

SÍLABO Máquinas Eléctricas 1

Código	ASUC01401		Carácter	Obligatorio	
Prerrequisito	100 crédito	100 créditos aprobados			
Créditos	4				
Horas	Teóricas	2	Prácticas	4	
Año académico	2025-00				

I. Introducción

Máquinas Eléctricas 1 es una asignatura obligatoria de la facultad de Ingeniería, que cursan las Escuelas Académico Profesionales de Ingeniería Eléctrica, Ingeniería Mecatrónica e Ingeniería Mecánica. Tiene como requisito haber aprobado 100 créditos. Con esta asignatura se desarrolla en un nivel logrado la competencia transversal Conocimientos de Ingeniería; y en un nivel intermedio las competencias específicas Análisis de Problemas y Uso de Herramientas Modernas. En virtud de lo anterior, su relevancia reside en brindar al estudiante un panorama general de las máquinas eléctricas estáticas y dinámicas.

Los contenidos generales que la asignatura desarrolla son los siguientes: electromagnetismo; análisis de máquinas eléctricas estáticas y dinámicas (rotativas); transformadores de potencia; generadores y motores de corriente continua.

II. Resultado de aprendizaje de la asignatura

Al finalizar la asignatura, el estudiante será capaz de aplicar los conceptos de circuitos magnéticos, máquinas eléctricas, transformadores, generadores y motores de corriente continua.

III. Organización de los aprendizajes

iii. Organizacion ac	Unidad 1	Duración	24	
Introduc	en horas	24		
Resultado de aprendizaje de la unidad:	Al finalizar la unidad, el estudiante será capaz de aplicar conceptos fundamentales y leyes del electromagnetismo en el análisis de la operación de los circuitos magnéticos que rigen el funcionamiento de las máquinas eléctricas.			
Ejes temáticos:	 Campo magnético Electromagnetismo Magnitudes fundamentales: flujo y densidad Intensidad de campo magnético Ley circuital de Ampere Inductancia Tensión inducida – Ley de Lenz 	l de flujo mo	agnético,	

Análisis de mág	Duración en horas	24			
Resultado de aprendizaje de la unidad:	Al finalizar la unidad, el estudiante será capaz de operar un transformador monofásico como un autotransformador, acorde a los procedimientos y reglamentos de seguridad.				
Ejes temáticos:	 Principio de funcionamiento de un transformo Componentes de un transformador monofó accesorios Circuito equivalente de un transformador mo Regulación de tensión. Diagramas fasoriales Tensión y corriente de cortocircuito Eficiencia de un transformador monofásico 	ásico: parte			

ī	Duración en horas	24			
Resultado de aprendizaje de la unidad:	Al finalizar la unidad, el estudiante será capaz de analizar las funciones de los componentes de un transformador trifásico en diversas situaciones.				
Ejes temáticos:	 Características técnicas y de funcionamiento trifásico. Configuraciones de un transformador trif transformación Grupos de conexión y el método del reloj. Paralelo de transformadores trifásicos. Reparto de carga entre transformadores trifá Transformador zig-zag. 	ásico. Rela	ción de		

	Duración	24			
Máquinas de corriente continua en horas					
Resultado de aprendizaje de la unidad:	Al finalizar la unidad, el estudiante será capaz de aplicar conceptos desarrollando el conexionado de una máquina DC, evaluando su desempeño para desarrollar el criterio de aplicación de cada uno de los tipos de dicha máquina.				
Ejes temáticos:	 Estructura de una máquina DC Tipos de devanados de Campo Tipos de devanados de armadura Principio de funcionamiento del generador. la armadura Principio de funcionamiento del motor. Fuerzo 6. Tipos de generadores DC, características y a 	a de Lorentz			

IV. Metodología

Modalidad Presencial

La presente asignatura utilizará la metodología experiencial y colaborativa promoviendo la participación constante de los estudiantes.

Las estrategias y técnicas didácticas que se utilizarán son:

- Aprendizaje colaborativo
- Estudio de casos
- Aprendizaje orientado en proyectos
- Aprendizaje basado en problemas

V. Evaluación Modalidad Presencial

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso parcial Peso Total
Evaluación de entrada	Prerrequisito	Primera sesión	- Evaluación individual / Prueba objetiva	0%
Consolidado l C1	1	Semana 1 - 4	- Evaluación individual teórico-práctica / Prueba de desarrollo	40%
	2	Semana 5 - 7	- Evaluación individual teórico-práctica / Prueba de desarrollo	60%
Evaluación parcial EP	1 y 2	Semana 8	- Elaboración de proyecto grupal de análisis e implementación de circuitos / Rúbrica de evaluación	25%
Consolidado	3	Semana 9 - 12	- Evaluación individual teórico-práctica / Prueba de desarrollo	40%
2 C2	4	Semana 13 - 15	- Evaluación individual teórico-práctica / Prueba de desarrollo	60%
Evaluación final EF	Todas las unidades	Semana 16	- Elaboración de proyecto grupal de análisis e implementación de circuitos / Rúbrica de evaluación	35%
Evaluación sustitutoria		- Aplica		

Modalidad Semipresencial -Blended

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso parcial	Peso Total
Evaluación de entrada	Prerrequisito	Primera sesión	- Evaluación individual / Prueba objetiva	0%	
Consolidado 1	1	Semana 1 - 3	- Actividades virtuales - Evaluación individual teórico-práctica / Prueba de desarrollo	15% 85%	20%
Evaluación parcial EP	1 y 2	Semana 4	- Elaboración de proyecto grupal de análisis e implementación de circuitos / Rúbrica de evaluación	25%	
Consolidado 2	3	Semana 5 - 7	- Actividades virtuales - Evaluación individual teórico-práctica / Prueba de desarrollo	15% 85%	20%
Evaluación final EF	Todas las unidades	Semana 8	- Elaboración de proyecto grupal de análisis e implementación de circuitos / Rúbrica de evaluación	35%	
Evaluación sustitutoria *	Todas las unidades	Fecha posterior a la evaluación final	Aplica		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Fórmula para obtener el promedio:

VI. Bibliografía

Básica:

Pérez, M. (2012). Electricidad industrial (2.º ed.). ICB Editores. https://acortar.link/29m706

Complementaria:

Espinoza, J. y Belenguer, E. (s. f.). Problemas resueltos de circuitos magnéticos y transformadores. Universitat Jaume.

Ponce, P. y Sampé, J. (s. f.). Máquinas eléctricas y técnicas modernas de control. Editorial Alfaomega.

VII. Recursos digitales:

Endesa Educa. (s. f.). Plataforma virtual.

http://www.endesaeduca.com/Endesa educa/recursos-

<u>interactivos/conceptos-basicos/funcionamiento-de-los-transformadores</u>

LVSIM-EMS. (2023). Carpeta en Internet. https://lvsim.labvolt.com/

Miranda, B. (s. f.). Problemas resueltos (transformadores). Academia

https://www.academia.edu/9728017/PROBLEMAS_RESUELTOS_TRANSFORMADO RES

Rodríguez, M. (2012). Transformadores. Universidad de Cantabria.

http://personales.unican.es/rodrigma/PDFs/Trafos.pdf

____. Autotransformadores. Universidad de Cantabria.

http://personales.unican.es/rodrigma/PDFs/autotrafos.pdf

Transformador monofásico. (Plataforma virtual)

http://patricioconcha.ubb.cl/transformadores/transformador_monofasico.htm