Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12394/12266
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRuiz Parejas, Rubén Ángeles_ES
dc.contributor.authorHuaman Ivala, Yulisa Margothes_ES
dc.contributor.authorFlores Guillen, Alexanderes_ES
dc.contributor.authorPerez Evangelista, Elizabeth Yadhiraes_ES
dc.date.accessioned2023-01-13T16:54:12Z-
dc.date.available2023-01-13T16:54:12Z-
dc.date.issued2022-
dc.identifier.citationHuaman, Y. Flores, A. y Perez, E. (2022). A machine learning approach to find the determinants of peruvian ccocaine local price. Tesis para optar el título profesional de Ingeniero Industrial . Escuela Académica Profesional de Ingeniería. Universidad Continental. Huancayo. Perú.es_ES
dc.identifier.urihttps://hdl.handle.net/20.500.12394/12266-
dc.description.abstractThe coca leaf has many uses in the Peruvian culture. Although there are legal usages, people employ coca for illicit business. The most infamous illegal use is cocaine production. The cocaine business is highly profitable, but it harms human health. Then, what are the determinants of cocaine price? The current analysis aims to get the variables with the capability to explain the cocaine prices in Peru. The period analyzed is 2003-2019. The study gathered variables from DEVIDA and UNDOC databases. The Lasso technique selected the variables with the best capability to predict cocaine price. Those variables were: ENACO acquisition, coca seizures, and coca crops. OLS, VAR, and Granger analyses employed those variables to analyze the relationship between them. According to the OLS analysis, both ENACO acquisition and coca crops had adverse effects on cocaine prices, while coca seizures were positively related to the cocaine price. VAR analysis showed that only ENACO acquisition had a short-term relationship with the dependent variable. Moreover, it showed that the whole set of variables influenced the dependent variable. The Granger analysis proved that there was a cause-effect relationship between ENACO acquisition and cocaine price. Hence, the ENACO purchases expansion can rest the attractiveness of illegal groups to farmers. However, low- ering cocaine prices might attract more users. Therefore, educational activities are also required.es_ES
dc.formatapplication/pdfes_ES
dc.format.extentp. 1-12es_ES
dc.language.isoenges_ES
dc.publisherUniversidad Continentales_ES
dc.relationhttps://bit.ly/3wb9u0Qes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_ES
dc.sourceUniversidad Continentales_ES
dc.sourceRepositorio Institucional - Continentales_ES
dc.subjectCultivos ilegales de cocaes_ES
dc.titleA machine learning approach to find the determinants of peruvian ccocaine local pricees_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
dc.rights.licenseAttribution 4.0 International (CC BY 4.0)es_ES
dc.rights.accessRightsAcceso abiertoes_ES
dc.publisher.countryPEes_ES
thesis.degree.nameIngeniero de Sistemas e Informáticaes_ES
thesis.degree.grantorUniversidad Continental. Facultad de Ingeniería.es_ES
thesis.degree.disciplineIngeniería de Sistemas e Informáticaes_ES
thesis.degree.programPregrado Presencial Regulares_ES
dc.identifier.doihttps://doi.org/10.5267/j.ijdns.2021.11.009es_ES
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#2.02.04es_ES
renati.advisor.dni41935833-
renati.advisor.dni41935833es_ES
renati.advisor.dni41935833es_ES
renati.advisor.orcidhttps://orcid.org/0000-0002-5159-3307es_ES
renati.advisor.orcidhttps://orcid.org/0000-0002-5159-3307es_ES
renati.author.dni77497367-
renati.author.dni76175352-
renati.author.dni73708787-
renati.discipline612156es_ES
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_ES
renati.typehttps://purl.org/pe-repo/renati/type#tesises_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
Appears in Collections:Tesis

Files in This Item:
File Description SizeFormat 
IV_FIN_103_TE_Huaman_Flores_Perez_2022.pdfHuaman Ivala, Yulisa Margoth ; Flores Guillen, Alexander ; Perez Evangelista, Elizabeth Yadhira679.34 kBAdobe PDF
View/Open
IV_FIN_103_Autorizacion_2022.pdf
  Restricted Access
Autorizaciòn142.82 kBAdobe PDFView/Open Request a copy


This item is licensed under a Creative Commons License Creative Commons