

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Civil

Tesis

Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías

Cristian Janz Molina Pacheco

Para optar el Título Profesional de Ingeniero Civil

Huancayo, 2019

Repositorio Institucional Continental Tesis digital

Esta obra está bajo una Licencia "Creative Commons Atribución 4.0 Internacional".

ASESOR

Ing. Augusto García Corso

AGRADECIMIENTO

A los ingenieros Augusto García, Andrés Sotil, Richard Raymundo, José Yupanqui, Natividad Sánchez, Víctor Ciro, Jorge Ticlla, Manuel García, Omar Hidalgo, Jaime Rupay y Manuel Herquinio, por sus enseñanzas académicas y por inculcarme la perseverancia en mi formación universitaria, lo cual nunca olvidaré.

A todos mis familiares, por los consejos, que me ayudaron en los momentos difíciles.

A ustedes, Giancarlos, Judith, Janeth, Ninfa, Ever, Liz, Inés, Hugo, Raúl, José, Pedro, Gisela y Juan.

DEDICATORIA

A Dios, por darme todo lo que tengo, por lo que soy y por lo que hago.

A mis padres Edgar y Haydee, por el apoyo constante en toda mi formación académica y por los grandes consejos que me ayudaron a alcanzar mis sueños y mis metas.

A mis abuelos Juan y Georgina, Eleuterio y Antonia.

ÍNDICE

ASESOR		ii
AGRADECII	MIENTO	iii
DEDICATO	RIA	iv
ÍNDICE		v
LISTA DE T	ABLAS	x
LISTA DE F	IGURAS	xvi
RESUMEN.		xxvii
ABSTRACT		xxviii
INTRODUC	CIÓN	xxix
1 CAPÍTI	JLO I: PROBLEMA DE INVESTIGACIÓN	1
1.1 PL	ANTEAMIENTO DEL PROBLEMA	1
1.2 FO	RMULACIÓN DEL PROBLEMA	3
1.2.1	PROBLEMA GENERAL	3
1.2.2	PROBLEMA ESPECÍFICO	3
1.3 OB	JETIVOS	3
1.3.1	OBJETIVO GENERAL	3
1.3.2	OBJETIVO ESPECÍFICO	3
1.4 JU	STIFICACIÓN	3
1.5 HIF	PÓTESIS	4
1.5.1	HIPÓTESIS GENERAL	4
1.5.2	HIPÓTESIS ESPECÍFICA	4
1.6 DE	SCRIPCIÓN DE VARIABLES	5
1.6.1	VARIABLE INDEPENDIENTE	5
1.6.2	VARIABLE DEPENDIENTE	5

2	(CA	PÍTL	JLO II: MARCO TEÓRICO	7
	2.1		AN	TECEDENTES DEL PROBLEMA	7
	2	2.1.	.1	ANTECEDENTES INTERNACIONALES	7
	2.2	2	BAS	SES TEÓRICAS	9
	_	2.2. BIT	-	MANUAL DE ENSAYO DE MATERIALES DEL MTC DE MEZCL NOSAS	
			.2 iorm	Resistencia de mezclas bituminosas empleando el aparato Marshall media ativa del MTC E504	
		2.2. CO	_	MANUAL DE ESPECIFICACIONES GENERALES PARA RUCCIÓN DE CARRETERAS, CAMINOS Y PUENTES CR-2010	
	(GE		MANUAL DE CARRETERAS, ESPECIFICACIONES TÉCNIC RALES PARA LA CONSTRUCCIÓN; SECCIÓN 423, PAVIMENTO RETO ASFÁLTICO EN CALIENTE	DE
	2	2.2	.5	MÉTODO MARSHALL PARA EL DISEÑO DE MEZCLAS ASTM D.1559	15
	2.3	3	DEF	FINICIÓN DE TÉRMINOS BÁSICOS	21
	4	2.3	.1	Comportamiento de Materiales del MAC	21
	4	2.3	.2	Factores influyentes en el Comportamiento de Mezclas Asfálticas	24
	2	2.3	.3	Parámetros volumétricos	29
	4	2.3	.4	Parámetros mecánicos – físicos	30
	2	2.3	.5	Proporción de polvo y tipo de filler	30
3	(CA	PÍTL	JLO III: METODOLOGÍA	34
	3.1		ΜÉ	TODOS Y ALCANCES DE LA INVESTIGACIÓN	34
	(3.1.	.1	MÉTODO CIENTÍFICO	34
	(3.1.	.2	TIPO DE INVESTIGACIÓN	34
	3.2	2	DIS	EÑO DE INVESTIGACIÓN	35
	3.3	3	POI	BLACIÓN	35
	3.4	ļ	MU	ESTRA	35

	3.4	4.1	DESCRIPCIÓN DE LA MUESTRA	36
	3.5	TÉC	CNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS	37
	3.	5.1	TÉCNICAS	37
	3.	5.2	INSTRUMENTOS	37
	3.6	PRO	OCEDIMIENTO METODOLÓGICO	38
4	C	APÍTL	JLO IV: RESULTADOS Y DISCUSIÓN	43
	4.1	RES	SULTADOS GENERALES DE LA INVESTIGACIÓN	43
	4.2	RES	SULTADO DEL EFECTO DE LOS ÓXIDOS EN LA ESTABILIDAD	63
		2.1 HRON	RESULTADO DE ESTABILIDAD DE MAC DISEÑADOS CON PIGMEN [*] MAFER Y OCRE DE ÓXIDO FÉRRICO PARA FLUJO VEHICULAR PESAI 83	
		2.2 HRON	RESULTADO DE ESTABILIDAD DE MAC DISEÑADOS CON PIGMEN [*] MAFER Y ÓXIDO FÉRRICO (OCRE) PARA FLUJO VEHICULAR MEDIO . 1	
		2.3 HRON	RESULTADO DE ESTABILIDAD DE MAC DISEÑADOS CON PIGMEN [*] MAFER Y ÓXIDO FÉRRICO (OCRE) PARA FLUJO VEHICULAR LIGERO 1	
		2.4 HRON	RESULTADO DE ESTABILIDAD DE MAC DISEÑADOS CON PIGMEN [*] MAFER Y OCRE DE ÓXIDO DE CROMO PARA FLUJO VEHICULAR PESAI 149	
		2.5 HRON	RESULTADO DE ESTABILIDAD DE MAC DISEÑADOS CON PIGMEN [*] MAFER Y OCRE PARA FLUJO VEHICULAR LIGERO1	
		2.6 HRON	RESULTADO DE ESTABILIDAD DE MAC DISEÑADOS CON PIGMEN [*] MAFER Y OCRE PARA FLUJO VEHICULAR LIGERO1	
	4.3 POR		SULTADO DE TIPO DE PIGMENTO (CHROMAFER U OCRE) Y TAJE ÓPTIMO1	
		3.1 XIDC	PORCENTAJE ÓPTIMO Y TIPO DE PIGMENTO PARA TRÁFICO PESAI) FÉRRICO)1	
		3.2 XIDC	PORCENTAJE ÓPTIMO Y TIPO DE PIGMENTO PARA TRÁFICO MED	

	_	PORCENTAJE ÓPTIMO Y TIPO DE PIGMENTO PARA TRÁFICO LIGE FÉRRICO)	
	_	PORCENTAJE ÓPTIMO Y TIPO DE PIGMENTO PARA TRÁFICO PESA DE CROMO)	
		PORCENTAJE ÓPTIMO Y TIPO DE PIGMENTO PARA TRÁFICO ME DE CROMO)	
		PORCENTAJE ÓPTIMO Y TIPO DE PIGMENTO PARA TRÁFICO LIGE DE CROMO)	
		JEBA DE HIPÓTESIS CON LOS DATOS DE LOS ESPECÍMEI DOS Y ENSAYADOS	
4	.4.1	RESULTADO DE PRUEBA DE NORMALIDAD PARA LA ESTABILIDAD	200
		CONCLUSIÓN DE LA PRUEBA DE NORMALIDAD PARA I ÍMENES ENSAYADOS EN LABORATORIO	
		PRUEBA DE HIPÓTESIS Nº1 PARA LAS VARIABLES ÓXIDO FÉRRIC LIDAD DE LA MEZCLA PIGMENTADA	
		PRUEBA DE HIPÓTESIS Nº2 PARA LAS VARIABLES ÓXIDO DE CRO BILIDAD DE LA MEZCLA PIGMENTADA	
4	.4.5	PRUEBA DE HIPÓTESIS N°3 PARA EL DISEÑO ÓPTIMO	225
4.5	DIS	CUSIÓN DE RESULTADOS	226
4	.5.1	DISCUSIÓN 1	226
4	.5.2	DISCUSIÓN 2	227
С	APÍTU	ILO V: CONCLUSIONES Y RECOMENDACIONES	229
5	.1.1	CONCLUSIONES	229
5	.1.2	RECOMENDACIONES	231
В	REFERE	ENCIAS BIBLIOGRÁFICAS	232
Α	NEXO	S	234
7.1	CEF	RTIFICADOS DE LABORATORIO	235
7.2	PAN	NEL FOTOGRÁFICO	284

LISTA DE TABLAS

Tabla N° 1 Resultados de propiedades mecánicas y volumétricas	8
Tabla N° 2 Separación por tamizado para combinación en el MAC	10
Tabla N° 3 Separación por tamizado considerado en la combinación en el MAC	10
Tabla N° 4 Factor de corrección de la estabilidad	11
Tabla N° 5 Parámetros de ensayos de propiedades volumétricas y mecánicas de MAC). 12
Tabla N° 6 Requerimiento de los agregados gruesos	13
Tabla N° 7 Requerimiento del agregado fino	13
Tabla N° 8 Límites Granulométricos para MAC	14
Tabla N° 9 Parámetro de diseño del MTC	14
Tabla N° 10 Parámetro del VMA	15
Tabla N° 11 Clasificación del cemento asfáltico	21
Tabla N° 12 Clasificación del cemento asfáltico por penetración	22
Tabla N° 13 Clasificación del cemento asfáltico por viscosidad	22
Tabla N° 14 Dosificación habitual de pigmento	29
Tabla N° 15 Efectos de baja estabilidad	30
Tabla N° 16 Población de especímenes dosificados con óxido férrico (OCRE)	35
Tabla nº 17 Población de especímenes dosificados con óxido de cromo (OCRE)	35
Tabla N° 18 Población de especímenes dosificados con óxido férrico (CHROMAFER).	36
Tabla N° 19 Población de especímenes dosificados con óxido de cromo (CHROMAF	
Tabla N° 20 Población de especímenes (PATRÓN)	36
Tabla N° 21 Selección del cemento asfáltico por penetración y condición climática	38
Tabla N° 22 Selección del huso granulométrico para combinación de agregados	39
Tabla N° 23 Resumen de peso específico del agregado grueso de ½"	43
Tabla N° 24 Resumen de peso específico del agregado grueso de ¾"	44

Tabla N° 25 Arena chancada	4
Tabla N° 26 Arena zarandeada4	٠5
Tabla N° 27 Resumen de la granulometría del AG – Tmax ¾"	-5
Tabla N° 28 Resumen de la granulometría AG-Tmax 1"4	₽6
Tabla N° 29 Curva granulométrica AG-Tmax 1"4	₊7
Tabla N° 30 Resumen de la granulometría de la arena natural o zarandeada 4	8
Tabla N° 31 Resumen de la granulometría de la arena chancada4	١9
Tabla N° 32 Combinación de agregados Patrón 5	0
Tabla N° 33 Combinación de agregados con 4% de óxido férrico y óxido de cromo 5	52
Tabla N° 34 Combinación de agregados con 8% de óxido férrico y óxido de cromo 5	3
Tabla N° 35 Combinación de agregados con 12% de óxido férrico y óxido de cromo 5	55
Tabla N° 36 Combinación de agregados con 15% de óxido férrico y óxido de cromo 5	6
Tabla N° 37 Resumen de los pesos de la muestra patrón	58
Tabla N° 38 Resumen de los pesos de la muestra dosificada con 4% de óxido férrico y óxic de cromo	
Tabla N° 39 Resumen de los pesos de la muestra dosificada con 8% de óxido férrico y óxic de cromo	
Tabla N° 40 Resumen de los pesos de la muestra dosificada con 12% de óxido férrico óxido de cromo	-
Tabla N° 41 Resumen de los pesos de la muestra dosificada con 15% de óxido férrico óxido de cromo	-
Tabla N° 43 Estabilidad de espécimen dosificado con 4% de óxido metálico férrico con pigmento Chromafer	
Tabla N° 44 Estabilidad de espécimen dosificado con 8% de óxido metálico férrico con pigmento Chromafer	
Tabla N° 45 Estabilidad de espécimen dosificado con 12% de óxido metálico férrico co pigmento Chromafer	

Tabla N° 46 Estabilidad de espécimen dosificado con 15% de óxido metálico férrico con pigmento chromafer
Tabla N° 47 Estabilidad de espécimen dosificado con 4% de óxido metálico férrico - OCRE
Tabla N° 48 Estabilidad de espécimen dosificado con 8% de óxido metálico férrico - OCRE
Tabla N° 49 Estabilidad de espécimen dosificado con 12% de óxido metálico férrico - OCRE
Tabla N° 50 Estabilidad de espécimen dosificado con 15% de óxido metálico férrico - OCRE
Tabla N° 51 Estabilidad de MAC elaborados con Chomafer y Ocre
Tabla N° 52 Estabilidad de espécimen dosificado con 4% de óxido metálico férrico con pigmento Chromafer
Tabla N° 53 Estabilidad de espécimen dosificado con 8% de óxido metálico férrico con pigmento Chromafer
Tabla N° 54 Estabilidad de espécimen dosificado con 12% de óxido metálico férrico con pigmento Chromafer
Tabla N° 55 Estabilidad de espécimen dosificado con 15% de óxido metálico férrico con pigmento Chromafer
Tabla N° 56 Estabilidad de espécimen dosificado con 4% de óxido metálico férrico - OCRE
Tabla N° 57 Estabilidad de espécimen dosificado con 8% de óxido metálico férrico - OCRE
Tabla N° 58 Estabilidad de espécimen dosificado con 12% de óxido metálico férrico - OCRE
Tabla N° 59 Estabilidad de espécimen dosificado con 15% de óxido metálico férrico - OCRE
Tabla N° 60 Estabilidad de MAC elaborados con Chomafer y Ocre

Tabla N° 61 Estabilidad de espécimen dosificado con 4% de óxido metálico férrico cor pigmento Chromafer
Tabla N° 62 Estabilidad de espécimen dosificado con 8% de óxido metálico férrico cor pigmento Chromafer
Tabla N° 63 Estabilidad de espécimen dosificado con 12% de óxido metálico férrico cor pigmento Chromafer112
Tabla N° 64 Estabilidad de espécimen dosificado con 15% de óxido metálico férrico cor pigmento Chromafer
Tabla Nº 65 Estabilidad de espécimen dosificado con 4% de óxido metálico férrico - OCRE
Tabla Nº 66 Estabilidad de espécimen dosificado con 8% de óxido metálico férrico - OCRE
Tabla Nº 67 Estabilidad de espécimen dosificado con 12% de óxido metálico férrico - OCRE
Tabla Nº 68 Estabilidad de espécimen dosificado con 15% de óxido metálico férrico - OCRE
Tabla N° 69 Estabilidad de MAC elaborados con Chomafer y Ocre
Tabla N° 70 Resultados de especímenes con 4% de pigmento de óxido de cromo (Chromafer)
Tabla Nº 72 Resultado de propiedades mecánicas con 8% de óxido de cromo (Chromafer
Tabla N° 74 Resultados de propiedades mecánicas con 12% de óxido de cromo (Chromafer)134
Tabla N° 76 Resultado de propiedades mecánicas con 15% de óxido de cromo (Chromafer)
Tabla Nº 78 Resultado óptimo contenido asfalto con 4% de óxido de cromo Ocre 139
Tabla Nº 79 Resultado óptimo contenido asfalto con 8% de óxido de cromo Ocre 141
Tabla Nº 80 Resultado óptimo contenido asfalto con 12% de óxido de cromo Ocre 144
Tabla Nº 81 Resultado óptimo contenido asfalto con 15% de óxido de cromo Ocre 146

Tabla N° 82 Resultado comparativo en estabilidad entre OCRE Y CHROMAFER 149
Tabla N° 83 Resultado de propiedades mecánicas con 4% de óxido de cromo Chromafer
Tabla N° 85 Resultado de propiedades mecánicas con 8% de óxido de cromo Chromafer
Tabla N° 87 Resultado de las propiedades mecánicas con 12% de óxido de cromo Chromafer
Tabla N° 89 Resultado de propiedades mecánicas con 15% de óxido de cromo Chromafei
Tabla N° 91 Resultado de óptimo contenido Asfalto con 4% de óxido de cromo Ocre 160
Tabla N° 92 Resultados de óptimo contenido Asfalto con 8% de óxido de cromo Ocre . 162
Tabla N° 93 Resultado de óptimo contenido de asfalto con 12% de óxido de cromo Ocre
Tabla N° 94 Resultado del porcentaje de asfalto óptimo con 15% de óxido de cromo Ocre
Tabla N° 95 Resultado comparativo en estabilidad entre OCRE Y CHROMAFER 170
Tabla N° 96 Resultado de propiedades mecánicas con 4% de óxido de cromo Chromafer
Tabla N° 98 Resultado de propiedades mecánicas con 8% de óxido de cromo Chromafer
Tabla N° 100 Resultado de propiedades mecánicas con 12% de óxido de cromo Chromafei
Tabla N° 102 Resultado de las propiedades mecánicas con 15% de óxido de cromo Chromafer
Tabla N° 104 Resultado del óptimo contenido asfalto con 4% óxido de cromo Ocre 181
Tabla N° 105 Resultado del óptimo contenido asfalto con 8% de óxido de cromo Ocre. 183
Tabla N° 106 Resultado del óptimo contenido asfalto con 12% de óxido de cromo Ocre186
Tabla N° 107 Resultado del óptimo contenido asfalto con 15% de óxido de cromo Ocre188

	Tabla N° 108 Resultado comparativo de la est
	Tabla N° 109 Análisis descriptivo de los casos
· ·	Tabla N° 110 Análisis descriptivo de los resultado Férrico)
210	Tabla Nº 111 Prueba Normalidad (Óxido Férrico)
	Tabla N° 112 Análisis estadístico descriptivo de los de Cromo)
	Tabla Nº 113 Análisis descriptivo de resultado de
ido de Cromo	Tabla N° 114 Prueba de Normalidad para resultados
o Férrico223	Tabla N° 115 Prueba de hipótesis para Chomafe
rico223	Tabla N° 116 Prueba de hipótesis para Ocre Óxid
e Cromo	Tabla N° 117 Prueba de Hipótesis para Chromafer Ó
225	Tabla N° 118 Prueba de hipótesis Ocre Óxido de Cro

LISTA FIGURAS

Figura N° 1 Variación de la temperatura de mezcla asfáltica pigmentados de colores	2
Figura N° 2 Comportamiento de la relación agregado - asfalto	. 16
Figura N° 3 Esquema de componentes del MAC	. 20
Figura N° 4 Comportamiento del MAC sometido a carga corte	. 23
Figura N° 5 Comportamiento del MAC en el tiempo	. 24
Figura N° 6 Curva y límites granulométricos	. 25
Figura N° 7 Propiedades y características de las mezclas asfálticas en caliente	. 26
Figura N° 8 Comportamiento de los porcentajes de vacíos en la capa de rodadura	. 27
Figura Nº 9 Comparativo de pigmentación con cemento asfáltico PEN 85-100 y liga sintético claro	
Figura N° 10 Pigmento colorante para mezclas asfálticas	. 29
Figura N° 11 Peso específico seco	. 40
Figura N° 12 Peso específico saturado superficialmente seco	. 41
Figura N° 13 Ensayo de estabilidad y flujo	. 42
Figura N° 14 Curva granulométrica AG – Tmax ¾"	. 46
Figura N° 15 Curva granulométrica de la arena natural o zarandeada	. 48
Figura N° 16 Resumen de la curva granulométrica de la arena chancada	. 49
Figura N° 17 Curva granulométrica de la combinación de agregados patrón	. 51
Figura N° 18 Curva granulométrica de combinación de agregados con 4% de óxido féri y óxido de cromo	
Figura N° 19 Curva granulométrica de combinación de agregados con 8% de óxido féro y óxido de cromo	
Figura N° 20 Curva granulométrica de combinación de agregados con 12% de óxido féro y óxido de cromo	
Figura N° 21 Curva granulométrica de combinación de agregados con 15% de óxido féro y óxido de cromo	

Figura N° 23 Curva de estabilidad de espécimen con 4% de óxido metálico férrico cor pigmento Chromafer
Figura N° 24 Curva de vacíos de especímenes con 4% de pigmento Chromafer (Óxido Férrico)
Figura N° 25 Curva de flujo de especímenes con 4% de pigmento Chromafer (Óxido Férrico 65
Figura N° 26 Curva de vacíos lleno con cemento asfáltico de especímenes con 4% de pigmento Chromafer (Oxido Férrico)
Figura N° 27 Curva de estabilidad de espécimen con 8% de óxido metálico férrico cor pigmento Chromafer
Figura N° 28 Curva de vacíos de espécimen con 8% de óxido férrico con pigmento Chromafer
Figura N° 29 Curva de flujo de espécimen con 8% de óxido férrico con pigmento Chromafe
Figura N° 30 Curva de vacíos llenos con cemento asfaltico de espécimen con 8% de óxido férrico con pigmento Chromafer
Figura N° 31 Curva de estabilidad de espécimen con 12% de óxido metálico férrico cor pigmento Chromafer
Figura N° 32 Curva de vacíos de espécimen con 12% de óxido metálico férrico con pigmento
Figura N° 33 Curva de flujo de espécimen con 12% de óxido metálico férrico con pigmento
Figura N° 34 Curva de vacíos llenos con cemento asfaltico de espécimen con 12% de óxido metálico férrico con pigmento Chromafer
Figura N° 35 Curva de estabilidad de espécimen con 15% de óxido metálico férrico cor pigmento Chromafer
Figura N° 36 Curva de vacíos de especímenes con 15% de óxido metálico férrico cor pigmento Chromafer
Figura N° 37 Curva de flujo de especímenes con 15% de óxido metálico férrico cor pigmento Chromafer

igura N° 38 Curva de vacíos llenos con cemento asfáltico 15% de óxido metálico férrico on pigmento Chromafer
igura N° 39 Curva de estabilidad de espécimen con 4% de óxido metálico férrico - ocre
igura Nº 40 Curva de vacíos de espécimen con 4% de óxido metálico férrico - ocre 74
igura N° 41 Curva de flujo de espécimen con 4% de óxido metálico férrico - ocre 75
igura N° 42 Curva de VFA de espécimen con 4% de óxido metálico férrico – ocre 75
igura N° 43 Curva de estabilidad de espécimen con 8% de óxido metálico férrico - ocre
igura N° 44 Curva de vacíos de espécimen con 8% de óxido metálico férrico – ocre 77
igura N° 45 Curva de flujo de espécimen con 8% de óxido metálico férrico – ocre 77
igura N° 46 Curva VFA de espécimen con 8% de óxido metálico férrico – ocre
igura N° 47 Curva de estabilidad de espécimen con 12% de óxido metálico férrico - ocre
igura N° 48 Curva de vacíos de espécimen con 12% de óxido metálico férrico – ocre 79
igura N° 49 Curva de flujo de espécimen con 12% de óxido metálico férrico – ocre 80
igura N° 50 Curva de VFA de espécimen con 12% de óxido metálico férrico – ocre 80
igura N° 51 Curva de estabilidad de espécimen con 15% de óxido metálico férrico - ocre
igura Nº 52 Curva de vacíos de espécimen con 15% de óxido metálico férrico – ocre 82
igura N° 53 Curva de flujo de espécimen con 15% de óxido metálico férrico – ocre 82
igura N° 54 Curva de flujo de espécimen con 15% de óxido metálico férrico – ocre 83
igura N° 55 Estabilidad de MAC elaborados con Chromafer y Ocre
igura N° 56 Curva de estabilidad de espécimen con 4% de óxido metálico férrico con gmento Chromafer
igura N° 57 Curva de vacíos con 4% de óxido metálico férrico con pigmento Chromafer

Figura N° 58 Curva de vacíos llenos con cemento asfáltico con 4% de óxido metálico férrico con pigmento Chromafer
Figura N° 59 Curva de flujo con 4% de óxido metálico férrico con pigmento Chromafer 87
Figura N° 60 Curva de estabilidad de espécimen con 8% de óxido metálico férrico cor pigmento Chromafer
Figura N° 61 Curva de vacíos lleno con cemento asfáltico con 8% de óxido metálico férrico con pigmento Chromafer
Figura N° 62 Curva de vacíos con 8% de óxido metálico férrico con pigmento Chromafe
Figura N° 63 Curva de flujo con 8% de óxido metálico férrico con pigmento Chromafer 90
Figura N° 64 Curva de estabilidad de espécimen con 12% de óxido metálico férrico cor pigmento Chromafer
Figura Nº 65 Curva de vacíos con 12% de óxido metálico férrico con pigmento Chromafe
Figura N° 66 Curva de flujo con 12% de óxido metálico férrico con pigmento Chromafer 92
Figura N° 67 Curva de vacíos llenos con cemento asfáltico con 12% de óxido metálico férrico con pigmento Chromafer
Figura N° 68 Curva de estabilidad de espécimen con 15% de óxido metálico férrico cor pigmento Chromafer93
Figura Nº 69 Curva de vacíos con 15% de óxido metálico férrico con pigmento Chromafe
Figura N° 70 Curva de flujo con 15% de óxido metálico férrico con pigmento Chromafer 94
Figura N° 71 Curva de vacíos llenos con cemento asfáltico con 15% de óxido metálico férrico con pigmento Chromafer
Figura N° 72 Curva de estabilidad de espécimen con 4% de óxido metálico férrico - ocre
Figura N° 73 Curva de vacíos de espécimen con 4% de óxido metálico férrico - ocre 97
Figura N° 74 Curva de flujo de espécimen con 4% de óxido metálico férrico – ocre 97
Figura N° 75 Curva de VFA de espécimen con 4% de óxido metálico férrico – ocre 98

Figura N° 76 Curva de estabilidad de espécimen con 8% de óxido metálico férrico - ocre
Figura N° 77 Curva de vacíos de espécimen con 8% de óxido metálico férrico - ocre 99
Figura N° 78 Curva de flujo de espécimen con 8% de óxido metálico férrico - ocre 100
Figura N° 79 Curva de VFA de espécimen con 8% de óxido metálico férrico – ocre 100
Figura N° 80 Curva de estabilidad de espécimen con 12% de óxido metálico férrico - ocre
Figura N° 81 Curva de vacíos de espécimen con 12% de óxido metálico férrico - ocre . 102
Figura N° 82 Curva de flujo de espécimen con 12% de óxido metálico férrico – ocre 102
Figura N° 83 Curva de VFA de espécimen con 12% de óxido metálico férrico – ocre 103
Figura N° 84 Curva de estabilidad de espécimen con 15% de óxido metálico férrico - ocre
Figura N° 85 Curva de vacíos de espécimen con 15% de óxido metálico férrico - ocre . 104
Figura N° 86 Curva de flujo de espécimen con 15% de óxido metálico férrico - ocre 105
Figura N° 87 Curva de VFA de espécimen con 15% de óxido metálico férrico – ocre 105
Figura N° 88 Estabilidad de MAC elaborados con Chromafer y Ocre
Figura N° 89 Curva de estabilidad de espécimen con 4% de óxido metálico férrico cor pigmento Chromafer
Figura N° 90 Curva de flujo con 4% de óxido metálico férrico con pigmento Chromafer 108
Figura N° 91 Curva de vacíos con 4% de óxido metálico férrico con pigmento Chromafe
Figura N° 92 Curva de vacíos llenos con cemento asfáltico con 4% de óxido metálico férrico con pigmento Chromafer
Figura N° 93 Curva de estabilidad de espécimen con 4% de óxido metálico férrico cor pigmento Chromafer
Figura N° 94 Curva de vacíos con 4% de óxido metálico férrico con pigmento Chromafe
Figura N° 95 Curva de fluio con 4% de óxido metálico férrico con pigmento Chromafer 111

Figura N° 96 Curva de vacíos llenos con cemento asfáltico con 4% de óxido metálico férrico con pigmento Chromafer
Figura N° 97 Curva de estabilidad de espécimen con 12% de óxido metálico férrico cor
pigmento Chromafer
Figura N° 98 Curva de flujo con 12% de óxido metálico férrico con pigmento Chromafei
Figura N° 99 Curva de vacíos llenos con cemento asfáltico con 12% de óxido metálico férrico con pigmento Chromafer
Figura Nº 100 Curva de vacíos con 12% de óxido metálico férrico con pigmento Chromafe
Figura N° 101 Curva de estabilidad de espécimen con 15% de óxido metálico férrico cor pigmento Chromafer
Figura N° 102 Curva de flujo con 15% de óxido metálico férrico con pigmento Chromafe
Figura N° 103 Curva de vacíos llenos con cemento asfáltico con 15% de óxido metálico férrico con pigmento Chromafer
Figura N° 104 Curva de vacíos con 15% de óxido metálico férrico con pigmento Chromafe
Figura N° 105 Curva de estabilidad de espécimen con 4% de óxido metálico férrico - ocre
Figura Nº 106 Curva de vacíos de espécimen con 4% de óxido metálico férrico - ocre . 118
Figura Nº 107 Curva de flujo de espécimen con 4% de óxido metálico férrico – ocre 119
Figura N° 108 Curva de VFA de espécimen con 4% de óxido metálico férrico – ocre 119
Figura N° 109 Curva de estabilidad de espécimen con 8% de óxido metálico férrico - ocre
Figura N° 110 Curva de vacíos de espécimen con 8% de óxido metálico férrico - ocre . 121
Figura N° 111 Curva de flujo de espécimen con 8% de óxido metálico férrico – ocre 121
Figura N° 112 Curva de VFA de espécimen con 8% de óxido metálico férrico – ocre 122

Figura N° 113 Curva de estabilidad de espécimen con 12% de óxido metálico férrico - ocre
Figura N° 114 Curva de vacíos de espécimen con 12% de óxido metálico férrico - ocre 123
Figura N° 115 Curva de flujo de espécimen con 12% de óxido metálico férrico - ocre 124
Figura N° 116 Curva de VFA de espécimen con 12% de óxido metálico férrico – ocre 124
Figura N° 117 Curva de estabilidad de espécimen con 15% de óxido metálico férrico - ocre
Figura N° 118 Curva de vacíos de espécimen con 15% de óxido metálico férrico – ocre
Figura Nº 119 Curva de flujo de espécimen con 15% de óxido metálico férrico – ocre 126
Figura N° 120 Curva de VFA de espécimen con 15% de óxido metálico férrico – ocre 127
Figura N° 121 Estabilidad de MAC elaborados con Chromafer y Ocre
Figura N° 122 Curva de estabilidad con 4% de óxido de cromo con pigmento Chromafe
Figura N° 123 Curva de flujo con 4% de óxido de cromo con pigmento Chromafer 130
Figura N° 124 Curva de vacíos con 4% de óxido de cromo con pigmento Chromafer 130
Figura N° 125 Curva de vacíos llenos con cemento asfáltico con 4% de óxido de cromo (Chromafer)
Figura N° 126 Curva de estabilidad con 8% de óxido de cromo Chromafer 132
Figura N° 127 Curva de flujo con 8% de óxido de cromo Chromafer
Figura N° 128 Curva de vacíos con 8% de óxido de cromo Chromafer 133
Figura N° 129 Curva de vacíos llenos con cemento asfáltico con 8% de óxido de cromo Chromafer
Figura N° 130 Curva de estabilidad con 12% de óxido de cromo Chromafer 134
Figura N° 131 Curva de flujo con 12% de óxido de cromo Chromafer
Figura N° 132 Curva de vacíos con 12% de óxido de cromo Chromafer 135
Figura N° 133 Curva de vacíos llenos con cemento asfáltico con 12% de óxido de cromo Chromafer

Figura N° 134 Curva de estabilidad con 15% de óxido de cromo Chromafer 137
Figura N° 135 Curva de flujo con 15% de óxido de cromo Chromafer
Figura N° 136 Curva de vacíos con 15% de óxido de cromo Chromafer 138
Figura N° 137 Curva de vacíos llenos con cemento asfáltico con 15% de óxido de cromo Chromafer
Figura N° 138 Curva de estabilidad con 4% de óxido de cromo Ocre
Figura N° 139 Curva de vacíos con 4% de óxido de cromo Ocre
Figura N° 140 Curva de flujo con 4% de óxido de cromo Ocre
Figura N° 141 Curva de VFA con 4% de óxido de cromo Ocre
Figura N° 142 Curva de estabilidad con 8% de óxido de cromo Ocre
Figura N° 143 Curva de vacíos con 8% de óxido de cromo Ocre
Figura N° 144 Curva de flujo con 8% de óxido de cromo Ocre
Figura N° 145 Curva de VFA con 8% de óxido de cromo Ocre
Figura N° 146 Curva de estabilidad con 12% de óxido de cromo Ocre 144
Figura N° 147 Curva de vacíos con 12% de óxido de cromo Ocre
Figura N° 148 Curva de flujo con 12% de óxido de cromo Ocre
Figura N° 149 Curva de VFA con 12% de óxido de cromo Ocre
Figura N° 150 Curva de estabilidad con 15% de óxido de cromo Ocre
Figura N° 151 Curva de vacíos con 15% de óxido de cromo Ocre
Figura N° 152 Curva de flujo con 15% de óxido de cromo Ocre
Figura N° 153 Curva de VFA con 15% de óxido de cromo Ocre
Figura N° 154 Curvas de Estabilidad del OCRE Y CHROMAFER
Figura N° 155 Curva de estabilidad con 4% de óxido de cromo Chromafer 150
Figura N° 156 Curva de flujo con 4% de óxido de cromo Chromafer
Figura N° 157 Curva de vacíos con 4% de óxido de cromo Chromafer 151
Figura N° 158 Curva de VFA con 4% de óxido de cromo Chromafer

Figura N° 159 Curva de estabilidad con 8% de óxido de cromo Chromafer	153
Figura N° 160 Curva de flujo con 8% de óxido de cromo Chromafer	153
Figura N° 161 Curva de vacíos con 8% de óxido de cromo Chromafer	154
Figura N° 162 Curva de vacíos llenos con cemento asfáltico con 8% de óxid Chromafer	
Figura N° 163 Curva de estabilidad con 12% de óxido de cromo Chromafer	155
Figura N° 164 Curva de flujo con 12% de óxido de cromo Chromafer	156
Figura N° 165 Curva de vacíos con 12% de óxido de cromo Chromafer	156
Figura N° 166 Curva de VFA con 12% de óxido de cromo Chromafer	157
Figura N° 167 Curva de estabilidad con 15% de óxido de cromo Chromafer	158
Figura N° 168 Curva de flujo con 15% de óxido de cromo Chromafer	158
Figura N° 169 Curva de vacíos con 15% de óxido de cromo Chromafer	159
Figura N° 170 Curva de vacíos llenos con cemento asfáltico con 15% de óxid	
Figura N° 171 Curva de estabilidad con 4% de óxido de cromo Ocre	160
Figura N° 172 Curva de vacíos con 4% de óxido de cromo Ocre	161
Figura N° 173 Curva de flujo con 4% de óxido de cromo Ocre	161
Figura N° 174 Curva de VFA con 4% de óxido de cromo Ocre	162
Figura N° 175 Curva de estabilidad con 8% de óxido de cromo Ocre	163
Figura N° 176 Curva de vacíos con 8% de óxido de cromo Ocre	163
Figura N° 177 Curva de flujo con 8% de óxido de cromo Ocre	164
Figura N° 178 Curva de VFA con 8% de óxido de cromo Ocre	164
Figura N° 179 Curva de estabilidad con 12% de óxido de cromo Ocre	165
Figura N° 180 Curva de vacíos con 12% de óxido de cromo Ocre	166
Figura N° 181 Curva de flujo con 12% de óxido de cromo Ocre	166
Figura N° 182 Curva de estabilidad con 15% de óxido de cromo Ocre	167
Figura N° 183 Curva de vacíos con 15% de óxido de cromo Ocre	168

Figura N° 184 Curva de flujo con 15% de óxido de cromo Ocre	168
Figura N° 185 Curva de VFA con 15% de óxido de cromo Ocre	169
Figura N° 186 Curva de estabilidad entre el Ocre y Chromafer	170
Figura N° 187 Curva de estabilidad con 4% de óxido de cromo Chromafer	171
Figura N° 188 Curva de flujo con 4% de óxido de cromo Chromafer	172
Figura N° 189 Curva de vacíos con 4% de óxido de cromo Chromafer	172
Figura N° 190 Curva de vacíos llenos con cemento asfáltico con 4% de óxido Chromafer	
Figura N° 191 Curva de estabilidad con 8% de óxido de cromo Chromafer	174
Figura N° 192 Curva de flujo con 8% de óxido de cromo Chromafer	174
Figura N° 193 Curva de vacíos con 8% de óxido de cromo Chromafer	175
Figura N° 194 Curva de vacíos llenos con cemento asfáltico con 8% de óxido Chromafer	
Figura N° 195 Curva de estabilidad con 12% de óxido de cromo Chromafer	176
Figura N° 196 Curva de flujo con 12% de óxido de cromo Chromafer	177
Figura N° 197 Curva de vacíos con 12% de óxido de cromo Chromafer	177
Figura N° 198 Curva de vacíos llenos con cemento asfáltico con 12% de óxido Chromafer	
Figura N° 199 Curva de estabilidad con 15% de óxido de cromo Chromafer	179
Figura N° 200 Curva de flujo con 15% de óxido de cromo Chromafer	179
Figura N° 201 Curva de vacíos con 15% de óxido de cromo Chromafer	180
Figura N° 202 Curva de vacíos llenos con cemento asfáltico con 15% de óxido Chromafer	
Figura N° 203 Curva de estabilidad con 4% de óxido de cromo Ocre	181
Figura N° 204 Curva de vacíos con 4% de óxido de cromo Ocre	182
Figura N° 205 Curva de flujo con 4% de óxido de cromo Ocre	182
Figura N° 206 Curva de VFA con 4% de óxido de cromo Ocre	183

gura N° 207 Curva de estabilidad con 8% de óxido de cromo Ocre
gura Nº 208 Curva de vacíos con 8% de óxido de cromo Ocre
gura N° 209 Curva de flujo con 8% de óxido de cromo Ocre
gura N° 210 Curva de VFA con 8% de óxido de cromo Ocre
gura N° 211 Curva de estabilidad con 12% de óxido de cromo Ocre
gura N° 212 Curva de vacíos con 12% de óxido de cromo Ocre
gura N° 213 Curva de flujo con 12% de óxido de cromo Ocre
gura N° 214 Curva de VFA con 12% de óxido de cromo Ocre
gura N° 215 Curva de estabilidad con 15% de óxido de cromo Ocre
gura N° 216 Curva de vacíos con 15% de óxido de cromo Ocre
gura N° 217 Curva de flujo con 15% de óxido de cromo Ocre
gura N° 218 Curva de VFA con 15% de óxido de cromo Ocre
gura N° 219 Curva de estabilidad entre el Ocre y Chromafer191
gura N° 220 Porcentaje y tipo óptimo de pigmento de óxido metálico férrico para tráfico esado193
gura N° 221 Porcentaje y tipo óptimo de pigmento de óxido metálico férrico para tráfico edio
gura N° 222 Porcentaje y tipo óptimo de pigmento de óxido metálico férrico para tráfico
gura N° 223 Porcentaje y tipo óptimo de pigmento de óxido metálico cromo para tráfico
gura N° 224 Porcentaje y tipo óptimo de pigmento de óxido metálico cromo para tráfico
gura N° 225 Porcentaje y tipo óptimo de pigmento de óxido metálico cromo para tráfico

RESUMEN

El objetivo de la investigación es la determinación del efecto que produce la utilización de dos tipos de materiales para la pigmentación de mezclas asfálticas en caliente en las propiedades mecánicas; para ello, las características compartidas de los materiales se dieron en su composición química como el óxido férrico rojo, para las cuales los materiales empleados con esa composición fueron el ocre y un pigmento industrializado, Chromafer 1330, ambos con características colorantes. La adición de estos componentes en la mezcla se dio a través del reemplazo de los agregados finos como material filler; es decir, pasante la malla N° 200 un polvo mineral.

Para determinar los objetivos planteados, se procedió de manera metodológica de acuerdo al proceso de diseño de mezclas asfálticas Marshall, la elaboración de espécimen o briquetas de dimensiones normativas de altura 64 mm y diámetro 102 mm; una vez determinada la mezcla de combinación de agregados y material fino filler, la determinación de las propiedades mecánicas, en ellas incluidas las propiedades volumétricas, se realizaron en base a la elaboración de briquetas, en promedio 3, para determinar el óptimo contenido de asfalto y el óptimo contenido de adición de polvo mineral de pigmentación que no supere los parámetros establecidos en la normativa peruana; se dio una secuencia de adición de 4%, 8%, 12% y 15% de polvo mineral de pigmentación.

La determinación de las propiedades de las mezclas asfálticas en caliente pigmentadas, que ayudaron a concluir con la investigación, se basó en el diseño de la mezcla, evaluación de la estabilidad a través de la aplicación de una carga de esfuerzo de compresión, medición de la deformación de la briqueta o denominado flujo y la determinación de los pesos específicos bulk de los materiales y las briquetas diseñadas con el cual se obtuvo los porcentajes de vacíos agente afectados por la inclusión de polvo mineral pigmentable junto con la estabilidad, para el cual se especifica la relación polvo mineral/asfalto efectivo óptimo, de acuerdo al control del color y propiedades mecánicas de las briquetas.

ABSTRACT

The objective of the investigation is the determination of the effect produced by the use of two types of materials for the pigmentation of hot asphalt mixtures in the mechanical properties, for this the shared characteristics of the materials was given in its chemical composition red ferric oxide, which materials used with this composition were used ocher and an industrialized pigment Chromafer 1330, both with coloring characteristics. The addition of these components in the mixture occurred through the replacement of the fine aggregates as filler material that is through the mesh No. 200 a mineral powder.

In order to determine the proposed objectives, methodological procedures according to the design process Marshall asphalt mixes, the preparation of specimens or briquettes of standard dimensions of 64 mm height and 102 mm diameter, once the mixture of aggregate and fine filler material mixture was determined, the determination of the mechanical properties in them including the volumetric properties were made based on the preparation of briquettes on average 3 to determine the optimum content of asphalt and the optimum content of addition of pigment mineral powder that does not exceed the parameters established in Peruvian regulations, there was a sequence of addition of 4%, 8%, 12% and 15% pigment mineral powder.

The determination of the properties of the pigmented hot asphalt mixtures that helped to conclude the investigation was based on the design of the mixture, evaluation of the stability through the application of a load of effort of understanding, measurement of the deformation of the briquette or denominated flow and the determination of the specific bulk weights of the materials and the designed briquettes with which the percentages of voids agent affected by the inclusion of mineral pigment pigment together with the stability was obtained, for which the relationship is specified optimum mineral / asphalt powder according to the color control and mechanical properties of the briquettes.

INTRODUCCION

La innovación tecnológica de países europeos en producir productos que puedan satisfacer necesidades a través de soluciones viables y sostenibles lleva a producir materiales que se identifiquen con la sociedad; la producción de mezclas asfálticas pigmentadas ha sido una innovación decorativa de ambientes a través de una solución de la ingeniería; el empleo se ha desarrollado en países europeos en la pavimentación de parques, centros deportivos, ambientes de un tipo de flujo liviano.

Una mezcla asfáltica en caliente pigmentada por el empleo de un agente colorante industrializado, especialmente con el fin de la pigmentación de pavimentos, sin dejar de considerar que una mezcla asfáltica se diseña en base a las proporciones de pesos de materiales pétreos, gruesos con características de ser piedras chancadas con texturas óptimas para su compactación y material fino de origen natural y chancada, además de la adición de filler, material muy fino pasante la malla N°200 de la distribución granulométrica clasificada de esa forma y denominada filler, el óptimo contenido de asfalto, ligante que permite la adherencia de las partículas la cual no produzca el exceso que genere un espécimen demasiado plástico y demasiado rígido que sean viables a una temprana deterioración en su ciclo de vida por las cargas de tráfico.

El desempeño de la carpeta asfáltica, determinada a través de un diseño de mezcla adecuado que sea durable en su tiempo de vida, es a causa de que los componentes de la mezcla cumplan con su función definida mediante el comportamiento físico mecánico de los materiales. La durabilidad de una mezcla asfáltica está basada en los porcentajes de vacíos que se generen y que pueden ser afectados por el exceso de material fino en la mezcla.

En la investigación, se requiere aportar el uso del ocre, un material con las mismas componentes de un pigmento industrializado para pavimentos, a través de la evaluación de su efecto en la coloración y las propiedades mecánicas.

1 CAPÍTULO I: PROBLEMA DE INVESTIGACIÓN

1.1 PLANTEAMIENTO DEL PROBLEMA

El desarrollo de mezclas bituminosas en los últimos años a nivel internacional marca una referencia en que el empleo del producto se da por el crecimiento económico de un país. España ha desarrollado en los últimos 8 años una producción de mezclas bituminosas superior al 50% de producción normal de otros países europeos y esta se encuentra relacionada a la pavimentación de 26 242 km; en estos últimos años se ha considerado la relación del impacto ambiental y el desarrollo de la infraestructura vial mediante la conservación vial, asignación que se da mediante la investigación de los pavimentos pigmentados de múltiples colores; esto se da con el propósito de obtener la mitigación del efecto del calor en el pavimento.

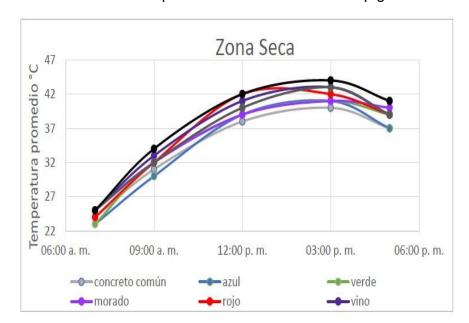


Figura N° 1 Variación de la temperatura de mezcla asfáltica pigmentados de colores

Fuente: Gestión, calidad y desarrollo en las facultades de ingeniería - Colombia

Las mejoras tecnológicas en la construcción de vías por pigmentación de la carpeta asfáltica, de acuerdo al funcionamiento y a la necesidad requerida, implican innovar en propuestas que mejoren el rendimiento en la aplicación de la mezcla asfáltica pigmentada en tipos de flujo vehicular, las cuales implican niveles de coloración; se da la problemática de variación de la temperatura de mezcla asfáltica por la incidencia de calor relacionada al tipo de color del pigmento. Esta propuesta metodológica se da en base a evitar las problemáticas ambientales, pero la consideración de agentes minerales como óxidos metálicos considerados como finos o polvo proporcionados a partir de adiciones en porcentajes por sustitución del material fino se da la problemática de la durabilidad de la mezcla asfáltica en funcionamiento, debido a que el aumento de material fino pasante de la malla N° 200 implica la disminución de vacíos; en consecuencia, el esparcimiento del ligante en el tiempo por la incidencia de calor es deficiente, afectando la durabilidad de carpeta asfáltica.

El exceso de finos en una mezcla asfáltica se da la problemática a partir de las evaluaciones de granulometría, la relación inversamente proporcional que a mayor fino mayor es el área superficial, por consecuencia mayor es el contenido de asfalto óptimo a definir.

1.2 FORMULACIÓN DEL PROBLEMA

1.2.1 PROBLEMA GENERAL

¿Cuál es el efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas usadas para la diferenciación de flujos en vías?

1.2.2 PROBLEMA ESPECÍFICO

¿Cuál es el efecto del óxido férrico en la estabilidad de las mezclas asfálticas pigmentadas usadas para la diferenciación de flujos en vías?

¿Cuál es el efecto del óxido de cromo en la estabilidad de las mezclas asfálticas pigmentadas usadas para la diferenciación de flujos en vías?

¿Cuál es el porcentaje óptimo y tipo de pigmento (Ocre o Chromafer) que se adicionará a las mezclas asfálticas en caliente para cumplir con los requisitos de las propiedades mecánicas normadas en el MTC EG-2013?

1.3 OBJETIVOS

1.3.1 OBJETIVO GENERAL

Determinar el efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas usadas para la diferenciación de flujos en vías.

1.3.2 OBJETIVO ESPECÍFICO

Evaluar el efecto del óxido férrico en la estabilidad de las mezclas asfálticas pigmentadas usadas para diferenciación de flujos en vías.

Evaluar el efecto del óxido de cromo en la estabilidad de las mezclas asfálticas pigmentadas usadas para la diferenciación de flujos en vías.

Determinar el porcentaje óptimo y tipo de pigmento (Ocre o Chromafer) que se adicionará a las mezclas asfálticas en caliente para cumplir con los requisitos de las propiedades mecánicas normadas en el MTC EG-2013.

1.4 JUSTIFICACIÓN

En los últimos años, el Perú ha tenido un déficit en la producción de minerales. La disminución se dio hasta en -1.6 %, esto debido al poco aprovechamiento de materiales derivados de un proceso mineralógico, la incorporación de nuevos usos de los materiales mineralógicos implicaría un aumento en la producción y, por consecuencia, el incremento de la sostenibilidad del sector minero. Para ello, la investigación se da con el propósito de

obtener la dosificación óptima mediante la relación del óxido metálico como material muy fino pasante la malla N° 200 y asfalto efectivo para obtener una mezcla asfáltica que cumpla con los parámetros de las propiedades mecánicas y físicas establecidas en el Manual de carreteras de Especificaciones Técnicas Generales para la Construcción – EG 2013 para los tipos de tráfico ligero, medio y pesado.

En la normativa peruana referente al Manual de carretera en las especificaciones de pavimento de concreto asfáltico en caliente no se menciona la relación que se debe cumplir entre el polvo mineral como óxido de hierro sintético rojo como material pasante la malla N° 200 y el asfalto efectivo como material no absorbido por los agregados, que se dé como diseño óptimo que cumpla con los parámetros de la normativa peruana sobre las propiedades mecánicas y físicas de las mezclas asfálticas pigmentadas en caliente.

1.5 HIPÓTESIS

1.5.1 HIPÓTESIS GENERAL

El empleo de los óxidos metálicos afectará las propiedades mecánicas de las mezclas asfálticas pigmentadas usadas para la diferenciación de flujos en vías.

1.5.2 HIPÓTESIS ESPECÍFICA

El uso del óxido férrico reducirá significativamente la estabilidad de las mezclas asfálticas pigmentadas usadas para la diferenciación de flujos en vías.

El uso del óxido de cromo reducirá significativamente la estabilidad de las mezclas asfálticas pigmentadas usadas para la diferenciación de flujos en vías.

Existirá un porcentaje óptimo y tipo de pigmento (Ocre o Chromafer) que se adicionará a las mezclas asfálticas en caliente para cumplir con los requisitos de las propiedades mecánicas normadas en el MTC EG-2013.

1.6 DESCRIPCIÓN DE VARIABLES

1.6.1 VARIABLE INDEPENDIENTE

Óxidos Metálicos

VARIABLE	DEFINICION	DIMENSION	INDICADOR
Óxidos metálico	Son compuestos binarios; es decir, en su composición mantienen una combinación entre el oxígeno y un metal, que puede presentarse en un estado sólido como polvo mineral con propiedades pigmentables.	Óxido Férrico	Porcentaje de dosificación óxido férrico de tipo ocre Porcentaje de dosificación óxido férrico tipo Chromafer
		Óxido de Cromo	Porcentaje de dosificación de óxido de cromo tipo ocre Porcentaje de dosificación de óxido de cromo tipo Chromafer

1.6.2 VARIABLE DEPENDIENTE

Propiedades mecánicas de mezclas asfálticas pigmentadas

VARIABLE	DEFINICION	DIMENSION	INDICADOR
Propiedades mecánicas de mezcla asfáltica pigmentada	Son a consecuencia de la cohesión del ligante y fricción de los materiales pétreos.	Estabilidad	-Peso específico Bulk -Vacíos en el agregado mineral (VMA). -Vacíos llenos de asfalto (VFA) -Óptimo contenido de asfalto. -Porcentaje de asfalto absorbido -Fluencia

2 CAPÍTULO II: MARCO TEÓRICO

2.1 ANTECEDENTES DEL PROBLEMA

2.1.1 ANTECEDENES INTERNACIONALES

EFECTO DE LA VARIACIÓN DE LA RELACIÓN POLVO / ASFALTO SOBRE LA DURABILIDAD DE MEZCLAS ASFÁLTICAS, María Alejandra Benavides Solera, el desarrollo de la investigación se enfocó en la prioridad de encontrar la relación polvo mineral denominado así al material pasante la malla N° 200 y el asfalto efectivo; es decir, al asfalto no absorbido mediante la elaboración de mezclas asfálticas por el método Marshall con las relaciones 1,0-1,3 y 1,7 como planteamiento del problema si influye en las propiedades mecánicas y físicas para de esa manera interpretar al parámetro polvo mineral/asfalto efectivo como agente primordial de medición del desempeño de la mezcla asfáltica. El objetivo planteado da referencia a determinar si la relación polvo mineral/asfalto efectivo es un parámetro de medición del desempeño de MAC, para ello se evaluó 4 especímenes por relación con un asfalto efectivo de 6.2%.

Tabla Nº 1 Resultados de propiedades mecánicas y volumétricas

	Relacion polvo mineral/asfalto efectivo						
Propiedades	1 1.3 1.7						
Porcentaje de vacios %	6.3	11,47	4,69				
estabilidad KN	11,71	11,93	9,07				
flujo mm	3	3,55	3,31				
%VMA	23,47	23,47	17,90				
%VFA	65,88	51,13	73,82				

Fuente: Benavides M. Efecto de la variación de la relación polvo/asfalto sobre la durabilidad de mezclas asfálticas.

INFLUENCIA DEL COLOR DE LOS PAVIMENTOS EN EL CALENTAMIENTO POR RADIACIÓN TÉRMICA, Liliana Carolina Hernández García, Daniel Esther Torres Convera, Johan Harvey Soto Barra, la investigación se desarrolló en el enfoque de la medición de la influencia de la temperatura ambiente en los pavimentos de colores, se planteó la hipótesis de que la utilización de colores en un rango de claridad a oscuridad tienen la tendencia en el aumento de la temperatura del pavimento por la radiación solar, para ello se preparó especímenes de colores variables: azul, verde, rojo, negro, morado y vino, en condiciones húmedas y secas; el objetivo fue determinar las temperaturas de los especímenes y comparar cuál de ellos genera mayor índice de temperatura al pavimento. En los resultados se obtuvo que la pigmentación de los especímenes influye en su temperatura, obteniendo para colores oscuros hasta una temperatura de 40°C y las de color claro una temperatura de 35°C; se concluyó que el efecto de pigmentación de los especímenes para pavimento con cemento asfaltico tiene influencia en sus propiedades tanto en zonas húmedas como secas.

CARRETERAS, MEZCLAS BITUMINOSAS, Juan José Potti, la investigación se encuentra enfocada en la funcionalidad de los pavimentos flexibles como reducir costos en túneles al colocar pavimentos con carpeta asfáltica de color claro, reduciendo costo en la iluminación, aumentar el atractivo de plazas deportivas, es por ello que el tipo de la aplicación de pigmentos se da al betún; para ello, se necesita grandes gamas de pigmento y no se consigue toda la gama de color, la otra aplicación es a los agregados utilizando minerales coloreados. La aplicación de

pigmento a mezcla asfáltica puede dar como resultado hasta una estabilidad de 12 kN.

2.2 BASES TEÓRICAS

2.2.1 MANUAL DE ENSAYO DE MATERIALES DEL MTC DE MEZCLAS BITUMINOSAS

El desarrollo del manual se da en base a propuestas técnicas y metodológicas basadas en normativas internacionales en las que se estableció procesos para la obtención de mezclas bituminosas de la calidad requerida.

2.2.2 Resistencia de mezclas bituminosas empleando el aparato Marshall mediante la normativa del MTC E504

Para ello, las briquetas se elaboraron con las dimensiones de altura nominal de 64 mm y 102 mm de diámetro con la finalidad de ser empleadas para ensayos físicos cono se dio al evaluar la estabilidad y flujo, propiedades mecánicas que definen el comportamiento de la mezcla asfáltica en su condición de servicio como la estabilidad reflejada en la condición de capacidad de resistir desplazamiento y deformaciones por cargas de tránsito sin llegar a su condición rígida por la causa de generar pavimentos menos durables; estas condiciones son debidas a la cohesión que aporta el ligante asfáltico y la fricción interna de los agregados.

La evaluación en laboratorio por la normativa tiene el alcance de obtener los valores de estabilidad de Marshall, flujo, vacíos de aire, vacío en el agregado mineral o simplemente vacíos llenos de asfalto, evaluando la condición del flujo que a mayor sea la mezcla asfáltica en una condición demasiado plástica e inestable y si es baja a una condición rígida.

El procedimiento de ensayo basado en la normativa contempla lo siguiente:

- Espécimen de ensayo promedio de 3 con las dimensiones de 64 mm x 102 mm o sea el caso variable el volumen de los especímenes uso del factor de corrección.
- Secar los agregados a 105 °C a 110 °C
- Separación de los agregados por tamizado para su posterior combinación para las mezclas asfálticas

Tabla N° 2 Separación por tamizado para combinación en el MAC

Separacion de las particulas de agregados por tamizado 25 a 19 mm (1 a 3/4 pulg) 19 a 12,5 mm (3/4 a 1/2 pulg) 12,5 a 9,5 mm (1/2 a 3/8 pulg) 9,5 a 4,75 mm (3/8 a N°4) 4,75 a 2,36 mm (N°4 a N° 8) 2,36 mm (pasante la N° 8)

Fuente: Manual de Ensayos de Materiales del Ministerio de Transporte y Comunicaciones (MTC)

Tabla N° 3 Separación por tamizado considerado en la combinación en el MAC

Separac	ion de las particulas de agregados por tamizado
	1/2 pulg
	3/8 " pulg
	N° 4
	N° 10
	pasante N° 10

Fuente: Elaboración propia

- La mezcla de compactación se da a las temperaturas de 120 °C a 135 °C, la cual se mantiene la consideración de mezcla suelta.
- Se da la determinación de la cantidad de agregado combinado para producir mezclas asfálticas del peso de 1250 gr.
- Mezclar a temperatura de 120°C a 135°C por un tiempo de 60 s para mezclas simples.
- Para el proceso de compactación preparar los moldes y colocar un papel filtro antes de colocar la mezcla, posterior compactar con una espátula 15 veces alrededor del perímetro y 10 veces en el centro.
- Aplicar el número de golpes de compactación de acuerdo al tipo de flujo vehicular por ambas caras.
- Los ensayos a ser evaluados es de un mínimo de tres muestras deberán ser enfriados a temperatura ambiente dentro las 24 horas, posteriormente la determinación del peso específico bulk mediante la evaluación del peso específico seco, sumergido y superficialmente seco.

- Se da la realización de inmersión en agua (baño maría) por un tiempo de 30 a 40 min.
- El ensayo de estabilidad de Marshall se da en un tiempo no mayor de 30 s, se da la aplicación de la carga hasta que esta decrezca y anotar el valor del flujo metro en el instante que la carga decrece.

Tabla N° 4 Factor de corrección de la estabilidad

Volumen de	Espesor del especimen	Razon de la
especimen	mm	correlacion
200-213	25.4	5.56
214-225	26.4	5
226-237	27.4	4.55
238-250	28.4	4.17
251-264	29.4	3.85
265-276	30.4	3.57
277-289	31.4	3.33
290-301	32.4	3.03
302-316	33.4	2.78
317-328	34.4	2.5
329-340	35.4	2.27
341-353	36.4	2.08
354-367	37.4	1.92
368-379	38.4	1.79
380-392	39.4	1.67
393-405	40.4	1.56
406-420	41.4	1.47
421-431	42.4	1.39
432-443	43.4	1.32
444-456	44.4	1.25
457-470	45.4	1.19
471-482	46.4	1.14
483-495	47.4	1.09
496-508	48.4	1.04
509-522	49.4	1
523-535	50.4	0.96
536-546	51.4	0.93
547-559	52.4	0.89
560-573	53.4	0.86
574-585	54.4	0.83
586-598	55.4	0.81
599-610	56.4	0.78
611-626	57.4	0.76

Fuente: Fuente: Manual de Ensayos de Materiales del Ministerio de Transporte y Comunicaciones (MTC)

2.2.3 MANUAL DE ESPECIFICACIONES GENERALES PARA LA CONSTRUCCION DE CARRETERAS, CAMINOS Y PUENTES CR-2010

Si bien las normativas peruanas no evalúan un proceso experimental para definir las propiedades de las mezclas asfálticas para la investigación que implica un aumento de material pigmentable para el caso oxido férrico, el material tiene la característica granulométrica de ser pasante en su totalidad la malla N° 200, por lo cual la investigación tiene como parámetros material muy finos o polvo mineral, para lo cual la normativa de Costa Rica se enfoca en la relación polvo mineral/asfalto efectivo como control de la cantidad de material fino pueda ser empleado y su comportamiento en las propiedades mecánicas y volumétricas de las mezclas asfálticas.

Tabla Nº 5 Parámetros de ensayos de propiedades volumétricas y mecánicas de MAC

Parametros de las propiedades mecanicas y volumetricas					
Porcentaje de vacios			4% +/- 1%		
Tension Diametral Retenida		nida	>=75%		
Estabilidad KN			8 min.		
Flujo mm		2.75 +/- 0.75			
Relacion polvo mineral/Asfalto efectivo		0.8 a 1.3			
Modulo resilente retenido a los 25 °C		5 000 Mpa			
VMA			11% - 15%		

Fuente: Manual de Especificaciones Generales para la Construcción de Carreteras, Caminos y Puentes CR-2010

2.2.4 MANUAL DE CARRETERAS, ESPECIFICACIONES TÉCNICAS GENERALES PARA LA CONSTRUCCIÓN; SECCIÓN 423, PAVIMENTO DE CONCRETO ASFÁLTICO EN CALIENTE

La normativa manifiesta las especificaciones de los materiales a usar en las mezclas asfálticas en caliente, para ellos los materiales de agregados minerales gruesos y finos cumplen con lo especificado.

Tabla N° 6 Requerimiento de los agregados grueso

	Requerimiento					
Ensayos	Norma	Altitud (msnm)				
	NOTITIA	<= 3000	> 3000			
Durabilidad (al sulfatto magnesio)	MTC E209	18% max.	15% max.			
Abrasion los angeles	MTC E207	40% max.	35% max.			
Adherencia	MTC E517	95	95			
Indice de durabilidad	MTC E214	35% min.	35% min.			
Particulas chtas y alargadas	ASTM 4791	10% max	10% max			
Caras fracturadas	MTC E 210	85/50	90/70			
Sales solubles totales	MTC E219	0.5% max.	0.5% max.			
Absorcion	MTC E206	1% max.	1% max.			

Fuente: Manual de Ensayos de Materiales del Ministerio de Transporte y Comunicaciones (MTC)

Tabla N° 7 Requerimiento del agregado fino

	Requerimiento					
Ensayos	Norma	Altitud (msnm)				
	NOTITIA	<= 3000	> 3000			
Equivalente de Arena	MTC E114	60	70			
Angularidad del agregado fino	MTC 222	30	40			
Azul de metileno	AASTHO TP 57	8 max.	8 max.			
Indice de plasticidad (malla N°40)	MTC E111	Np	Np			
Durabilidad (sulfato magnesio)	MTC E209		18% max.			
Indice de durabilidad	MTC E214	35 min.	35min.			
Indice de plasticidad (malla N°200)	MTC E111	4 max.	Np			
Sales solubles totales	MTC E219	0.5% max.	0.5% max			
Absorcion	MTC E205	0.5% max.	0.5% max			

Fuente: Manual de Ensayos de Materiales del Ministerio de Transporte y Comunicaciones (MTC)

La gradación de los agregados de acuerdo a la normativa se da para la producción de mezclas asfálticas cumpliendo con las consideraciones de los ajustes de la gradación por medio de los husos granulométricos establecidos para los distintos tipos de MAC, que de acuerdo a los huso se definen las proporciones de agregado fino y grueso que se dosifican en la mezcla asfáltica.

Tabla N° 8 Limites Granulométricos para MAC

	Porcentaje que pasa						
Tamiz	MAC-1	MAC-2	MAC-3				
25mm (1")	100						
19mm (3/4")	80-100	100					
12,5mm(1/2")	67-85	80-100					
9,5mm (3/8")	60-77	70-88	100				
4,75mm (N°4)	43-54	51-68	65-87				
2mm (N°10)	29-45	38-52	43-61				
425 um (N°40)	14-25	17-28	16-29				
180 um (N°80)	8-17	8-17	9-19				
75 um (N°200)	4-8	4-8	5-10				

Fuente: Manual de Ensayos de Materiales del Ministerio de Transporte y Comunicaciones (MTC)

Las consideraciones se dan en la normativa que la curva granulométrica se encuentre dentro de las restricciones del huso.

La evaluación por medio normativo del control de los parámetros referidos a las propiedades mecánicas y volumétricas representan una condición de identificación, análisis y evaluación de la condición de servicio a la cual las mezclas de concreto bituminoso se encontraran en su tiempo de vida mediante sus características de estabilidad, durabilidad, trabajabilidad, flexibilidad, resistencia a la fatiga y resistencia al deslizamiento.

Tabla N° 9 Parámetro de diseño del MTC

	Clase de Mezcla por tipo gra				
Parametro diseño	Pesado	Medio	Ligero		
	Α	В	С		
Compactacion, numero de golpes por cara	75	50	35		
Estabilidad	8,15 KN	5,44 KN	4,53 KN		
Flujo 0,01" (0,25)	8-14	8-16	8-20		
Porcentaje de vacios	3-5	3-5	3-5		
Vacios en el agregado mineral	VER TABLA SIGUIENTES				
Inmersion-comprension					
1 resistencia a la comprension Mpa min.	2,1	2,1	1,4		
2 resistencia retenida %(min)	75	75	75		
Relacion polvo - asfalto	0,6 - 1,3	0,6 - 1,3	0,6 - 1,3		
Relacion estabilidad/flujo (Kg/cm)	1.7 - 4				
resistencia conservada en la prueba de traccion indirec	ec 80 min.				

Fuente: Manual de Carreteras (Especificaciones Técnicas Generales Para La Construcción EG-2013)

Tabla Nº 10 Parámetro del VMA

Tamiz	Vacios minimos en agregado mineral (%)
N°8	21
N°4	18
3/8"	16
1/2"	15
3/4"	14
1"	13
1 1/2"	12
2"	11,5

Fuente: Manual de Carreteras (Especificaciones Técnicas Generales Para La Construcción EG-2013)

2.2.5 METODO MARSHALL PARA EL DISEÑO DE MEZCLAS ASTM D.1559

Parte de la evaluación se da en definir el origen de la metodología por la cual se encuentra basada la investigación, el desarrollo de la tesis se engloba en la metodología Marshall desarrollada en el año 1939, la cual fue normalizado por la ATM D-1559, en la denominación Resistencia al Flujo Plástico de Mezcla Bituminosa usando el equipo de Marshall, con modificación con el empleo del martillo manual compactador. (SILENE MINAYA GONZALES, 2001 pág. 102)

El proceso de diseño de la mezcla asfáltica se da en el marco de desarrollar las características de resistencia a la deformación permanente es decir definida como la estabilidad en las cuales las propiedades mecánicas – físicas de los materiales empleados en el diseño de mezclas asfálticas en caliente se encuentran involucradas para definir la estabilidad mediante la fricción y cohesión interna, fricción dada entre partículas internamente que es a causa de la cohesión proporcionada por el ligante asfaltico que mantiene la prevención de que las partículas se desplacen de un lado a otro ejercidas por fuerzas por el tráfico. (AUTOPISTAS, 1982 pág. 61).

El comportamiento de la mezcla asfáltica referida a la durabilidad se encuentra dada por el porcentaje de vacíos que contenga las mezclas asfálticas en caliente graduadas densamente por el cual la consideración optima de porcentaje de vacíos va relacionada a la cantidad de material fino o polvo pasante la malla N° 200, la durabilidad se encuentra reflejada en proporcionar espacios a donde pueda fluir el asfalto efectivo, para permitir una adición de compactación por carga de tráfico mediante una obtención optima de la relación polvo mineral/asfalto efectivo (AUTOPISTAS, 1982 pág. 62).

La evaluación de diseño de mezclas asfálticas por metodología Marshall es basada en un proceso de obtención de valores que representen la condición de la mezcla definidas de la siguiente manera:

■ El contenido óptimo de asfalto se da por obtener la mayor estabilidad o resistencia a la deformación de especímenes dosificadas por porcentajes de asfalto en forma de adición ascendente de un 0,5%, representando una película de asfalto idónea que rodea a las partículas evitando que las mezclas se oxiden con rapidez por intemperismo.

Vacíos de aire Asfalto absorbido Porosidad permeable Agregado al agua que no contiene asfalto absorbido Volumen de agregado (P. Esp. Total) /olumen de agregado (P. Esp. Electivo) Contenido efectivo /olumen de agregado de asfalto (P. Esp. Aparente) Volumen de la porosidad permeable al agua

Figura N° 2 Comportamiento de la relación agregado - asfalto

Fuente: Principio de Construcción de Pavimentos de Mezcla Asfáltica en Caliente

Las propiedades volumétricas de las mezclas asfálticas en caliente se dan en base a evaluar las propiedades de los agregados atravez de obtener los pesos específicos de los materiales, parámetro fundamental en la determinación de la relación peso – volumen del agregado compactado con el objetivo de obtención del contenido de vacíos de las mezclas asfálticas en caliente compactado.

$$G. e = \frac{Peso}{Volumen \ x \ peso \ especifico \ del \ agua}$$

Para el ensayo de peso específico y porcentaje de absorción se realizó de acuerdo a la Normativa Técnica Peruana (NTP 400.022), en las cuales el empleo de materiales y equipos normativos son necesarios en el proceso de ensayo.

- Estufa eléctrica termostáticamente controlada (110°±5°C)
- Balanza; sensible a 0.1% del peso medio y con capacidad de 1000g
- Probeta con capacidad de 500 cm3 como mínimo
- Agregado fino cantera Sicaya
- Agua potable
- Molde cónico de 40mm +/- 3mm de diámetro en la parte superior 90 mm +/- de diámetro en la parte inferior y 75 mm +/- 3 mm de altura
- Guantes
- Taras

El proceso de ensayo lo realizamos de la siguiente manera para el peso específico del agregado fino.

- Debemos sumergir el agregado en agua durante un lapso de 24 horas antes de realizar el ensayo aproximadamente una cantidad de 2000 gr.
- Se coloca en el molde cónico, se golpea la superficie suavemente 25 veces con la barra de metal y se levanta el molde verticalmente. Si existe humedad libre el cono de agregado fino mantendrá su forma. Se sigue con el secado, revolviendo constantemente y se prueba a intervalos frecuentes hasta que el cono se derrumbe al quitar el molde, esto significa que el agregado fino ha alcanzado una condición de superficie seca.
- Llenar en la probeta una cantidad de agua de 500 ml y posteriormente introducir el agregado fino en condición superficialmente seca, dejar reposar. Tomar como dato el volumen desplazado en la probeta.

• Posteriormente separar el agregado en un recipiente y llevar al horno un tiempo de 24 horas a una temperatura de 110 C0 +/- 5C0 y tomar como dato el peso seco del agregado.

$$P.e = \frac{(Pmsh-peso\ tara)}{volumen\ desplazado}$$

%abs =
$$\frac{((Ptara+Psss)-Ptara)-Pmsh}{Pmsh}$$

Donde;

P.e = peso especifico

% abs = porcentaje de absorción

Pmsh = peso muestra secada al horno

Psss = peso muestra superficialmente seca

El proceso de ensayo lo realizamos de la siguiente manera para el peso específico del agregado grueso.

- Lavar la muestra hasta eliminar completamente el polvo, luego se seca en el horno.
- Esperar que enfría hasta una temperatura cómoda al tacto y que la muestra tenga un peso constante.
- Se deja la muestra en agua por un por 24 horas, luego de ello se seca partículas sobre un tela (pifio), hasta eliminar el agua superficial.
- Colocar la muestra en el interior de la canastilla metálica y determinar su peso sumergida en agua
- Después de ello se coloca la muestra en el horno y se deja reposar por 24 horas se retira y se deja enfriar.

$$P.e = \frac{Pmsh}{Psss\ sumergido}$$

%abs =
$$\frac{((Ptara+Psss)-Ptara)-Pmsh}{Pmsh}$$

Donde;

P.e = peso especifico

% abs = porcentaje de absorción

Pmsh = peso muestra secada al horno

Psss = peso muestra superficialmente seca

La evaluación de las propiedades volumétricas mecánicas de las mezclas asfálticas se da en determinar la gravedad específica bulk de los especímenes.

$$Gmb = \frac{WD}{WD - WSUB}$$

Donde:

Gmb = Gravedad Especifica Bulk de la muestra compactada

WD = Peso del espécimen al aire

WSUB = Peso del espécimen sumergido

La determinación de los porcentajes de vacíos total como parámetro relacionado a la durabilidad y la cantidad de material fino fue aportado para el diseño de mezcla asfáltica en caliente mediante la relación polvo mineral/asfalto efectivo.

VTM =
$$(P. e \text{ max teorico} - P. e \text{ bulk}) * \frac{100}{P. e \text{ max terorico}}$$

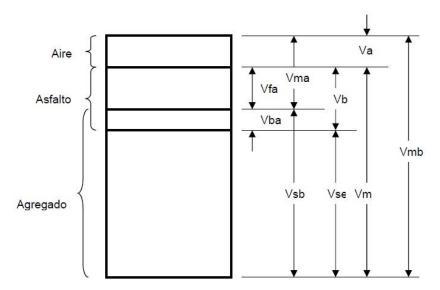
Donde:

VTM = Vacíos en total de la mezcla

La determinación del porcentaje de vacíos en el agregado mineral VMA se da en base a la determinación de la gravedad especifica Bulk del espécimen Gmb y gravedad especifica del agregado total Gsb.

$$VMA = 1 - \left(1 - \frac{Gmb(1 - Pb)}{Gsb}\right) * 100$$

La determinación del porcentaje de vacíos llenos de asfalto VFA se da en determinar el VTM Y VMA, parámetros relacionados al contenido de polvo mineral que se encuentre en la mezcla asfáltica en caliente.


$$VFA = \left(\frac{VMA - VTM}{VMA}\right)X100$$

Donde:

VTM = Porcentaje de vacíos total

VMA = Vacíos en el agregado mineral

Figura N° 3 Esquema de componentes del MAC

Fuente: Manual de Ensayos de Pavimentos - Universidad Nacional de Ingeniería- Perú

La metodología de la normativa ASTM D. 1559 establece el proceso de toma de valores de la estabilidad y flujo determinados por el aparato de Marshall. La estabilidad se da en medir la carga máxima aplica hasta el momento que ocurra la falla es decir cuando la carga aplicada llega a un punto máximo y esta misma comienza a decrecer.

La medición del flujo se da en base a la observación de la disminución de diámetro que sufre el espécimen entre la carga cero y el instante de falla es decir la penetración de 0.01" o 0.25 mm.

2.3 DEFINICIÓN DE TÉRMINOS BÁSICOS

2.3.1 Comportamiento de Materiales del MAC

2.3.1.1 Cemento Asfáltico

La evaluación de la investigación se enfoca a través de la metodología Marshall como base fundamental para el diseño de mezclas asfálticas en caliente, pigmentadas con óxido férrico como principal agente de pigmentación.

El contenido asfáltico en base a su proceso de obtención se da en una secuencia de determinación de la estabilidad máxima al punto de falla de los especímenes diseñadas con porcentajes de asfalto de forma ascendente con variación de 0.5% a partir de un punto de inicio de 4% (SILENE MINAYA GONZALES, 2001 pág. 158).

El cemento asfáltico definido por las especificaciones normativas para construcción de carreteras peruanas tiene la característica de ser un material bituminoso aglomerante; es decir, sometido a temperatura y compactación para lo cual la selección y clasificación se da en un marco de penetración y viscosidad de acuerdo a la condición climática de la zona (MTC, 2013 pág. 659)

Tabla Nº 11 Clasificación del cemento asfaltico

Temperatura media Anual							
24 °C o mas	24 °C - 15 °C	15°C - 5°C	Menos de 5°C				
40 - 50							
60 - 70	60-70	85-100	Asfalto modificado				
modificado		120-150					

Fuente: Manual de Carreteras (Especificaciones Técnicas Generales para Construcción) – EG 2013

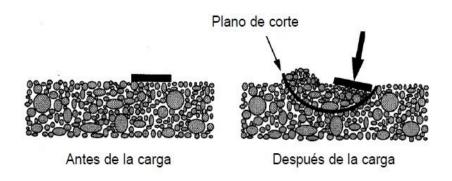
Tabla N° 12 Clasificación del cemento asfaltico por penetración

Tipo		Grado Penetracion									
Grado	Ensayo	PEN 4	0 - 50	PEN 6	60 - 70	PEN 8	35 - 100	PEN 1	20 - 150	PEN 20	0 - 300
Glauu	Liisayu	min	max	min	max	min	max	min	max	min	max
Pruebas sobre el material bituminoso											
Penetracion a 25°C, 100g, 5s,0,1mm	MTC E304	40	50	60	70	85	100	120	150	200	300
Punto de inflamacion, °C	MTC E312	232		232		232		218		177	
Ductilidad, 25 °C, 5 cm/min, cm	MTC E306	100		100		100		100		100	
Solubilidad en tricloro-etileno,%	MTC E302	99,0		99,0		99,0		99,0		99,0	
Indice de penetracion (susceptibilidad termica)	MTC E304	7	1	7	1	-1	1	- -	1	1	1
E	insayo de la m	nancha (Oliensi	es)							
Solvente Nafta - Estandar		Mega	ativo	Meg	ativo	Meg	jativo	Me	gativo	Meg	ativo
Solvente Nafta - Xileno, %xileno	AASHTO M 20	Mega	ativo	Meg	ativo	Meg	jativo	Me	gativo	Meg	ativo
Solvente Heptano - Xileno,%xileno		Mega	ativo	Meg	ativo	Meg	jativo	Me	gativo	Meg	ativo
Pruebas sobre la pelicula delgada a 163 °C, 3,2mm, 5h											
Perdida de masa, %	ASTM D1754		0,8		0,8		1		1,3		1,5
Penetracion retenida despues del ensayo de pelicula fina, $\%$	MTC E304	55+		52+		47+		42+		37+	
Ductilidad del residuo a 25°c, 5cm/min, cm	MTC E 306			50		75		100		100	

Fuente: Manual de Carreteras (Especificaciones Técnicas Generales para Construcción) – EG 2013

Tabla Nº 13 Clasificación del cemento asfaltico por viscosidad

Caractariatica	Grado de Viscocidad						
Caracteristicas	AC-2,5	AC - 5	AC-10	AC-20	AC-40		
Viscocidad absoluta a 60°C,Poises	250 +/- 50	500 +/- 100	1.000 +/- 200	2.000 +/- 400	4.000 +/- 800		
Viscocidad Cinemtaica, 135°C st minimo	80	110	150	210	300		
Penetracion 25°C, 100 gr, 5 s minimo	200	120	70	40	20		
Punto inflamacion COC, °C minimo	163	177	219	232	232		
Solubilidad en tricloroetileno, %masa, minimo	99	99	99	99	99		
Pruebas sobre el	residuo del e	ensayo de pe	elicula fina				
Viscocidad absoluta, 60 °C, Poises maximo	1.250	2.500	5.000	10.000	20.000		
Ductilidad, 25°C, 5cm/min, cm, minimo	100	100	50	20	10		
Ensayo	de la manch	a (Oliensies)					
Solvente Nafta - Estandar	Negativo	Negativo	Negativo	Negativo	Negativo		
Solvente Nafta - Xileno, % xileno	Negativo	Negativo	Negativo	Negativo	Negativo		
Solvente Heptano - Xileno, %xileno	Negativo	Negativo	Negativo	Negativo	Negativo		


Fuente: Manual de Carreteras (Especificaciones Técnicas Generales para Construcción) – EG 2013

2.3.1.2 Agregado Mineral

Parte del comportamiento de los agregados se enfoca en base a determinar sus pesos específicos bulk como parámetro influyente en la determinación del porcentaje de vacíos de las mezclas compactadas mediante una diferenciación que se da entre los pesos específicos de la mezcla compactada y los pesos específicos de los agregados y asfalto en la obtención de los vacíos de aire (AUTOPISTAS, 1982 pág. 51)

Las características de textura y rugosidad son parámetros fundamentales respecto a la estabilidad de las mezclas asfálticas estas se dan en la interacción interna de las partículas por agentes destructores o fuerzas en la carpeta asfáltica deteriorándose de forma significativa si la cohesión del cemento asfaltico no fue el óptimo. (Paul Garnica Anguas, 2005 pág. 11)

Figura N° 4 Comportamiento del MAC sometido a carga corte

Fuente: Caracterización Geo mecánica de Mezclas Asfálticas-Instituto Mexicano del Transporte

2.3.1.3 Mezcla Asfáltica

El comportamiento de la mezcla asfáltica terminada, dada en base a las composiciones de sus elementos, está referida a que el material pétreo tiene un comportamiento elastoplástico y por parte del asfalto más polvo mantiene su comportamiento visco – elástico; en consecuencia, se definió que las mezclas asfálticas compactadas se encuentran en un comportamiento visco-elástico. (Zuñiga, 3° Edicion pág. 65).

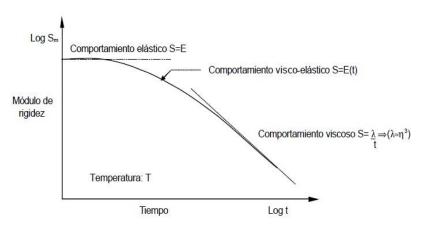
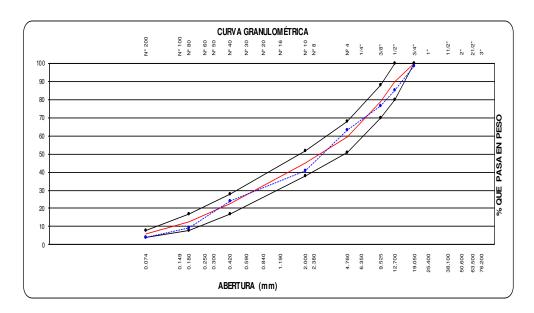


Figura N° 5 Comportamiento del MAC en el tiempo

Fuente: Fuente: Caracterización geomecánica de Mezclas Asfálticas-Instituto Mexicano del Transporte

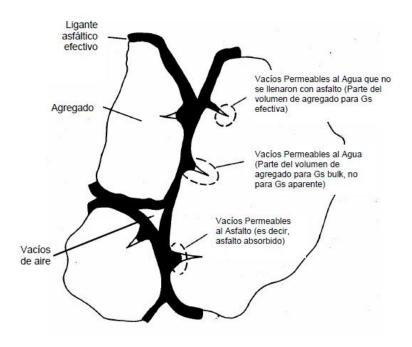

El comportamiento de las mezclas asfálticas se encuentra relacionadas a obtener propiedades características de las mezclas asfálticas como vacíos de aire, vacíos en el agregado mineral y contenido de asfalto.

2.3.2 Factores influyentes en el Comportamiento de Mezcla Asfálticas 2.3.2.1 Granulometría del Agregado

Parte de la investigación es la determinación de control que garanticen la calidad de la mezcla asfáltica para ello obtener distribución adecuada de partículas que se encuentren dentro de los limites especificados caracterizando a la granulometría densa sin llegar al exceso que pueda producir la reducción excesiva de asfalto deteriorando su durabilidad. Se da en el desarrollo de la investigación la granulometría densa debido a mitigar la deformación permanente por el aumento de material muy fino o polvo mineral que ocasionen variaciones en sus porcentajes de vacíos mediante la disminución por ocupar el polvo mineral una mayor superficie. (Horacio Delgado Alamilla, 2006 pág. 23)

El comportamiento granulométrico de los agregados en la mezcla total se da con la finalidad de asemejarse a la curva ideal para mezclas asfálticas en caliente.

Figura Nº 6 Curva y limites granulométrico



Fuente: Elaboración propia

2.3.2.2 Contenido de Asfalto

El uso del cemento asfaltico material obtenido de la derivación del crudo de petróleo que es empelado en la presente investigación tiene el comportamiento de encontrarse el óptimo. El contenido óptimo de asfalto que se tenga que determinar es efectuado por encontrar el porcentaje de asfalto que cubra o forme una membrana alrededor de las partículas que mantenga una película de grosor óptimo para evitar la desintegración de partículas de agregado por interacción y la deformación o flujo excesivo plástico que cause perdidas de estabilidad por cargas de los vehículos (UMSS, 2012 pág. 263).

Figura N° 7 Propiedades y características de las mezclas asfálticas en caliente

Fuente: Manual de Ensayos para Pavimentos – Universidad Nacional de Ingeniería

2.3.2.3 Porcentaje Vacíos

La asociación del desempeño de una mezcla asfáltica en caliente en su condición de servicio en su tiempo de vida en la carpeta asfáltica es derivada de la cantidad de vacíos que se encuentre. El empleo de mayor cantidad de material muy fino o polvo mineral como óxidos metálicos en forma pulverizada como empleo en la mezcla asfáltica influye a disminuir los vacíos y esta pueda ocasionar exudación del asfalto además de aumentar el porcentaje de asfalto optimo y esta se da por la mayor absorción de los materiales finos (LanammeUCR, 2009 pág. 13)

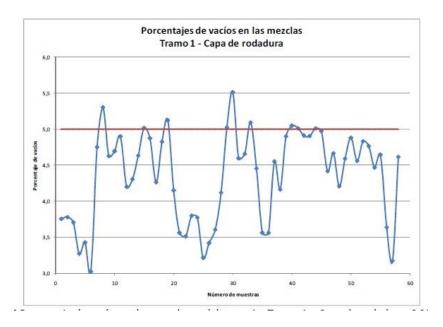


Figura N° 8 Comportamiento de los porcentajes de vacíos en la capa de rodadura

Fuente: Análisis de los porcentajes de vacíos de la mezcla asfáltica - LanameUCR

2.3.2.4 Contenido de finos

El desarrollo de la investigación se encuentra asociada a la incorporación de material fino es decir pasante la malla N°200 de la serie de tamices para mezclas asfálticas en caliente en las curvas granulométricas lo cual tiende la reducción de vacíos. (Jorge, 2002 pág. 57)

El empleo en la investigación de la tesis se desarrolla en base a la utilización de óxidos metálicos de elevada fuerza colorante esta manufacturada como ocre compuesta químicamente con óxido de hierro rojo en el Perú de igual forma a pigmentos comercializados para pavimentos. (COLORS, 2015 pág. 3)

La saturación del color de mezclas asfálticas en caliente llega a superar el 5% de dosificación. (COLORS, 2015).

Figura Nº 9 Comparativo de pigmentación con cemento asfaltico PEN 85-100 y ligante sintético claro

Fuente: G&C COLORS SA-España

Figura N° 10 Pigmento colorante para mezclas asfálticas

Fuente: G&C COLORS SA-España

Tabla N° 14 Dosificación habitual de pigmento

Dosis de Pigmento	Aglomerado con betun negro
Por tonelada de aglomerado	30 a 50 Kg
% respecto total de aglomerado	3 a 5%
% respecto al ligante	60 a 100%

Fuente: G&C COLORS SA-España

2.3.3 Parámetros volumétricos

El comportamiento de mezcla asfáltica compactada adecuada se da mediante el control de los parámetros volumétricos y las cuales forman parte del diseño de mezclas, como el vacío en el agregado mineral (VMA), vacíos llenos con asfalto (VFA) y los vacíos de aire (Va) (LanammeUCR, 2015).

La investigación se encuentra enfocada en considerar la variación de los porcentajes de vacíos también definidos como espacios entre las partículas de agregado cubiertas por la película de asfalto por el incremento de polvo mineral o pigmento para la coloración de mezclas asfálticas en caliente, de igual forma a la evaluación de los espacios vacíos intergranular entre las partículas de agregado y los espacios de vacíos intergranular ocupados por asfalto efectivo (Institute, 1996 pág. 35)

2.3.4 Parámetros mecánicos - físicos

La estabilidad es un parámetro determinado a los especímenes de mezclas asfálticas pigmentadas en caliente, está dada por la capacidad de resistir deformación bajo cargas de tráfico. Para ello un exceso de estabilidad produce carpetas asfálticas muy rígidas pocas durables en su condición de servicio, estas se encuentran relacionadas a la fricción y cohesión ambas aportadas por la condiciones mecánicas de los agregados y el cemento asfaltico.

Tabla N° 15 Efectos de baja estabilidad

Causas	Efectos
Exceso de asfalto en la mezcla	Ondulaciones, ahuellamiento y afloramiento o exudacion
I Evegen de grang de tamano madio en la mazela	Baja resistencia durante la compactacion y posteriormente durante un cierto tiempo; dificultad para la compactacion
Agregado redodndeado sin, o con pocas superficiales trituradas	Ahuellamiento y canalizacion

Fuente: Principios de Construcción de Pavimentos de Mezcla Asfáltica en Caliente – Serie de Manuales N° 22.

2.3.5 Proporción de polvo y tipo de filler

De acuerdo al Sistema Unificado de Clasificación de Suelos el porcentaje de material pétreo que pasa la malla N° 200 es considerado como polvo mineral o por emplearse en mezcla asfáltica denominado filler, que mantiene como características de llenar vacíos, un filler adecuado es el empleo es aquel que se encuentre en un rango de relación de 0.6 a 1.2 (Ruben Serratos Ochoa, 2011)

3 CAPÍTULO III: METODOLOGÍA

3.1 MÉTODOS Y ALCANCES DE LA INVESTIGACIÓN

3.1.1 MÉTODO CIENTÍFICO

La definición del **método científico** se da mediante un proceso o etapas, las cuales terminan siendo resultantes de la experiencia, en la cual se ha dotado de pautas lógicas; procedimiento que se da para la búsqueda de la solución adecuada a los problemas planteados, de esa manera el desarrollo de la investigación se ha planteado en la elaboraciones de briquetas de mezcla asfáltica pigmentadas, para posteriormente realizar un proceso de ensayos que definan sus propiedades mecánicas – volumétricas para tipos de flujos de vías y con ella se dé la posibilidad de resolver los problemas y justificar la hipótesis planteadas (Gonzales Castro, 2011 pág. 45)

3.1.2 TIPO DE INVESTIGACIÓN

El tipo de investigación al cual se ha establecido el desarrollo de la investigación es del **tipo aplicado**, debido a que se da una comprobación de la teoría con la realidad mediante la realización de ensayos para evaluar las propiedades mecánicas de las mezclas asfálticas pigmentadas para tipos de flujo de vías, con el objetivo de probar las hipótesis (Hernandez, 2014)

3.2 DISEÑO DE INVESTIGACION

El proceso de desarrollo de la investigación se da en el marco **experimental** y **pre experimental**, debido a que la alteración de la variable independiente, la dosificación de óxidos metálicos (causa), para evaluar las consecuencias que se generan en la variable dependiente, propiedades mecánicas de la mezcla asfálticas (efecto) (Hernandez, 2014 pág. 45).

G: Grupo de sujetos (mezclas asfálticas en caliente MAC)

X: Estímulo o variable independiente (Óxidos metálicos)

O: Medición o Variable Dependiente (propiedades mecánicas MAC)

3.3 POBLACIÓN

La población conceptualizada en el marco de la investigación se define como el universo de un conjunto de individuos que comparten por lo menos una característica en común, que se encuentren determinada por el problema y objetivo de estudio, definiendo que la población es todas las mezclas asfálticas pigmentadas con óxidos metálicos (Fidias, 2006)

3.4 MUESTRA

La población o el universo de estudio se encuentran constituida por los diseños de mezcla asfáltica pigmentada que puedan emplearse en los tipos de flujos de vías dosificados con óxidos metálicos (oxido férrico y óxido de cromo), estas en tipos manufacturado (OCRE) e industrializado (CHROMAFER) en porcentajes de 4%, 8%, 12% y 15% por sustitución del agregado fino.

Tabla N° 16 Población de especímenes dosificado con oxido férrico (OCRE)

		PORCENTAJE DE OXIDO METALICO				
		4% 8% 12% 15%				
ي.	Ligero	10	10	10	10	
TROK RAPICO	Mediano	10	10	10	10	
TROL	Pesado	10	10	10	10	

Fuente: Elaboración propia

Tabla nº 17 Población de especímenes dosificados con óxido cromo (OCRE)

		PORCENTAJE DE OXIDO METALICO				
		4% 8% 12% 15%				
TROTE TRAFFICO	Ligero	10	10	10	10	
	Mediano	10	10	10	10	
TROL	Pesado	10	10	10	10	

Fuente: Elaboración propia

Tabla N° 18 Población de especímenes dosificados con óxido férrico (CHROMAFER)

		PORCENTAJE DE OXIDO METALICO				
		4% 8% 12% 15%				
٥	Ligero	10	10	10	10	
THO OF TRAFFICO	Mediano	10	10	10	10	
(IRO)	Pesado	10	10	10	10	

Fuente: Elaboración propia

Tabla N° 19 Población de especímenes dosificados con óxido de cromo (CHROMAFER)

		PORCENTAJE DE OXIDO METALICO				
		4% 8% 12% 15%				
٥).	Ligero	10	10	10	10	
Ilgero Hediano Pesado		10	10	10	10	
TROV	Pesado	10	10	10	10	

Fuente: Elaboración propia

Tabla N° 20 Población de especímenes (PATRON)

PATRON					
ی	Ligero	10			
*TRAFICO	Mediano	10			
TROIL.	Pesado	10			

Fuente: Elaboración propia

3.4.1 DESCRIPCIÓN DE LA MUESTRA

Mediante la evaluación, la muestra es no probabilística, debido a la elección de los especímenes que dependen de la característica de la investigación y no de una probabilidad; para la evaluación de las propiedades mecánicas, dentro de ellas

evaluadas las propiedades volumétricas, se considera como muestra patrón sin polvo de pigmentación y muestra dosificada con polvo mineral óxidos metálicos de pigmentación (OCRE Y CHROMAFER) con dosificación de 4%, 8%, 12% y 15% a especímenes elaborados con cemento asfaltico de característica de penetración 85-100 debido a la condición climática a la ciudad de Huancayo, los especímenes de dimensiones normativas de 64 mm de espesor y 102 mm de diámetro ensayadas 24 horas después de ser elaboradas.

3.5 TECNICAS E INSTRUMENTOS DE RECOLECCION DE DATOS

El desarrollo de la tesis que se enfoca a obtener resultados con la veracidad posible que mantengan las condiciones de la investigación las que fundamenten a las conclusiones y recomendaciones, mediante un proceso detallado que tenga como misión y visión reunir la mayor cantidad de datos que puedan satisfacer a tal punto el grado de validez de la hipótesis.

3.5.1 TÉCNICAS

La técnica utilizada se refiere al empleo de un análisis o una metodología de observación de campo y se da un contacto directo con el objeto de estudio, que permita confrontar la teoría con la práctica (Fidias, 2006 pág. 67).

El procedimiento en obtener datos se da en la elaboración de especímenes mediante la metodología Marshall la cual se enfocó a determinar como primer paso las propiedades mecánicas y volumétricas de los materiales finos y gruesos, la evaluación de las mezclas asfálticas implica adicionar oxido metálico como pigmento y estas implicar evaluar la estabilidad, flujo y porcentaje de vacíos como parámetros primordiales de análisis del desempeño de las mezclas asfálticas pigmentadas.

3.5.2 INSTRUMENTOS

Como recurso en el registro de datos el instrumento se encuentra en relación a un diseño de campo, mediante una técnica documental, en la cual el empleo de fichas de gabinete registra los datos observados (Fidias, 2006 pág. 56)

3.5.2.1 FICHA DE LABORATORIO

El empleo de la ficha de gabinete se considera de manera metodológica en la cual se registre datos observados de la medición de los indicadores, la cual es necesaria para determinar las características necesarias de las variables dependientes e independientes con las respectivas dimensiones, analizadas en laboratorio.

3.6 PROCEDIMIENTO METODOLÓGICO

a. Caracterización de los materiales: Determinar las características de los materiales que influyen en las propiedades volumétricas de las mezclas asfálticas pigmentadas en caliente, se da en determinar los pesos o gravedades específicas bulk de los agregados finos y grueso para ello de acuerdo a la normativa del MTC E205.

Parte de la caracterización de los agregados es la determinación de la granulometría de los agregados finos y gruesos y en ellas identificar el tamaño máximo y nominal mediante la normativa del MTC E204.

La caracterización del cemento asfáltico se da en definir de acuerdo a la capacidad de penetración y condiciones climáticas de la ciudad de Huancayo, esta en base a la normativa del Manual de Especificaciones Técnicas Generales para la Construcción EG-2013.

Tabla Nº 21 Selección del cemento asfaltico por penetración y condición climática

Temperatura media Anual						
24 °C o mas	24 °C - 15 °C	15°C - 5°C	Menos de 5°C			
40 - 50						
60 - 70	60-70	85-100	Asfalto modificado			
modificado		120-150				

Fuente: Manual de Especificaciones Técnicas Generales para la Construcción de Carreteras EG-2013

- b. **Diseño de mezcla**: En el desarrollo de la tesis se da el enfoque a realizar el diseño de mezcla en base a los procedimientos del método Marshall del ASTM D-1559, diseñadas en base a producir especímenes de espesor de 64 mm y de diámetro 102 mm las cuales la producción de mezclas de 1250 Kg son las adecuadas para cumplir con las dimensiones requeridas.
- Determinar la combinación de agregados finos y gruesos mediante la granulometría de los materiales pétreos por mallas de 2", 1 ½", 1", ¾", ½", 3/8", N°4, N°8, N°16, N°30,

N°50, N°100 y N°200de acuerdo a limites o husos granulométricos en base a los tamaños máximo y nominal. Para la combinación de agregados se fundamenta mediante la siguiente ecuación.

$$P = Aa + Bb + Cc$$

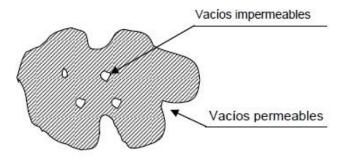
Donde:

P = Porcentaje promedio de las especificaciones en un tamiz

A, B, C = Porcentaje de material que pasa un tamiz para la granulometría A, B,C

a, b, c = Proporción de agregados A, B, C usados en la condición y donde el total es 1

Tabla N° 22 Selección del huso granulométrico para combinación de agregados


Porcentaje que pasa							
TAMIZ	MAC-1	MAC-2	MAC-3				
25 mm (1")	100						
19 mm (3/4")	80-100	100					
12.5 mm (1/2)")	67-85	80-100					
9.5 mm (3/8")	60-77	70-88	100				
4.75 mm (N°4)	43-54	51-68	65-87				
2 mm (N° 10	29-45	38-52	43-61				
425 um (N° 40)	14-25	17-28	16-29				
180 um (N° 80)	8-17	8-17	9-19				
75 um (N° 200)	4-8	4-8	5-10				

Fuente: Manual de Especificaciones Técnicas Generales para la Construcción de Carreteras EG-2013 • Preparación de especímenes de Marshall se da con las proporciones establecidas de los agregados y el % de cemento asfaltico que serán diseñadas en la progresión de 4.0, 4.5, 5.0, 5.5, 6.0 % para el cual la ecuación empleada se definieron de la siguiente manera.

$$\%$$
cemento asfaltico = $\frac{peso\ cemnto\ asfaltico}{peso\ arido\ +\ peso\ cemento\ asfaltico}$

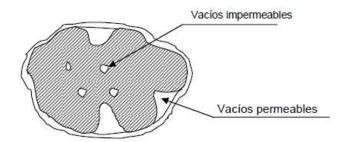

- Determinado los pesos de los agregados y cemento asfaltico son calentados a temperaturas de 170°C son. Para la compactación del espécimen se da para tipos de flujos de tráfico, en la presente investigación se desarrolla para flujos de tráfico de tipo ligero, mediano y pesado
- La preparación del molde de compactación está basado en la preparación de un papel filtrante de 10 cm de diámetro, la mezcla a una temperatura de 150°C indica el punto de mezcla en la cual la pre compactación homogénea 15 veces alrededor del perímetro y 10 veces internamente. La compactación de simulación a un tipo de tráfico se da con el martillo compactador de acuerdo al número de golpes de 75, 50 y 35 golpes/cara a una altura de caída de 18", posterior a la compactación reposar el espécimen a temperatura ambiente 24 horas.
- Determinar el peso específico Bulk del espécimen se da en obtener los pesos específicos seco al aire, sumergido y superficialmente seco.

Figura N° 11 Peso específico seco

Fuente: Manual de ensayo para pavimentos – Universidad Nacional de Ingeniería

Figura N° 12 Peso específico saturado superficialmente seco

Fuente: Manual de ensayo para pavimentos - Universidad Nacional de Ingeniería

- Parte fundamental para determinar los parámetros volumétricos de los especímenes es determinar el peso específico teórico máximo la cual se encuentran definidas normativamente.
- Determinar los parámetros volumétricos permite evaluar los porcentajes de vacíos total del espécimen, vacíos en el agregado mineral y vacíos llenos con asfalto
- Los especímenes son evaluados en sus dimensiones con el fin de definir su volumen, de sea el caso la variación de volumen implica tomar en cuenta un factor de corrección en la estabilidad.
- Las propiedades mecánicas de los especímenes se da en la evaluación de su estabilidad y flujo para ello se realiza el baño de María a temperatura de 60°C en un intervalo de 30 minutos de forma escalonada, la preparación del molde de ensayo es el engrasado y la colocación del medidor de flujo. Se da la aplicación de la carga a velocidad de 2pulg/min hasta que ocurra la falla, cuando se alcanzó la máxima carga y se produjo el punto de falla o ruptura al mismo instante se toma dato de la deformación del espécimen que expresa la disminución de diámetro desde el punto de carga cero hasta el punto de falla o ruptura.

Figura N° 13 Ensayo de estabilidad y flujo

Fuente: Elaboración propia – laboratorio de pavimentos ICCSAH

4 CAPÍTULO IV: RESULTADOS Y DISCUSIÓN

4.1 RESULTADOS GENERALES DE LA INVESTIGACIÓN

PESO ESPECÍFICO DE LOS AGREGADOS

El peso específico seco bulk que de acuerdo al diseño considera el volumen total de partículas de agregado más el volumen de poros llenos de agua. En promedio el peso específico del agregado grueso de ¾" es de 2.66 gr/cm3, el peso específico del agregado grueso de ½" es de 2.71 gr/cm3.

Tabla N° 23 Resumen de peso específico del agregado grueso de ½"

DATOS	UND	M-1	M-2	M-3	Promedio
Toma Muestra	gr	3000	3000	3000	Promedio
Pmsh+ TARA	gr	4052	4266	4231	4183
Tara	gr	377	377	327	360
Pmsh	gr	3675	3889	3904	3823
Psss	gr	3711	3930	3941	3861
Psss sumergido + canastilla	gr	3240	3390	3390	3340
peso canastilla	gr	890	890	890	890
Psss sumergido	gr	2350	2500	2500	2450
peso agregado	gr	1361	1430	1441	1411
Gsa	gr/cm3	2.77	2.80	2.78	2.78
Gsb	gr/cm4	2.70	2.72	2.71	2.71
Gsss	gr/cm5	2.73	2.75	2.74	2.74

Fuente: Elaboración propia - Excel 2018

Tabla N° 24 Resumen de peso específico del agregado grueso de ¾"

DATOS	UND	M-1	M-2	M-3	Promedio
Toma Muestra	gr	3000	3000	3000	Promedio
Pmsh+ TARA	gr	4013	4337	4231	4194
Tara	gr	377	377	327	360
Pmsh	gr	3799	3774	3904	3826
Psss	gr	3823	3856	3934	3871
Psss sumergido + canastilla	gr	3243	3337	3385	3322
peso canastilla	gr	890	890	890	890
Psss sumergido	gr	2353	2447	2495	2432
peso agregado	gr	1470	1409	1439	1439
Gsa	gr/cm3	2.63	2.84	2.77	2.75
Gsb	gr/cm4	2.58	2.68	2.71	2.66
Gsss	gr/cm5	2.60	2.74	2.73	2.69

Fuente: Elaboración propia – Excel 2018

Los resultados del peso específico para el agregado fino, que para el diseño de mezclas asfálticas pigmentadas se consideró dos tipos zarandeada y chancada, se obtuvo que para la arena zarandeada el peso específico seco bulk fue de 2.65 gr/cm3 y para la arena chancada fue de 2.72 gr/cm3

Tabla N° 25 Arena chancada

DATOS	UND	M-1	M-2	M-3	Promedio
Psss + tara	gr	562	575	563	567
Pmsh + tara	gr	543	535	550	543
peso tara	gr	62	75	63	67
Psss	gr	500	500	500	500
Pmsh	gr	481	460	487	476
Volumen desplazado	cm3	175	175	175	175
peso picnometro +agua	gr	582	579	584	582
peso pic+agua+agregado	gr	895	893	887	892
Peso sumergido en agua	gr	313	314	303	310
Gsb	gr/cm3	2.75	2.63	2.78	2.72
Gsss	gr/cm3	2.86	2.86	2.86	2.86
Gsa	gr/cm3	2.86	3.15	2.65	2.89

Fuente: Elaboración propia – Excel 2018

Tabla N° 26 Arena zarandeada

DATOS	UND	M-1	M-2	M-3	Promedio
Psss + tara	gr	562	575	563	567
Pmsh + tara	gr	545	539	547	544
peso tara	gr	62	75	63	67
Psss	gr	500	500	500	500
Pmsh	gr	483	464	484	477
Volumen desplazado	cm3	180	180	180	180
peso picnometro +agua	gr	582	579	584	582
peso pic+agua+agregado	gr	894	889	893	892
Peso sumergido en agua	gr	312	310	309	310
Gsb	gr/cm3	2.68	2.58	2.69	2.65
Gsss	gr/cm3	2.78	2.78	2.78	2.78
Gsa	gr/cm3	2.82	3.01	2.77	2.87

Fuente: Elaboración propia – Excel 2018

GRANULOMETRÍA DEL AGREGADO GRUESO

La granulometría del agregado grueso se ha evaluado con el objetivo de determinar los tamaños máximos y nominal máximo por el cual las partículas han sido graduadas con el fin de determinar qué tipo de MAC se empleará para el diseño de mezcla.

Tabla N° 27 Resumen de la granulometría del AG – Tmax ¾"

Ma	lla	Peso	% Ret	% Ret	% que
Tamiz	mm.	(gr)	Parcial	Acum.	Pasa
3"	76.200	0.00	0.0	0.0	100.0
2 1/2"	63.500	0.0	0.0	0.0	100.0
2"	50.600	0.0	0.0	0.0	100.0
1 1/2"	38.100	0.0	0.0	0.0	100.0
1"	25.400	0.0	0.0	0.0	100.0
3/4"	19.050	0.0	0.0	0.0	100.0
1/2''	12.700	824.6	41.2	41.2	58.8
3/8''	9.525	859.8	43.0	84.2	15.8
No4	4.760	295.0	14.8	99.0	1.0
8	2.360	13	0.7	99.6	0.4
10	2.000	3.4	0.2	99.8	0.2
16	1.190	2.0	0.1	99.9	0.1
30	0.600	2.2	0.1	100.0	
40	0.420				
50	0.300				
80	0.180				
100	0.149				
200	0.074				
< 200					

Fuente: Elaboración propia – Excel 2018

Figura N° 14 Curva granulométrica AG – Tmax ¾"

ABERTURA (mm)

0.074

Tabla N° 28 Resumen de la granulometría AG-Tmax 1"

Ma	lla	Peso	% Ret	% Ret	% que
Tamiz	mm.	(gr)	Parcial	Acum.	Pasa
3''	76.200	0.00	0.0	0.0	100.0
2 1/2''	63.500	0.0	0.0	0.0	100.0
2''	50.600	0.0	0.0	0.0	100.0
1 1/2"	38.100	0.0	0.0	0.0	100.0
1"	25.400	0.0	0.0	0.0	100.0
3/4"	19.050	556.6	27.8	27.8	72.2
1/2"	12.700	1024.2	51.2	79.0	21.0
3/8''	9.525	325	16.3	95.3	4.7
No4	4.760	94.0	4.7	100.0	0.0
8	2.360				
10	2.000				
16	1.190				
30	0.600				
40	0.420				
50	0.300				
80	0.180				
100	0.149				
200	0.074				
< 200					

Tabla N° 29 Curva granulométrica AG-Tmax 1"

GRANULOMETRÍA DEL AGREGADO FINO

La granulometría del agregado fino la cual es más amplia en el análisis debido a la adición de polvo mineral oxido metálico para la pigmentación de las mezclas asfálticas en caliente. Para ello la evaluación granulométrica de los materiales finos utilizados se realizó a Arena natural o zarandeada y Arena chancada en la diferencia de encontrar astillas en la arena chancada.

Tabla Nº 30 Resumen de la granulometría arena natural o zarandeada

Ma	lla	Peso	% Ret	% Ret	% que
Tamiz	mm.	(gr)	Parcial	Acum.	Pasa
3"	76.200	0.00	0.0	0.0	100.0
2 1/2"	63.500	0.0	0.0	0.0	100.0
2"	50.600	0.0	0.0	0.0	100.0
1 1/2"	38.100	0.0	0.0	0.0	100.0
1"	25.400	0.0	0.0	0.0	100.0
3/4''	19.050	0.0	0.0	0.0	100.0
1/2''	12.700	0.0	0.0	0.0	100.0
3/8''	9.525	0.0	0.0	0.0	100.0
1/4''	6.350	0.0	0.0	0.0	100.0
No4	4.760	175.0	11.7	11.7	88.3
8	2.360	335.0	22.3	34.0	66.0
10	2.000	111.0	7.4	41.4	58.6
16	1.190	282.0	18.8	60.2	39.8
30	0.600	307.4	20.5	80.7	19.3
40	0.420	112.4	7.5	88.2	11.8
50	0.300	30.8	2.1	90.2	9.8
80	0.180	108.0	7.2	97.4	2.6
100	0.149	5.0	0.3	97.8	2.2
200	0.074	26.6	1.8	99.5	0.5
< 200		6.8	0.5	100.0	0.0

Figura N° 15 Curva granulométrica de la arena natural o zarandeada

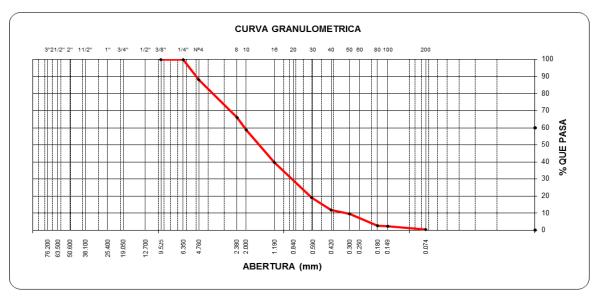
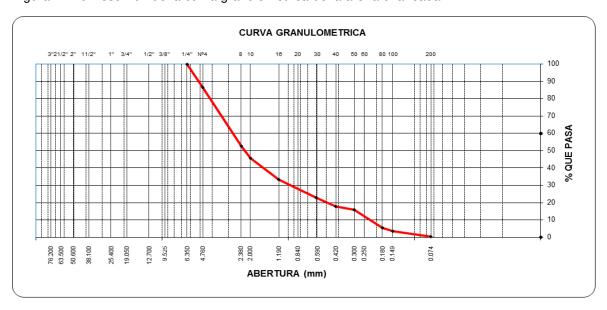



Tabla N° 31 Resumen de la granulometría de la arena chancada

Ma	lla	Peso	% Ret	% Ret	% que
Tamiz	mm.	(gr)	Parcial	Acum.	Pasa
3"	76.200	0.00	0.00	0.00	100.0
2 1/2"	63.500	0.00	0.00	0.00	100.0
2''	50.600	0.00	0.00	0.00	100.0
1 1/2"	38.100	0.00	0.00	0.00	100.0
1"	25.400	0.00	0.00	0.00	100.0
3/4''	19.050	0.00	0.00	0.00	100.0
1/2''	12.700	0.00	0.00	0.00	100.0
3/8''	9.525	0.00	0.00	0.00	100.0
1/4''	6.350	0.00	0.00	0.00	100.0
No4	4.760	200.4	13.4	13.4	86.6
8	2.360	508.4	33.9	47.3	52.7
10	2.000	106.6	7.1	54.4	45.6
16	1.190	185.0	12.3	66.7	33.3
30	0.600	158.6	10.6	77.3	22.7
40	0.420	74.8	5.0	82.3	17.7
50	0.300	28.4	1.9	84.1	15.9
80	0.180	156.2	10.4	94.6	5.4
100	0.149	30.0	2.0	96.6	3.4
200	0.074	44.8	3.0	99.5	0.5
< 200		6.8	0.5	100.0	0.0

Figura N° 16 Resumen de la curva granulométrica de la arena chancada

COMBINACIÓN DE AGREGADOS PATRÓN

La combinación de los agregados para las muestras patrón se realizaron en base a los limites granulométricos del MAC-1 para lo cual las granulometrías realizadas a los materiales pétreos fueron realizadas con la técnica y calidad requerida por las normativas.

Tabla N° 32 Combinación de agregados Patrón

Ma	lla]	Especificacion	ies				
Tami z	mm.				-					
Propor	ciones	piedr a 3/4''	piedr a 1/2''	Arena Sarandead a	Arena Chancad a	filler (materia l propio)			ИΤО	
		18.9%	20.9%	27.6%	25.6%	7.0%	100 %	EG	- 20	13
1"	25.40	100.000	100.00	100.0	100.0	100.0	100.0	10 0	•	10 0
3/4''	19.05	72.170	100.00	100.0	100.0	100.0	94.7	80	-	10 0
1/2"	12.70	20.960	58.77	100.0	100.0	100.0	76.4	67	-	85
3/8''	9.525	4.700	15.78	100.0	100.0	100.0	64.4	60	-	77
Nº 4	4.760	0.000	1.03	88.3	86.6	100.0	53.8	43	-	54
Nº 8	2.360	0.000	0.38	66.0	52.7	100.0	38.8			
Nº 10	2.000	0.000	0.21	58.6	45.6	100.0	34.9	29	-	45
Nº 16	1.180	0.000	0.11	39.8	33.3	100.0	26.5			
Nº 30	0.600	0.000	0.00	19.3	22.7	100.0	18.1			
Nº 40	0.420	0.000	0.00	11.8	17.7	100.0	15	14	-	25
Nº 50	0.300	0.000	0.00	9.8	15.9	100.0	13.8			
Nº 80	0.180	0.000	0.00	2.6	5.4	100.0	9.1	8	-	17
N° 100	0.150	0.000	0.00	2.2	3.4	100.0	8.5			
N° 200	0.074	0.0	0.00	0.5	0.5	100.0	7.2	4	-	8
pasa				0.0	0.0	0.0	0.0			

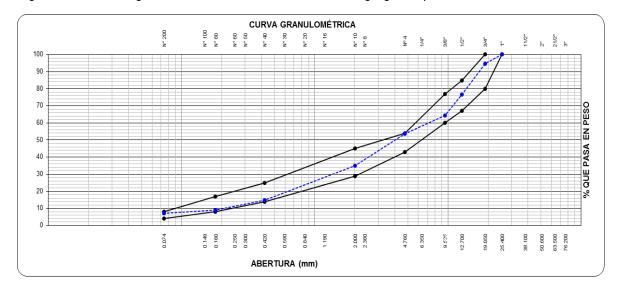
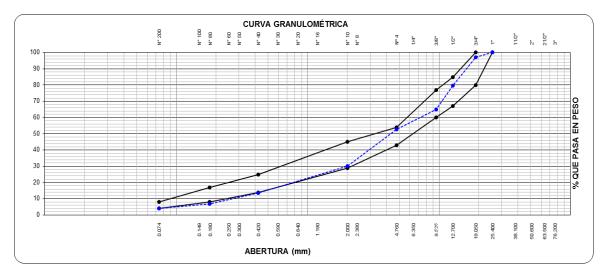


Figura Nº 17 Curva granulométrica de la combinación de agregados patrón


COMBINACIÓN DE AGREGADOS CON ÓXIDO FÉRRICO Y ÓXIDO DE CROMO CON 4% DE PIGMENTO

La combinación de los agregados se encuentra enfocados en determinar los porcentajes óptimos de combinación mediante los límites granulométricos de combinación del MAC-2, además de la adición de óxido férrico rojo de 4% tiende a aumentar los porcentajes de finos de la malla N° 200 por el cual exceden al límite granulométrico.

Tabla N° 33 Combinación de agregados con 4% de óxido férrico y óxido de cromo

Ma	ılla			Porcentaj	es pasantes (%)	
Tamiz	mm.						
Propoi	rciones	piedra 3/4'' CRUSHING	piedra 1/2'' CRUSHING	Arena Sarandeada	Arena Chancada	filler (O. FERRICO - CROMO)	MTC
		3/4"	1/2''	SARANDEADA	CHANCADA	OCRE- CHROMAFER	100.0%
		10.2%	30.1%	5.2%	50.5%	4.0%	
1"	25.400	100.000	100.00	100.0	100.0	100.0	100.0
3/4''	19.050	72.170	100.00	100.0	100.0	100.0	97.2
1/2''	12.700	20.960	58.77	100.0	100.0	100.0	79.5
3/8''	9.525	4.700	15.78	100.0	100.0	100.0	64.9
Nº 4	4.760	0.000	1.03	88.3	86.6	100.0	52.7
Nº 8	2.360	0.000	0.38	66.0	52.7	100.0	34.2
Nº 10	2.000	0.000	0.21	58.6	45.6	100.0	30.2
Nº 16	1.180	0.000	0.11	39.8	33.3	100.0	22.9
Nº 30	0.600	0.000	0.00	19.3	22.7	100.0	16.5
Nº 40	0.420	0.000	0.00	11.8	17.7	100.0	14
Nº 50	0.300	0.000	0.00	9.8	15.9	100.0	12.5
Nº 80	0.180	0.000	0.00	2.6	5.4	100.0	6.9
Nº 100	0.150	0.000	0.00	2.2	3.4	100.0	5.9
Nº 200	0.074	0.0	0.00	0.5	0.5	100.0	4.3
pasa				0.0	0.0	0.0	0.0

Figura N° 18 Curva granulométrica de combinación de agregados con 4% de óxido férrico y óxido de cromo

COMBINACIÓN DE AGREGADOS CON ÓXIDO FÉRRICO Y ÓXIDO DE CROMO CON 8% DE PIGMENTO

La combinación de los agregados se encuentra enfocados en determinar los porcentajes óptimos de combinación mediante los límites granulométricos de combinación del MAC-2, además de la adición de óxido férrico rojo de 8% tiende a aumentar los porcentajes de finos de la malla N° 200 por el cual exceden al límite granulométrico.

Tabla N° 34 Combinación de agregados con 8% de óxido férrico y óxido de cromo

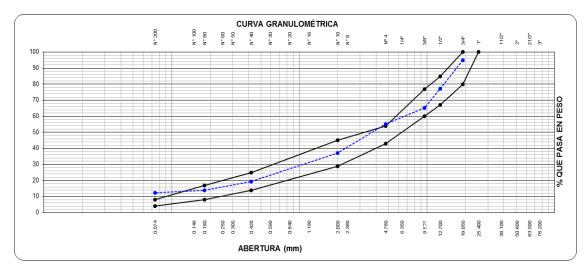
Ma	ılla			Porcentaj	es pasantes (%)	
Tamiz	mm.						
Propor	ciones	piedra 3/4'' CRUSHING	piedra 1/2'' CRUSHING	Arena Sarandeada	Arena Chancada	filler (O. FERRICO CROMO)	MTC
		3/4"	1/2"	SARANDEADA	CHANCADA	OCRE - CHROMAFER	100.0%
		18.1%	20.9%	22.2%	30.8%	8.0%	
1"	25.400	100.000	100.00	100.0	100.0	100.0	
3/4''	19.050	72.170	100.00	100.0	100.0	100.0	95.0
1/2''	12.700	20.960	58.77	100.0	100.0	100.0	77.1
3/8''	9.525	4.700	15.78	100.0	100.0	100.0	65.1
Nº 4	4.760	0.000	1.03	88.3	86.6	100.0	54.5
Nº 8	2.360	0.000	0.38	66.0	52.7	100.0	39.0
Nº 10	2.000	0.000	0.21	58.6	45.6	100.0	35.1
Nº 16	1.180	0.000	0.11	39.8	33.3	100.0	27.1
Nº 30	0.600	0.000	0.00	19.3	22.7	100.0	19.3
Nº 40	0.420	0.000	0.00	11.8	17.7	100.0	16.1
Nº 50	0.300	0.000	0.00	9.8	15.9	100.0	15.0
Nº 80	0.180	0.000	0.00	2.6	5.4	100.0	10.2
Nº 100	0.150	0.000	0.00	2.2	3.4	100.0	9.6
Nº 200	0.074	0.0	0.00	0.5	0.5	100.0	8
pasa				0.0	0.0	0.0	0.0

Figura N° 19 Curva granulométrica de combinación de agregados con 8% de óxido férrico y óxido de cromo

ABERTURA (mm)

0.250

COMBINACIÓN DE AGREGADOS CON ÓXIDO FÉRRICO Y ÓXIDO DE CROMO CON 12% DE PIGMENTO

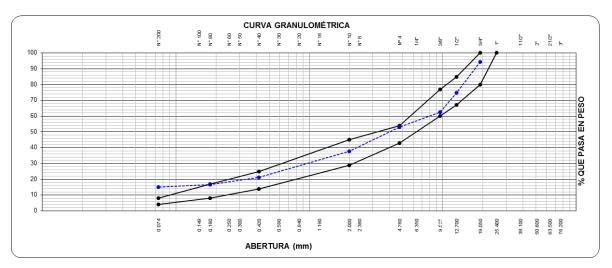

2.000

La combinación de los agregados se encuentra enfocados en determinar los porcentajes óptimos de combinación mediante los límites granulométricos de combinación del MAC-2, además de la adición de óxido férrico rojo de 12% tiende a aumentar los porcentajes de finos de la malla N° 200 por el cual exceden al límite granulométrico.

Tabla N° 35 Combinación de agregados con 12% de óxido férrico y óxido de cromo

Ma	ılla			Porcentaj	es pasantes (%)	
Tamiz	mm.	•			_		
Propor	rciones	piedra 3/4'' CRUSHING	piedra 1/2'' CRUSHING	Arena Sarandeada	Arena Chancada	filler(0. FERRICO - CROMO)	MTC
		3/4"	1/2"	SARANDEADA	CHANCADA	OCRE - CHROMAFER	100.0%
		18.1%	20.9%	22.2%	26.8%	12.0%	
1"	25.400	100.000	100.00	100.0	100.0	100.0	
3/4''	19.050	72.170	100.00	100.0	100.0	100.0	95.0
1/2''	12.700	20.960	58.77	100.0	100.0	100.0	77.1
3/8''	9.525	4.700	15.78	100.0	100.0	100.0	65.1
Nº 4	4.760	0.000	1.03	88.3	86.6	100.0	55.0
Nº 8	2.360	0.000	0.38	66.0	52.7	100.0	40.9
Nº 10	2.000	0.000	0.21	58.6	45.6	100.0	37.3
Nº 16	1.180	0.000	0.11	39.8	33.3	100.0	29.8
Nº 30	0.600	0.000	0.00	19.3	22.7	100.0	22.4
Nº 40	0.420	0.000	0.00	11.8	17.7	100.0	19.4
Nº 50	0.300	0.000	0.00	9.8	15.9	100.0	18.4
Nº 80	0.180	0.000	0.00	2.6	5.4	100.0	14.0
Nº 100	0.150	0.000	0.00	2.2	3.4	100.0	13.4
Nº 200	0.074	0.0	0.00	0.5	0.5	100.0	12.2
pasa				0.0	0.0	0.0	0.0

Figura N° 20 Curva granulométrica de combinación de agregados con 12% de óxido férrico y óxido de cromo


COMBINACIÓN DE AGREGADOS CON ÓXIDO FÉRRICO Y ÓXIDO DE CROMO CON 15% DE PIGMENTO

La combinación de los agregados se encuentra enfocados en determinar los porcentajes óptimos de combinación mediante los límites granulométricos de combinación del MAC-2, además de la adición de óxido férrico rojo de 15% tiende a aumentar los porcentajes de finos de la malla N° 200 por el cual exceden al límite granulométrico.

Tabla N° 36 Combinación de agregados con 15% de óxido férrico y oxido cromo

Ma	lla			Porcentaj	es pasantes (%)	
Tamiz	mm.						
Propor	ciones	piedra 3/4'' CRUSHING	piedra 1/2'' CRUSHING	Arena Sarandeada	Arena Chancada	filler (O. FERRICO- CROMO)	MTC
		3/4"	1/2"	SARANDEADA	CHANCADA	OCRE - CHROMAFER	100.0%
		20.9%	20.9%	22.2%	21.0%	15.0%	
1"	25.400	100.000	100.00	100.0	100.0	100.0	
3/4''	19.050	72.170	100.00	100.0	100.0	100.0	94.2
1/2''	12.700	20.960	58.77	100.0	100.0	100.0	74.9
3/8''	9.525	4.700	15.78	100.0	100.0	100.0	62.5
Nº 4	4.760	0.000	1.03	88.3	86.6	100.0	53.0
Nº 8	2.360	0.000	0.38	66.0	52.7	100.0	40.8
Nº 10	2.000	0.000	0.21	58.6	45.6	100.0	37.6
Nº 16	1.180	0.000	0.11	39.8	33.3	100.0	30.9
Nº 30	0.600	0.000	0.00	19.3	22.7	100.0	24.1
Nº 40	0.420	0.000	0.00	11.8	17.7	100.0	21.3
Nº 50	0.300	0.000	0.00	9.8	15.9	100.0	20.5
Nº 80	0.180	0.000	0.00	2.6	5.4	100.0	16.7
Nº 100	0.150	0.000	0.00	2.2	3.4	100.0	16.2
Nº 200	0.074	0.0	0.00	0.5	0.5	100.0	15.2
pasa				0.0	0.0	0.0	0.0

Figura N° 21 Curva granulométrica de combinación de agregados con 15% de óxido férrico y óxido de cromo

RESUMEN DE PESOS DE MEZCLA ASFÁLTICA EN CALIENTE PATRÓN

Tabla N° 37 Resumen de los pesos de la muestra patrón

Mat	% Asfalto	4.00	4.50	5.00	5.50	6.00	6.50
	Malla						
	1/2"	0.0	0.0	0.0	0.0	0.0	0.0
Ë	3/8"	0.0	0.0	0.0	0.0	0.0	0.0
MAF	# 4	0.0	0.0	0.0	0.0	0.0	0.0
IOI	# 10	0.0	0.0	0.0	0.0	0.0	0.0
OCRE - CHROMAFER	< #10	84.0	83.6	83.1	82.7	82.3	81.8
Ä	SUB TOTAL	84.0	83.6	83.1	82.7	82.3	81.8
<u> </u>					-		
	4 /0!!					0.0	
	1/2"	0.0	0.0	0.0	0.0	0.0	0.0
_ p	3/8"	0.0	0.0	0.0	0.0	0.0	0.0
sua Ica	# 4	41.0	40.8	40.6	40.4	40.2	40.0
Arena Chancada	# 10	126.0	125.3	124.6	124.0	123.3	122.7
ੇ ਨੂੰ	< #10	140.2	139.5	138.7	138.0	137.3	136.6
	SUB TOTAL	307.2	305.6	304.0	302.4	300.8	299.2
	3/4"	0.0	0.0	0.0	0.0	0.0	0.0
<u> </u>	1/2"	0.0	0.0	0.0	0.0	0.0	0.0
Arena Sarandeada	3/8"	0.0	0.0	0.0	0.0	0.0	0.0
Arena randea	# 4	38.6	38.4	38.2	38.0	37.8	37.6
rar rar	# 10	98.5	98.0	97.5	96.9	96.4	95.9
Sa	< #10	194.1	193.1	192.1	191.1	190.0	189.0
	SUB TOTAL	331.2	329.5	327.8	326.0	324.3	322.6
	3/4"	0.0	0.0	0.0	0.0	0.0	0.0
: (5	1/2"	103.4	102.9	102.3	101.8	101.3	100.7
Ž Ž	3/8"	107.8	107.3	106.7	106.1	105.6	105.0
<u> </u>	# 4	37.0	36.8	36.6	36.4	36.2	36.0
piedra 1/2" CRUSHING	# 10	1.6	1.6	1.6	1.6	1.6	1.6
<u>α</u> Ο	< #10	0.4	0.4	0.4	0.4	0.4	0.4
	SUB TOTAL	250.3	249.0	247.7	246.4	245.1	243.8
	3/4"	0.0	0.0	0.0	0.0	0.0	0.0
<u>:, </u>	1/2"	179.3	178.3	177.4	176.5	175.5	174.6
% ₹	3/8"	36.9	36.7	36.5	36.3	36.1	35.9
<u> </u>	# 4	10.7	10.6	10.5	10.5	10.4	10.4
piedra 3/4" CRUSHING	# 10	0.0	0.0	0.0	0.0	0.0	0.0
<u>σ</u> Ω	< #10 SUB TOTAL	0.0 226.8	0.0 225.6	0.0 224.4	0.0 223.3	0.0 222.1	0.0 220.9
	JOB TOTAL						
		1199.5	1193.2	1187.0	1180.7	1174.5	1168.2
PEN 85-100		50.0	56.3	62.5	68.8	75.0	81.3
TOTAL MUESTRA		0.0	0.0	0.0	0.0	0.0	0.0
IOTAL MUESTRA		1250	1250	1250	1250	1250	1250

RESUMEN DE PESOS DE MEZCLA CON ADICIÓN DE 4% DE ÓXIDO FÉRRICO Y DE CROMO COMO FILLER PARA LA PIGMENTACIÓN DE MAC

Tabla N° 38 Resumen de los pesos de la muestra dosificada con 4% de óxido férrico y óxido de cromo

Material	% Asfalto	4.00	4.50	5.00	5.50	6.00	6.50
	Malla						
<u> </u>	1/2"	0.0	0.0	0.0	0.0	0.0	0.0
A H	3/8"	0.0	0.0	0.0	0.0	0.0	0.0
WO OW	# 4	0.0	0.0	0.0	0.0	0.0	0.0
	# 10	0.0	0.0	0.0	0.0	0.0	0.0
й	< #10	48.0	47.8	47.5	47.3	47.0	46.8
OCRE- CHROMAFER	SUB TOTAL	48.0	47.8	47.5	47.3	47.0	46.8
	1/2"	0.0	0.0	0.0	0.0	0.0	0.0
<u>a</u>	3/8"	0.0	0.0	0.0	0.0	0.0	0.0
na Sad	# 4	81.0	80.5	80.1	79.7	79.3	78.9
Arena nancac	# 10	248.5	247.2	245.9	244.6	243.3	242.0
Arena Chancada	< #10	276.6	275.1	273.7	272.3	270.8	269.4
· ·	SUB TOTAL	606.0	602.8	599.7	596.5	593.4	590.2
	3/4"	0.0	0.0	0.0	0.0	0.0	0.0
a	1/2"	0.0	0.0	0.0	0.0	0.0	0.0
g g q	3/8"	0.0	0.0	0.0	0.0	0.0	0.0
Arena Sarandeada	# 4	7.3	7.2	7.2	7.2	7.1	7.1
	# 10	18.6	18.5	18.4	18.3	18.2	18.1
Sa	< #10	36.6	36.4	36.2	36.0	35.8	35.6
	SUB TOTAL	62.4	62.1	61.8	61.4	61.1	60.8
	3/4"	0.0	0.0	0.0	0.0	0.0	0.0
: . 0	1/2"	148.9	148.1	147.4	146.6	145.8	145.0
7 ¥	3/8"	155.3	154.5	153.7	152.9	152.0	151.2
piedra 1/2" CRUSHING	# 4	53.3	53.0	52.7	52.4	52.2	51.9
eie R	# 10	2.3	2.3	2.3	2.3	2.3	2.3
<u>π</u> Ο	< #10	0.6	0.6	0.6	0.6	0.6	0.6
	SUB TOTAL	360.4	358.6	356.7	354.8	352.9	351.1
	3/4"	0.0	0.0	0.0	0.0	0.0	0.0
3/4" ING	1/2"	96.7	96.2	95.7	95.2	94.7	94.2
	3/8"	19.9	19.8	19.7	19.6	19.5	19.4
piedra (CRUSH	# 4	5.8	5.7	5.7	5.7	5.6	5.6
iec P.L	# 10 < #10	0.0	0.0	0.0	0.0	0.0	0.0
₽ 0	SUB TOTAL	122.4	121.8	121.1	120.5	119.9	119.2
		1199.2	1193.0	1186.7	1180.5	1174.3	1168.0
PEN 85-100		50.0	56.3	62.5	68.8	75.0	81.3
		0.0	0.0	0.0	0.0	0.0	0.0
TOTAL MUESTRA		1250.0	1250.0	1250.0	1250.0	1250.0	1250.0

RESUMEN DE PESOS DE MEZCLA CON ADICIÓN DE 8% DE ÓXIDO FÉRRICO Y DE CROMO COMO FILLER PARA LA PIGMENTACIÓN DE MAC

Tabla N° 39 Resumen de los pesos de la muestra dosificada con 8% de óxido férrico y óxido de cromo

Mat	% Asfalto	4.00	4.50	5.00	5.50	6.00	6.50
-	Malla						
<u> </u>	1/2"	0.0	0.0	0.0	0.0	0.0	0.0
. FE	3/8"	0.0	0.0	0.0	0.0	0.0	0.0
- WO	# 4	0.0	0.0	0.0	0.0	0.0	0.0
- X	# 10	0.0	0.0	0.0	0.0	0.0	0.0
-	< #10	96.0	95.5	95.0	94.5	94.0	93.5
OCRE - CHROMAFER	SUB TOTAL	96.0	95.5	95.0	94.5	94.0	93.5
<u> </u>							
_	1/2"	0.0	0.0	0.0	0.0	0.0	0.0
<u> </u>	3/8"	0.0	0.0	0.0	0.0	0.0	0.0
cad	# 4	49.4	49.1	48.9	48.6	48.3	48.1
Arena Chancada	# 10	151.5	150.7	150.0	149.2	148.4	147.6
<u>5</u>	< #10	168.7	167.8	166.9	166.0	165.2	164.3
-	SUB TOTAL	369.6	367.7	365.8	363.8	361.9	360.0
	3/4"	0.0	0.0	0.0	0.0	0.0	0.0
_	1/2"	0.0	0.0	0.0	0.0	0.0	0.0
Arena Sarandeada	3/8"	0.0	0.0	0.0	0.0	0.0	0.0
Arena	# 4	31.1	30.9	30.8	30.6	30.4	30.3
ara Ar	# 10	79.2	78.8	78.4	78.0	77.6	77.1
<i>ŏ</i>	< #10	156.1	155.3	154.5	153.7	152.9	152.0
-	SUB TOTAL	266.4	265.0	263.6	262.2	260.9	259.5
	3/4"	0.0	0.0	0.0	0.0	0.0	0.0
- -	1/2"	103.4	102.9	102.3	101.8	101.3	100.7
- RG	3/8"	107.8	107.3	106.7	106.1	105.6	105.0
<u>.</u>	# 4	37.0	36.8	36.6	36.4	36.2	36.0
- 1/2	# 10	1.6	1.6	1.6	1.6	1.6	1.6
<u>a</u>	< #10	0.4	0.4	0.4	0.4	0.4	0.4
piedra 1/2" CRUSHING	SUB TOTAL	250.3	249.0	247.7	246.4	245.1	243.8
	3/4"	0.0	0.0	0.0	0.0	0.0	0.0
- 15	1/2"	171.7	170.8	169.9	169.0	168.1	167.2
3/4.	3/8"	35.3	35.1	34.9	34.8	34.6	34.4
piedra 3/4" CRUSHING	# 4	10.2	10.2	10.1	10.0	10.0	9.9
SPU SPU	# 10	0.0	0.0	0.0	0.0	0.0	0.0
±0	< #10	0.0	0.0	0.0	0.0	0.0	0.0
	SUB TOTAL	217.2	216.1	214.9	213.8	212.7	211.5
		1199.5	1193.2	1187.0	1180.7	1174.5	1168.2
PEN 85-100		50.0	56.3	62.5	68.8	75.0	81.3
		0.0	0.0	0.0	0.0	0.0	0.0
TOTAL MUESTRA		1250	1250	1250	1250	1250	1250

RESUMEN DE PESOS DE MEZCLA CON ADICIÓN DE 12% DE ÓXIDO FÉRRICO Y DE CROMO COMO FILLER PARA LA PIGMENTACIÓN DE MAC

Tabla N° 40 Resumen de los pesos de la muestra dosificada con 12% de óxido férrico y de cromo

Mat	% Asfalto	4.00	4.50	5.00	5.50	6.00	6.50
	Malla						
<u> </u>	1/2"	0.0	0.0	0.0	0.0	0.0	0.0
/AFI	3/8"	0.0	0.0	0.0	0.0	0.0	0.0
ROI	# 4	0.0	0.0	0.0	0.0	0.0	0.0
ਨ	# 10	0.0	0.0	0.0	0.0	0.0	0.0
OCRE - CHROMAFER	< #10	144.0	143.3	142.5	141.8	141.0	140.3
0	SUB TOTAL	144.0	143.3	142.5	141.8	141.0	140.3
	1/2"	0.0	0.0	0.0	0.0	0.0	0.0
<u>a</u>	3/8"	0.0	0.0	0.0	0.0	0.0	0.0
Arena Chancada	# 4	43.0	42.7	42.5	42.3	42.1	41.8
Arena nanca	# 10	131.9	131.2	130.5	129.8	129.1	128.4
Š	< #10	146.8	146.0	145.2	144.5	143.7	143.0
	SUB TOTAL	321.6	319.9	318.3	316.6	314.9	313.2
	3/4"	0.0	0.0	0.0	0.0	0.0	0.0
<u>a</u>	1/2"	0.0	0.0	0.0	0.0	0.0	0.0
Arena Sarandeada	3/8"	0.0	0.0	0.0	0.0	0.0	0.0
Arena andea	# 4	31.1	30.9	30.8	30.6	30.4	30.3
I a	# 10	79.2	78.8	78.4	78.0	77.6	77.1
Sa	< #10	156.1	155.3	154.5	153.7	152.9	152.0
	SUB TOTAL	266.4	265.0	263.6	262.2	260.9	259.5
	3/4"	0.0	0.0	0.0	0.0	0.0	0.0
<u>. 5</u>	1/2"	103.4	102.9	102.3	101.8	101.3	100.7
piedra 1/2" CRUSHING	3/8"	107.8	107.3	106.7	106.1	105.6	105.0
dra JSI	# 4	37.0	36.8	36.6	36.4	36.2	36.0
ë E	# 10	1.6	1.6	1.6	1.6	1.6	1.6
_0	< #10	0.4	0.4	0.4	0.4	0.4	0.4
	SUB TOTAL	250.3	249.0	247.7	246.4	245.1	243.8
	3/4"	0.0	0.0	0.0	0.0	0.0	0.0
<u>.</u> 4	1/2"	171.7	170.8	169.9	169.0	168.1	167.2
જે ₹	3/8" # 4	35.3	35.1	34.9	34.8	34.6	34.4
St St		10.2	10.2	10.1	10.0	10.0	9.9
piedra 3/4' CRUSHINC	# 10 < #10	0.0	0.0	0.0	0.0	0.0	0.0
<u>σ</u> Ω	SUB TOTAL	217.2	216.1	214.9	213.8	212.7	211.5
		1199.5	1193.2	1187.0	1180.7	1174.5	1168.2
PEN 85-100		50.0	56.3	62.5	68.8	75.0	81.3
		0.0	0.0	0.0	0.0	0.0	0.0
TOTAL MUESTRA		1250	1250			1250	

RESUMEN DE PESOS DE MEZCLA CON ADICIÓN DE 15% DE ÓXIDO FÉRRICO Y DE CROMO COMO FILLER PARA LA PIGMENTACIÓN DE MAC

Tabla N° 41 Resumen de los pesos de la muestra dosificada con 15% de óxido férrico y óxido de cromo

Mat	% Asfalto	4.00	4.50	5.00	5.50	6.00	6.50
	Malla						
	1/2"	0.0	0.0	0.0	0.0	0.0	0.0
E E	3/8"	0.0	0.0	0.0	0.0	0.0	0.0
AAF	# 4	0.0	0.0	0.0	0.0	0.0	0.0
NO.	# 10	0.0	0.0	0.0	0.0	0.0	0.0
동	< #10	180.0	179.1	178.1	177.2	176.3	175.3
, L	SUB TOTAL	180.0	179.1	178.1	177.2	176.3	175.3
OCRE - CHROMAFER	000 101112	100.0	173.1	170.1	177.2	170.0	175.0
	1 (01)						
	1/2"	0.0	0.0	0.0	0.0	0.0	0.0
<u>a</u>	3/8"	0.0	0.0	0.0	0.0	0.0	0.0
ca	# 4	33.7	33.5	33.3	33.1	33.0	32.8
Arena Chancada	# 10	103.3	102.8	102.2	101.7	101.2	100.6
ੇ ਹ	< #10	115.0	114.4	113.8	113.2	112.6	112.0
	SUB TOTAL	252.0	250.7	249.4	248.1	246.8	245.4
	3/4"	0.0	0.0	0.0	0.0	0.0	0.0
Ø	1/2"	0.0	0.0	0.0	0.0	0.0	0.0
Arena Sarandeada	3/8"	0.0	0.0	0.0	0.0	0.0	0.0
Arena andea	# 4	31.1	30.9	30.8	30.6	30.4	30.3
ra r	# 10	79.2	78.8	78.4	78.0	77.6	77.1
Sa	< #10	156.1	155.3	154.5	153.7	152.9	152.0
	SUB TOTAL	266.4	265.0	263.6	262.2	260.9	259.5
	3/4"	0.0	0.0	0.0	0.0	0.0	0.0
= (5	1/2"	103.4	102.9	102.3	101.8	101.3	100.7
Z Z	3/8"	107.8	107.3	106.7	106.1	105.6	105.0
piedra 1/2" CRUSHING	# 4	37.0	36.8	36.6	36.4	36.2	36.0
B.C.	# 10	1.6	1.6	1.6	1.6	1.6	1.6
₽ Ω	< #10	0.4	0.4	0.4	0.4	0.4	0.4
	SUB TOTAL	250.3	249.0	247.7	246.4	245.1	243.8
	3/4"	0.0	0.0	0.0	0.0	0.0	0.0
: . (5	1/2"	198.2	197.2	196.2	195.1	194.1	193.1
8, ₹ Ž	3/8"	40.8	40.6	40.4	40.1	39.9	39.7
S T	# 4	11.8	11.7	11.7	11.6	11.5	11.5
å Ö	# 10	0.0	0.0	0.0	0.0	0.0	0.0
piedra 3/4" CRUSHING	< #10	0.0	0.0	0.0	0.0	0.0	0.0
	SUB TOTAL	250.8	249.5	248.2	246.9	245.6	244.3
		1199.5	1193.2	1187.0	1180.7	1174.5	1168.2
PEN 85-100		50.0	56.3	62.5	68.8	75.0	81.3
		0.0	0.0	0.0	0.0	0.0	0.0
TOTAL MUESTRA		1250	1250	1250	1250	1250	1250

4.2 RESULTADO DE EFECTO DE LOS ÓXIDOS EN LA ESTABILIDAD

RESULTADOS DE ESTABILIDAD POR TIPO DE FLUJO VEHICULAR PESADO 75 GOLPES CON PIGMENTO CHROMAFER

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 4% DE ÓXIDO FÉRRICO CON PIGMENTO CHROMAFER

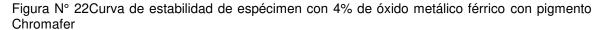

Se evaluó la resistencia a la deformación de los especímenes dosificados con 4% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una estabilidad de 1687 Kg.

Tabla N° 42 Estabilidad de espécimen dosificado con 4% oxido metálico férrico con pigmento chromafer

%ASFALTO	ESTABILIDAD
5.2	1756.14
5.3	1747.93
5.4	1734.63
5.5	1716.63
5.63	1687
5.7	1668.71
5.8	1640.28
5.9	1610.12
6	1579.34

Se consideró para determinar el óptimo contenido de asfalto, el método NAPA, que considra cumplir con los parámetros de estabilidad, fluencia, VFA (vacíos lleno con cemento asfaltico) relacionados a que se debe cumplir que el óptimo porcentaje de Vacíos se encuentre en 4%.

Según la observación de las gráficas se encontró que el límite del porcentaje de pigmento de óxido metálico se encuentra en los rangos de 4% - 8%.

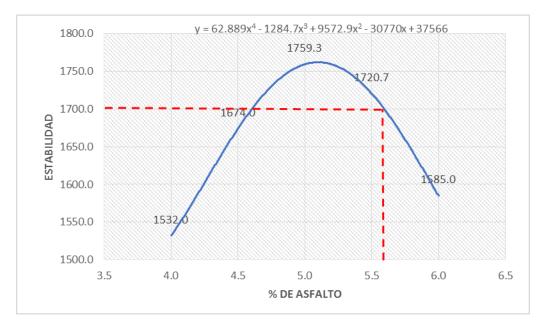
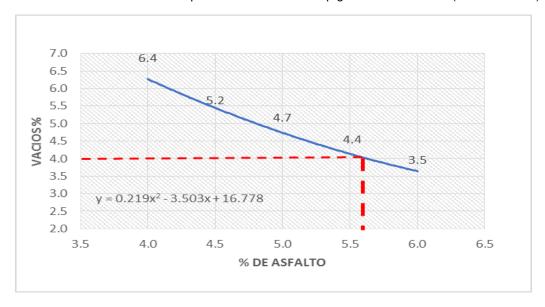



Figura N° 23 Curva de vacíos de especímenes con 4% de pigmento Chromafer (Óxido Férrico)

Fuente: Elaboración Propia

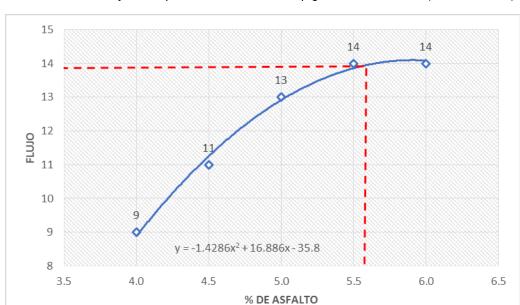
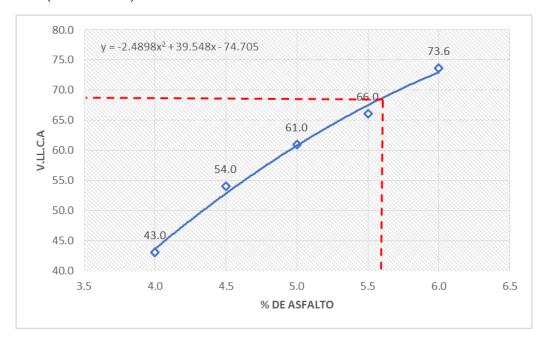



Figura N° 24 Curva de flujo de especímenes con 4% de pigmento Chromafer (Óxido Férrico)

Fuente: Elaboración Propia

Figura N° 25 Curva de vacíos lleno con cemento asfaltico de especímenes con 4% de pigmento Chromafer (Óxido Férrico)

Fuente: Elaboración Propia

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 8% DE ÓXIDO FÉRRICO CON PIGMENTO CHROMAFER

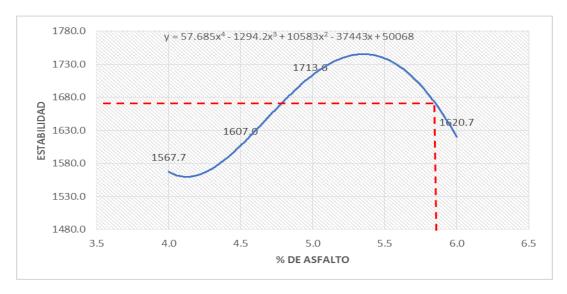

Se evaluó la resistencia a la deformación de los especímenes dosificados con 8% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una estabilidad 1676 Kg.

Tabla N° 43 Estabilidad de espécimen dosificado con 8% oxido metálico férrico con pigmento Chromafer

ESTABILIDAD
1730.90
1736.20
1676
1646.03
1639.36
1635.95
1632.48
1628.96
1610.56

Fuente: Elaboración propia - Excel 2018

Figura N° 26 Curva de estabilidad de espécimen con 8% de óxido metálico férrico con pigmento Chromafer

5.0

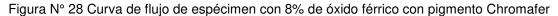
% DE ASFALTO

5.5

6.0

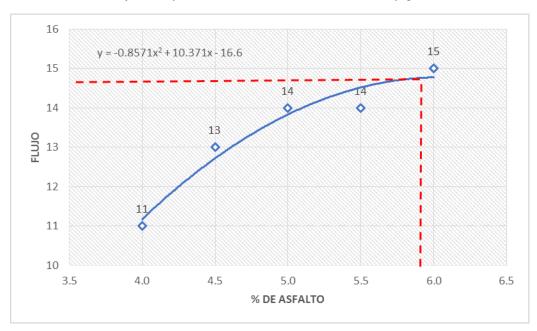
6.5

Figura N° 27 Curva de vacíos de espécimen con 8% de óxido férrico con pigmento Chromafer


Fuente: Elaboración propia - Excel 2018

4.0

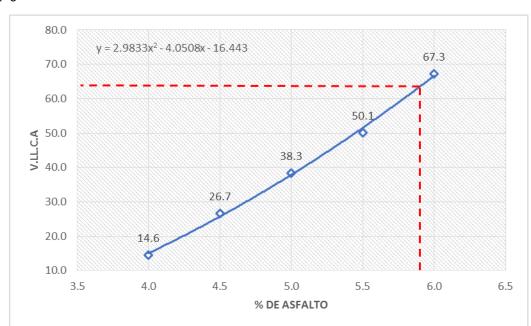
4.0 3.0

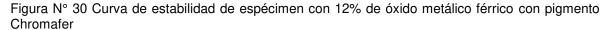

2.0

3.5

 $y = -0.9017x^2 + 6.7655x - 4.9055$

4.5




Figura N° 29 Curva de vacíos llenos con cemento asfaltico de espécimen con 8% de óxido férrico con pigmento Chromafer

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 12% DE ÓXIDO FÉRRICO CON PIGMENTO CHROMAFER

Se evaluó la resistencia a la deformación de los especímenes dosificados con 12% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen se obtuvo una estabilidad de 1370.8 Kg.

Tabla N° 44 Estabilidad de espécimen dosificado con 12% oxido metálico férrico con pigmento Chromafer

%ASFALTO	ESTABILIDAD
5.5	1398.4
5.3	1413.4
5.4	1406.9
5.91	1370.8
5.6	1389.1
6	1374.5

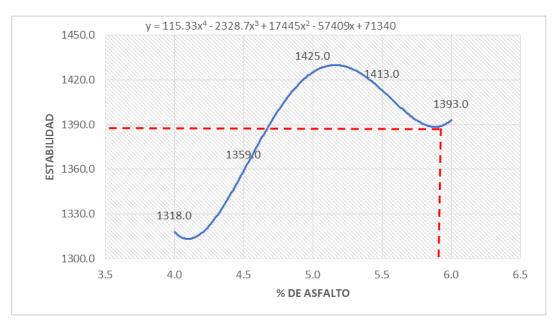


Figura N° 31 Curva de vacíos de espécimen con 12% de óxido metálico férrico con pigmento Chromafer

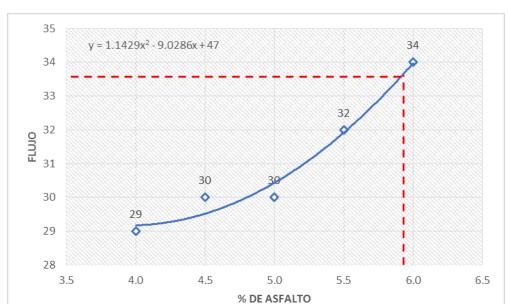
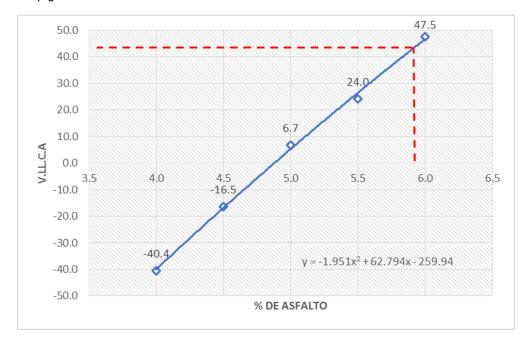
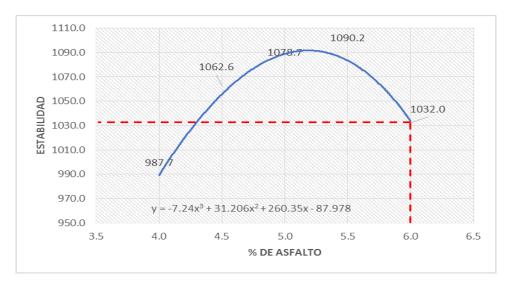
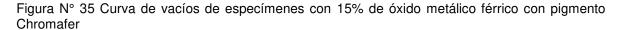



Figura N° 32 Curva de flujo de espécimen con 12% de óxido metálico férrico con pigmento Chromafer

Figura N° 33 Curva de vacíos llenos con cemento asfaltico de espécimen con 12% de óxido metálico férrico con pigmento Chromafer

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 15% DE ÓXIDO FÉRRICO CON PIGMENTO CHROMAFER


Se evaluó la resistencia a la deformación de los especímenes dosificados con 15% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una carga máxima de 1033.7 Kg.


Tabla N° 45 Estabilidad de espécimen dosificado con 15% oxido metálico férrico con pigmento Chromafer

%ASFALTO	ESTABILIDAD
4	989.4
5.4	1087.8
5.5	1083.4
6	1033.7
6.1	1018.0
6.2	1000.3
6.3	980.5
6.5	934.5

Fuente: Elaboración propia - Excel 2018

Figura N° 34 Curva de estabilidad de espécimen con 15% de óxido metálico férrico con pigmento Chromafer

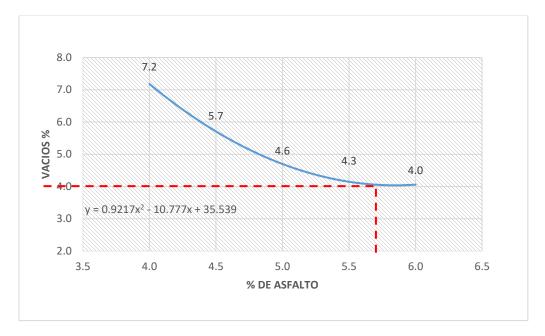
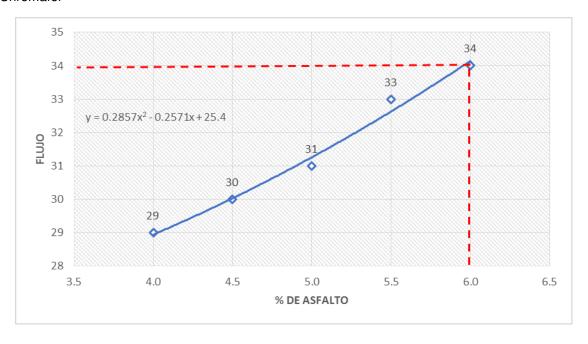



Figura N° 36 Curva de flujo de especímenes con 15% de óxido metálico férrico con pigmento Chromafer

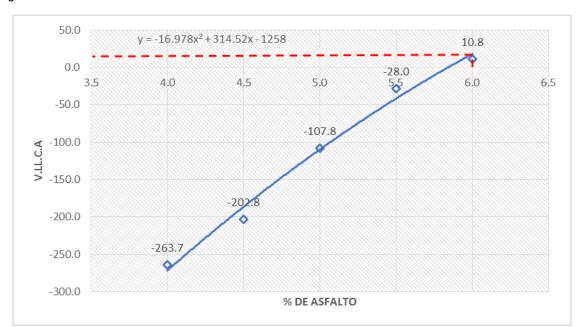
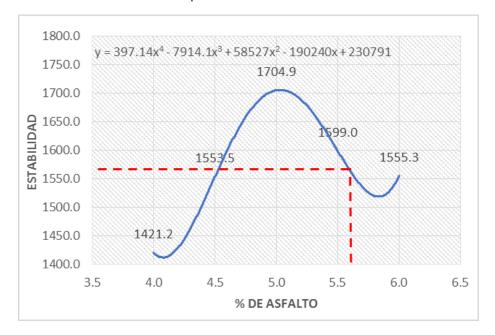


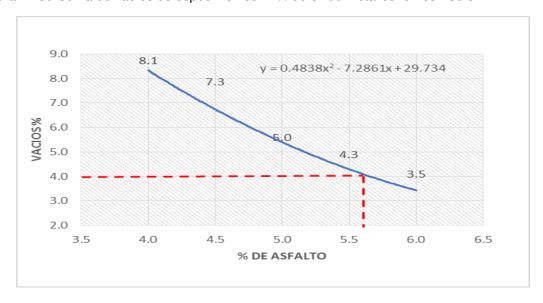
Figura N° 37 Curva de vacíos llenos con cemento asfaltico 15% de óxido metálico férrico con pigmento Chromafer

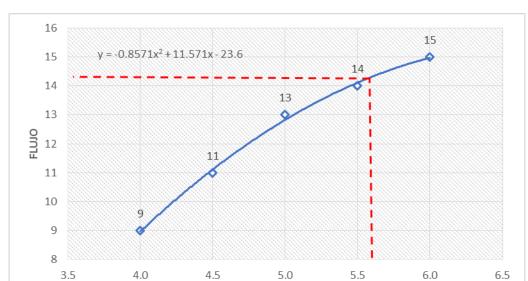
RESULTADOS DE ESTABILIDAD POR TIPO DE FLUJO VEHICULAR PESADO 75 GOLPES CON ÓXIDO METÁLICO FÉRRICO-OCRE


RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 4% DE ÓXIDO FÉRRICO - OCRE

Se evaluó la resistencia a la deformación de los especímenes dosificados con 4% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen se obtuvo una estabilidad de 1560.4 Kg

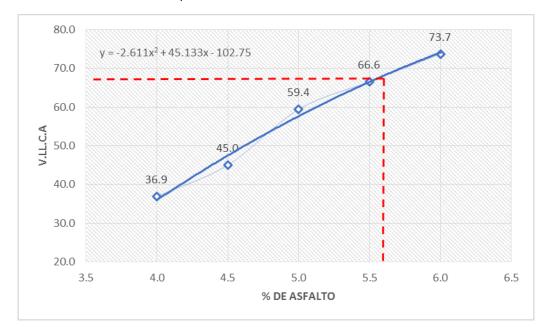
Tabla N° 46 Estabilidad de espécimen dosificado con 4% óxido metálico férrico - OCRE


% ASFALTO	ESTABILIDAD
5.2	1700.8
5.3	1677.5
5.4	1646.8
5.5	1612.3
5.66	1560.4
5.7	1550.3
5.8	1534.7
5.9	1538.8
6	1570.8


Figura N° 38 Curva de estabilidad de espécimen con 4% de óxido metálico férrico - ocre

Fuente: Elaboración propia - Excel 2018

Figura N° 39 Curva de vacíos de espécimen con 4% de óxido metálico férrico - ocre



% DE ASFALTO

Figura N° 40 Curva de flujo de espécimen con 4% de óxido metálico férrico - ocre

Fuente: Elaboración propia - Excel 2018

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 8% DE ÓXIDO FÉRRICO - OCRE

Se evaluó la resistencia a la deformación de los especímenes dosificados con 8% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen se obtuvo la estabilidad 1547.5 Kg.

Tabla Nº 47 Estabilidad de espécimen dosificado con 8% óxido metálico férrico - OCRE

%ASFALTO	ESTABILIDAD
5.2	1561.5
5.3	1566.9
5.86	1547.5
5.5	1571.9
5.6	1570.3

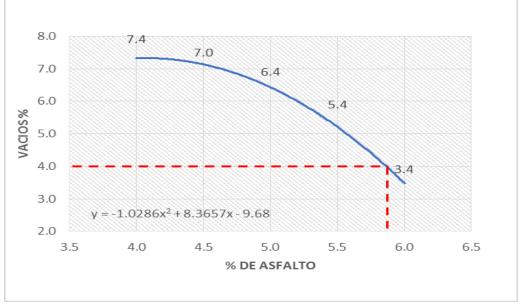

Fuente: Elaboración propia - Excel 2018

Figura N° 42 Curva de estabilidad de espécimen con 8% de óxido metálico férrico - ocre

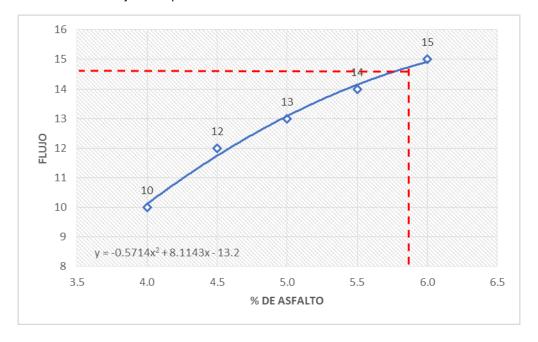


Figura N° 43 Curva de vacíos de espécimen con 8% de óxido metálico férrico – ocre

Fuente: Elaboración propia - Excel 2018

Figura Nº 44 Curva de flujo de espécimen con 8% de óxido metálico férrico – ocre

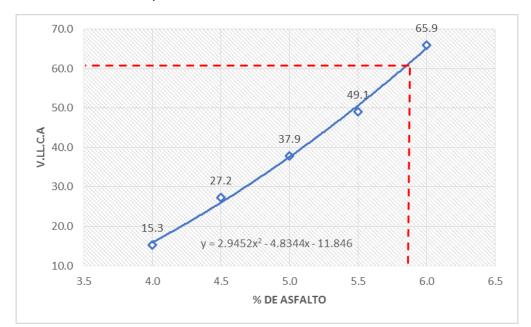


Figura N° 45 Curva VFA de espécimen con 8% de óxido metálico férrico – ocre

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 12% DE ÓXIDO FÉRRICO – OCRE

Se evaluó la resistencia a la deformación de los especímenes dosificados con 12% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen la estabilidad se obtuvo 1204.9 Kg.

Tabla Nº 48 Estabilidad de espécimen dosificado con 12% óxido metálico férrico - OCRE

% ASFALTO	ESTABILIDAD
5.2	1280.5
5.3	1287.6
5.95	1204.9
5.97	1196.9
5.99	1188.4
6	1184.0

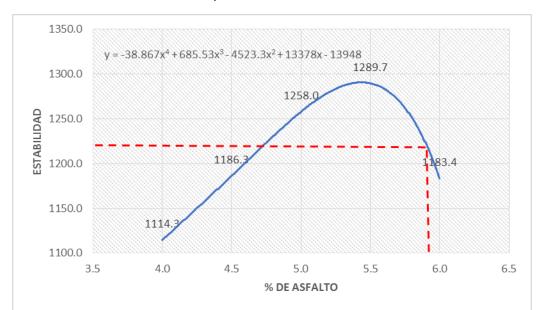


Figura Nº 46 Curva de estabilidad de espécimen con 12% de óxido metálico férrico - ocre

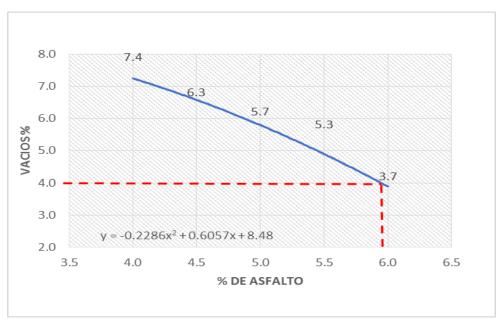


Figura N° 47 Curva de vacíos de espécimen con 12% de óxido metálico férrico – ocre

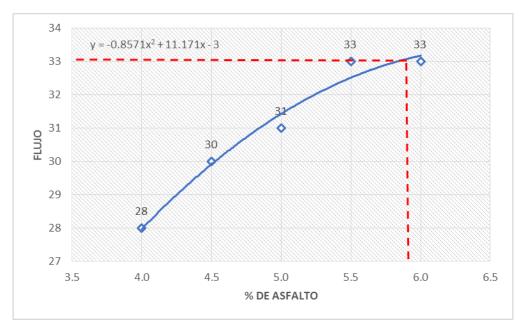


Figura N° 48 Curva de flujo de espécimen con 12% de óxido metálico férrico – ocre

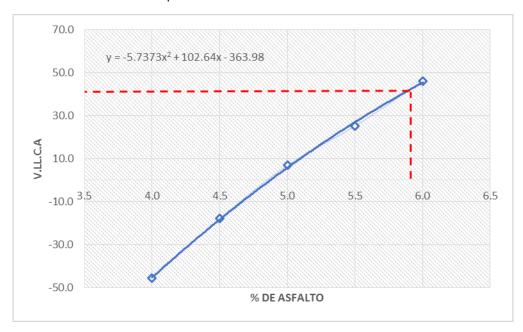


Figura N° 49 Curva de VFA de espécimen con 12% de óxido metálico férrico – ocre

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 15% DE ÓXIDO FÉRRICO – OCRE

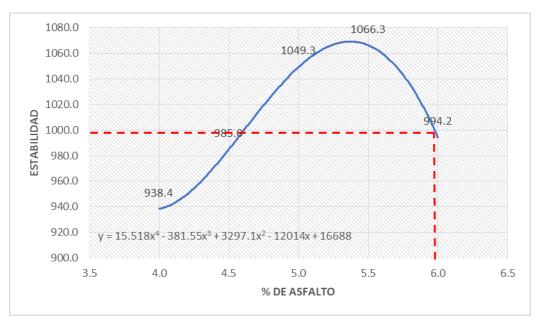

Se evaluó la resistencia a la deformación de los especímenes dosificados con 15% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen se obtuvo la estabilidad 998.6 Kg.

Tabla N° 49 Estabilidad de espécimen dosificado con 15% óxido metálico férrico - OCRE

% ASFALTO	ESTABILIDAD
5.2	1066.0
5.3	1069.8
5.4	1070.5
5.99	998.6
5.991	998.3
5.992	998.1
6	996.1

Fuente: Elaboración propia - Excel 2018

Figura Nº 50 Curva de estabilidad de espécimen con 15% de óxido metálico férrico - ocre

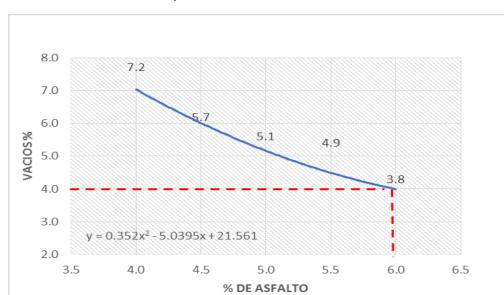


Figura N° 51 Curva de vacíos de espécimen con 15% de óxido metálico férrico – ocre

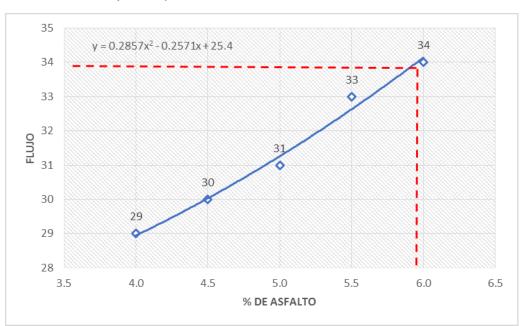
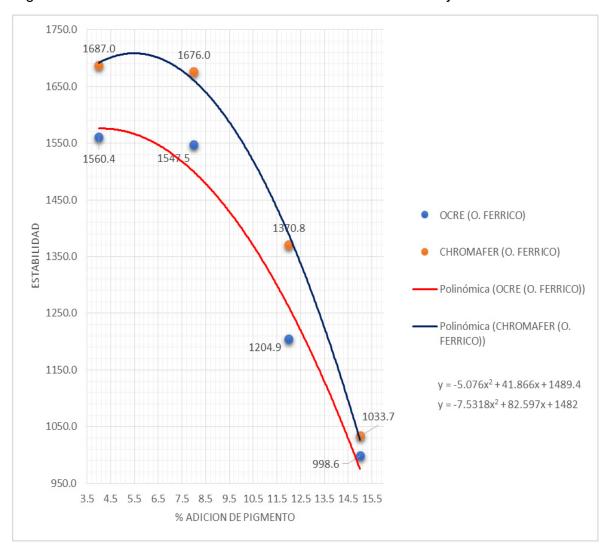


Figura N° 52 Curva de flujo de espécimen con 15% de óxido metálico férrico – ocre



Figura N° 53 Curva de flujo de espécimen con 15% de óxido metálico férrico – ocre


4.2.1 RESULTADO DE ESTABILIDAD DE MAC DISEÑADOS CON PIGMENTO CHROMAFER Y OCRE DE ÓXIDO FÉRRICO PARA FLUJO VEHICULAR PESADO

Se elaboró especímenes dosificados con porcentajes de adición de polvo mineral como filler en las mezclas en las dosis de 4%, 8%. 12% y 15%, el polvo mineral empleado basado en la composición de óxido férrico rojo industrializado como pigmento para mezcla asfáltica en caliente distribuidas como Chromafer y el empleo del ocre por tener cualidades colorantes por su composición química. En resumen la medición de la estabilidad máxima en sus óptimos contenido de asfalto se obtienen para la utilización de Chromafer y la utilización del ocre ambos por la características colorantes y composición de óxido férrico, ambas compactadas para un flujo pesado con una simulación de 75 golpes por cada lado del espécimen.

Tabla N° 50 Estabilidad de MAC elaborados con Chromafer y Ocre

% DE PIGMENTO	ESTABILIDAD (O. FERRICO)	
	OCRE	CHROMAFER
4.0	1560.4	1687.0
8.0	1547.5	1676.0
12.0	1204.9	1370.8
15.0	998.6	1033.7

Figura N° 54 Estabilidad de MAC elaborados con Chromafer y Ocre

RESULTADOS DE LA ESTABILIDAD POR TIPO DE FLUJO VEHICULAR MEDIO 50 GOLPES CON PIGMENTO CHROMAFER

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 4% DE OXIDO FERRICO CON PIGMENTO CHROMAFER

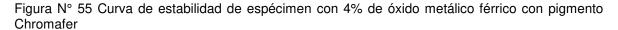

Se evaluó la resistencia a la deformación de los especímenes dosificados con 4% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una estabilidad de 1414.6 Kg.

Tabla N° 51 Estabilidad de espécimen dosificado con 4% óxido metálico férrico con pigmento Chromafer

% ASFALTO	ESTABILIDAD
5.2	1436.2
5.3	1430.0
5.4	1421.5
5.45	1416.6
5.47	1414.6
5.7	1392.6
5.8	1386.7
5.9	1385.8
6	1392.2

Fuente: Elaboración propia - Excel 2018

De acuerdo a la observación de los resultados de las gráficas de estabilidad, fluencia, VFA y Vacios, se puede expresar que el límite de porcentaje para pigmentar se encuentra en el rango de 4% - 8% para tráfico medio.

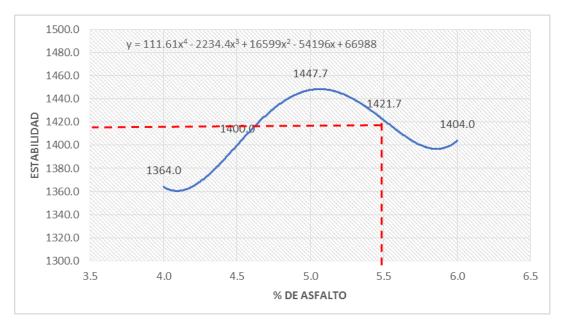
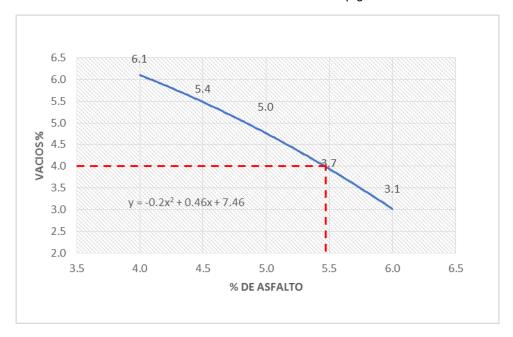
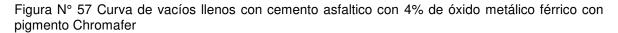




Figura Nº 56Curva de vacíos con 4% de óxido metálico férrico con pigmento Chromafer

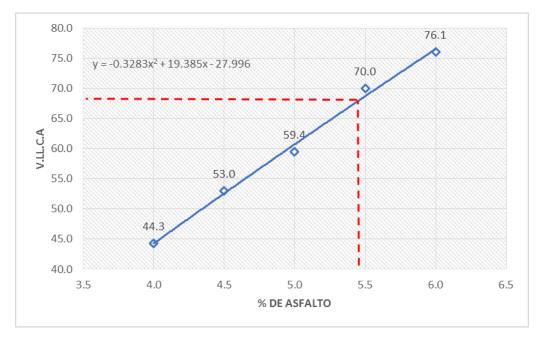
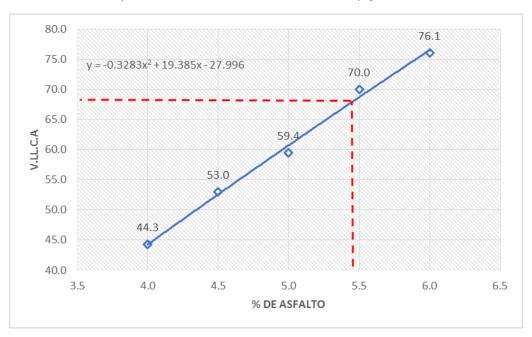



Figura N° 58 Curva de flujo con 4% de óxido metálico férrico con pigmento Chromafer

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 8% DE ÓXIDO FÉRRICO CON PIGMENTO CHROMAFER

Se evaluó la resistencia a la deformación de los especímenes dosificados con 8% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una estabilidad de 1275.9 Kg.

Tabla N° 52 Estabilidad de espécimen dosificado con 8% oxido metálico férrico con pigmento Chromafer

%ASFALTO	ESTABILIDAD
5.2	1317.7
5.3	1322.6
5.8	1275.9
5.9	1251.9
6.0	1223.3
6.1	1190.6
6.2	1154.2
6.4	1073.0
6.5	1029.6

Fuente: Elaboración propia - Excel 2018

Figura N° 59 Curva de estabilidad de espécimen con 8% de óxido metálico férrico con pigmento Chromafer

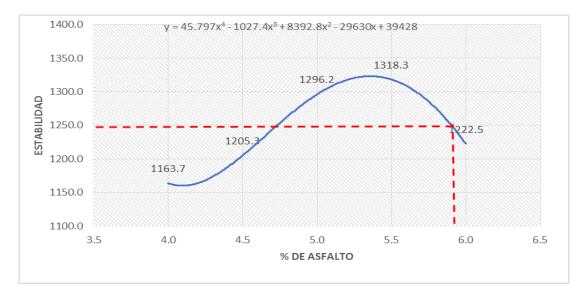


Figura N° 60 Curva de vacíos lleno con cemento asfaltico con 8% de óxido metálico férrico con pigmento Chromafer

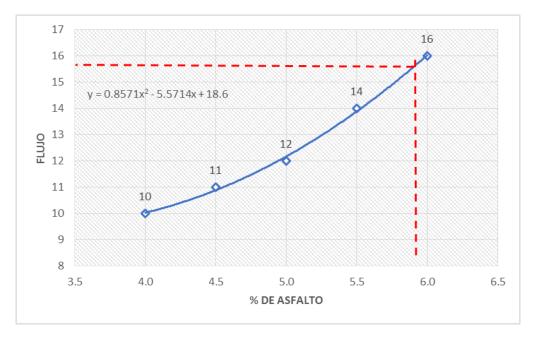
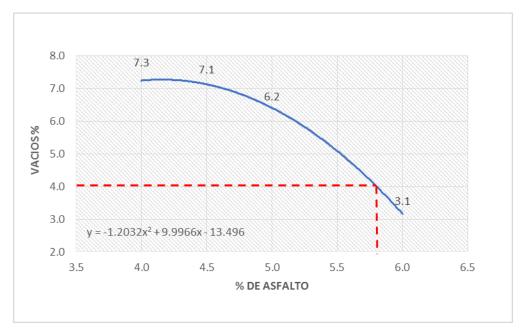



Figura N° 61 Curva de vacíos con 8% de óxido metálico férrico con pigmento Chromafer

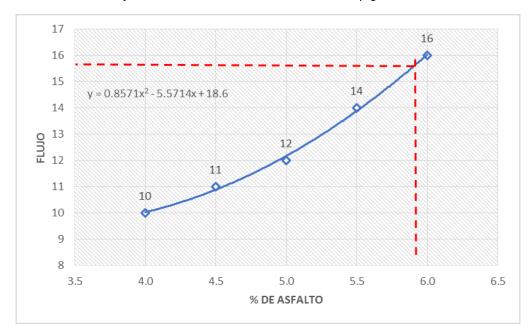


Figura N° 62 Curva de flujo con 8% de óxido metálico férrico con pigmento Chromafer

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 12% DE ÓXIDO FÉRRICO CON PIGMENTO CHROMAFER

Se evaluó la resistencia a la deformación de los especímenes dosificados con 12% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una estabilidad de 1075.3 Kg.

Tabla N° 53 Estabilidad de espécimen dosificado con 12% óxido metálico férrico con pigmento Chromafer

%ASFALTO	ESTABILIDAD
5.2	1157.8
5.3	1173.8
5.4	1186.3
5.98	1075.3
5.6	1192.9

Figura N° 63 Curva de estabilidad de espécimen con 12% de óxido metálico férrico con pigmento Chromafer

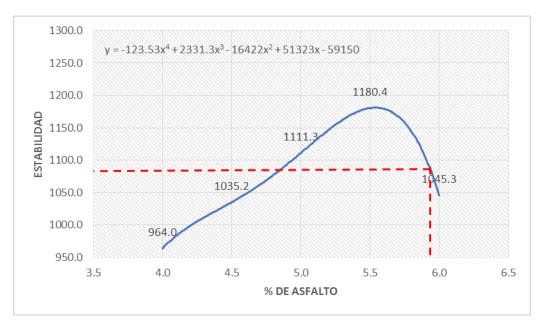
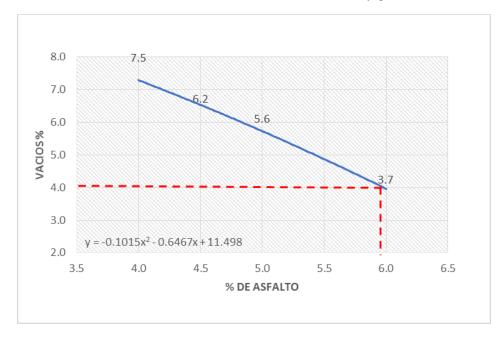



Figura Nº 64 Curva de vacíos con 12% de óxido metálico férrico con pigmento Chromafer

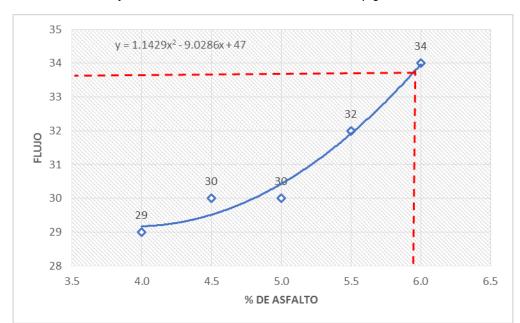
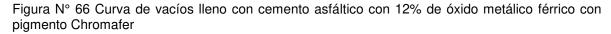
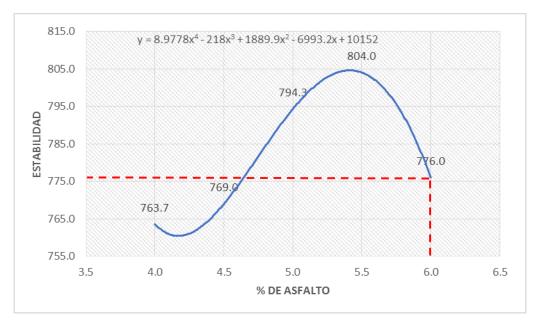
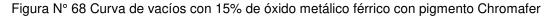




Figura N° 65 Curva de flujo con 12% de óxido metálico férrico con pigmento Chromafer

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 15% DE ÓXIDO FÉRRICO CON PIGMENTO CHROMAFER


Se evaluó la resistencia a la deformación de los especímenes dosificados con 15% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una estabilidad de 776.4 Kg.


Tabla N° 54 Estabilidad de espécimen dosificado con 15% óxido metálico férrico con pigmento Chromafer

% ASFALTO	ESTABILIDAD
5.2	801.9
5.3	804.1
5.4	804.9
5.5	804.4
6	776.4
5.7	798.5

Fuente: Elaboración propia - Excel 2018

Figura N° 67 Curva de estabilidad de espécimen con 15% de óxido metálico férrico con pigmento Chromafer

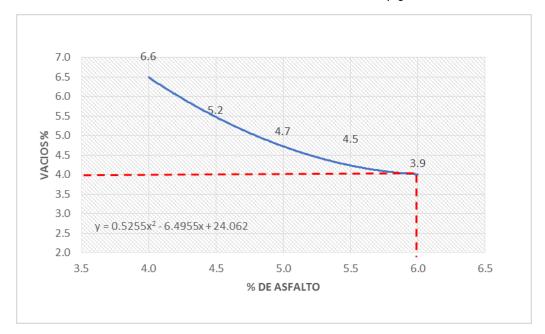
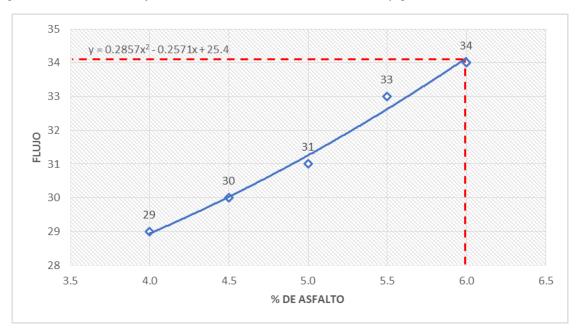
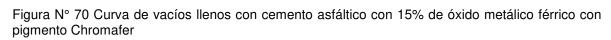
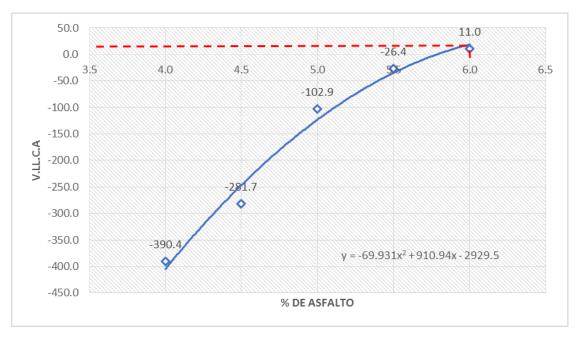
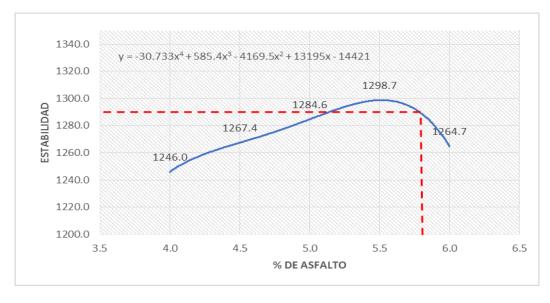
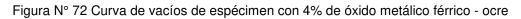





Figura N° 69 Curva de flujo con 15% de óxido metálico férrico con pigmento Chromafer

RESULTADOS DE ESTABILIDAD POR TIPO DE FLUJO VEHICULAR MEDIO 50 GOLPES CON ÓXIDO METÁLICO FÉRRICO-OCRE

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 4% DE ÓXIDO FÉRRICO – OCRE


Se evaluó la resistencia a la deformación de los especímenes dosificados con 4% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una estabilidad de 1294.1 Kg.


Tabla Nº 55 Estabilidad de espécimen dosificado con 4% óxido metálico férrico - OCRE

%ASFALTO	ESTABILIDAD
5.2	1290.9
5.3	1294.0
5.4	1296.4
5.5	1297.4
5.69	1294.1
5.7	1293.7
5.8	1287.6

Fuente: Elaboración propia - Excel 2018

Figura N° 71 Curva de estabilidad de espécimen con 4% de óxido metálico férrico - ocre

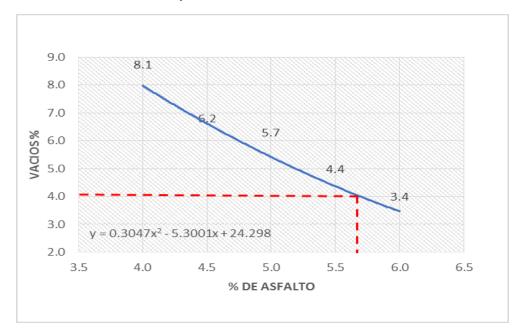
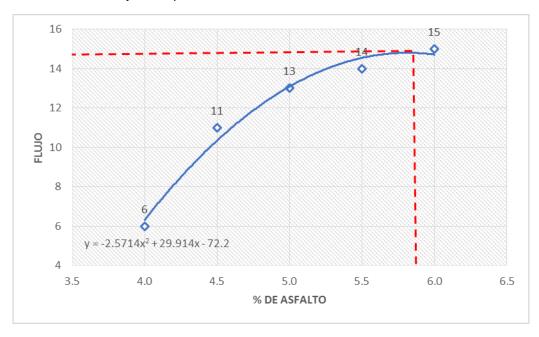



Figura N° 73 Curva de flujo de espécimen con 4% de óxido metálico férrico – ocre

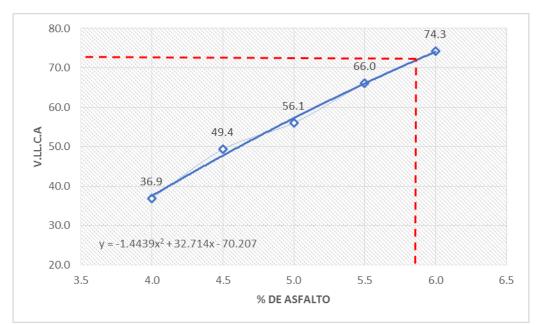


Figura N° 74 Curva de VFA de espécimen con 4% de óxido metálico férrico – ocre

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 8% DE ÓXIDO FERRICO – OCRE

Se evaluó la resistencia a la deformación de los especímenes dosificados con 8% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una estabilidad 1081.3 Kg.

Tabla N° 56 Estabilidad de espécimen dosificado con 8% óxido metálico férrico - OCRE

%ASFALTO	ESTABILIDAD
5.2	1098.8
5.3	1101.8
5.9	1081.3
5.95	1076.0
6	1070.0

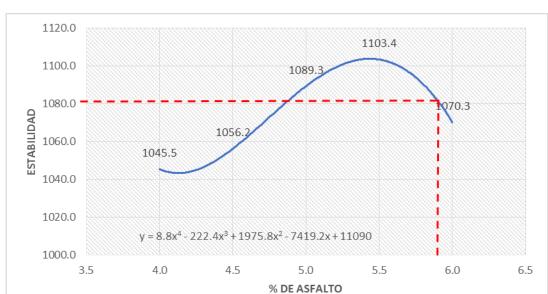
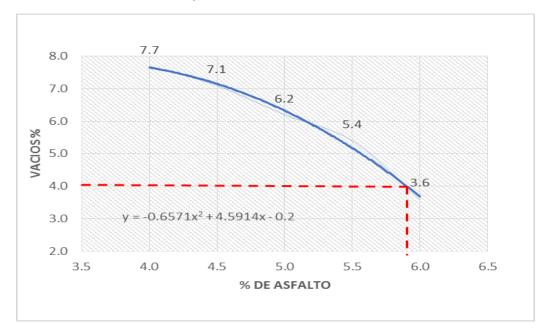



Figura N° 75 Curva de estabilidad de espécimen con 8% de óxido metálico férrico - ocre

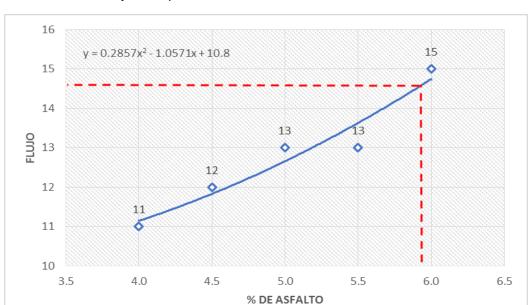
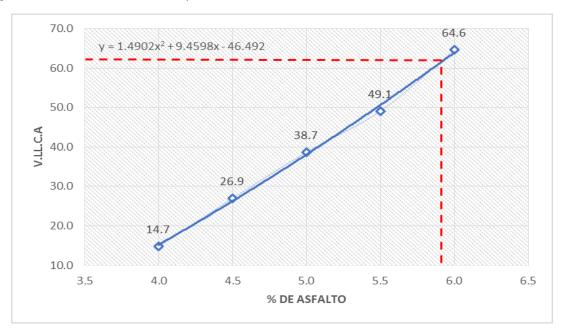



Figura N° 77 Curva de flujo de espécimen con 8% de óxido metálico férrico - ocre

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 12% DE ÓXIDO FÉRRICO – OCRE

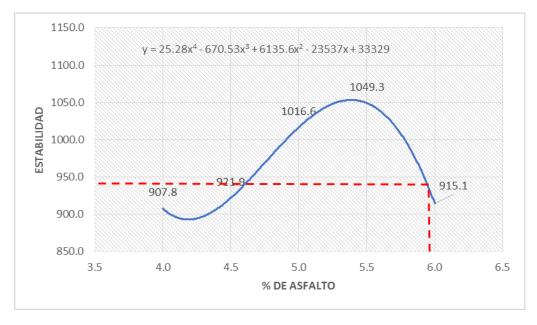
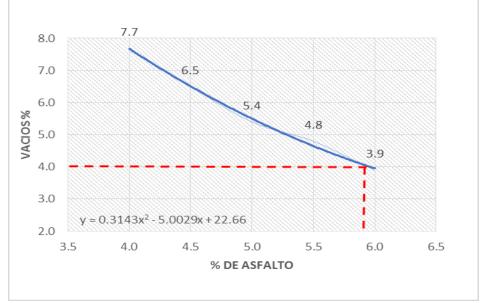
Se evaluó la resistencia a la deformación de los especímenes dosificados con 8% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una estabilidad de 931.1 Kg.

Tabla N° 57 Estabilidad de espécimen dosificado con 12% de óxido metálico férrico - OCRE

%ASFALTO	ESTABILIDAD
5.2	1045.1
5.3	1052.5
5.97	931.1
5.98	926.5
6.0	917.0

Fuente: Elaboración propia - Excel 2018

Figura N° 79 Curva de estabilidad de espécimen con 12% de óxido metálico férrico - ocre

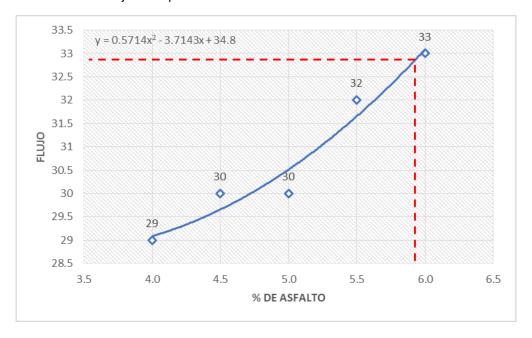


Figura N° 80 Curva de vacíos de espécimen con 12% de óxido metálico férrico - ocre

Fuente: Elaboración propia - Excel 2018

Figura Nº 81 Curva de flujo de espécimen con 12% de óxido metálico férrico – ocre

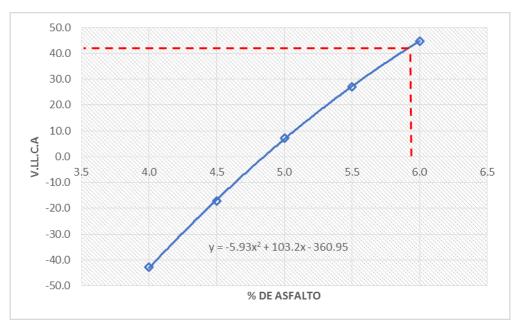


Figura N° 82 Curva de VFA de espécimen con 12% de óxido metálico férrico – ocre

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 15% DE ÓXIDO FÉRRICO – OCRE

Se evaluó la resistencia a la deformación de los especímenes dosificados con 15% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una carga máxima de 707.8 Kg.

Tabla N° 58 Estabilidad de espécimen dosificado con 15% de óxido metálico férrico - OCRE

%ASFALTO	ESTABILIDAD
5.2	729.9
5.3	733.4
5.4	735.9
6	707.8
6.01	706.4
6.02	704.9

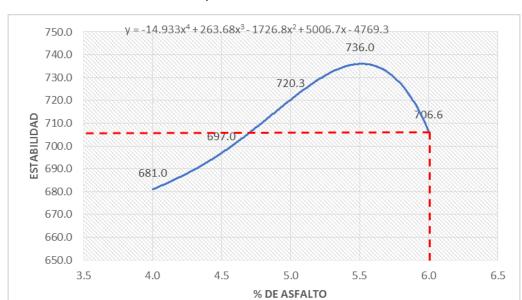
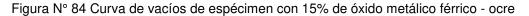
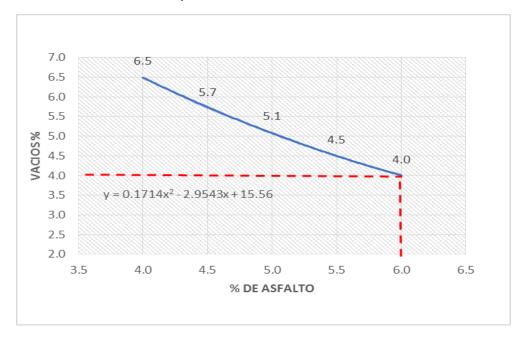
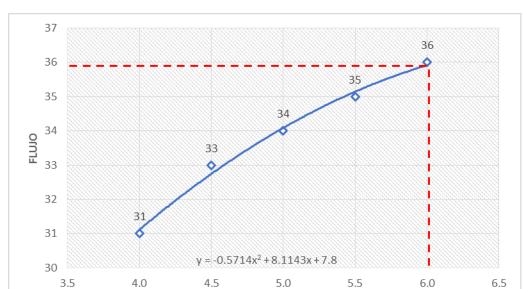
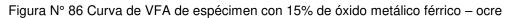
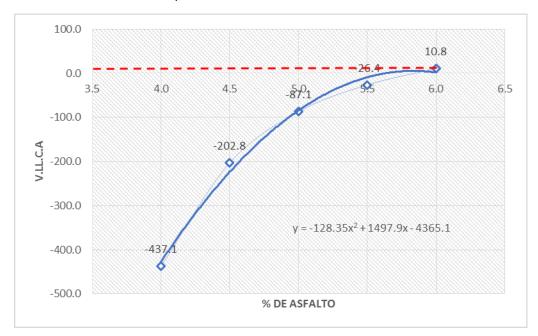





Figura N° 83 Curva de estabilidad de espécimen con 15% de óxido metálico férrico - ocre





% DE ASFALTO

Figura N° 85 Curva de flujo de espécimen con 15% de óxido metálico férrico - ocre

Fuente: Elaboración propia - Excel 2018

4.2.2 RESULTADO DE ESTABILIDAD DE MAC DISEÑADOS CON PIGMENTO CHROMAFER Y ÓXIDO FÉRRICO (OCRE) PARA FLUJO VEHICULAR MEDIO

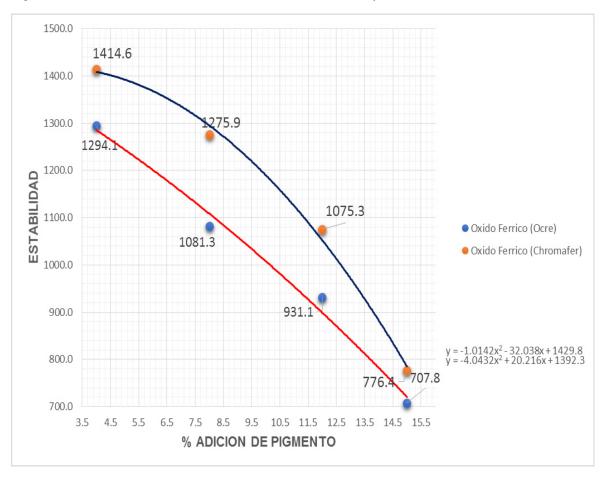

Resultado de comparación en estabilidad de MAC pigmentadas con Ocre y Chromafer.

Tabla N° 59 Estabilidad de MAC elaborados con Chromafer y Ocre

% DE PIGMENTO	ESTABILIDAD	
	Ocre	Chromafer
4.0	1294.1	1414.6
8.0	1081.3	1275.9
12.0	931.1	1075.3
15.0	707.8	776.4

Fuente: Elaboración propia - Excel 2018

Figura N° 87 Estabilidad de MAC elaborados con Chromafer y Ocre

RESULTADOS DE ESTABILIDAD POR TIPO DE FLUJO VEHICULAR LIVIANO 35 GOLPES CON PIGMENTO CHROMAFER

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 4% DE ÓXIDO FÉRRICO CON PIGMENTO CHROMAFER

Se evaluó la resistencia a la deformación de los especímenes dosificados con 4% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una estabilidad de 1288.3 Kg.

Tabla N° 60 Estabilidad de espécimen dosificado con 4% oxido metálico férrico con pigmento Chromafer

%ASFALTO	ESTABILIDAD
5.2	1265.7
5.3	1276.5
5.4	1284.4
5.51	1288.3
5.6	1286.7
5.7	1278.8
5.8	1263.0
5.9	1238.0
6	1202.2

Fuente: Elaboración propia - Excel 2018

Al analizar los resultados de los gráficos se observó que el límite para pigmentar se encuentra en el rango de 4% - 8%.

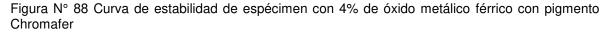
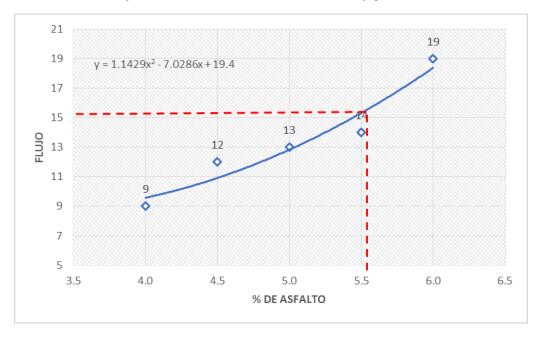



Figura N° 89 Curva de flujo con 4% de óxido metálico férrico con pigmento Chromafer

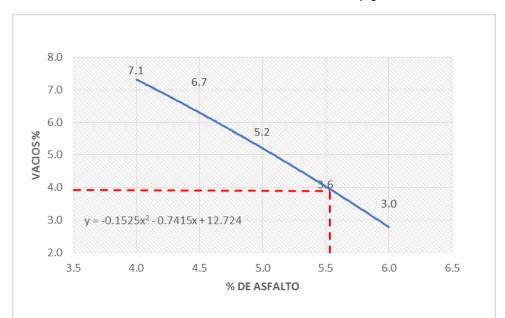
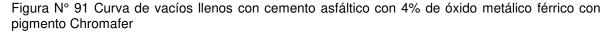
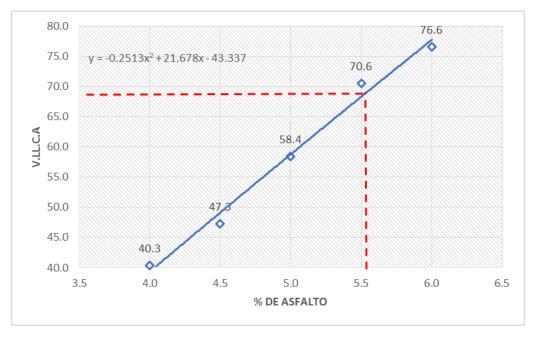




Figura Nº 90 Curva de vacíos con 4% de óxido metálico férrico con pigmento Chromafer

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 8% DE ÓXIDO FÉRRICO CON PIGMENTO CHROMAFER

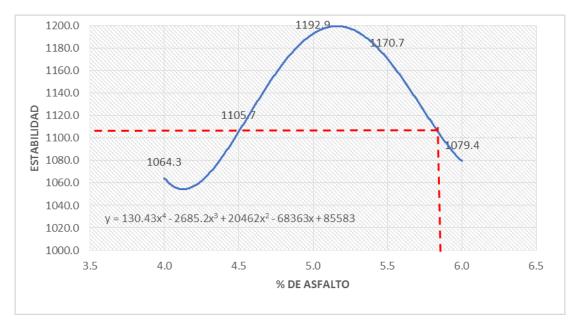

Se evaluó la resistencia a la deformación de los especímenes dosificados con 8% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una estabilidad de 1105.6.

Tabla N° 61 Estabilidad de espécimen dosificado con 8% óxido metálico férrico con pigmento Chromafer

%ASFALTO	ESTABILIDAD
5.2	1192.7
5.3	1187.7
5.8	1105.6
5.9	1086.6
6.0	1071.1
6.1	1061.6
6.2	1061.1
6.4	1099.5
6.5	1145.7

Fuente: Elaboración propia - Excel 2018

Figura N° 92 Curva de estabilidad de espécimen con 4% de óxido metálico férrico con pigmento Chromafer

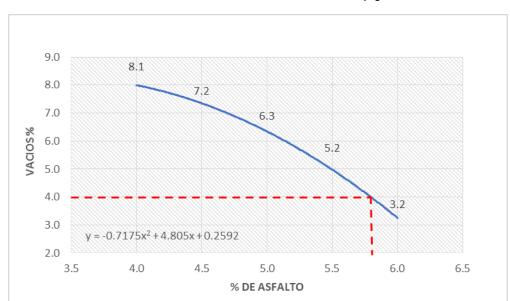
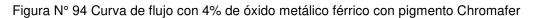
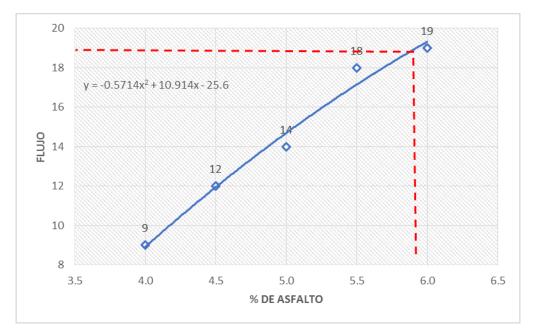




Figura N° 93 Curva de vacíos con 4% de óxido metálico férrico con pigmento Chromafer

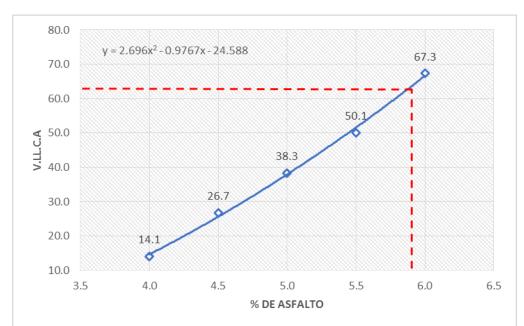


Figura N° 95 Curva de vacíos lleno con cemento asfáltico con 4% de óxido metálico férrico con pigmento Chromafer

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 12% DE ÓXIDO FÉRRICO CON PIGMENTO CHROMAFER

Se evaluó la resistencia a la deformación de los especímenes dosificados con 12% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una estabilidad de 899.2 Kg.

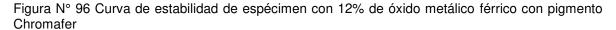

F6T 4 BU 1B 4 B

Tabla N° 62 Estabilidad de espécimen dosificado con 12% óxido metálico férrico con pigmento Chromafer

%ASFALTO	ESTABILIDAD
5.2	978.8
5.3	991.8
5.4	998.8
5.87	899.2
6	815.1

Fuente: Elaboración propia - Excel 2018

0/ACEALTO

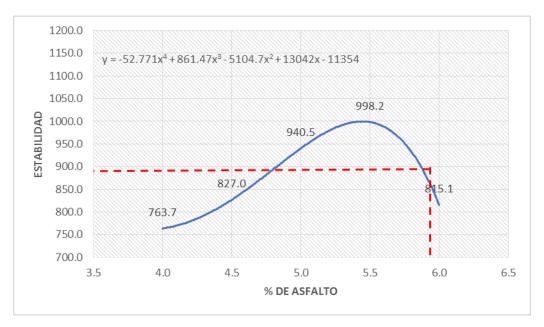
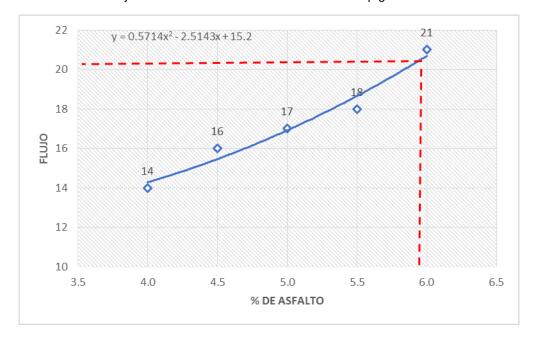
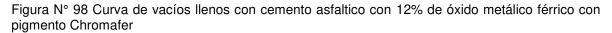




Figura N° 97 Curva de flujo con 12% de óxido metálico férrico con pigmento Chromafer

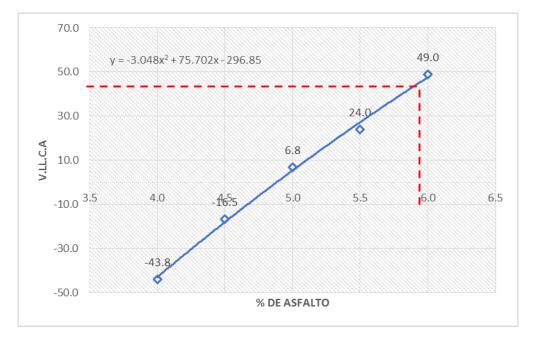
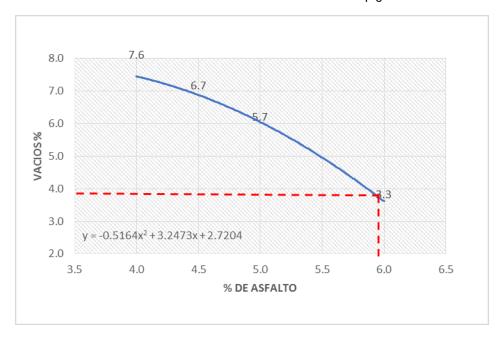



Figura Nº 99 Curva de vacíos con 12% de óxido metálico férrico con pigmento Chromafer

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 15% DE ÓXIDO FÉRRICO CON PIGMENTO CHROMAFER

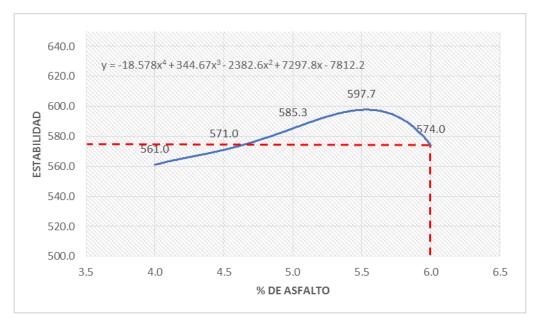

Se evaluó la resistencia a la deformación de los especímenes dosificados con 15% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una estabilidad de 572.6 Kg.

Tabla N° 63 Estabilidad de espécimen dosificado con 15% óxido metálico férrico con pigmento Chromafer

% ASFALTO	ESTABILIDAD
5.2	590.7
5.3	593.4
5.4	595.4
5.5	596.5
6	572.6
6.01	571.4

Fuente: Elaboración propia - Excel 2018

Figura N° 100 Curva de estabilidad de espécimen con 15% de óxido metálico férrico con pigmento Chromafer

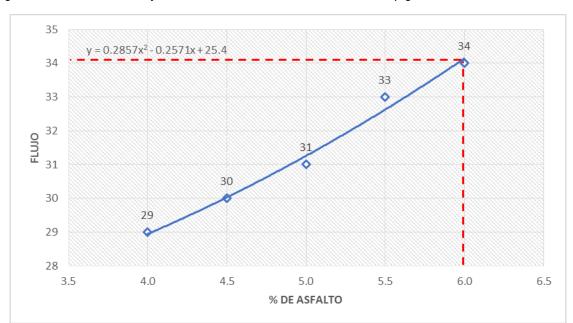
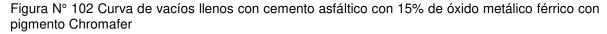
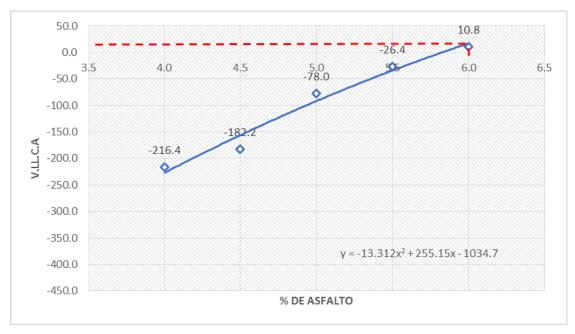




Figura N° 101 Curva de flujo con 15% de óxido metálico férrico con pigmento Chromafer

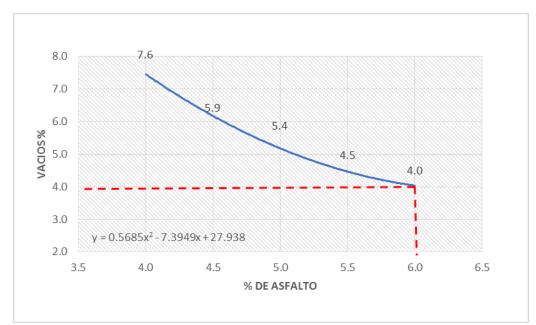
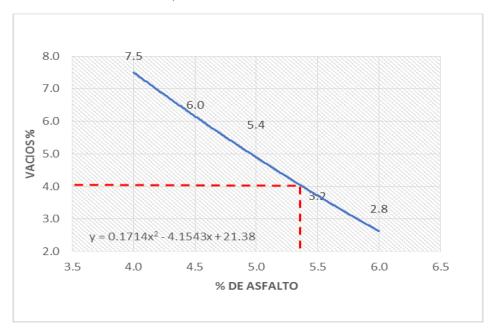


Figura N° 103 Curva de vacíos con 15% de óxido metálico férrico con pigmento Chromafer

RESULTADOS DE ESTABILIDAD POR TIPO DE FLUJO VEHICULAR LIVIANO 35 GOLPES CON ÓXIDO METÁLICO FÉRRICO-OCRE

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 4% DE ÓXIDO FÉRRICO – OCRE

Se evaluó la resistencia a la deformación de los especímenes dosificados con 4% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una estabilidad de 1194.3 Kg.


Tabla Nº 64 Estabilidad de espécimen dosificado con 4% de óxido metálico férrico - OCRE

%ASFALTO	ESTABILIDAD
5	1216.0
5.1	1217.5
5.2	1214.3
5.3	1206.4
5.4	1194.3
5.7	1141.1
6	1093.9

Figura Nº 104 Curva de estabilidad de espécimen con 4% de óxido metálico férrico - ocre

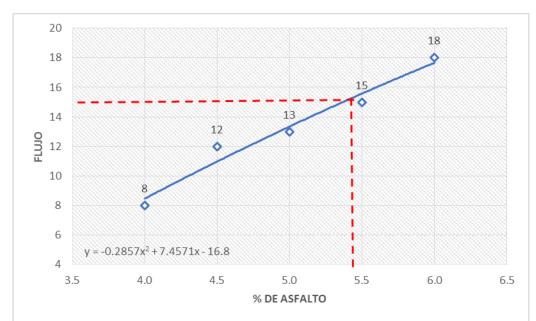
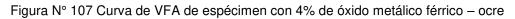
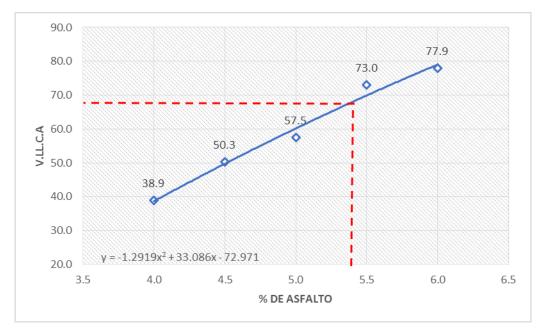




Figura N° 106 Curva de flujo de espécimen con 4% de óxido metálico férrico – ocre

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 8% DE ÓXIDO FÉRRICO – OCRE

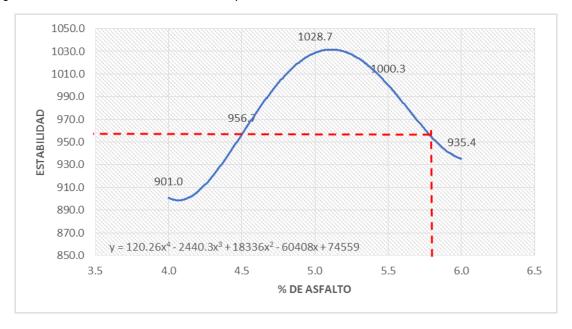

Se evaluó la resistencia a la deformación de los especímenes dosificados con 8% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una carga máxima de 981.4 Kg.

Tabla Nº 65 Estabilidad de espécimen dosificado con 8% óxido metálico férrico - OCRE

%ASFALTO	ESTABILIDAD
5.2	1046.6
5.3	1041.2
5.76	981.4
5.8	976.0
6	959.2

Fuente: Elaboración propia - Excel 2018

Figura N° 108 Curva de estabilidad de espécimen con 8% de óxido metálico férrico - ocre

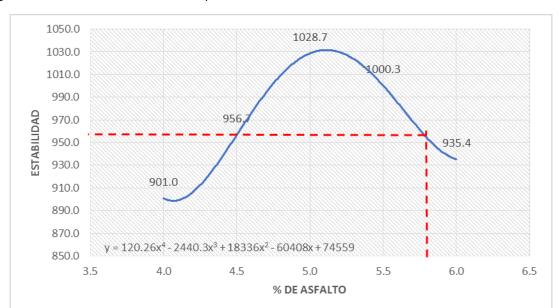
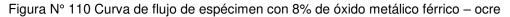
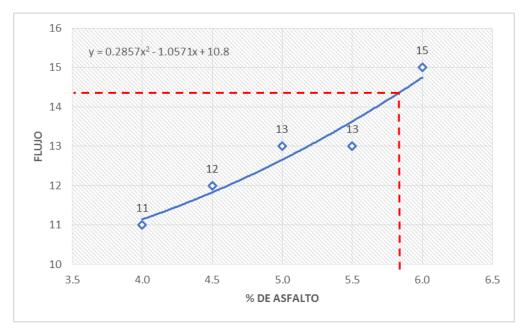




Figura Nº 109 Curva de vacíos de espécimen con 8% de óxido metálico férrico - ocre

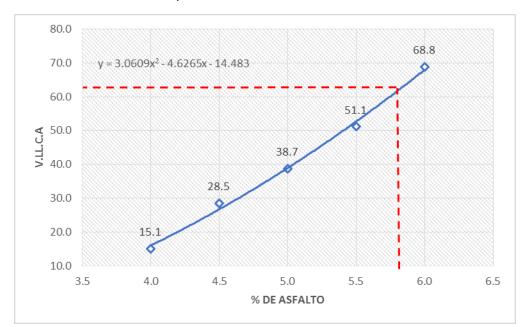


Figura Nº 111 Curva de VFA de espécimen con 8% de óxido metálico férrico – ocre

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 12% DE ÓXIDO FÉRRICO – OCRE

Se evaluó la resistencia a la deformación de los especímenes dosificados con 12% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una carga máxima de 860.9 Kg.

Tabla Nº 66 Estabilidad de espécimen dosificado con 12% de óxido metálico férrico - OCRE

%ASFALTO	ESTABILIDAD
5.2	987.4
5.3	995.6
5.85	860.9
5.98	771.7
6.0	755.7

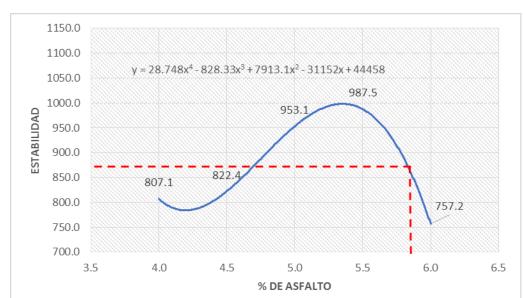



Figura Nº 112 Curva de estabilidad de espécimen con 12% de óxido metálico férrico - ocre

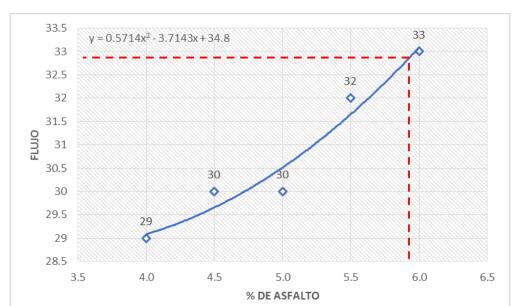
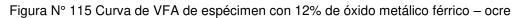
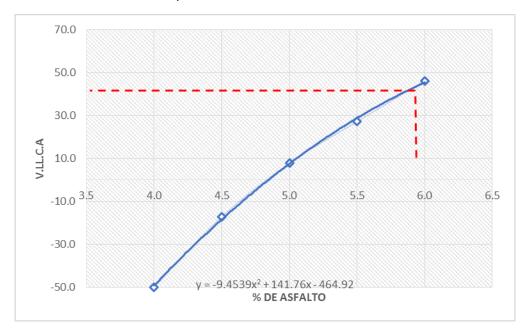




Figura N° 114 Curva de flujo de espécimen con 12% de óxido metálico férrico - ocre

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 15% DE ÓXIDO FÉRRICO – OCRE

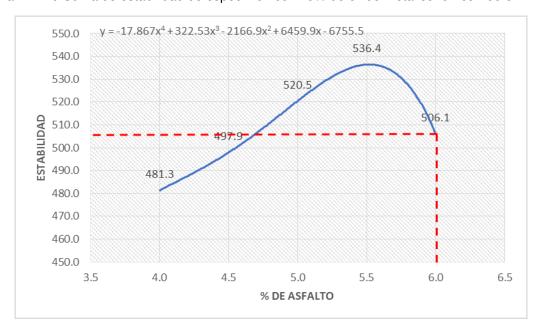

Se evaluó la resistencia a la deformación de los especímenes dosificados con 15% de material pigmentable como los óxidos metálicos por la metodología Marshall a través de la carga de esfuerzo a comprensión de 10 especímenes para evaluación de sus condiciones mecánicas, en resumen obteniendo una carga máxima de 506.3 Kg.

Tabla Nº 67 Estabilidad de espécimen dosificado con 15% de óxido metálico férrico - OCRE

%ASFALTO	ESTABILIDAD
5.2	529.6
5.3	533.1
5.4	535.6
6	506.3
6.01	504.9
6.02	503.3

Fuente: Elaboración propia - Excel 2018

Figura Nº 116 Curva de estabilidad de espécimen con 15% de óxido metálico férrico - ocre

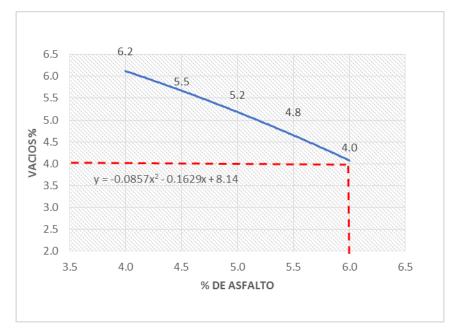
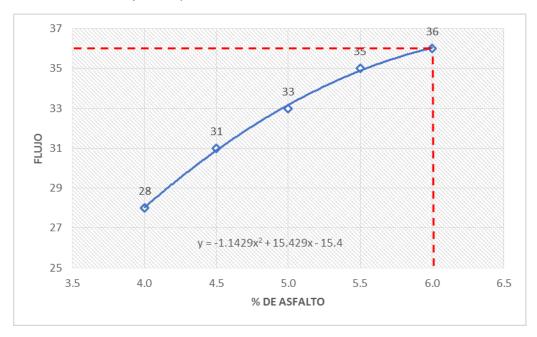



Figura Nº 118 Curva de flujo de espécimen con 15% de óxido metálico férrico – ocre

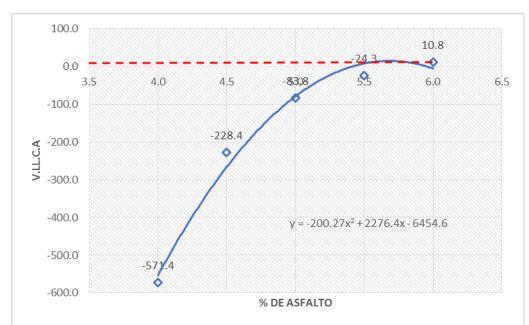


Figura N° 119 Curva de VFA de espécimen con 15% de óxido metálico férrico – ocre

4.2.3 RESULTADO DE ESTABILIDAD DE MAC DISEÑADOS CON PIGMENTO CHROMAFER Y ÓXIDO FÉRRICO (OCRE) PARA FLUJO VEHICULAR LIGERO

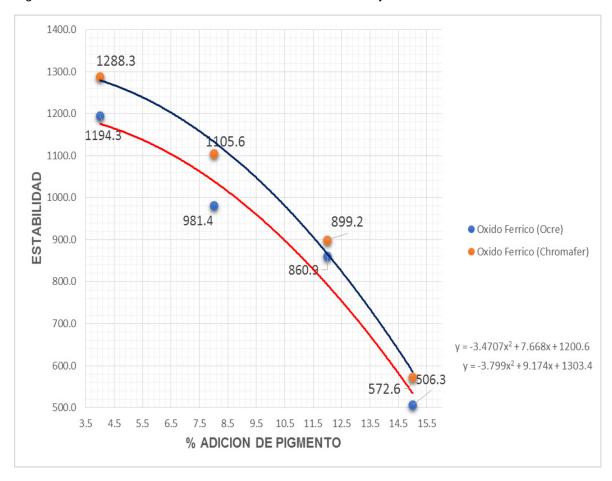

Resultado de evaluación del efecto del pigmento en la estabilidad de MAC.

Tabla N° 68 Estabilidad de MAC elaborados con Chomafer y Ocre

% DE PIGMENTO	ESTABILIDAD	
	Ocre	Chromafer
4.0	1194.3	1288.3
8.0	981.4	1105.6
12.0	860.9	899.2
15.0	506.3	572.6

Fuente: Elaboración propia - Excel 2018

Figura N° 120 Estabilidad de MAC elaborados con Chomafer y Ocre

RESULTADOS DE ESTABILIDAD POR TIPO DE FLUJO VEHICULAR PESADO 75 GOLPES CON PIGMENTO CHROMAFER

Pigmentación con oxido de cromo Ocre y Chromafer para mezclas asfálticas en caliente en los porcentajes de 4, 8, 12 y 15%

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 4% DE ÓXIDO DE CROMO CON PIGMENTO CHROMAFER

Se determinó una estabilidad de 1757.4 Kg, mediante el resultado promedio de 10 briquetas ensayadas en el aparato Marshall.

Tabla N° 69 Resultados de especímenes con 4% de pigmento óxido de cromo (Chromafer)

%ASFALTO	ESTABILIDAD		
	1680.8		
4.	1816.8		
	5 1912.8		
5.	1757.4		
5.	7 1669.4		
	1622		

Fuente: Elaboración propia - Excel 2018

Figura N° 121 Curva de estabilidad con 4% de óxido de cromo con pigmento Chromafer

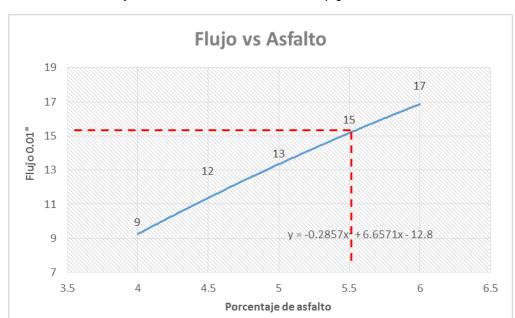
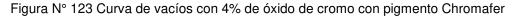



Figura N° 122 Curva de flujo con 4% de óxido de cromo con pigmento Chromafer

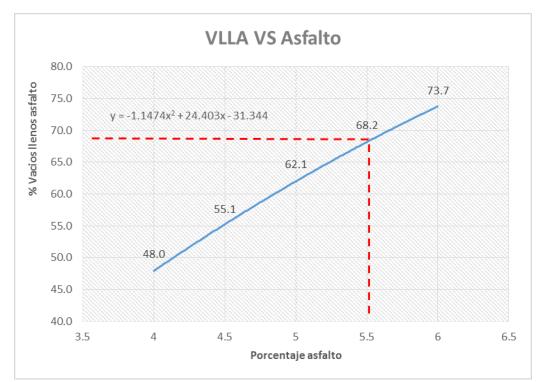


Figura N° 124 Curva de vacíos lleno con cemento asfaltico con 4% de óxido de cromo (Chromafer)

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 8% DE ÓXIDO DE CROMO CON PIGMENTO CHROMAFER

Se determinó una estabilidad de 1625 Kg, mediante resultado promedio de 10 briquetas ensayadas en el aparato Marshall.

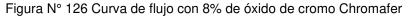
Tabla N° 70 Resultado de propiedades mecánicas con 8% de óxido de cromo (Chromafer)

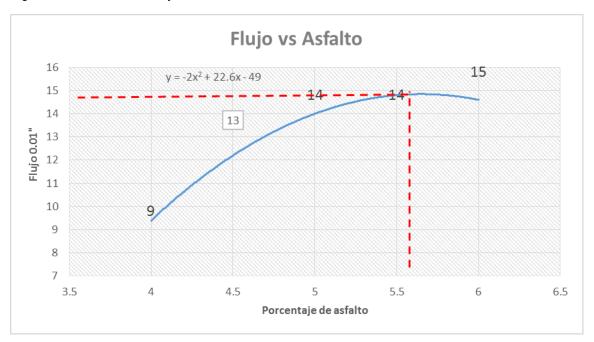
 %ASFALTO
 ESTABILIDAD

 4
 1482.74

 4.5
 1610.27

 5
 1703.13


 5.6
 1625


 5.7
 1593.04

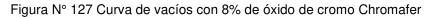

 6
 1482.18

Figura Nº 125 Curva de estabilidad con 8% de óxido de cromo Chromafer

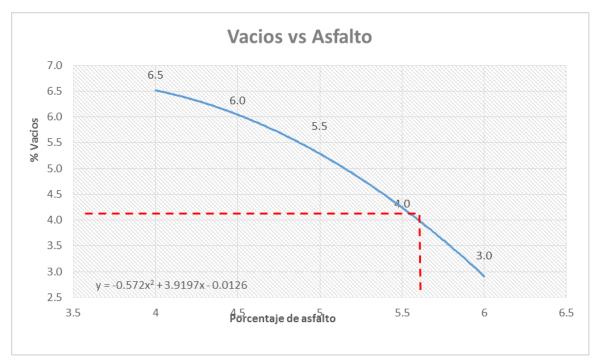
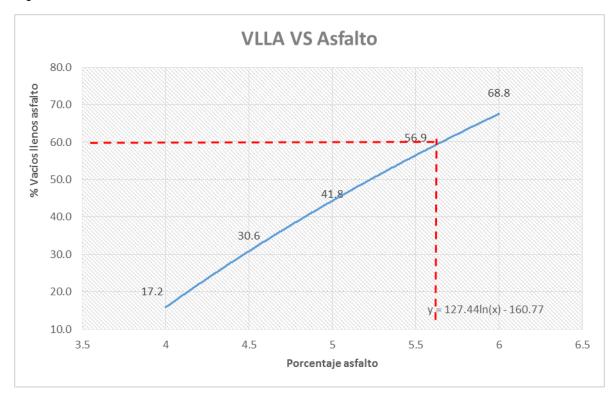



Figura N° 128 Curva de vacíos llenos con cemento asfáltico con 8% de óxido de cromo Chromafer

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 12% DE ÓXIDO DE CROMO CON PIGMENTO CHROMAFER

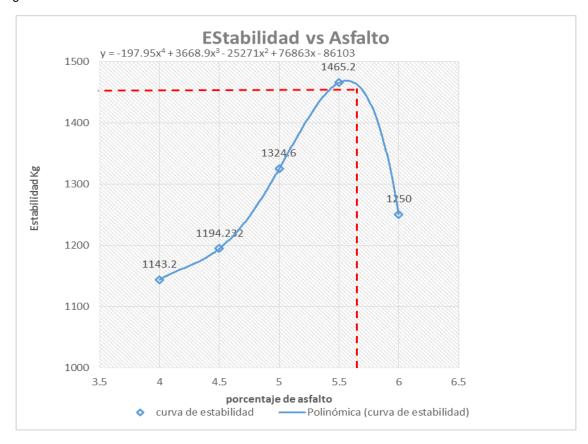

Se determinó una estabilidad de 1459.9 Kg, mediante el ensayo en el aparato Marshall y promedio de 10 briquetas.

Tabla Nº 71 Resultados de propiedades mecánicas con 12% de óxido de cromo Chromafer

%ASFALTO		ESTABILIDAD	
	4		1147.4
	4.5		1199.4
	5		1330.8
	5.6		1474.9
	5.7		1459.9
	6		1258.2

Fuente: Elaboración propia - Excel 2018

Figura Nº 129 Curva de estabilidad con 12% de óxido de cromo Chromafer

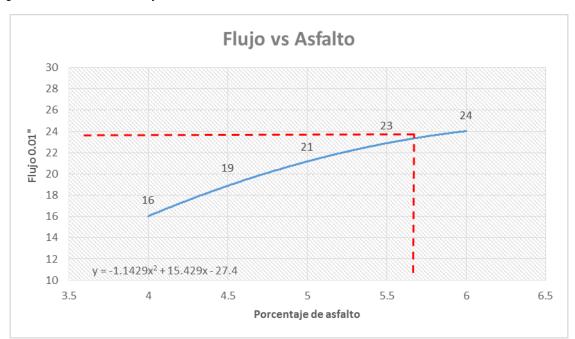
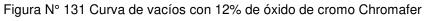



Figura N° 130 Curva de flujo con 12% de óxido de cromo Chromafer

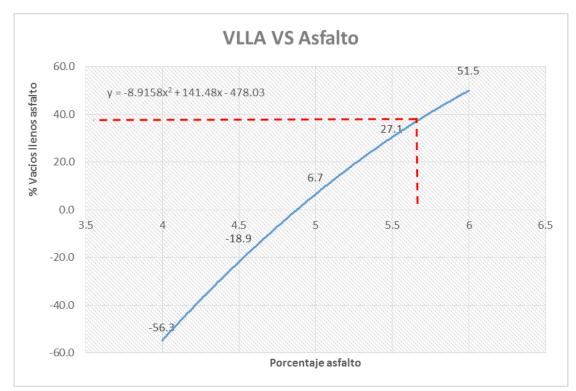


Figura Nº 132 Curva de vacíos llenos con cemento asfáltico con 12% de óxido de cromo Chromafer

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 15% DE ÓXIDO DE CROMO CON PIGMENTO CHROMAFER

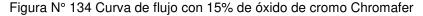

Se determinó una estabilidad de 999.8 Kg, mediante los resultados promedios de 10 Briquetas ensayadas en el aparato de Marshall.

Tabla Nº 72 Resultado de propiedades mecánicas con 15% de óxido de cromo Chromafer

%ASFALTO	ESTABILIDAD
4	915.64
4.5	935.769062
5	1010.375
5.6	1037.48576
5.9	999.8
6	978.76

Figura Nº 133 Curva de estabilidad con 15% de óxido de cromo Chromafer

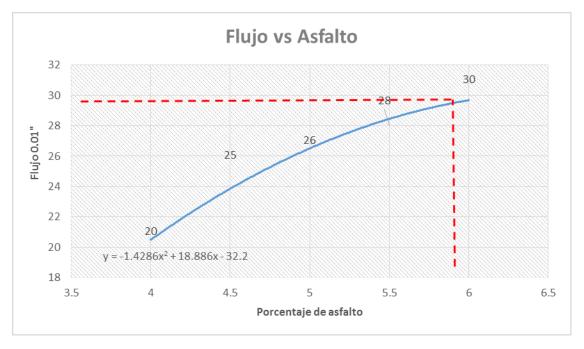
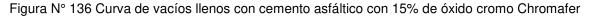
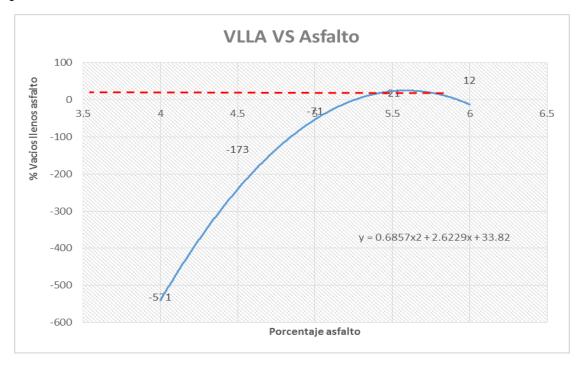
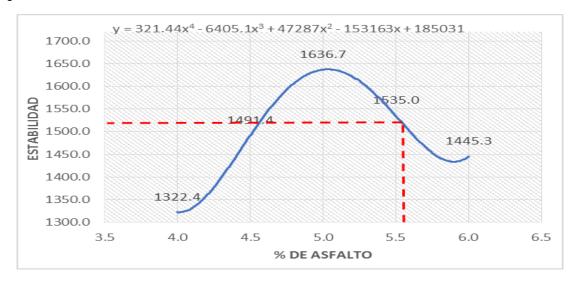




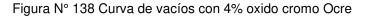
Figura Nº 135 Curva de vacíos con 15% de óxido de cromo Chromafer

RESULTADOS DE ESTABILIDAD POR TIPO DE FLUJO VEHICULAR PESADO 75 GOLPES CON ÓXIDO METÁLICO CROMO-OCRE

Pigmentación con oxido de cromo – Ocre a las Mezclas asfálticas en caliente para un tráfico pesado en porcentajes de 4, 8, 12 y 15%.

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 4% DE ÓXIDO DE CROMO – OCRE


Se determinó una estabilidad de 1534,3 Kg, mediante el promedio de 10 briquetas ensayadas en el aparato de Marshall.


Tabla N° 73 Resultado óptimo contenido asfalto con 4% de óxido de cromo Ocre

% ASFALTO	ESTABILIDAD
5.2	1640.2
5.3	1618.5
5.4	1589.3
5.5	1555.4
5.56	1534.3
5.7	1488.9
5.8	1465.9
5.9	1457.2
6	1469.6

Fuente: Elaboración propia - Excel 2018

Figura Nº 137 Curva de estabilidad con 4% de óxido de cromo Ocre

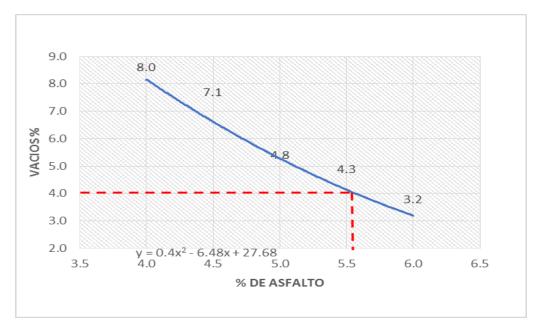
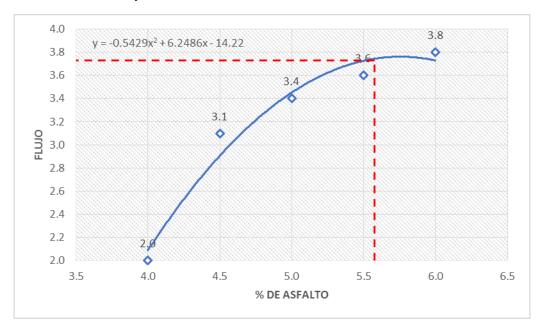



Figura N° 139 Curva de flujo con 4% de óxido de cromo Ocre

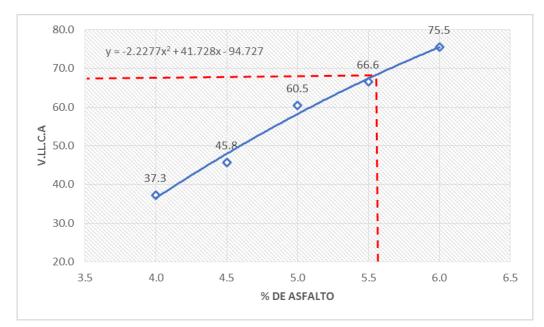


Figura Nº 140 Curva de VFA con 4% de óxido de cromo Ocre

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 8% DE ÓXIDO DE CROMO – OCRE

Se determinó una estabilidad de 1370.5 Kg, mediante el promedio de 10 briquetas ensayadas en el aparato de Marshall.

Tabla N° 74 Resultado óptimo contenido asfalto con 8% de óxido de cromo Ocre

%ASFALTO	ESTABILIDAD
5.2	1411.9
5.3	1413.4
5.8	1370.5
5.9	1349.8
6	1324.3

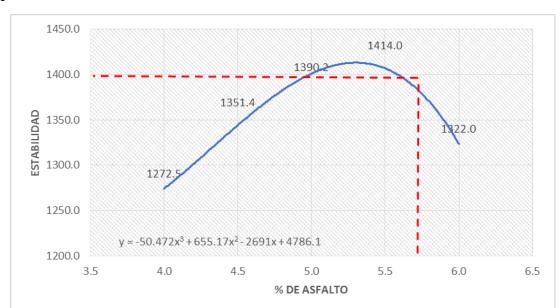
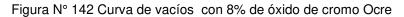
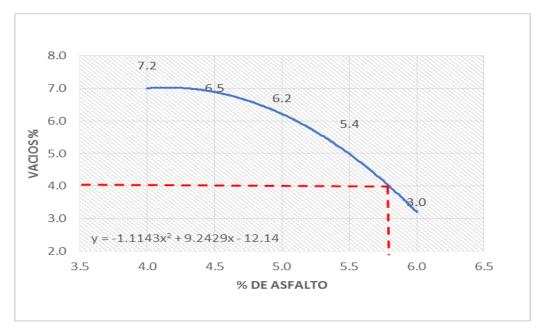




Figura N° 141 Curva de estabilidad con 8% de óxido de cromo Ocre

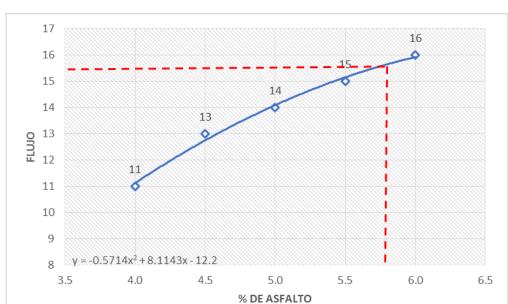
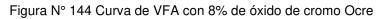
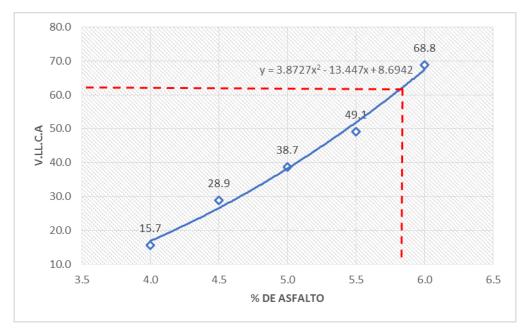
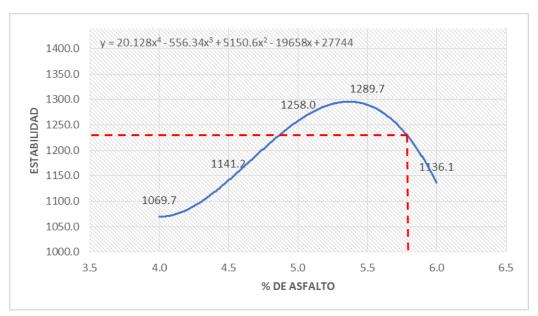
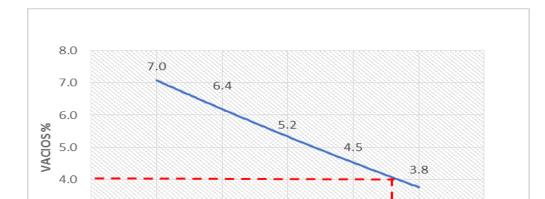




Figura Nº 143 Curva de flujo con 8% de óxido de cromo Ocre

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 12% DE ÓXIDO DE CROMO – OCRE


Se determinó una estabilidad de 1208.3, mediante el promedio de resultados de 10 briquetas, ensayadas en el aparato de Marshall.


Tabla Nº 75 Resultado óptimo contenido asfalto con 12% de óxido de cromo Ocre

% ASFALTO	ESTABILIDAD
5.2	1285.6
5.3	1292.7
5.84	1208.3
5.85	1204.4
5.9	1183.5
6	1134.0

Fuente: Elaboración propia - Excel 2018

Figura N° 145 Curva de estabilidad con 12% de óxido de cromo Ocre

5.0

% DE ASFALTO

5.5

6.0

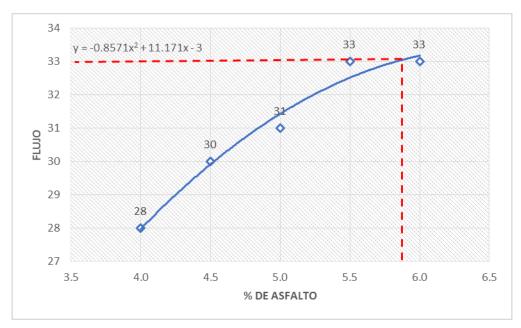
6.5

Figura Nº 146 Curva de vacíos con 12% de óxido de cromo Ocre

Fuente: Elaboración propia - Excel 2018

3.0

2.0


3.5

4.0

 $y = 0.0857x^2 - 2.5171x + 15.78$

4.5

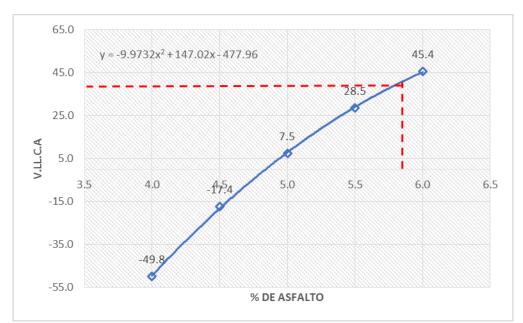


Figura N° 148 Curva de VFA con 12% de óxido de cromo Ocre

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 15% DE ÓXIDO DE CROMO – OCRE

Se determinó una estabilidad de 831.9 Kg, mediante el resultado promedio de 10 briquetas, ensayadas en el aparato de Marshall.

Tabla Nº 76 Resultado óptimo contenido asfalto con 15% de óxido de cromo Ocre

% ASFALTO	ESTABILIDAD
5.2	927.5
5.3	931.2
5.4	931.5
5.5	927.9
5.6	919.8
5.7	906.7
6	831.9

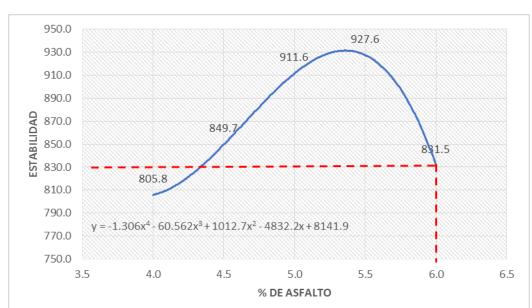
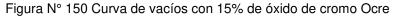
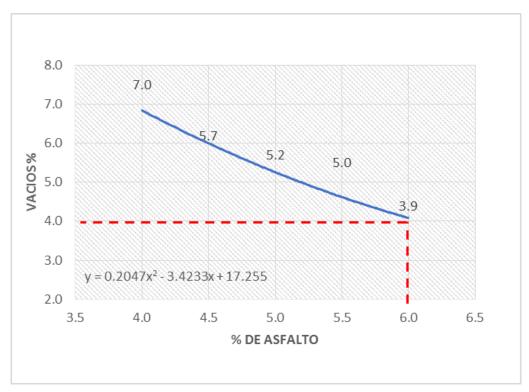




Figura Nº 149 Curva de estabilidad con 15% de óxido de cromo Ocre

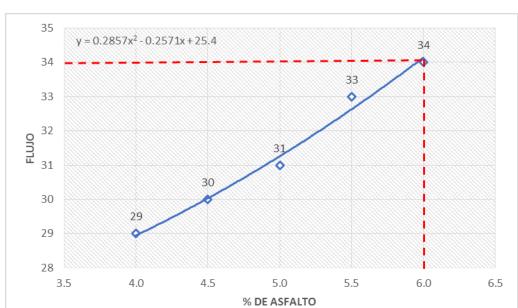
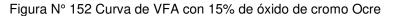
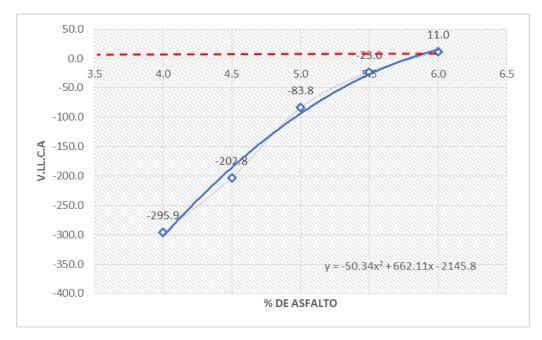
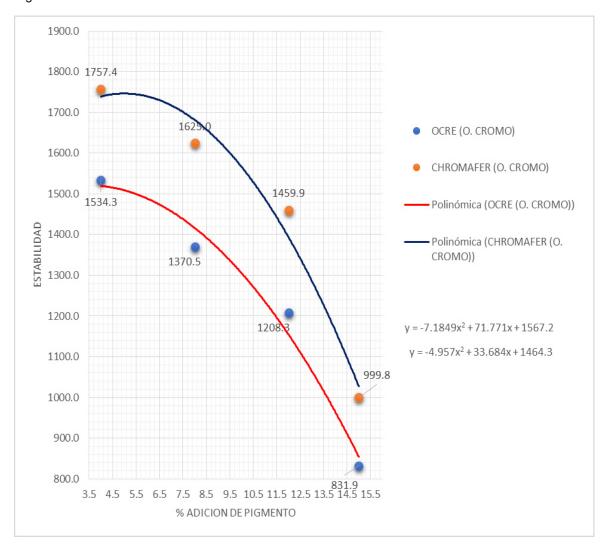




Figura N° 151 Curva de flujo con 15% de óxido de cromo Ocre



4.2.4 RESULTADO DE ESTABILIDAD DE MAC DISEÑADOS PIGMENTO CHROMAFER Y OCRE DE ÓXIDO DE CROMO PARA FLUJO VEHICULAR PESADO

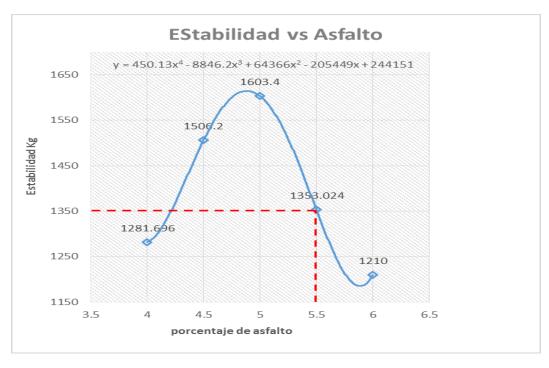
Tabla N° 77 Resultado comparativo en estabilidad entre OCRE Y CHROMAFER

% DE PIGMENTO	ESTABILIDAD (O. CROMO)		
	OCRE	CHROMAFER	
4.0	1534.3		1757.4
8.0	1370.5		1625.0
12.0	1208.3		1459.9
15.0	831.9		999.8

Figura N° 153 Curvas de Estabilidad del OCRE Y CHROMAFER

RESULTADOS DE ESTABILIDAD POR TIPO DE FLUJO VEHICULAR MEDIO 50 GOLPES CON PIGMENTO CHROMAFER

Resultados de estabilidad, Vacíos, fluencia y VFA para MAC pigmentadas con óxido de cromo, para un tráfico medio.

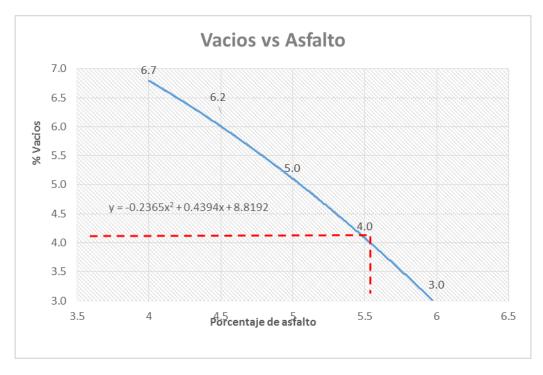

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 4% DE ÓXIDO DE CROMO CON PIGMENTO CHROMAFER

Se determinó una estabilidad de 1363.6 Kg, mediante el resultado promedio de 10 briquetas, ensayadas en el aparato de Marshall.

Tabla N° 78 Resultado de propiedades mecánicas con 4% de óxido de cromo Chromafer

% ASFALTO	ESTABILIDAD
	1287.5
4.5	5 1513.5
	5 1612.3
5.5	1363.6
(5 1222.3

Figura Nº 154 Curva de estabilidad con 4% de óxido de cromo Chromafer


Flujo vs Asfalto 20 18 $y = 1.4286x^2 - 8.4857x + 16.8$ 18 16 14 Flujo 0.01" 12 10 10 8 6 0 3.5 4 4.5 5 5.5 6 6.5

Porcentaje de asfalto

Figura N° 155 Curva de flujo con 4% de óxido de cromo Chromafer

Fuente: Elaboración propia - Excel 2018

Figura Nº 156 Curva de vacíos con 4% de óxido de cromo Chromafer

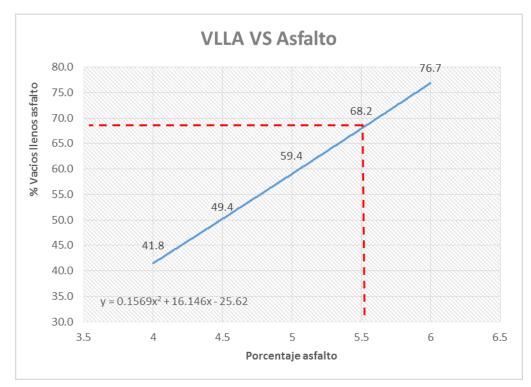


Figura N° 157 Curva de VFA con 4% de óxido de cromo Chromafer

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 8% DE ÓXIDO DE CROMO CON PIGMENTO CHROMAFER

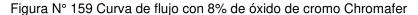
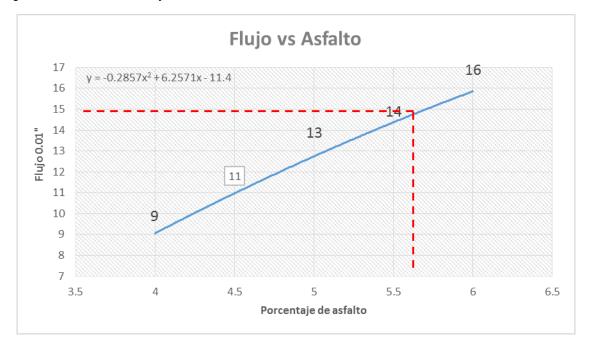

Se determinó una estabilidad de 1184.4 Kg, mediante el resultado promedio de 10 briquetas ensayadas en el aparato de Marshall.

Tabla Nº 79 Resultado de propiedades mecánicas con 8% de óxido de cromo Chromafer

% ASFALTO	ESTABILIDAD
4	1232.08
4.5	1368.96
5	1430.5
5.6	1184.4
6	1082.48

Figura Nº 158 Curva de estabilidad con 8% de óxido de cromo Chromafer



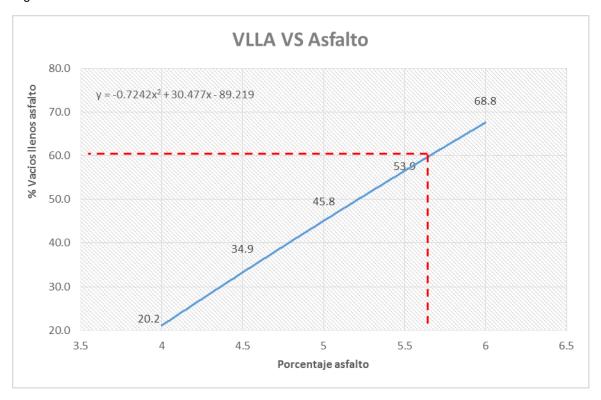


Figura Nº 160 Curva de vacíos con 8% de óxido de cromo Chromafer

3.0 ^{3.5}

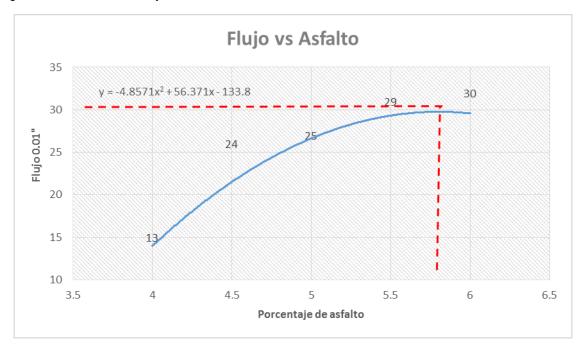
Figura N° 161 Curva de vacíos llenos con cemento asfáltico con 8% de óxido de cromo Chromafer

A5 Porcentaje de asfalto 5.5

6.5

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 12% DE ÓXIDO DE CROMO CON PIGMENTO CHROMAFER

Se determinó una estabilidad de 1107.9 Kg, resultado mediante el promedio de 10 briquetas ensayadas en el aparato de Marshall.


Tabla Nº 80 Resultado de las propiedades mecánicas con 12% de óxido de cromo Chromafer

% ASFALTO		ESTABILIDAD
	4	932.62
	4.5	992.934
	5	1084.95
	5.8	1107.9
	6	1046.18

Figura Nº 162 Curva de estabilidad con 12% de óxido cromo Chromafer

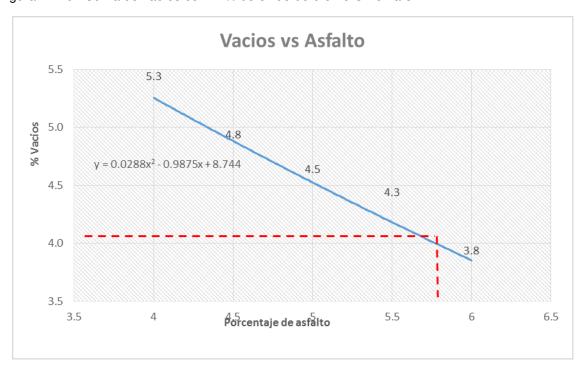


Figura Nº 163 Curva de flujo con 12% de óxido de cromo Chromafer

Fuente: Elaboración propia - Excel 2018

Figura Nº 164 Curva de vacíos con 12% de óxido de cromo Chromafer



Figura Nº 165 Curva de VFA con 12% de óxido de cromo Chromafer

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 15% DE ÓXIDO DE CROMO CON PIGMENTO CHROMAFER

Se determinó una estabilidad de 839.3 Kg, mediante el resultado promedio de 10 briquetas ensayadas en el aparato de Marshall.

Tabla N° 81 Resultado de propiedades mecánicas con 15% de óxido de cromo Chromafer

% ASFALTO	ESTABILIDAD
4	666.08
4.5	744.5
5	909.2
5.8	874.8
6	839.2

Figura Nº 166 Curva de estabilidad con 15% de óxido de cromo Chromafer

Figura Nº 167 Curva de flujo con 15% de óxido de cromo Chromafer

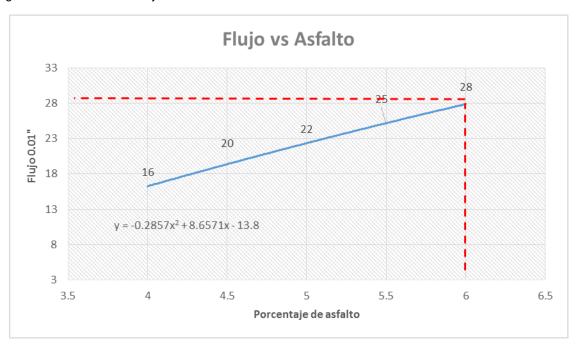


Figura Nº 168 Curva de vacíos con 15% de óxido de cromo Chromafer

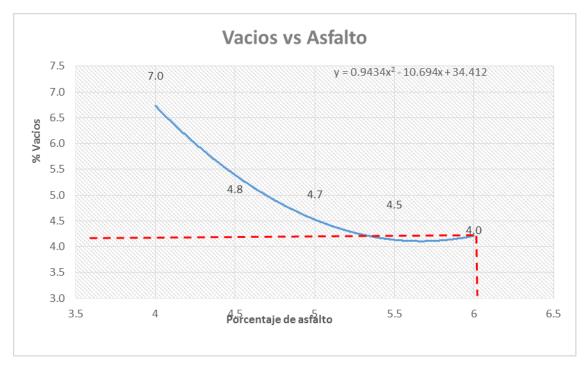
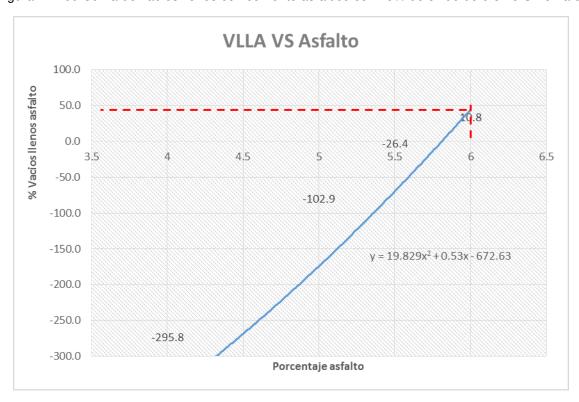



Figura Nº 169 Curva de vacíos llenos con cemento asfáltico con 15% de óxido de cromo Chromafer

RESULTADOS DE ESTABILIDAD POR TIPO DE FLUJO VEHICULAR MEDIO 50 GOLPES CON ÓXIDO METÁLICO CROMO-OCRE

Resultado de estabilidad de MAC pigmentada con óxido de cromo OCRE, para tráfico medio.

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 4% DE ÓXIDO DE CROMO – OCRE

Se determinó una estabilidad de 1187.9 Kg, mediante el resultado promedio de 10 briquetas, ensayadas con el aparato de Marshall.

Tabla Nº 82 Resultado de optimo contenido Asfalto con 4% de óxido de cromo Ocre

%ASFALTO	ESTABILIDAD
5.2	1195.7
5.3	1202.2
5.4	1199.9
5.5	1187.9
5.6	1165.5
5.7	1131.9
6	959.2

Figura Nº 170 Curva de estabilidad con 4% de óxido de cromo Ocre

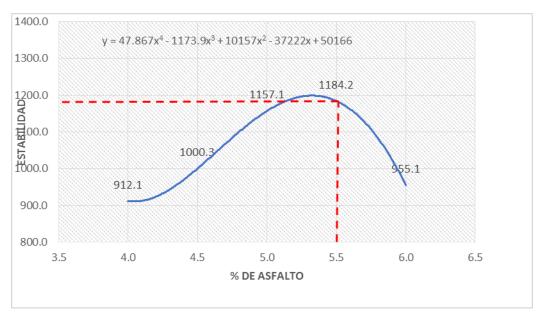
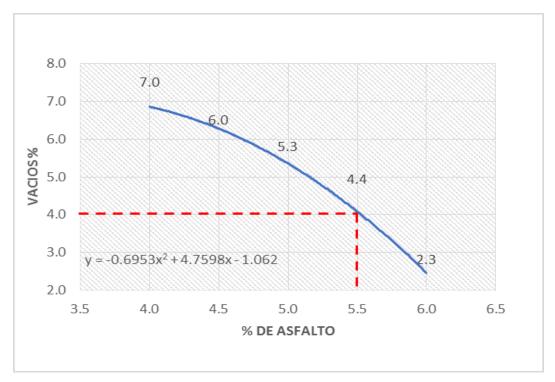
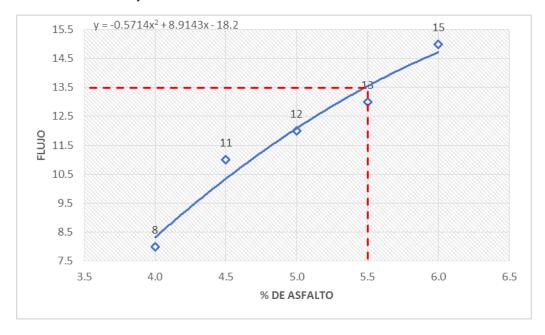




Figura Nº 171 Curva de vacíos con 4% de óxido de cromo Ocre

Fuente: Elaboración propia - Excel 2018

Figura N° 172 Curva de flujo con 4% de óxido de cromo Ocre

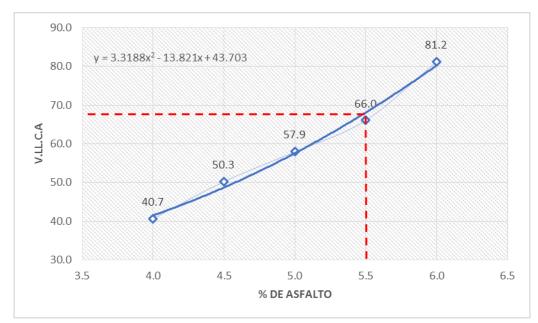


Figura N° 173 Curva de VFA con 4% de óxido de cromo Ocre

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 8% DE ÓXIDO DE CROMO – OCRE

Se determinó la estabilidad en 1087.9 Kg, mediante el resultado de 10 briquetas ensayadas en el aparato de Marshall.

Tabla Nº 83Resultados de óptimo contenido Asfalto con 8% oxido cromo Ocre

%ASFALTO	ESTABILIDAD
5.2	1100.9
5.3	1108.9
5.7	1087.9
5.8	1063.6
6	983.1

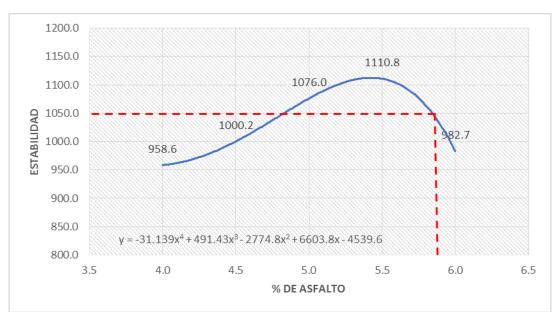
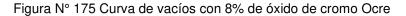
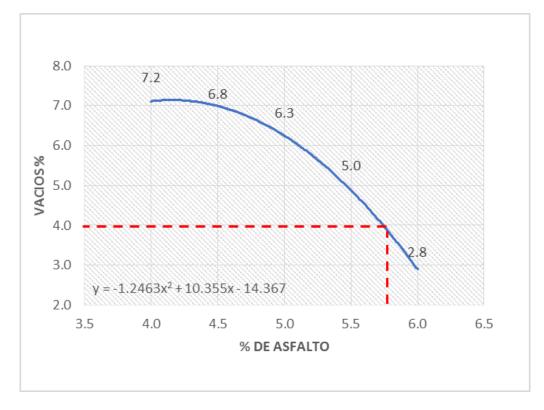




Figura Nº 174 Curva de estabilidad con 8% de óxido de cromo Ocre

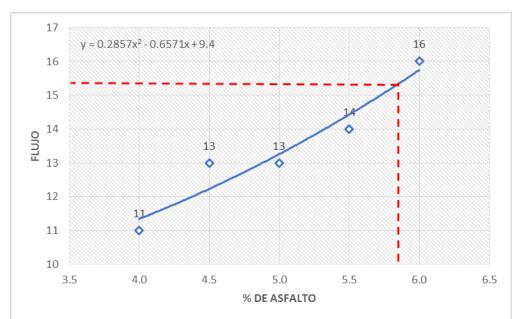
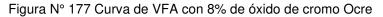
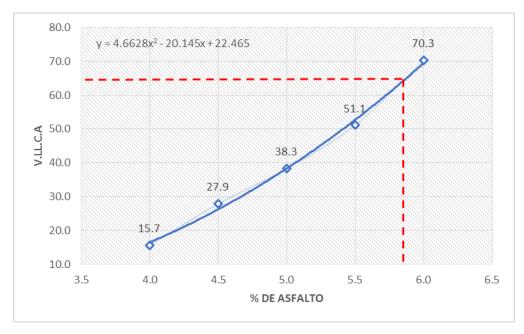
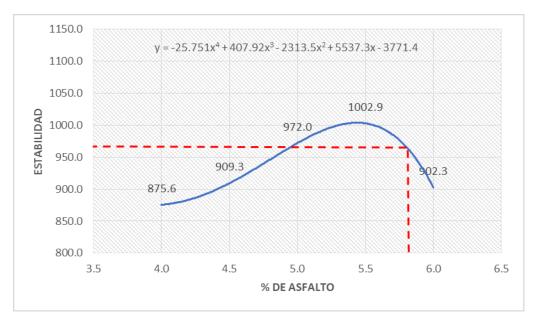
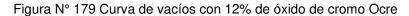




Figura N° 176 Curva de flujo con 8% de óxido de cromo Ocre

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 12% DE ÓXIDO DE CROMO – OCRE


Se determinó una estabilidad de 965.4 Kg, mediante el resultado promedio de 10 briquetas ensayadas en laboratorio.


Tabla N° 84 Resultado de optimo contenido de asfalto con 12% de óxido de cromo Ocre

%ASFALTO	ESTABILIDAD
5.2	994.2
5.3	1001.2
5.8	965.4
5.9	940.5
6.0	903.8

Fuente: Elaboración propia - Excel 2018

Figura Nº 178 Curva de estabilidad con 12% de óxido de cromo Ocre

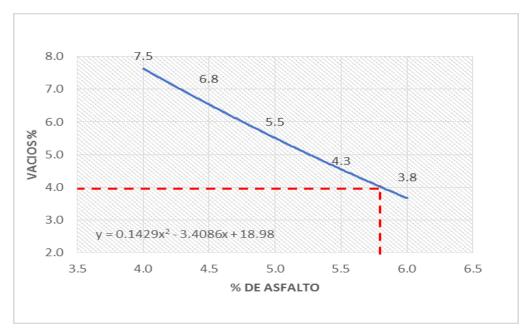
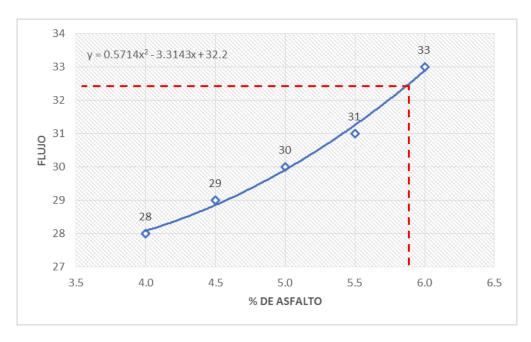
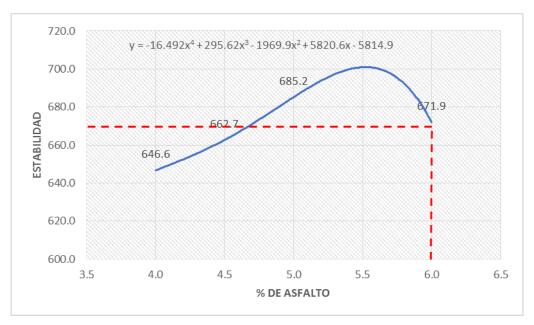
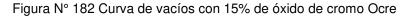



Figura N° 180 Curva de flujo con 12% de óxido de cromo Ocre

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 15% DE ÓXIDO DE CROMO – OCRE


Se determinó una estabilidad de 672.6 Kg, mediante el resultado promedio de 10 briquetas ensayadas en el aparato de Marshall.


Tabla N° 85 Resultado del porcentaje de asfalto óptimo con 15% de óxido de cromo Ocre

%ASFALTO	ESTABILIDAD
5.2	694.3
5.3	697.8
5.4	700.3
5.5	701.5
5.6	700.9
6	672.6

Fuente: Elaboración propia - Excel 2018

Figura N° 181 Curva de estabilidad con 15% de óxido de cromo Ocre

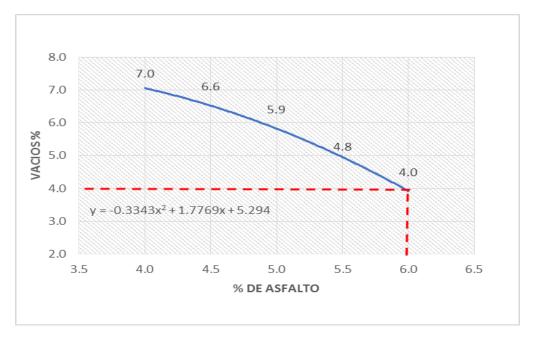
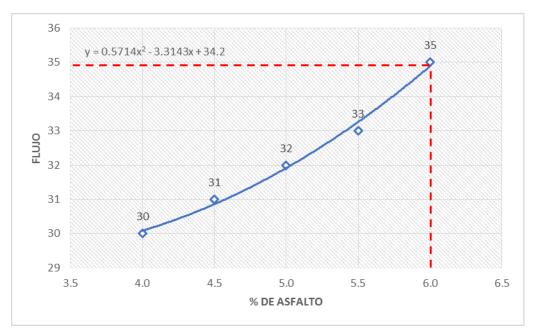
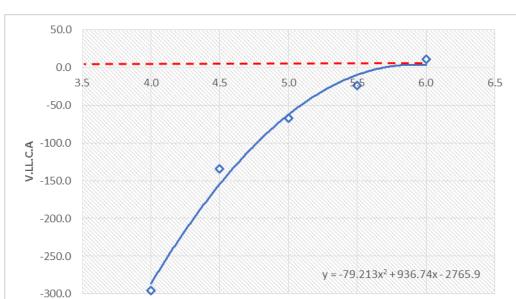




Figura N° 183 Curva de flujo con 15% de óxido de cromo Ocre

% DE ASFALTO

Figura Nº 184 Curva de VFA con 15% de óxido de cromo Ocre

4.2.5 RESULTADO DE ESTABILIDAD DE MAC DISEÑADOS PIGMENTO CHROMAFER Y OCRE PARA FLUJO VEHICULAR MEDIO

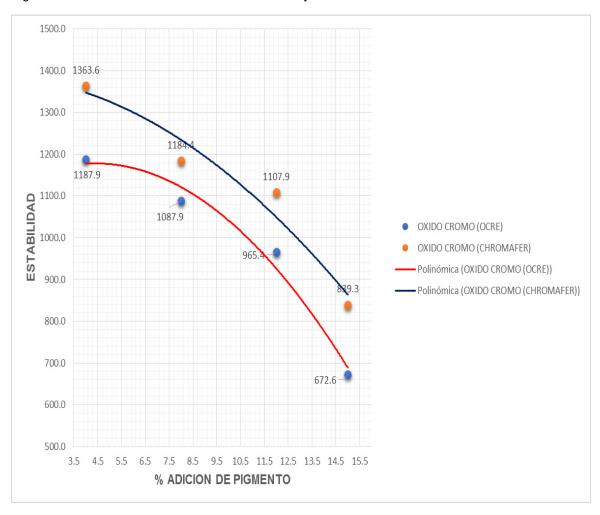

Resultado de estabilidad de MAC con pigmento, óxido de cromo Ocre – Chromafer, para trafico medio

Tabla N° 86 Resultado comparativo en estabilidad entre OCRE Y CHROMAFER

% DE PIGMENTO	ESTABILIDAD	
	Ocre	Chromafer
4.0	1187.9	1363.6
8.0	1087.9	1184.4
12.0	965.4	1107.9
15.0	672.6	839.3

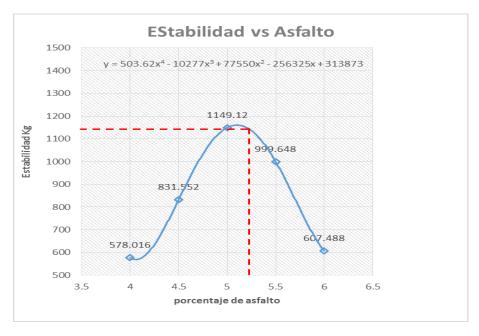
Fuente: Elaboración propia - Excel 2018

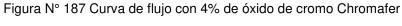
Figura N° 185 Curva de estabilidad entre el Ocre y Chromafer

RESULTADOS DE ESTABILIDAD POR TIPO DE FLUJO VEHICULAR LIGERO 35 GOLPES CON PIGMENTO CHROMAFER

Resultado de estabilidad, vacíos, VFA y fluencia de MAC pigmentadas con óxido de cromo OCRE- CHROMAFER, en porcentajes de 4, 8, 12 y 15%, para tráfico ligero.

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 4% DE ÓXIDO DE CROMO CON PIGMENTO CHROMAFER


Se determinó una estabilidad de 1134.2 Kg, mediante el resultado promedio de 10 briquetas ensayadas en el aparato de Marshall.


Tabla Nº 87 Resultado de propiedades mecánicas con 4% de óxido de cromo Chromafer

% ASFALTO		ESTABILIDAD
	4	571.7
	4.5	822.1
	5.2	1134.2
	5.5	980.9
	6	582.5

Fuente: Elaboración propia - Excel 2018

Figura N° 186 Curva de estabilidad con 4% de óxido de cromo Chromafer

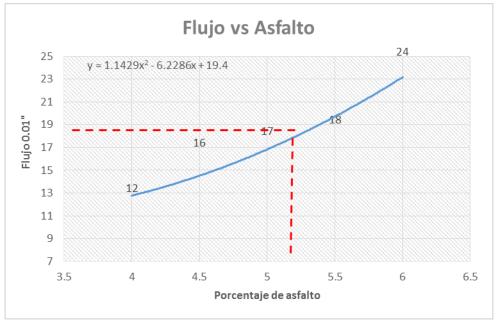


Figura Nº 188 Curva de vacíos con 4% de óxido de cromo Chromafer

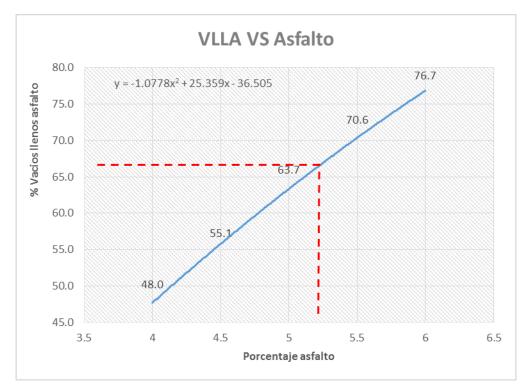


Figura Nº 189 Curva de vacíos llenos con cemento asfáltico con 4% de óxido de cromo Chromafer

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 8% DE ÓXIDO DE CROMO CON PIGMENTO CHROMAFER

Se determinó una estabilidad de 1054.4 Kg, mediante el resultado promedio de 10 briquetas, ensayadas en el aparato de Marshall.

Tabla Nº 88 Resultado de propiedades mecánicas con 8% de óxido de cromo Chromafer

% ASFALTO	ESTABILIDAD
4	742.2
4.5	854.9
5.2	1094.7
5.6	1054.4
6	862.6

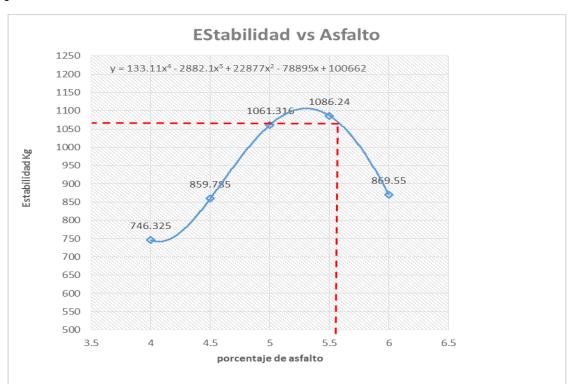
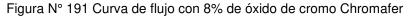
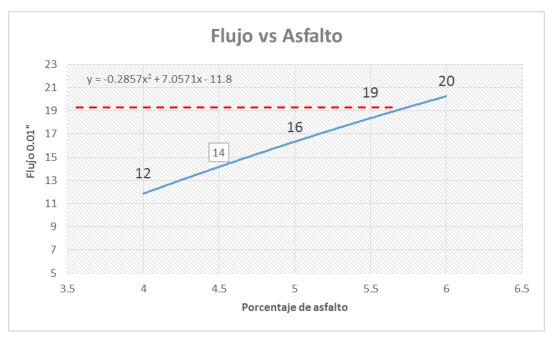
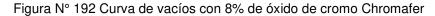





Figura Nº 190 Curva de estabilidad con 8% de óxido de cromo Chromafer

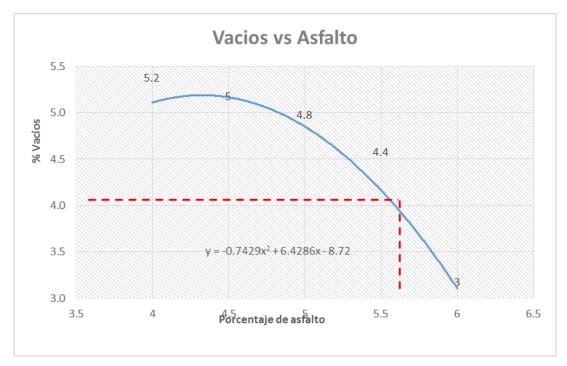
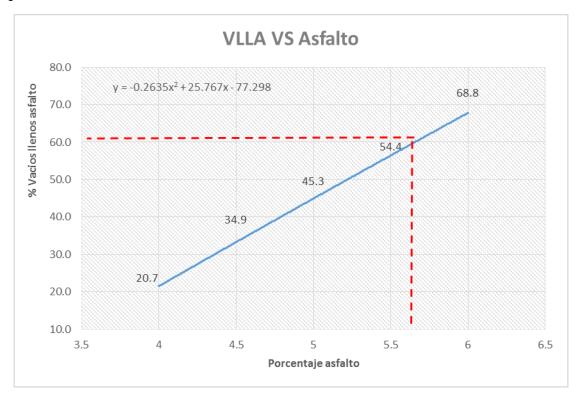



Figura Nº 193 Curva de vacíos llenos con cemento asfáltico con 8% de óxido de cromo Chromafer

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 12% DE ÓXIDO DE CROMO CON PIGMENTO CHROMAFER

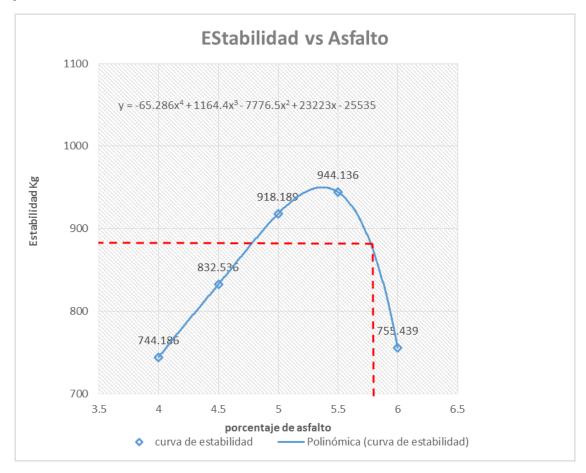

Se determinó una estabilidad de 864.5 Kg, mediante el resultado promedio de 10 briquetas ensayadas en el aparato de Marshall.

Tabla N° 89 Resultado de propiedades mecánicas con 12% de óxido de cromo Chromafer

% ASFALTO		ESTABILIDAD
	4	741.4
	4.5	829.0
	5.2	937.4
	5.8	864.5
	6	748.7

Fuente: Elaboración propia - Excel 2018

Figura Nº 194 Curva de estabilidad con 12% de óxido de cromo Chromafer

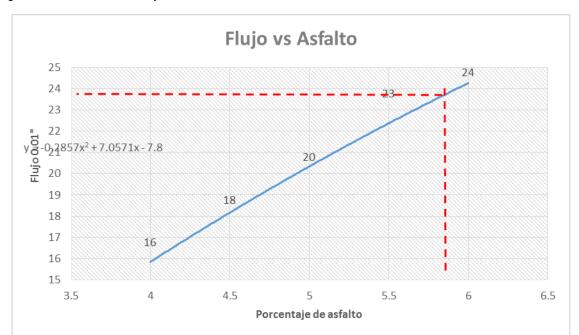
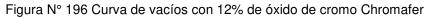




Figura Nº 195 Curva de flujo con 12% de óxido de cromo Chromafer

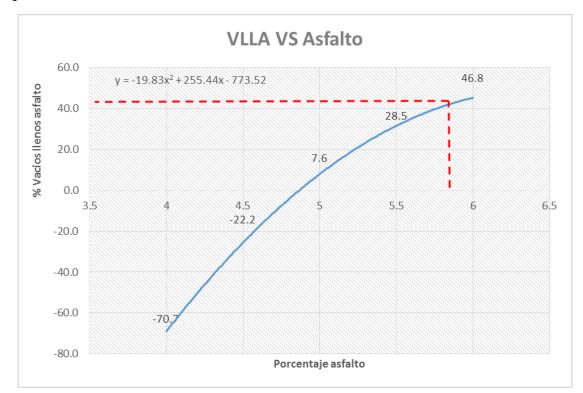


Figura Nº 197 Curva de vacíos llenos con cemento asfáltico con 12% de óxido de cromo Chromafer

RESULTADO DE LA ESTABILIDAD DE LA MUESTRA DOSIFICADA CON 15% DE ÓXIDO DE CROMO CON PIGMENTO CHROMAFER

Se determinó una estabilidad de 721.1 Kg, mediante el resultado promedio de 10 briquetas ensayadas en el aparato de Marshall.

Tabla N° 90 Resultado de las propiedades mecánicas con 15% de óxido de cromo Chromafer

% ASFALTO	ESTABILIDAD
	537.4
4.	587.4
5.	757.9
5.	800.6
	721.1

Figura Nº 198 Curva de estabilidad con 15% de óxido de cromo Chromafer

Figura N° 199 Curva de flujo con 15% de óxido de cromo Chromafer

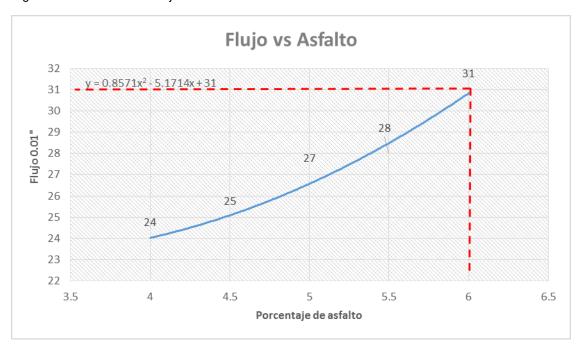


Figura Nº 200 Curva de vacíos con 15% de óxido de cromo Chromafer

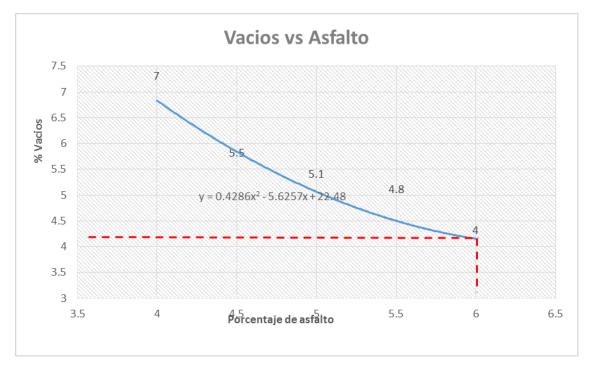
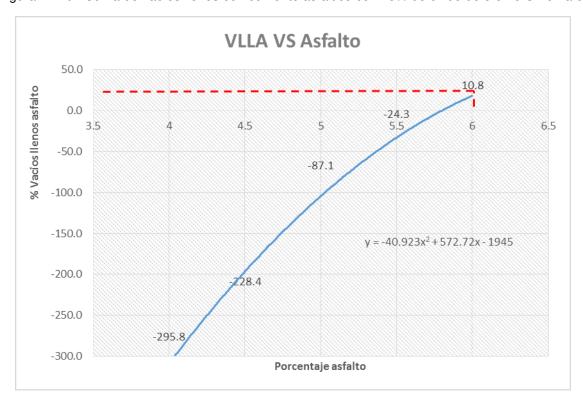
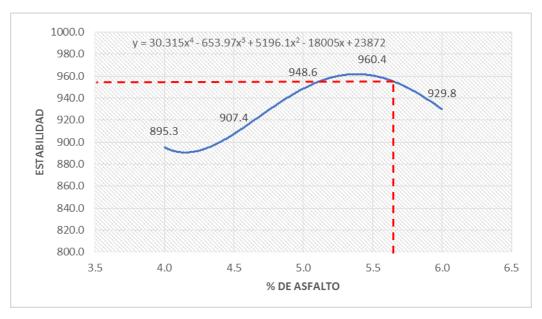
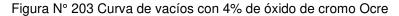



Figura Nº 201 Curva de vacíos llenos con cemento asfáltico con 15% de óxido de cromo Chromafer

RESULTADOS DE ESTABILIDAD POR TIPO DE FLUJO VEHICULAR LIVIANO 35 GOLPES CON ÓXIDO METÁLICO DE CROMO-OCRE

RESULTADO DE LA ESTABILIDAD CON DOSIFICACION DE 4% DE OXIDO DE CROMO – OCRE


Se determinó una estabilidad de 959.4 Kg, mediante el resultado promedio de 10 briquetas ensayadas en el aparato de Marshall.


Tabla Nº 91 Resultado del óptimo contenido asfalto con 4% oxido cromo Ocre

%ASFALTO	ESTABILIDAD
5.2	960.3
5.3	962.9
5.4	963.6
5.5	962.4
5.6	959.4
5.7	954.6
5.8	948.4

Fuente: Elaboración propia - Excel 2018

Figura N° 202 Curva de estabilidad con 4% de óxido de cromo Ocre

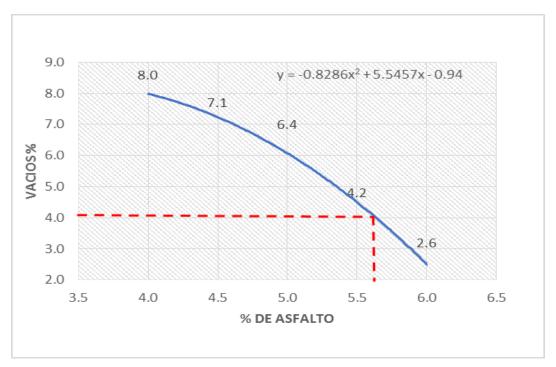
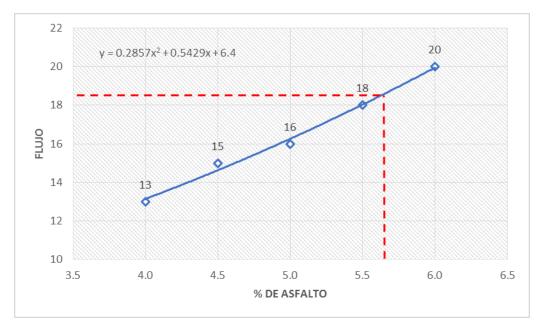



Figura N° 204 Curva de flujo con 4% de óxido de cromo Ocre

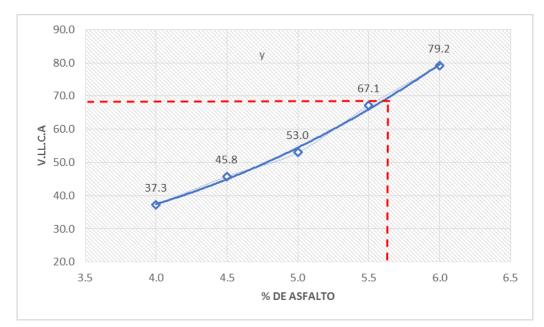


Figura N° 205 Curva de VFA con 4% de óxido de cromo Ocre

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 8% DE ÓXIDO DE CROMO – OCRE

Se determinó una estabilidad de 832 Kg, mediante el resultado promedio de 10 briquetas ensayadas en el aparato de Marshall.

Tabla N° 92 Resultado del óptimo contenido de asfalto con 8% de óxido de cromo Ocre

%ASFALTO	ESTABILIDAD
5.2	836.2
5.3	843.1
5.4	847.6
5.8	832.0
5.6	847.2

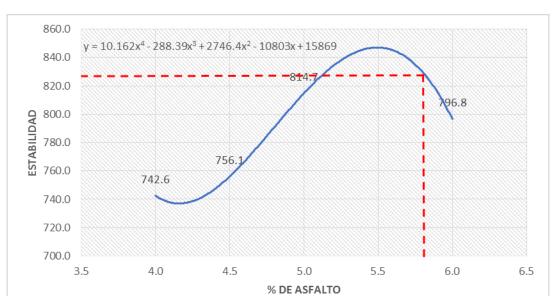
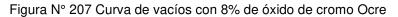
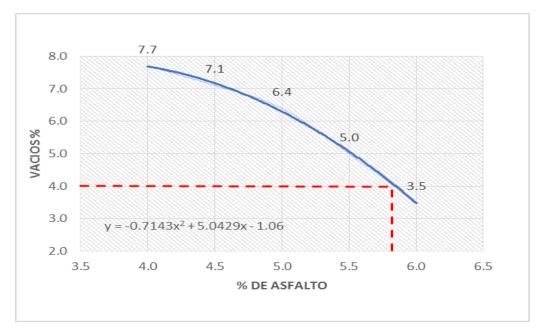
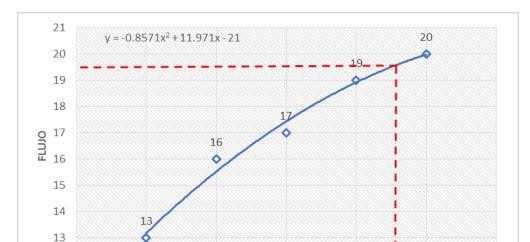
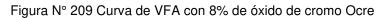





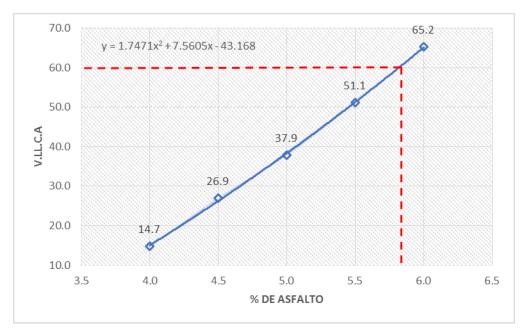
Figura N° 206 Curva de estabilidad con 8% de óxido de cromo Ocre

5.0 % DE ASFALTO 5.5


6.0

6.5

Figura Nº 208 Curva de flujo con 8% de óxido de cromo Ocre


Fuente: Elaboración propia - Excel 2018

12 3.5

4.0

4.5

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 12% DE ÓXIDO DE CROMO – OCRE

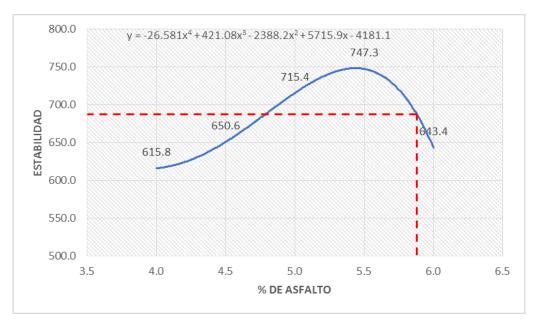
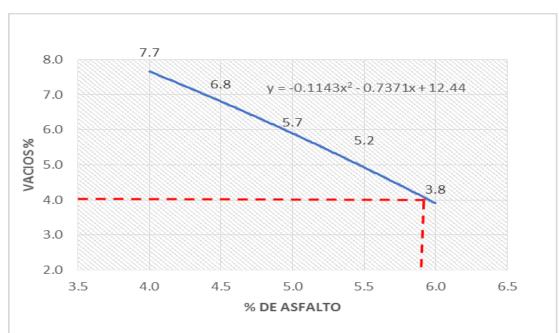

Se determinó una estabilidad de 681.3 Kg, mediante el resultado promedio de 10 briquetas ensayadas en el aparato de Marshall.

Tabla Nº 93 Resultado del óptimo contenido de asfalto con 12% de óxido de cromo Ocre

%ASFALTO	ESTABILIDAD
5.2	736.9
5.3	744.1
5.4	747.8
5.9	681.3
6.0	643.4

Fuente: Elaboración propia - Excel 2018

Figura N° 210 Curva de estabilidad con 12% de óxido de cromo Ocre



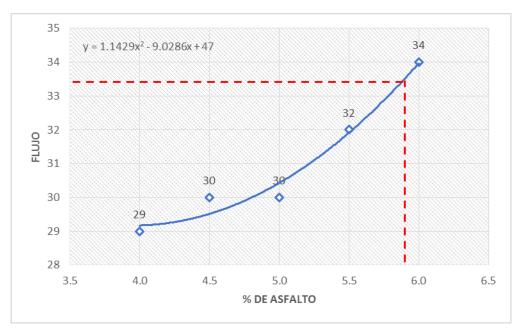


Figura N° 211 Curva de vacíos con 12% de óxido de cromo Ocre

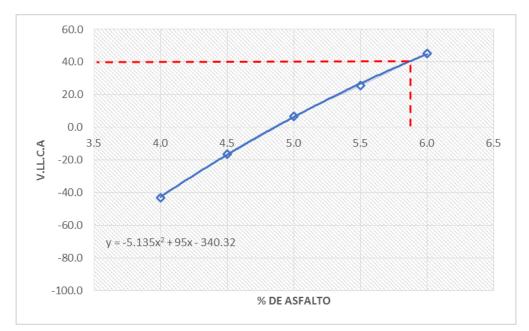


Figura N° 213 Curva de VFA con 12% de óxido de cromo Ocre

RESULTADO DE LA ESTABILIDAD CON DOSIFICACIÓN DE 15% DE ÓXIDO DE CROMO – OCRE

Se determinó una estabilidad de 502.8 Kg, mediante el resultado promedio de 10 briquetas ensayadas en el aparato de Marshall.

Tabla Nº 94 Resultado del óptimo contenido de asfalto con 15% de óxido de cromo Ocre

%ASFALTO	ESTABILIDAD
5.2	525.3
5.3	528.9
5.4	531.5
5.5	532.7
5.6	532.1
6	502.8

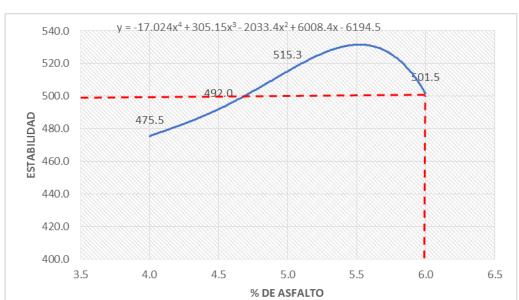
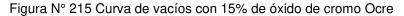
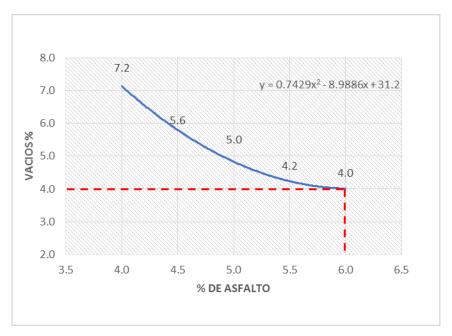




Figura N° 214 Curva de estabilidad con 15% de óxido de cromo Ocre

5.0 **SE ASFALTO**

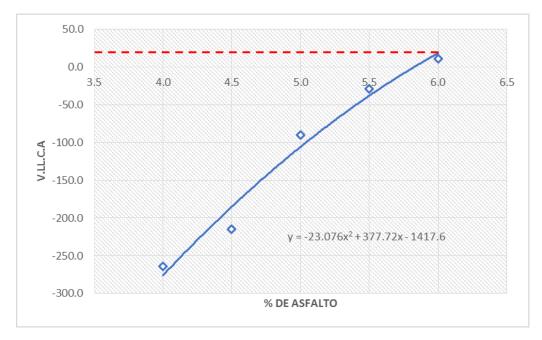
5.5

6.0

6.5

Figura N° 216 Curva de flujo con 15% de óxido de cromo Ocre

Fuente: Elaboración propia - Excel 2018


30 29.5

3.5

4.0

4.5

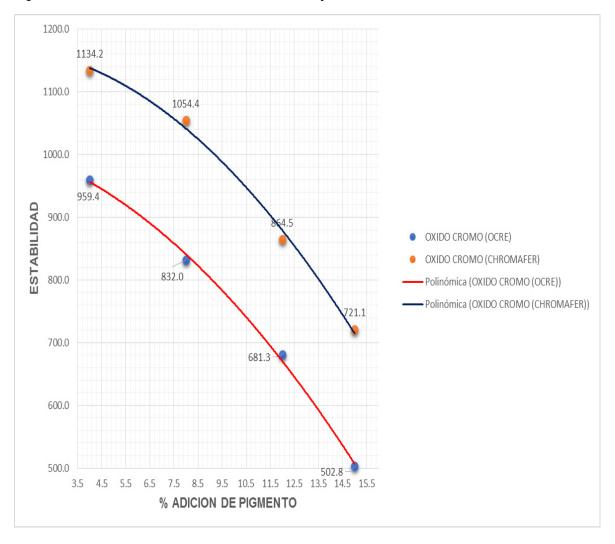
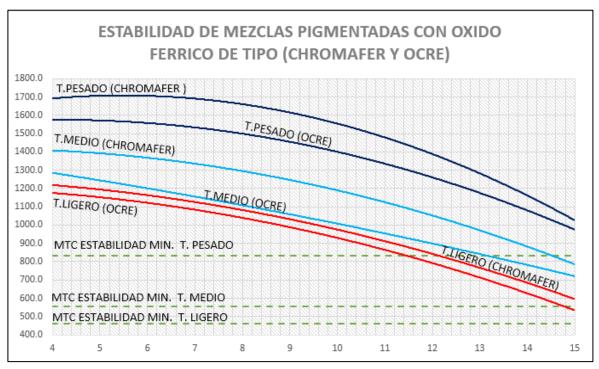
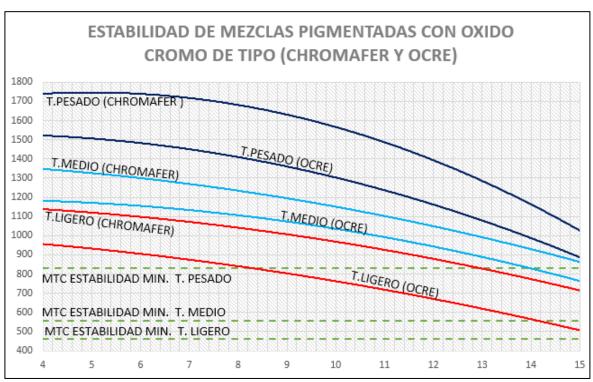

4.2.6 RESULTADO DE ESTABILIDAD DE MAC DISEÑADOS PIGMENTO CHROMAFER Y OCRE PARA FLUJO VEHICULAR LIGERO

Tabla N° 95 Resultado comparativo de la estabilidad entre el OCRE Y CHROMAFER

% DE PIGMENTO	ESTABILIDAD		
	Ocre	Chromafer	
4.0	959.4	1134.2	
8.0	832.0	1054.4	
12.0	681.3	864.5	
15.0	502.8	721.1	


Fuente: Elaboración propia - Excel 2018

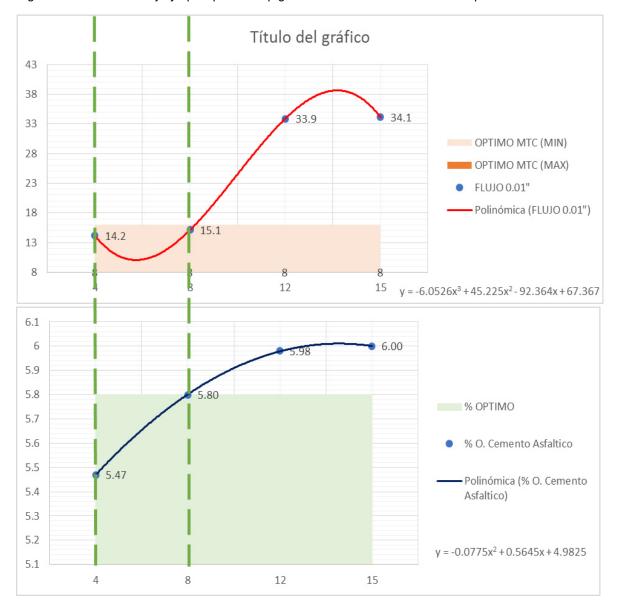

Figura N° 218 Curva de estabilidad entre el Ocre y Chromafer

4.3 RESULTADO DE TIPO DE PIGMENTO (CHROMAFER O OCRE) Y EL PORCENTAJE ÓPTIMO

Se presenta en la gráfica la mejor opción de tipo de pigmento a utilizar entre OCRE – CHROMAFER, se determina mayor estabilidad con uso del CHROMAFER.

4.3.1 PORCENTAJE ÓPTIMO Y TIPO DE PIGMENTO PARA TRÁFICO PESADO (ÓXIDO FÉRRICO)

Figura N° 219 Porcentaje y tipo óptimo de pigmento de óxido metálico férrico para tráfico Pesado

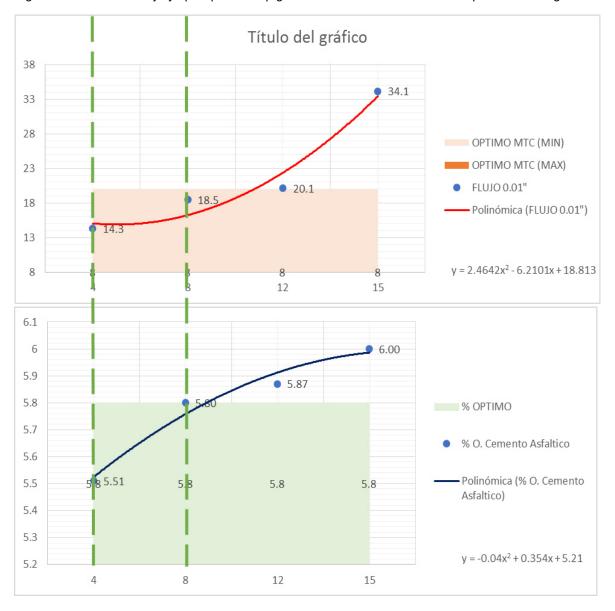

Fuente: Elaboración propia - Excel 2018

De acuerdo a los resultados de la investigación, la obtención del porcentaje optimo y tipo de pigmento a utilizar, para pigmentación de mezclas asfálticas, se consideró la estabilidad, flujo y el porcentaje óptimo de asfalto. El tipo de pigmento es el de Chromafer debido a sus propiedades genera una mayor pigmentación y estabilidad en las mezclas asfálticas en

caliente, obteniendo así que para un tráfico pesado se puede pigmentar una mezcla asfáltica, con el uso máximo del 8% de óxido férrico, que nos da un % óptimo de asfalto de 5.8.

4.3.2 PORCENTAJE ÓPTIMO Y TIPO DE PIGMENTO PARA TRÁFICO MEDIO (ÓXIDO FÉRRICO)

Figura N° 220 Porcentaje y tipo óptimo de pigmento de óxido metálico férrico para tráfico Medio

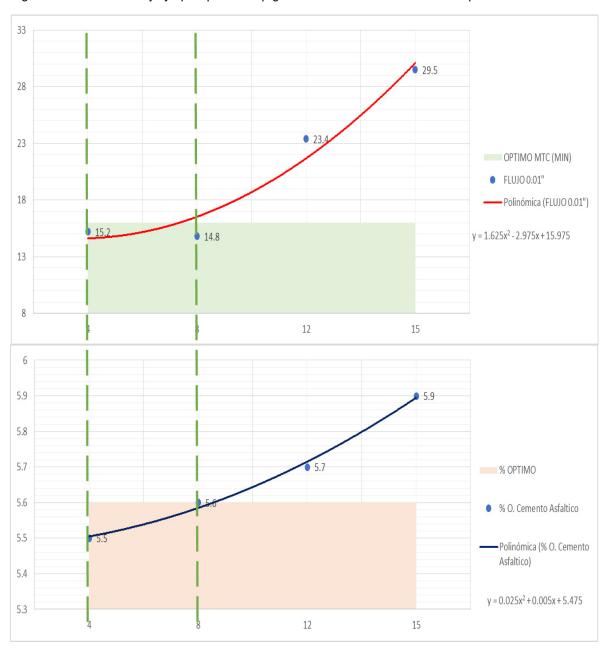

Fuente: Elaboración propia - Excel 2018

De acuerdo a los resultados de la investigación, la obtención del porcentaje optimo y tipo de pigmento a utilizar, para pigmentación de mezclas asfálticas, se consideró la estabilidad, flujo y el porcentaje óptimo de asfalto. El tipo de pigmento es el de Chromafer debido a sus

propiedades genera una mayor pigmentación y estabilidad en las mezclas asfálticas en caliente, obteniendo así que para un tráfico medio se puede pigmentar una mezcla asfáltica, con el uso máximo del 8% de óxido férrico, que nos da un % óptimo de asfalto de 5.80.

4.3.3 PORCENTAJE ÓPTIMO Y TIPO DE PIGMENTO PARA TRÁFICO LIGERO (ÓXIDO FÉRRICO)

Figura N° 221 Porcentaje y tipo óptimo de pigmento de óxido metálico férrico para tráfico Ligero


Fuente: Elaboración propia - Excel 2018

De acuerdo a los resultados de la investigación, la obtención del porcentaje optimo y tipo de pigmento a utilizar, para pigmentación de mezclas asfálticas, se consideró la estabilidad, flujo y el porcentaje óptimo de asfalto. El tipo de pigmento es el de Chromafer debido a sus

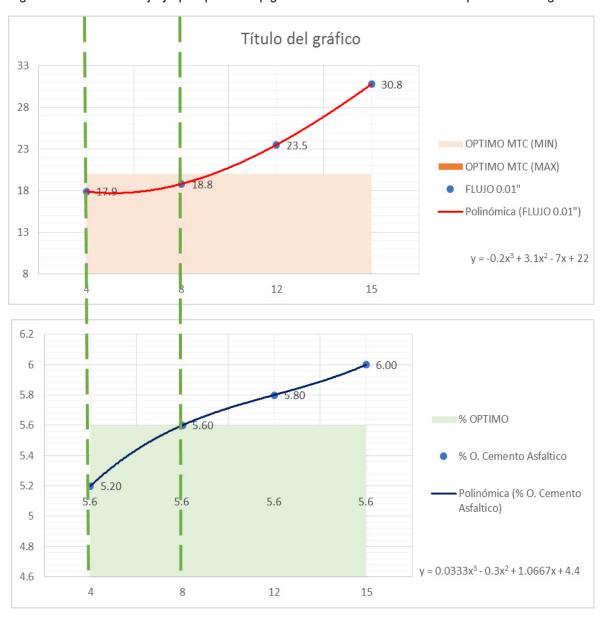
propiedades genera una mayor pigmentación y estabilidad en las mezclas asfálticas en caliente, obteniendo así que para un tráfico ligero se puede pigmentar una mezcla asfáltica, con el uso máximo del 8% de óxido férrico, que nos da un % óptimo de asfalto de 5.8.

4.3.4 PORCENTAJE ÓPTIMO Y TIPO DE PIGMENTO PARA TRÁFICO PESADO (ÓXIDO DE CROMO)

Figura N° 222 Porcentaje y tipo óptimo de pigmento de óxido metálico cromo para tráfico Pesado

De acuerdo a los resultados de la investigación, la obtención del porcentaje optimo y tipo de pigmento a utilizar, para pigmentación de mezclas asfálticas, se consideró la estabilidad, flujo y el porcentaje óptimo de asfalto. El tipo de pigmento es el de Chromafer debido a sus propiedades genera una mayor pigmentación y estabilidad en las mezclas asfálticas en caliente, obteniendo así que para un tráfico pesado se puede pigmentar una mezcla asfáltica, con el uso máximo del 8% de óxido de cromo, que nos da un % óptimo de asfalto de 5.6.

4.3.5 PORCENTAJE ÓPTIMO Y TIPO DE PIGMENTO PARA TRÁFICO MEDIO (ÓXIDO DE CROMO)


Figura N° 223 Porcentaje y tipo óptimo de pigmento de óxido metálico cromo para tráfico Medio

De acuerdo a los resultados de la investigación, la obtención del porcentaje optimo y tipo de pigmento a utilizar, para pigmentación de mezclas asfálticas, se consideró la estabilidad, flujo y el porcentaje óptimo de asfalto. El tipo de pigmento es el de Chromafer debido a sus propiedades genera una mayor pigmentación y estabilidad en las mezclas asfálticas en caliente, obteniendo así que para un tráfico medio se puede pigmentar una mezcla asfáltica, con el uso máximo del 8% de óxido de cromo, que nos da un % óptimo de asfalto de 5.6.

4.3.6 PORCENTAJE ÓPTIMO Y TIPO DE PIGMENTO PARA TRÁFICO LIGERO (ÓXIDO DE CROMO)

Figura Nº 224 Porcentaje y tipo óptimo de pigmento de óxido metálico cromo para tráfico Ligero

De acuerdo a los resultados de la investigación, la obtención del porcentaje optimo y tipo

de pigmento a utilizar, para pigmentación de mezclas asfálticas, se consideró la estabilidad,

flujo y el porcentaje óptimo de asfalto. El tipo de pigmento es el de Chromafer debido a sus

propiedades genera una mayor pigmentación y estabilidad en las mezclas asfálticas en

caliente, obteniendo así que para un tráfico ligero se puede pigmentar una mezcla asfáltica,

con el uso máximo del 8% de óxido de cromo, que nos da un % óptimo de asfalto de 5.6.

4.4 PRUEBA DE HIPOTESIS CON LOS DATOS DE LOS ESPECIMENES

ELABORADOS Y ENSAYADOS.

Debido a que la prueba de hipótesis se basa en la conclusión de si se realiza con una

prueba no paramétrica o paramétrica, en base a concluir si la prueba de normalidad define

a las muestras como distribución normal mediante la probabilidad significancia en base a

criterios de aceptación, como los datos son menores a 50, se evaluó con la prueba de

normalidad de Shapiro Wilk.

Nivel de aplicación: 0.05

Probabilidad de error: 5%

Probabilidad de confianza: 95%

Si la prueba de normalidad se determina que el sig < 0.05 los testigos ensayados por

resistencia a la comprensión no muestran una distribución normal lo cual define que la

prueba para probar la hipótesis debe realizarse con una prueba no paramétrica.

Si la prueba de normalidad se determina que el sig > 0.05 los testigos ensayados por

resistencia a la comprensión si muestran una distribución normal lo cual define que la

prueba para probar la hipótesis debe realizarse con una prueba paramétrica.

199

4.4.1 RESULTADO DE PRUEBA DE NORMALIDAD PARA LA ESTABILIDAD

Tabla N° 96 Análisis descriptivo de los casos

Resumen del procesamiento de los casos							
Porcentaje de pigme	nto (óxido	Casos					
férrico)		V	álidos	Pe	erdidos	Total	
		N	Porcentaj	N	Porcen	N	Porcentaje
			е		taje		
Resistencia a la	4	10	100.0%	0	0.0%	10	100.0%
deformación	8	10	100.0%	0	0.0%	10	100.0%
(tráfico pesado-	12	10	100.0%	0	0.0%	10	100.0%
chromafer férrico)	15	10	100.0%	0	0.0%	10	100.0%
Resistencia a la	4	10	100.0%	0	0.0%	10	100.0%
deformación	8	10	100.0%	0	0.0%	10	100.0%
(tráfico medio-	12	10	100.0%	0	0.0%	10	100.0%
chromafer férrico)	15	10	100.0%	0	0.0%	10	100.0%
Resistencia a la	4	10	100.0%	0	0.0%	10	100.0%
deformación	8	10	100.0%	0	0.0%	10	100.0%
(tráfico ligero	12	10	100.0%	0	0.0%	10	100.0%
chromafer férrico)	15	10	100.0%	0	0.0%	10	100.0%
Resistencia a la	4	10	100.0%	0	0.0%	10	100.0%
deformación	8	10	100.0%	0	0.0%	10	100.0%
(tráfico pesado-	12	10	100.0%	0	0.0%	10	100.0%
ocre férrico)	15	10	100.0%	0	0.0%	10	100.0%
Resistencia a la	4	10	100.0%	0	0.0%	10	100.0%
deformación	8	10	100.0%	0	0.0%	10	100.0%
(trafico medio-ocre	12	10	100.0%	0	0.0%	10	100.0%
férrico)	15	10	100.0%	0	0.0%	10	100.0%
Resistencia a la	4	10	100.0%	0	0.0%	10	100.0%
deformación	8	10	100.0%	0	0.0%	10	100.0%
(tráfico ligero-ocre	12	10	100.0%	0	0.0%	10	100.0%
férrico)	15	10	100.0%	0	0.0%	10	100.0%

Tabla Nº 97 Análisis descriptivo de los resultados de la investigación (Estabilidad Óxido Férrico)

	Descriptivos					
Porcentaje de	pigmei	nto (óxido férrico)		Estadístico	Error	
	T				típ.	
Resistencia	4	Media	T	1717.0800	.70974	
a la		Intervalo de confianza para la media al	Límite	1715.4745		
deformación		95%	inferior			
(tráfico			Límite	1718.6855		
pesado-			superior			
chromafer		Media recortada al 5%		1717.0889		
férrico)		Mediana		1717.0500		
		Varianza		5.037		
		Desv. típ.		2.24440		
		Mínimo		1713.60		
		Máximo		1720.40		
		Rango		6.80		
		Amplitud intercuartil		4.20		
		Asimetría		059	.687	
		Curtosis		-1.045	1.334	
	8	Media	T	1649.6400	.88383	
		Intervalo de confianza para la media al	Límite	1647.6406		
		95%	inferior			
			Límite	1651.6394		
			superior			
		Media recortada al 5%		1649.6889		
		Mediana		1650.1000		
		Varianza		7.812		
		Desv. típ.		2.79492		
		Mínimo		1645.20		
		Máximo		1653.20		
		Rango		8.00		
		Amplitud intercuartil		4.35		
		Asimetría		586	.687	
		Curtosis		801	1.334	
	12	Media		1404.0200	1.43958	
1		Intervalo de confianza para la media al	Límite	1400.7634		
		95%	inferior			

			Límite	1407.2766	
			superior	1107.2700	
		Media recortada al 5%		1404.0833	
		Mediana		1404.9000	
		Varianza		20.724	
		Desv. típ.		4.55236	
		Mínimo		1397.40	
		Máximo		1409.50	
		Rango		12.10	
		Amplitud intercuartil		7.98	
		Asimetría		361	.687
		Curtosis		-1.585	1.334
	15	Media		1072.4700	1.85209
		Intervalo de confianza para la media al	Límite	1068.2803	
		95%	inferior		
			Límite	1076.6597	
			superior		
		Media recortada al 5%		1072.3056	
		Mediana		1071.0500	
		Varianza	34.302		
		Desv. típ.			
		Mínimo		1066.60	
		Máximo		1081.30	
		Rango	14.70		
		Amplitud intercuartil		11.50	
		Asimetría		.346	.687
		Curtosis		-1.838	1.334
Resistencia	4	Media	T	1415.8600	1.04192
a la		Intervalo de confianza para la media al	Límite	1413.5030	
deformación		95%	inferior		
(tráfico			Límite	1418.2170	
medio-			superior		
chromafer		Media recortada al 5%		1415.8056	
férrico)		Mediana		1416.3000	
		Varianza		10.856	
		Desv. típ.		3.29484	
		Mínimo		1411.50	
		Máximo		1421.20	
		Rango		9.70	

	Amplitud intercuartil		6.00	
	Asimetría		.152	.687
	Curtosis		-1.054	1.334
8	Media		1351.1600	1.13296
	Intervalo de confianza para la media al 95%	Límite inferior	1348.5971	
		Límite superior	1353.7229	
	Media recortada al 5%		1351.2444	
	Mediana		1350.7500	
	Varianza		12.836	
	Desv. típ.		3.58274	
	Mínimo		1345.30	
	Máximo		1355.50	
	Rango		10.20	
	Amplitud intercuartil		6.70	
	Asimetría		203	.687
	Curtosis		935	1.334
12	Media		1105.4460	.76221
	Intervalo de confianza para la media al 95%	Límite inferior	1103.7218	
		Límite superior	1107.1702	
	Media recortada al 5%		1105.5178	
	Mediana		1106.1800	
	Varianza		5.810	
	Desv. típ.		2.41031	
	Mínimo		1101.20	
	Máximo		1108.40	
	Rango		7.20	
	Amplitud intercuartil		4.45	
	Asimetría		511	.687
	Curtosis		-1.020	1.334
15	Media	T	773.5600	.76073
	Intervalo de confianza para la media al 95%	Límite inferior	771.8391	
		Límite superior	775.2809	
	Media recortada al 5%	- >b=s.	773.5444	

		Mediana		773.2500	
		Varianza	5.787		
		Desv. típ.		2.40564	
		Mínimo		770.20	
		Máximo		777.20	
		Rango		7.00	
		Amplitud intercuartil		4.48	
		Asimetría		.305	.687
		Curtosis		-1.184	1.334
Resistencia	4	Media		1269.9500	.60978
a la	4		Límite	1269.9300	.00976
deformación		Intervalo de confianza para la media al 95%		1200.5700	
(tráfico		95%	inferior	1071 0004	
ligero			Límite	1271.3294	
chromafer		Madia recepted at 50/	superior	1000 0044	
férrico)		Media recortada al 5% Mediana		1269.9944 1270.0500	
ierrico)					
		Varianza Popu típ		3.718 1.92830	
		Desv. típ.			
		Mínimo		1266.60	
		Máximo		1272.50	
		Rango		5.90	
		Amplitud intercuartil		3.08	
		Asimetría		478	.687
		Curtosis		414	1.334
	8	Media		1151.2000	.59926
		Intervalo de confianza para la media al	Límite	1149.8444	
		95%	inferior		
			Límite	1152.5556	
		AA 1:	superior	4454 0000	
		Media recortada al 5%		1151.2222	
		Mediana		1151.8000	
		Varianza		3.591	
		Desv. típ.		1.89502	
		Mínimo		1148.30	
		Máximo		1153.70	
		Rango		5.40	
		Amplitud intercuartil		3.18	
		Asimetría		372	.687
		Curtosis		-1.265	1.334

	12	Media		945.1400	.50513
		Intervalo de confianza para la media al	Límite	943.9973	
		95%	inferior		
			Límite	946.2827	
			superior		
		Media recortada al 5%		945.2111	
		Mediana		945.6500	
		Varianza		2.552	
		Desv. típ.		1.59736	
		Mínimo		942.30	
		Máximo		946.70	
		Rango		4.40	
		Amplitud intercuartil		3.10	
		Asimetría		731	.687
		Curtosis		947	1.334
	15	Media		570.8400	.49423
		Intervalo de confianza para la media al	Límite	569.7220	
		95%	inferior		
			Límite	571.9580	
			superior		
		Media recortada al 5%		570.8222	
		Mediana		571.0500	
		Varianza		2.443	
		Desv. típ.		1.56290	
		Mínimo		568.80	
		Máximo		573.20	
		Rango		4.40	
		Amplitud intercuartil		2.95	
		Asimetría		.033	.687
		Curtosis		-1.669	1.334
Resistencia	4	Media		1196.1500	.76191
a la		Intervalo de confianza para la media al	Límite	1194.4265	
deformación		95%	inferior		
(tráfico			Límite	1197.8735	
pesado-			superior		
ocre férrico)		Media recortada al 5%		1196.1056	
		Mediana		1196.0500	
		Varianza		5.805	
		Desv. típ.		2.40936	

		Mínimo		1192.50	
		Máximo		1200.60	
		Rango		8.10	
	Amplitud intercuartil		3.83		
		Asimetría		.291	.687
		Curtosis		135	1.334
	8	Media		1121.8900	.76890
		Intervalo de confianza para la media al	Límite	1120.1506	.70000
		95%	inferior	1120.1000	
		0070	Límite	1123.6294	
			superior	1120.0201	
		Media recortada al 5%	Саропо	1122.0111	
		Mediana Mediana		1122.2500	
		Varianza		5.912	
		Desv. típ.		2.43148	
		Mínimo		1116.70	
		Máximo		1124.90	
	•	Rango		8.20	
	•	Amplitud intercuartil		3.65	
	•	Asimetría		949	.687
	•	Curtosis		1.189	1.334
	12	Media		893.8100	.67863
		Intervalo de confianza para la media al	Límite	892.2748	
		95%	inferior		
			Límite	895.3452	
			superior		
		Media recortada al 5%		893.8167	
		Mediana		893.6500	
		Varianza		4.605	
		Desv. típ.		2.14603	
		Mínimo		890.70	
		Máximo		896.80	
		Rango		6.10	
		Amplitud intercuartil		3.90	
		Asimetría		040	.687
		Curtosis		-1.425	1.334
	15	Media		567.7600	.83483
		Intervalo de confianza para la media al	Límite	565.8715	
		95%	inferior		

			Límite	569.6485	
			superior		
		Media recortada al 5%		567.8444	
		Mediana		567.9500	
		Varianza		6.969	
		Desv. típ.		2.63995	
		Mínimo		562.20	
		Máximo		571.80	
		Rango		9.60	
		Amplitud intercuartil		3.08	
		Asimetría		712	.687
		Curtosis		1.367	1.334
Resistencia	4	Media		1397.6600	.49871
a la		Intervalo de confianza para la media al	Límite	1396.5318	
deformación		95%	inferior		
(tráfico			Límite	1398.7882	
medio-ocre			superior		
férrico)		Media recortada al 5%		1397.6389	
		Mediana		1397.4500	
		Varianza		2.487	
		Desv. típ.	1.57706		
		Mínimo	1395.50		
		Máximo	1400.20		
		Rango		4.70	
		Amplitud intercuartil		2.90	
		Asimetría		.246	.687
		Curtosis		-1.292	1.334
	8	Media		1317.4800	.96768
		Intervalo de confianza para la media al	Límite	1315.2910	
		95%	inferior		
			Límite	1319.6690	
			superior		
		Media recortada al 5%		1317.5389	
		Mediana		1317.5000	
		Varianza		9.364	
		Desv. típ.		3.06007	
		Mínimo		1312.70	
		Máximo		1321.20	
		Rango		8.50	

		Amplitud intercuartil		5.50	
		Asimetría		373	.687
		Curtosis		-1.168	1.334
	12	Media		1091.3100	.60378
		Intervalo de confianza para la media al	Límite	1089.9442	
		95%	inferior		
			Límite	1092.6758	
			superior		
		Media recortada al 5%		1091.3000	
		Mediana		1091.5000	
		Varianza		3.645	
		Desv. típ.		1.90930	
		Mínimo		1088.50	
		Máximo		1094.30	
		Rango		5.80	
		Amplitud intercuartil		3.43	
		Asimetría		.090	.687
		Curtosis		938	1.334
	15	Media		764.6800	.66697
		Intervalo de confianza para la media al 95%	Límite	763.1712	
			inferior		
			Límite	766.1888	
			superior		
		Media recortada al 5%		764.7778	
		Mediana		765.1500	
		Varianza			
		Desv. típ.		2.10913	
		Mínimo		760.30	
		Máximo		767.30	
		Rango		7.00	
		Amplitud intercuartil		2.90	
		Asimetría		961	.687
		Curtosis		.666	1.334
Resistencia	4	Media	T	1194.1000	.87101
a la		Intervalo de confianza para la media al	Límite	1192.1296	
deformación		95%	inferior		
(tráfico			Límite	1196.0704	
ligero-ocre			superior		
férrico)		Media recortada al 5%		1194.0111	

	Mediana		1193.1000	
	Varianza			
			7.587 2.75439	
	Desv. típ. Mínimo		1191.40	
	Máximo		1198.40	
	Rango		7.00	
	· ·			
	Amplitud intercuartil		5.45	007
	Asimetría		.723	.687
	Curtosis		-1.144	1.334
8	Media	1.6	1117.7800	.88604
	Intervalo de confianza para la media al	Límite	1115.7756	
	95%	inferior	4440 7044	
		Límite	1119.7844	
	M. II	superior	4447.0444	
	Media recortada al 5%		1117.6444	
	Mediana		1116.9500	
	Varianza		7.851	
	Desv. típ.		2.80190	
	Mínimo		1115.20	
	Máximo		1122.80	
	Rango		7.60	
	Amplitud intercuartil		4.13	
	Asimetría		1.207	.687
	Curtosis		.216	1.334
12	Media		894.0600	.57372
	Intervalo de confianza para la media al	Límite	892.7622	
	95%	inferior		
		Límite	895.3578	
		superior		
	Media recortada al 5%		894.0222	
	Mediana		893.8500	
	Varianza		3.292	
	Desv. típ.		1.81426	
	Mínimo		892.20	
	Máximo		896.60	
	Rango		4.40	
	Amplitud intercuartil		3.45	
	Asimetría		.147	.687
	Curtosis		-2.197	1.334

15	Media	566.6900	.70419	
	Intervalo de confianza para la media al	Límite	565.0970	
	95%	inferior		
		Límite	568.2830	
		superior		
	Media recortada al 5%		566.7222	
	Mediana		567.0500	
	Varianza		4.959	
	Desv. típ.		2.22683	
	Mínimo		562.60	
	Máximo		570.20	
	Rango		7.60	
	Amplitud intercuartil		3.05	
	Asimetría		285	.687
	Curtosis		.115	1.334

Tabla Nº 98 Prueba Normalidad (Óxido Férrico)

	Pruebas de normalidad							
Porcentaje de pigmento	(óxido férrico)	Kolmogoro	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
		Estadístico	gl	Sig.	Estadístico	Estadístico gl		
Resistencia a la	4	.116	10	.200*	.974	10	.922	
deformación (tráfico	8	.158	10	.200*	.916	10	.327	
pesado-chormafer	12	.258	10	.059	.882	10	.136	
férrico)	15	.240	10	.107	.850	10	.057	
Resistencia a la	4	.153	10	.200*	.947	10	.635	
deformación (tráfico	8	.170	10	.200*	.928	10	.424	
medio-chromafer	12	.199	10	.200*	.927	10	.415	
férrico)	15	.140	10	.200*	.948	10	.645	
Resistencia a la	4	.149	10	.200*	.943	10	.589	
deformación (trafico	8	.201	10	.200*	.929	10	.440	
ligero chromafer	12	.183	10	.200*	.878	10	.124	
férrico)	15	.209	10	.200*	.911	10	.289	
Resistencia a la	4	.103	10	.200*	.985	10	.985	
deformación (tráfico	8	.151	10	.200*	.929	10	.442	
pesado-ocre férrico)	12	.156	10	.200*	.949	10	.653	
	15	.177	10	.200*	.950	10	.674	
	4	.149	10	.200*	.951	10	.686	

Resistencia a la	8	.176	10	.200*	.926	10	.411
deformación (tráfico	12	.141	10	.200*	.965	10	.843
medio-ocre férrico)	15	.186	10	.200*	.930	10	.445
Resistencia a la	4	.242	10	.101	.850	10	.059
deformación (tráfico	8	.226	10	.161	.814	10	.022
ligero-ocre férrico)	12	.290	10	.017	.808	10	.018
	15	.141	10	.200*	.979	10	.959

Tabla Nº 99 Análisis estadístico descriptivo de los resultados de investigación (Estabilidad Oxido Cromo)

	Resume	n del pro	ocesamiento d	e los ca	asos			
Porcentaje de pigm	nento (óxido de		Casos					
cromo)		Válidos		Perdidos		Total		
		N	Porcentaje	N	Porcentaje	N	Porcentaje	
Resistencia a la	4	10	100.0%	0	0.0%	10	100.0%	
deformación	8	10	100.0%	0	0.0%	10	100.0%	
(tráfico pesado-	12	10	100.0%	0	0.0%	10	100.0%	
chormafer	15	10	100.0%	0	0.0%	10	100.0%	
cromo)								
Resistencia a la	4	10	100.0%	0	0.0%	10	100.0%	
deformación	8	10	100.0%	0	0.0%	10	100.0%	
(tráfico medio-	12	10	100.0%	0	0.0%	10	100.0%	
chromafer	15	10	100.0%	0	0.0%	10	100.0%	
cromo)								
Resistencia a la	4	10	100.0%	0	0.0%	10	100.0%	
deformación	8	10	100.0%	0	0.0%	10	100.0%	
(tráfico ligero	12	10	100.0%	0	0.0%	10	100.0%	
chromafer	15	10	100.0%	0	0.0%	10	100.0%	
cromo)								
Resistencia a la	4	10	100.0%	0	0.0%	10	100.0%	
deformación	8	10	100.0%	0	0.0%	10	100.0%	
(tráfico pesado-	12	10	100.0%	0	0.0%	10	100.0%	
ocre cromo)	15	10	100.0%	0	0.0%	10	100.0%	
Resistencia a la	4	10	100.0%	0	0.0%	10	100.0%	
deformación	8	10	100.0%	0	0.0%	10	100.0%	
(tráfico medio-	12	10	100.0%	0	0.0%	10	100.0%	
ocre cromo)	15	10	100.0%	0	0.0%	10	100.0%	

Resistencia a la	4	10	100.0%	0	0.0%	10	100.0%
deformación	8	10	100.0%	0	0.0%	10	100.0%
(tráfico ligero-	12	10	100.0%	0	0.0%	10	100.0%
ocre cromo)	15	10	100.0%	0	0.0%	10	100.0%

Tabla N° 100 Análisis descriptivo de resultado de experimento (Estabilidad – Óxido de Cromo)

		Descriptivos			
Porcentaje de pigmento	(óxido de cro	omo)		Estadístico	Error típ.
Resistencia a la	4	Media		1748.8300	.94939
deformación (tráfico		Intervalo de confianza	Límite	1746.6823	
pesado-chormafer		para la media al 95%	inferior		
cromo)			Límite	1750.9777	
			superior		
		Media recortada al 5%		1748.9222	
		Mediana	1748.4000		
		Varianza	9.013		
		Desv. típ.	3.00224		
		Mínimo	1743.20		
		Máximo	1752.80		
		Rango		9.60	
		Amplitud intercuartil		4.48	
		Asimetría	378	.687	
		Curtosis	319	1.334	
	8	Media	_	1687.2500	.68187
		Intervalo de confianza	Límite	1685.7075	
		para la media al 95%	inferior		
			Límite	1688.7925	
			superior		
		Media recortada al 5%		1687.2556	
		Mediana		1687.4000	
		Varianza		4.649	
		Desv. típ.		2.15626	
		Mínimo		1684.20	
		Máximo		1690.20	
		Rango		6.00	
		Amplitud intercuartil		4.23	

		Asimetría		.027	.687
		Curtosis		-1.706	1.334
	12	Media		1440.5800	.81156
		Intervalo de confianza	Límite	1438.7441	
		para la media al 95%	inferior		
			Límite	1442.4159	
			superior		
		Media recortada al 5%		1440.4000	
		Mediana		1439.5000	
		Varianza		6.586	
		Desv. típ.		2.56636	
		Mínimo		1438.10	
		Máximo	1446.30		
		Rango		8.20	
		Amplitud intercuartil	2.90		
		Asimetría	1.453	.687	
		Curtosis	1.808	1.334	
	15	Media		1063.1700	.64637
		Intervalo de confianza	Límite	1061.7078	
		para la media al 95%	inferior		
			Límite	1064.6322	
			superior		
		Media recortada al 5%		1063.0833	
		Mediana		1062.8500	
		Varianza		4.178	
		Desv. típ.		2.04399	
		Mínimo		1060.60	
		Máximo		1067.30	
		Rango		6.70	
		Amplitud intercuartil		3.10	
		Asimetría		.856	.687
		Curtosis		.485	1.334
Resistencia a la	4	Media	ı	1405.6300	.78146
deformación (tráfico		Intervalo de confianza	Límite	1403.8622	
medio-chromafer		para la media al 95%	inferior		
cromo)			Límite	1407.3978	
			superior		
		Media recortada al 5%		1405.4444	
		Mediana		1404.5500	

	Vavian		0.407	
	Varianza		6.107	
	Desv. típ.		2.47119	
	Mínimo		1403.30	
	Máximo _		1411.30	
	Rango		8.00	
	Amplitud intercuartil		3.05	
	Asimetría		1.492	.687
	Curtosis		2.228	1.334
8	Media		1370.9700	.78160
	Intervalo de confianza	Límite	1369.2019	
	para la media al 95%	inferior		
		Límite	1372.7381	
		superior		
	Media recortada al 5%		1370.8556	
	Mediana	Mediana		
	Varianza	6.109		
	Desv. típ.	Desv. típ.		
	Mínimo	Mínimo		
	Máximo		1375.50	
	Rango		7.00	
	Amplitud intercuartil		3.85	
	Asimetría	a		.687
	Curtosis		550	1.334
12	Media		1102.5300	.84749
	Intervalo de confianza	Límite	1100.6129	
	para la media al 95%	inferior		
		Límite	1104.4471	
		superior		
	Media recortada al 5%		1102.6667	
	Mediana		1103.2500	
	Varianza		7.182	
	Desv. típ.		2.67999	
	Mínimo		1097.10	
	Máximo			
	Rango			
	Amplitud intercuartil		8.40 4.65	
	Asimetría		924	.687
	Curtosis		.268	1.334
15	Media		972.1400	.75251
13	ivicala		012.1700	.70201

		Intervalo de confianza	Límite	970.4377	
		para la media al 95%	inferior	970.4377	
		para la media ai 3376	Límite	973.8423	
			superior	973.0423	
		Media recortada al 5%	Зарено	972.0722	
		Mediana		971.2500	
		Varianza		5.663	
		Desv. típ.		2.37964	
		Mínimo		969.60	
		Máximo		975.90	
		Rango		6.30	
		Amplitud intercuartil		4.77	
		Asimetría		.699	.687
		Curtosis		-1.301	1.334
Resistencia a la	4	Media		1270.6600	.56671
deformación (tráfico		Intervalo de confianza	Límite	1269.3780	
ligero chromafer		para la media al 95%	inferior		
cromo)			Límite	1271.9420	
			superior		
		Media recortada al 5%		1270.6167	
		Mediana		1270.5500	
		Varianza		3.212	
		Desv. típ.		1.79208	
		Mínimo		1268.30	
		Máximo		1273.80	
		Rango		5.50	
		Amplitud intercuartil		2.95	
		Asimetría		.283	.687
		Curtosis		858	1.334
	8	Media		1129.4900	.70781
		Intervalo de confianza	Límite	1127.8888	
		para la media al 95%	inferior		
			Límite	1131.0912	
			superior		
		Media recortada al 5%		1129.5778	
		Mediana		1129.9000	
		Varianza		5.010	
		Desv. típ.		2.23828	
		Mínimo		1125.50	

		Máximo		1131.90	
		Rango		6.40	
		Amplitud intercuartil		3.68	
		Asimetría		620	.687
		Curtosis		849	1.334
	12	Media		923.6000	.77589
		Intervalo de confianza	Límite	921.8448	
		para la media al 95%	inferior		
			Límite	925.3552	
			superior		
		Media recortada al 5%		923.6222	
		Mediana		923.6000	
		Varianza		6.020	
		Desv. típ.		2.45357	
		Mínimo		920.10	
		Máximo		926.70	
		Rango		6.60	
		Amplitud intercuartil		4.73	
		Asimetría		067	.687
		Curtosis		-1.028	1.334
	15	Media	1	752.8300	.57233
		Intervalo de confianza	Límite	751.5353	
		para la media al 95%	inferior		
			Límite	754.1247	
			superior		
		Media recortada al 5%		752.8944	
		Mediana		753.1000	
		Varianza		3.276	
		Desv. típ.		1.80988	
		Mínimo		749.30	
		Máximo		755.20	
		Rango		5.90	
		Amplitud intercuartil		2.93	
		Asimetría		651	.687
		Curtosis		037	1.334
Resistencia a la	4	Media	1	1696.9300	.56668
deformación (tráfico		Intervalo de confianza	Límite	1695.6481	
pesado-ocre cromo)		para la media al 95%	inferior		

			1.6	1000 0110	
			Límite	1698.2119	
		M P	superior	1000 0700	
		Media recortada al 5%		1696.9500	
		Mediana		1697.1500	
		Varianza		3.211	
		Desv. típ.	1.79199		
		Mínimo		1694.40	
		Máximo		1699.10	
		Rango		4.70	
		Amplitud intercuartil		3.45	
		Asimetría		297	.687
_		Curtosis		-1.678	1.334
	8	Media	<u> </u>	1619.7000	.69522
		Intervalo de confianza	Límite	1618.1273	
		para la media al 95%	inferior		
			Límite	1621.2727	
			superior		
		Media recortada al 5% Mediana		1619.7500	
				1620.7500	
		Varianza	4.833		
		Desv. típ.	2.19848		
		Mínimo		1616.70	
		Máximo		1621.80	
		Rango		5.10	
		Amplitud intercuartil		4.50	
		Asimetría		509	.687
		Curtosis		-1.846	1.334
	12	Media		1388.1400	.84238
		Intervalo de confianza	Límite	1386.2344	
		para la media al 95%	inferior		
			Límite	1390.0456	
			superior		
		Media recortada al 5%		1388.0278	
		Mediana		1387.0000	
		Varianza		7.096	
		Desv. típ.		2.66383	
		Mínimo		1385.40	
		Máximo		1392.90	
		Rango		7.50	

		Amplitud intercuartil		4.37	
		Asimetría		.682	.687
		Curtosis		986	1.334
	15	Media		1064.0500	.84712
		Intervalo de confianza	Límite	1062.1337	
		para la media al 95%	inferior	1005.000	
			Límite	1065.9663	
		superior		1004.0044	
		Media recortada al 5%		1064.0944	
		Mediana	1064.7500		
		Varianza	7.176		
		Desv. típ.		2.67883	
		Mínimo		1060.60	
		Máximo		1066.70	
		Rango	6.10		
		Amplitud intercuartil	5.75	007	
		Asimetría		314	.687
Desistancia a la	4	Curtosis	-2.005	1.334	
Resistencia a la	4	Media	Lúnaite	1396.1600	.53608
deformación (tráfico medio-ocre cromo)		Intervalo de confianza	Límite	1394.9473	
medio-ocie ciomo)		para la media al 95%	inferior Límite	1397.3727	
			superior	1397.3727	
		Media recortada al 5%		1396.0611	
		Mediana		1395.5000	
		Varianza		2.874	
		Desv. típ.		1.69522	
		Mínimo		1394.50	
		Máximo		1399.60	
		Rango		5.10	
		Amplitud intercuartil		2.00	
		Asimetría		1.263	.687
		Curtosis		.741	1.334
	8	Media	1	1316.6100	.80808
		Intervalo de confianza	Límite	1314.7820	
	para la media al 95%	para la media al 95%	inferior		
			Límite	1318.4380	
			superior		
		Media recortada al 5%		1316.6333	

	Mediana		1317.5500	
	Varianza		6.530	
	Desv. típ.		2.55536	
	Mínimo		1312.30	
	Máximo		1312.30	
	Rango		8.20	
	Amplitud intercuartil		4.18	007
	Asimetría		299	.687
4.0	Curtosis		871	1.334
12	Media		1091.9800	.63084
	Intervalo de confianza	Límite	1090.5529	
	para la media al 95%	inferior		
		Límite	1093.4071	
		superior		
	Media recortada al 5%		1091.9778	
	Mediana		1092.4500	
	Varianza		3.980	
	Desv. típ.		1.99488	
	Mínimo		1089.50	
	Máximo		1094.50	
	Rango		5.00	
	Amplitud intercuartil		4.08	
	Asimetría		174	.687
	Curtosis		-1.992	1.334
15	Media	T	764.8100	.51993
	Intervalo de confianza	Límite	763.6338	
	para la media al 95%	inferior		
		Límite	765.9862	
		superior		
	Media recortada al 5%		764.8222	
	Mediana		764.9000	
	Varianza		2.703	
	Desv. típ.		1.64415	
	Mínimo		762.30	
	Máximo		767.10	
	Rango		4.80	
	Amplitud intercuartil		2.98	
	Asimetría		077	.687
	Curtosis		-1.560	1.334

Resistencia a la	4	Media		1195.8500	.40886
deformación (tráfico		Intervalo de confianza	Límite	1194.9251	
ligero-ocre cromo)		para la media al 95%	inferior		
			Límite	1196.7749	
			superior		
		Media recortada al 5%		1195.8611	
		Mediana		1196.1000	
		Varianza		1.672	
		Desv. típ.		1.29293	
		Mínimo		1193.90	
		Máximo		1197.60	
		Rango		3.70	
		Amplitud intercuartil		2.35	
		Asimetría		279	.687
		Curtosis		-1.287	1.334
	8	Media		1117.6300	.70994
		Intervalo de confianza	Límite	1116.0240	
		para la media al 95%	inferior		
			Límite	1119.2360	
			superior		
		Media recortada al 5%	1117.5333		
		Mediana	1117.2500		
		Varianza	5.040		
		Desv. típ.	2.24502		
		Mínimo	1115.30		
		Máximo	1121.70		
		Rango		6.40	
		Amplitud intercuartil	Amplitud intercuartil		
		Asimetría	Asimetría		.687
		Curtosis			1.334
	12	Media		894.6000	.45850
		Intervalo de confianza	Límite	893.5628	
		para la media al 95%	inferior		
			Límite	895.6372	
			superior		
		Media recortada al 5%	894.5444		
		Mediana	894.2500		
		Varianza	2.102		
		Desv. típ.	Desv. típ.		

	Mínimo		892.60	
	Máximo		897.60	
	Rango	5.00		
	Amplitud intercuartil		2.03	
	Asimetría		.960	.687
	Curtosis		.922	1.334
15	Media		567.5600	.80003
	Intervalo de confianza	Límite	565.7502	
	para la media al 95%	inferior		
		Límite	569.3698	
		superior		
	Media recortada al 5%		567.5333	
	Mediana		567.9000	
	Varianza		6.400	
	Desv. típ.		2.52991	
	Mínimo		564.30	
	Máximo		571.30	
	Rango		7.00	
	Amplitud intercuartil		4.45	
	Asimetría		.004	.687
	Curtosis		-1.765	1.334

Tabla Nº 101 Prueba de Normalidad para resultados de (Óxido de Cromo)

Pruebas de normalidad							
Porcentaje de pigmento (óxido de		Kolmogorov-Smirnov ^a			Shapiro-Wilk		
cromo)		Estadístico	gl	Sig.	Estadístico	gl	Sig.
Resistencia a la	4	.147	10	.200*	.950	10	.671
deformación	8	.205	10	.200*	.908	10	.270
(tráfico pesado-	12	.249	10	.080	.845	10	.051
chromafer cromo)	15	.175	10	.200*	.947	10	.635
Resistencia a la	4	.247	10	.086	.848	10	.055
deformación	8	.210	10	.200*	.889	10	.163
(tráfico medio-	12	.169	10	.200*	.916	10	.323
chromafer cromo)	15	.238	10	.114	.856	10	.069
Resistencia a la	4	.184	10	.200*	.947	10	.636
deformación	8	.190	10	.200*	.911	10	.291
(tráfico ligero	12	.173	10	.200*	.901	10	.226
chromafer cromo)	15	.144	10	.200*	.957	10	.751

Resistencia a la	4	.206	10	.200*	.894	10	.186
deformación	8	.252	10	.070	.808	10	.018
(tráfico pesado-	12	.243	10	.096	.884	10	.144
ocre cromo)	15	.231	10	.139	.812	10	.060
Resistencia a la	4	.229	10	.145	.844	10	.049
deformación	8	.221	10	.180	.938	10	.528
(tráfico medio-	12	.246	10	.088	.861	10	.078
ocre cromo)	15	.185	10	.200*	.929	10	.439
Resistencia a la	4	.165	10	.200*	.942	10	.572
deformación	8	.241	10	.104	.854	10	.065
(tráfico ligero-ocre	12	.227	10	.152	.930	10	.452
cromo)	15	.229	10	.148	.897	10	.205

4.4.2 CONCLUSIÓN DE LA PRUEBA DE NORMALIDAD PARA LOS ESPECÍMENES ENSAYADOS EN LABORATORIO

En la evaluación de la prueba de normalidad a los especímenes que fueron sometidos a ensayos mecánicos de estabilidad y volumétricos de porcentaje de vacíos como resultado en base al análisis que los datos muestran una distribución normal, expresados por el análisis numérico de que para muestras ensayadas los resultados de normalidad se obtuvieron una sig. > 0.05 lo cual indica distribución normal de los datos.

La prueba de hipótesis se realizó mediante el análisis de la prueba de correlación de rangos de Person, una prueba paramétrica debido que se encuentra distribución normal

Si el valor sig. < 0.05, Rechazamos la hipótesis nula

Si el valor sig. >0.05, Aceptamos la hipótesis nula

4.4.3 PRUEBA DE HIPOTESIS N°1 PARA LAS VARIABLES OXIDO FERRICO Y ESTABILIDAD DE LA MEZCLA PIGMENTADA

H0: No existe relación al aumentar el porcentaje de óxido férrico en la reducción significativa de la estabilidad de las mezclas asfáltica pigmentada

H1: Si existe relación al aumentar el porcentaje de óxido férrico en la reducción significativa de la estabilidad de las mezclas asfálticas pigmentada.

Tabla N° 102 Prueba de hipótesis para Chomafer Oxido Férrico

Correlaciones								
Porcentaje de pigr	mento (óxido férr	Resistencia	Resistencia	Resistencia				
		a la	a la	a la				
			deformación	deformación	deformación			
			(tráfico	(tráfico	(tráfico			
			pesado-	medio-	ligero			
			chormafer	chromafer	chromafer			
			férrico)	férrico)	férrico)			
Porcentaje de pigmento	Correlación	1	964 ^{**}	963**	970**			
(óxido férrico)	de Pearson							
	Sig.		.000	.000	.000			
	(bilateral)							
	N	40	40	40	40			

Fuente: Elaboración propia – SPSS 21

Tabla N° 103 Prueba de hipótesis para Ocre Oxido Férrico

Correlaciones								
Porcentaje de pigr	Resistencia	Resistencia	Resistencia					
	a la	a la	a la					
			deformación	deformación	deformación			
			(tráfico	(tráfico	(tráfico			
			pesado-	medio-ocre	ligero-ocre			
			ocre férrico)	férrico)	férrico)			
Porcentaje de pigmento	Correlación	1	966 ^{**}	968 ^{**}	966**			
(óxido férrico)	de Pearson							
	Sig.		.000	.000	.000			
	(bilateral)							
	N	40	40	40	40			

Considerando que existe suficiente evidencia de muestra se concluye que existe relación entre las variables, se reduce significativamente la estabilidad de la mezcla asfáltica pigmentada cuando se aumenta el porcentaje de óxido férrico a la mezcla.

4.4.4 PRUEBA DE HIPOTESIS N°2 PARA LAS VARIABLES OXIDO CROMO Y ESTABILIDAD DE LA MEZCLA PIGMENTADA

H0: No existe relación al aumentar el porcentaje de óxido cromo en la reducción significativa de la estabilidad de las mezclas asfáltica pigmentada

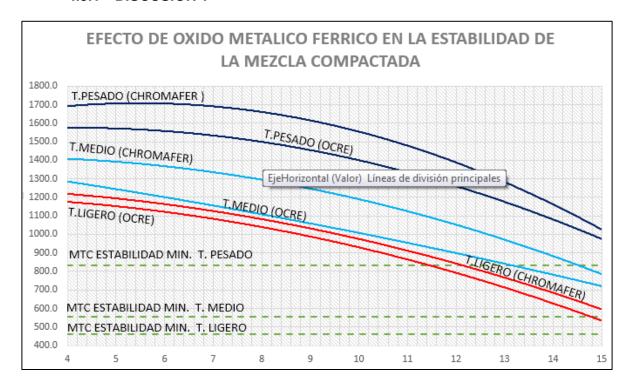
H1: Si existe relación al aumentar el porcentaje de óxido cromo en la reducción significativa de la estabilidad de las mezclas asfálticas pigmentada.

Tabla Nº 104 Prueba de Hipótesis para Chromafer Óxido de Cromo

Correlaciones							
Porcentaje de pigr	nento (oxido cro	Resistencia	Resistencia	Resistencia			
			a la	a la	a la		
			deformación	deformación	deformación		
			(tráfico	(tráfico	(tráfico		
			pesado-	medio-	ligero		
			chormafer	chromafer	chromafer		
			cromo)	cromo)	cromo)		
Porcentaje de pigmento	Correlación	1	956 ^{**}	965**	998**		
(óxido de cromo)	de Pearson						
	Sig.		.000	.000	.000		
	(bilateral)						
	N	40	40	40	40		

Tabla Nº 105 Prueba de hipótesis Ocre Oxido Cromo

Correlaciones								
Porcentaje de pigr	Resistencia	Resistencia	Resistencia					
			a la	a la	a la			
			deformación	deformación	deformación			
			(tráfico	(tráfico	(tráfico			
			ligero-ocre	medio-ocre	pesado-			
			cromo)	cromo)	ocre cromo)			
Porcentaje de pigmento	Correlación	1	967**	967**	968**			
(oxido cromo)	de Pearson							
	Sig.		.000	.000	.000			
	(bilateral)							
	N	40	40	40	40			

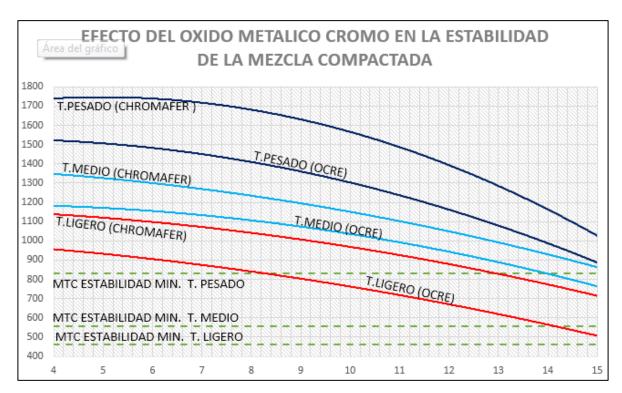

Considerando que existe suficiente evidencia de muestra se concluye que existe relación entre las variables, se reduce significativamente la estabilidad de la mezcla asfáltica pigmentada cuando se aumenta el porcentaje del óxido de cromo a la mezcla.

4.4.5 PRUEBA DE HIPOTESIS N°3 PARA EL DISEÑO ÓPTIMO

Mediante las figuras N° 149, 150, 151 y 152 se concluye que fue factible encontrar el porcentaje optimo y tipo de pigmento (ocre o chromafer) requerido para la pigmentación de las mezclas asfálticas en caliente, mediante la relación de la estabilidad, flujo y porcentaje óptimo de asfalto, que cumplieron los parámetros de las propiedades mecánicas normativos del MTC EG-2013, debido a que no era viable realizar una prueba estadística.

4.5 DISCUSIÓN DE RESULTADOS

4.5.1 DISCUSIÓN 1



		Correlacion	es		
Porcentaje de pigr	nento (óxido férr	rico)	Resistencia	Resistencia	Resistencia
			a la	a la	a la
			deformación deformació		deformación
					(tráfico
			pesado-	medio-	ligero
			chormafer	chromafer	chromafer
			férrico)	férrico)	férrico)
Porcentaje de pigmento	Correlación	1	964 ^{**}	963 ^{**}	970**
(óxido férrico)	de Pearson				
	Sig.		.000	.000	.000
	(bilateral)				
	N	40	40	40	40

Mediante el análisis estadístico se determina de acuerdo al valor P (-0.970), que a mayor porcentaje de pigmento oxido férrico (Chromafer) menor es la estabilidad, este resultado es equivalente al determinado mediante graficas que las estabilidades disminuyen con el aumento de porcentaje de pigmento a la mezcla, para diferenciación de flujos de tráfico.

	Correlaciones									
Porcentaje de pigr	nento (óxido férr	rico)	Resistencia	Resistencia	Resistencia					
				a la deformación (tráfico medio-ocre férrico)	a la deformación (tráfico ligero-ocre férrico)					
Porcentaje de pigmento (óxido férrico)	Correlación de Pearson	1	ocre férrico)966**	968**	966**					
,	Sig. (bilateral)		.000	.000	.000					
	N	40	40	40	40					

4.5.2 DISCUSION 2

Correlaciones									
Porcentaje de pigme	ento (óxido de cr	romo)	Resistencia	Resistencia	Resistencia				
			a la	a la	a la				
			deformación	deformación	deformación				
	(tráfico	(trafico	(tráfico						
			pesado-	medio-	ligero				
			chormafer	chromafer	chromafer				
			cromo)	cromo)	cromo)				
Porcentaje de pigmento	Correlación	1	956 ^{**}	965 ^{**}	998**				
(óxido de cromo)	de Pearson								
	Sig.		.000	.000	.000				
	(bilateral)								
	N	40	40	40	40				

		Correlacion	es			
Porcentaje de pigr	nento (oxido cro	mo)	Resistencia	Resistencia	Resistencia	
			a la	a la	a la	
			deformación	deformación	deformación	
			(tráfico	(tráfico	(tráfico	
			ligero-ocre	medio-ocre	pesado-	
	_		cromo)	cromo)	ocre cromo)	
Porcentaje de pigmento	Correlación	1	967**	967**	968**	
(oxido cromo)	de Pearson					
	Sig.		.000	.000	.000	
	N	40	40	40	40	

Mediante el análisis estadístico se determina de acuerdo al valor P (-0.970), que a mayor porcentaje de pigmento oxido cromo (Chromafer) menor es la estabilidad, este resultado es equivalente al determinado mediante gráficas que las estabilidades disminuyen con el aumento de porcentaje de pigmento a la mezcla, para diferenciación de flujos de tráfico.

5 CAPÍTULO V: CONCLUSIONES Y RECOMENDACIONES

5.1.1 CONCLUSIONES

- 1. De acuerdo a los resultados obtenidos en el capítulo IV, se determinó que existe un efecto de óxidos metálicos férrico empleados como pigmentación para mezclas asfálticas en caliente en las propiedades mecánicas, mediante una relación proporcional inversa. Se concluye que a mayor porcentaje de óxidos, menor es la estabilidad, lo cual genera que se requiera mayor porcentaje de asfalto, por tal motivo la deformación de las mezclas asfálticas pigmentadas son excesivas, cuando mayor es el porcentaje de pigmento. Además de acuerdo a la evaluación experimental se concluye que el uso de pigmento Chromafer Férrico proporciona mayor estabilidad respecto al uso del pigmento Ocre.
 - Para un tráfico pesado, el uso de óxido metálico férrico (Chromafer) para la pigmentación de mezclas asfálticas en caliente, se diferencia en un 129 Kg más aproximadamente en la estabilidad, respecto a la mezclas asfálticas pigmentadas con oxido férrico (Ocre), para un límite de 8% de pigmento
 - Para un tráfico medio, el uso de óxido metálico férrico (Chromafer) para la pigmentación de mezclas asfálticas en caliente, se diferencia en un 195 Kg más aproximadamente en la estabilidad, respecto a la mezclas asfálticas pigmentadas con oxido férrico (Ocre), para un límite de 8% de pigmento.
 - Para un tráfico ligero, el uso de óxido metálico férrico (Chromafer) para la pigmentación de mezclas asfálticas en caliente, se diferencia en un 124 Kg más aproximadamente en la estabilidad, respecto a la mezclas asfálticas pigmentadas con oxido férrico (Ocre), para un límite de 8% de pigmento
- 2. De acuerdo a los resultados obtenidos en el capítulo IV, se determinó que existe un efecto de óxidos metálicos cromo empleado como pigmentación para mezclas asfálticas en caliente en las propiedades mecánicas, mediante una relación proporcional indirecta. Se concluye que a mayor porcentaje de óxidos, menor es la estabilidad, lo cual genera que se requiera mayor porcentaje de asfalto, por tal motivo la deformación de las mezclas asfálticas pigmentadas son excesivas, cuando mayor es el porcentaje de pigmento. Además de acuerdo a la evaluación experimental se concluye que el uso de pigmento Chromafer-Cromo proporciona mayor estabilidad respecto al uso del pigmento Ocre.

- Para un tráfico pesado, el uso de óxido metálico cromo (Chromafer) para la pigmentación de mezclas asfálticas en caliente, se diferencia en un 254 Kg más aproximadamente en la estabilidad, respecto a la mezclas asfálticas pigmentadas con oxido férrico (Ocre), para un límite de 8% de pigmento.
- Para un tráfico medio, el uso de óxido metálico cromo (Chromafer) para la pigmentación de mezclas asfálticas en caliente, se diferencia en un 96.5 Kg más aproximadamente en la estabilidad, respecto a la mezclas asfálticas pigmentadas con oxido férrico (Ocre), para un límite de 8% de pigmento.
- Para un tráfico ligero, el uso de óxido metálico cromo (Chromafer) para la pigmentación de mezclas asfálticas en caliente, se diferencia en un 222.4 Kg más en la estabilidad, respecto a la mezclas asfálticas pigmentadas con oxido férrico (Ocre), para un límite de 8% de pigmento.
- 3. De acuerdo a los resultados de la investigación, se determinó que el uso de pigmento Chromafer sea óxido metálico férrico o cromo producen mayor estabilidad en la mezcla asfáltica siendo el óptimo material para pigmentación de mezclas, además los porcentajes óptimo de óxido metálicos (férrico y cromo) máximos que se puedan emplear para pigmentar mezclas asfálticas en caliente, sea para tipo de tráfico (pesado-medioligero), en base a la relación que se determinó con la estabilidad, fluencia y porcentaje óptimo de cemento asfaltico, se concluye que el rango de porcentajes de 4% 8% cumplen con las especificaciones mininas requeridas de las propiedades mecánicas de mezclas asfálticas en caliente para pavimento flexible, normados por el MTC-EG2013, además de la coloración de la mezcla asfáltica.

5.1.2 RECOMENDACIONES

- 1. De acuerdo a los resultados el empleo de ocre y de pigmento industrializado Chromafer 1330 no llega un color claro debido a la dificultad de pigmentar el ligante asfáltico llegando a tonalidades oscuras, el óxido férrico rojo es el pigmento de color más resaltante para la pigmentación por tal motivo es recomendable el uso de ligante sintético claro para la obtención de colores más resaltantes. Respecto a la estabilidad de las mezclas asfálticas en caliente se recomienda emplear el pigmento oxido metálicos (férrico y cromo) de tipo industrializado (Chromafer), para pigmentar mezclas asfálticas en caliente.
- 2. Se recomienda para pavimentos de zonas oscuras es decir en túneles que son de flujos pesados utilizar ligante sintético claro para la pigmentación ya que permite obtener colores más resaltantes a diferencia del uso de ocre o Chromafer. Para zonas de pistas atléticas, vías de recreación o ciclo vías el uso del Chromafer como pigmentación ya que cumple con las propiedades mecánicas y se llega a un color óptimo para estos tipos de ambientes de coloración rojiza y de flujo liviano.
- 3. Se recomienda como parte de iniciativa al Ministerio de Transporte y Comunicaciones, ampliar normativas peruanas, respecto a mezclas asfálticas en caliente pigmentadas, con la finalidad de mitigar los pavimentos flexibles de coloración negra y contribuir con la sostenibilidad del medio ambiente.
- 4. Se recomienda utilizar pavimentos pigmentados con el uso de los oxidos metálicos industrializados CHROMAFER, con el objetivo de proporcionar vías de mayor visibilidad y seguridad tanto para el peatón como el conductor.

6 REFERENCIAS BIBLIOGRÁFICAS

AUTOPISTAS, ADMINISTRACION FEDERAL DE. 1982. PRINCIPIOS DE CONSTRUCCION DE PAVIMENTOS DE MEZCLA EN CALIENTE. 1982.

COLORS, G&C SA. 2015. Aglomerado Asfáltico coloreado. Madrid, España: s.n., 2015.

Fidias, G. Arias. 2006. El proyecto de Investigacion. Carcas, Venezuela : s.n., 2006.

Gonzales Castro, Abel, Oseda Gago, Dulio, Ramirez Rosales, Felisicimo G. 2011. ¿Como aprender y enseñar investigacion cientifica? Huancavelica, Peru: s.n., 2011.

Hernandez, Roberto Sampieri. 2014. Metodologia de la Investigacion. Mexico: s.n., 2014.

Horacio Delgado Alamilla, Paul Garnica Anguas, Gilber Mario VillatoroMendez, Giovanni Rodriguez Oropeza. 2006. Influencia de la Granulometria en las Propiedades Volumetricas de la Mezcla Asfaltica. Distrito Federal, Mexico: s.n., 2006.

Institute, Asphalt. 1996. Manual SP-2 Superpave Mix Desing. Kentucky, Estados Unidos : s.n., 1996.

Jorge, Cepeda Aldape. 2002. Analisis del comportamiento de mezclas asfalticas a fisuracion por fatiga mediante la aplicacion de un nuevo ensayo dinamico a traccion directa. Barcelona, España: s.n., 2002.

LanammeUCR, Laboratorio Nacional de Material y Modelos Estructurales. 2009. Analisis de los porcentajes de vacios de la mezcla asfaltica para la Consesion de la Carretera San Jose-Caldera. 2009.

LanammeUCR, Laboratorio Nacional de Materiales Y Modelos Estructurales. 2015. Evaluacion de la Influencia de la Gravedad Especifica de los Agregados en los Parametros de la Mezcla. San Jose, Costa Rica: s.n., 2015.

MTC, Ministerio de Transportes y Comunicaciones. 2013. Manual de Carrteras de Especificaciones Tecnicas Generales para Construccion. Lima, Peru: s.n., 2013.

Paul Garnica Anguas, Mayra Flores Flores, Jose Antonio Gomez Lopez Horacio Delgado Alamilla. 2005. Caracterizacion Geotecnica de Mezclas Asfalticas. Distriti Federal, Mexico: s.n., 2005.

Ruben Serratos Ochoa, Pedro Limon Covarrubias, Jesus Alonso Mota. 2011. Estudio de la Prorporcion de Polvo y Tipo de Filler de una Mezcla Asfaltica. Mexico: s.n., 2011.

SILENE MINAYA GONZALES, ABEL ORDOÑEZ HUAMAN. 2001. MANUAL DE LABORATORIO ENSAYOS PARA PAVIMENTOS. LIMA, PERU: s.n., 2001.

UMSS, Facultad de Ciencias Y Tecnologia. 2012. Manual Completo de Diseño de Pavimentos. Mexico: s.n., 2012.

Zuñiga, Alonso. 3º Edicion. Pavimentos. Lima, Peru : Instituto de la Construccion y Gerencia, 3º Edicion.

7 ANEXOS

7.1 CERTIFICADOS DE LABORATORIO

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 4% OXIDO) FER	RICO ((OCRE)			
]	Propiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	30.10	30.10	30.10	30.10	30.10
3	Piedra chancada de 3/4"	%	10.20	10.20	10.20	10.20	10.20
4	Arena chancada	%	50.50	50.50	50.50	50.50	50.50
5	Arena zarandeada	%	5.20	5.20	5.20	5.20	5.20
6	Material muy fino (filler) - OXIDO FERRICO	%	4.00	4.00	4.00	4.00	4.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1239.0	1250.0	1238.2	1229.4	1246.1
13	Peso de la briqueta saturada	gr	1243.3	1256.3	1245.3	1233.2	1250.1
14	Peso de la briqueta en agua	gr	739.1	747.7	749.6	740.6	750.8
15	Volumen de briqueta	c.c.	504.2	508.6	495.7	492.6	499.3
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.457	2.458	2.498	2.496	2.496
17	Peso específico T. máximo (MTC E-508 ASTM D-2041	gr/cc	2.67	2.65	2.63	2.61	2.59
18	Vacíos (MTC E-505)	%	8.1	7.3	5.0	4.3	3.5
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.71	2.71	2.71	2.71	2.71
20	V.M.A.	%	12.8	13.3	12.3	12.9	13.3
21	Vacíos llenos con cemento asfáltico (VFA)	%	36.9	45.0	59.4	66.6	73.7
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.87	2.87	2.87	2.87	2.87
23	Cemento asfáltico absorbido por el agregado total	%	2.11	2.11	2.11	2.11	2.11
24	Cemento asfáltico efectivo	%	1.97	2.48	2.99	3.50	4.01
25	Flujo	mm	2.32	2.80	3.40	3.60	3.80
26	Estabilidad sin corregir	kg	1421	1553.5	1705	1599.0	1555
27	Altura de la briqueta	mm	63.5	63.5	63.5	63.5	63.5
28	Factor de estabilidad		1.00	1.00	1.00	1.00	1.00
29	Estabilidad corregida	kg	1421	1554	1705	1599	1555
30	Estabilidad - Flujo	kg/cm	6126	5548	5014	4442	4093
31	Compactación, numero de golpes por cara				75		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 8% OXIDO	FERR	ICO (C	OCRE)			
	Propiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10
4	Arena chancada	%	30.80	30.80	30.80	30.80	30.80
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20
6	Material muy fino (filler) - OXIDO FERRICO	%	8.00	8.00	8.00	8.00	8.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1246.3	1244.2	1235.4	1244.3	1243.1
13	Peso de la briqueta saturada	gr	1254.5	1248.6	1240.2	1249.2	1247.3
14	Peso de la briqueta en agua	gr	766.9	759.6	753.5	760.0	764.5
15	Volumen de briqueta	c.c.	487.6	489.0	486.7	489.2	482.8
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.556	2.544	2.539	2.543	2.575
17	Peso específico T. máximo (MTC E-508 ASTM D-2041)	gr/cc	2.76	2.74	2.71	2.69	2.67
18	Vacíos (MTC E-505)	%	7.4	7.0	6.4	5.4	3.4
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69
20	V.M.A.	%	8.7	9.6	10.3	10.6	10.0
21	Vacíos llenos con cemento asfáltico (VFA)	%	15.3	27.2	37.9	49.1	65.9
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.97	2.97	2.97	2.97	2.97
23	Cemento asfáltico absorbido por el agregado total	%	3.61	3.61	3.61	3.61	3.61
24	Cemento asfáltico efectivo	%	0.53	1.05	1.57	2.09	2.61
25	Flujo	mm	2.45	3.00	3.40	3.45	3.70
26	Estabilidad sin corregir	kg	1468	1507.3	1548	1572.9	1522
27	Altura de la briqueta	mm	63.5	63.5	63.5	63.5	63.5
28	Factor de estabilidad		1.00	1.00	1.00	1.00	1.00
29	Estabilidad corregida	kg	1468	1507	1548	1573	1522
30	Estabilidad - Flujo	kg/cm	5993	5024	4554	4559	4112
31	Compactación, numero de golpes por cara				75		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 12% OXID	O FER	RICO	(OCRE)			
]	Propiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10
4	Arena chancada	%	26.80	26.80	26.80	26.80	26.80
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20
6	Material muy fino (filler) - OXIDO FERRICO	%	12.00	12.00	12.00	12.00	12.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1246.5	1248.1	1254.2	1249.4	1257.3
13	Peso de la briqueta saturada	gr	1255.2	1254.2	1257.3	1256.3	1258.4
14	Peso de la briqueta en agua	gr	786.1	785.6	785.0	783.5	786.2
15	Volumen de briqueta	c.c.	469.1	468.6	472.3	472.8	472.2
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.657	2.663	2.656	2.642	2.663
17	Peso específico T. máximo (MTC E-508 ASTM D-2041	gr/cc	2.87	2.84	2.82	2.79	2.76
18	Vacíos (MTC E-505)	%	7.4	6.3	5.7	5.3	3.7
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69
20	V.M.A.	%	5.1	5.3	6.1	7.1	6.9
21	Vacíos llenos con cemento asfáltico (VFA)	%	-45.6	-17.8	6.8	25.1	46.1
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.10	3.10	3.10	3.10	3.10
23	Cemento asfáltico absorbido por el agregado total	%	5.09	5.09	5.09	5.09	5.09
24	Cemento asfáltico efectivo	%	-0.89	-0.36	0.16	0.69	1.21
25	Flujo	mm	7.30	7.50	7.60	8.10	8.50
26	Estabilidad sin corregir	kg	1114	1186.3	1258	1289.7	1183
27	Altura de la briqueta	mm	63.5	63.5	63.5	63.5	63.5
28	Factor de estabilidad		1.00	1.00	1.00	1.00	1.00
29	Estabilidad corregida	kg	1114	1186	1258	1290	1183
30	Estabilidad - Flujo	kg/cm	1526	1582	1655	1592	1392
31	Compactación, numero de golpes por cara				75		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 15% OXID	O FEI	RRICO	(OCRE)			
	Propiedades mecanicas y volumetricas de MAC	N°	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90
3	Piedra chancada de 3/4"	%	20.90	20.90	20.90	20.90	20.90
4	Arena chancada	%	21.00	21.00	21.00	21.00	21.00
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20
6	Material muy fino (filler) - OXIDO FERRICO	%	15.00	15.00	15.00	15.00	15.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1245.7	1253.4	1250.2	1248.3	1251.4
13	Peso de la briqueta saturada	gr	1248.2	1255.2	1254.8	1253.9	1254.2
14	Peso de la briqueta en agua	gr	793.7	800.7	799.9	796.3	796.3
15	Volumen de briqueta	c.c.	454.5	454.5	454.9	457.6	457.9
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.741	2.758	2.748	2.728	2.733
17	Peso específico T. máximo (MTC E-508 ASTM D-204)	gr/cc	2.95	2.92	2.90	2.87	2.84
18	Vacíos (MTC E-505)	%	7.2	5.7	5.1	4.9	3.8
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.68	2.68	2.68	2.68	2.68
20	V.M.A.	%	2.0	1.9	2.7	4.0	4.3
21	Vacíos llenos con cemento asfáltico (VFA)	%	-263.7	-202.8	-87.1	-23.6	11.3
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.21	3.21	3.21	3.21	3.21
23	Cemento asfáltico absorbido por el agregado total	%	6.19	6.19	6.19	6.19	6.19
24	Cemento asfáltico efectivo	%	-1.94	-1.41	-0.88	-0.35	0.18
25	Flujo	mm	7.40	7.70	8.00	8.30	8.70
26	Estabilidad sin corregir	kg	1009	1026.0	1049	1066.3	1036
27	Altura briqueta	mm	66.7	65.1	63.5	63.5	65.1
28	Factor de estabilidad		0.93	0.96	1.00	1.00	0.96
29	Estabilidad corregida	kg	938	985	1049	1066	994
30	Estabilidad - Flujo	kg/cm	1268	1279	1312	1285	1143
31	Compactación, numero de golpes por cara				75		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 4% OXIDO FE	RRIC	O (CHI	ROMAFE	R)		
]	Propiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	30.10	30.10	30.10	30.10	30.10
3	Piedra chancada de 3/4"	%	10.20	10.20	10.20	10.20	10.20
4	Arena chancada	%	50.50	50.50	50.50	50.50	50.50
5	Arena zarandeada	%	5.20	5.20	5.20	5.20	5.20
6	Material muy fino (filler)	%	4.00	4.00	4.00	4.00	4.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1234.0	1245.0	1233.2	1224.0	1241.0
13	Peso de la briqueta saturada	gr	1240.0	1248.0	1227.0	1227.0	1243.0
14	Peso de la briqueta en agua	gr	746.9	752.7	734.8	736.0	745.7
15	Volumen de briqueta	c.c.	493.1	495.3	492.2	491.0	497.3
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.503	2.513	2.506	2.493	2.495
17	Peso específico T. máximo (MTC E-508 ASTM D-2041	gr/cc	2.67	2.65	2.63	2.61	2.59
18	Vacíos (MTC E-505)	%	6.4	5.2	4.7	4.4	3.5
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.71	2.71	2.71	2.71	2.71
20	V.M.A.	%	11.2	11.3	12.0	13.0	13.3
21	Vacíos llenos con cemento asfáltico (VFA)	%	43.0	54.0	61.0	66.0	73.6
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.87	2.87	2.87	2.87	2.87
23	Cemento asfáltico absorbido por el agregado total	%	2.11	2.11	2.11	2.11	2.11
24	Cemento asfáltico efectivo	%	1.97	2.48	2.99	3.50	4.01
25	Flujo	mm	2.32	2.80	3.20	3.50	3.60
26	Estabilidad sin corregir	kg	1532	1674.0	1692	1720.7	1524
27	Altura de la briqueta	mm	63.5	63.5	61.9	63.5	61.9
28	Factor de estabilidad		1.00	1.00	1.04	1.00	1.04
29	Estabilidad corregida	kg	1532	1674	1759	1721	1585
30	Estabilidad - Flujo	kg/cm	6603	5979	5498	4916	4403
31	Compactación, numero de golpes por cara				75		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 8% OXIDO FEI	RRICC	O (CRO	MAFER)			
	Propiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10
4	Arena chancada	%	30.80	30.80	30.80	30.80	30.80
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20
6	Material muy fino (filler)	%	8.00	8.00	8.00	8.00	8.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1241.0	1241.0	1215.7	1243.0	1240.0
13	Peso de la briqueta saturada	gr	1242.8	1272.0	1219.0	1255.0	1242.0
14	Peso de la briqueta en agua	gr	755.2	783.2	740.6	767.3	761.4
15	Volumen de briqueta	c.c.	487.6	488.8	478.4	487.7	480.6
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.545	2.539	2.541	2.549	2.580
17	Peso específico T. máximo (MTC E-508 ASTM D-2041)	gr/cc	2.76	2.74	2.71	2.69	2.67
18	Vacíos (MTC E-505)	%	7.8	7.2	6.3	5.2	3.2
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69
20	V.M.A.	%	9.1	9.8	10.2	10.4	9.8
21	Vacíos llenos con cemento asfáltico (VFA)	%	14.6	26.7	38.3	50.1	67.3
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.97	2.97	2.97	2.97	2.97
23	Cemento asfáltico absorbido por el agregado total	%	3.61	3.61	3.61	3.61	3.61
24	Cemento asfáltico efectivo	%	0.53	1.05	1.57	2.09	2.61
25	Flujo	mm	2.70	3.30	3.60	3.60	3.80
26	Estabilidad sin corregir	kg	1568	1607.0	1648	1672.0	1621
27	Altura de la briqueta	mm	63.5	63.5	61.9	61.9	63.5
28	Factor de estabilidad		1.00	1.00	1.04	1.04	1.00
29	Estabilidad corregida	kg	1568	1607	1714	1739	1621
30	Estabilidad - Flujo	kg/cm	5806	4870	4760	4830	4265
31	Compactación, numero de golpes por cara				75		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 12% OXIDO F	ERRI	CO (CR	ROMAFEI	R)		
]	Propiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10
4	Arena chancada	%	26.80	26.80	26.80	26.80	26.80
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20
6	Material muy fino (filler)	%	12.00	12.00	12.00	12.00	12.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1234.2	1248.0	1224.2	1245.0	1231.0
13	Peso de la briqueta saturada	gr	1237.2	1255.0	1227.0	1264.0	1253.0
14	Peso de la briqueta en agua	gr	769.7	784.4	765.5	791.3	791.6
15	Volumen de briqueta	c.c.	467.5	470.6	461.5	472.7	461.4
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.640	2.652	2.653	2.634	2.668
17	Peso específico T. máximo (MTC E-508 ASTM D-2041	gr/cc	2.87	2.84	2.82	2.79	2.76
18	Vacíos (MTC E-505)	%	8.0	6.7	5.8	5.6	3.5
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69
20	V.M.A.	%	5.7	5.8	6.2	7.4	6.7
21	Vacíos llenos con cemento asfáltico (VFA)	%	-40.4	-16.5	6.7	24.0	47.5
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.10	3.10	3.10	3.10	3.10
23	Cemento asfáltico absorbido por el agregado total	%	5.09	5.09	5.09	5.09	5.09
24	Cemento asfáltico efectivo	%	-0.89	-0.36	0.16	0.69	1.21
25	Flujo	mm	7.30	7.50	7.60	8.10	8.50
26	Estabilidad sin corregir	kg	1268	1306.8	1371	1413.4	1393
27	Altura de la briqueta	mm	61.9	61.9	61.9	63.5	63.5
28	Factor de estabilidad		1.04	1.04	1.04	1.00	1.00
29	Estabilidad corregida	kg	1318	1359	1425	1413	1393
30	Estabilidad - Flujo	kg/cm	1806	1812	1875	1745	1639
31	Compactación, numero de golpes por cara				75		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 15% OXIDO F	ERRIC	CO (CH	ROMAFI	ER)		
]	Propiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90
3	Piedra chancada de 3/4"	%	20.90	20.90	20.90	20.90	20.90
4	Arena chancada	%	21.00	21.00	21.00	21.00	21.00
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20
6	Material muy fino (filler)	%	15.00	15.00	15.00	15.00	15.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1229.4	1243.0	1231.2	1248.0	1239.0
13	Peso de la briqueta saturada	gr	1242.8	1253.0	1240.0	1272.0	1243.0
14	Peso de la briqueta en agua	gr	794.2	802.3	794.4	817.4	788.7
15	Volumen de briqueta	c.c.	448.6	450.7	445.6	454.6	454.3
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.741	2.758	2.763	2.745	2.727
17	Peso específico T. máximo (MTC E-508 ASTM D-204)	gr/cc	2.95	2.92	2.90	2.87	2.84
18	Vacíos (MTC E-505)	%	7.2	5.7	4.6	4.3	4.0
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.68	2.68	2.68	2.68	2.68
20	V.M.A.	%	2.0	1.9	2.2	3.4	4.5
21	Vacíos llenos con cemento asfáltico (VFA)	%	-263.7	-202.8	-107.8	-28.0	10.8
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.21	3.21	3.21	3.21	3.21
23	Cemento asfáltico absorbido por el agregado total	%	6.19	6.19	6.19	6.19	6.19
24	Cemento asfáltico efectivo	%	-1.94	-1.41	-0.88	-0.35	0.18
25	Flujo	mm	7.40	7.70	8.00	8.30	8.70
26	Estabilidad sin corregir	kg	1062	1062.6	1079	1090.2	1032
27	Altura briqueta	mm	66.7	63.5	63.5	63.5	63.5
28	Factor de estabilidad		0.93	1.00	1.00	1.00	1.00
29	Estabilidad corregida	kg	988	1063	1079	1090	1032
30	Estabilidad - Flujo	kg/cm	1335	1380	1348	1313	1186
31	Compactación, numero de golpes por cara				75		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 4% OXIDO CROMO (OCRE)										
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5				
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00				
2	Piedra chancada de 1/2"	%	30.10	30.10	30.10	30.10	30.10				
3	Piedra chancada de 3/4"	%	10.20	10.20	10.20	10.20	10.20				
4	Arena chancada	%	50.50	50.50	50.50	50.50	50.50				
5	Arena zarandeada	%	5.20	5.20	5.20	5.20	5.20				
6	Material muy fino (filler)	%	4.00	4.00	4.00	4.00	4.00				
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020				
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660				
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710				
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720				
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650				
12	Peso de la briqueta al aire	gr	1234.0	1245.0	1233.2	1224.0	1241.0				
13	Peso de la briqueta saturada	gr	1240.0	1248.0	1227.0	1227.0	1243.0				
14	Peso de la briqueta en agua	gr	738.3	742.5	734.3	736.5	747.3				
15	Volumen de briqueta	c.c.	501.7	505.5	492.7	490.5	495.7				
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.460	2.463	2.503	2.496	2.504				
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.67	2.65	2.63	2.61	2.59				
18	Vacíos (MTC E-505)	%	8.0	7.1	4.8	4.3	3.2				
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.71	2.71	2.71	2.71	2.71				
20	V.M.A.	%	12.7	13.1	12.1	12.9	13.0				
21	Vacíos llenos con cemento asfáltico (VFA)	%	37.3	45.8	60.5	66.6	75.5				
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.87	2.87	2.87	2.87	2.87				
23	Cemento asfáltico absorbido por el agregado total	%	2.11	2.11	2.11	2.11	2.11				
24	Cemento asfáltico efectivo	%	1.97	2.48	2.99	3.50	4.01				
25	Flujo	mm	2.00	3.10	3.40	3.60	3.80				
26	Estabilidad sin corregir	kg	1322	1553.5	1705	1599.0	1445				
27	Altura de la briqueta	mm	63.5	65.1	65.1	65.1	63.5				
28	Factor de estabilidad		1.00	0.96	0.96	0.96	1.00				
29	Estabilidad corregida	kg	1322	1491	1637	1535	1445				
30	Estabilidad - Flujo	kg/cm	6611	4811	4814	4264	3803				
31	Compactación, numero de golpes por cara				75	_					

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 8% OXIDO CROMO (OCRE)											
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5					
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00					
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90					
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10					
4	Arena chancada	%	30.80	30.80	30.80	30.80	30.80					
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20					
6	Material muy fino (filler)	%	8.00	8.00	8.00	8.00	8.00					
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020					
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660					
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710					
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720					
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650					
12	Peso de la briqueta al aire	gr	1241.0	1241.0	1215.7	1243.0	1240.0					
13	Peso de la briqueta saturada	gr	1242.8	1272.0	1219.0	1255.0	1242.0					
14	Peso de la briqueta en agua	gr	758.3	786.9	741.1	766.3	762.4					
15	Volumen de briqueta	c.c.	484.5	485.1	477.9	488.7	479.6					
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.562	2.558	2.544	2.543	2.586					
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.76	2.74	2.71	2.69	2.67					
18	Vacíos (MTC E-505)	%	7.2	6.5	6.2	5.4	3.0					
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69					
20	V.M.A.	%	8.5	9.1	10.1	10.6	9.6					
21	Vacíos llenos con cemento asfáltico (VFA)	%	15.7	28.9	38.7	49.1	68.8					
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.97	2.97	2.97	2.97	2.97					
23	Cemento asfáltico absorbido por el agregado total	%	3.61	3.61	3.61	3.61	3.61					
24	Cemento asfaltico efectivo		0.53	1.05	1.57	2.09	2.61					
25	Flujo	mm	2.70	3.40	3.60	3.70	4.00					
26	Estabilidad sin corregir	kg	1368	1407.7	1448	1472.9	1422					
27	Altura de la briqueta	mm	66.7	65.1	65.1	65.1	66.7					
28	Factor de estabilidad		0.93	0.96	0.96	0.96	0.93					
29	Estabilidad corregida	kg	1273	1351	1390	1414	1322					
30	Estabilidad - Flujo	kg/cm	4713	3975	3862	3822	3305					
31	Compactación, numero de golpes por cara				75							

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 12% OXIDO CROMO (OCRE)											
Pı	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5					
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00					
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90					
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10					
4	Arena chancada	%	26.80	26.80	26.80	26.80	26.80					
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20					
6	Material muy fino (filler)	%	12.00	12.00	12.00	12.00	12.00					
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020					
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660					
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710					
10	Peso especifico de arena chancada	U	2.720	2.720	2.720	2.720	2.720					
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650					
12	Peso de la briqueta al aire	gr	1234.2	1248.0	1224.2	1245.0	1231.0					
13	Peso de la briqueta saturada	gr	1237.2	1255.0	1227.0	1264.0	1253.0					
14	Peso de la briqueta en agua	gr	774.7	785.9	768.4	796.8	790.2					
15	Volumen de briqueta	c.c.	462.5	469.1	458.6	467.2	462.8					
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.668	2.661	2.670	2.665	2.660					
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.87	2.84	2.82	2.79	2.76					
18	Vacíos (MTC E-505)	%	7.0	6.4	5.2	4.5	3.8					
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69					
20	V.M.A.	%	4.7	5.4	5.6	6.3	7.0					
21	Vacíos llenos con cemento asfáltico (VFA)	%	-49.8	-17.4	7.5	28.5	45.4					
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.10	3.10	3.10	3.10	3.10					
23	Cemento asfáltico absorbido por el agregado total	%	5.09	5.09	5.09	5.09	5.09					
24	Cemento asfaltico efectivo	%	-0.89	-0.36	0.16	0.69	1.21					
25	Flujo	mm	7.10	7.60	7.90	8.30	8.40					
26	Estabilidad sin corregir	kg	1114	1141.2	1258	1289.7	1183					
27	Altura de la briqueta	mm	65.1	63.5	63.5	63.5	65.1					
28	Factor de estabilidad		0.96	1.00	1.00	1.00	0.96					
29	Estabilidad corregida	kg	1070	1141	1258	1290	1136					
30	Estabilidad - Flujo	kg/cm	1507	1502	1592	1554	1352					
31	Compactación, numero de golpes por cara				75							

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

2 Piedra chancada de 1/2" % 20.90 20.90 20.90 20.90 20.90 3 Piedra chancada de 3/4" % 20.90 20.90 20.90 20.90 20.90											
Pı	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5				
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00				
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90				
3	Piedra chancada de 3/4"	%	20.90	20.90	20.90	20.90	20.90				
4	Arena chancada	%	21.00	21.00	21.00	21.00	21.00				
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20				
6	Material muy fino (filler)	%	15.00	15.00	15.00	15.00	15.00				
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020				
8	Peso especifico de piedra chancada 3/4"	Ţ	2.660	2.660	2.660	2.660	2.660				
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710				
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720				
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650				
12	Peso de la briqueta al aire	gr	1229.4	1243.0	1231.2	1248.0	1239.0				
13	Peso de la briqueta saturada	gr	1242.8	1253.0	1240.0	1272.0	1243.0				
14	Peso de la briqueta en agua	gr	795.2	802.3	791.6	814.0	789.2				
15	Volumen de briqueta	c.c.	447.6	450.7	448.4	458.0	453.8				
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.747	2.758	2.746	2.725	2.730				
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.95	2.92	2.90	2.87	2.84				
18	Vacíos (MTC E-505)	%	7.0	5.7	5.2	5.0	3.9				
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.68	2.68	2.68	2.68	2.68				
20	V.M.A.	%	1.8	1.9	2.8	4.1	4.4				
21	Vacíos llenos con cemento asfáltico (VFA)	%	-295.9	-202.8	-83.8	-23.0	11.0				
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.21	3.21	3.21	3.21	3.21				
23	Cemento asfáltico absorbido por el agregado total	%	6.19	6.19	6.19	6.19	6.19				
24	Cemento asfáltico efectivo	%	-1.94	-1.41	-0.88	-0.35	0.18				
25	Flujo	mm	7.40	7.70	8.00	8.30	8.70				
26	Estabilidad sin corregir	kg	839	885.1	950	966.2	894				
27	Altura briqueta	mm	65.1	65.1	65.1	65.1	66.7				
28	Factor de estabilidad		0.96	0.96	0.96	0.96	0.93				
29	Est abilidad corregida	kg	806	850	912	928	832				
30	Estabilidad - Flujo	kg/cm	1089	1104	1140	1118	956				
31	Compactación, numero de golpes por cara				75						

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 4% OXIDO CROMO (CHROMAFER)											
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5					
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00					
2	Piedra chancada de 1/2"	%	30.10	30.10	30.10	30.10	30.10					
3	Piedra chancada de 3/4"	%	10.20	10.20	10.20	10.20	10.20					
4	Arena chancada	%	50.50	50.50	50.50	50.50	50.50					
5	Arena zarandeada	%	5.20	5.20	5.20	5.20	5.20					
6	Material muy fino (filler)	%	4.00	4.00	4.00	4.00	4.00					
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020					
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660					
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710					
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720					
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650					
12	Peso de la briqueta al aire	gr	1234.0	1245.0	1233.2	1224.0	1241.0					
13	Peso de la briqueta saturada	gr	1240.0	1248.0	1227.0	1227.0	1243.0					
14	Peso de la briqueta en agua	gr	752.6	753.7	735.9	738.1	745.8					
15	Volumen de briqueta	c.c.	487.4	494.3	491.1	488.9	497.2					
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.532	2.519	2.511	2.503	2.496					
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.67	2.65	2.63	2.61	2.59					
18	Vacíos (MTC E-505)	%	5.3	5.0	4.5	4.0	3.5					
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.71	2.71	2.71	2.71	2.71					
20	V.M.A.	%	10.2	11.1	11.9	12.6	13.3					
21	Vacíos llenos con cemento asfáltico (VFA)	%	48.0	55.1	62.1	68.2	73.7					
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.87	2.87	2.87	2.87	2.87					
23	Cemento asfáltico absorbido por el agregado total	%	2.11	2.11	2.11	2.11	2.11					
24	Cemento asfáltico efectivo	%	1.97	2.48	2.99	3.50	4.01					
25	Flujo	mm	2.34	3.00	3.20	3.70	4.21					
26	Estabilidad sin corregir	kg	1678	1813.2	1834	1750.2	1612					
27	Altura de la briqueta	mm	63.5	63.5	61.9	63.5	61.9					
28	Factor de estabilidad		1.00	1.00	1.04	1.00	1.04					
29	Estabilidad corregida	kg	1678	1813	1908	1750	1677					
30	Estabilidad - Flujo	kg/cm	7172	6044	5961	4730	3983					
31	Compactación, numero de golpes por cara				75							

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 8% OXIDO CROMO (CHROMAFER)											
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5					
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00					
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90					
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10					
4	Arena chancada	%	30.80	30.80	30.80	30.80	30.80					
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20					
6	Material muy fino (filler)	%	8.00	8.00	8.00	8.00	8.00					
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020					
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660					
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710					
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720					
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650					
12	Peso de la briqueta al aire	gr	1241.0	1241.0	1215.7	1243.0	1240.0					
13	Peso de la briqueta saturada	gr	1242.8	1272.0	1219.0	1255.0	1242.0					
14	Peso de la briqueta en agua	gr	762.0	789.5	744.7	773.4	762.4					
15	Volumen de briqueta	c.c.	480.8	482.5	474.3	481.6	479.6					
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.581	2.572	2.563	2.581	2.586					
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.76	2.74	2.71	2.69	2.67					
18	Vacíos (MTC E-505)	%	6.5	6.0	5.5	4.0	3.0					
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69					
20	V.M.A.	%	7.8	8.6	9.4	9.3	9.6					
21	Vacíos llenos con cemento asfáltico (VFA)	%	17.2	30.6	41.8	56.9	68.8					
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.97	2.97	2.97	2.97	2.97					
23	Cemento asfáltico absorbido por el agregado total	%	3.61	3.61	3.61	3.61	3.61					
24	Cemento asfáltico efectivo	%	0.53	1.05	1.57	2.09	2.61					
25	Flujo	mm	2.40	3.20	3.50	3.55	3.80					
26	Estabilidad sin corregir	kg	1490	1620.1	1650	1604.1	1501					
27	Altura de la briqueta	mm	63.5	63.5	61.9	61.9	63.5					
28	Factor de estabilidad		1.00	1.00	1.04	1.04	1.00					
29	Estabilidad corregida	kg	1490	1620	1716	1668	1501					
30	Estabilidad - Flujo	kg/cm	6209	5063	4902	4699	3951					
31	Compactación, numero de golpes por cara				75							

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 12% OXIDO CROMO (CHROMAFER)											
Pı	copiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5					
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00					
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90					
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10					
4	Arena chancada	%	26.80	26.80	26.80	26.80	26.80					
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20					
6	Material muy fino (filler)	%	12.00	12.00	12.00	12.00	12.00					
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020					
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660					
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710					
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720					
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650					
12	Peso de la briqueta al aire	gr	1234.2	1248.0	1224.2	1245.0	1231.0					
13	Peso de la briqueta saturada	gr	1237.2	1255.0	1227.0	1264.0	1253.0					
14	Peso de la briqueta en agua	gr	777.2	787.9	765.5	795.3	794.0					
15	Volumen de briqueta	c.c.	460.0	467.1	461.5	468.7	459.0					
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.683	2.672	2.653	2.656	2.682					
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.87	2.84	2.82	2.79	2.76					
18	Vacíos (MTC E-505)	%	6.5	6.0	5.8	4.8	3.0					
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69					
20	V.M.A.	%	4.2	5.0	6.2	6.6	6.2					
21	Vacíos llenos con cemento asfáltico (VFA)	%	-56.3	-18.9	6.7	27.1	51.5					
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.10	3.10	3.10	3.10	3.10					
23	Cemento asfáltico absorbido por el agregado total	%	5.09	5.09	5.09	5.09	5.09					
24	Cemento asfáltico efectivo	%	-0.89	-0.36	0.16	0.69	1.21					
25	Flujo	mm	4.00	4.70	5.30	5.80	6.00					
26	Estabilidad sin corregir	kg	1143	1148.3	1325	1465.2	1250					
27	Altura de la briqueta	mm	63.5	61.9	63.5	63.5	63.5					
28	Factor de estabilidad		1.00	1.04	1.00	1.00	1.00					
29	Estabilidad corregida	kg	1143	1194	1325	1465	1250					
30	Estabilidad - Flujo	kg/cm	2858	2541	2499	2526	2083					
31	Compactación, numero de golpes por cara				75							

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 15% OXIDO CROMO (CHROMAFER)											
Pı	opiedades mecanicas y volumetricas de MAC	N°	1	2	3	4	5					
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00					
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90					
3	Piedra chancada de 3/4"	%	20.90	20.90	20.90	20.90	20.90					
4	Arena chancada	%	21.00	21.00	21.00	21.00	21.00					
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20					
6	Material muy fino (filler)	%	15.00	15.00	15.00	15.00	15.00					
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020					
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660					
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710					
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720					
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650					
12	Peso de la briqueta al aire	gr	1229.4	1243.0	1231.2	1248.0	1239.0					
13	Peso de la briqueta saturada	gr	1242.8	1253.0	1240.0	1272.0	1243.0					
14	Peso de la briqueta en agua	gr	799.0	800.8	789.2	812.5	791.1					
15	Volumen de briqueta	c.c.	443.8	452.2	450.8	459.5	451.9					
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.770	2.749	2.731	2.716	2.742					
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.95	2.92	2.90	2.87	2.84					
18	Vacíos (MTC E-505)	%	6.2	6.0	5.7	5.3	3.5					
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.68	2.68	2.68	2.68	2.68					
20	V.M.A.	%	0.9	2.2	3.3	4.4	4.0					
21	Vacíos llenos con cemento asfáltico (VFA)	%	-571.4	-173.4	-70.6	-21.3	12.2					
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.21	3.21	3.21	3.21	3.21					
23	Cemento asfáltico absorbido por el agregado total	%	6.19	6.19	6.19	6.19	6.19					
24	Cemento asfáltico efectivo	%	-1.94	-1.41	-0.88	-0.35	0.18					
25	Flujo	mm	5.00	6.30	6.70	7.00	7.50					
26	Estabilidad sin corregir	kg	954	975.3	1053	1086.1	1053					
27	Altura briqueta	mm	65.1	65.1	65.1	65.1	66.7					
28	Factor de estabilidad		0.96	0.96	0.96	0.96	0.93					
29	Estabilidad corregida	kg	916	936	1011	1043	980					
30	Estabilidad - Flujo	kg/cm	1832	1486	1509	1490	1306					
31	Compactación, numero de golpes por cara				75							

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 4% OXIDO	FERI	RICO (OCRE)			
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	30.10	30.10	30.10	30.10	30.10
3	Piedra chancada de 3/4"	%	10.20	10.20	10.20	10.20	10.20
4	Arena chancada	%	50.50	50.50	50.50	50.50	50.50
5	Arena zarandeada	%	5.20	5.20	5.20	5.20	5.20
6	Material muy fino (filler)	%	4.00	4.00	4.00	4.00	4.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1243.6	1248.5	1253.2	1255.5	1243.8
13	Peso de la briqueta saturada	gr	1250.3	1251.3	1255.9	1257.1	1248.4
14	Peso de la briqueta en agua	gr	744.2	749.3	750.5	753.5	750.6
15	Volumen de briqueta	c.c.	506.1	502.0	505.4	503.6	497.8
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.457	2.487	2.479	2.493	2.498
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.67	2.65	2.63	2.61	2.59
18	Vacíos (MTC E-505)	%	8.1	6.2	5.7	4.4	3.4
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.71	2.71	2.71	2.71	2.71
20	V.M.A.	%	12.8	12.2	13.0	13.0	13.2
21	Vacíos llenos con cemento asfáltico (VFA)	%	36.9	49.4	56.1	66.0	74.3
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.87	2.87	2.87	2.87	2.87
23	Cemento asfáltico absorbido por el agregado total	%	2.11	2.11	2.11	2.11	2.11
24	Cemento asfáltico efectivo	%	1.97	2.48	2.99	3.50	4.01
25	Flujo	mm	1.50	2.50	3.00	3.60	4.10
26	Estabilidad sin corregir	kg	1246	1267.4	1285	1298.7	1265
27	Altura de la briqueta	mm	63.5	63.5	63.5	63.5	63.5
28	Factor de estabilidad		1.00	1.00	1.00	1.00	1.00
29	Estabilidad corregida	kg	1246	1267	1285	1298.7	1265
30	Estabilidad - Flujo	kg/cm	8307	5070	4282	3608	3085
31	Compactación, numero de golpes por cara				50	_	

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 8% OXIDO FERRICO (OCRE)										
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5				
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00				
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90				
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10				
4	Arena chancada	%	30.80	30.80	30.80	30.80	30.80				
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20				
6	Material muy fino (filler)	%	8.00	8.00	8.00	8.00	8.00				
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020				
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660				
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710				
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720				
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650				
12	Peso de la briqueta al aire	gr	1243.9	1247.2	1252.1	1255.2	1242.2				
13	Peso de la briqueta saturada	gr	1245.7	1253.2	1255.7	1257.3	1248.9				
14	Peso de la briqueta en agua	gr	757.5	762.5	763.5	763.8	765.5				
15	Volumen de briqueta	c.c.	488.2	490.7	492.2	493.5	483.4				
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.548	2.542	2.544	2.543	2.570				
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.76	2.74	2.71	2.69	2.67				
18	Vacíos (MTC E-505)	%	7.7	7.1	6.2	5.4	3.6				
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69				
20	V.M.A.	%	9.0	9.7	10.1	10.6	10.2				
21	Vacíos llenos con cemento asfáltico (VFA)	%	14.7	26.9	38.7	49.1	64.6				
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.97	2.97	2.97	2.97	2.97				
23	Cemento asfáltico absorbido por el agregado total	%	3.61	3.61	3.61	3.61	3.61				
24	Cemento asfáltico efectivo	%	0.53	1.05	1.57	2.09	2.61				
25	Flujo	mm	2.70	3.00	3.20	3.40	3.80				
26	Estabilidad sin corregir	kg	1046	1056.2	1089	1103.4	1070				
27	Altura de la briqueta	mm	63.5	63.5	61.9	63.5	63.5				
28	Factor de estabilidad		1.00	1.00	1.04	1.00	1.00				
29	Estabilidad corregida	kg	1046	1056	1133	1103	1070				
30	Estabilidad - Flujo	kg/cm	3872	3521	3540	3245	2817				
31	Compactación, numero de golpes por cara				50						

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 12% OXIDO FERRICO (OCRE)											
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5					
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00					
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90					
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10					
4	Arena chancada	%	26.80	26.80	26.80	26.80	26.80					
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20					
6	Material muy fino (filler)	%	12.00	12.00	12.00	12.00	12.00					
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020					
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660					
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710					
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720					
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650					
12	Peso de la briqueta al aire	gr	1234.2	1248.0	1224.2	1245.0	1231.0					
13	Peso de la briqueta saturada	gr	1237.2	1255.0	1227.0	1264.0	1253.0					
14	Peso de la briqueta en agua	gr	771.2	785.4	767.5	795.3	789.7					
15	Volumen de briqueta	c.c.	466.0	469.6	459.5	468.7	463.3					
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.648	2.658	2.664	2.656	2.657					
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.87	2.84	2.82	2.79	2.76					
18	Vacíos (MTC E-505)	%	7.7	6.5	5.4	4.8	3.9					
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69					
20	V.M.A.	%	5.4	5.6	5.8	6.6	7.1					
21	Vacíos llenos con cemento asfáltico (VFA)	%	-42.9	-17.1	7.2	27.1	44.7					
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.10	3.10	3.10	3.10	3.10					
23	Cemento asfáltico absorbido por el agregado total	%	5.09	5.09	5.09	5.09	5.09					
24	Cemento asfáltico efectivo	%	-0.89	-0.36	0.16	0.69	1.21					
25	Flujo	mm	7.40	7.60	7.70	8.20	8.40					
26	Estabilidad sin corregir	kg	946	991.3	1059	1093.0	984					
27	Altura de la briqueta	mm	65.1	66.7	65.1	65.1	66.7					
28	Factor de estabilidad		0.96	0.93	0.96	0.96	0.93					
29	Estabilidad corregida	kg	908	922	1017	1049	915					
30	Estabilidad - Flujo	kg/cm	1227	1213	1320	1280	1089					
31	Compactación, numero de golpes por cara				50							

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 15% OXIDO FERRICO (OCRE)										
Pr	opiedades mecanicas y volumetricas de MAC	N°	1	2	3	4	5				
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00				
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90				
3	Piedra chancada de 3/4"	%	20.90	20.90	20.90	20.90	20.90				
4	Arena chancada	%	21.00	21.00	21.00	21.00	21.00				
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20				
6	Material muy fino (filler)	%	15.00	15.00	15.00	15.00	15.00				
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020				
8	Peso especifico de piedra chancada 3/4"	· ·	2.660	2.660	2.660	2.660	2.660				
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710				
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720				
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650				
12	Peso de la briqueta al aire	gr	1243.6	1245.7	1251.6	1248.4	1253.1				
13	Peso de la briqueta saturada	gr	1247.3	1250.2	1255.2	1253.6	1255.1				
14	Peso de la briqueta en agua	gr	797.1	798.5	799.8	797.9	795.7				
15	Volumen de briqueta	c.c.	450.2	451.7	455.4	455.7	459.4				
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.762	2.758	2.748	2.739	2.727				
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.95	2.92	2.90	2.87	2.84				
18	Vacíos (MTC E-505)	%	6.5	5.7	5.1	4.5	4.0				
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.68	2.68	2.68	2.68	2.68				
20	V.M.A.	%	1.2	1.9	2.7	3.6	4.5				
21	Vacíos llenos con cemento asfáltico (VFA)	%	-437.1	-202.8	-87.1	-26.4	10.8				
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.21	3.21	3.21	3.21	3.21				
23	Cemento asfáltico absorbido por el agregado total	%	6.19	6.19	6.19	6.19	6.19				
24	Cemento asfáltico efectivo	%	-1.94	-1.41	-0.88	-0.35	0.18				
25	Flujo	mm	8.00	8.30	8.70	9.00	0.20				
26	Estabilidad sin corregir	kg	709	726.0	750	766.7	736				
27	Altura briqueta	mm	65.1	65.1	65.1	65.1	65.1				
28	Factor de estabilidad		0.96	0.96	0.96	0.96	0.96				
29	Estabilidad corregida	kg	681	697	720	736	707				
30	Estabilidad - Flujo	kg/cm	851	840	828	818	35328				
31	Compactación, numero de golpes por cara				50						

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 4% OXIDO FERRICO (CHROMAFER)									
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5			
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00			
2	Piedra chancada de 1/2"	%	30.10	30.10	30.10	30.10	30.10			
3	Piedra chancada de 3/4"	%	10.20	10.20	10.20	10.20	10.20			
4	Arena chancada	%	50.50	50.50	50.50	50.50	50.50			
5	Arena zarandeada	%	5.20	5.20	5.20	5.20	5.20			
6	Material muy fino (filler)	%	4.00	4.00	4.00	4.00	4.00			
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020			
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660			
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710			
10	Peso especifico de arena chancada	,	2.720	2.720	2.720	2.720	2.720			
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650			
12	Peso de la briqueta al aire	gr	1234.0	1245.0	1233.2	1224.0	1241.0			
13	Peso de la briqueta saturada	gr	1240.0	1248.0	1227.0	1227.0	1243.0			
14	Peso de la briqueta en agua	gr	748.5	751.6	733.3	739.6	747.8			
15	Volumen de briqueta	c.c.	491.5	496.4	493.7	487.4	495.2			
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.511	2.508	2.498	2.511	2.506			
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.67	2.65	2.63	2.61	2.59			
18	Vacíos (MTC E-505)	%	6.1	5.4	5.0	3.7	3.1			
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.71	2.71	2.71	2.71	2.71			
20	V.M.A.	%	10.9	11.5	12.3	12.3	13.0			
21	Vacíos llenos con cemento asfáltico (VFA)	%	44.3	53.0	59.4	70.0	76.1			
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.87	2.87	2.87	2.87	2.87			
23	Cemento asfáltico absorbido por el agregado total	%	2.11	2.11	2.11	2.11	2.11			
24	Cemento asfáltico efectivo	%	1.97	2.48	2.99	3.50	4.01			
25	Flujo	mm	1.50	2.50	3.00	3.60	4.10			
26	Estabilidad sin corregir	kg	1364	1400.0	1392	1421.7	1404			
27	Altura de la briqueta	mm	63.5	63.5	61.9	63.5	63.5			
28	Factor de estabilidad		1.00	1.00	1.04	1.00	1.00			
29	Est abilidad corregida	kg	1364	1400	1448	1422	1404			
30	Estabilidad - Flujo	kg/cm	9093	5600	4826	3949	3424			
31	Compactación, numero de golpes por cara				50					

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 8% OXIDO FERRICO (CHROMAFER)									
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5			
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00			
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90			
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10			
4	Arena chancada	%	30.80	30.80	30.80	30.80	30.80			
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20			
6	Material muy fino (filler)	%	8.00	8.00	8.00	8.00	8.00			
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020			
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660			
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710			
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720			
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650			
12	Peso de la briqueta al aire	gr	1241.0	1241.0	1215.7	1243.0	1240.0			
13	Peso de la briqueta saturada	gr	1242.8	1272.0	1219.0	1255.0	1242.0			
14	Peso de la briqueta en agua	gr	757.8	783.8	741.1	766.3	761.9			
15	Volumen de briqueta	c.c.	485.0	488.2	477.9	488.7	480.1			
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.559	2.542	2.544	2.543	2.583			
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.76	2.74	2.71	2.69	2.67			
18	Vacíos (MTC E-505)	%	7.3	7.1	6.2	5.4	3.1			
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69			
20	V.M.A.	%	8.6	9.7	10.1	10.6	9.7			
21	Vacíos llenos con cemento asfáltico (VFA)	%	15.5	26.9	38.7	49.1	68.0			
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.97	2.97	2.97	2.97	2.97			
23	Cemento asfáltico absorbido por el agregado total	%	3.61	3.61	3.61	3.61	3.61			
24	Cemento asfáltico efectivo	%	0.53	1.05	1.57	2.09	2.61			
25	Flujo	mm	2.50	2.70	3.10	3.60	4.00			
26	Estabilidad sin corregir	kg	1164	1205.3	1296	1318.3	1223			
27	Altura de la briqueta	mm	63.5	63.5	63.5	63.5	63.5			
28	Factor de estabilidad		1.00	1.00	1.00	1.00	1.00			
29	Estabilidad corregida	kg	1164	1205	1296	1318	1223			
30	Estabilidad - Flujo	kg/cm	4655	4464	4181	3662	3056			
31	Compactación, numero de golpes por cara				50					

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 12% OXIDO FERRICO (CHROMAFER)									
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5			
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00			
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90			
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10			
4	Arena chancada	%	26.80	26.80	26.80	26.80	26.80			
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20			
6	Material muy fino (filler)	%	12.00	12.00	12.00	12.00	12.00			
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020			
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660			
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710			
10	Peso especifico de arena chancada	<u> </u>	2.720	2.720	2.720	2.720	2.720			
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650			
12	Peso de la briqueta al aire	gr	1234.2	1248.0	1224.2	1245.0	1231.0			
13	Peso de la briqueta saturada	gr	1237.2	1255.0	1227.0	1264.0	1253.0			
14	Peso de la briqueta en agua	gr	772.2	786.9	766.5	792.3	790.7			
15	Volumen de briqueta	c.c.	465.0	468.1	460.5	471.7	462.3			
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.654	2.666	2.658	2.640	2.663			
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.87	2.84	2.82	2.79	2.76			
18	Vacíos (MTC E-505)	%	7.5	6.2	5.6	5.4	3.7			
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69			
20	V.M.A.	%	5.2	5.2	6.0	7.2	6.9			
21	Vacíos llenos con cemento asfáltico (VFA)	%	-44.7	-18.2	7.0	24.8	46.1			
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.10	3.10	3.10	3.10	3.10			
23	Cemento asfáltico absorbido por el agregado total	%	5.09	5.09	5.09	5.09	5.09			
24	Cemento asfáltico efectivo	%	-0.89	-0.36	0.16	0.69	1.21			
25	Flujo	mm	7.30	7.50	7.60	8.10	8.50			
26	Estabilidad sin corregir	kg	1663	1674.0	1692	1720.7	1702			
27	Altura de la briqueta	mm	63.5	63.5	63.5	63.5	63.5			
28	Factor de estabilidad		1.00	1.00	1.00	1.00	1.00			
29	Estabilidad corregida	kg	1663	1674	1692	1721	1702			
30	Estabilidad - Flujo	kg/cm	2279	2232	2226	2124	2002			
31	Compactación, numero de golpes por cara				50					

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 15% OXIDO FERRICO (CHROMAFER)									
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5			
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00			
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90			
3	Piedra chancada de 3/4"	%	20.90	20.90	20.90	20.90	20.90			
4	Arena chancada	%	21.00	21.00	21.00	21.00	21.00			
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20			
6	Material muy fino (filler)	%	15.00	15.00	15.00	15.00	15.00			
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020			
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660			
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710			
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720			
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650			
12	Peso de la briqueta al aire	gr	1229.4	1243.0	1231.2	1248.0	1239.0			
13	Peso de la briqueta saturada	gr	1242.8	1253.0	1240.0	1272.0	1243.0			
14	Peso de la briqueta en agua	gr	797.1	804.6	793.9	816.4	789.2			
15	Volumen de briqueta	c.c.	445.7	448.4	446.1	455.6	453.8			
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.758	2.772	2.760	2.739	2.730			
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.95	2.92	2.90	2.87	2.84			
18	Vacíos (MTC E-505)	%	6.6	5.2	4.7	4.5	3.9			
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.68	2.68	2.68	2.68	2.68			
20	V.M.A.	%	1.3	1.4	2.3	3.6	4.4			
21	Vacíos llenos con cemento asfáltico (VFA)	%	-390.4	-281.7	-102.9	-26.4	11.0			
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.21	3.21	3.21	3.21	3.21			
23	Cemento asfáltico absorbido por el agregado total	%	6.19	6.19	6.19	6.19	6.19			
24	Cemento asfáltico efectivo	%	-1.94	-1.41	-0.88	-0.35	0.18			
25	Flujo	mm	2.32	3.20	3.60	3.80	4.21			
26	Estabilidad sin corregir	kg	764	769.0	794	804.0	776			
27	Altura briqueta	mm	63.5	63.5	63.5	63.5	63.5			
28	Factor de estabilidad		1.00	1.00	1.00	1.00	1.00			
29	Estabilidad corregida	kg	764	769	794	804	776			
30	Estabilidad - Flujo	kg/cm	3292	2403	2206	2116	1843			
31	Compactación, numero de golpes por cara				50					

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 4% OXIDO CROMO (OCRE)									
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5			
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00			
2	Piedra chancada de 1/2"	%	30.10	30.10	30.10	30.10	30.10			
3	Piedra chancada de 3/4"	%	10.20	10.20	10.20	10.20	10.20			
4	Arena chancada	%	50.50	50.50	50.50	50.50	50.50			
5	Arena zarandeada	%	5.20	5.20	5.20	5.20	5.20			
6	Material muy fino (filler)	%	4.00	4.00	4.00	4.00	4.00			
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020			
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660			
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710			
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720			
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650			
12	Peso de la briqueta al aire	gr	1237.3	1343.1	1243.6	1247.2	1239.1			
13	Peso de la briqueta saturada	gr	1242.1	1245.3	1247.2	1251.1	1243.2			
14	Peso de la briqueta en agua	gr	744.5	706.4	747.8	750.8	752.8			
15	Volumen de briqueta	c.c.	497.6	538.9	499.4	500.3	490.4			
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.487	2.492	2.490	2.493	2.527			
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.67	2.65	2.63	2.61	2.59			
18	Vacíos (MTC E-505)	%	7.0	6.0	5.3	4.4	2.3			
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.71	2.71	2.71	2.71	2.71			
20	V.M.A.	%	11.8	12.1	12.6	13.0	12.2			
21	Vacíos llenos con cemento asfáltico (VFA)	%	40.7	50.3	57.9	66.0	81.2			
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.87	2.87	2.87	2.87	2.87			
23	Cemento asfáltico absorbido por el agregado total	%	2.11	2.11	2.11	2.11	2.11			
24	Cemento asfáltico efectivo	%	1.97	2.48	2.99	3.50	4.01			
25	Flujo	mm	2.10	2.80	3.00	3.40	3.90			
26	Estabilidad sin corregir	kg	1246	1267.4	1285	1298.7	1265			
27	Altura briqueta	mm	63.5	63.5	63.5	63.5	63.5			
28	Factor de estabilidad		1.00	1.00	1.00	1.00	1.00			
29	Estabilidad corregida	kg	1246	1267	1285	1299	1265			
30	Estabilidad - Flujo	kg/cm	5933	4526	4282	3820	3243			
31	Compactación, numero de golpes por cara				50					

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 8% OXIDO CROMO (OCRE)									
Pı	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5			
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00			
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90			
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10			
4	Arena chancada	%	30.80	30.80	30.80	30.80	30.80			
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20			
6	Material muy fino (filler)	%	8.00	8.00	8.00	8.00	8.00			
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020			
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660			
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710			
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720			
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650			
12	Peso de la briqueta al aire	gr	1243.5	1237.5	1241.2	1250.2	1237.5			
13	Peso de la briqueta saturada	gr	1248.2	1241.3	1249.5	1254.1	1243.8			
14	Peso de la briqueta en agua	gr	762.8	756.0	761.1	764.6	766.2			
15	Volumen de briqueta	c.c.	485.4	485.3	488.4	489.5	477.6			
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.562	2.550	2.541	2.554	2.591			
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.76	2.74	2.71	2.69	2.67			
18	Vacíos (MTC E-505)	%	7.2	6.8	6.3	5.0	2.8			
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69			
20	V.M.A.	%	8.5	9.4	10.2	10.2	9.4			
21	Vacíos llenos con cemento asfáltico (VFA)	%	15.7	27.9	38.3	51.1	70.3			
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.97	2.97	2.97	2.97	2.97			
23	Cemento asfáltico absorbido por el agregado total	%	3.61	3.61	3.61	3.61	3.61			
24	Cemento asfáltico efectivo	%	0.53	1.05	1.57	2.09	2.61			
25	Flujo	mm	2.80	3.30	3.40	3.60	4.00			
26	Estabilidad sin corregir	kg	999	1000.2	1076	1110.8	1057			
27	Altura briqueta	mm	65.1	63.5	63.5	63.5	66.7			
28	Factor de estabilidad		0.96	1.00	1.00	1.00	0.93			
29	Estabilidad corregida	kg	959	1000	1076	1111	983			
30	Estabilidad - Flujo	kg/cm	3423	3031	3165	3086	2457			
31	Compactación, numero de golpes por cara				50					

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 12% OXIDO CROMO (OCRE)											
Pı	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5					
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00					
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90					
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10					
4	Arena chancada	%	26.80	26.80	26.80	26.80	26.80					
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20					
6	Material muy fino (filler)	%	12.00	12.00	12.00	12.00	12.00					
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020					
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660					
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710					
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720					
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650					
12	Peso de la briqueta al aire	gr	1245.3	1243.2	1247.1	1250.2	1244.1					
13	Peso de la briqueta saturada	gr	1247.3	1249.1	1251.8	1255.2	1247.3					
14	Peso de la briqueta en agua	gr	778.1	779.8	783.2	787.0	779.6					
15	Volumen de briqueta	c.c.	469.2	469.3	468.6	468.2	467.7					
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.654	2.649	2.661	2.670	2.660					
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.87	2.84	2.82	2.79	2.76					
18	Vacíos (MTC E-505)	%	7.5	6.8	5.5	4.3	3.8					
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69					
20	V.M.A.	%	5.2	5.9	5.9	6.1	7.0					
21	Vacíos llenos con cemento asfáltico (VFA)	%	-44.7	-16.2	7.1	29.5	45.4					
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.10	3.10	3.10	3.10	3.10					
23	Cemento asfáltico absorbido por el agregado total	%	5.09	5.09	5.09	5.09	5.09					
24	Cemento asfáltico efectivo	%	-0.89	-0.36	0.16	0.69	1.21					
25	Flujo	mm	7.20	7.40	7.70	8.00	8.30					
26	Estabilidad sin corregir	kg	942	977.7	1045	1078.4	970					
27	Altura briqueta	mm	66.7	66.7	66.7	66.7	66.7					
28	Factor de estabilidad		0.93	0.93	0.93	0.93	0.93					
29	Est abilidad corregida	kg	876	909	972	1003	902					
30	Est abilidad - Flujo	kg/cm	1216	1229	1262	1254	1087					
31	Compactación, numero de golpes por cara				50							

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 15% OXID	O CRO	OMO (OCRE)			
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90
3	Piedra chancada de 3/4"	%	20.90	20.90	20.90	20.90	20.90
4	Arena chancada	%	21.00	21.00	21.00	21.00	21.00
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20
6	Material muy fino (filler)	%	15.00	15.00	15.00	15.00	15.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada	,	2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1243.2	1239.2	1241.6	1250.1	1245.2
13	Peso de la briqueta saturada	gr	1247.3	1244.2	1249.3	1257.2	1255.2
14	Peso de la briqueta en agua	gr	794.7	790.5	793.9	799.4	798.7
15	Volumen de briqueta	c.c.	452.6	453.7	455.4	457.8	456.5
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.747	2.731	2.726	2.731	2.727
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.95	2.92	2.90	2.87	2.84
18	Vacíos (MTC E-505)	%	7.0	6.6	5.9	4.8	4.0
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.68	2.68	2.68	2.68	2.68
20	V.M.A.	%	1.8	2.8	3.5	3.9	4.5
21	Vacíos llenos con cemento asfáltico (VFA)	%	-295.8	-134.1	-67.2	-24.3	10.8
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.21	3.21	3.21	3.21	3.21
23	Cemento asfáltico absorbido por el agregado total	%	6.19	6.19	6.19	6.19	6.19
24	Cemento asfáltico efectivo	%	-1.94	-1.41	-0.88	-0.35	0.18
25	Flujo	mm	7.50	7.80	8.10	8.40	8.80
26	Estabilidad sin corregir	kg	695	712.5	737	753.7	722
27	Altura briqueta	mm	66.7	66.7	66.7	66.7	66.7
28	Factor de estabilidad		0.93	0.93	0.93	0.93	0.93
29	Estabilidad corregida	kg	647	663	685	701	672
30	Estabilidad - Flujo	kg/cm	862	850	846	834	763
31	Compactación, numero de golpes por cara				50		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 4% OXIDO	CROM	10 (CH	ROMAI	FER)		
Pı	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	30.10	30.10	30.10	30.10	30.10
3	Piedra chancada de 3/4"	%	10.20	10.20	10.20	10.20	10.20
4	Arena chancada	%	50.50	50.50	50.50	50.50	50.50
5	Arena zarandeada	%	5.20	5.20	5.20	5.20	5.20
6	Material muy fino (filler)	%	4.00	4.00	4.00	4.00	4.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1241.2	1247.2	1252.1	1245.2	1251.7
13	Peso de la briqueta saturada	gr	1248.3	1253.6	1254.2	1250.3	1254.3
14	Peso de la briqueta en agua	gr	750.7	752.1	752.9	752.9	755.4
15	Volumen de briqueta	c.c.	497.6	501.5	501.3	497.4	498.9
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.495	2.487	2.498	2.503	2.509
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.67	2.65	2.63	2.61	2.59
18	Vacíos (MTC E-505)	%	6.7	6.2	5.0	4.0	3.0
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.71	2.71	2.71	2.71	2.71
20	V.M.A.	%	11.5	12.2	12.3	12.6	12.9
21	Vacíos llenos con cemento asfáltico (VFA)	%	41.8	49.4	59.4	68.2	76.7
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.87	2.87	2.87	2.87	2.87
23	Cemento asfáltico absorbido por el agregado total	%	2.11	2.11	2.11	2.11	2.11
24	Cemento asfáltico efectivo	%	1.97	2.48	2.99	3.50	4.01
25	Flujo	mm	1.20	2.30	2.60	3.10	4.50
26	Estabilidad sin corregir	kg	1335	1506.2	1603	1409.4	1301
27	Altura briqueta	mm	65.1	63.5	63.5	65.1	66.7
28	Factor de estabilidad		0.96	1.00	1.00	0.96	0.93
29	Estabilidad corregida	kg	1282	1506	1603	1353	1210
30	Estabilidad - Flujo	kg/cm	10681	6549	6167	4365	2689
31	Compactación, numero de golpes por cara				50	_	

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 8% OXIDO	CRO	MO (CH	ROMA	FER)		
Pı	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10
4	Arena chancada	%	30.80	30.80	30.80	30.80	30.80
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20
6	Material muy fino (filler)	%	8.00	8.00	8.00	8.00	8.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada	,	2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1234.5	1228.0	1232.5	1245.0	1220.0
13	Peso de la briqueta saturada	gr	1236.2	1237.0	1236.3	1249.0	1224.0
14	Peso de la briqueta en agua	gr	763.4	764.5	759.4	764.1	752.2
15	Volumen de briqueta	c.c.	472.8	472.5	476.9	484.9	471.8
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.611	2.599	2.585	2.568	2.586
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.76	2.74	2.71	2.69	2.67
18	Vacíos (MTC E-505)	%	5.4	5.0	4.7	4.5	3.0
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69
20	V.M.A.	%	6.8	7.7	8.7	9.8	9.6
21	Vacíos llenos con cemento asfáltico (VFA)	%	20.2	34.9	45.8	53.9	68.8
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.97	2.97	2.97	2.97	2.97
23	Cemento asfáltico absorbido por el agregado total	%	3.61	3.61	3.61	3.61	3.61
24	Cemento asfáltico efectivo	%	0.53	1.05	1.57	2.09	2.61
25	Flujo	mm	2.20	2.70	3.20	3.60	4.00
26	Estabilidad sin corregir	kg	1289	1376.4	1500	1300.1	1233
27	Altura briqueta	mm	65.1	63.5	65.1	65.1	68.3
28	Factor de estabilidad		0.96	1.00	0.96	0.96	0.89
29	Estabilidad corregida	kg	1238	1376	1440	1248	1097
30	Estabilidad - Flujo	kg/cm	5626	5098	4500	3467	2742
31	Compactación, numero de golpes por cara				50		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 12% OXIDO CROMO (CHROMAFER)											
Pı	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5					
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00					
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90					
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10					
4	Arena chancada	%	26.80	26.80	26.80	26.80	26.80					
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20					
6	Material muy fino (filler)	%	12.00	12.00	12.00	12.00	12.00					
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020					
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660					
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710					
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720					
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650					
12	Peso de la briqueta al aire	gr	1248.2	1244.1	1242.5	1246.3	1242.5					
13	Peso de la briqueta saturada	gr	1256.3	1256.1	1249.1	1259.3	1256.0					
14	Peso de la briqueta en agua	gr	797.1	796.4	787.1	792.6	787.9					
15	Volumen de briqueta	c.c.	459.2	459.7	462.0	466.7	468.1					
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.718	2.706	2.689	2.670	2.654					
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.87	2.84	2.82	2.79	2.76					
18	Vacíos (MTC E-505)	%	5.3	4.8	4.5	4.3	4.0					
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69					
20	V.M.A.	%	2.9	3.8	4.9	6.1	7.2					
21	Vacíos llenos con cemento asfáltico (VFA)	%	-81.9	-25.2	8.6	29.5	44.1					
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.10	3.10	3.10	3.10	3.10					
23	Cemento asfáltico absorbido por el agregado total	%	5.09	5.09	5.09	5.09	5.09					
24	Cemento asfáltico efectivo	%	-0.89	-0.36	0.16	0.69	1.21					
25	Flujo	mm	3.20	6.00	6.40	7.30	7.60					
26	Estabilidad sin corregir	kg	932	992.3	1084	1136.5	1045					
27	Altura briqueta	mm	63.5	63.5	63.5	63.5	63.5					
28	Factor de estabilidad		1.00	1.00	1.00	1.00	1.00					
29	Est abilidad corregida	kg	932	992	1084	1137	1045					
30	Estabilidad - Flujo	kg/cm	2913	1654	1694	1557	1375					
31	Compactación, numero de golpes por cara				50							

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 15% OXIDO CI	ROMO) (CHR	OMAI	FER)		
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90
3	Piedra chancada de 3/4"	%	20.90	20.90	20.90	20.90	20.90
4	Arena chancada	%	21.00	21.00	21.00	21.00	21.00
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20
6	Material muy fino (filler)	%	15.00	15.00	15.00	15.00	15.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada	U	2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1233.2	1234.5	1231.2	1244.1	1223.7
13	Peso de la briqueta saturada	gr	1241.2	1243.5	1240.0	1259.3	1228.2
14	Peso de la briqueta en agua	gr	792.2	800.1	793.9	805.1	779.5
15	Volumen de briqueta	c.c.	449.0	443.4	446.1	454.2	448.7
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.747	2.784	2.760	2.739	2.727
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.95	2.92	2.90	2.87	2.84
18	Vacíos (MTC E-505)	%	7.0	4.8	4.7	4.5	4.0
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.68	2.68	2.68	2.68	2.68
20	V.M.A.	%	1.8	0.9	2.3	3.6	4.5
21	Vacíos llenos con cemento asfáltico (VFA)	%	-295.8	-407.3	-102.9	-26.4	10.8
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.21	3.21	3.21	3.21	3.21
23	Cemento asfáltico absorbido por el agregado total	%	6.19	6.19	6.19	6.19	6.19
24	Cemento asfáltico efectivo	%	-1.94	-1.41	-0.88	-0.35	0.18
25	Flujo	mm	8.00	8.30	8.70	9.00	0.20
26	Estabilidad sin corregir	kg	667	746.1	911	931.7	843
27	Altura briqueta	mm	63.5	63.5	63.5	63.5	63.5
28	Factor de estabilidad		1.00	1.00	1.00	1.00	1.00
29	Estabilidad corregida	kg	667	746	911	932	843
30	Estabilidad - Flujo	kg/cm	834	899	1047	1035	42150
31	Compactación, numero de golpes por cara				50		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

MAC - 4% OXIDO FERRICO (OCRE)										
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5			
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00			
2	Piedra chancada de 1/2"	%	30.10	30.10	30.10	30.10	30.10			
3	Piedra chancada de 3/4"	%	10.20	10.20	10.20	10.20	10.20			
4	Arena chancada	%	50.50	50.50	50.50	50.50	50.50			
5	Arena zarandeada	%	5.20	5.20	5.20	5.20	5.20			
6	Material muy fino (filler)	%	4.00	4.00	4.00	4.00	4.00			
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020			
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660			
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710			
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720			
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650			
12	Peso de la briqueta al aire	gr	1243.3	1239.7	1245.1	1238.4	1245.3			
13	Peso de la briqueta saturada	gr	1247.2	1244.2	1246.3	1243.7	1248.1			
14	Peso de la briqueta en agua	gr	744.5	746.8	745.7	753.1	752.7			
15	Volumen de briqueta	c.c.	502.7	497.4	500.6	490.6	495.4			
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.473	2.492	2.487	2.524	2.514			
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.67	2.65	2.63	2.61	2.59			
18	Vacíos (MTC E-505)	%	7.5	6.0	5.4	3.2	2.8			
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.71	2.71	2.71	2.71	2.71			
20	V.M.A.	%	12.3	12.1	12.7	11.9	12.7			
21	Vacíos llenos con cemento asfáltico (VFA)	%	38.9	50.3	57.5	73.0	77.9			
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.87	2.87	2.87	2.87	2.87			
23	Cemento asfáltico absorbido por el agregado total	%	2.11	2.11	2.11	2.11	2.11			
24	Cemento asfaltico efectivo	%	1.97	2.48	2.99	3.50	4.01			
25	Fluio	mm	2.00	3.00	3.40	3.80	4.50			
26	Estabilidad sin corregir	kg	1146	1167.4	1184	1198.3	1165			
27	Altura de la briqueta	mm	63.5	63.5	61.9	63.5	65.1			
28	Factor de estabilidad		1.00	1.00	1.04	1.00	0.96			
29	Estabilidad corregida	kg	1146	1167	1232	1198	1118			
30	Estabilidad - Flujo	kg/cm	5731	3891	3623	3153	2485			
31	Compactación, numero de golpes por cara				35	_				

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 8% OXIDO FERRICO (OCRE)										
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5				
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00				
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90				
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10				
4	Arena chancada	%	30.80	30.80	30.80	30.80	30.80				
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20				
6	Material muy fino (filler)	%	8.00	8.00	8.00	8.00	8.00				
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020				
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660				
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710				
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720				
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650				
12	Peso de la briqueta al aire	gr	1236.0	1227.2	1227.4	1227.2	1211.1				
13	Peso de la briqueta saturada	gr	1239.4	1230.1	1236.3	1232.1	1214.5				
14	Peso de la briqueta en agua	gr	755.3	749.9	753.8	751.6	746.1				
15	Volumen de briqueta	c.c.	484.1	480.2	482.5	480.5	468.4				
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.553	2.555	2.544	2.554	2.586				
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.76	2.74	2.71	2.69	2.67				
18	Vacíos (MTC E-505)	%	7.5	6.6	6.2	5.0	3.0				
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69				
20	V.M.A.	%	8.8	9.2	10.1	10.2	9.6				
21	Vacíos llenos con cemento asfáltico (VFA)	%	15.1	28.5	38.7	51.1	68.8				
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.97	2.97	2.97	2.97	2.97				
23	Cemento asfáltico absorbido por el agregado total	%	3.61	3.61	3.61	3.61	3.61				
24	Cemento asfáltico efectivo	%	0.53	1.05	1.57	2.09	2.61				
25	Flujo	mm	2.70	3.00	3.20	3.40	3.80				
26	Estabilidad sin corregir	kg	901	956.7	1029	1000.3	935				
27	Altura de la briqueta	mm	63.5	63.5	61.9	63.5	63.5				
28	Factor de estabilidad		1.00	1.00	1.04	1.00	1.00				
29	Estabilidad corregida	kg	901	957	1070	1000	935				
30	Estabilidad - Flujo	kg/cm	3337	3189	3343	2942	2462				
31	Compactación, numero de golpes por cara				35						

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 12% OXIDO) FER	RICO	(OCRE	()		
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10
4	Arena chancada	%	26.80	26.80	26.80	26.80	26.80
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20
6	Material muy fino (filler)	%	12.00	12.00	12.00	12.00	12.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1234.5	1233.2	1229.3	1235.3	1237.4
13	Peso de la briqueta saturada	gr	1237.2	1243.2	1233.4	1249.2	1248.2
14	Peso de la briqueta en agua	gr	774.6	779.2	773.9	784.2	783.5
15	Volumen de briqueta	c.c.	462.6	464.0	459.5	465.0	464.7
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.668	2.658	2.675	2.656	2.663
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.87	2.84	2.82	2.79	2.76
18	Vacíos (MTC E-505)	%	7.0	6.5	5.0	4.8	3.7
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69
20	V.M.A.	%	4.7	5.6	5.4	6.6	6.9
21	Vacíos llenos con cemento asfáltico (VFA)	%	-49.8	-17.1	7.8	27.1	46.1
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.10	3.10	3.10	3.10	3.10
23	Cemento asfáltico absorbido por el agregado total	%	5.09	5.09	5.09	5.09	5.09
24	Cemento asfáltico efectivo	%	-0.89	-0.36	0.16	0.69	1.21
25	Flujo	mm	7.40	7.60	7.70	8.20	8.40
26	Estabilidad sin corregir	kg	807	822.4	916	949.5	814
27	Altura de la briqueta	mm	63.5	63.5	61.9	61.9	66.7
28	Factor de estabilidad		1.00	1.00	1.04	1.04	0.93
29	Estabilidad corregida	kg	807	822	953	987	757
30	Estabilidad - Flujo	kg/cm	1091	1082	1238	1204	901
31	Compactación, numero de golpes por cara				35		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 15% OXID	O FE	RRICO	(OCRE	E)		
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90
3	Piedra chancada de 3/4"	%	20.90	20.90	20.90	20.90	20.90
4	Arena chancada	%	21.00	21.00	21.00	21.00	21.00
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20
6	Material muy fino (filler)	%	15.00	15.00	15.00	15.00	15.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada	<u> </u>	2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1234.5	1241.0	1229.3	1236.0	1233.0
13	Peso de la briqueta saturada	gr	1237.2	1253.0	1233.4	1241.0	1238.0
14	Peso de la briqueta en agua	gr	791.6	803.9	785.7	788.4	785.9
15	Volumen de briqueta	c.c.	445.6	449.1	447.7	452.6	452.1
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.770	2.764	2.746	2.731	2.727
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.95	2.92	2.90	2.87	2.84
18	Vacíos (MTC E-505)	%	6.2	5.5	5.2	4.8	4.0
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.68	2.68	2.68	2.68	2.68
20	V.M.A.	%	0.9	1.7	2.8	3.9	4.5
21	Vacíos llenos con cemento asfáltico (VFA)	%	-571.4	-228.4	-83.8	-24.3	10.8
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.21	3.21	3.21	3.21	3.21
23	Cemento asfáltico absorbido por el agregado total	%	6.19	6.19	6.19	6.19	6.19
24	Cemento asfaltico efectivo	%	-1.94	-1.41	-0.88	-0.35	0.19
25	Fluio		7.40	7.70	8.00	8.30	8.70
26	Estabilidad sin corregir	mm kg	561	571.0	585	597.7	574
27	Altura de la briqueta	mm	63.5	63.5	61.9	63.5	63.5
28	Factor de estabilidad		1.00	1.00	1.04	1.00	1.00
29	Estabilidad corregida	kg	561	571	609	598	574
30	Estabilidad - Flujo	kg/cm	758	742	761	720	660
31	Compactación, numero de golpes por cara				35		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

MAC - 4% OXIDO FERRICO (CHROMAFER)										
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5			
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00			
2	Piedra chancada de 1/2"	%	30.10	30.10	30.10	30.10	30.10			
3	Piedra chancada de 3/4"	%	10.20	10.20	10.20	10.20	10.20			
4	Arena chancada	%	50.50	50.50	50.50	50.50	50.50			
5	Arena zarandeada	%	5.20	5.20	5.20	5.20	5.20			
6	Material muy fino (filler)	%	4.00	4.00	4.00	4.00	4.00			
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020			
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660			
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710			
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720			
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650			
12	Peso de la briqueta al aire	gr	1228.6	1227.0	1232.2	1226.3	1228.0			
13	Peso de la briqueta saturada	gr	1234.2	1236.2	1236.8	1232.1	1233.4			
14	Peso de la briqueta en agua	gr	739.6	740.2	742.5	744.3	743.8			
15	Volumen de briqueta	c.c.	494.6	496.0	494.3	487.8	489.6			
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.484	2.474	2.493	2.514	2.508			
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.67	2.65	2.63	2.61	2.59			
18	Vacíos (MTC E-505)	%	7.1	6.7	5.2	3.6	3.0			
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.71	2.71	2.71	2.71	2.71			
20	V.M.A.	%	11.9	12.7	12.5	12.2	12.9			
21	Vacíos llenos con cemento asfáltico (VFA)	%	40.3	47.3	58.4	70.6	76.6			
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.87	2.87	2.87	2.87	2.87			
23	Cemento asfáltico absorbido por el agregado total	%	2.11	2.11	2.11	2.11	2.11			
24	Cemento asfáltico efectivo	%	1.97	2.48	2.99	3.50	4.01			
25	Flujo	mm	2.30	3.00	3.20	3.60	4.70			
26	Estabilidad sin corregir	kg	1164	1176.7	1192	1289.7	1204			
27	Altura de la briqueta	mm	63.5	63.5	61.9	63.5	63.5			
28	Factor de estabilidad		1.00	1.00	1.04	1.00	1.00			
29	Est abilidad corregida	kg	1164	1177	1240	1290	1204			
30	Estabilidad - Flujo	kg/cm	5059	3922	3875	3582	2562			
31	Compactación, numero de golpes por cara				35	_				

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 8% OXIDO FEI	RRICO) (CHR	ROMAI	FER)		
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10
4	Arena chancada	%	30.80	30.80	30.80	30.80	30.80
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20
6	Material muy fino (filler)	%	8.00	8.00	8.00	8.00	8.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada	U	2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1236.0	1227.2	1227.4	1227.2	1211.1
13	Peso de la briqueta saturada	gr	1239.4	1230.1	1236.3	1232.1	1214.5
14	Peso de la briqueta en agua	gr	752.2	746.8	753.3	750.6	745.1
15	Volumen de briqueta	c.c.	487.2	483.3	483.0	481.5	469.4
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.537	2.539	2.541	2.549	2.580
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.76	2.74	2.71	2.69	2.67
18	Vacíos (MTC E-505)	%	8.1	7.2	6.3	5.2	3.2
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69
20	V.M.A.	%	9.4	9.8	10.2	10.4	9.8
21	Vacíos llenos con cemento asfáltico (VFA)	%	14.1	26.7	38.3	50.1	67.3
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.97	2.97	2.97	2.97	2.97
23	Cemento asfáltico absorbido por el agregado total	%	3.61	3.61	3.61	3.61	3.61
24	Cemento asfáltico efectivo	%	0.53	1.05	1.57	2.09	2.61
25	Flujo	mm	2.30	3.10	3.60	4.50	4.70
26	Estabilidad sin corregir	kg	1064	1105.7	1147	1170.7	1124
27	Altura de la briqueta	mm	63.5	63.5	61.9	63.5	65.1
28	Factor de estabilidad		1.00	1.00	1.04	1.00	0.96
29	Estabilidad corregida	kg	1064	1106	1193	1171	1079
30	Estabilidad - Flujo	kg/cm	4628	3567	3314	2601	2297
31	Compactación, numero de golpes por cara				35		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 12% OXIDO FE	RRIC	O (CHI	ROMA	FER)		
Pr	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10
4	Arena chancada	%	26.80	26.80	26.80	26.80	26.80
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20
6	Material muy fino (filler)	%	12.00	12.00	12.00	12.00	12.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada	,	2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1234.5	1233.2	1229.3	1235.3	1237.4
13	Peso de la briqueta saturada	gr	1237.2	1243.2	1233.4	1249.2	1248.2
14	Peso de la briqueta en agua	gr	771.6	778.2	770.5	780.2	785.4
15	Volumen de briqueta	c.c.	465.6	465.0	462.9	469.0	462.8
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.651	2.652	2.656	2.634	2.674
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.87	2.84	2.82	2.79	2.76
18	Vacíos (MTC E-505)	%	7.6	6.7	5.7	5.6	3.3
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69
20	V.M.A.	%	5.3	5.8	6.1	7.4	6.5
21	Vacíos llenos con cemento asfáltico (VFA)	%	-43.8	-16.5	6.8	24.0	49.0
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.10	3.10	3.10	3.10	3.10
23	Cemento asfáltico absorbido por el agregado total	%	5.09	5.09	5.09	5.09	5.09
24	Cemento asfáltico efectivo	%	-0.89	-0.36	0.16	0.69	1.21
25	Flujo	mm	3.50	4.00	4.30	4.60	5.30
26	Estabilidad sin corregir	kg	764	827.0	904	998.2	877
27	Altura de la briqueta	mm	63.5	63.5	61.9	63.5	66.7
28	Factor de estabilidad		1.00	1.00	1.04	1.00	0.93
29	Estabilidad corregida	kg	764	827	940	998	815
30	Estabilidad - Flujo	kg/cm	2182	2068	2187	2170	1538
31	Compactación, numero de golpes por cara				35	_	

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 15% OXIDO F	ERRIC	CO (CH	ROMA	FER)		
Pı	opiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90
3	Piedra chancada de 3/4"	%	20.90	20.90	20.90	20.90	20.90
4	Arena chancada	%	21.00	21.00	21.00	21.00	21.00
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20
6	Material muy fino (filler)	%	15.00	15.00	15.00	15.00	15.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"	J	2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1234.5	1241.0	1229.3	1236.0	1233.0
13	Peso de la briqueta saturada	gr	1237.2	1253.0	1233.4	1241.0	1238.0
14	Peso de la briqueta en agua	gr	784.8	802.0	784.7	789.8	785.9
15	Volumen de briqueta	c.c.	452.4	451.0	448.7	451.2	452.1
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.729	2.752	2.740	2.739	2.727
17	Peso específico T. máximo (MTC E-508 ASTM D-2	gr/cc	2.95	2.92	2.90	2.87	2.84
18	Vacíos (MTC E-505)	%	7.6	5.9	5.4	4.5	4.0
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.68	2.68	2.68	2.68	2.68
20	V.M.A.	%	2.4	2.1	3.0	3.6	4.5
21	Vacíos llenos con cemento asfáltico (VFA)	%	-216.4	-182.2	-78.0	-26.4	10.8
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.21	3.21	3.21	3.21	3.21
23	Cemento asfáltico absorbido por el agregado total	%	6.19	6.19	6.19	6.19	6.19
24	Cemento asfáltico efectivo	%	-1.94	-1.41	-0.88	-0.35	0.18
25	Flujo	mm	7.40	7.70	8.00	8.30	8.70
26	Estabilidad sin corregir	kg	561	571.0	585	597.7	574
27	Altura de la briqueta	mm	63.5	63.5	61.9	63.5	63.5
28	Factor de estabilidad		1.00	1.00	1.04	1.00	1.00
29	Estabilidad corregida	kg	561	571	609	598	574
30	Estabilidad - Flujo	kg/cm	758	742	761	720	660
31	Compactación, numero de golpes por cara				35		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 4% OXIDO CROMO (OCRE)										
]	Propiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5				
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00				
2	Piedra chancada de 1/2"	%	30.10	30.10	30.10	30.10	30.10				
3	Piedra chancada de 3/4"	%	10.20	10.20	10.20	10.20	10.20				
4	Arena chancada	%	50.50	50.50	50.50	50.50	50.50				
5	Arena zarandeada	%	5.20	5.20	5.20	5.20	5.20				
6	Material muy fino (filler)	%	4.00	4.00	4.00	4.00	4.00				
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020				
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660				
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710				
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720				
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650				
12	Peso de la briqueta al aire	gr	1234.7	1236.1	1243.2	1241.1	1243.2				
13	Peso de la briqueta saturada	gr	1235.6	1239.2	1246.2	1244.2	1247.3				
14	Peso de la briqueta en agua	gr	733.7	737.3	741.0	747.4	753.8				
15	Volumen de briqueta	c.c.	501.9	501.9	505.2	496.8	493.5				
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.460	2.463	2.461	2.498	2.519				
17	Peso específico T. máximo (MTC E-508 ASTM D-2041	gr/cc	2.67	2.65	2.63	2.61	2.59				
18	Vacíos (MTC E-505)	%	8.0	7.1	6.4	4.2	2.6				
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.71	2.71	2.71	2.71	2.71				
20	V.M.A.	%	12.7	13.1	13.6	12.8	12.5				
21	Vacíos llenos con cemento asfáltico (VFA)	%	37.3	45.8	53.0	67.1	79.2				
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.87	2.87	2.87	2.87	2.87				
23	Cemento asfáltico absorbido por el agregado total	%	2.11	2.11	2.11	2.11	2.11				
24	Cemento asfáltico efectivo	%	1.97	2.48	2.99	3.50	4.01				
25	Flujo	mm	3.30	3.70	4.10	4.60	5.20				
26	Estabilidad sin corregir	kg	933	945.2	988	1000.4	969				
27	Altura de la briqueta	mm	65.1	65.1	65.1	65.1	65.1				
28	Factor de estabilidad		0.96	0.96	0.96	0.96	0.96				
29	Estabilidad corregida	kg	895	907	949	960	930				
30	Estabilidad - Flujo	kg/cm	2713	2452	2314	2088	1788				
31	Compactación, numero de golpes por cara				35						

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 8% OXIDO) CRO	MO (O	CRE)			
	Propiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10
4	Arena chancada	%	30.80	30.80	30.80	30.80	30.80
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20
6	Material muy fino (filler)	%	8.00	8.00	8.00	8.00	8.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1239.3	1232.1	1235.2	1233.2	1234.2
13	Peso de la briqueta saturada	gr	1242.3	1237.8	1239.1	1235.2	1240.1
14	Peso de la briqueta en agua	gr	755.9	753.1	752.5	752.4	760.3
15	Volumen de briqueta	c.c.	486.4	484.7	486.6	482.8	479.8
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.548	2.542	2.539	2.554	2.572
17	Peso específico T. máximo (MTC E-508 ASTM D-2041)	gr/cc	2.76	2.74	2.71	2.69	2.67
18	Vacíos (MTC E-505)	%	7.7	7.1	6.4	5.0	3.5
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69
20	V.M.A.	%	9.0	9.7	10.3	10.2	10.1
21	Vacíos llenos con cemento asfáltico (VFA)	%	14.7	26.9	37.9	51.1	65.2
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.97	2.97	2.97	2.97	2.97
23	Cemento asfáltico absorbido por el agregado total	%	3.61	3.61	3.61	3.61	3.61
24	Cemento asfáltico efectivo	%	0.53	1.05	1.57	2.09	2.61
25	Flujo	mm	3.40	4.10	4.40	4.70	5.10
26	Estabilidad sin corregir	kg	799	813.0	876	910.8	857
27	Altura de la briqueta	mm	66.7	66.7	66.7	66.7	66.7
28	Factor de estabilidad		0.93	0.93	0.93	0.93	0.93
29	Estabilidad corregida	kg	743	756	815	847	797
30	Estabilidad - Flujo	kg/cm	2184	1844	1852	1802	1562
31	Compactación, numero de golpes por cara				35		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 12% OXID	O CR	OMO (OCRE)			
]	Propiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10
4	Arena chancada	%	26.80	26.80	26.80	26.80	26.80
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20
6	Material muy fino (filler)	%	12.00	12.00	12.00	12.00	12.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1235.2	1234.2	1235.6	1237.1	1233.2
13	Peso de la briqueta saturada	gr	1237.3	1239.8	1237.6	1240.1	1235.2
14	Peso de la briqueta en agua	gr	770.9	773.9	772.3	772.4	771.6
15	Volumen de briqueta	c.c.	466.4	465.9	465.3	467.7	463.6
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.648	2.649	2.656	2.645	2.660
17	Peso específico T. máximo (MTC E-508 ASTM D-204)	gr/cc	2.87	2.84	2.82	2.79	2.76
18	Vacíos (MTC E-505)	%	7.7	6.8	5.7	5.2	3.8
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69
20	V.M.A.	%	5.4	5.9	6.1	7.0	7.0
21	Vacíos llenos con cemento asfáltico (VFA)	%	-42.9	-16.2	6.8	25.5	45.4
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.10	3.10	3.10	3.10	3.10
23	Cemento asfáltico absorbido por el agregado total	%	5.09	5.09	5.09	5.09	5.09
24	Cemento asfáltico efectivo	%	-0.89	-0.36	0.16	0.69	1.21
25	Flujo	mm	7.30	7.50	7.60	8.10	8.50
26	Estabilidad sin corregir	kg	642	677.7	745	778.4	670
27	Altura de la briqueta	mm	65.1	65.1	65.1	65.1	65.1
28	Factor de estabilidad		0.96	0.96	0.96	0.96	0.96
29	Estabilidad corregida	kg	616	651	715	747	643
30	Estabilidad - Flujo	kg/cm	844	867	941	923	757
31	Compactación, numero de golpes por cara				35		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 15% OXIDO CROMO (OCRE)										
	Propiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5				
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00				
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90				
3	Piedra chancada de 3/4"	%	20.90	20.90	20.90	20.90	20.90				
4	Arena chancada	%	21.00	21.00	21.00	21.00	21.00				
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20				
6	Material muy fino (filler)	%	15.00	15.00	15.00	15.00	15.00				
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020				
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660				
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710				
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720				
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650				
12	Peso de la briqueta al aire	gr	1233.2	1240.4	1235.1	1237.2	1234.9				
13	Peso de la briqueta saturada	gr	1237.8	1244.1	1238.9	1240.1	1239.2				
14	Peso de la briqueta en agua	gr	787.8	794.8	790.0	789.9	786.4				
15	Volumen de briqueta	c.c.	450.0	449.3	448.9	450.2	452.8				
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.741	2.761	2.751	2.748	2.727				
17	Peso específico T. máximo (MTC E-508 ASTM D-204)	gr/cc	2.95	2.92	2.90	2.87	2.84				
18	Vacíos (MTC E-505)	%	7.2	5.6	5.0	4.2	4.0				
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.68	2.68	2.68	2.68	2.68				
20	V.M.A.	%	2.0	1.8	2.6	3.3	4.5				
21	Vacíos llenos con cemento asfáltico (VFA)	%	-263.6	-214.9	-90.6	-29.0	10.8				
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.21	3.21	3.21	3.21	3.21				
23	Cemento asfáltico absorbido por el agregado total	%	6.19	6.19	6.19	6.19	6.19				
24	Cemento asfáltico efectivo	%	-1.94	-1.41	-0.88	-0.35	0.18				
25	Flujo	mm	7.50	7.60	7.90	8.40	8.60				
26	Estabilidad sin corregir	kg	495	512.5	537	553.7	522				
27	Altura briqueta	mm	65.1	65.1	65.1	65.1	65.1				
28	Factor de estabilidad		0.96	0.96	0.96	0.96	0.96				
29	Estabilidad corregida	kg	475	492	515	532	502				
30	Estabilidad - Flujo	kg/cm	634	647	652	633	583				
31	Compactación, numero de golpes por cara				35						

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 4% OXIDO CI	ROMO	O (CHR	OMAFER	R)		
	Propiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	30.10	30.10	30.10	30.10	30.10
3	Piedra chancada de 3/4"	%	10.20	10.20	10.20	10.20	10.20
4	Arena chancada	%	50.50	50.50	50.50	50.50	50.50
5	Arena zarandeada	%	5.20	5.20	5.20	5.20	5.20
6	Material muy fino (filler)	%	4.00	4.00	4.00	4.00	4.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1228.6	1227.0	1232.2	1226.3	1228.0
13	Peso de la briqueta saturada	gr	1234.2	1236.2	1236.8	1232.1	1233.4
14	Peso de la briqueta en agua	gr	749.0	749.1	747.6	744.3	743.9
15	Volumen de briqueta	c.c.	485.2	487.1	489.2	487.8	489.5
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.532	2.519	2.519	2.514	2.509
17	Peso específico T. máximo (MTC E-508 ASTM D-2041	gr/cc	2.67	2.65	2.63	2.61	2.59
18	Vacíos (MTC E-505)	%	5.3	5.0	4.2	3.6	3.0
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.71	2.71	2.71	2.71	2.71
20	V.M.A.	%	10.2	11.1	11.6	12.2	12.9
21	Vacíos llenos con cemento asfáltico (VFA)	%	48.0	55.1	63.7	70.6	76.7
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.87	2.87	2.87	2.87	2.87
23	Cemento asfáltico absorbido por el agregado total	%	2.11	2.11	2.11	2.11	2.11
24	Cemento asfáltico efectivo	%	1.97	2.48	2.99	3.50	4.01
25	Flujo	mm	3.10	4.00	4.30	4.60	6.00
26	Estabilidad sin corregir	kg	602	866.2	1197	1041.3	633
27	Altura de la briqueta	mm	65.1	65.1	65.1	65.1	65.1
28	Factor de estabilidad		0.96	0.96	0.96	0.96	0.96
29	Estabilidad corregida	kg	578	832	1149	1000	607
30	Estabilidad - Flujo	kg/cm	1865	2079	2672	2173	1012
31	Compactación, numero de golpes por cara				35		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 8% OXIDO CR	OMO	(CHRC)MAFER)			
	Propiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10
4	Arena chancada	%	30.80	30.80	30.80	30.80	30.80
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20
6	Material muy fino (filler)	%	8.00	8.00	8.00	8.00	8.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1236.0	1227.2	1227.4	1227.2	1211.1
13	Peso de la briqueta saturada	gr	1239.4	1230.1	1236.3	1232.1	1214.5
14	Peso de la briqueta en agua	gr	766.9	758.0	760.9	754.7	746.1
15	Volumen de briqueta	c.c.	472.5	472.1	475.4	477.4	468.4
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.616	2.599	2.582	2.570	2.586
17	Peso específico T. máximo (MTC E-508 ASTM D-2041)	gr/cc	2.76	2.74	2.71	2.69	2.67
18	Vacíos (MTC E-505)	%	5.2	5.0	4.8	4.4	3.0
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69
20	V.M.A.	%	6.6	7.7	8.8	9.7	9.6
21	Vacíos llenos con cemento asfáltico (VFA)	%	20.7	34.9	45.3	54.4	68.8
22	Peso específico efectivo agregado total (Gse)	gr/cc	2.97	2.97	2.97	2.97	2.97
23	Cemento asfáltico absorbido por el agregado total	%	3.61	3.61	3.61	3.61	3.61
24	Cemento asfáltico efectivo	%	0.53	1.05	1.57	2.09	2.61
25	Flujo	mm	3.00	3.60	4.00	4.70	5.00
26	Estabilidad sin corregir	kg	803	924.5	1141	1168.0	935
27	Altura de la briqueta	mm	66.7	66.7	66.7	66.7	66.7
28	Factor de estabilidad		0.93	0.93	0.93	0.93	0.93
29	Estabilidad corregida	kg	746	860	1061	1086	870
30	Estabilidad - Flujo	kg/cm	2488	2388	2653	2311	1739
31	Compactación, numero de golpes por cara				35		

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

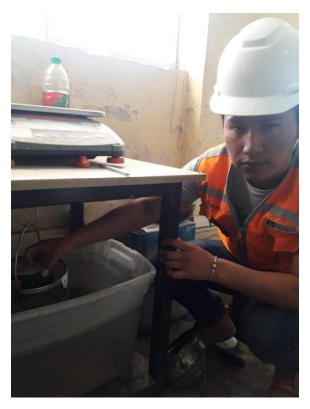
	MAC - 12% OXIDO CROMO (CHROMAFER)										
]	Propiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5				
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00				
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90				
3	Piedra chancada de 3/4"	%	18.10	18.10	18.10	18.10	18.10				
4	Arena chancada	%	26.80	26.80	26.80	26.80	26.80				
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20				
6	Material muy fino (filler)	%	12.00	12.00	12.00	12.00	12.00				
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020				
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660				
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710				
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720				
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650				
12	Peso de la briqueta al aire	gr	1234.5	1233.2	1229.3	1235.3	1237.4				
13	Peso de la briqueta saturada	gr	1237.2	1243.2	1233.4	1249.2	1248.2				
14	Peso de la briqueta en agua	gr	781.0	785.1	773.4	785.6	783.9				
15	Volumen de briqueta	c.c.	456.2	458.1	460.0	463.6	464.3				
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.706	2.692	2.673	2.665	2.665				
17	Peso específico T. máximo (MTC E-508 ASTM D-2041	gr/cc	2.87	2.84	2.82	2.79	2.76				
18	Vacíos (MTC E-505)	%	5.7	5.3	5.1	4.5	3.6				
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.69	2.69	2.69	2.69	2.69				
20	V.M.A.	%	3.3	4.3	5.5	6.3	6.8				
21	Vacíos llenos con cemento asfáltico (VFA)	%	-70.7	-22.2	7.6	28.5	46.8				
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.10	3.10	3.10	3.10	3.10				
23	Cemento asfáltico absorbido por el agregado total	%	5.09	5.09	5.09	5.09	5.09				
24	Cemento asfáltico efectivo	%	-0.89	-0.36	0.16	0.69	1.21				
25	Flujo	mm	4.00	4.60	5.00	5.80	6.00				
26	Estabilidad sin corregir	kg	800	895.2	987	1015.2	812				
27	Altura de la briqueta	mm	66.7	66.7	66.7	66.7	66.7				
28	Factor de estabilidad		0.93	0.93	0.93	0.93	0.93				
	·			833	918	944	755				
29	Est abilidad corregida	kg	744	833	918	944	133				
29 30	Estabilidad corregida Estabilidad - Flujo	kg kg/cm	1860	1810	1836	1628	1259				

"Efecto de los óxidos metálicos en las propiedades mecánicas de las mezclas asfálticas pigmentadas para diferenciación de flujo en vías"

	MAC - 15% OXIDO (CROM	O (CH	ROMAFE	R)		
]	Propiedades mecanicas y volumetricas de MAC	Nº	1	2	3	4	5
1	Cemento Asfáltico en peso de la mezcla	%	4.00	4.50	5.00	5.50	6.00
2	Piedra chancada de 1/2"	%	20.90	20.90	20.90	20.90	20.90
3	Piedra chancada de 3/4"	%	20.90	20.90	20.90	20.90	20.90
4	Arena chancada	%	21.00	21.00	21.00	21.00	21.00
5	Arena zarandeada	%	22.20	22.20	22.20	22.20	22.20
6	Material muy fino (filler)	%	15.00	15.00	15.00	15.00	15.00
7	Peso específico del cemento asfáltico aparente	gr/cc	1.020	1.020	1.020	1.020	1.020
8	Peso especifico de piedra chancada 3/4"		2.660	2.660	2.660	2.660	2.660
9	Peso especifico de piedra chancada 1/2"	gr/cc	2.710	2.710	2.710	2.710	2.710
10	Peso especifico de arena chancada		2.720	2.720	2.720	2.720	2.720
11	Peso específico arena zarandeada	gr/cc	2.650	2.650	2.650	2.650	2.650
12	Peso de la briqueta al aire	gr	1234.5	1241.0	1229.3	1236.0	1233.0
13	Peso de la briqueta saturada	gr	1237.2	1253.0	1233.4	1241.0	1238.0
14	Peso de la briqueta en agua	gr	787.7	803.9	786.1	788.4	785.9
15	Volumen de briqueta	c.c.	449.5	449.1	447.3	452.6	452.1
16	Peso específico Bulk de la briqueta compactada	gr/cc	2.747	2.764	2.748	2.731	2.727
17	Peso específico T. máximo (MTC E-508 ASTM D-204)	gr/cc	2.95	2.92	2.90	2.87	2.84
18	Vacíos (MTC E-505)	%	7.0	5.5	5.1	4.8	4.0
19	Peso específico Bulk combinacion de agregados (Gsb)	gr/cc	2.68	2.68	2.68	2.68	2.68
20	V.M.A.	%	1.8	1.7	2.7	3.9	4.5
21	Vacíos llenos con cemento asfáltico (VFA)	%	-295.8	-228.4	-87.1	-24.3	10.8
22	Peso específico efectivo agregado total (Gse)	gr/cc	3.21	3.21	3.21	3.21	3.21
23	Cemento asfáltico absorbido por el agregado total	%	6.19	6.19	6.19	6.19	6.19
24	Cemento asfáltico efectivo	%	-1.94	-1.41	-0.88	-0.35	0.18
25	Flujo	mm	6.00	6.30	6.80	7.20	8.00
26	Estabilidad sin corregir	kg	577	631.2	758	876.3	776
27	Altura briqueta	mm	66.7	66.7	66.7	66.7	66.7
28	Factor de estabilidad		0.93	0.93	0.93	0.93	0.93
29	Estabilidad corregida	kg	537	587	705	815	722
30	Estabilidad - Flujo	kg/cm	895	932	1036	1132	902
31	Compactación, numero de golpes por cara				35		

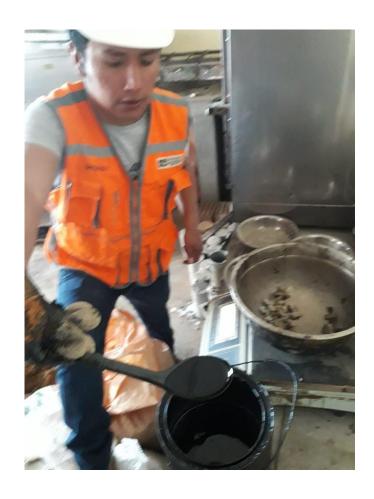
7.2 PANEL FOTOGRÁFICO

Anexo Nº 1 Mezcla asfáltica en caliente


Anexo N° 2 Compactación de la mezcla asfáltica pigmentada en caliente

Anexo Nº 3 Ensayo estabilidad de Marshall y flujo

Anexo Nº 4 Peso específico saturado de la briqueta



Anexo N° 5 Granulometría de los materiales pétreos

Anexo N° 6 Mezcla asfáltica en caliente pigmentada de penetración de 85-100

Anexo Nº 7 Mezcla asfáltica en caliente pigmentada

