

FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería Eléctrica

Tesis

Análisis de estabilidad transitoria para determinar acciones que mantengan la operación continua del sistema eléctrico de potencia Pucallpa

Edinson Joel Limachi Paredes

Para optar el Título Profesional de Ingeniero Electricista

Huancayo, 2021

Repositorio Institucional Continental Tesis digital

Esta obra está bajo una Licencia "Creative Commons Atribución 4.0 Internacional".

ASESOR

MSc. Joel Colonio Llacua

AGRADECIMIENTO

En primer lugar, quiero expresar mi agradecimiento a Dios por haberme acompañado y guiado a lo largo de mis estudios en la carrera profesional de Ingeniería Eléctrica, por darme fuerzas en los momentos de debilidad, por brindarme salud, aprendizaje y experiencia.

A mis padres Manuel y Ruth por apoyarme en todo momento e inculcarme valores y apoyarme en tener una buena educación y promover el desarrollo y la unión familiar en nuestra familia.

A mi hermano Fredy por ser parte muy importante de mi vida, por acogerme, guiarme, por estar siempre apoyándome en cada paso de mi vida profesional y por ser ejemplo de desarrollo profesional a seguir.

DEDICATORIA

A mi hermano Fredy por el cariño, apoyo durante mis estudios y estar en todo momento.

A mis padres Manuel y Ruth por sus oraciones, consejos y su apoyo para lograr mis metas.

Asesor	ii
Agradecimiento	iii
Dedicatoria	iv
Índice	v
Índice de figuras	viii
Índice de tablas	X
Resumen	xi
Abstract	xii
Introducción	xiii
Capítulo I Planteamiento del estudio	14
1.1 Planteamiento del problema	14
1.2 Formulación del problema	15
1.2.1 Problema general	15
1.2.2 Problemas específicos	15
1.3 Objetivos	15
1.3.1 Objetivo general	15
1.3.2 Objetivos específicos	15
1.4 Justificación e importancia	16
1.4.1 Justificación	16
1.4.2 Importancia	16
1.5 Hipótesis y descripción de variables	16
1.5.1 Hipótesis general	16
1.5.2 Hipótesis especificas	16
1.5.3 Variables	17
1.5.4 Operacionalización de variables	17
Capítulo II Marco teórico	19
2.1 Antecedentes del problema	19
2.1.1 Antecedentes internacionales	19
2.1.2 Antecedentes nacionales	21
2.1.3 Antecedentes regionales	24
2.2 Bases teóricas	26
2.2.1 Estabilidad transitoria de sistemas eléctricos de potencia	

ÍNDICE

	2.2.2 Clasificación de la estabilidad de sistemas de potencia	26
	2.2.2.1 Estabilidad angular	27
	2.2.2.2 Estabilidad de frecuencia	29
	2.2.2.3 Estabilidad de tensión (12)	30
	2.2.3 Métodos del análisis de estabilidad transitoria	32
	2.2.3.1 Métodos directos	32
	2.2.3.2 Métodos indirectos	39
	2.2.3.3 Estudios de simulación	42
2.3	Definición de términos básicos	44
Ca	pítulo III Metodología	46
3.1	Método y alcance de la investigación	46
3.2	Diseño de la investigación	46
3.3	Población y muestra	47
	3.3.1 Población	47
	3.3.2 Muestra	47
3.4	Técnicas e instrumentos de recolección de datos	47
	3.4.1 Técnicas de recolección de datos	47
	3.4.2 Instrumentos de recolección de datos	47
Ca	pítulo IV Resultados y discusión	48
4.1	Modelamiento en el programa DigSilent power factory	48
	4.1.1 Red equivalente	50
	4.1.2 Generadores	51
	4.1.3 Transformadores	52
	4.1.3.1 Transformadores tres devanados	53
	4.1.3.2 Transformadores de dos devanados	55
	4.1.4 Líneas	58
	4.1.5 Barras	60
	4.1.6 Cargas	64
	4.1.7 Resumen de los elementos del sistema eléctrico de Pucallpa	67
4.2	Resultados de la estabilidad angular	68
	4.2.1 Caso I	69
	4.2.1.1 G2 Aguaytía	69
	4.2.1.2 G3 Pucallpa	69
	4.2.2 Caso II	70

4.2.2.1 G2 Aguaytía	70
4.2.2.2G3 Pucallpa	71
4.2.3 Resumen de la estabilidad angular de los Casos I y II	72
4.3 Resultados de la estabilidad de frecuencia	72
4.3.1 Caso I	72
4.3.1.1 G2 Aguaytía	72
4.3.1.2 G3 Pucallpa	73
4.3.2 Caso II	74
4.3.2.1 G2 Aguaytía	74
4.3.2.2G3 Pucallpa	74
4.3.3 Resumen de la estabilidad de frecuencia de los casos I y II	75
4.4 Resultados de la estabilidad de tensión	75
4.4.1 Caso I	76
4.4.1.1 Barra Parque Industrial	76
4.4.1.2 Barra Yarinacocha	76
4.4.1.3 Barra Pucallpa	77
4.4.2 Caso II	78
4.4.2.1 Barra Parque Industrial	78
4.4.2.2 Barra Yarinacocha	78
4.4.2.3 Barra Pucallpa	79
4.4.3 Resumen de la estabilidad de tensión de los Casos I y II	80
4.5 Discusión de resultados	80
Conclusiones	81
Recomendaciones	82
Referencias	83
Anexos	85

ÍNDICE DE FIGURAS

Figura 1. Clasificación de la estabilidad de sistemas de potencia	27
Figura 2. El circuito estator y rotor de una máquina síncrona	28
Figura 3. Sistema de potencia radial	31
Figura 4. P,V e i en función de ZLD	32
Figura 5. La curva P-V	32
Figura 6. Circuito SEP compuesto de una máquina síncrona conectado a un	a barra
infinita	33
Figura 7 Circuito equivalente del sistema	33
Figura 8. Circuito equivalente reducido del sistema	34
Figura 9 Relación potencia-ángulo	35
Figura 10. Respuesta a un cambio de la potencia mecánica de entrada	36
Figura 11. Analogía de la bola oscilante en el interior de un recipiente por la ing	yección
de energía a un SEP	37
Figura 12. Figura del equivalente entre el método de función de energía y el	criterio
de áreas iguales	38
Figura 13. Principio de aplicación general del método de Euler	39
Figura 14. Esquema de simulación de la respuesta dinámica	43
Figura 15. Diagrama unifilar del sistema eléctrico de Pucallpa	49
Figura 16. Red equivalente	50
Figura 17. Parámetros de red equivalente	51
Figura 18. Parámetros de G1 y G2. Aguaytía	52
Figura 19. Parámetros de G3. Pucallpa	52
Figura 20. Parámetros del t3 AGU_2171	53
Figura 21. Parámetros del t4 AGU_2171-Nuevo	54
Figura 22. Parámetros del t5 PUC	54
Figura 23. Parámetros del t6 PUC	55
Figura 24. Parámetros del t1 AGU_271	56
Figura 25. Parámetros del t2 AGU_271	56
Figura 26. Parámetros del t7 Pucallpa SVC tr2	57
Figura 27. Parámetros del t8 TP-Pucallpa 60	57
Figura 28. Parámetros del t9 TP-Pucallpa 22.9	58
Figura 29. Parámetros de line 1 en 138 kV	58

Figura 30. Parámetros de line 2 en 60 kV	59
Figura 31. Parámetros de line 3 en 60 kV	
Figura 32. Parámetros de line 4 en 60 kV	60
Figura 33. Parámetros de barra de 220 kV	61
Figura 34. Parámetros de barra de 138 kV	61
Figura 35. Parámetros de barra de 60 kV	62
Figura 36. Parámetros de barra 22.9 kV	62
Figura 37. Parámetros de barra de 13.8 kV	63
Figura 38. Parámetros de barra de 0.48 kV	63
Figura 39. Load Aguaytía 22.9 kV	64
Figura 40. Load Parque Industrial	65
Figura 41. Load Pucallpa	66
Figura 42. Load Yarinacocha	67
Figura 43. Ángulo de rotor de la máquina G2 (caso I)	69
Figura 44. Ángulo de rotor de la máquina G3 (caso I)	70
Figura 45. Ángulo de rotor de la máquina G2 (caso II)	71
Figura 46. Ángulo de rotor de la máquina G3 (caso II)	71
Figura 47. Frecuencia del G2 Aguaytía (caso I)	73
Figura 48. Frecuencia del G3 Pucallpa (caso I)	73
Figura 49. Frecuencia del G2 Aguaytía (caso II)	74
Figura 50. Frecuencia del G3 Pucallpa (caso II)	75
Figura 51. Curva PV Parque Industrial (caso I)	76
Figura 52. Curva PV Yarinacocha (caso I)	77
Figura 53. Curva PV Pucallpa (caso I)	77
Figura 54. Curva PV Parque Industrial (caso II)	78
Figura 55. Curva PV Yarinacocha (caso II)	79
Figura 56. Curva PV Pucallpa (caso II)	79

ÍNDICE DE TABLAS

Tabla 1. Operacionalización de variables	. 18
Tabla 2. Red equivalente	. 67
Tabla 3. Generadores	. 67
Tabla 4. Transformadores de dos devanados	. 68
Tabla 5. Transformadores de tres devanados	. 68
Tabla 6. Líneas de transmisión	. 68
Tabla 7. Cargas	. 68
Tabla 8. Resumen del análisis de estabilidad angular	. 72
Tabla 9. Resumen de la estabilidad de frecuencia	. 75
Tabla 10. Resumen de la estabilidad de tensión	. 80

RESUMEN

El trabajo de investigación tiene por objetivo general analizar la estabilidad transitoria para determinar acciones que mantengan la operación continua de la SEP de Pucallpa.

En problema es el análisis de la estabilidad transitoria del sistema eléctrico de Pucallpa, esto debido al incremento de carga en circuito alimentador de la subestación Pucallpa. El problema surge por la inquietud de conocer el comportamiento de la estabilidad transitoria.

El método de la investigación utilizada para el desarrollo de la investigación es el método analítico; el diseño propuesto y desarrollado es un diseño preexperimental; la población y muestra del trabajo de investigación es el sistema eléctrico de potencia de Pucallpa; la técnica de recolección de datos utilizada en el presente trabajo de investigación es la documental y el instrumento de recolección de datos fueron los informes y diagramas unifilares publicados por el comité de operación económica y el ente regulador. Para el análisis de la estabilidad transitoria se utilizó el método de la simulación.

De acuerdo con los resultados se concluye que el sistema eléctrico de Pucallpa presenta problemas de estabilidad en su sistema, para solucionar este problema se deben plantear acciones para mitigar las fallas ante perturbaciones.

Palabras claves: estabilidad, operación, sistema, transitoria

ABSTRACT

The general objective of the research work is to analyze the transitory stability to determine actions that maintain the continuous operation of the Pucallpa SEP.

The problem is the analysis of the transitory stability of the Pucallpa electrical system, due to the increased load in the feeder circuit of the Pucallpa substation. The problem arises from the concern to know the behavior of transient stability.

The research method used for the development of the research is the analytical method; the proposed and developed design is a pre-experimental design; the population and sample of the research work is the electric power system of Pucallpa; The data collection technique used in this research work is documentary and the data collection instrument was the reports and one-line diagrams published by the economic operation committee and the regulatory entity. For the analysis of transient stability, the simulation method was used.

According to the results, it is concluded that the Pucallpa electrical system presents stability problems in its system. In order to solve this problem, actions should be proposed to mitigate failures in the event of disturbances.

Keywords: operation, stability, system, transient

INTRODUCCIÓN

La presente investigación tiene como tema el análisis de la estabilidad transitoria en los sistemas eléctricos de potencia, en este análisis se realizaron tres aspectos, los cuales son la estabilidad angular, la estabilidad de frecuencia y la estabilidad de tensión o voltaje.

El tema de investigación es la estabilidad transitoria que tiene como interés conocer cuál es el comportamiento del sistema ante los eventos de fallas para luego proponer algunas acciones para tener en cuenta y mejorar la operación del sistema eléctrico en el estudio.

El contenido de la presente tesis se estructura de la siguiente manera:

En el primer capítulo se encuentra la caracterización del problema, el planteamiento y su formulación.

El segundo capítulo presenta las principales bases teóricas para realizar el análisis de estabilidad transitoria en sistemas eléctricos de potencia.

El capítulo tres evidencia cómo se afrontó la investigación, específicamente la metodología de la investigación.

El cuarto capítulo presenta los resultados de la investigación.

Finalmente, se presentan las conclusiones, recomendaciones y anexos del trabajo del estudio.

CAPÍTULO I PLANTEAMIENTO DEL ESTUDIO

1.1 Planteamiento del problema

La empresa Electro Ucayali S. A. dentro de su política de inversiones para el año 2019 viabilizó la ejecución de la obra de mejoramiento y ampliación del alimentador C7 en la subestación de potencia de Pucallpa debido al incremento de demanda de energía eléctrica en las zonas de los distritos de Callería, provincia de Coronel Portillo, departamento de Ucayali, teniendo como finalidad el suministro de energía eléctrica de calidad.

Antes de la etapa de ejecución y puesta en servicio se realizó el estudio definitivo, que sirvió para la ejecución de la obra, este estudio se realizó considerando cálculos eléctricos como la proyección de la demanda, análisis de flujo de potencia y cortocircuito.

El problema se presentó en la etapa de pruebas cuando se energizó la obra, ya que hubo problemas de rechazo de carga que producía inestabilidad del sistema eléctrico de Pucallpa. Esto se solucionó con maniobras en el sistema eléctrico y se logró su energización, pero no se identificaron las causas del problema.

Por lo tanto, la investigación de la tesis tiene como objetivo principal analizar la estabilidad transitoria para mantener la operación continua del sistema eléctrico de

potencia de Pucallpa ante cualquier circunstancia de fallas en el Sistema Interconectado Nacional.

1.2 Formulación del problema

1.2.1 Problema general

¿Cómo analizar la estabilidad transitoria para determinar acciones que mantengan la operación continua del sistema eléctrico de potencia de Pucallpa?

1.2.2 Problemas específicos

¿De qué manera se analiza la estabilidad angular para determinar acciones que mantengan la operación continua del sistema eléctrico de potencia de Pucallpa?

¿De qué manera se analiza la estabilidad de frecuencia para determinar acciones que mantengan la operación continua del sistema eléctrico de potencia de Pucallpa?

¿De qué manera se analiza la estabilidad de tensión para determinar acciones que mantengan la operación continua del sistema eléctrico de potencia de Pucallpa?

1.3 Objetivos

Los objetivos de la investigación de la presente tesis son:

1.3.1 Objetivo general

Analizar la estabilidad transitoria para determinar acciones que mantengan la operación continua del sistema eléctrico de potencia de Pucallpa.

1.3.2 Objetivos específicos

Analizar la estabilidad angular para determinar acciones que mantengan la operación continua del sistema eléctrico de potencia de Pucallpa.

Analizar la estabilidad de frecuencia para determinar acciones que mantengan la operación continua del sistema eléctrico de potencia de Pucallpa. Analizar la estabilidad de tensión para determinar acciones que mantengan la operación continua del sistema eléctrico de potencia de Pucallpa.

1.4 Justificación e importancia

1.4.1 Justificación

El estudio de los fenómenos de estabilidad transitoria permite, a los operadores del sistema, seleccionar las mejores configuraciones de los sistemas de protecciones y de la operación normal para adaptarse y reaccionar ante perturbaciones de origen externos de forma que se garantice la confiabilidad y seguridad de la red o instalación, garantizando la continuidad del servicio eléctrico.

1.4.2 Importancia

Permite tomar decisiones de compras y adaptaciones necesarias para proyectar expansiones de red, crecimiento de redes, actualizaciones de equipamientos de operación normal, entre otros.

Con ello se garantiza que la inversión será bien empleada por la empresa de manera que se garantice un negocio sostenible en el tiempo y cumpliendo los estándares e indicadores que la NTCSE demanda.

1.5 Hipótesis y descripción de variables

1.5.1 Hipótesis general

Con el análisis de estabilidad transitoria se determinaron acciones que mantengan la operación continua del sistema eléctrico de potencia de Pucallpa.

1.5.2 Hipótesis especificas

Con el análisis de la estabilidad angular se determinaron acciones que mantengan la operación continua del sistema eléctrico de potencia de Pucallpa.

Con el análisis de la estabilidad de frecuencia se determinaron acciones que mantengan la operación continua del sistema eléctrico de potencia de Pucallpa.

Con el análisis de la estabilidad de tensión se determinaron acciones que mantengan la operación continua del sistema eléctrico de potencia de Pucallpa.

1.5.3 Variables

Variable independiente (x):

El análisis de la estabilidad transitoria: es la habilidad de un sistema para estar en sincronismo ante un evento de falla. Teniendo como dimensiones la estabilidad de frecuencia, angular y de tensión.

Variable dependiente (y):

Determinar acciones que mantengan la operación continua del sistema eléctrico: la determinación de acciones que mantengan la operación continua del sistema eléctrico son consideraciones para tener en cuenta para la operación del sistema.

1.5.4 Operacionalización de variables

En la siguiente tabla se muestra la operacionalización de las variables:

Tabla 1. Operacionalización de variables

Variables		Definición conceptual	Dimensiones	Indicador	Escala de medición
Variable independiente	Análisis de la estabilidad transitoria.	Es el análisis de un sistema para conocer si está en equilibrio.	 Análisis de estabilidad angular Análisis de estabilidad de frecuencia Análisis de estabilidad de tensión 	 Angulo del rotor en radianes La frecuencia en Hertz (Hz) Tensión (kV) 	Cuantitativa
Variable dependiente	Determinar acciones que mantengan la operación continua del sistema eléctrico.	Es un conjunto de actos que implican una actividad	Propuesta de acciones	Las acciones	Cuantitativa

CAPÍTULO II MARCO TEÓRICO

2.1 Antecedentes del problema

Los antecedentes del problema permitieron generar las referencias necesarias para el tema de investigación a nivel internacional, nacional y regional.

2.1.1 Antecedentes internacionales

De la tesis titulada "*Estudio de estabilidad transitoria en sistemas eléctricos de potencia con integración de sistemas de almacenamiento de energía*" (1) se presenta el resumen:

Los sistemas de almacenamiento de energía han estado presentes en los sistemas eléctricos de potencia desde hace algunas décadas (1978), ahora con el auge que ha tenido la electrónica de potencia, se ha logrado tener acceso a nuevas formas de almacenamiento más eficientes, siempre buscando el mismo objetivo: ofrecerle al operador herramientas para mantener el sistema eléctrico operando de la manera más eficiente y dentro de los valores nominales de cada uno de los elementos que conforman la red. (1)

Actualmente, la producción de energía eléctrica usando fuentes de energía renovable se ha ido incrementando, pero debido a su naturaleza intermitente, generan variabilidad en el sistema y por esta razón la importancia de los sistemas de almacenamiento de energía se han visto incrementadas, un ejemplo muy claro se tiene en los sistemas de distribución en los que se integran paneles solares, los cuales

pueden generar más energía eléctrica de la que se consume y para no generar inestabilidad es necesario almacenar estos excedentes, con el fin de poder liberarlos posteriormente cuando el panel no genere energía suficiente. (1)

En esta tesis se presenta el análisis de estabilidad transitoria en modelos multimáquina utilizando la metodología presentada en el libro *Power System Control and Stability* de Anderson y Fouad, donde se implementó un código en el software comercial Matlab con la finalidad de llevar a cabo la simulación de diferentes casos operativos de la red, para ello se hace uso del modelo clásico de segundo orden de la máquina síncrona, el cual se puede expandir para generalizar el modelo multimáquina, en este modelo se considera la potencia mecánica inyectada por cada generador como constante. De la misma manera, se consideró que la potencia eléctrica que inyecta o consume el sistema de almacenamiento de energía es constante durante los periodos de falla y posfalla. (1)

En este trabajo se realiza un primer acercamiento para estudiar el impacto que presenta un sistema de almacenamiento de energía en la estabilidad transitoria, y como la potencia que este inyecta puede ayudar a mejorar la estabilidad angular de los generadores. (1)

De la tesis titulada "Análisis de estabilidad transitoria en el sistema aislado Cayo Santa María", (2) se presenta el resumen siguiente:

La energía es el principal motor de crecimiento de un país y es vital para lograr su desarrollo económico y social. Los sistemas de generación enfrentan cada día el valor de los combustibles fósiles e inducen una dependencia hacia los países que controlan este mercado. En este sentido, se busca optimizar la eficiencia en la conversión de la energía y una diversificación de la matriz energética, con el objetivo de maximizar los recursos fósiles, ahorrarlos y evitar la contaminación del medio ambiente. Este desafío ha llevado a una nueva tendencia, la generación a partir de fuentes renovables de energía. En nuestro país se ha venido incrementando la utilización de le generación distribuida en los últimos años, con la ubicación de parques eólicos y fotovoltaicos en lugares estratégicos, y se han realizado diferentes estudios dedicados a resolver los problemas asociados a su interconexión, elevar su baja eficiencia y destacar su impacto medioambiental. Por la gran incidencia solar que recibe, se hace evidente la incorporación de paneles fotovoltaicos a la matriz de generación eléctrica del sistema

aislado Cayo Santa María. El objetivo general de este trabajo es realizar el análisis de estabilidad transitoria en dicho sistema, para verificar los problemas actuales que se presentan, evaluando no solo la influencia de las fuentes renovables, sino también la influencia del mix de generación existente. Se muestran simulaciones realizadas en el programa PSX y se arribarán a conclusiones que podrán servir de ayuda a los especialistas del Cayo Santa María. (2)

De la tesis titulada "Operación del sistema de transmisión oriental de Cadafe-Semda, ante la desconexión de una de las ternas Tigre-Indio 230 kV", (3) se presenta el resumen siguiente:

Se plantea la implementación de un bote de carga, en el Sistema Oriental de Cadafe, ante la desconexión, en horas de máxima demanda, de una de las ternas El Tigre -El Indio 230 kV, para de esta forma evitar que la terna que queda en servicio se desconecte por sobrecarga. Se evalúa la puesta en servicio futuro del desvío de la doble terna El Tigre – El Indio hacia la subestación Furrial y el tramo de línea Guanta II – Cumaná II – Casanay en 230 kV, el cual entró en servicio el año 2008. En el estudio se consideran todas las obras previstas en el Plan de Expansión del Sistema Oriental de Cadafe período 2005-2008. Se realizan estudios de flujos de carga en el Sistema Oriental de Cadafe para los años 2004, 2005, 2006, 2007 y 2008 siendo el primer año utilizado como caso base para el presente estudio, también se realizan estudios de estabilidad transitoria, simulando fallas monofásicas y trifásicas a tierra en una de las ternas El Tigre – El Indio 230 kV para el caso del año 2004. Para los casos de los años 2005, 2006, 2007 y 2008 igualmente se simularon fallas monofásicas y trifásicas a tierra en una de las ternas Furrial – El Indio 230 kV. Las simulaciones, para los distintos casos, se realizan incluyendo los modelos de los relés de distancia actualmente en uso en la doble terna El Tigre – El Indio y en la doble terna Furrial – El Indio se utilizó el modelo de la función de distancia de la protección para líneas de transmisión REL 316*4. Todas las simulaciones de flujo de carga y estabilidad transitoria se realizaron utilizando el paquete de simulación para sistemas de potencia DigSilent Power Factory 13.0. (3)

2.1.2 Antecedentes nacionales

De la tesis titulada "*Estudio de estabilidad transitoria del área operativa sur este del SEIN para el periodo 2014 al 2016*", (4) se presenta el resumen siguiente:

En la actualidad, los operadores encargados de realizar el despacho de la energía eléctrica se enfrentan constantemente con las exigencias de satisfacer la demanda dentro de rangos de calidad regidos por las condiciones de economía y seguridad. En el planeamiento de la operación, se requieren herramientas que permitan en el horizonte del corto plazo, el análisis de la seguridad de los SEP, debido a que estos sistemas, cada vez se van expandiendo e interconectando, haciendo que su análisis se vuelva más complejo. Este trabajo de investigación tiene como objetivo fundamental el estudio de estabilidad transitoria del AOSE del SEIN para el periodo 2014 al 2016, utilizando el método de integración numérica de Runge-Kutta de Cuarto Orden, el cual ha sido implementado en softwares especializados para el estudio de los SEP, la ventaja de utilizar este método, es poder observar las oscilaciones de los ángulos y las velocidades de los rotores de cada máquina síncrona cuando el sistema ha sido sometido a perturbaciones severas. Se realiza la aplicación del Método Runge-Kutta de Cuarto Orden para un sistema de 5 barras y dos máquinas síncronas. En el capítulo IV, se realiza el estudio actual del AOSE utilizando el software DigSilent, para conocer las condiciones operativas en operación normal (tensión en barras, flujos de potencia en las líneas, cargabilidad de las líneas y transformadores de potencia) y se realiza la determinación de la robustez del sistema mediante el estudio del sistema en condiciones de contingencia (N-1) y el cálculo de la potencia de cortocircuito. Con estos estudios se determinan los puntos críticos (instalaciones críticas) del AOSE del SEIN. En el capítulo V se determinan los límites de estabilidad transitoria del AOSE del SEIN. (4)

En el capítulo IV, se determinan los límites de estabilidad transitoria del AOSE del SEIN utilizando el software DigSilent, para el periodo 2014 al 2016, considerando la expansión del sistema, ingreso de los nuevos proyectos (generación, transmisión y demanda) y considerando las condiciones hidrológicas de avenida y estiaje, en condiciones de máxima y mínima demanda. (4)

De la tesis titulada "Análisis de la estabilidad transitoria electromecánica mediante el método de la función de energía transitoria, aplicación al sistema interconectado nacional peruano", (5) se presenta el resumen siguiente:

En las décadas pasadas los sistemas eléctricos de potencia crecieron en tamaño y en complejidad a medida que aumentaba el número de interconexiones, así diversos problemas técnicos forzaron a las empresas de transmisión y generación eléctrica a

operar sus sistemas eléctricos en forma eficiente y económica. Para cumplir con estos objetivos, el estudio de estabilidad transitoria tuvo que ser reconocido como uno de los factores más importantes para los ingenieros de planeamiento y para los operadores del sistema. Una de las herramientas más utilizadas para análisis de estabilidad transitoria es la simulación numérica en el dominio del tiempo (método indirecto). En la búsqueda de metodologías alternativas para el análisis de la operación en tiempo real, los métodos directos basados en las funciones de energía transitoria obtuvieron ventajas sobre los métodos indirectos. Estos métodos evalúan la estabilidad mediante un número simple llamado "índice de estabilidad transitoria", el cual indica si el sistema es estable o no y, si es estable, cuánta es la distancia a la frontera de estabilidad o margen de estabilidad. En la presente tesis se explican los conceptos asociados a la estabilidad transitoria, como también se desarrolla el marco conceptual para la introducción de los métodos directos basados en la función de energía. Para la aplicación en sistemas de potencia, actualmente es usada la técnica PEBS (Potencial Energy Boundary Surface), que es desarrollada e implementada en un programa computacional usando lenguaje de programación de alto nivel. La eficacia y eficiencia de este método fue comprobada a través de la aplicación de la metodología en sistemas de prueba como: WSCC (Western System Coordinating Council; 3 generadores, 9 barras), IEEE17 (17 generadores, 162 barras), así también son usados sistemas reales como el SEIN (Sistema Eléctrico Interconectado Nacional; 50 generadores, 460 barras). Es realizado el análisis de algunos casos de estabilidad transitoria en el SEIN, lo que permite entender las ventajas y limitaciones aún existentes para el uso de estos métodos en la operación a tiempo real. (5)

De la tesis titulada "*Métodos de análisis y simulación de estabilidad transitoria en sistemas de potencia*", (6) se presenta el resumen siguiente:

En el presente informe se dan a conocer aplicaciones computacionales en el análisis de sistemas eléctricos de potencia, se exponen los diversos métodos y técnicas utilizados para el análisis de estabilidad en sistemas eléctricos de potencia, así como las simulaciones de estabilidad transitoria para el sistema de potencia modelo de 9 barras del libro de Anderson, antes mencionado. Las simulaciones se desarrollan mediante un programa basado en un lenguaje disponible para el paquete matemático Matlab, lenguaje similar al lenguaje C, que permita acomodar de manera adecuada el problema de la simulación de estabilidad transitoria y evaluar el desempeño de los métodos de simulación presentados. (6)

2.1.3 Antecedentes regionales

De la tesis titulada "Influencia de la conexión de la pequeña central hidroeléctrica Miraflores de 9.4 MW en la subestación Jauja", (7) se presenta el resumen:

En la actualidad existen políticas energéticas en todo el mundo que apuntan al uso de fuentes de generación de energías más limpias. Es por lo que la energía hidráulica cumple un rol fundamental dentro de la matriz energética del país, debido a su gran cantidad de recurso hídrico que posee. Bajo este contexto la empresa Acqua Energía S. A. C. viene desarrollando el proyecto de la pequeña central hidroeléctrica Miraflores, por tanto, el estudio de conexión de esta nueva central al sistema eléctrico es de vital importancia, verificando que cumpla con las exigencias por las normas de seguridad y calidad de servicio. El proyecto de la pequeña central hidroeléctrica contempla una inyección de potencia de 9.4 MW al sistema, dicho proyecto se emplazará en la región Junín, específicamente en el distrito de Yauyos, provincia de Jauja. La pequeña central hidroeléctrica Miraflores se compone de dos generadores síncronos que se conectan en la nueva subestación elevadora, elevando la tensión de 6.3 kV a 60 kV el mismo que conectará mediante una línea de transmisión de 4 km en 60 kV a la subestación de Jauja, punto de conexión al sistema eléctrico. El objetivo de la presente investigación consiste en establecer la influencia que tendrá la conexión de la pequeña central hidroeléctrica Miraflores en la subestación de Jauja y la zona aledaña al punto de conexión. Para ello se analizaron los estudios necesarios cumpliendo las leyes, normas y según el procedimiento técnico del comité de operaciones del Sistema Eléctrico Interconectado Nacional (SEIN). Dichos estudios comprenden análisis de flujo de potencia, análisis de la corriente de cortocircuito y análisis de estabilidad transitoria. Los resultados obtenidos mediante la simulación en el software DigSilent Power Factory, indican que el flujo de potencia en operación normal se encuentran dentro de los límites permisibles, las corrientes de cortocircuitos se incrementa mínimamente sin causar divergencias significativas, por el contrario fortalece al sistema dentro de la zona aledaña, y la estabilidad en diversas condiciones de eventos suscitados no causan inestabilidad al sistema ya que se llegan a amortiguar y operar en otro punto de operación estable. (7)

De la tesis titulada "Análisis de preoperatividad de la línea de transmisión Carhuaquero - Cajamarca Norte – Caclic para su interconexión al SEIN en 220 kV", (8) se presenta el resumen: La presente tesis tiene por finalidad Evaluar el impacto de la puesta en servicio de la Línea de Transmisión Carhuaquero – Cajamarca Norte – Caclic en 220 kV y Subestaciones Asociadas sobre la operación del SEIN. Se verificaron las sobrecargas en las líneas de transmisión, perfiles de tensión en las barras, niveles de cortocircuito y se analizó la estabilidad transitoria del sistema eléctrico ante fallas en la zona de influencia. Tomando como referencia el documento "Procedimiento Técnico del Comité de Operación Económica del SEIN PR-20" referido al ingreso, modificación y retiro de instalaciones al SEIN. La presente tesis muestra la ejecución de los siguientes análisis: análisis de la operación en estado estacionario en condiciones normales. Análisis de la operación en estado estacionario en condiciones de contingencias. Cálculos de cortocircuitos. Estimaciones de Estabilidad Transitoria. (8)

De la tesis titulada "Análisis de estabilidad transitoria y de tensión en la subestación Vizcarra debido al incremento de carga de 55 MW de Antamina", (9) se presenta el resumen:

Actualmente Antamina presenta una demanda promedio de 90 MW y una demanda pico de 99 MW, para el año 2011 fue prevista una demanda pico adicional de 45 MW, alcanzando una demanda pico total de aproximadamente 145 MW. Sin embargo, para conservar un margen de seguridad en la estimación de la carga fue prevista un adicional de 5 MW alcanzándose de esta manera una demanda proyectada pico de 150 MW para el año 2011. A finales del año 2013 se tuvo la puesta en servicio del proyecto denominado In-Pit Crushing and Conveying System – IPCCS (Sistema de Chancado y Transporte por Medio de Fajas) que permitió evacuar el material residual del tajo al nuevo botadero. Se estima que el proyecto tuvo una demanda alrededor de 55 MW. Para este programa de expansión la presente tesis tuvo por finalidad realizar el estudio de estabilidad transitoria y de tensión en la subestación Vizcarra debido al incremento de carga de Antamina, este proyecto IPCCS entró en servicio el año 2013 para lo cual el presente estudio tiene por objeto analizar el impacto del incremento de la carga en la minera Antamina sobre el Sistema Eléctrico Interconectado Nacional (SEIN) en la zona de influencia del proyecto. El proyecto consiste en un sistema de chancado y fajas transportadoras cuya demanda será de 55 MW con un factor de potencia de 0,85. Así mismo, se tiene proyectado instalar un banco de condensadores para mejorar el factor de potencia total de la planta IPCCS a 0,98. El proyecto consiste en seccionar una de las dos líneas de transmisión 220 kV (Vizcarra – Antamina) en un punto denominado P0 extenderla aproximadamente 8,0 km en ida y vuelta hasta

la subestación IPCCS. El punto P0 se encuentra ubicado a 7,5 km de la subestación principal de Antamina 220/23 kV. La nueva subestación IPCCS 220/23 kV constó con dos transformadores de potencia de 66 MVA (ONAF). En el año 2013, el sistema de Antamina operó con los dos transformadores existentes en paralelo, con la barra "A" independiente (el interruptor de acoplamiento 1 entre las barras A y B abierto) y las barras "B" y "C" acopladas (el interruptor de acoplamiento 2 entre las barras B y C cerrado), es decir no hay acoplamiento entre las barras A y B, el acoplamiento es solo entre las barras B y C, y el tercer transformador de potencia 220/23 kV estuvo fuera de servicio. En esta condición de operación se instaló el proyecto IPCCS. En dicho estudio se analizó el efecto de la ampliación frente al resto del sistema circundante del SEIN, de tal manera que la nueva instalación prevista (IPCCS) no deteriore la confiabilidad de operación de la Subestación Vizcarra y subestaciones aledañas a la mina Antamina, así mismo se observó el comportamiento de la operación del SVC Vizcarra. (9)

2.2 Bases teóricas

2.2.1 Estabilidad transitoria de sistemas eléctricos de potencia

En un típico sistema eléctrico de potencia moderno, se cuenta con procesos multivariables de alto orden cuya repuesta dinámica es influenciada por muchos dispositivos con diferentes características y tasas de respuestas. La estabilidad es una condición de equilibrio entre fuerzas opuestas. Dependiendo de la topología de red, de la condición de operación y de los disturbios, de las diferentes fuerzas que puede experimentar, principalmente, en el desbalance de las cargas creando inestabilidad (10). A continuación, se presenta una clasificación básica de la estabilidad en los sistemas de potencia.

2.2.2 Clasificación de la estabilidad de sistemas de potencia

La clasificación de la estabilidad de los sistemas de potencia se toma en referencia o teniendo en consideración. (11)

Figura 1. Clasificación de la estabilidad de sistemas de potencia. Tomada de IEEE Transactions on Power Systems (10)

2.2.2.1 Estabilidad angular

La estabilidad del ángulo del rotor es la habilidad de interconectar las maquinas síncronas del sistema de potencia permaneciendo en sincronismo. El problema de estabilidad involucra el estudio de la oscilación electromecánica inherente en un sistema de potencia. Un factor fundamental en este problema es la manera cómo salen la energía y las máquinas síncronas, variando el ángulo del rotor. (11)

2.2.2.1.1 Características de las máquinas síncronas

El generador síncrono es la principal fuente de generación de energía eléctrica en un sistema de potencia. Estos motores síncronos impulsan grandes cantidades de cargas. En algunos casos las máquinas síncronas se utilizan como compensadores de potencia reactiva y controladores de los niveles de tensión.

El modelamiento y análisis de las máquinas síncronas siempre han sido un desafío. El problema ha sido estudiado intensamente en los años1920 así también el estudio de la performance de la máquina síncrona (11).

Figura 2. El circuito estator y rotor de una máquina síncrona. Tomada de Power System Stability And Control (11)

2.2.2.1.2 Relación de potencia vs. ángulo

Una importante característica que se debe tener en consideración es la estabilidad de potencia en la relación entre la potencia y la posición angular del rotor de la máquina síncrona. Esta relación es altamente no lineal. Ilustrada en la siguiente fórmula.

$$P = \frac{E_G E_M}{X_T} \sin \delta$$

$$X_T = X_G + X_L + X_M$$

(c) Phasor diagram

2.2.2.2 Estabilidad de frecuencia

Se refiere a la capacidad de un sistema de potencia para mantener la frecuencia constante tras una severa perturbación que resulta de un fuerte desequilibrio entre la generación y la carga. En grandes sistemas interconectados, los problemas de estabilidad de frecuencia se asocian a respuestas inadecuadas del equipo, deficiente coordinación del control y equipo de protección o una reserva de generación insuficiente. Este fenómeno puede ser de corto o largo plazo que van de fracciones de segundo, hasta varios minutos. Las variaciones de frecuencia generan cambios en la tensión que afectan el equilibrio de carga de generación.

Respuesta inercial: corresponde al periodo transitorio poscontingencia en donde se produce un descenso abrupto de la frecuencia, debido a que existe mayor demanda que generación de potencia activa.

Control Primario de Frecuencia (CPF): corresponde al periodo en donde los reguladores de velocidad de las máquinas convencionales empiezan a operar para recuperar el balance entre la generación y demanda de potencia activa.

Control Secundario de Frecuencia (CSF): corresponde al periodo en el cual se elimina el error de régimen permanente de la frecuencia al final del CPF, llevándola a su valor nominal.

2.2.2.3 Estabilidad de tensión (12)

La estabilidad de tensión se define como la habilidad que tiene un sistema de potencia para mantener las magnitudes de voltaje en cada uno de los nodos en un valor permitido en condiciones de operación normal o después de haber sido sometido a un disturbio, y depende de la capacidad del sistema de mantener o restablecer el equilibrio entre la demanda y la generación del sistema. La inestabilidad que puede resultar ocurre en la forma de una caída progresiva de voltajes de algunas barras. Una posible consecuencia de esta inestabilidad es la pérdida de carga en algunas áreas, o la salida de líneas de transmisión y otros elementos por la actuación de sus respectivos relés de protección, o la pérdida de sincronismo de algunos generadores. Durante un problema de inestabilidad de voltaje, los operadores del sistema de potencia pierden el control de las magnitudes de los voltajes y de la transferencia de potencia a través del sistema. Aunque la inestabilidad de voltaje es esencialmente un fenómeno local, las consecuencias suelen tener un impacto regional.

Se presentan a continuación los tipos de estabilidad que se pueden presentar en un sistema eléctrico de potencia:

- Estabilidad de voltaje ante pequeños disturbios
- Estabilidad de voltaje ante grandes disturbios
- Estabilidad de voltaje de corto plazo
- Estabilidad de voltaje de largo plazo

2.2.2.3.1 Método de la curva P-V

En una red de potencia se pueden simular aumentos de carga de infinitas maneras, de acuerdo con cómo uno elija las barras en que se desea aumentar la carga activa o reactiva, y las proporciones relativas de los aumentos entre las cargas elegidas. Cuando se elige una de estas formas de aumentar la carga, que no es más que elegir un vector en el espacio multidimensional de las cargas activas y reactivas de la red, suele decirse que uno ha seleccionado una dirección de carga en el sistema. Formalmente, esto significa que se selecciona para cada barra los valores de incrementos básicos de carga activa y reactiva, de forma que las cargas en esa barra se vayan incrementando, a partir de cargas iníciales, a medida que aumenta un parámetro escalar de carga. (12)

Figura 3. Sistema de potencia radial. Tomada de Estudio de la estabilidad de tensión (12)

La corriente que circula por la línea está dada por la siguiente ecuación:

$$I = \frac{V_S}{Z_{LN} + Z_{LD}}$$

Vs = voltaje en el nodo de envío

I = corriente a través de la línea de transmisión

 θ = ángulo de la impedancia de la línea

 ϕ = ángulo de la impedancia de la carga

Figura 4. P,V e i en función de ZLD. Tomada de Estudio de la estabilidad de tensión (12)

La siguiente gráfica muestra la variación del voltaje.

Figura 5. La curva P-V. Tomada de Estudio de la estabilidad de tensión (12)

2.2.3 Métodos del análisis de estabilidad transitoria

Los métodos de análisis de la estabilidad en sistema de potencia pueden ser métodos directos e indirectos.

2.2.3.1 Métodos directos

La aplicación de los métodos directos es vulnerable a problemas numéricos cuando se resuelven para sistemas eléctricos grandes y de mayor complejidad y no posee la capacidad de analizar en función al tiempo.

2.2.3.1.1 Método de criterios de aéreas iguales (4)

Es necesario inspeccionar la respuesta que presenta el ángulo de rotor de cada una de las máquinas. Si en estas gráficas muestran que el ángulo entre dos máquinas tiende a crecer sin límite, el sistema será inestable. Por otro lado, si después de liberar la falla, el ángulo entre 2 máquinas alcanza su valor máximo y después decrece, es muy probable, que el sistema sea estable. (1)

Figura 6. Circuito SEP compuesto de una máquina síncrona conectado a una barra infinita. Tomada de Power System Stability And Control (11) (p. 828)

El equivalente del sistema es mostrado, el voltaje detrás de la reactancia transitoria X'd, es denotado por E'. En ángulo del rotor δ_1 , representa el ángulo por el cual E' adelanta a E_B. Cuando el sistema es perturbado, la magnitud de E' permanece constante y el ángulo δ cambia; así como la velocidad de la máquina se desvía de la velocidad síncrona w_{s.}

Figura 7 Circuito equivalente del sistema. Tomada de Power System Stability And Control (11) (p. 828)

El modelo del sistema puede ser reducido a la forma en la siguiente figura. El cual puede ser analizado utilizando métodos analíticos simples y es utilizado para obtener una compresión básica del fenómeno de la estabilidad transitoria.

Figura 8. Circuito equivalente reducido del sistema. Tomada de Power System Stability And Control (11) (p. 828)

Donde:

$$\overline{E}' = \overline{E}_{t0} + jX'_d \overline{I}_{t0}$$
$$X_T = X'_d + X_E; \ X_E = X_{tr} + \frac{X_1 \cdot X_2}{X_1 + X_2}$$

La potencia eléctrica de salida de la máquina es:

$$P_e = \frac{E'E_B}{X_T}sen(\delta) = P_{max}sen(\delta)$$

Donde:

$$P_{max} = \frac{E'E_B}{X_T}$$

Puesto que hemos despreciado la resistencia del estator, Pe representa la potencia en el entrehierro y también la potencia en el terminal de la máquina. La relación potencia-ángulo con ambas líneas de transmisión en servicio es mostrado gráficamente en la siguiente figura, como la curva 1. Con una potencia mecánica de entrada de Pm, en estado estable la potencia eléctrica de salida Pe es igual a Pm, y la condición de operación es representada por el punto α en la curva 1 y el correspondiente ángulo de rotor es δ_{α} .

Si una de las líneas está fuera de servicio, la reactancia efectiva X_T, es mayor. La relación potencia-ángulo del sistema con la línea 2, fuera de servicio, está mostrada en la figura anterior, como la curva 2.

La potencia máxima es ahora menor, con una potencia mecánica de entrada de Pm, el ángulo del rotor es ahora δ_b , correspondiente al punto de operación "b" en la curva 2; ahora el ángulo del rotor es mayor para transmitir la misma potencia en estado estable. La ecuación de oscilación es:

$$\frac{2H}{\omega_s}\frac{d^2\delta}{dt^2} = P_m - P_{max} * Sen(\delta)$$

Donde:

Pm: potencia mecánica de entrada [p. u.]

ws: velocidad síncrona de la máquina [rad/ s]

Pmax: potencia eléctrica máxima de salida [p. u.]

H: constante de inercia en [s]

δ: ángulo de rotor en [rad]

t: tiempo en [s]

La información con respecto al ángulo de oscilación máximo δ_m y el límite de estabilidad transitoria pueden ser obtenidos gráficamente usando el diagrama potencia-ángulo mostrado a continuación:

Figura 10. Respuesta a un cambio de la potencia mecánica de entrada. a) Variación de la curva potencia-ángulo. b) Respuesta en el tiempo del ángulo de rotor. Tomada de Power System Stability And Control (11) (p. 830)

2.2.3.1.2 Método de la función de la energía transitoria (4)

La aproximación de la energía transitoria puede ser descrita considerando la analogía de una bola oscilante en la superficie interna de un recipiente, como se muestra en la siguiente figura. El área dentro del recipiente representa la región estable, y el área externa, es la región de inestabilidad. El borde del recipiente es irregular en forma, es por lo que diferentes puntos del borde tienen diferentes alturas.

Figura 11. Analogía de la bola oscilante en el interior de un recipiente por la inyección de energía a un SEP. Tomada de Estudio de estabilidad transitoria del área operativa sur este del SEIN para el periodo 2014 al 2016 (4) (p. 59)

Para evitar la inestabilidad, el sistema debe ser capaz de absorber la energía cinética, en el momento en el que las fuerzas de las máquinas síncronas tienden a llevarlos a nuevas posiciones de equilibrio, esto depende de la capacidad de absorción de energía potencial del sistema en posfalla. Para una configuración de red en posfalla dada, hay un máximo o una cantidad crítica de energía cinética transitoria que el sistema puede absorber. Consecuentemente, la evaluación de estabilidad transitoria requiere:

- a. Funciones que describen adecuadamente la energía transitoria de la separación de una o más máquinas síncronas del resto del sistema.
- b. Un estimado de la energía crítica requerida para que las máquinas pierdan sincronismo.

c) Relación energía - ángulo

Figura 12. Figura del equivalente entre el método de función de energía y el criterio de áreas iguales. Tomada de Estudio de estabilidad transitoria del área operativa sur este del SEIN para el periodo 2014 al 2016 (4) (p. 60)

2.2.3.2 Métodos indirectos

2.2.3.2.1 Método de Euler (4)

El método de Euler es un método de muy baja precisión que requiere el uso de pasos Δt , excesivamente pequeños para proporcionar resultados de mayor calidad. También su poca precisión se debe a que la derivada se calcula al inicio del intervalo y es asumida constante a lo largo del mismo. Es por lo que es necesario utilizar métodos de mayor precisión para resolver ecuaciones diferenciales ordinarias. La cual es una ecuación diferencial de primer orden; con x = x₀ y t = t₀. En la siguiente figura se ilustra el principio de aplicación del método de Euler. (4)

Figura 13. Principio de aplicación general del método de Euler. Tomada de Estudio de estabilidad transitoria del área operativa sur este del SEIN para el periodo 2014 al 2016 (4) (p. 45)

Para $x = x_0$ y t = t₀, se puede aproximar la curva representando la solución verdadera, teniendo como tangente la pendiente de la curva:

$$\left.\frac{dx}{dt}\right|_{x_0} = f(x_0, t_0)$$

Por consiguiente:

$$\Delta x = \frac{dx}{dt}\Big|_{x_0} \, \Delta t$$

Por lo tanto, dado los valores iniciales x_0 y t_0 , habrá un nuevo valor de x, para un t1 = t 0 + Δt , está dado por:

$$x_1 = x_0 + \Delta x = x_0 + \frac{dx}{dt}\Big|_{x_0} \cdot \Delta t$$

Donde Δt , es el incremento de x, correspondiente al incremento de t; después de determinar el valor de x₁ correspondiente para t₁, y se puede tomar otro tiempo de paso corto Δt y determinar x₂, correspondiente a t₂ = t₁ + Δt , como sigue:

$$x_1 = x_0 + \Delta x = x_0 + \frac{dx}{dt}\Big|_{x_0} \cdot \Delta t$$

Por la aplicación del método sucesivamente, se llegan a determinar los valores de x correspondientes a diferentes valores de t.

De este método se concluye lo siguiente:

- Usa solo la primera derivada, por lo tanto, es un método de primer orden.
- Para obtener suficiente precisión, Δt debe ser pequeño.
- Un valor pequeño de Δt, incrementa los errores de redondeo y el tiempo de cálculo.
- La propagación del error, leves errores cometidos at principio son magnificados en pasos posteriores.

2.2.3.2.2 Método de Euler modificado (4)

Este método pertenece a una categoría de técnicas numéricas conocidas como métodos predictor-corrector, el cual consiste en seguir los siguientes pasos para solucionar la ecuación:

$$\frac{dx}{dt} = f(x,t)$$

Paso predictor: usando la derivada al inicio del paso, el nuevo valor del paso es previsto como:

$$x_1^{(p)} = x_0 + \frac{dx}{dt}\Big|_{x_0} \, \Delta t$$

Paso corrector: usando el valor previsto de x_1^p , para calcular el valor aproximado de $\frac{dx}{dt}\Big|_{x_1}^{(p)}$ al final del intervalo y usando el promedio de esta la derivada y la derivada al inicio del paso se puede calcular el valor corregido.

$$x_1^{(c)} = x_0 + \frac{1}{2} \left[\frac{dx}{dt} \Big|_{x_0} + \frac{dx}{dt} \Big|_{x_1}^{(p)} \right] \cdot \Delta t$$

2.2.3.2.3 Método Runge – Kutta (1) (4)

Este método aproxima la solución de las series de Taylor, la diferencia es que el método de R-K no requiere la evaluación de las derivadas de orden mayor, más que de la primera derivada. Los efectos ocasionados por estas derivadas se incluyen al tener diferentes evaluaciones de la primera derivada. Dependiendo del número de términos que se usen de la serie de Taylor, se tiene métodos de R-K de diferente orden. (1)

$$\dot{x} = f(x, t)$$

De la ecuación diferencial, la formulación del método de R-K de segundo orden evaluada en x en t = t0 + Δ t es:

$$x_1 = x_0 + \Delta x = x_0 + \frac{k_1 + k_2}{2}$$

Donde:

$$k_{1} = \{ (x_{0}, t_{0}) \Delta t$$

$$k_{1} = \{ (x_{0} + k_{1}, t_{0} + \Delta t) \Delta t$$

Este método es equivalente a considerar la primera y segunda derivada en términos de la serie de Taylor, el error en este orden es de Δ t3. De manera general, se puede expresar este método para x en el paso (n+1) de la siguiente manera:

$$x_{n+1} = x_n + \frac{k_1 + k_2}{2}$$

Donde:

$$k_1 = f(x_n, t_n) \Delta t$$
$$k_2 = f(x_n + k_1, t_n + \Delta t) \Delta t$$

Para el modelo de cuarto orden de R-K, se tienen las siguientes expresiones:

$$x_{n+1} = x_n + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$$

Donde:

$$k_{1} = f(x_{n}, t_{n})\Delta t$$

$$k_{2} = f\left(x_{n} + \frac{k_{1}}{2}, t_{n} + \frac{\Delta t}{2}\right)\Delta t$$

$$k_{3} = f\left(x_{n} + \frac{k_{2}}{2}, t_{n} + \frac{\Delta t}{2}\right)\Delta t$$

$$k_{4} = f(x_{n} + k_{3}, t_{n} + \Delta t)\Delta t$$

2.2.3.3 Estudios de simulación

"Las modernas herramientas de simulación ofrecen capacidades de modelado sofisticadas y métodos avanzados de solución numérica. Aunque cada una las herramientas de simulación difieren un poco, los requisitos y funciones básicas son las mismas". (13)

2.2.3.3.1 Estudios de simulación

"El análisis de estabilidad transitoria de SEP involucra el cálculo de las respuestas dinámicas no lineales a una gran perturbación, usualmente una falla en el sistema de transmisión, seguida del aislamiento del elemento fallado por los relés de protección". (13)

Figura 14. Esquema de simulación de la respuesta dinámica

Como se muestra en la figura anterior, la representación de todo el sistema incluye modelos para los siguientes componentes individuales:

- Generadores sincrónicos con sus respectivos sistemas de excitación y su fuerza motriz primaria.
- Red de transmisión y su interconexión considerando cargas estáticas.
- Cargas como motores de inducción y sincrónicos.
- Otros dispositivos tales como convertidores HVDC y compensadores estáticos SVC.

El modelo usado para cada componente debe ser apropiado para el análisis de estabilidad transitoria. El modelo del sistema completo consiste en un gran número de ecuaciones diferenciales y pocas algebraicas. El análisis de estabilidad transitoria es así: un problema algebraico diferencial de valor inicial. (13)

El procedimiento para el análisis de la estabilidad transitoria en una herramienta de simulación se sigue los siguientes pasos:

- El flujo de potencia: define la topología del sistema y el estado inicial.
- Los datos dinámicos: incluyen los tipos de modelos y parámetros asociados de generadores, motores, protecciones y otros dispositivos dinámicos y sus controles.
- Datos de control del programa: especifica elementos tales como el tipo de integración numérica de usar y paso de tiempo.
- Datos de switcheo: incluyen los detalles de la perturbación.
- Los datos de monitoreo del sistema: estos especifican las variables que se van a monitorear durante la simulación.

2.3 Definición de términos básicos

Alimentador: el término alimentador es un circuito radial en media tensión que suministra o alimenta energía a una determina zona en media tensión a las cargas representadas con los trasformadores.

Máquina: es un objeto fabricado para realizar un determinado trabajo y en este caso se llama así al generador, porque se habla de estabilidad angular.

Generador: es una máquina eléctrica rotativa cuya función es transformar la energía mecánica en energía eléctrica.

Trasformador: es una máquina eléctrica estática cuya función es variar el nivel de tensión eléctrica de un circuito.

C7: es el circuito 7 de la subestación de potencia en Pucallpa.

Concesión: este término es definido como zona de trabajo de las empresas concesionarias que tiene responsabilidad principal de suministrar energía eléctrica.

Estabilidad: es la propiedad de un sistema en mantenerse en equilibrio y volverse estable ante alguna perturbación.

Transitoria: es un término que define un tiempo determinado de algún evento.

Tensión: es la variable eléctrica llamada también voltaje.

Frecuencia: es la cantidad de ciclos de una señal en un determinado tiempo.

COES: Comité de Operación Económica del Sistema Interconectado Nacional

SEIN: Sistema Interconectado Nacional

SEP: Sistema Eléctrico de Potencia

G1: generador número uno

- G2: generador número dos
- G3: generador número tres

CAPÍTULO III METODOLOGÍA

3.1 Método y alcance de la investigación

El método utilizado para el desarrollo de la investigación fue el método científico, con base en la experimentación y la observación del fenómeno en estudio, para formular las preguntas al fenómeno y objetivar para posteriormente generar una hipótesis desarrollando el modelamiento y la simulación en busca del análisis, conduciendo a los siguientes resultados.

3.2 Diseño de la investigación

El diseño propuesto y desarrollado es un diseño preexperimental porque se trabaja con un grupo de investigación al cual se administró un estímulo para luego medirlo.

G: grupo de estudio (sistema eléctrico de Pucallpa)

X: análisis de estabilidad transitoria

O1: acciones que mantengan la operación continua

3.3 Población y muestra

La población y muestra del trabajo de investigación son iguales.

3.3.1 Población

En este trabajo de investigación la población fue el sistema eléctrico de potencia de Pucallpa.

3.3.2 Muestra

En este trabajo de investigación la muestra fue el sistema eléctrico de potencia de Pucallpa.

3.4 Técnicas e instrumentos de recolección de datos

3.4.1 Técnicas de recolección de datos

La técnica de recolección de datos utilizada en el presente trabajo de investigación es la documental y de registros porque se seleccionaron y analizaron los datos obtenidos, para poder simular y analizar el sistema eléctrico en estudio, los datos obtenidos fueron proporcionados por la empresa concesionaria y datos del COES.

3.4.2 Instrumentos de recolección de datos

Los instrumentos fueron las fichas resúmenes que se realizaron para ordenar los informes de estudios eléctricos en la zona por parte de la empresa concesionaria, también informes y diagramas unifilares publicadas por el comité de operación económica y el ente regulador.

CAPÍTULO IV RESULTADOS Y DISCUSIÓN

4.1 Modelamiento en el programa *DigSilent power factory*

En este Ítem se presenta el modelamiento de cada uno de los elementos del sistema eléctrico en estudio diseñados en el programa *DigSilent power factory* con sus respectivos parámetros que permitieron simular y analizar la estabilidad transitoria. Se muestran en las secciones en adelante los datos ingresados para la simulación para cada elemento del SEIN del área de estudio, el programa permite analizar con su módulo de estabilidad transitoria.

Figura 15. Diagrama unifilar del sistema eléctrico de Pucallpa

4.1.1 Red equivalente

El elemento de red equivalente permite representar todo el sistema eléctrico del SEIN aguas arriba, utilizando como una barra de referencia controlando tensión y ángulo.

La red equivalente se modeló en la barra Aguaytía 220 kV.

Figura 16. Red equivalente

Parámetros definidos de la red equivalente:

External Grid – Grid\External Grid.ElmXnet	
Bur Type SL -	OK
Setport Iscal Operation Point Argle 22.7273 deg Votage Setport 110158 p.u. Reference Buaber	Cano Roure Jump 1
Financtive Power Operational Limits Capebility Curve Min. 99995. Mixer Scaling Factor (min.) 100. % Max. 99993. Miver Scaling Factor (max.) 100. %	
	Built Type St Seport Iscal Operation Post

Figura 17. Parámetros de red equivalente

4.1.2 Generadores

Para el elemento generador se ingresaron, de forma manual, los parámetros como capacidad de generación, nivel de tensión, factor de potencia y el tipo de conexionado como los más importantes, estos generadores son los generadores de Aguaytía G1, Aguaytía G2 y G3 Pucallpa.

	Synchronous Machine	Type - Library\	0 RED INICIAL\S	Sym\Aguaytia_G1.TypS	ym ×
Basic Data Load Flow VDE/IEC Short-Circuit Complete Short-Circuit ANSI Short-Circuit IEC 61363 DC Short-Circuit RMS-Simulation	Synchronous Machine Name Aguaytia_G1 Nominal Apparent Power Nominal Voltage Power Factor Connection	Type - Librany\\ 119.2 13.8 0.8 YN	0 RED INICIAL\S	iym\Aguaytia_G1.TypS	ym ×
EMT-Simulation Harmonics/Power Quality Protection Optimal Power Row Reliability					
Description					

Figura 18. Parámetros de G1 y G2. Aguaytía

Sync	hronous Machine Type	- Library\0	RED INICIAL\Sym\ReservaFria Pucallpa(1).TypSym	×
Basic Data	Name ReservaFria	Pucalipa(1)		ОК
Load Row VDE/IEC Short-Circuit Complete Short-Circuit ANSI Short-Circuit IEC 61363 DC Short-Circuit RMS-Simulation	Nominal Apparent Power Nominal Voltage Power Factor Connection	2.281 0.48 0.8 YN 🔽	MVA kV	Cancel
EMT-Simulation Harmonics/Power Quality Protection Optimal Power Flow Reliability Generation Adequacy				
Description				

Figura 19. Parámetros de G3. Pucallpa

4.1.3 Transformadores

Para el caso de transformadores en el sistema eléctrico en estudio, se tienen dos tipos: los transformadores de tres devanados y de dos devanados.

4.1.3.1 Transformadores tres devanados

En el presente sistema de estudio se tienen cuatro transformadores del tipo de tres devanados que son: t3 AGU_2171, t4 AGU_2171-Nuevo, t5 PUC y t6 PUC.

Basic Data	Name	AGU_2171						
oad Flow	Rated Powe	r		Rated Vo	tage			
/DE/IEC Short-Circuit	HV-Side	60.	MVA	HV-Side	220.	kV		-
Complete Short-Circuit	MV-Side	60.	MVA	MV-Side	138,	kV		
ANSI Short-Circuit	LV-Side	20.	MVA	LV-Side	22,9	kV		
EC 61363	-Verter Grou	-						
C Short-Circuit			Dhace Shift		10			
	MV Cil-		Dhave Chit		ру. Го	*20.4		
	INV-Side		rnase Shift		ju,	Judeg		
IN I-Simulation	LV-Side		Phase Shift		Jo.	*30deg		
1 0 0 11	Name	TINUYNUGS						
lamonics/Power Quality	1070000	00255005510						
Protection	Hint: The short	t-circuit voltage	s refer to the corre	sponding min.	rated Powers	1		
Protection Protection	Hint: The short e.g. uk(HV-MV	t-circuit voltage /) is referred to t	es refer to the corre the minimum of Sr(K	sponding min. HV) and Sr(M\	rated Powers)			
Harmonics/Power Quality Protection Optimal Power Flow Reliability	Hint: The short e.g. uk(HV-MV ─ Positive Seq ┌─ Short-Circu	t-circuit voltage /) is referred to t uence Impedar uit Voltage uk	es refer to the corre the minimum of Sr(k nce	sponding min. HV) and Sr(M)	rated Powers) sses		<u>+</u>	
Harmonics/ Power Quality Protection Optimal Power Flow Reliability Generation Adequacy	Hint: The short e.g. uk(HV-MV Positive Seq Short-Circu HV-MV	t-circuit voltage /) is referred to f uence Impedar uit Voltage uk	es refer to the corre the minimum of Sr() nce	sponding min. HV) and Sr(M) Copper Lo	rated Powers) isses	kW	•	
Tarmonics/ Power Quality Protection Diptimal Power Flow Reliability Generation Adequacy	Hint: The short e.g. uk(HV-MV Positive Seq Short-Circu HV-MV MV-I V	t-circuit voltage /) is referred to to uence Impedar it Voltage uk	s refer to the corre the minimum of Sr() nce	sponding min. HV) and Sr(M) Copper Lo HV-MV	rated Powers) sses 144, 44.7	kW	>	
Tarmonics/Power Quality Protection Dptimal Power Flow Reliability Generation Adequacy Description	Hint: The short e.g. uk(HV-MV Positive Seq Short-Circu HV-MV MV-LV	t-circuit voltage /) is referred to t uence Impedar it Voltage uk - [12,275] 8,6 13,075	es refer to the correr the minimum of Sr(I nce	Sponding min. HV) and Sr(MV Copper Lo HV-MV MV-LV	rated Powers) sses 144, 44,7	kW kW	>	
ramonics/Power Quality Protection Dptimal Power Flow Reliability Seneration Adequacy Description	Hint: The short e.g. uk(HV-MV Positive Seq Short-Circu HV-MV MV-LV LV-HV	t-circuit voltage /) is referred to f uence Impedan iit Voltage uk	es refer to the correr the minimum of Sr(I nce % % %	Sponding min. HV) and Sr(MV Copper Lo HV-MV MV-LV LV-HV	rated Powers) isses [144, 44,7 [44,7	kW kW kW	→	
Tarmonics/Power Quality Protection Dptimal Power Row Reliability Generation Adequacy Description	Hint: The short e.g. uk(HV-MV Positive Seq Short-Circu HV-MV MV-LV LV-HV	t-circuit voltage /) is referred to i uence Impedai it Voltage uk	es refer to the correct the minimum of Sr() nce	Sponding min. HV) and Sr(M) Copper Lo HV-MV MV-LV LV-HV	rated Powers) ssses 144,7 44,7 44,7	kW kW kW	▶	
Tarmonics/Power Quality Protection Optimal Power Row Reliability Generation Adequacy Description	Hint: The short e.g. uk(HV-MV Positive Seq Short-Circu HV-MV MV-LV LV-HV Zero Sequer	t-circuit voltage /) is referred to 1 uence Impedai it Voltage uk	s refer to the correct the minimum of Sr() nce	sponding min. HV) and Sr(M) Copper Lo HV-MV MV-LV LV-HV LV-HV	rated Powers) ssses [144,] 44,7] 44,7] 44,7	kW kW kW)	
Tarmonics/Power Quality Protection Optimal Power Row Reliability Generation Adequacy Description	Hint: The short e.g. uk(HV-MV Positive Seq Short-Circu HV-MV LV-HV LV-HV Zero Sequer Short-Circu HV-MV	t-circuit voltage /) is referred to 1 uence Impedant it Voltage uk - 12.275 8.6 13.075 nce Impedance it Voltage uk0 12.275	s refer to the correct the minimum of Sr() nce %	sponding min. HV) and Sr(M) Copper Lo HV-MV MV-LV LV-HV SHC-Volta HV-MV	rated Powers) ssses [144, 44,7 [44,7] [44,7] [90, Real Part [0,	kW kW kW	•	
Tarmonics/ Power Quality Protection Optimal Power Row Reliability Generation Adequacy Description	Hint: The short e.g. uk(HV-MV Positive Seq Short-Circu HV-MV LV-HV Zero Sequer Short-Circu HV-MV MV-LV	t-circuit voltage /) is referred to 1 uence Impedant II2,275 8,6 13,075 Ince Impedance it Voltage uk0 I2,275 8,6	se refer to the correct the minimum of Sr()	sponding min. HV) and Sr(M) Copper Lo HV-MV MV-LV LV-HV SHC-Volta HV-MV MV-LV	rated Powers) ssses [144, 44,7 [44,7 [44,7 [44,7 [0, [0, [0,	kW kW kW	•	
Tarmonics/ Power Quality Protection Optimal Power Row Reliability Generation Adequacy Description	Hint: The short e.g. uk(HV-MV Positive Seq Short-Circu HV-MV LV-HV LV-HV Zero Sequer Short-Circu HV-MV MV-LV	t-circuit voltage /) is referred to 1 uence Impedant II2,275 8,6 13,075 Ince Impedance it Voltage uk0 I2,275 8,6 13,075	es refer to the correct the minimum of Sr() nce % % % % %	Sponding min. HV) and Sr(M) Copper Lo HV-MV MV-LV LV-HV SHC-Volta HV-MV MV-LV	rated Powers) sses [144. [44,7] [44,7] [44,7] [44,7] [9, Real Part [0,] [0,] [0,] [0,]	kW kW kW	•	

Figura 20. Parámetros del t3 AGU_2171

acad Flow Rated Power Rated Voltage DE/IEC Short-Circuit HV-Side 60, MVA MY-Side 60, MVA HV-Side 220, kV NSI Short-Circuit MV-Side 60, MVA LV-Side 220, kV SC Short-Circuit Vector Group LV-Side 22,9 kV LV-Side 22,9 kV MS-Simulation MV-Side YN< Phase Shift 0, *30deg MT-Simulation MV-Side D< Phase Shift 0, *30deg Name YNOyn0d5 Vector Group Fated Powers e.g. uk(HV-MV) is referred to the minimum of Sr(HV) and Sr(MV) Positive Sequence Impedance Copper Losses e.g. uk(HV-MV) 12.24 % MV-LV 8.57 % N-V/V 195,12 kW MV-LV 8.57 % N-V/V 12.24 % MV-LV 8.57 % N-V/V 17.2. kW V-HV 13.03 % V-V/V 0, % V-HV 13.03 % V-V/V 0, %	Jusic-Data	Name	AGU_2171-	Nuevo				
DE/IEC Short-Circuit HV-Side 60. MVA HV-Side 220. kV MVSIde 50. MVA HV-Side 138. kV NSI Short-Circuit LV-Side 20. MVA LV-Side 138. kV SC 61363 Vector Group LV-Side 138. kV LV-Side 22.9 kV Stort-Circuit Vector Group HV-Side YN ▼ Phase Shift 0. *30deg MT-Simulation HV-Side YN ▼ Phase Shift 0. *30deg Iarmonics/Power Quality Name YNQn0d5 *30deg *30deg Hint: The short-circuit voltages refer to the corresponding min. rated Powers e.g. uk(HV-MV) is referred to the minimum of Sr(HV) and Sr(MV) Positive Sequence Impedance Copper Losses * escription Short-Circuit Voltage uk0 HV-HV 13.03 % V-HV 195.12 kW VLV-W 13.03 % V-HV 0. % NV-LV 8.57 % VLV-HV 13.03 % V-HV 0. % NV-LV 0. %	oad Flow	Rated Pow	er	21 C	Rated Vo	ltage		
tomplete Shot-Circuit MV-Side 60. MVA MV-Side 138. kV NSI Shot-Circuit LV-Side 20. MVA MV-Side 138. kV EC 61363 Vector Group Vector Group LV-Side 129. kV C Shot-Circuit Vector Group HV-Side YN ▼ Phase Shift 0. *30deg MT-Simulation MV-Side YN ▼ Phase Shift 0. *30deg Iarmonics/Power Quality MV-Side D ▼ Phase Shift 5. *30deg Iarmonics/Power Row elability e.g. uk(HV-My) is referred to the oninimum of Sr(HV) and Sr(MV) Positive Sequence Impedance Copper Losses INV-LV 195.12 kW Vector Group NVLV 8.57 % NV-LV 96.71 kW IV-HV 12.24 % Vert V 13.03 % Vector Group SHC-Voltage, Real Part IV-MV NV-LV 8.57 % Vert V 13.03 % V-HV 0. % IV-HV 10. % Vector Group Shot-Circuit Voltage uk0	/DE/IEC Short-Circuit	HV-Side	60.	MVA	HV-Side	220,	kV	
INSI Short-Circuit LV-Side 20, MVA LV-Side 22.9 kV EC 61363 Vector Group Vector Group 10, *30deg IMS-Simulation MV-Side YN Phase Shift 0, *30deg IMS-Simulation MV-Side YN Phase Shift 0, *30deg IAMS-Simulation MV-Side YN Phase Shift 5, *30deg Iamonics/Power Quality rotection e.g. uk(HV-MV) is referred to the oneresponding min. rated Powers e.g. uk(HV-MV) is referred to the minimum of Sr(HV) and Sr(MV) Positive Sequence Impedance Short-Circuit Voltage uk Copper Losses HV-MV 195,12 kW MV-LV 8,57 ½ MV-LV 96,71 kW LV-HV 13.03 ½ Short-Circuit Voltage uk0 Sh	Complete Short-Circuit	MV-Side	60.	MVA	MV-Side	138.	kV	
EC 61363 Vector Group IC Short-Circuit HV-Side YN ▼ Phase Shift 0. * * 30deg IMS-Simulation MV-Side YN ▼ Phase Shift 0. * * 30deg IAMS-Simulation MV-Side YN ▼ Phase Shift 0. * * 30deg Iamonics/Power Quality Vector Group Phase Shift 0. * * 30deg Iamonics/Power Quality Name YN0yn0d5 * * 30deg Int: The short-circuit voltages refer to the corresponding min. rated Powers e.g. uk(HV-MV) is referred to the minimum of Sr(HV) and Sr(MV) Positive Sequence Impedance Short-Circuit Voltage uk HV-MV 195,12 kW MV-LV 8,57 % WV-LV 96,71 kW LV-HV 13.03 % HV-MV 12,24 % MV-LV 8,57 % WV-LV 96,71 kW Vertor Vitage uk0 HV-MV 12,24 WV-LV 0. % MV-LV 8,57 % WV-LV 0. % MV-LV 8,57 % WV-LV 0. % MV-LV 8,57 %	ANSI Short-Circuit	LV-Side	20,	MVA	LV-Side	22,9	kV	
C. Short-Circuit HV-Side YN ▼ Phase Shift 0, *30deg MMS-Simulation MV-Side YN ▼ Phase Shift 0, *30deg MT-Simulation LV-Side YN ▼ Phase Shift 0, *30deg Iamonics/Power Quality VN ▼ Phase Shift 0, *30deg Iamonics/Power Quality VN ▼ Phase Shift 0, *30deg Iamonics/Power Quality Name YN ▼ Phase Shift 0, *30deg Iamonics/Power Quality Name YN ▼ Phase Shift 0, *30deg Iamonics/Power Quality Name YN ▼ Phase Shift 0, *30deg Iamonics/Power Row Hint: The short-circuit voltages refer to the corresponding min. rated Powers e.g. uk(HV-MV) is referred to the minimum of Sr(HV) and Sr(MV) Positive Sequence Impedance Short-Circuit Voltage uk V-MV 12.24 % WV-LV 195.12 kW WV-LV 8.57 ½ V-HV 74.25 kW V-HV 1V-HV Zero Sequence Impedance Short-Circuit Voltage uk0 SHC-Voltage, Real Part HV-MV 0, % MV-LV 8.57 ½ NV-LV 0, % % H	EC 61363	- Vector Grou	in		I L			
IMS-Simulation MV-Side YN Phase Shift 0, *30deg IMT-Simulation Iamonics/Power Quality Phase Shift 5, *30deg Iamonics/Power Quality Name YN0yn0d5 *30deg Iamonics/Power Quality Name YN0yn0d5 *30deg Iamonics/Power Quality Name YN0yn0d5 *30deg Iamonics/Power Row Hint: The short-circuit voltages refer to the corresponding min. rated Powers *30deg Iptimal Power Row Fostive Sequence Impedance Copper Losses * Short-Circuit Voltage uk W-LV 195.12 kW MV-LV 8.57 % W-LV 96.71 kW LV-HV 13.03 % SHC-Voltage. Real Part * HV-MV 12.24 % MV-LV % % Zero Sequence Impedance Short-Circuit Voltage uk0 SHC-Voltage. Real Part * HV-MV 12.24 % MV-LV % % V-HV 13.03 % V-HV % %	DC Short-Circuit	HV-Side	YN -	Phase Shift		0.		
MT-Simulation LV-Side D Phase Shift 5. *30deg Iamonics/Power Quality Name YN0yn0d5 *30deg rotection e.g. uk(HV-MV) is referred to the corresponding min. rated Powers e.g. uk(HV-MV) is referred to the minimum of Sr(HV) and Sr(MV) Positive Sequence Impedance Short-Circuit Voltage uk Copper Losses IV-MV HV-MV 12.24 % MV-LV 96.71 kW ILV-HV 13.03 % SHC-Voltage. Real Part IV-MV IV-MV I2.24 WV-LV Short-Circuit Voltage uk0 SHC-Voltage. Real Part IV-MV I0. % V-MV 12.24 % MV-LV 9.57 % IV-HV IV-MV IV-HV	RMS-Simulation	MV-Side	YN -	Phase Shift		0.	*30deg	
Name YN0yn0d5 Interval Name YN0yn0d5 Hint: The short-circuit voltages refer to the corresponding min. rated Powers e.g. uk(HV-MV) is referred to the minimum of Sr(HV) and Sr(MV) Postive Sequence Impedance Postive Sequence Impedance Short-Circuit Voltage uk Copper Losses HV-MV 12.24 % MV-LV 8.57 % LV-HV 13.03 % Zero Sequence Impedance Short-Circuit Voltage uk0 HV-MV 12.24 % MV-LV 8.57 % VHV 13.03 % HV-MV 12.24 % MV-LV 8.57 % MV-LV 8.57 % HV-MV 12.24 % MV-LV 8.57 % HV-MV 12.24 % MV-LV 8.57 % HV-MV 0. % MV-LV 8.57 % HV-MV 0. % MV-LV 8.57 % HV-MV 0. % V-HV 13.03 %	EMT-Simulation	LV-Side		Phase Shift		5.	*30deg	
rotection ptimal Power Row leliability lescription Hint: The shot-circuit voltages refer to the corresponding min. rated Powers e.g. uk(HV-MV) is referred to the minimum of Sr(HV) and Sr(MV) Positive Sequence Impedance Shot-Circuit Voltage uk HV-MV 12.24 % MV-LV 8.57 % LV-HV 13.03 % Zero Sequence Impedance Shot-Circuit Voltage uk0 HV-MV 12.24 % MV-LV 96.71 kW LV-HV 74.25 kW Shot-Circuit Voltage uk0 HV-MV 12.24 % MV-LV 96.71 kW LV-HV 74.25 kW HV-MV 0. % HV-MV 0. % LV-HV 13.03 %	larmonics/Power Quality	Name	YNDyn0d5					
Zero Sequence Impedance > Short-Circuit Voltage uk0 SHC-Voltage, Real Part HV-MV 12.24 % MV-LV 8.57 % LV-HV 13.03 %	Seneration Adequacy	HV-MV	12,24	%	HV-MV	195,12	kW	
HV-MV 12.24 % HV-MV 0. % MV-LV 8.57 % MV-LV 0. % LV-HV 13.03 % LV-HV 0. %	Seneration Adequacy	HV-MV MV-LV LV-HV	12,24 8,57 13,03	% %	HV-MV MV-LV LV-HV	195,12 96,71 74,25	kW kW kW	
MV-LV 8,57 % MV-LV 0, % LV-HV 13.03 % LV-HV 0, %	Seneration Adequacy	HV-MV MV-LV LV-HV	12,24 8,57 13,03 Ince Impedance uit Voltage uk0	% %	HV-MV MV-LV LV-HV	195,12 96,71 74,25	kW kW kW	<u>+</u>
LV-HV 13.03 % LV-HV 0. %	Seneration Adequacy	LV-MV MV-LV LV-HV Zero Seque Short-Circ HV-MV	12.24 8.57 13.03 Ince Impedance uit Voltage uk0 12.24	x x x	HV-MV MV-LV LV-HV SHC-Volt: HV-MV	195,12 96,71 74,25 age, Real Part 0,	kW kW kW	•
	Seneration Adequacy	V-LV LV-HV Zero Seque Short-Circ HV-MV MV-LV	12,24 8,57 13,03 13,03 12,03 12,24 12,24 8,57	x x x x	HV-MV MV-LV LV-HV SHC-Volt. HV-MV MV-LV	195,12 96,71 74,25 age, Real Part 0, 0,	kW kW kW)
	Seneration Adequacy	Zero Seque Short Circ HV-MV MV-LV LV-HV MV-LV LV-HV	12,24 8,57 13,03 Ince Impedance uit Voltage uk0 12,24 8,57 13,03	x x x x	HV-MV MV-LV LV-HV SHC-Volt. HV-MV MV-LV LV-HV	195,12 96,71 74,25 age. Real Part 0, 0, 0,	kW kW kW	→
	Seneration Adequacy	HV-MV MV-LV LV-HV Short-Circ HV-MV MV-LV LV-HV Pocket Calc	12,24 8,57 13,03 Ince Impedance uit Voltage uk0 12,24 8,57 13,03 Ulator	2 2 2 2 2 2 2 2 2	HV-MV MV-LV LV-HV SHC-Volt HV-MV MV-LV LV-HV	195,12 96,71 74,25 age. Real Part 0. 0. 0.	kW kW kW	→

Figura 21. Parámetros del t4 AGU_2171-Nuevo

case that	Norme	PLIC_1671-	P& acreta					
Load Row	Rated Power	-	_	Rated Vo	lage			Car
VDE/IEC Short-Circuit	HV-Side	55,	MVA	HV-Side	138.	kV		
Complete Short Circuit	MV-Side	56.	MVA	MV-Side	60.	kV		
ANSI Short-Grout	LV-Side	10.	MVA .	LV-Side	10,	kV.		
EC 61363	- Vector Group							
DC Shut Onut	HV-Side	[YN +]	Phase Shift		6	- 10km		
RMS-Sendation	MV-Side	YN +	Phase Shift		0.	*10king		
EMT-Simulation	LV-Side	D .	Phase Shift		5.	*30deg		
Inmonics/Power Quality	Nome	YNDyn0d5			80 - E			
letability Teranston Adequary	Postive Seg - Shet Orcu HV-MV	t Votage uk 10,63	nce %	Copper Li HV-MV	104.76	kW	•	
Description	MVEV	[4,1	1	MV-LV	39,28	kW		
	LA-HA	J1.28	4	LV-HV	[38,41	kW		
	Zero Sequer	ce inpedance	-		1512420203		•1	
	- Shot Cicu	it Voltage uk0		SHC/Vot:	ige, Fieal Pat		-11	
	HV-MV	10.63	2	HV-MV	0.	2		
	MV-LV	4.1	× .	MV-LV	J0.	%		
	TAHA	0.26	2	LV-HV	0.	3		

Figura 22. Parámetros del t5 PUC

The second s	Nane	PLC 1671						OK
Lond Rew	-Rated From			- Flated Vol	age			Care
VDE/IEC Shot-Grout	HV-Side	55.	MVA.	HV-Side	138.	kV		
Complete Shot-Orout	MV-Side	55.	MVA	MV-Sde	61.	kV		
ANSI Short Circuit	LV-Sde	14.	INVA	LV-Side	10.	kV	_	
FC: 41363	10.000							
N. Barrellow	- Yector Lata	e Transmill	-		6			
	PTV-Gede	17N •	rruse srett		PP.			
THE STREET	MV SADE	m •	PTusse shaft		P4.			
EMT-Ganulation	LV-Side	0 -	Prase Sult		p.	-30.leg		
Hamorics/Power Quality	Name	1103/41005						
Protection / Optimus Plane	Het. The also e.g. uk/HV-M	6 circuit voltage V) is referred to 1	s refer to the core the meanum of Sr)	eponding relat. (V) and Sr(M)	nated Pizeens			
	("Postive Se	Strauca subseque	108					
Failability	- Shot Or	A Makama in		- Centre La				
Reliability	-Shot-Ore	ut Votage uk -	-,	Cipper La	Eser		•	
Relability Generation Advances	-Shot Ge HV-MV	Voltage uk -	1	Cipper La HV-MV	[24], [34.5	kW		
Relability Generation Adiraciana Description	- Shot Get HV-MV MV-LV	uit Voltage uk - [10,675 [4,1 [8,33		Copper La HV-MV MV-LV	[24] [31.5	kW kW	•	
Reliability Generalities Adequects Devices	-Shot Ort HV-MV MV-LV LV-HV	4 Votege (A - 10.675 4.1 [1.31	- <u>-</u>	Copper La HV-MV MV-LV LV-HV	[248, [38,5 [38,5	kW kW kW		
Reliability Generation: Adarpungs Deeptigen	Shot Qe HV-MV MV-LV LV-HV Zen Segar	4 Votege uk - [10.675 [4.1 [8.31]	* *	Cipper Li HV-MV MV-LV LV-HV	[24] [31,5 [31,5	kW kW kW		
Reliebility Generation Adaption Devotption	Shot Ge HV-MV MV-LV LV-HV Shot Ge	At Votege (k 10.675 4.1 8.31 Ince Inpedance at Votege (k0		Cipper La HV-MV MV-LV LV-HV	[248, [38,5] [38,5] [38,5]	kW kW kW	•	
Reliability Generation Adaquacy Devotption	-Shot Ge HV-MV MV-LV LV-HV Zero Segar Shot Ge HV-MV	at Votage uk - [10,675 [4,1 [1,31 rice Impedance ut Votage uk 0 [10,675		Capper La HV-BV MV-LV LV-HV SHC-Vola HV-BV	[248, [38,5] [38,5] [38,5] [38,5]	kW kW kW		
Reliebility Generation Adequacy Description	-Shot Cire HV-MV LV-HV Zers Segar Shot Cire HV-MV MV-LV	at Votage uk - [10,675 [4,1 [1,31 nce Impedance ut Votage uk0 [10,675 [4,1		Capper La HV-RV MV-LV LV-HV SHC-Volta HV-RV SHC-Volta	[248, [38,5] [38,5] [38,5] [38,5] [38,5]	kW kW kW	•	

Figura 23. Parámetros del t6 PUC

4.1.3.2 Transformadores de dos devanados

Para el caso de los transformadores de dos devanados se modelaron dos en el sistema eléctrico en estudio, los cuales son: t1 AGU_271, t2 AGU_271, t7 Pucallpa SVC tr2, t8 TP-Pucallpa 60 y t9 TP-Pucallpa 22.9.

Basic Data	Name	AGU_271				
oad Flow	Technology	Three Phas	se Transformer	•		
/DE/IEC Short-Circuit	Rated Power	100,	MVA			
Complete Short-Circuit	Nominal Frequency	60,	Hz			
ANSI Short-Circuit	Rated Voltage			Vector Group		
EC 61363	HV-Side	223,	kV	HV-Side	YN 👻	
OC Short-Circuit	LV-Side	13,8	kV	LV-Side	D 🔻	
RMS-Simulation	- Positive Sequence Impedance	ce				
EMT-Simulation	Short-Circuit Voltage uk	11,833	_, ≛	Phase Shift	1.	*30deg
Harmonics/Power Quality	Copper Losses	310,26	kW	Name	YNd1	
Protection	7	C				
Optimal Power Flow	Sheet Circuit Veltage uit 0	10 222	•/			
Reliability	SHC Valence (Packdo)) uk/b	10,525	^^^*			
Generation Adequacy	SHC-VOILage (Ne(UKU)) UKU	Ju.	/0			
Description						

Figura 24. Parámetros del t1 AGU_271

Basic Data	Name	AGU 271				0
Load Row VDE/IEC Short-Circuit Complete Short-Circuit NNSI Short-Circuit IEC 61363	Technology Rated Power Nominal Frequency Rated Voltage HV-Side	Three Phase Transformer 100, MVA 60, Hz 1223, kV	Vector Group HV-Side	<u> YN •</u>		Car
DC Short-Circut RMS-Simulation EMT-Simulation Hamonica/Power Quality	LV-Side - Positive Sequence Impedance Shot Orout Votage uk Copper Losses	113.0 kV 11.833 % ▲ [310.25 kW	Phase Shift Name	то 🖭 П. YNd1	-30deg	
Protection Optimal Provide Flow Reakability Jeneratizity Advancestry Description	-Zero Sequence Impedance Shot-Grout Vokage uk0 SHC-Vokage (Re§k(0) uk0r	[10,323 % [0. %			٠	

Figura 25. Parámetros del t2 AGU_271

Basic Date	Name	Fuendor SVC	112				
Load Row	Technology	Three Phase	Transformer	*			
VDE/IEC Short-Circuit	Rated Power	50.	MVA				
Complete Short-Orcuit	Nominal Frequency	leo.	Ha				
ANSI Short Circuit	Rated Voltage		- 35.55	- Vector Group	-		
IEC 61363	HV-Side	[60,	kV	HV-Side	YN -		
DC Short-Circuit	LV-Side	13.9	kV	LV-Side	0 -		
RMS-Simulation	- Positive Sequence Impedan	00		3 723	-		
EMT-Simulation	Shot-Circuit Votage uk	10.	- x =	Phase Shift	þ.	"Jüdeg	
Hamonics/Power Quality	Copper Losses	10.	kW	Name	YNd5		
Protection	- Zem Garagence Innerfance						
Optimal Prevent Piper	Shot Oiruit Voltage uk9	[10.	- <u>.</u>			•	
Reilability	SHC Makaza (Red & Bluck Dr	la.	-2				
Oemilators Advisiacy	one reage tworighters	-ter					
Description							

Figura 26. Parámetros del t7 Pucallpa SVC tr2

land Data	Name	LP Purnhoa6					0
Load Pow VDE/IEC Short-Circuit Complete Short-Circuit NNSI Short-Circuit IEC 61363	Technology Rated Power Nominal Frequency Flated Votage HV-Side	Three Phase 60, 60,	Transformer MVA Hz	Vector Group	YN Y		Can
RMS-Simulation EMT-Simulation Harmonics/Power Quality Protection	Postive Sequence Impedan Shot Circuit Votage Lk Copper Losses Zem Sequence Impedance	(9.013 (9.013 (208.362	-x ♪	Proze Shift Name	js. ynas	*30deg	
Reliability Semention Advocatory Description	Shot Circut Voltage uk0 SHC-Voltage (Reijuk0)) uk0e	9.013 0.	ч ч			-	

Figura 27. Parámetros del t8 TP-Pucallpa 60

Load Row Technology Three Phase Transformer VDE/IEC Short-Circuit Rated Power 2.5 MVA Complete Short-Circuit Nominal Frequency 60, Hz ANSI Short-Circuit Naminal Frequency 60, Hz ANSI Short-Circuit Rated Voltage 22.9 kV IEC 61363 HV-Side 22.9 kV IC Short-Circuit Postive Sequence impedance Phase Shift 5, RMS-Simulation Short-Circuit Voltage uk 5,51 4, Hamonicu/Power Gualty Copper Losasis 23,817 kW Photection Zero Sequence Impedance 9 Outmal Power Flow Short-Circuit Voltage uk 5,91 3, Photection Zero Sequence Impedance 9 9 Short-Circuit Voltage uk 5,91 3, Image: Shift Social Soc	Ease Dota	Name	TP-Fucatro72.9				0
HEC 61963 HV-Side Image: State of Control C	Loed Flow VDE/IEC Shot-Orout Complete Shot-Orout ANSI Shot-Orout	Technology Rated Power Nominal Frequency Rated Votage	Three Phase Transformer [2.5 MVA [60, Hz	• Vector Group			Car
RMS-Simulation Postive Sequence Impedance EMT-Simulation Shot-Circuit Votage uk 5.91 1, Harmonicat/Power Guality Copper Lasana 23.817 kW Protection Zero Sequence Impedance Name Cottrail Power Pow Shot-Circuit Votage uk 5.91 3, Rekability Shit-Votage uk 5.91 3,	IEC 61363 DC Short-Great	HV-Side LV-Side	22.9 kV 0,48 kV	HV-Side LV-Side	YN • D •		
Protection Protection Zero Sequence Impedance Optimal Power Flow Shot Circuit Voltage uk0 5.91 1, Relability SHC-Valtage (Field k00 uk0 0, 3,	RMS-Simulation EMT-Simulation Harmonics/Power Quality	Positive Sequence Impedan Short-Crouit Voltage uk Copper Losses	ce 5.91 % 23.817 kW	Phase Shift Name	(5, YNd5	*30deg	
Generation Adopuncy	Protection Optimul Fower Flow Relability Generation Advocutor	Zero Sequence Impedance Shot-Circuit Votage uk0 SHC-Votage (Rejuik0) uk0r	[5.91 % [0. %	<u>.</u>		<u>+</u>	

Figura 28. Parámetros del t9 TP-Pucallpa 22.9

4.1.4 Líneas

Para el caso de las líneas de transmisión del sistema eléctrico en estudio, se analizaron las líneas: Line 1 en 138 kV, line 2 en 60 kV, line 3 en 60 kV y line 4 en 60 kV. Dentro de sus principales características se ingresan datos de nivel de tensión, capacidad de corriente y frecuencia de operación.

Figura 29. Parámetros de line 1 en 138 kV

	Line T	ype - Library	0 RED INIC	IAL\Lne\SEPI-SEPU.Ty	pLne		×
Basic Data Load Flow VDE/IEC Short-Circuit Complete Short-Circuit ANSI Short-Circuit	Name F Rated Voltage F Rated Current F Nominal Frequency F Cable / OHL	SEPI-SEPU 60, kV 0.45 kA 60, Hz Overhead Line KA			pune		OK Cancel
IEC 61363 DC Short-Circuit	System Type	AC 🔹	Phases	3 Number of Ne	eutrals 0 💌 Zero Sequence	1	
RMS-Simulation EMT-Simulation Harmonics/Power Quality Protection Optimal Power Flow Reliability Generation Adequacy	AC-Resistance R ⁴ Reactance X ⁴	(20°C) 0,14361 0,44527	Ohm/km Ohm/km	AC-Resistance R0'	0,50171	Ohm/km	
Cable Sizing Description							

Figura 30. Parámetros de line 2 en 60 kV

Basic Data Name pdj.yar60 OK Load Row Rated Voltage 60. kV Cancel VDE/IEC Short-Grouit Rated Current 0.5 kA Cancel Complete Short-Grouit Nominal Frequency 60. Hz Cancel Cancel ANSI Short-Grouit Cable / OHL Overhead Line ▼ . . Parameters per Length 12.5 Sequence . . RMS-Simulation EMT-Simulation AC-Resistance R(20°C) 0.14631 Ohm/km . . Parameters per Length 1.2-Sequence AC-Resistance R0° 0.32376 Ohm/km . Reactance X° 0.48529 Ohm/km . Reactance X0° 2.51408 Ohm/km Relability Generation Adequacy/ Cable Sizing Description

Figura 31. Parámetros de line 3 en 60 kV

Figura 32. Parámetros de line 4 en 60 kV

4.1.5 Barras

En el caso de las barras en el sistema eléctrico en estudio se utilizaron barras de niveles de tensión de 220 kV, 138 kV, 60 kV, 13,8 kV y 0.48 kV, estas barras de conexión fueron modeladas para poder conectar los elementos como generadores, transformadores, línea y cargas.

	Termi	nal - Grid\AGUA	Y(7)\220.Eli	mTerm		×
Basic Data	Name	0				ОК
Load Flow	Туре 💌	+				Cancel
VDE/IEC Short-Circuit	Zone 💌	→		(from Substa	tion)	
Complete Short-Circuit	Area 💌	→		(from Substa	tion)	Jump to
ANSI Short-Circuit	Substation 🔶	Grid\AGUAY(7)				Cubicles
IEC 61363	C Out of Service					
DC Short-Circuit	System Type	AC 💽	Usage	Busbar	-	
RMS-Simulation	Phase Technology	ABC 💌				
EMT-Simulation	Nominal Voltage —					
Hannonics/Power Quality	Line-Line	220, kV				
Protection	Line-Ground	127,0171 kV				
Optimal Power Flow						
Reliability	Earthed					
Generation Adequacy						
Tie Open Point Opt.						
Description						

Figura 33. Parámetros de barra de 220 kV

	Terr	minal - Grid\AGU/	AY(9)\138.I	ElmTerm		×
Basic Data	Name	138				ОК
Load Flow	Туре	▼ +				Cancel
VDE/IEC Short-Circuit	Zone	▼ +		(from	Substation)	
Complete Short-Circuit	Area	▼ +		(from	Substation)	Jump to
ANSI Short-Circuit	Substation	➔ Grid\AGUAY(9)				Cubicles
IEC 61363	C Out of Service					
DC Short-Circuit	System Type	AC 🗨	Usage	Busbar	<u> </u>	
RMS-Simulation	Phase Technology	ABC 💌				
EMT-Simulation	Nominal Voltage					
Hamonics/Power Quality	Line-Line	138, k\	/			
Protection	Line-Ground	79,67434 kV				
Optimal Power Flow						
Reliability	Earthed					
Generation Adequacy						
Tie Open Point Opt.						
Description	_					
J						

Figura 34. Parámetros de barra de 138 kV

		Terminal - Grid\Y/	ARIN\60.Elr	nTerm	×
Basic Data	Name	60			ОК
Load Flow	Туре	▼+			Cancel
VDE/IEC Short-Circuit	Zone	▼+		(from Substation)	
Complete Short-Circuit	Area	▼+		(from Substation)	Jump to
ANSI Short-Circuit	Substation	→ Grid\YARIN			Cubicles
IEC 61363	C Out of Servi	ce			
DC Short-Circuit	System Type	AC 🗨	Usage	Busbar 💌	
RMS-Simulation	Phase Technol	ogy ABC 💌			
EMT-Simulation	- Nominal Volta	ge			
Hamonics/Power Quality	Line-Line	60. H	٠V		
Protection	Line-Ground	34,64102 kV			
Optimal Power Flow					
Reliability	Earthed				
Generation Adequacy					
Tie Open Point Opt.					
Description					

Figura 35. Parámetros de barra de 60 kV

	Te	erminal - Grid\AGU	AY(8)\22.9.	ElmTerm	×
Basic Data	Name	22.9			ок
Load Flow	Туре	▼ +			Cancel
VDE/IEC Short-Circuit	Zone	▼ +		(from Substation)	
Complete Short-Circuit	Area	▼+		(from Substation)	Jump to
ANSI Short-Circuit	Substation	→ Grid\AGUAY(8)			Cubicles
IEC 61363	C Out of Servi	ice			
DC Short-Circuit	System Type	AC 💌	Usage	Busbar	
RMS-Simulation	Phase Technol	ogy ABC 💌			
EMT-Simulation	Nominal Volta	ige			
Harmonics/Power Quality	Line-Line	22,9 k	V		
Protection	Line-Ground	13,22132 kV			
Optimal Power Flow					
Reliability	Earthed				
Generation Adequacy					
Tie Open Point Opt.					
Description					
J					

Figura 36. Parámetros de barra 22.9 kV

	Te	erminal - Grid\AGU	AY(2)\13.8.	ElmTerm	×
Basic Data	Name	13.8			ОК
Load Flow	Туре	▼ +			Cancel
VDE/IEC Short-Circuit	Zone	▼ +		(from Substation)	
Complete Short-Circuit	Area	▼+		(from Substation)	Jump to
ANSI Short-Circuit	Substation	➡ Grid\AGUAY(2)			Cubicles
IEC 61363	C Out of Servi	се			
DC Short-Circuit	System Type	AC 💽	Usage	Busbar 💌	
RMS-Simulation	Phase Technolo	ogy ABC 💌			
EMT-Simulation	- Nominal Volta	ge	955		
Harmonics/Power Quality	Line-Line	13,8 k	v		
Protection	Line-Ground	7,967434 kV			
Optimal Power Flow					
Reliability	Earthed				
Generation Adequacy					
Tie Open Point Opt.					
Description					
l					

Figura 37. Parámetros de barra de 13.8 kV

		Terminal - G	rid\PU\0.48.Elm	Term	×
Basic Data	Name	0.48			ОК
Load Flow	Туре	▼ +			Cancel
VDE/IEC Short-Circuit	Zone	▼ +		(from Substation)	
Complete Short-Circuit	Area	▼+		(from Substation)	Jump to
ANSI Short-Circuit	Substation	→ Grid\PU			Cubicles
IEC 61363	Cut of Serv	vice			
DC Short-Circuit	System Type	AC	✓ Usage	Busbar	J
RMS-Simulation	Phase Techno	ology ABC	-		
EMT-Simulation	- Nominal Volt	age			
Harmonics/Power Quality	Line-Line	0,48	kV		
Protection	Line-Ground	0,2771281	kV		
Optimal Power Flow					
Reliability	Earthed				
Generation Adequacy					
Tie Open Point Opt.					
Description					
6.9					

Figura 38. Parámetros de barra de 0.48 kV

4.1.6 Cargas

Las cargas en el sistema eléctrico en estudio son las cargas de las principales ciudades de Aguaytía, Pucallpa, Parque Industrial, Yarinacocha y una carga general que ayuda a representar la red equivalente.

	General Load - Grid\Load Aguay 22.	.9.ElmLod
Basic Data	General Advanced	ОК
Load Flow	Input Mode P. cos(phi)	
Basic Data Load Flow VDE/IEC Short-Grout Complete Short-Grout ANSI Short-Grout IEC 61363 DC Short-Grout RMS-Simulation EMT-Simulation Harmonics/Power Quality Optimal Power Flow State Estimation Reliability Generation Adequacy Description	General Advanced Input Mode P. cos(phi) Balanced/Unbalanced Balanced Operating Point	СК Сапсеl Гідите >> Л.739919 МW 0.95 1.118368 Гасtог: 1.

Figura 39. Load, Aguaytía 22.9 kV

	General	Load - Grid	Load Parq Ind.ElmLo	d	×
Basic Data	General Advanced	1			ОК
Load Flow	Input Mode	Defaul	<u>ا با ا</u>		Cancel
VDE/IEC Short-Circuit	Balanced/Unbalance	ed Balanc	ed 💽		Figure SS
Complete Short-Circuit	Operating Point	<u></u>	17 - F	Actual Values	
ANSI Short-Circuit	Active Power	27.	MW	30,19594 MW	Jump to
IEC 61363	Reactive Power	13,	Mvar	14,53878 Mvar	
DC Short-Circuit	Voltage	1.	p.u.		
RMS-Simulation	Scaling Factor	1,118368		1,118368	
EMT-Simulation	Adjusted by Loa	ad Scaling	Zone Scaling Factor:	1.	
Harmonics/Power Quality					1.
Optimal Power Flow					
State Estimation					
Reliability					
Generation Adequacy					
Description					

Figura 40. Load, Parque Industrial

	Genera	al Load - Gri	id\Load Pucal.ElmLod		×
Basic Data	General Advanced	1			ок
Load Flow	Input Mode	Defaul	t 💽		Cancel
VDE/IEC Short-Circuit Complete Short-Circuit ANSI Short-Circuit IEC 61363 DC Short-Circuit RMS-Simulation	Balanced/Unbalance Operating Point — Active Power Reactive Power Voltage Scaling Factor	Belanc 8. 4.5 1.1 1.118368	ed view of the second s	Actual Values 8,946944 MW 5,032656 Mvar 1,118368	Cancel Figure >> Jump to
Harmonics/Power Quality Optimal Power Flow State Estimation Reliability Generation Adequacy Description					

Figura 41. Load, Pucallpa

Basic Data	General Advanced	1			ОК
Load Flow	Input Mode	P.Q	•		Cancel
VDE/IEC Short-Circuit	Balanced/Unbalance	ed Balanc	ed v		
Complete Short-Circuit	- Operating Point	Tearrie		Actual Values	Figure >:
ANSI Short-Circuit	Active Power	8.	MW	8,946944 MW	Jump to .
IEC 61363	Reactive Power	4.	Mvar	4,473472 Mvar	
DC Short-Circuit	Voltage	1.	 p.u.		
RMS-Simulation	Scaling Factor	1,118368	_	1,118368	
EMT-Simulation	Adjusted by Loa	ad Scaling	Zone Scaling Factor:	1.	
Harmonics/Power Quality	1				L:
Optimal Power Flow					
State Estimation					
Polishilty					
Generation Adequacy					
Description					
					-

Figura 42. Load, Yarinacocha

4.1.7 Resumen de los elementos del sistema eléctrico de Pucallpa

En las siguientes tablas se presenta los principales parámetros de los elementos del sistema eléctrico en estudio de Pucallpa.

Tabla 2.

Red equivalente

Red equivalente									
Name	Terminal	Terminal	Sk''max	R/X max.	Act.Pow.	Voltage Setpoint			
	StaCubic	Busbar	MVA		MW	p.u.			
External Grid	AGUAY(6)	220	864,89	0,1	0	1,0158			

Tabla 3. Generadores

Generadores										
Name	Terminal	Terminal	Act.Pow.	React.Pow.	App.Pow.	App.Pow.	Voltage	Pow.Fact.		
	StaCubic	Busbar	MW	Mvar	MVA	MVA	p.u.			
G3	PU	0.48	0,00	0,00	0,00	2,28	1	0		
Synchronous Machine	AGUAY	13.8	0,00	0,00	0,00	119,20	1	0		
Synchronous Machine(1)	AGUAY(2)	13.8	63,52	0,00	63,52	119,20	1	1		

Trasnformadores de dos devanados											
Name	me Type HV-Side LV-Side LV-Side Rating Factor										
	TypTr2		Substation			MVA					
Т9	TP-Pucallpa22.9	22.9	PU	0.48	1	62,5					
t1	AGU_271	220	AGUAY	13.8	1	100					
t2	AGU_271	220	AGUAY(2)	13.8	1	100					
t7	Pucallpa SVC Tr2	60	PUCALLP	13.9	1	50					
t8	TP-Pucallpa60	60	PUCALP	22.9	1	60					

Tabla 4. Transformadores de dos devanados

Tabla 5.

Transformadores de tres devanados

Transformadores de tres devanados										
Name	Туре	Type HV-Side HV-Side MV-Side LV-Side								
	TypTr3	Substation								
t3	AGU_2171	AGUAY(5)	220	138	22.9					
t4	AGU_2171-Nuevo	AGUAY(7)	220	138	22.9					
t5	PUC_1671-Nuevo	PUCALLPA	138	60	Terminal					
t6	PUC_1671	PUCALLPA	138	60	Terminal(1)					

Tabla 6.

Líneas de transmisión

	Lineas de transmision												
Name Type Terminal i Terminal i Terminal j Terminal Length Irated Z1 phiz1 R1							X1	RO	XO				
		Substation		Substation		km	kA	Ohm	deg	Ohm	Ohm	Ohm	Ohm
Line 1	138_Aguaytia-Pucallpa_L1125_REP	AGUAY(9)	138	PUCALLPA	138	131,00	0,34	66,01	77,20	14,62	64,37	46,06	207,31
Line 2	SEPI-SEPU	PUCALLPA ISA	60	PUCAL	60	10,50	0,45	4,91	72,12	1,51	4,68	5,27	14,83
Line 3	pqi_yar60	PUCALLPA ISA	60	YARIN	60	6,83	0,50	3,46	73,22	1,00	3,31	2,21	17,17
Line 4	L-CTPucallpa-PIndustrial	PUCALLPA ISA	60	PUCALL	60	0,50	0,54	0,23	72,92	0,07	0,22	0,15	0,87

Tabla 7.

Cargas

Cargas										
Name	Terminal	Terminal	Act.Pow.	React.Pow.	App.Pow.	Pow.Fact.				
	StaCubic	Busbar	MW	Mvar	MVA					
General Load	AGUAY(6)	220	11,09	-5,36	12,32	0,90				
Load Aguay 22.9	AGUAY(8)	22.9	1,56	0,51	1,64	0,95				
Load Parq Ind	PARQ. INDUS	60	27,00	13,00	29,97	0,90				
Load Pucal	PUCAL	60	8,00	4,50	9,18	0,87				
Load Yarin	YARIN	60	8,00	4,00	8,94	0,89				

4.2 Resultados de la estabilidad angular

Para el análisis de la estabilidad angular se trabajó bajo un evento de falla de cortocircuito trifásico en la línea de Parque Industrial a Yarinacocha (line 3) denominándolo **caso I**.

Por otra parte, y para un mejor análisis, se presenta otro caso simulando una falla de cortocircuito en la línea sepi-sepu (line 2), denominándolo **caso II.**

4.2.1 Caso I

En este caso se ve el comportamiento del generador G2 Aguaytía y G3 Pucallpa ante el evento de falla cortocircuito trifásico en la línea (line 3) y se analiza el ángulo del rotor de las máquinas.

4.2.1.1 G2 Aguaytía

En la central eléctrica G2 Aguaytía se puede apreciar que en el tiempo 6.502 segundos, la máquina recupera el ángulo del rotor en el cual se estaba trabajando, pero también se puede visualizar que en el transcurso del tiempo no recupera la estabilidad angular.

Figura 43. Ángulo de rotor de la máquina G2 (caso l)

4.2.1.2 G3 Pucallpa

En la central eléctrica G3 Pucallpa se puede apreciar que en el tiempo 6.502 segundos, la máquina recupera la estabilidad angular.

Figura 44. Ángulo de rotor de la máquina G3 (caso l)

4.2.2 Caso II

En este caso se ve el comportamiento del generador G2 Aguaytía y G3 Pucallpa ante el evento de falla cortocircuito trifásico en la línea (line 3) y se analiza el comportamiento del ángulo del rotor de las maquinas.

4.2.2.1 G2 Aguaytía

En este caso, en la central eléctrica G2 Aguaytía se puede apreciar que en el tiempo 6.272 segundos, la máquina recupera el ángulo del rotor en cual estaba trabajando, pero también se puede visualizar que en el transcurso del tiempo no recupera la estabilidad angular.

4.2.2.2 G3 Pucallpa

En este caso II en la central eléctrica G3 Pucallpa se puede apreciar que en el tiempo 5.3422 segundos, la máquina recupera la estabilidad angular.

Figura 46. Ángulo de rotor de la máquina G3 (caso II)
4.2.3 Resumen de la estabilidad angular de los Casos I y II

El **caso I** es un evento de falla de cortocircuito trifásico en la línea de Parque Industrial a Yarinacocha (line 3).

El caso II es un evento de falla de cortocircuito en la línea sepi-sepu (line 2).

Resumen del análisis de estabilidad angular								
Generadores	Ángulo del rotor respecto al tiempo							
	Caso I	Caso II						
G2 Aguaytía	No se estabiliza	No se estabiliza						
G3 Pucallpa	Se estabiliza en 6.052 s con un ángulo del rotor de -0.187 rad.	Se estabiliza en 5.342 s con un ángulo del rotor de -0.189 rad.						

Tabla 8.

4.3 Resultados de la estabilidad de frecuencia

Para el análisis de la estabilidad de frecuencia se trabajó también bajo un evento de falla de cortocircuito trifásico en la línea de Parque Industrial a Yarinacocha (line 3) denominándolo **caso I.**

Por otra parte, y para un mejor análisis, se presenta la simulación de otra falla de cortocircuito en la línea sepi-sepu (line 2), denominándolo **caso II.**

4.3.1 Caso I

En este caso se ve el comportamiento del generador G2 Aguaytía y G3 Pucallpa ante el evento de falla cortocircuito trifásico en la línea (line 3) y se analiza el comportamiento de la frecuencia.

4.3.1.1 G2 Aguaytía

En la central eléctrica G2 Aguaytía se puede apreciar que en el tiempo 6,142 segundos, la máquina recupera la estabilidad de frecuencia con un valor 1.pu.

4.3.1.2 G3 Pucallpa

En la central eléctrica G3 Pucallpa se puede apreciar que en el tiempo 6.192 segundos, la máquina recupera la estabilidad de frecuencia con un valor 1.pu.

Figura 48. Frecuencia del G3 Pucallpa (caso l)

4.3.2 Caso II

En este caso se ve el comportamiento del generador G2 Aguaytía y G3 Pucallpa ante el evento de falla cortocircuito trifásico en la línea (line 2) y se analiza el comportamiento de la frecuencia.

4.3.2.1 G2 Aguaytía

En la central eléctrica G2 Aguaytía se puede apreciar que en el tiempo 6.522 segundos, la maquina recupera la estabilidad de frecuencia con un valor 1.pu.

Figura 49. Frecuencia del G2 Aguaytía (caso II)

4.3.2.2 G3 Pucallpa

En la central eléctrica G3 Pucallpa se puede apreciar que en el tiempo 6.132 segundos, la máquina recupera la estabilidad de frecuencia con un valor 1.pu.

Figura 50. Frecuencia del G3 Pucallpa (caso II)

4.3.3 Resumen de la estabilidad de frecuencia de los casos I y II

El **caso I** es un evento de falla de cortocircuito trifásico en la línea de Parque Industrial a Yarinacocha (line 3).

El caso II es un evento de falla de cortocircuito en la línea sepi-sepu (line 2).

Tabla 9. Resumen de la estabilidad de frecuencia

Gaporadoros	Frecuencia respecto al tiempo					
Generadores	Caso I	Caso II				
G2 Aguaytía	Se estabiliza en 6.142 s a una frecuencia de 1.pu	Se estabiliza en 6.522 s a una frecuencia de 1.pu				
G3 Pucallpa	Se estabiliza en 6.192 s a una frecuencia de 1.pu	Se estabiliza en 6.132 s a una frecuencia de 1.pu				

4.4 Resultados de la estabilidad de tensión

Para el análisis de la estabilidad de tensión se trabajó bajo un evento de falla de cortocircuito trifásico en la línea de Parque Industrial a Yarinacocha (line 3) denominándolo **caso I.**

Por otra parte, y para un mejor análisis, se presenta otro caso simulando otra falla de cortocircuito en la línea sepi-sepu (line 2), denominándolo **caso II.**

4.4.1 Caso I

En este caso se ve el comportamiento de la capacidad de carga y el nivel de tensión de colapso que tendrán las barras de Parque Industrial, Yarinacocha y Pucallpa, ante el evento de falla cortocircuito trifásico en la línea (line 3).

4.4.1.1 Barra Parque Industrial

En esta barra se conecta la carga de Parque Industrial a un nivel de tensión de 60 kV, se observa que la barra tiene como límite una potencia activa de 61.541 kW con un nivel de tensión de 0.733 PU antes del colapso.

Figura 51. Curva PV Parque Industrial (caso I)

4.4.1.2 Barra Yarinacocha

En esta barra se conecta la carga de Parque Industrial a un nivel de tensión de 60 kV, se observa que la barra tiene como límite una potencia activa de 61.541 kW con un nivel de tensión de 0.724 PU antes del colapso.

Figura 52. Curva PV Yarinacocha (caso I)

4.4.1.3 Barra Pucallpa

En esta barra se conecta la carga de Parque Industrial a un nivel de tensión de 60 kV, se observa que la barra tiene como límite una potencia activa de 61.541 kW con un nivel de tensión de 0.609 PU antes del colapso.

Figura 53. Curva PV Pucallpa (caso l)

4.4.2 Caso II

En este caso se ve el comportamiento de la capacidad de carga y el nivel de tensión de colapso que tendrán las barras de Parque Industrial, Yarinacocha y Pucallpa, ante el evento de falla cortocircuito trifásico en la línea (line 2).

4.4.2.1 Barra Parque Industrial

En esta barra se conecta la carga de Parque Industrial a un nivel de tensión de 60 kV, se observa que la barra tiene como límite una potencia activa de 61.541 kW con un nivel de tensión de 0.733 pu antes del colapso.

Figura 54. Curva PV Parque Industrial (caso II)

4.4.2.2 Barra Yarinacocha

En esta barra se conecta la carga de Parque Industrial a un nivel de tensión de 60 kV, se observa que la barra tiene como límite una potencia activa de 61.541 kW con un nivel de tensión de 0.724 pu antes del colapso.

Figura 55. Curva PV Yarinacocha (caso II)

4.4.2.3 Barra Pucallpa

En esta barra se conecta la carga de Parque Industrial a un nivel de tensión de 60 kV, se observa que la barra tiene como límite una potencia activa de 61.541 kW con un nivel de tensión de 0.609 pu antes del colapso.

Figura 56. Curva PV Pucallpa (caso II)

4.4.3 Resumen de la estabilidad de tensión de los Casos I y II

El **caso I** es un evento de falla de cortocircuito trifásico en la línea de Parque Industrial a Yarinacocha (line 3).

El caso II es un evento de falla de cortocircuito en la línea sepi-sepu (line 2).

resumen de la estabilidad de tension								
Porroo	Nivel tensión respecto a la Potencia							
Ballas	Caso I	Caso II						
	Límite de una potencia	Límite de una potencia						
Barra do Barque Industrial	activa de 61.541 kW con un	activa de 61.541 kW con un						
Darra de Farque industriar	nivel de tensión de 0.733 pu	nivel de tensión de 0.724 pu						
	antes del colapso.	antes del colapso.						
	Límite de una potencia	Límite una potencia activa						
Barra da Varinacacha	activa de 61.541 kW con un	de 61.541 kW con un nivel						
Darra de Tarmacocha	nivel de tensión de 0.724 pu	de tensión de 0.724 pu antes						
	antes del colapso.	del colapso.						
	Límite una potencia activa	Límite una potencia activa						
Porro do Ducellos	de 61.541 kW con un nivel	de 61.541 kW con un nivel						
Barra de Pucalipa	de tensión de 0.609 pu antes	de tensión de 0.609 pu antes						
	del colapso.	del colapso.						

Tabla 10.				
Resumen	de la	estabilidad	de	tensiór

4.5 Discusión de resultados

A partir de los resultados del análisis de estabilidad transitoria angular, frecuencia y de tensión en el sistema eléctrico de potencia de Pucallpa.

Se indica que los resultados guardan relación con lo que sostiene Vilcahuamán en su tesis "Análisis de Estabilidad Transitoria y de tensión en la Subestación Vizcarra debido al incremento de carga de 55 MW de Antamina", (9) quien señala que ante una fuerte perturbación, el sistema eléctrico pierde estabilidad, ante eso propone mejorar las instalaciones como ampliación de líneas e implementación de banco de condensadores.

Por otro lado, se puede verificar que la simulación es el mejor método de análisis de la estabilidad transitoria porque la mayoría de los autores lo utilizan tales como: Jiménez (2019), Toribio (2015), Vilcahuamán (2013), Huaranka (2014), García y Tulio (2015), que simulan en el DigSilent, Cutipa (2002) en el Matlab y Bedriñana (2007) en el método de función de transferencia.

CONCLUSIONES

La máquina del sistema de generación G2, en el caso I, pierde la estabilidad angular porque el ángulo del rotor recupera en un tiempo 6.502 segundos, pero después no se estabiliza. Ver figura 43.

La máquina del sistema de generación G2, en el caso II, pierde la estabilidad angular porque el ángulo del rotor recupera en un tiempo 6.272 segundos, pero después no se estabiliza. Ver figura 45.

De los resultados de la estabilidad de frecuencia se concluye que ninguno de los generadores pierde la estabilidad de frecuencia ante los eventos de fallas del caso l y II y, por lo tanto, no se presentaría repercusiones en las cargas.

De los resultados de estabilidad de tensión ante los eventos de fallas del caso I y II se concluye que ninguna de las barras de carga presenta problemas de estabilidad.

De acuerdo con los resultados se concluye que el sistema eléctrico de Pucallpa presenta problemas de estabilidad en su sistema, para solucionar este problema se deben plantear acciones para mitigar las fallas ante perturbaciones.

RECOMENDACIONES

Se recomienda determinar las siguientes acciones para tener un sistema más estable:

- Establecer los tiempos de ajustes de las protecciones con la finalidad de mejorar la confiabilidad del sistema.
- Se debe tener en consideración el tiempo del despeje de falla, para que cuando ocurra un evento de falla el generador no pierda estabilidad.
- Se deben considerar alternativas de generación para no tener problemas del deslastre de carga cuando un generador falla.

Se recomiendan para la ejecución de obras de mejoramiento y ampliación de los alimentadores en las subestaciones de potencian realizar estudios más detallados referentes a la estabilidad transitoria.

Se recomienda, para investigaciones futuras, tener en consideración mayores casos de estudios para un mejor análisis de la estabilidad del sistema.

REFERENCIAS

- 1. **ARIAS ROLDÁN, Elías.** *Estudio de estabilidad transitoria en sistemas eléctricos de potencia con integración de sistemas de almacenamiento de energía.* 2018.
- LEÓN., José Enrique Alejandro. Análisis de estabilidad transitoria en el sistema aislado Cayo Santa María. 2017.
- GARCÍA, Tulio. Operación del sistema de transmisión oriental de Cadafe-Semda, ante la desconexión de una de las ternas Tigre-Indio 230 kV. [En línea] 2015. http://repositorioslatinoamericanos.uchile.cl/handle/2250/192342.
- 4. ARTUR, Max y SACACA, Huaranka. Estudio de estabilidad transitoria del área operativa sur este del SEIN para el periodo 2014 al 2016. 2016.
- 5. BEDRIÑANA ARONÉS, Manfred Fritz. Análisis de la estabilidad transitoria electromecánica mediante el método de la función de energía transitoria, aplicación al sistema interconectado nacional peruano. [En línea] 2007. http://cybertesis.uni.edu.pe/handle/uni/2666.
- CUTIPA TIZA, Javier Samuel. Métodos de análisis y simulación de estabilidad transitoria en sistemas de potencia. [En línea] 2002. http://cybertesis.uni.edu.pe/handle/uni/11532.
- JIMÉNEZ MELGAR, Jhonatan Nicolás. Influencia de la conexión de la pequeña central hidroeléctrica Miraflores de 9.4 MW en la subestación Jauja. [En línea] 2019. http://repositorio.uncp.edu.pe/handle/UNCP/5213.
- TORIBIO SALAZAR, Albert Paul. Análisis de preoperatividad de la línea de transmisión Carhuaquero - Cajamarca Norte – Caclic para su interconexión al SEIN en 220 kV. [En línea] 2015. http://repositorio.uncp.edu.pe/handle/UNCP/4546.
- VILCAHUAMÁN RODRÍGUEZ, Yonathan Miguel. Análisis de estabilidad transitoria y de tensión en la subestación Vizcarra debido al incremento de carga de 55 MW de Antamina. 2013.
- KUNDUR, Prabha, PASERBA, John, AJJARAPU, Venkat, ANDERSSON, Göran, BOSE, Anjan, CANIZARES, Claudio, HATZIARGYRIOU, Nikos, HILL, David, STANKOVIC, Alex, TAYLOR, Carson, VAN CURSEM, Thierry y VITTAL, Vijay. Definition and classification of power system stability. IEEE Transactions on Power Systems. 2004. Vol. 19, núm. 3, pp. 1387-1401. DOI 10.1109/TPWRS.2004.825981.

- 11. **KUNDUR, Prabha.** *Power System Stability And Control.* 1994. ISBN 978-0-07-035958-1 978-0-07-063515-9.
- PATIÑO CASTRILLÓN, Galo Fernando y LIMAS GETIAL, Gustavo Adolfo. Metodologías para el análisis de estabilidad de tensión en estado estacionario. 2008.
- REYES CARO, María Camila et al. Análisis de estabilidad transitoria y de pequeña señal en un sistema multimáquina: caso de estudio. Revista Vínculos, 2018. vol. 15, núm. 2, pp. 129-138.

ANEXOS

ANEXO 1

Caso I

Caso II

ANEXO 2

DigSilent Estabilidad angular G3

Estabilidad Angular - Caso II - DigSilent Estabilidad angular G2

DigSilent Estabilidad frecuencial G3

Estabilidad de Frecuencia - Caso II - DigSilent Estabilidad frecuencial G2

DigSilent Estabilidad frecuencial G3

ANEXO 4 Estabilidad Tensión - Caso I- DigSilent PV Curves Parque Industrial

DigSilent PV Curves Pucallpa

DigSilent PV Curves Yanacocha

Estabilidad Tensión - Caso II - DigSilent PV Curves Parque Industrial

DigSilent PV Curves Yanacocha

ANEXO 5

Elementos del Sistema

Red equivalente								
Name	Terminal StaCubic	rminal Terminal Sk''max R		R/X max.	Act.Pow.	Voltage Setpoint		
	Stacubic	DUSUdi	IVIVA			p.u.		
External Grid	AGUAY(6)	220	864.89	0.1	0	1.0158		

Generadores									
Name	Terminal	Terminal	Act.Pow.	React.Pow.	App.Pow.	App.Pow.	Voltage	Pow.Fact.	
	StaCubic	Busbar	MW	Mvar	MVA	MVA	p.u.		
G3	PU	0.48	0.00	0.00	0.00	2.28	1	0	
Synchronous Machine	AGUAY	13.8	0.00	0.00	0.00	119.20	1	0	
Synchronous Machine(1)	AGUAY(2)	13.8	63.52	0.00	63.52	119.20	1	1	

	Trasnformadores de dos devanados										
Name	Name Type HV-Side LV-Side LV-Side Rating Facto			Rating Factor	Srat						
	TypTr2		Substation			MVA					
Т9	TP-Pucallpa22.9	22.9	PU	0.48	1	62.5					
t1	AGU_271	220	AGUAY	13.8	1	100					
t2	AGU_271	220	AGUAY(2)	13.8	1	100					
t7	Pucallpa SVC Tr2	60	PUCALLP	13.9	1	50					
t8	TP-Pucallpa60	60	PUCALP	22.9	1	60					

Transformadores de tres devanados									
Name	Туре	HV-Side	HV-Side	HV-Side MV-Side LV-Side					
	TypTr3	Substation							
t3	AGU_2171	AGUAY(5)	220	138	22.9				
t4	AGU_2171-Nuevo	AGUAY(7)	220	138	22.9				
t5	PUC_1671-Nuevo	PUCALLPA	138	60	Terminal				
t6	PUC_1671	PUCALLPA	138	60	Terminal(1)				

	Lineas de transmision												
Name	Туре	Terminal i	Terminal i	Terminal j	Terminal j	Length	Irated	Z1	phiz1	R1	X1	R0	X0
		Substation		Substation		km	kA	Ohm	deg	Ohm	Ohm	Ohm	Ohm
Line 1	138_Aguaytia-Pucallpa_L1125_REP	AGUAY(9)	138	PUCALLPA	138	131.00	0.34	66.01	77.20	14.62	64.37	46.06	207.31
Line 2	SEPI-SEPU	PUCALLPA ISA	60	PUCAL	60	10.50	0.45	4.91	72.12	1.51	4.68	5.27	14.83
Line 3	pqi_yar60	PUCALLPA ISA	60	YARIN	60	6.83	0.50	3.46	73.22	1.00	3.31	2.21	17.17
Line 4	L-CTPucallpa-PIndustrial	PUCALLPA ISA	60	PUCALL	60	0.50	0.54	0.23	72.92	0.07	0.22	0.15	0.87

Cargas									
Name	Terminal	erminal Terminal Act.		ct.Pow. React.Pow.		Pow.Fact.			
	StaCubic	Busbar	MW	Mvar	MVA				
General Load	AGUAY(6)	220	11.09	-5.36	12.32	0.90			
Load Aguay 22.9	AGUAY(8)	22.9	1.56	0.51	1.64	0.95			
Load Parq Ind	PARQ. INDUS	60	27.00	13.00	29.97	0.90			
Load Pucal	PUCAL	60	8.00	4.50	9.18	0.87			
Load Yarin	YARIN	60	8.00	4.00	8.94	0.89			