.

Como alternativa de solución a estos problemas los especialistas diseñaron equipos que son capaces de cumplir funciones en niveles de alta tensión, los SVC tiene la capacidad de entregar y consumir energía reactiva en el orden de Mvar.

Los controladores utilizados en estos equipos incrementaron su complejidad según aumentó la cantidad de barras y los equipos de regulación. La cargabilidad de los equipos fue crítica al momento de tomar decisiones de reforzar las líneas de transmisión y ampliar subestaciones. La confiabilidad de los sistemas de potencia depende directamente de su capacidad para mantener sus parámetros bajo control en estados de pre y post falla. Brindar alternativas de control es importante para conseguir una regulación adaptativa con los cambios de topología.

La implementación de un sistema SVC en el norte del país es un paso importante para garantizar la confiabilidad del sistema en esta área geográfica.

El sistema SVC propuesto, tiene nueve (9) variables de entrada, como se ve en la Figura 1, donde se muestra la ventana de entrada del control del sistema SVC, que utiliza para realizar el control de tensión, esto hace que este controlador se complejo de modificar y diseñar.

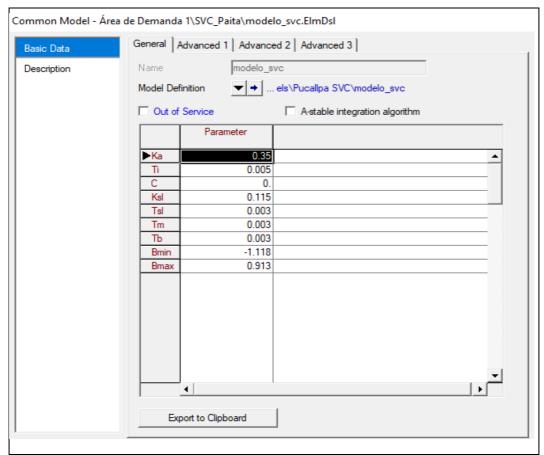


Figura 1. Parámetros de entrada Fuente: elaboración propia

La información para realizar la regulación del sistema de potencia es tomada de los transformadores de corriente y tensión que tiene la subestación. Otros equipos de medición serán incluidos con la implementación de este equipo.

Él envió de datos adecuados y confiables es crítico para el correcto funcionamiento, debido a que el sistema SVC, es un equipo de actuación rápida en los sistemas de potencia, por esto sus datos de entrada requieren ser de alta precisión.

Debido a estos detalles el controlador de un sistema SVC es complejo, para ayudar a reducir la complejidad en la lógica del controlado, la presente tesis que busca brindar una alternativa a la lógica de control, utilizando la teoría de redes neuronales que presenta resultados muy alentadores en el área de control de sistemas no lineales.

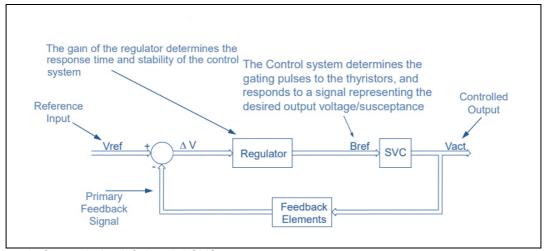


Figura 2. Controlador básico del SVC Fuente: ABB SVC Static Var Compensator

3.2. Delimitación

Control lógico utilizado en el sistema *Static Var Compensation*, de la subestación de potencia SEP Paita, ubicada en Piura – Perú.

4. Hipótesis y descripción de variables

4.1. Hipótesis

• Hipótesis de Investigación - Hi:

El controlador lógico basado en redes neuronales para Sistema de compensación estática (SVC), regulará la tensión p.u (valor por unidad) +/- 5 %.

Hipótesis Nula - Ho:

La tensión p.u tendrá una varianza menor o igual al 0.05

• Hipótesis Alternativa - Ha:

La tensión p.u tendrá una varianza mayor al 0.05.

4.2. Hipótesis específicas

- 1. Se necesitará menos parámetros de entrada, para conseguir un modelo de red que brinda una regulación adecuada.
- 2. El modelo de la red neuronal entrenada tendrá un error menor al 5 %.

4.3. Variables

- a) Variable 1 Control lógico basado en redes neuronales
- Definición conceptual: mantiene los parámetros supervisados dentro de límites especificados, con el apoyo de modelos de redes neuronales.
- Definición operacional: controla la potencia reactiva necesaria, para mantener los paramentos eléctricos dentro de lo especificado.
- b) Variable 2 Adecuada regulación del perfil de tensión
- Definición conceptual: es el efecto de regular, ajustar o reglar el funcionamiento de un sistema para mantener la tensión en un rango aceptable.
- Definición operacional: es modificar el valor de la potencia reactiva para mantener el nivel de tensión dentro del rango esperado.

En la tabla 1, se indican las dimensiones e indicadores de las variables.

Tabla 1. Variables

14014 11 141140100					
Variable	Dimensiones	Indicador			
X= Controlador lógico basado en redes neuronales	Und	Precisión			
Y= Adecuada regulación del perfil de tensión	p.u	%			

Fuente: elaboración propia

CAPÍTULO II

MARCO TEÓRICO

2. Antecedentes de la investigación

2.1 Artículos relacionados

Artículo 1

El artículo científico de Vaschetti, Magnag y Sauchelli que tiene como título "Control automático de voltaje en sistemas eléctricos de potencia basado en sistemas expertos", (1) donde se ha desarrollado el diseño de un controlador experto con nueve restricciones que se deben cumplir en la regulación, para lograr esto se compararon los resultados obtenidos con los de un flujo óptimo de potencia realizado con el programa *Power Systems Engineering Resear Center*, este estudio se utilizó el sistema IEEE30 *Alsac and Stott*,1974.

El controlador propuesto demostró un resultado alentador siendo apto para llegar a aplicarlo en una línea en tiempo real, con flexibilidad para adaptarse a problemas difíciles de analizar.

Artículo 2

El artículo científico de la conferencia conjunta internacional sobre redes neuronales "ANN in local secondary voltaje control concept" donde se aplicó la arquitectura Perceptrón multicapa entrenada por back-propagation para regular la tensión del sistema IEEE 30 - barras.

Se utilizaron cinco neuronas en la primera capa (entrada), seis neuronas en la capa oculta y una neurona en la capa de salida, una de las neuronas de entrada fue para tensión del generador, y las otras para los valores de las líneas, los valores se trabajaron con el sistema por unidad (p.u). (2)

Artículo 3

El artículo científico de Álzate, Gonzáles y Sepúlveda "Metodología de sintonización de un controlador PI para SVC" donde se trabajó la metodología de sintonización con el control PI (3), encontraron que, los valores de la impedancia del sistema de corriente alterna, no deben ser muy altos, ya que esto genera inestabilidad. Se pueden utilizar otros métodos para reducir este problema como la sintonización de Ziegler y Nichols. También se demostró que el SVC, es un excelente compensador en el momento de la falla y pos falla de un sistema AC. El tiempo de actuación del SVC es rápido comparado con otras tecnologías.

2.2 Tesis relacionadas

Tesis 1

Moreno realizó la investigación "Análisis de estabilidad transitoria para el sistema eléctrico ecuatoriano utilizando redes neuronales artificiales" en la Escuela Politécnica Nacional – Quito (4). El estudio presenta el análisis de estabilidad transitoria para el sistema eléctrico ecuatoriano, utilizando redes neuronales artificiales (ANN). La RN diseñada modifica su comportamiento con los ángulos de

los generadores, que se presentan a raíz de perturbaciones en los sistemas de 138 kV y 2030 kV. Se utilizaron los datos de potencia activa y reactiva de los generadores para obtener los ángulos de los rotores. Las simulaciones se realizaron en programa *DigSILENT Programming Language* (DPL).

Tesis 2

Vaschetti realizó la investigación "Control en tiempo Real del Sistema Eléctrico de Potencia mediante técnicas de Inteligencia Artificial" en la Universidad Nacional de Córdoba (1). El estudio en el capítulo siete aporta una metodología que utiliza la capacidad del Perceptrón Multicapa para controlar el nivel secundario de tensión en los nodos pilotos propuestos ante las perturbaciones de la carga. También se estudió la cantidad óptima de neuronas en la capa oculta y se mostró que, partiendo de un criterio analógico orientativo, se puede arribar a una solución óptima con el método de selección hacia adelante.

Tesis 3

Sotelo realizó la investigación "Control difuso para la estabilidad de un sistema eléctrico de potencia" en el Instituto Politécnico Nacional del Distrito Federal de México (5). Describió el análisis y aplicación de un controlador basado en lógica difusa, que permite controlar la dinámica no lineal de las máquinas síncronas utilizadas en plantas de generación. Se evidenció que, las oscilaciones producidas por las fallas aplicadas al sistema son menores en sus magnitudes con este controlador. También se evidenció que el controlador de lógica difusa es más eficiente y de mayor robustez que uno convencional. Se observó que para regular en un punto de operación diferente al que fue sintonizado, no tiene la robustez esperada, ya que fue sintonizado para un punto de operación específico.

2.3 Bases teóricas

2.3.1 Generación

Es el proceso por el cual la energía cinética se convierte en energía eléctrica, el Perú tiene una matriz diversa como se puede ver en la Figura 1, la energía renovable tiene un crecimiento considerable en los últimos años, gracias a la política ecológica, para marzo del 2019, la máxima demanda en el Perú fue de 6950 MW registrada el día cuatro de febrero a las 20:00 horas (6).

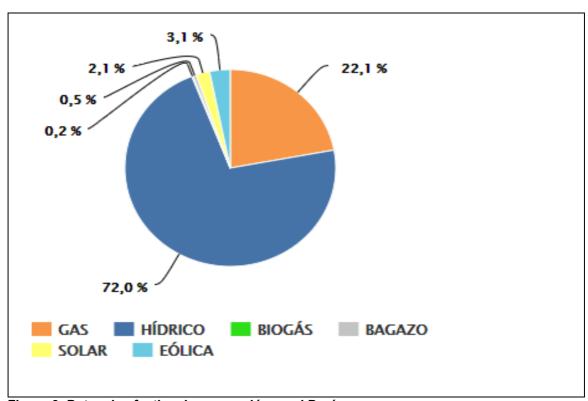


Figura 3. Potencia efectiva de generación en el Perú

Fuente: App COES 2019

La demanda diaria de sistema es dirigida por el inicio de las actividades económicas, teniendo valles en los cambios de horarios y turnos de trabajo (6). En la figura 3, se muestra el diagrama de carga del día 20 de febrero.

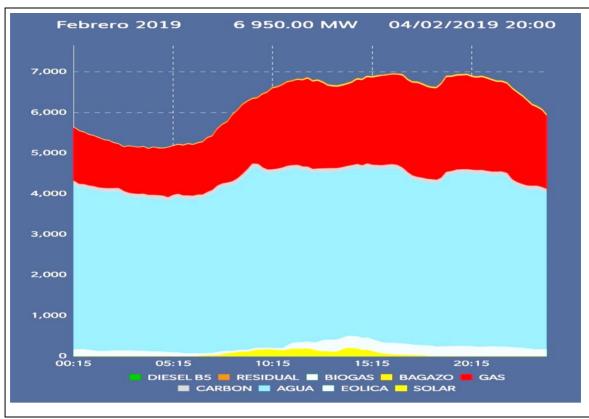


Figura 4. Diagrama de Carga - marzo 2019

Fuente: App COES 2019

2.3.2 Subestaciones

Son instalaciones que se encargan de elevar o reducir la tensión según sea su ubicación en el sistema. En estas instalaciones también se realizan compensación de potencia reactiva según sea necesaria.

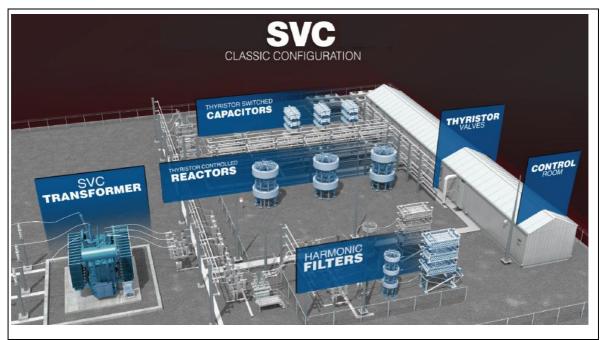


Figura 5. Configuración clásica de un sistema SVC en un Subestación Fuente: GE gridsolutions

2.3.3 Transmisión eléctrica

Se conoce como transmisión eléctrica, a los métodos que se utilizan para llevar la energía eléctrica de un punto de generación hacia los centros poblados o grandes industrias que darán uso a esta energía (6).

La transmisión eléctrica por lo general se da en tensiones elevadas, para reducir las pérdidas de potencia en el sistema.

2.3.4 Distribución

Es la función de transportar la energía eléctrica en tensiones adecuadas para el consumo doméstico y/o industrial, para ello, se utilizan subestaciones de distribución las cuales transforman la tensión y corriente (6).

En la Figura 5 se muestra un sistema eléctrico donde se evidencia la distribución de energía.

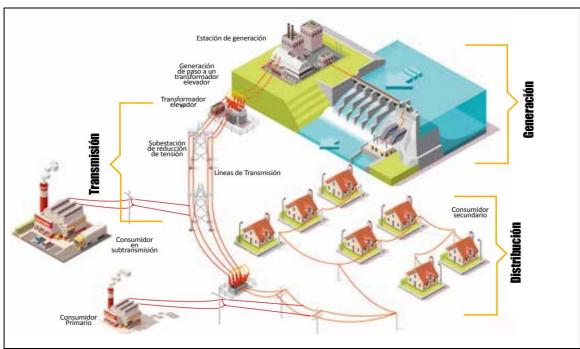


Figura 6. Sistema eléctrico Fuente GPAE-OSINERMING

Subestación de distribución

Está conformada por los interruptores transformadores, descargadores, seccionadores, su función es reducir los niveles de tensión de las líneas de transmisión o subtransmisión hasta niveles de media tensión para su ramificación en múltiples salidas (6).

Circuito primario

Es la red de reparto, parte de las subestaciones de transformación, reparte la energía a grandes centros de consumo, hasta llegar a las estaciones transformadoras de distribución (6).

Circuito secundario

La red de distribución secundaria se extiende por las calles y avenidas principales de los centros poblados y/o gran industria, las líneas que forman las líneas secundarias de distribución se operan de forma radial (6)

Consumo

El consumo eléctrico se mide en kW/h que representa la energía consumida, esta tiene distintos niveles de tensión y tarifas de energía, dependiendo el sector y el tipo de suministro (6).

Clientes regulados

Son los usuarios cuyo consumo mensual no supera los 0.2 MW, estos clientes están regidos bajo la norma técnica de calidad de servicio, el costo por kW/h es establecido y supervisado por OSINERMING a través del procedimiento de Tarifas en barra (6).

Clientes libres

Son los usuarios que su consumo promedio mensual supera los 0.2 MW, los cuales pueden definir sus condiciones de servicio directamente con las empresas generadoras, transmisoras y concesionarias del área donde se encuentran. Existe un rango adaptativo para las empresas cuyo consumo este entre 0.2 y 2.5 MW, dentro de este rango las empresas pueden elegir ser reguladas o definir sus propias condiciones con las empresas que prestan el servicio (6)

2.3.5 Sistemas de potencia

Es el conjunto conformado por generadores, líneas de transmisión, subestaciones, y cargas de consumo. El cual está supervisado, buscando continuamente la eficiencia, y rentabilidad del mercado energético (6).

Los sistemas eléctricos, deben considerar la estimación de la demanda, para prevenir cambios, aumentar la capacidad de las subestaciones o reforzar las líneas de transmisión (7). La instalación de plantas de generación cercanas a los sistemas

de potencia, puede representar amenazas en el sistema, ya que ante una falla en este centro de generación puede ocasionar un colapso en el sistema de potencia.

2.3.6 Estabilidad de Sistema de Potencia

Existen dos principales aspectos de la estabilidad que afectan a los sistemas de potencia (7). La estabilidad Angular y la Estabilidad de Voltaje.

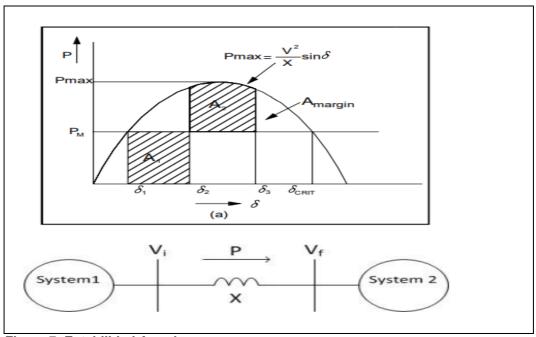


Figura 7. Estabilidad Angular

Fuente: Gómez (2002)

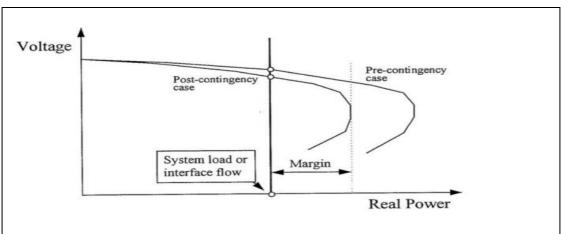


Figura 8. Estabilidad de Tensión.

Fuente: Análisis y Operación de Sistemas de Energía Eléctrica. McGraw Hill

La estabilidad en los sistemas de potencia está asociada a tener márgenes suficientes. Los márgenes restringen la capacidad de transmisión.

2.3.7 Regulación de tensión

Para mantener el sistema eléctrico de potencia operando en forma segura es necesaria una adecuada regulación; los eventos que afectan el perfil de tensión pueden ser fallas monofásicas, trifásicas o bifásicas, de generación, actuaciones erróneas de los equipos de protección, o la operación inadecuada; para mitigar estas contingencias se utiliza generalmente la potencia reactiva, (8). La cual es provista por sistemas implementados en las subestaciones piloto, las que fueron analizadas con anterioridad, para demostrar el funcionamiento del sistema con solución.

Mantener monitoreado la tensión de un sistema esencial, un error en este puede ocasionar, en algunas oportunidades, apagones masivos (8). En la Figura 8, se muestra la curva de estabilidad de potencia según el factor de potencia.

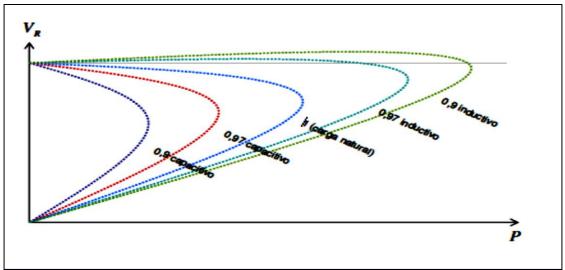


Figura 9. Estabilidad de tensión según el factor de potencia. Análisis y Operación de Sistemas de Energía Eléctrica". McGraw Hill

En general, es utilizada total o parcialmente en la Comunidad Económica Europea, el control automático de voltaje es una técnica ampliamente probada en países como Francia e Italia.

En los últimos años los sistemas expertos que controlan los dispositivos

conmutables dejaron la excitación del generador bajo el control del regulador local

(AVR – Automatic Voltage Regulator) para el transitorio

2.3.8 Conceptos de control de voltaje

Las Normas Técnicas de Calidad de Servicio Eléctrico (NTCSE) establecen que

la tensión nominal no debe variar en un +/- 5 %, si variaría en un rango mayor podría

presentar comportamientos no satisfactorios y consecuentemente acabar

inoperativos.

En la regulación de tensión, se manejan tres niveles de control jerárquicamente,

estos utilizan información en tiempo real a través de las diversas plataformas que

existen para obtener estos datos Estos niveles no solo son distribuidos

espacialmente, sino que también lo son temporalmente (15).

a) Nivel Primario - Primary Voltaje Control PVC

• Tiempo de actuación: 0.5 seg - Instantánea

Aplicación Local

Objetivo: correcciones rápidas

b) Nivel Secundario Secundary Voltaje Control SVC

Tiempo de actuación: supera el transitorio – 50 s.

Aplicación Regional

Objetivo: control de barras piloto, optimizar la potencia reactiva

c) Nivel Terciario Tertiary Voltage Control - TVC

• Tiempo de actuación: orden de minutos de 5-15 min.

Aplicación Nacional

Objetivo: desacoplar controles

29

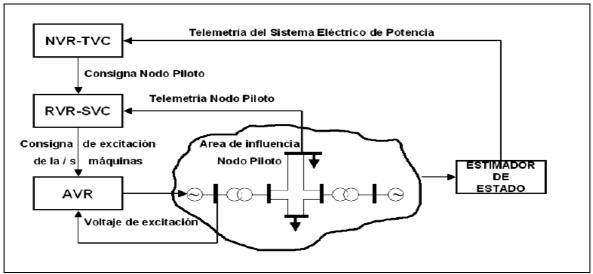


Figura 10. Control jerárquico de voltaje.

Fuente: Control en tiempo real del sistema eléctrico -Vaschetti (2013)

2.3.9 Elementos para el control de voltaje

Los sistemas FACTS (*Flexible AC Transmissions Sustems*), que nacen a raíz del desarrollo de la electrónica de potencia, que ofrece un nuevo y potente medio para afrontar los problemas de control tensión y el flujo de energía en régimen permanente. Sistemas flexibles de transmisión de Corriente Alterna (FACTS)

Este término engloba todos los sistemas basados en electrónica de potencia que se utilizan para la transmisión de energía de CA.

Los principales sistemas son:

- Compensador estático (SVC)
- Condensador en serie, fijo y controlado por tiristores (TCSC)
- Transformador de desplazamiento de fase (PST) y PST asistido (APST)
- Compensador estático síncrono (STATCOM)
- Compensador en serie estático síncrono (SSSC)
- Controlador unificado de flujo de energía (UPFC)

2.3.10 Compensation estático – Static Var Compensation (SVC)

El SVC es un dispositivo que utiliza electrónica de potencia para realizar el control del flujo de potencia, aumenta la estabilidad transitoria, también regula la tensión en el nodo donde se realiza en control. Este dispositivo es capaz de entregar y consumir energía reactiva. Esto se logra debido a condensadores e inductores que son conectados en el secundario de un transformador de acoplamiento.

2.3.10.1 Principio de funcionamiento

El flujo de la corriente a través de los reactores se controla mediante el retraso del ángulo de disparo. El cambio en la corriente del reactor puede darse en instantes discretos en el tiempo, es decir, el ajuste solo puede darse una vez cada medio ciclo. Los TCR se caracterizan, menciona Morán, por tener la habilidad de controlar de manera continua y prácticamente sin transitorios. Las principales desventajas son la generación de componentes armónicos de baja frecuencia y altas pérdidas al trabajar en la región inductiva, por ejemplo, al absorber potencia reactiva. Este trabajo se concentrará en los Compensadores de Potencia Reactiva Controlados por Tiristores. Si bien los dispositivos controlados por electrónica de potencia, como los Compensadores Estáticos de Potencia Reactiva, fueron introducidos a los sistemas de potencia desde hace varias décadas, Hingorani los clasificó al establecer una filosofía de control de redes eléctricas, los FACTS [17].

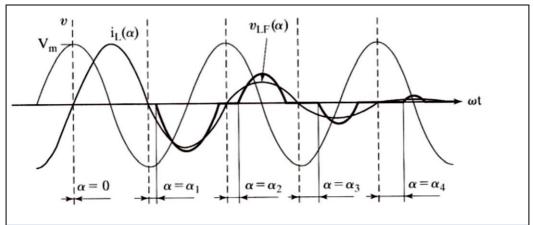


Figura 11. Efectos del retraso en el ángulo de disparo en un TCR.

Fuente: Hingorani (2000)

2.3.10.2 Tipos de compensadores estáticos

a) Reactor Controlado por Tiristores- Capacitor Fijo TCR - FC

Está compuesto por bancos de condensadores de valor fijo, los tiristores están dispuestos a modo de switch en paralelo con reactores controlados, tal como se aprecia en la Figura 10. El TCR tiene un rango controlable continuo solo para rangos inductivos. Cuando se conecta en paralelo el banco de condensadores, se puede aumentar el rango lado capacitivo. Muestra un filtro obligatorio para reducir la introducción de armónicos al sistema, procedentes de la maniobra de los TCR.

Cuando circulan enormes corrientes dentro del circuito TCR- FC, se necesita cancelar los Mvars capacitivos, se generan pérdidas significativas de 0,5 a 0,7 %, aún en estado estacionario y sin inyección de reactivos al sistema.

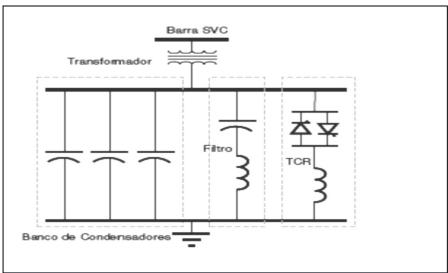


Figura 12. Capacitor Fijo- Reactor controlado por tiristores.

Fuente: Hingorani (2000)

b) MSC-TCR (Condensador con Interruptores Mecánicos – Reactor Controlado por Tiristores)

Este tipo de SVC puede ser ubicado en la barra de AT, aunque en algunos casos es necesario ubicar el filtro en paralelo con las ramas TCR en el secundario del transformador, para así reducir la carga de armónicas en este (3).

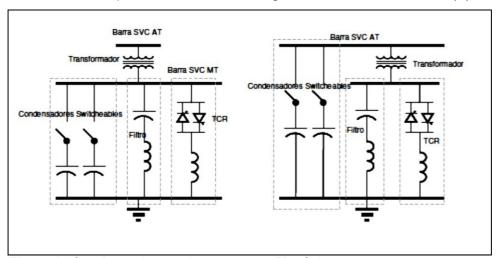


Figura 13. Condensador con Interruptores Mecánicos

Fuente: Hingorani (2000)

Una de las ventajas del esquema MSC-TCR radica en la disminución del capital por Var instalado, producto de la eliminación de los interruptores tiristorizados en las ramas capacitivas; otra ventaja es la relacionada con el reducido rango de pérdidas, lo que influye directamente en los costos operativos. Una desventaja

importante de esta configuración, la constituye la relativa lentitud en la respuesta en comparación a la de los interruptores tiristorizados; mientras estos últimos actúan entre en el lapso de medio a un ciclo entero, (3)

2.3.10.3 Características dinámicas de los SVC

Para describir la variación, se recurre a las características del Voltaje – Corriente o de la potencia reactiva. Los límites de V máx. y V min. de referencia serán dados por el diseño de la capacidad de regulación del SVC. En la Figura 14 se muestra la relación y el control jerárquico del voltaje.

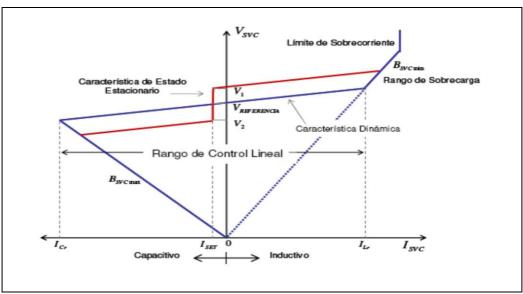


Figura 14. Control jerárquico de voltaje

Fuente: Hingorani (2000)

2.3.11 Redes Neuronales

El empleo de las técnicas de inteligencia artificial en los sistemas de potencia encuentra su razón de ser en las características propias del sistema, y en las originadas por la reestructuración del mercado eléctrico (4).

En la Figura 15 se muestra una neurona expresada en una proteína verde fosforescente.

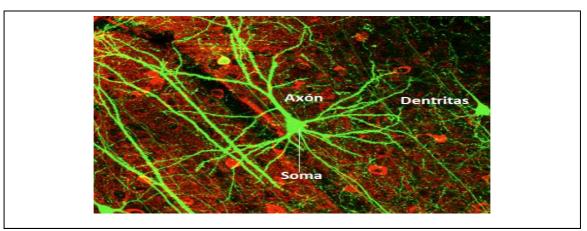


Figura 15. Estructura de una neurona Fuente: gstatic.com

Las dendritas reciben la información, el Soma se encarga de procesar la información y el Axón es quien comunica la respuesta después del procesamiento.

Para que la neurona dé una respuesta, necesita un estímulo el cual debe de alcanzar un punto de excitación para superar el umbral, en un estado de reposo el centro de la neurona se encuentra con una carga negativa de -50 y -70 mV con respecto al exterior. En la Figura 16 se muestra la respuesta temporal.

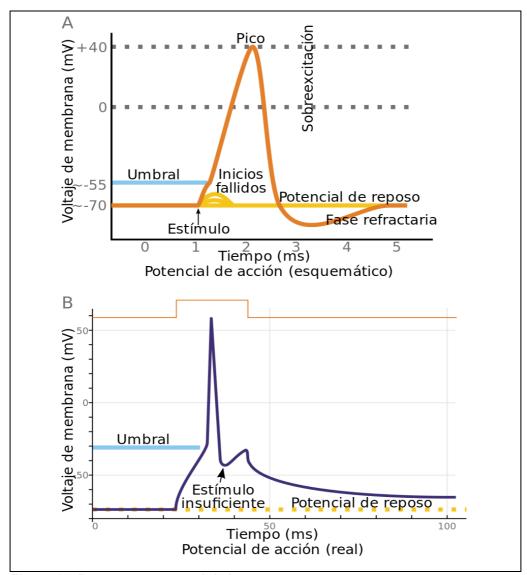


Figura 16. Respuesta temporal de la neurona

Fuente: Nrets

Los modelos de neuronas artificiales (Figura 17), tratan de replicar este principio para lograr la activación de las neuronas para dar soluciones a los diversos casos de análisis.

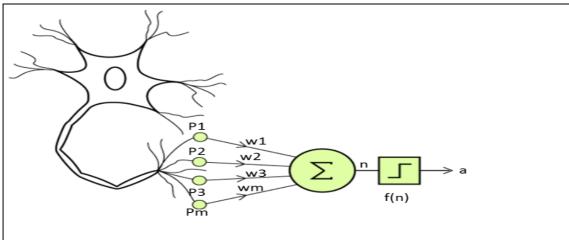


Figura 17. Modelo de una neurona artificial.

Fuente: grupo.us

2.3.12 Tipos de redes neuronales más usadas

a) Deep Neuronal Net (DNN)

Red versátil, se puede procesar imágenes pequeñas, datos numéricos y es la más común.

(11) Se tiene capa de entrada, capa de salida y capa oculta. Lleva su nombre ya que en la capa oculta existen muchas capas.

Tiene muchas conexiones, dependiendo la cantidad de capas ocultas. El problema surge en el procesamiento computacional. Por ejemplo, para el procesamiento de imágenes se vuelve un proceso muy complejo y difícil de procesar para ordenadores comunes.

b) Red Neuronal Convolucional - Convulational Neural Net (CNN)

Estas redes neuronales, nacen para el procesamiento de texto, pero su mayor capacidad es para el procesamiento de imágenes. Utilizan una variación del perceptrón multicapa (11).

En estas estructuras, se mantiene el principio de capas de entradas y capas de salida, pero se agrega capas que agregan convoluciones y *max pullin*, es el principio de reducir el tamaño de la imagen, mientras avanzan las copas de la red, las cuales aumentan su capacidad de extracción las cuales se vuelven más complejas mientras más cerca se esté de la capa final (11).

c) Recurrent Neural Net (RNN)

Se usa para tipos de datos, que son secuenciales, por ejemplo, el precio de las acciones de una empresa, puesto que el valor se acumula en el tiempo.

Las capas que se encuentran en la capa oculta, capas ocultas recurrentes *Long* short term memory LSTM (Memoria corta a largo plazo), esto significa que estas capas generan una predicción y este resultado se alimenta nuevamente a la capa oculta, esto ayuda a que nuestra red tenga una noción de lo que sucede (11).

2.3.13 Perceptrón Multicapa

Es una red neuronal formada por múltiples capas, tiene la capacidad para resolver problemas que no son linealmente separables, lo cual es la principal limitación del perceptrón simple la estructura general se muestra en la Figura 18 (11).

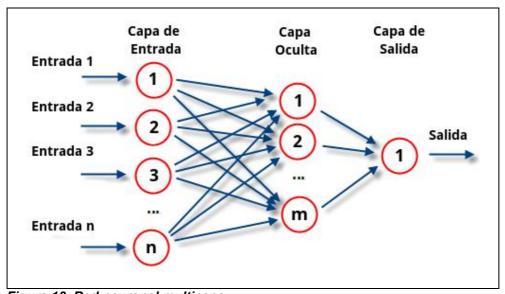


Figura 18. Red neuronal multicapa. Fuente: RedNeuronalArtificial.com

CAPÍTULO III

METODOLOGÍA

3. Método y alcances de la investigación

3.1. Método general o teórico de la investigación

Se utilizará el método científico, Marshall Walter indica que el método científico intenta la validación de un modelo mediante: (1)

- Postula un modelo basado en las observaciones o mediciones experimentales existentes.
- Verifica las predicciones de este modelo con respecto a las observaciones o mediciones ulteriores.
- Ajusta o sustituye el modelo, conforme lo requieran las nuevas observaciones o mediciones.

3.2. Organización de los datos

Se realizaron simulaciones para obtener los datos de los flujos de potencia del sistema, a su vez se modeló el SVC para la regulación de tensión en el sistema. Con estos datos se pudo realizar la limpieza de datos y el posterior entrenamiento de red neuronal.

3.2.1. Entrenamiento de la Red

Para lograr el entrenamiento se utilizó el aprendizaje supervisado el cual consiste en dividir los datos en dos grupos, datos de entrenamiento "Train x" y datos de prueba "Train y". Este algoritmo modela los datos en vectores de entrada y el de salidas en la plataforma de Python.

. x_train, x_test, y_train, y_test = train_test_split (arreglox, arregloy)

3.3. Reunión de los datos conocidos

3.3.1. Datos de entrenamiento

Para alcanzar los objetivos propuestos es necesario contar con datos reales y confiables en los escenarios en los que la red neuronal realizará la regulación de tensión, para ello se utilizó el modelado de la subestación de Paita el cual está regulado por el SVC que cuenta con el control tradicional de estos sistemas en el software *Power Factory – Digsilent*, a partir de esto se generaron varios escenarios para obtener los datos de entrenamiento para diferentes niveles de tensión en la barra de regulación que fue desde 0.95 a 1 pu. A partir de esto se obtuvieron los datos de entrenamiento *Data Set*.

Con ello se obtuvo 144 datos, de estos 132 fueron utilizados para realizar el entrenamiento y 12 para realizar los casos de prueba.

Tabla 2. Escenarios de simulación

Escenario	Demanda	Época	Año
1	Máxima	Avenida	2018
2	Mínima	Avenida	2018
3	Máxima	Estiaje	2018
4	Mínima	Estiaje	2018
5	Máxima	Avenida	2019
6	Mínima	Avenida	2019
7	Máxima	Estiaje	2019
8	Mínima	Estiaje	2019
9	Máxima	Avenida	2020
10	Mínima	Avenida	2020
11	Máxima	Estiaje	2020
12	Mínima	Estiaje	2020

Fuente: elaboración propia

3.4. Propuesta y prueba de una posible solución

Después de esto se define la cantidad de neuronas que estarán en la capa oculta; a continuación, se muestra el flujograma utilizado para entrenar a la red neuronal, se utilizó en aprendizaje supervisado. Para entrenar el modelo fueron necesarias 50 iteraciones para obtener una presión de 97.66328 %

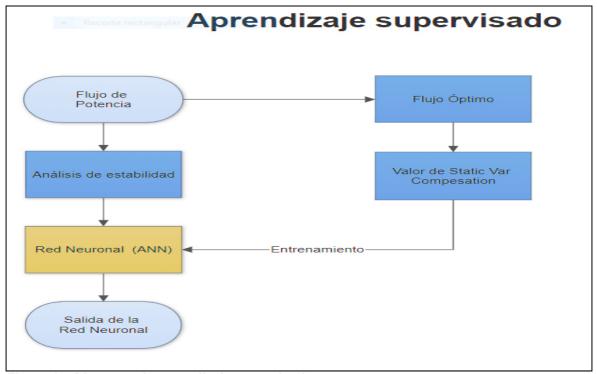


Figura 19. Diagrama de aprendizaje supervisado

3.4.1. Número de Neuronas en la capa oculta

Algunas literaturas indican que las neuronas de la capa oculta deben de ser mayor que la capa de salida, pero menor que la capa de entrada. Esta recomendación no se cumplió en este caso, y se trabajó con el método de prueba y error. Para determinar el número de neuronas adecuado para el modelo, se utilizará el método de prueba y error.

Tabla 3. Porcentaje de precisión según la cantidad neuronas en la capa oculta

Número de Neuronas en la capa oculta	Porcentaje de precisión
1	0.10%
2	5.00%
3	10.00%
4	12.00%
5	97.10%
6	97.11%
7	97.11%
8	97.11%
9	97.11%
10	97.19%
11	97.20%
12	97.20%

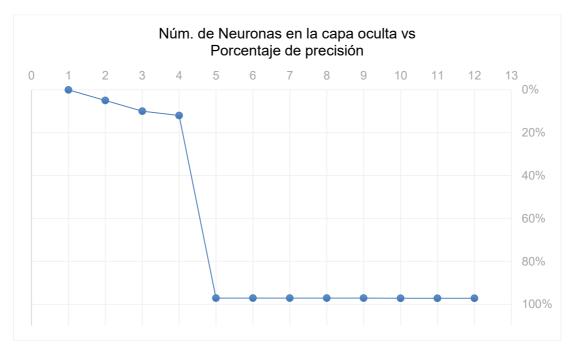


Gráfico 1. Núm. de Neuronas en la capa oculta vs. Porcentaje de precisión Fuente: elaboración propia

3.4.2. Datos de validación

Para demostrar la capacidad del modelo y su correcto entrenamiento, se utilizarán seis (6) nuevas condiciones las cuales no fueron incluidas en el *dataset* de entrenamiento, el resultado obtenido será comparado con los resultados proporcionados por el controlador clásico del SVC proyectado.

Tabla 4. Escenario de validación del modelo entrenado

Año	Época	Demanda	P. Activa	P. Reactiva	Vpu esperado	Vpu actual	Regulació n con el controlad
2018	Avenida	Máxima	38	8.4	1	0.93	-26.17
2019	Avenida	Máxima	40.5	9	1	0.92	-29.553
2019	Avenida	Mínima	28.7	4.6	1	0.98	7
2019	Estiaje	Máxima	39.8	9.6	1	0.93	-27.83
2020	Avenida	Máxima	41	9.7	1	0.95	-17.945
2020	Estiaje	Máxima	37.4	7.2	1	0.96	-13.874

Fuente: elaboración propia

3.5. Alcances de la investigación

A) Tipo de investigación

La variable independiente tomará diversos valores en sus parámetros y se verá el efecto en la variable dependiente, es decir la tensión de las barras será regulada a partir del modelo de red neuronal y los parámetros de salida de esta.

B) Nivel de investigación

La investigación es correlacional, ya que la variable independiente tomará diversos valores en sus parámetros y se verá el efecto en la variable dependiente, es decir la tensión de las barras será regulada a partir del modelo de red neuronal y los parámetros de salida de esta.

3.6. Diseño de la investigación

Los parámetros eléctricos son calculados, definidos y establecidos según normas, por lo cual la variable independiente y variables, serán analizadas para cumplir con los parámetros establecidos.

3.6.1. Tipo de diseño de investigación

Es de tipo Cuasi experimental con pre y pos test, puesto que se compararán los valores de tensión antes y después de la regulación indicada por la red neuronal.

3.7. Población

La población y muestra será censal, ya que toda la población corresponde la muestra tomada.

3.8. Muestra

Controlador del Sistema *Static Var Compensation* del Sistema de potencia Sistema Paita – Piura

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

4. Resultados del tratamiento y análisis de la información

Después de realizar los descrito en el capítulo anterior se obtuvieron los siguientes resultados en los seis (6) escenarios considerados para contrastar los resultados arrojados por la red neuronal.

Tabla 5. Casos de estudio

Casos	Regulación SVC Control Clásico	Regulación SVC Control RNN
Caso 1	26.17	26.29
Caso 2	25.508	25.53
Caso 3	7.38	6.89
Caso 4	27.83	27.81
Caso 5	17.52	16.78
Caso 6	13.831	14

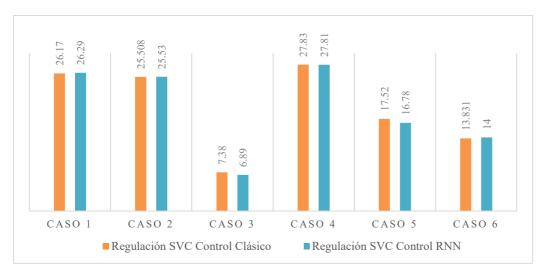


Gráfico 2. Comparación de la regulación propuesta entre el control clásico y el control RNN Fuente: elaboración propia

4.1. Resultado para lograr explicar el objetivo específico 1

a) Caso 1. Máxima demanda- Año 2018 - Estiaje

La barra de control presenta una tensión de 0.929 p.u, la regulación indicada por el controlador clásico al sistema SVC es de consumir 26.17 Mvar para regular la tensión a 1 p.u, y el controlador propuesto basado en redes neuronales indica consumir 26.29 Mvar.

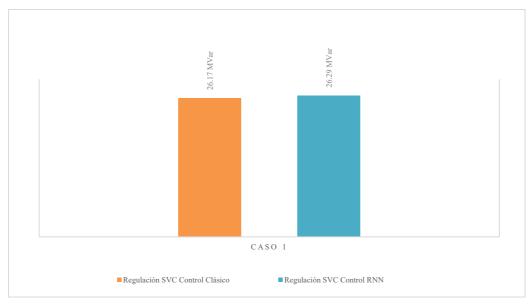


Gráfico 3. Compensación para el caso 1 Fuente: elaboración propia

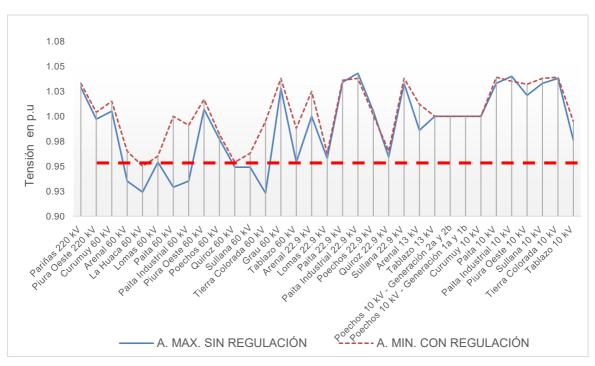


Gráfico 4. Perfil de tensión para el caso 1 Fuente: elaboración propia

Tabla 6. Avenida Máxima demanda- Nivel de Tensión

	Estiaje Máxima demanda, años 2018				
	A. máx. sir	n regulación	A. máx. co	n regulación	
Barra	Tensión (kV)	Tensión (p.u)	Tensión (kV)	Tensión (p.u.)	
Pariñas 220 kV	226.282	1.029	227.213	1.033	
Piura Oeste 220 kV	222.437	0.997	223.983	1.004	
Curumuy 60 kV	60.315	1.005	60.907	1.015	
Arenal 60 kV	56.086	0.935	57.92	0.965	
La Huaca 60 kV	55.44	0.924	57.006	0.95	
Lomas 60 kV	57.267	0.954	57.595	0.96	
Paita 60 kV	55.714	55.714 0.929		1	
Paita Industrial 60 kV	56.092	0.935	59.437	0.991	
Piura Oeste 60 kV	62.23	1.007	62.866	1.017	
Poechos 60 kV	58.626	0.977	58.944	0.982	
Quiroz 60 kV	56.92	0.949	57.251	0.954	
Sullana 60 kV	56.918	0.949	57.768	0.963	
Tierra Colorada 60 kV	55.383	0.923	59.694	0.995	
Grau 60 kV	61.652	1.028	62.295	1.038	
Tablazo 60 kV	57.224	0.954	59.266	0.988	
Arenal 22.9 kV	23.988	1	24.6	1.025	
Lomas 22.9 kV	22.023	0.958	22.152	0.963	
Paita 22.9 kV	23.668	1.034	23.727	1.036	
Paita Industrial 22.9 kV	23.991	1.043	23.873	1.038	

	Estiaje Máxima demanda, años 2018				
	A. máx. sir	regulación	A. máx. con regulación		
Barra	Tensión (kV)	Tensión (p.u)	Tensión (kV)	Tensión (p.u.)	
Poechos 22.9 kV	23.024	1.005	22.912	1.001	
Quiroz 22.9 kV	22.056	0.959	22.186	0.965	
Sullana 22.9 kV	23.664	1.033	23.776	1.038	
Arenal 13 kV	14.29	0.986	14.673	1.012	
Tablazo 13 kV	13.8	1	13.8	1	
Poechos 10 kV - Generación 2a y 2b	10	1	10	1	
Poechos 10 kV - Generación 1a y 1b	10	1	10	1	
Curumuy 10 kV	10	1	10	1	
Paita 10 kV	10.332	1.033	10.386	1.039	
Paita Industrial 10 kV	10.402	1.04	10.35	1.035	
Piura Oeste 10 kV	10.313	1.021	10.422	1.032	
Sullana 10 kV	10.327	1.033	10.376	1.038	
Tierra Colorada 10 kV	10.375	1.038	10.393	1.039	
Tablazo 10 kV	9.757	0.976	9.945	0.995	

Fuente: elaboración propia

b) Caso 2. Máxima demanda- Año 2019 - Estiaje

Para el Caso 2, La barra de control presenta una tensión de 0.993 p.u, la regulación indicada por el controlador clásico al sistema SVC es de consumir 25.508 Mvar para regular a 1 p.u, y el controlador propuesto basado en

Gráfico 5. Compensación para el caso 2 Fuente: elaboración propia

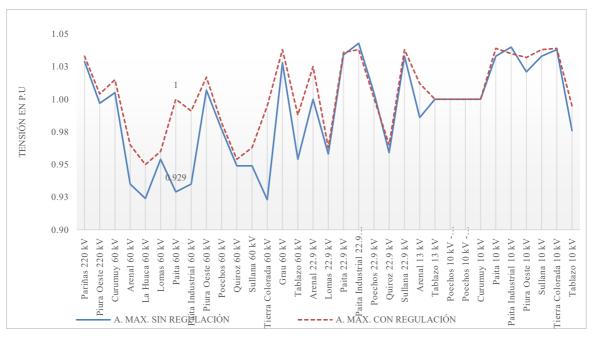


Gráfico 6. Perfil de tensión para el caso 2 Fuente: elaboración propia

Tabla 7. Estiaje Máxima demanda- Nivel de Tensión

Tabla 7. Estiaje maxima demanda-	Estiaje Máxima demanda			
	. Sin re	gulación	Con re	gulación
BARRA	Tensión (kV)	Tensión (p.u.)	Tensión (kV)	Tensión(p.u.)
Pariñas 220 kV	225.803	1.026	227.397	1.034
Piura Oeste 220 kV	221.217	0.992	223.861	1.004
Curumuy 60 kV	59.655	0.994	61.489	1.025
Arenal 60 kV	56.254	0.938	58.828	0.98
La Huaca 60 kV	55.519	0.925	58.368	0.973
Lomas 60 kV	57.069	0.951	58.366	0.973
Paita 60 kV	55.86	0.931	60	1
Paita Industrial 60 kV	56.249	0.937	59.62	0.994
Piura Oeste 60 kV	61.324	0.992	62.385	1.009
Poechos 60 kV	58.185	0.97	59.449	0.991
Quiroz 60 kV	56.762	0.946	58.068	0.968
Sullana 60 kV	56.727	0.945	60.06	1.001
Tierra Colorada 60 kV	55.599	0.927	59.758	0.996
Grau 60 kV	60.7	1.012	61.771	1.03
Tablazo 60 kV	57.347	0.956	59.644	0.994
Arenal 22.9 kV	24.326	1.014	24.701	1.029
Lomas 22.9 kV	22.188	0.965	22.705	0.987
Paita 22.9 kV	23.782	1.039	23.775	1.038
Paita Industrial 22.9 kV	22.144	0.963	23.479	1.021
Poechos 22.9 kV	23.079	1.008	23.099	1.009
Quiroz 22.9 kV	22.228	0.966	22.744	0.989
Sullana 22.9 kV	23.644	1.032	23.796	1.039

	Estiaje Máxima demanda			
	. Sin re	. Sin regulación		gulación
BARRA	Tensión (kV)	Tensión (p.u.)	Tensión (kV)	Tensión(p.u.)
Arenal 13 kV	14.553	1.004	14.787	1.02
Tablazo 13 kV	13.8	1	13.8	1
Poechos 10 kV - Generación	10	1	10	1
Poechos 10 kV - Generación	10	1	10	1
Curumuy 10 kV	10	1	10	1
Paita 10 kV	10.37	1.037	10.395	1.04
Paita Industrial 10 kV	9.589	0.959	10.177	1.018
Piura Oeste 10 kV	10.168	1.007	10.349	1.025
Sullana 10 kV	10.323	1.032	10.39	1.039
Tierra Colorada 10 kV	10.322	1.032	10.317	1.032
Tablazo 10 kV	9.766	0.977	9.971	0.997

Fuente: elaboración propia

c) Caso 3. Mínima demanda- Año 2019 - Avenida

Para el Caso 3, la barra de control presenta una tensión de 0.981 p.u, la regulación indicada por el controlador clásico al sistema SVC es de consumir 7.38 Mvar para regular a 1 p.u, y el controlador propuesto basado en redes neuronales indica consumir 6.89 Mvar.

Gráfico 7. Compensación para el caso 3 Fuente: elaboración propia

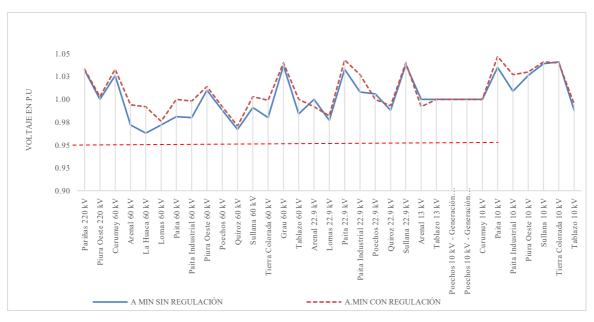


Gráfico 8 Perfil de tensión para el caso 3 Fuente: elaboración propia

Tabla 8. Avenida Mínima demanda- Nivel de Tensión

Tabla 6. Avernda Millimia dem	Avenida Mínima demanda				
	Sin regulación		Con regulación		
Barra	Tensión (kV)	Tensión (p.u.)	Tensión (kV)	Tensión (p.u.)	
Pariñas 220 kV	226.975	1.032	227.296	1.033	
Piura Oeste 220 kV	223.075	1	223.61	1.003	
Curumuy 60 kV	61.566	1.026	61.958	1.033	
Arenal 60 kV	58.308	0.972	59.639	0.994	
La Huaca 60 kV	57.796	0.963	59.545	0.992	
Lomas 60 kV	58.299	0.972	58.577	0.976	
Paita 60 kV	58.841	0.981	60	1	
Paita Industrial 60 kV	58.806	0.98	59.878	0.998	
Piura Oeste 60 kV	62.422	1.01	62.649	1.014	
Poechos 60 kV	59.259	0.988	59.53	0.992	
Quiroz 60 kV	58.01	0.967	58.29	0.971	
Sullana 60 kV	59.484	0.991	60.203	1.003	
Tierra Colorada 60 kV	58.771	0.98	59.931	0.999	
Grau 60 kV	62.192	1.037	62.42	1.04	
Tablazo 60 kV	59.023	0.984	59.972	1	
Arenal 22.9 kV	24.006	1	23.818	0.992	

	Avenida Mínima demanda			
	Sin regulación		Con regulación	
Barra	Tensión (kV)	Tensión (p.u.)	Tensión (kV)	Tensión (p.u.)
Lomas 22.9 kV	22.477	0.977	22.586	0.982
Paita 22.9 kV	23.656	1.033	23.873	1.043
Paita Industrial 22.9 kV	23.188	1.008	23.612	1.027
Poechos 22.9 kV	23.033	1.006	22.905	1
Quiroz 22.9 kV	22.724	0.988	22.835	0.993
Sullana 22.9 kV	23.764	1.038	23.811	1.04
Arenal 13 kV	14.502	1	14.389	0.992
Tablazo 13 kV	13.8	1	13.8	1
Poechos 10 kV - Generación	10	1	10	1
Poechos 10 kV - Generación	10	1	10	1
Curumuy 10 kV	10	1	10	1
Paita 10 kV	10.349	1.035	10.473	1.047
Paita Industrial 10 kV	10.088	1.009	10.274	1.027
Piura Oeste 10 kV	10.361	1.026	10.4	1.03
Sullana 10 kV	10.392	1.039	10.413	1.041
Tierra Colorada 10 kV	10.405	1.041	10.398	1.04
Tablazo 10 kV	9.884	0.988	9.948	0.995

Fuente: elaboración propia

d) Caso 4. Máxima demanda- Año 2019 - Estiaje

Para el Caso 4, la barra de control presenta una tensión de 0.925 p.u, la regulación indicada por el controlador clásico al sistema SVC es de consumir 27.83 Mvar para regular a 1 p.u, y el controlador propuesto basado en redes neuronales indica consumir 27.81 Mvar.

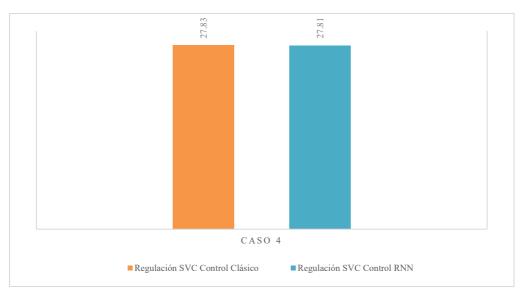


Gráfico 9. Compensación para caso 4 Fuente: elaboración propia

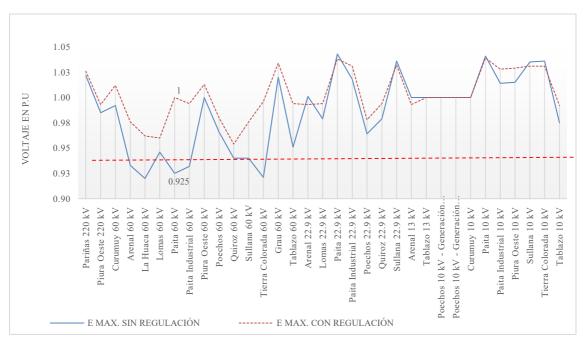


Gráfico 10. Perfil de tensión para el caso 4 Fuente: elaboración propia

Tabla 9. Estiaje Máxima demanda- Nivel de Tensión

Tabia 9. Estiaje Maxima demai	Estiaje Máxima demanda				
	E Max. Sin regu		E Max. Con regulación		
Barra	Tensión (kV)	Tensión (p.u.)	Tensión (kV)	Tensión (p.u.)	
Pariñas 220 kV	224.892	1.022	225.788	1.026	
Piura Oeste 220 kV	219.558	0.985	221.413	0.993	
Curumuy 60 kV	59.497	0.992	60.748	1.012	
Arenal 60 kV	55.989	0.933	58.536	0.976	
La Huaca 60 kV	55.219	0.92	57.698	0.962	
Lomas 60 kV	56.743	0.946	57.595	0.96	
Paita 60 kV	55.506	0.925	60	1	
Paita Industrial 60 kV	55.914	0.932	59.617	0.994	
Piura Oeste 60 kV	61.811	1	62.624	1.013	
Poechos 60 kV	57.975	0.966	58.803	0.98	
Quiroz 60 kV	56.373	0.94	57.233	0.954	
Sullana 60 kV	56.381	0.94	58.557	0.976	
Tierra Colorada 60 kV	55.233	0.921	59.746	0.996	
Grau 60 kV	61.191	1.02	62.012	1.034	
Tablazo 60 kV	57.067	0.951	59.66	0.994	
Arenal 22.9 kV	24.015	1.001	23.831	0.993	
Lomas 22.9 kV	22.521	0.979	22.868	0.994	
Paita 22.9 kV	23.874	1.043	23.765	1.038	
Paita Industrial 22.9 kV	23.414	1.018	23.712	1.031	
Poechos 22.9 kV	22.068	0.964	22.385	0.978	
Quiroz 22.9 kV	22.525	0.979	22.873	0.994	
Sullana 22.9 kV	23.715	1.036	23.631	1.032	
Arenal 13 kV	14.506	1	14.395	0.993	
Tablazo 13 kV	13.8	1	13.8	1	
Poechos 10 kV - Generación	10	1	10	1	
Poechos 10 kV - Generación	10	1	10	1	
Curumuy 10 kV	10	1	10	1	
Paita 10 kV	10.407	1.041	10.387	1.039	
Paita Industrial 10 kV	10.144	1.014	10.275	1.028	
Piura Oeste 10 kV	10.249	1.015	10.388	1.029	
Sullana 10 kV	10.351	1.035	10.315	1.031	
Tierra Colorada 10 kV	10.363	1.036	10.312	1.031	
Tablazo 10 kV	9.749	0.975	9.923	0.992	

Fuente: elaboración propia

e) Caso 5. Máxima demanda- Año 2020 - Avenida

Para el Caso 5, la barra de control presenta una tensión de 0.954 p.u, la regulación indicada por el controlador clásico al sistema SVC es de consumir 17.52

Mvar para regular a 1 p.u, y el controlador propuesto basado en redes neuronales indica consumir 16.78 Mvar.

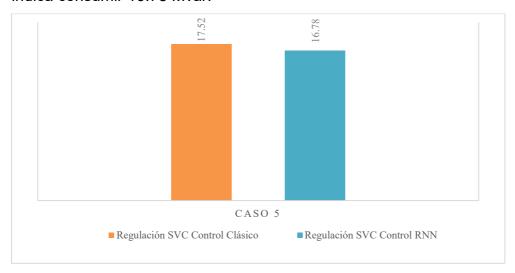


Gráfico 11. Compensación para el caso 5 Fuente: elaboración propia

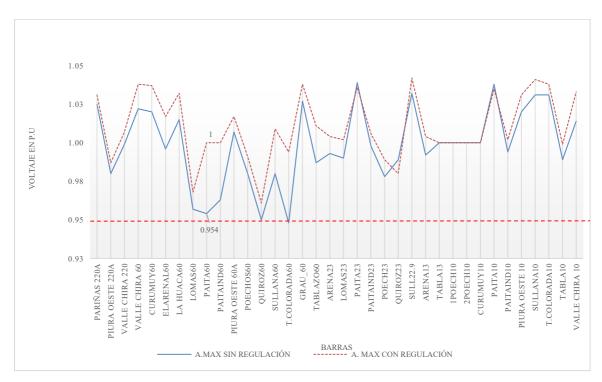


Gráfico 12. Perfil de tensión para el caso 5 Fuente: elaboración propia

Tabla 10. Avenida Máxima demanda- Nivel de Tensión

	Avenida Máxima demanda			
	Sin reg	gulación	Con re	gulación
Barra	Tensión (kV)	Tensión(p.u.)	Tensión(kV)	Tensión(p.u.)
PARIÑAS 220A	225.604	1.025	226.712	1.031
PIURA OESTE 220A	218.501	0.98	220.156	0.987
VALLE CHIRA 220	219.689	0.999	221.45	1.007
VALLE CHIRA 60	61.312	1.022	62.306	1.038
CURUMUY60	61.23	1.02	62.214	1.037
ELARENAL60	59.76	0.996	61.033	1.017
LA HUACA60	60.891	1.015	61.931	1.032
LOMAS60	57.426	0.957	58.107	0.968
PAITA60	57.237	0.954	60	1
PAITAIND60	57.779	0.963	60.001	1
PIURA OESTE 60A	62.215	1.007	62.879	1.017
POECHOS60	58.812	0.98	59.471	0.991
QUIROZ60	56.982	0.95	57.668	0.961
SULLANA60	58.812	0.98	60.542	1.009
T. COLORADA60	56.882	0.948	59.665	0.994
GRAU_60	61.596	1.027	62.267	1.038
TABLAZO60	59.22	0.987	60.69	1.011
ARENA23	23.823	0.993	24.093	1.004
LOMAS23	22.774	0.99	23.051	1.002
PAITA23	23.79	1.039	23.714	1.036
PAITAIND23	22.96	0.998	23.147	1.006
POECH23	22.398	0.978	22.65	0.989
QUIROZ23	22.747	0.989	22.544	0.98
SULL22.9	23.633	1.032	23.863	1.042
ARENA13	14.388	0.992	14.552	1.004
TABLA13	13.8	1	13.8	1
1POECH10	10	1	10	1
2POECH10	10	1	10	1
CURUMUY10	10	1	10	1
PAITA10	10.38	1.038	10.346	1.035
PAITAIND10	9.94	0.994	10.022	1.002
PIURA OESTE 10	10.305	1.02	10.418	1.031
SULLANA10	10.307	1.031	10.408	1.041
T. COLORADA10	10.31	1.031	10.379	1.038
TABLA10	9.892	0.989	9.991	0.999
VALLE CHIRA 10	10.142	1.014	10.335	1.033

f) Caso 6. Máxima demanda - Año 2020 - Estiaje

Para el Caso 6, la barra de control presenta una tensión de 0.965 p.u, la regulación indicada por el controlador clásico al sistema SVC es de consumir 13.831 Mvar para regular a 1 p.u, y el controlador propuesto basado en redes neuronales indica consumir 14 Mvar.

Gráfico 13. Compensación para el caso 6 Fuente: elaboración propia

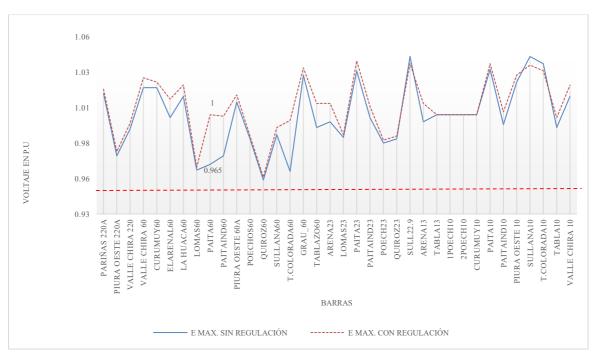


Gráfico 14. Perfil de tensión para el caso 6 Fuente: elaboración propia

Tabla 11. Estiaje Máxima demanda- Nivel de Tensión

	Estiaje Máxima demanda						
	Sin regulación Con regulación						
Barra	Tensión (kV)	Tensión (p.u.)	Tensión (kV)	Tensión (p.u.)			
PARIÑAS 220A	223.368	1.015	223.865	1.018			
PIURA OESTE 220A	216.436	0.971	217.193	0.974			
VALLE CHIRA 220	217.787	0.99	218.572	0.994			
VALLE CHIRA 60	61.14	1.019	61.557	1.026			
CURUMUY60	61.14	1.019	61.366	1.023			
ELARENAL60	59.864	0.998	60.639	1.011			
LA HUACA60	60.76	1.013	61.234	1.021			
LOMAS60	57.658	0.961	57.765	0.963			
PAITA60	57.89	0.965	60	1			
PAITAIND60	58.282	0.971	59.943	0.999			
PIURA OESTE 60A	62.335	1.009	62.646	1.014			
POECHOS60	58.973	0.983	59.077	0.985			
QUIROZ60	57.235	0.954	57.344	0.956			
SULLANA60	59.156	0.986	59.431	0.991			
T. COLORADA60	57.616	0.96	59.734	0.996			
GRAU_60	61.673	1.028	61.988	1.033			
TABLAZO60	59.45	0.991	60.491	1.008			
ARENA23	23.883	0.995	24.195	1.008			
LOMAS23	22.636	0.984	22.679	0.986			
PAITA23	23.613	1.031	23.767	1.038			
PAITAIND23	22.943	0.998	23.138	1.006			
POECH23	22.447	0.98	22.487	0.982			
QUIROZ23	22.615	0.983	22.658	0.985			
SULL22.9	23.849	1.041	23.715	1.036			
ARENA13	14.426	0.995	14.615	1.008			
TABLA13	13.8	1	13.8	1			
1POECH10	10	1	10	1			
2POECH10	10	1	10	1			
CURUMUY10	10	1	10	1			
PAITA10	10.316	1.032	10.356	1.036			
PAITAIND10	9.932	0.993	10.018	1.002			
PIURA OESTE 10	10.331	1.023	10.384	1.028			
SULLANA10	10.408	1.041	10.348	1.035			
T. COLORADA10	10.356	1.036	10.306	1.031			
TABLA10	9.909	0.991	9.979	0.998			
VALLE CHIRA 10	10.133	1.013	10.214	1.021			

4.2. Análisis estadístico

Con el fin de demostrar que la compensación realizada en los diversos escenarios modifica el perfil de tensión de manera significativa se analiza los valores pre y pos test del sistema, para esto se utiliza la prueba T de Student, para datos con varianza diferente con un alfa de 0.05.

Valores pretest: perfil de tensión del sistema sin regulación

Valores pos test: perfil de tensión del sistema con regulación del controlador

neuronal

El valor critico de T par dos colas es menor a 0.5 en todos los escenarios, por lo cual las medias de los perfiles de tensión tienen una diferencia significativa, y se verifica que la regulación realizada en el sistema modifica el perfil de tensión significativamente. De esta manera se aprueba la hipótesis Ho, que indica que "la tensión p.u tendrá una varianza menor o igual al 0.05"

Caso 1. Máxima demanda- Año 2018 - Estiaje

Tabla 12. Análisis de varianza en el caso 1

	Variable 1	Variable 2
Media	0.9895	1.0034
Varianza	0.0015	0.0008
Observaciones	33	33
Coeficiente de correlación de Pearson	0.8669	
Diferencia hipotética de las medias	0.0000	
Grados de libertad	32.0000	
Estadístico t	-4.0393	
P(T<=t) una cola	0.0002	
Valor crítico de t (una cola)	1.6939	
P(T<=t) dos colas	0.0003	
Valor crítico de t (dos colas)	2.0369	

Caso 2. Máxima demanda- Año 2019 - Estiaje

Tabla 13. Análisis de varianza en el caso 2

	Variable 1	Variable 2
Media	0.9842	1.0077
Varianza	0.0012	0.0004
Observaciones	33	33
Coeficiente de correlación de Pearson	0.8110	
Diferencia hipotética de las medias	0.0000	
Grados de libertad	32.0000	
Estadístico t	-6.1656	
P(T<=t) una cola	0.0000	
Valor crítico de t (una cola)	1.6939	
P(T<=t) dos colas	0.0000	
Valor crítico de t (dos colas)	2.0369	

Fuente: elaboración propia

Caso 3. Mínima demanda Año 2019 - Avenida

Tabla 14. Análisis de varianza en el caso 3

	Variable 1	Variable 2
Media	1.0021	1.009
Varianza	0.0005	0.00046025
Observaciones	33	33
Coeficiente de correlación de Pearson	0.9227	
Diferencia hipotética de las medias	0	
Grados de libertad	32	
Estadístico t	-4.3880	
P(T<=t) una cola	5.8206E-05	
Valor crítico de t (una cola)	1.6938	
P(T<=t) dos colas	0.00011	
Valor crítico de t (dos colas)	2.0369	

Fuente: elaboración propia

Caso 4. Máxima demanda Año 2019 - Estiaje

Tabla 15. Análisis de varianza en el caso 4

	Variable 1	Variable 2
Media	0.986	1.002
Varianza	0.001	0.001
Observaciones	33.000	33.000
Coeficiente de correlación de Pearson	0.837	
Diferencia hipotética de las medias	0.000	
Grados de libertad	32.000	
Estadístico t	-4.233	
P(T<=t) una cola	0.000	
Valor crítico de t (una cola)	1.694	
P(T<=t) dos colas	0.000	
Valor crítico de t (dos colas)	2.037	

Caso 5. Máxima demanda Año 2020 - Avenida

Tabla 16. Análisis de varianza en el caso 5

	Variable 1	Variable 2
Media	0.9983	1.0106
Varianza	0.0006	0.0005
Observaciones	36.0000	36.0000
Coeficiente de correlación de Pearson	0.8732	
Diferencia hipotética de las medias	0.0000	
Grados de libertad	35.0000	
Estadístico t	-6.0511	
P(T<=t) una cola	0.0000	
Valor crítico de t (una cola)	1.6896	
P(T<=t) dos colas	0.0000	
Valor crítico de t (dos colas)	2.0301	

Fuente: elaboración propia

Caso 6. Máxima demanda Año 2020 - Estiaje

Tabla 17. Análisis de varianza en el caso 6

	Variable 1	Variable 2
Media	0.9991	1.0059
Varianza	0.0005	0.0004
Observaciones	36.0000	36.0000
Coeficiente de correlación de Pearson	0.9150	
Diferencia hipotética de las medias	0.0000	
Grados de libertad	35.0000	
Estadístico t	-4.2645	
P(T<=t) una cola	0.0001	
Valor crítico de t (una cola)	1.6896	
P(T<=t) dos colas	0.0001	
Valor crítico de t (dos colas)	2.0301	

CONCLUSIONES

- El controlador lógico basado en redes neuronales, implementados para el Sistema Static Var Compensation en el sistema de potencia de Paita, puede regular la tensión p.u +/- 5 %. El modelo que utiliza 05 neuronas en la capa oculta brinda una regulación óptima dentro de los parámetros establecidos por la NTCS.
- Se acepta la Hipótesis Ho, puesta que la varianza obtenida para los 06 casos de estudio es menor al 0.05, lo que indica que la variación de la tensión se encuentra dentro del 5% según lo indica la normativa.
- El controlador lógico propuesto utiliza 2 parámetros de entrada, la tensión P.U actual y la tensión P.U nominal obteniendo una precisión del 97% para regular el perfil de tensión del sistema, para los tres años de estudio. Además se utilizó el valor de la regulación ofrecida por controlador SVC clásico para entrenar el modelo, con ellos se comprueba la primera hipótesis específica.
- A partir de los datos 556 datos generados para el entrenamiento del modelo y utilizando 05 neuronas en la capa oculta, se pudo entrenar al modelo con 400 iteraciones al 97% de precisión, con aceptamos la segunda hipótesis especifica.

RECOMENDACIONES

- Se recomienda analizar el control en periodos de una década, en este tiempo se pueden presentar variaciones topológicas del sistema lo cual podría necesitar un ajuste en su entrenamiento.
- Se podría generar un modelo de autoaprendizaje y con esto solucionar el problema de la regulación ante cambios de topología del sistema.
- El software Power Factory Digsilent en su versión actual, permite realizar programación con Python para integrar complementos, con esto se podría automatizar la aplicación del controlador dentro del entorno del programa, y evidenciar las ventajas y otras aplicaciones de la red neuronal en los sistemas de potencia
- En futuras tesis se debería comprobar el análisis de tiempo de respuesta del controlador, agregado al funcionamiento del sistema, en la presente tesis este análisis fue dejado de lado por la complejidad de simular la actuación de una red neuronal dentro del programa *Power Factory Digsilent*.
- Se recomienda analizar la electrónica de potencia necesaria para poder implementar este controlador dentro de los sistemas *Static Var Compensation*.
- El entrenamiento de red se realizó en un corto tiempo, debido a que el modelo de red neuronal *MLPRegressor*, tiene una gran adaptabilidad a distribuciones cuasi lineales.
- La cantidad de neuronas utilizadas en la capa oculta fue mayor a la sumatoria de las entradas y la salida esperada.

REFERENCIAS BIBLIOGRÁFICAS

- 1. VASCHETTI, Jorge. Control en Tiempo Real del Sistema Eléctrico de Potencia mediante técnicas de Inteligencia Artificial. Facultad de Ciencias Exactas Física y Naturales, Universidad Nacional de Córdoba. Córdoba, Argentina: s.n., 2013.
- 2. **GUBINA, A.F.** ANN in local secondary voltage control concept. Washington, DC, USA: IEEE Xplore, 1999.
- 3.ÁLZATE, Alfonso, GONZÁLEZ, P., SEPÚLVEDA. Pereira. *Metodología de sintonización de un control PI para SVC.* Scientia et technica, 2012, Vol. XVII.
- 4. **DIAZ**, **Edgar**, **MORENO**, **Adrián**. *Análisis de estabilidad transitoria para el sistema eléctrico ecuatoriano utilizando redes neuronales artificiales*. Facultad de Inggeniería Eléctrica y Electrónica, Escuela Politécnica Nacional. Quito : s.n., julio 2008.
- 5. **SOTELO, Raúl.** Control ddifuso para la estabilidad de un sistema elétrico de potencia. D.F México: s.n., 2012.
- 6. **TAMAYO**, **Jesús y otros.** *La industria de la electricidad en el Perú: 25 años de aportes al crecimiento económico.* Lima, Perú: Osinergmin, 2016.
- 7. **GOMEZ, Expósito.** *Análisis y Operación de sistemas de energía.* España : Mcgraw Hill , 2002.
- 8. **KUNDUR, P.** *Power system stability and control.* s.l.: McGraw-Hill , 1994.
- 9. QUINTANA, Grettel, GONZÁLEZ, José y GARCÍA, Zaid. Implementación de modelos de control de los SVC en el programa PSX.1, s.l.: ISSN, febrero de 2014, Vol. XXXVI, págs. 61-71.
- 10. **LIN, M., RAYUDU, R. y SAMARASINGHE, S.** *Towards a Hybrid Real-Time Optimal Voltage /VAR Control System a Review.* 126, Christchurch, New Zealand.: Australasian Universities Power Engineering Conference, 2013 de setiembre, págs. 1-5. ISBN 0 473 09867 9.
- 11. **TECH, AMP.** *Tipos de redes neuronales.* Youtube, 2018.
- 12. **ABB.** SVC Static Var Compensator. *SVC Static Var Compensator.* s.l.: www.abb.com/FACTS, 2013.
- 13. **DELFINO**, **Raúl**. *Control difuso para la Estabiidad de un Sistema Eléctrico de Potencia*. Escuela Superior de Ingeniería Mecánica y Eléctrica , Instituto Politécnico Nacional. DF. México : s.n., 2012.

- 14. **CORTEZ**, **Francisco**. *Análisis funcional de un SVC Aplicado al control de calidad de Energía en una Planta Siderúrgica*. División de Ingeniería y Arquitectura, Instituto tecnológico y de estudios superiores de Monterrey. Monterrey: s.n., 2009.
- 15. **VASCHETTI, J. y SAUCHELLI, V.** *Artificial Neural Network Applied to The Problem of Secondary Voltage Control.* 2, s.l.: IEEE Latin America transactions, March 2012, Vol. 10.
- 16. ÁLZATE, Alfonso, GONZÁLEZ, Catalina y SEPÚLVEDA, Christian. *Metodología de sintonización de un control PI para SVC*. 52, Pereira, Colombia: Scientia et Technica, 2012, Vol. XVII.
- 17. **BARBERO**, **Christian**. *Amplación de potencia de subestaciones con espacios reducidos*. 2010.
- 18. CANDELO, Jhon, CAICEDO, Gladys y FERLEY, Castro. Método para el estudio de la estabilidad de voltaje en sistemas de potencia. 2008.
- 19. CORREA, Rosa y COLLADO, Joaquin. Inestabilidad de voltaje en sistemsa de potencia. 2006.
- 20. **GALLEGO**, **Luis**. Flujo de potencia en sistemas de distribución considerando incertidumbre en la demanda y en los parámetros de los alimentadores. 2008.
- 21. **MUÑOZ**, **Nicolas**. *Análisis de los flujos de potencia de sistemas eléctricos y su interpretación*. La serena, Argentina : Inf. Tecnol, 2012, Vol. 23.
- 22. **VALERIANO**, **Juan**. *La estabilidad de la tensión de los sistemas eléctricos de potencias utilizando el programa "PSAF"*. 2012.
- 23. EDMINISTER, Joseph. Circuitos Eléctricos. 1970.
- 24. **RAMIREZ**, **Carlos**. Subestaciones de alta y extra alta tensión. Colombia : Mejia Villegas, 2003.

25. GENERALELECTRIC.

26. **GRUPO.US.** http://grupo.us.es/gtocoma/pid/pid10/RedesNeuronales.htm. http://grupo.us.es/gtocoma/pid/pid10/RedesNeuronales.htm. [En línea] 21 de 6 de 2019. 27.**ENCRYPTED.** https://encrypted-

tbn0.gstatic.com/images?q=tbn%3AANd9GcSGdWhl71YOQ657eOiCy-zi67LaX7BKEcm7M1i3fvs9ZSJJp2MJ. https://encrypted-tbn0.gstatic.com/images?q=tbn%3AANd9GcSGdWhl71YOQ657eOiCy-

zi67LaX7BKEcm7M1i3fvs9ZSJJp2MJ . [En línea] 20 de 06 de 2019.

ANEXOS

Anexo 1

Programación de red neuronal

import pandas as pd	Tn	[41]:
import numpy as np		[42]:
<pre>import matplotlib.pyplot as plt</pre>		
<pre>from sklearn.model_selection import train_test_split</pre>		[43]:
<pre>from sklearn.neural_network import MLPClassifier</pre>		[44]:
from sklearn.svm import SVR	In	[45]:
datos=pd.read_csv("svcdatos1.csv")	In	[46]:
<pre>df=pd.DataFrame(datos)</pre>	In	[47]:
<pre>print("cantidad de datos") cantidad de datos</pre>	In	[48]:
<pre>x = df["Reac"]</pre>	In	[49]:
<pre>x = np.array(x)</pre>	In	[50]:
x.ndim	In	[51]:
1	Out	[51]:
	In	[52]:
x.shape	Out	[52]:
(72,)	In	[53]:
x = x.reshape(-1,1)	In	[54]:
y = df["SVC"]	In	[55]:
y = np.array(y)	In	[56]:
y.ndim	Out	[56]:
1		[57] :
y.shape		[57]:
		[· .] •

```
(72,)
                                                                   In [58]:
print(y)
[-29.553]
           -27.83
                                                               -22.17541
                     -26.17
                                -25.508
                                          -25.42497 -23.74
 -21.5462 -21.43189 -19.799
                                -18.2745
                                          -17.721
                                                     -17.52721 -17.52157
 -15.97267 -14.50126 -14.5
                                -13.874
                                          -13.831
                                                     -13.83
                                                               -12.24927
 -11.96
           -10.7925 -10.435
                                -10.217
                                           -9.833
                                                      -9.833
                                                                -9.669
  -9.397
            -8.599
                      -7.385
                                 -5.9524
                                           -5.952
                                                      -5.6
                                                                -3.551
  -3.1
            -2.64
                      -2.512
                                 -2.185
                                            0.05
                                                       0.245
                                                                 0.44
  1.28
             1.46
                        2.957
                                  3.24
                                            3.665
                                                       3.887
                                                                 4.477
  5.022
             5.32
                        6.98
                                  7.429
                                            8.44
                                                       8.63
                                                                 9.15
  9.17
            10.848
                      10.9
                                 12.143
                                           12.288
                                                      12.9
                                                                14.68
            15.528
                      15.73
                                 16.01
                                                      20.069
                                                                20.66
  14.97
                                           16.55
            23.7
  23.47
                    ]
                                                                   In [59]:
X=x[:,np.newaxis]
                                                                   In [60]:
plt.scatter(x,y)
 20
 10
  0
-10
-20
```

Out[60]:

0.00

0.02

0.04

0.06

<matplotlib.collections.PathCollection at 0x21e73081048>

-0.08 -0.06 -0.04 -0.02

In [61]:

0.08

plt.show()

-30

```
In [299]:
#Separamos los datos en "train" en entrenamiento y prueba para probar los
 algoritmos
X_train, X_test, y_train , y_test =train_test_split(x,y,test_size=0.25)
                                                                In [300]:
#Definimos el algoritmo a utilizar
svr= SVR(kernel = "linear", C=400, epsilon=0.1)
                                                                In [301]:
#Entrenamiento del modelo.
svr.fit(X train, y train)
                                                                Out[301]:
SVR(C=400, cache_size=200, coef0=0.0, degree=3, epsilon=0.1,
    gamma='auto deprecated', kernel='linear', max iter=-1, shrinking=True
    tol=0.001, verbose=False)
                                                                In [302]:
#Realizamos predicción
Y pred = svr.predict(X test)
                                                                In [303]:
#Graficamos los datos junto con el modelo.
plt.scatter(X_test, y_test)
plt.plot(X test, Y pred, color="red", linewidth=1)
plt.show()
 20
 10
   0
-10
```

-0.08 -0.06 -0.04 -0.02 0.00

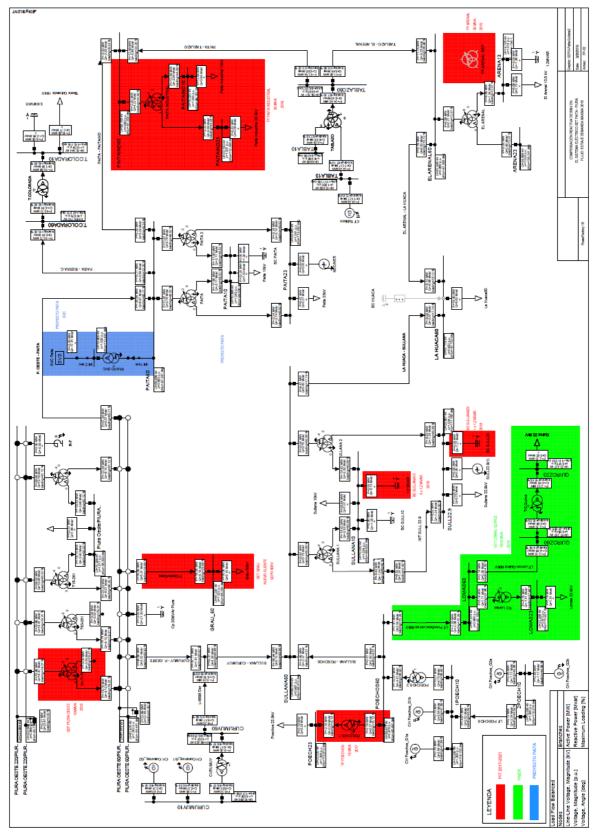
0.02

0.04

0.06

-20

-30


0.08

```
#Graficamos los datos junto con el modelo.
plt.scatter(X_train, y_train)
plt.plot(X_test, Y_pred, color="red", linewidth=3)
plt.show()
  20
  10
   0
-10
-20
-30
        -0.08 -0.06 -0.04
                                -0.02
                                         0.00
                                                 0.02
                                                         0.04
                                                                 0.06
                                                               In [305]:
print("Datos del modelo vectores de soporte regresión")
Datos del modelo vectores de soporte regresión
                                                               In [306]:
print("precisión del modelo")
print(svr.score(X_train, y_train))
precisión del modelo
```

0.9663549495249532

In [304]:

Anexo 2
Diagrama unifilar Sep Paita

Anexo 3
Hojas de recolección de datos

OPERACIÓN NORMAL - 2019	Escenario de Avenida - Máxima Demanda					
	Nominal (kV)	(kV)	(p.u.)	0%	50%	100%120%
Pariñas 220 kV	220					
Piura Oeste 220 kV	220					
Curumuy 60 kV	60					
Arenal 60 kV	60					
La Huaca 60 kV	60					
Lomas 60 kV	60					
Paita 60 kV	60					
Paita Industrial 60 kV	60					
Piura Oeste 60 kV	60					
Poechos 60 kV	60					
Quiroz 60 kV	60					
Sullana 60 kV	60					
Tierra Colorada 60 kV	60					
Grau 60 kV	60					
Tablazo 60 kV	60					
Arenal 22.9 kV	22.9					
Lomas 22.9 kV	22.9					
Paita 22.9 kV	22.9					
Paita Industrial 22.9 kV	22.9					
Poechos 22.9 kV	22.9					
Quiroz 22.9 kV	22.9					
Sullana 22.9 kV	22.9					
Arenal 13 kV	13					
Tablazo 13 kV	13					
Poechos 10 kV - Generación 2a y 2b	10					
Poechos 10 kV - Generación 1a y 1b	10					
Curumuy 10 kV	10					
Paita 10 kV	10					
Paita Industrial 10 kV	10					
Piura Oeste 10 kV	10					
Sullana 10 kV	10					
Tierra Colorada 10 kV	10					
Tablazo 10 kV	10					

Anexo 4

Datos de entrenamiento

18 avenida máxima 38 8.4 0.99 0.93 -22.17541 18 avenida máxima 38 8.4 0.98 0.93 -18.27467 18 avenida máxima 38 8.4 0.96 0.93 -10.7925 18 avenida máxima 38 8.4 0.96 0.93 -10.7925 18 avenida máxima 38 8.4 0.95 0.93 -7.23659 18 avenida mínima 18.9 3.8 1 0.99 -2.51245 18 avenida mínima 18.9 3.8 0.99 0.99 1.28776 18 avenida mínima 18.9 3.8 0.99 0.99 1.24321 18 avenida mínima 18.9 3.8 0.96 0.99 12.14321 18 avenida mínima 18.9 3.8 0.96 0.99 15.52895 18 estiaj	Año	Época	Demanda	P. Activa	P. Reactiva	Vpu esp	Vpu act	SVC
18 avenida máxima 38 8.4 0.97 0.93 -14.50126 18 avenida máxima 38 8.4 0.96 0.93 -10.7925 18 avenida máxima 38 8.4 0.95 0.93 -7.23659 18 avenida mínima 18.9 3.8 1 0.99 -2.51245 18 avenida mínima 18.9 3.8 0.99 0.99 1.28776 18 avenida mínima 18.9 3.8 0.98 0.99 5.02258 18 avenida mínima 18.9 3.8 0.97 0.99 8.63 18 avenida mínima 18.9 3.8 0.96 0.99 12.14321 18 avenida mínima 18.9 3.8 0.95 0.99 15.52895 18 estiaje máxima 34.6 8.1 1 0.93 -25.42497 18 estiaje </td <td>18</td> <td>avenida</td> <td>máxima</td> <td>38</td> <td>8.4</td> <td>0.99</td> <td>0.93</td> <td>-22.17541</td>	18	avenida	máxima	38	8.4	0.99	0.93	-22.17541
18 avenida máxima 38 8.4 0.96 0.93 -10.7925 18 avenida máxima 38 8.4 0.95 0.93 -7.23659 18 avenida mínima 18.9 3.8 1 0.99 -2.51245 18 avenida mínima 18.9 3.8 0.99 0.99 1.28776 18 avenida mínima 18.9 3.8 0.99 0.99 5.02258 18 avenida mínima 18.9 3.8 0.97 0.99 8.63 18 avenida mínima 18.9 3.8 0.95 0.99 12.14321 18 avenida mínima 18.9 3.8 0.95 0.99 15.52895 18 estiaje máxima 34.6 8.1 0.99 0.93 -21.43189 18 estiaje máxima 34.6 8.1 0.99 0.93 -17.52721 18 esti	18	avenida	máxima	38	8.4	0.98	0.93	-18.27467
18 avenida máxima 38 8.4 0.95 0.93 -7.23659 18 avenida mínima 18.9 3.8 1 0.99 -2.51245 18 avenida mínima 18.9 3.8 0.99 0.99 1.28776 18 avenida mínima 18.9 3.8 0.98 0.99 5.02258 18 avenida mínima 18.9 3.8 0.96 0.99 12.14321 18 avenida mínima 18.9 3.8 0.96 0.99 12.14321 18 avenida mínima 18.9 3.8 0.95 0.99 15.52895 18 estiaje máxima 34.6 8.1 0.99 0.93 -21.43189 18 estiaje máxima 34.6 8.1 0.99 0.93 -17.52721 18 estiaje máxima 34.6 8.1 0.97 0.93 -10.02517 18 <	18	avenida	máxima	38	8.4	0.97	0.93	-14.50126
18 avenida mínima 18.9 3.8 1 0.99 -2.51245 18 avenida mínima 18.9 3.8 0.99 0.99 1.28776 18 avenida mínima 18.9 3.8 0.98 0.99 5.02258 18 avenida mínima 18.9 3.8 0.96 0.99 12.14321 18 avenida mínima 18.9 3.8 0.96 0.99 12.14321 18 avenida mínima 18.9 3.8 0.95 0.99 15.52895 18 estiaje máxima 34.6 8.1 1 0.93 -25.42497 18 estiaje máxima 34.6 8.1 0.99 0.93 -21.43189 18 estiaje máxima 34.6 8.1 0.99 0.93 -17.52721 18 estiaje máxima 34.6 8.1 0.97 0.93 -10.02517 18 <	18	avenida	máxima	38	8.4	0.96	0.93	-10.7925
18 avenida mínima 18.9 3.8 0.99 0.99 1.28776 18 avenida mínima 18.9 3.8 0.98 0.99 5.02258 18 avenida mínima 18.9 3.8 0.96 0.99 12.14321 18 avenida mínima 18.9 3.8 0.95 0.99 12.14321 18 avenida mínima 18.9 3.8 0.95 0.99 12.14321 18 estiaje máxima 34.6 8.1 1 0.93 -25.42497 18 estiaje máxima 34.6 8.1 0.99 0.93 -21.43189 18 estiaje máxima 34.6 8.1 0.99 0.93 -17.52721 18 estiaje máxima 34.6 8.1 0.97 0.93 -13.75341 18 estiaje máxima 34.6 8.1 0.96 0.93 -10.02517 18	18	avenida	máxima	38	8.4	0.95	0.93	-7.23659
18 avenida mínima 18.9 3.8 0.98 0.99 5.02258 18 avenida mínima 18.9 3.8 0.97 0.99 8.63 18 avenida mínima 18.9 3.8 0.96 0.99 12.14321 18 avenida mínima 18.9 3.8 0.96 0.99 15.52895 18 estiaje máxima 34.6 8.1 1 0.93 -25.42497 18 estiaje máxima 34.6 8.1 0.99 0.93 -21.43189 18 estiaje máxima 34.6 8.1 0.99 0.93 -17.52721 18 estiaje máxima 34.6 8.1 0.99 0.93 -17.52721 18 estiaje máxima 34.6 8.1 0.99 0.93 -10.02517 18 estiaje mínima 23.2 2.9 1 0.99 3.2152 18 e	18	avenida	mínima	18.9	3.8	1	0.99	-2.51245
18 avenida mínima 18.9 3.8 0.97 0.99 8.63 18 avenida mínima 18.9 3.8 0.96 0.99 12.14321 18 avenida mínima 18.9 3.8 0.95 0.99 15.52895 18 estiaje máxima 34.6 8.1 1 0.93 -25.42497 18 estiaje máxima 34.6 8.1 0.99 0.93 -21.43189 18 estiaje máxima 34.6 8.1 0.98 0.93 -17.52721 18 estiaje máxima 34.6 8.1 0.97 0.93 -13.75341 18 estiaje máxima 34.6 8.1 0.96 0.93 -10.02517 18 estiaje mínima 23.2 2.9 1 0.99 3.2152 18 estiaje mínima 23.2 2.9 0.99 0.99 -2.25667 18	18	avenida	mínima	18.9	3.8	0.99	0.99	1.28776
18 avenida mínima 18.9 3.8 0.96 0.99 12.14321 18 avenida mínima 18.9 3.8 0.95 0.99 15.52895 18 estiaje máxima 34.6 8.1 1 0.93 -25.42497 18 estiaje máxima 34.6 8.1 0.99 0.93 -21.43189 18 estiaje máxima 34.6 8.1 0.98 0.93 -17.52721 18 estiaje máxima 34.6 8.1 0.97 0.93 -13.75341 18 estiaje máxima 34.6 8.1 0.96 0.93 -10.02517 18 estiaje máxima 34.6 8.1 0.95 0.93 -6.47011 18 estiaje mínima 23.2 2.9 1 0.99 3.2152 18 estiaje mínima 23.2 2.9 0.98 0.99 -2.25667 18	18	avenida	mínima	18.9	3.8	0.98	0.99	5.02258
18 avenida mínima 18.9 3.8 0.95 0.99 15.52895 18 estiaje máxima 34.6 8.1 1 0.93 -25.42497 18 estiaje máxima 34.6 8.1 0.99 0.93 -21.43189 18 estiaje máxima 34.6 8.1 0.98 0.93 -17.52721 18 estiaje máxima 34.6 8.1 0.97 0.93 -13.75341 18 estiaje máxima 34.6 8.1 0.96 0.93 -10.02517 18 estiaje máxima 34.6 8.1 0.95 0.93 -6.47011 18 estiaje mínima 23.2 2.9 1 0.99 3.2152 18 estiaje mínima 23.2 2.9 0.99 0.99 -2.25667 18 estiaje mínima 23.2 2.9 0.96 0.99 -7.52205 18	18	avenida	mínima	18.9	3.8	0.97	0.99	8.63
18 estiaje máxima 34.6 8.1 1 0.93 -25.42497 18 estiaje máxima 34.6 8.1 0.99 0.93 -21.43189 18 estiaje máxima 34.6 8.1 0.98 0.93 -17.52721 18 estiaje máxima 34.6 8.1 0.97 0.93 -13.75341 18 estiaje máxima 34.6 8.1 0.96 0.93 -10.02517 18 estiaje máxima 34.6 8.1 0.96 0.93 -10.02517 18 estiaje mínima 23.2 2.9 1 0.99 -6.47011 18 estiaje mínima 23.2 2.9 0.99 0.99 0.4496 18 estiaje mínima 23.2 2.9 0.98 0.99 -2.25667 18 estiaje mínima 23.2 2.9 0.96 0.99 -7.52205 18	18	avenida	mínima	18.9	3.8	0.96	0.99	12.14321
18 estiaje máxima 34.6 8.1 0.99 0.93 -21.43189 18 estiaje máxima 34.6 8.1 0.97 0.93 -17.52721 18 estiaje máxima 34.6 8.1 0.97 0.93 -13.75341 18 estiaje máxima 34.6 8.1 0.96 0.93 -10.02517 18 estiaje máxima 34.6 8.1 0.95 0.93 -6.47011 18 estiaje mínima 23.2 2.9 1 0.99 3.2152 18 estiaje mínima 23.2 2.9 0.99 0.99 0.4496 18 estiaje mínima 23.2 2.9 0.98 0.99 -2.25667 18 estiaje mínima 23.2 2.9 0.97 0.99 -4.92918 18 estiaje mínima 23.2 2.9 0.96 0.99 -7.52205 18	18	avenida	mínima	18.9	3.8	0.95	0.99	15.52895
18 estiaje máxima 34.6 8.1 0.98 0.93 -17.52721 18 estiaje máxima 34.6 8.1 0.97 0.93 -13.75341 18 estiaje máxima 34.6 8.1 0.96 0.93 -10.02517 18 estiaje máxima 34.6 8.1 0.95 0.93 -6.47011 18 estiaje mínima 23.2 2.9 1 0.99 3.2152 18 estiaje mínima 23.2 2.9 0.99 0.99 0.4496 18 estiaje mínima 23.2 2.9 0.99 0.99 -2.25667 18 estiaje mínima 23.2 2.9 0.97 0.99 -4.92918 18 estiaje mínima 23.2 2.9 0.96 0.99 -7.52205 18 estiaje mínima 23.2 2.9 0.96 0.99 -7.52205 18 <	18	estiaje	máxima	34.6	8.1	1	0.93	-25.42497
18 estiaje máxima 34.6 8.1 0.97 0.93 -13.75341 18 estiaje máxima 34.6 8.1 0.96 0.93 -6.47011 18 estiaje máxima 34.6 8.1 0.95 0.93 -6.47011 18 estiaje mínima 23.2 2.9 1 0.99 3.2152 18 estiaje mínima 23.2 2.9 0.99 0.99 0.4496 18 estiaje mínima 23.2 2.9 0.99 0.99 -2.25667 18 estiaje mínima 23.2 2.9 0.97 0.99 -4.92918 18 estiaje mínima 23.2 2.9 0.96 0.99 -7.52205 18 estiaje mínima 23.2 2.9 0.95 0.99 -10.0924 19 avenida máxima 40.5 9 0.99 0.92 -25.508 19 av	18	estiaje	máxima	34.6	8.1	0.99	0.93	-21.43189
18 estiaje máxima 34.6 8.1 0.96 0.93 -10.02517 18 estiaje máxima 34.6 8.1 0.95 0.93 -6.47011 18 estiaje mínima 23.2 2.9 1 0.99 3.2152 18 estiaje mínima 23.2 2.9 0.99 0.99 0.4496 18 estiaje mínima 23.2 2.9 0.98 0.99 -2.25667 18 estiaje mínima 23.2 2.9 0.97 0.99 -4.92918 18 estiaje mínima 23.2 2.9 0.96 0.99 -7.52205 18 estiaje mínima 23.2 2.9 0.96 0.99 -7.52205 18 estiaje mínima 23.2 2.9 0.95 0.99 -7.52205 18 estiaje mínima 23.2 2.9 0.95 0.99 -7.52205 18 <td< td=""><td>18</td><td>estiaje</td><td>máxima</td><td>34.6</td><td>8.1</td><td>0.98</td><td>0.93</td><td>-17.52721</td></td<>	18	estiaje	máxima	34.6	8.1	0.98	0.93	-17.52721
18 estiaje máxima 34.6 8.1 0.95 0.93 -6.47011 18 estiaje mínima 23.2 2.9 1 0.99 3.2152 18 estiaje mínima 23.2 2.9 0.99 0.99 0.4496 18 estiaje mínima 23.2 2.9 0.98 0.99 -2.25667 18 estiaje mínima 23.2 2.9 0.97 0.99 -4.92918 18 estiaje mínima 23.2 2.9 0.96 0.99 -7.52205 18 estiaje mínima 23.2 2.9 0.96 0.99 -7.52205 18 estiaje mínima 23.2 2.9 0.95 0.99 -7.52205 18 estiaje mínima 23.2 2.9 0.95 0.99 -10.0924 19 avenida máxima 40.5 9 0.99 0.92 -21.5462 19 av	18	estiaje	máxima	34.6	8.1	0.97	0.93	-13.75341
18 estiaje mínima 23.2 2.9 1 0.99 3.2152 18 estiaje mínima 23.2 2.9 0.99 0.99 0.4496 18 estiaje mínima 23.2 2.9 0.98 0.99 -2.25667 18 estiaje mínima 23.2 2.9 0.97 0.99 -4.92918 18 estiaje mínima 23.2 2.9 0.96 0.99 -7.52205 18 estiaje mínima 23.2 2.9 0.96 0.99 -7.52205 18 estiaje mínima 23.2 2.9 0.95 0.99 -7.52205 18 estiaje mínima 23.2 2.9 0.95 0.99 -7.52205 18 estiaje mínima 23.2 2.9 0.95 0.99 -10.0924 19 avenida máxima 40.5 9 0.98 0.92 -21.5462 19 av	18	estiaje	máxima	34.6	8.1	0.96	0.93	-10.02517
18 estiaje mínima 23.2 2.9 0.99 0.99 0.4496 18 estiaje mínima 23.2 2.9 0.98 0.99 -2.25667 18 estiaje mínima 23.2 2.9 0.97 0.99 -4.92918 18 estiaje mínima 23.2 2.9 0.96 0.99 -7.52205 18 estiaje mínima 23.2 2.9 0.95 0.99 -10.0924 19 avenida máxima 40.5 9 0.99 0.92 -25.508 19 avenida máxima 40.5 9 0.99 0.92 -21.5462 19 avenida máxima 40.5 9 0.97 0.92 -17.72157 19 avenida máxima 40.5 9 0.96 0.92 -10.435 19 avenida mínima 28.7 4.6 0.99 0.98 3.551 19 avenida	18	estiaje	máxima	34.6	8.1	0.95	0.93	-6.47011
18 estiaje mínima 23.2 2.9 0.98 0.99 -2.25667 18 estiaje mínima 23.2 2.9 0.97 0.99 -4.92918 18 estiaje mínima 23.2 2.9 0.96 0.99 -7.52205 18 estiaje mínima 23.2 2.9 0.95 0.99 -10.0924 19 avenida máxima 40.5 9 0.99 0.92 -25.508 19 avenida máxima 40.5 9 0.98 0.92 -21.5462 19 avenida máxima 40.5 9 0.98 0.92 -17.72157 19 avenida máxima 40.5 9 0.96 0.92 -14.0275 19 avenida máxima 40.5 9 0.95 0.92 -10.435 19 avenida mínima 28.7 4.6 0.99 0.98 3.551 19 avenida	18	estiaje	mínima	23.2	2.9	1	0.99	3.2152
18 estiaje mínima 23.2 2.9 0.97 0.99 -4.92918 18 estiaje mínima 23.2 2.9 0.96 0.99 -7.52205 18 estiaje mínima 23.2 2.9 0.95 0.99 -7.52205 19 avenida máxima 40.5 9 0.99 0.92 -25.508 19 avenida máxima 40.5 9 0.98 0.92 -21.5462 19 avenida máxima 40.5 9 0.97 0.92 -17.72157 19 avenida máxima 40.5 9 0.96 0.92 -14.0275 19 avenida máxima 40.5 9 0.95 0.92 -10.435 19 avenida mínima 28.7 4.6 0.99 0.98 0.241 19 avenida mínima 28.7 4.6 0.96 0.98 -7.42 19 avenida <td>18</td> <td>estiaje</td> <td>mínima</td> <td>23.2</td> <td>2.9</td> <td>0.99</td> <td>0.99</td> <td>0.4496</td>	18	estiaje	mínima	23.2	2.9	0.99	0.99	0.4496
18 estiaje mínima 23.2 2.9 0.96 0.99 -7.52205 18 estiaje mínima 23.2 2.9 0.95 0.99 -10.0924 19 avenida máxima 40.5 9 0.99 0.92 -25.508 19 avenida máxima 40.5 9 0.98 0.92 -21.5462 19 avenida máxima 40.5 9 0.97 0.92 -17.72157 19 avenida máxima 40.5 9 0.96 0.92 -14.0275 19 avenida máxima 40.5 9 0.95 0.92 -10.435 19 avenida mínima 28.7 4.6 0.99 0.98 3.551 19 avenida mínima 28.7 4.6 0.98 0.98 0.241 19 avenida mínima 28.7 4.6 0.96 0.98 -7.42 19 avenida	18	estiaje	mínima	23.2	2.9	0.98	0.99	-2.25667
18 estiaje mínima 23.2 2.9 0.95 0.99 -10.0924 19 avenida máxima 40.5 9 0.99 0.92 -25.508 19 avenida máxima 40.5 9 0.98 0.92 -21.5462 19 avenida máxima 40.5 9 0.97 0.92 -17.72157 19 avenida máxima 40.5 9 0.96 0.92 -14.0275 19 avenida máxima 40.5 9 0.96 0.92 -10.435 19 avenida mínima 28.7 4.6 0.99 0.98 3.551 19 avenida mínima 28.7 4.6 0.98 0.98 0.241 19 avenida mínima 28.7 4.6 0.96 0.98 -7.42 19 avenida mínima 28.7 4.6 0.96 0.98 -7.42 19 avenida	18	estiaje	mínima	23.2	2.9	0.97	0.99	-4.92918
19 avenida máxima 40.5 9 0.99 0.92 -25.508 19 avenida máxima 40.5 9 0.98 0.92 -21.5462 19 avenida máxima 40.5 9 0.97 0.92 -17.72157 19 avenida máxima 40.5 9 0.96 0.92 -14.0275 19 avenida máxima 40.5 9 0.95 0.92 -10.435 19 avenida mínima 28.7 4.6 0.99 0.98 3.551 19 avenida mínima 28.7 4.6 0.98 0.98 0.241 19 avenida mínima 28.7 4.6 0.97 0.98 -3.88 19 avenida mínima 28.7 4.6 0.96 0.98 -7.42 19 avenida mínima 28.7 4.6 0.95 0.98 -10.84	18	estiaje	mínima	23.2	2.9	0.96	0.99	-7.52205
19 avenida máxima 40.5 9 0.98 0.92 -21.5462 19 avenida máxima 40.5 9 0.97 0.92 -17.72157 19 avenida máxima 40.5 9 0.96 0.92 -14.0275 19 avenida máxima 40.5 9 0.95 0.92 -10.435 19 avenida mínima 28.7 4.6 0.99 0.98 3.551 19 avenida mínima 28.7 4.6 0.98 0.98 0.241 19 avenida mínima 28.7 4.6 0.97 0.98 -3.88 19 avenida mínima 28.7 4.6 0.96 0.98 -7.42 19 avenida mínima 28.7 4.6 0.95 0.98 -10.84	18	estiaje	mínima	23.2	2.9	0.95	0.99	-10.0924
19 avenida máxima 40.5 9 0.97 0.92 -17.72157 19 avenida máxima 40.5 9 0.96 0.92 -14.0275 19 avenida máxima 40.5 9 0.95 0.92 -10.435 19 avenida mínima 28.7 4.6 0.99 0.98 3.551 19 avenida mínima 28.7 4.6 0.98 0.98 0.241 19 avenida mínima 28.7 4.6 0.96 0.98 -7.42 19 avenida mínima 28.7 4.6 0.95 0.98 -10.84	19	avenida	máxima	40.5	9	0.99	0.92	-25.508
19 avenida máxima 40.5 9 0.96 0.92 -14.0275 19 avenida máxima 40.5 9 0.95 0.92 -10.435 19 avenida mínima 28.7 4.6 0.99 0.98 3.551 19 avenida mínima 28.7 4.6 0.98 0.98 0.241 19 avenida mínima 28.7 4.6 0.97 0.98 -3.88 19 avenida mínima 28.7 4.6 0.96 0.98 -7.42 19 avenida mínima 28.7 4.6 0.95 0.98 -10.84	19	avenida	máxima	40.5	9	0.98	0.92	-21.5462
19 avenida máxima 40.5 9 0.95 0.92 -10.435 19 avenida mínima 28.7 4.6 0.99 0.98 3.551 19 avenida mínima 28.7 4.6 0.98 0.98 0.241 19 avenida mínima 28.7 4.6 0.97 0.98 -3.88 19 avenida mínima 28.7 4.6 0.96 0.98 -7.42 19 avenida mínima 28.7 4.6 0.95 0.98 -10.84	19	avenida	máxima	40.5	9	0.97	0.92	-17.72157
19 avenida mínima 28.7 4.6 0.99 0.98 3.551 19 avenida mínima 28.7 4.6 0.98 0.98 0.241 19 avenida mínima 28.7 4.6 0.97 0.98 -3.88 19 avenida mínima 28.7 4.6 0.96 0.98 -7.42 19 avenida mínima 28.7 4.6 0.95 0.98 -10.84	19	avenida	máxima	40.5	9	0.96	0.92	-14.0275
19 avenida mínima 28.7 4.6 0.98 0.98 0.241 19 avenida mínima 28.7 4.6 0.97 0.98 -3.88 19 avenida mínima 28.7 4.6 0.96 0.98 -7.42 19 avenida mínima 28.7 4.6 0.95 0.98 -10.84	19	avenida	máxima	40.5	9	0.95	0.92	-10.435
19 avenida mínima 28.7 4.6 0.97 0.98 -3.88 19 avenida mínima 28.7 4.6 0.96 0.98 -7.42 19 avenida mínima 28.7 4.6 0.95 0.98 -10.84	19	avenida	mínima	28.7	4.6	0.99	0.98	3.551
19 avenida mínima 28.7 4.6 0.96 0.98 -7.42 19 avenida mínima 28.7 4.6 0.95 0.98 -10.84	19	avenida	mínima	28.7	4.6	0.98	0.98	0.241
19 avenida mínima 28.7 4.6 0.95 0.98 -10.84	19	avenida	mínima	28.7	4.6	0.97	0.98	-3.88
	19	avenida	mínima	28.7	4.6	0.96	0.98	-7.42
19 estiaje máxima 39.8 9.6 0.99 0.93 -23.74	19	avenida	mínima	28.7	4.6	0.95	0.98	-10.84
	19	estiaje	máxima	39.8	9.6	0.99	0.93	-23.74

Año	Época	Demanda	P. Activa	P. Reactiva	Vpu esp	Vpu act	SVC
19	estiaje	máxima	39.8	9.6	0.98	0.93	-19.799
19	estiaje	máxima	39.8	9.6	0.97	0.93	-15.97267
19	estiaje	máxima	39.8	9.6	0.96	0.93	-12.24927
19	estiaje	máxima	39.8	9.6	0.95	0.93	-8.6
19	estiaje	mínima	19.9	3	1	0.99	-3.776
19	estiaje	mínima	19.9	3	0.99	0.99	0.05
19	estiaje	mínima	19.9	3	0.98	0.99	3.577
19	estiaje	mínima	19.9	3	0.97	0.99	7.11
19	estiaje	mínima	19.9	3	0.96	0.99	10.55
19	estiaje	mínima	19.9	3	0.95	0.99	13.87
20	avenida	máxima	41	9.7	0.99	0.95	-13.831
20	avenida	máxima	41	9.7	0.98	0.95	-9.833
20	avenida	máxima	41	9.7	0.97	0.95	-5.952
20	avenida	máxima	41	9.7	0.96	0.95	-2.185
20	avenida	máxima	41	9.7	0.95	0.95	0.51
20	avenida	mínima	18.8	3.2	1	1.01	5.319
20	avenida	mínima	18.8	3.2	0.99	1.01	9.152
20	avenida	mínima	18.8	3.2	0.98	1.01	12.9058
20	avenida	mínima	18.8	3.2	0.97	1.01	16.55
20	avenida	mínima	18.8	3.2	0.96	1.01	20.069
20	avenida	mínima	18.8	3.2	0.95	1.01	23.47
20	estiaje	máxima	37.4	7.2	0.99	0.96	-9.78
20	estiaje	máxima	37.4	7.2	0.98	0.96	-5.815
20	estiaje	máxima	37.4	7.2	0.97	0.96	-1.966
20	estiaje	máxima	37.4	7.2	0.96	0.96	1.796
20	estiaje	máxima	37.4	7.2	0.95	0.96	5.422
20	estiaje	mínima	19.7	3.2	1	1	0.44
20	estiaje	mínima	19.7	3.2	0.99	1	4.477
20	estiaje	mínima	19.7	3.2	0.98	1	8.44
20	estiaje	mínima	19.7	3.2	0.97	1	12.288
20	estiaje	mínima	19.7	3.2	0.96	1	16.01
20	estiaje	mínima	19.7	3.2	0.95	1	19.62