Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://hdl.handle.net/20.500.12394/16441
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.advisorHuaytalla Pariona, Jaime Antonioes_PE
dc.contributor.authorCastillo Cervera, Marco Antonioes_PE
dc.contributor.authorLopez Meza, Diego Aldaires_PE
dc.contributor.authorHuamanchahua Canchanya, Deyby Maycoles_PE
dc.date.accessioned2025-02-05T04:41:47Z-
dc.date.available2025-02-05T04:41:47Z-
dc.date.issued2024-
dc.identifier.citationCastillo, M., Lopez, D. y Huamanchahua , D. (2024). Data Glove-Based Sign Language Translation with Convolutional Neural Networks. Tesis para optar el título profesional de Ingeniero Mecatrónico, Escuela Académico Profesional de Ingeniería Mecatrónica, Universidad Continental, Huancayo, Perú.es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12394/16441-
dc.description.abstractThis research was carried out because of the communication barriers that currently exist between hearing impaired and hearing people. These barriers hinder their integration into society and affect their interpersonal relationships. The objective of the study was to propose the development of a stationary assistive robot capable of displaying sign language interpretation through the combination of data gloves and the D- CNN and LSTM algorithm to facilitate the communication of hearing-impaired children in Huancayo. The triple diamond research design was used, where the mind map and the lotus diagram were used for the delimitation and definition of the problem. In addition, the IDEF0 technique was used to obtain a structured design of the project system. A morphological matrix was also used to choose the best solution for the problem. The chosen design contemplates the use of an Arduino UNO, flex sensors, accelerometers and gyroscopes for sign detection. The main algorithm consists of the union of a deep convolutional neural network and a LSTM for a correct sign classification module. The proposed design proposes to visualize the conceptual development of the project mentioned above.es_PE
dc.formatapplication/pdfes_PE
dc.format.extentp. 67-74es_PE
dc.language.isoenges_PE
dc.publisherUniversidad Continentales_PE
dc.relationhttps://ieeexplore.ieee.org/document/10066103es_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceUniversidad Continentales_PE
dc.sourceRepositorio Institucional - Continentales_PE
dc.subjectReconocimiento de lenguaje de señas (SLR)es_PE
dc.subjectGuante de datoses_PE
dc.titleData Glove-Based Sign Language Translation with Convolutional Neural Networkses_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
dc.rights.licenseAttribution 4.0 International (CC BY 4.0)es_PE
dc.rights.accessRightsAcceso abiertoes_PE
dc.publisher.countryPEes_PE
thesis.degree.nameIngeniero Mecatrónicoes_PE
thesis.degree.grantorUniversidad Continental. Facultad de Ingeniería.es_PE
thesis.degree.disciplineIngeniería Mecatrónicaes_PE
thesis.degree.programPregrado presencial regulares_PE
dc.identifier.journalIEEEes_PE
dc.identifier.doihttps://doi.org/10.1109/CMAEE58250.2022.00020-
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.11.00es_PE
renati.advisor.dni48560801-
renati.advisor.orcidhttps://orcid.org/0000-0002-2615-8733es_PE
renati.author.dni71582732-
renati.author.dni73199999-
renati.author.dni44878371-
renati.discipline713096es_PE
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_PE
Enthalten in den Sammlungen:Tesis

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
IV_FIN_112_TE_Castillo_Lopez_Huamanchahua_2024.pdfCastillo Cervera, Marco Antonio; Lopez Meza, Diego Aldair; Huamanchahua Canchanya, Deyby Maycol1.52 MBAdobe PDF
Öffnen/Anzeigen
IV_FIN_112_Autorización_2024.pdf
  Restricted Access
Autorización158.86 kBAdobe PDFÖffnen/Anzeigen Eine Dokumentkopie anfordern
Informe_Turnitin.pdf
  Restricted Access
Informe de Turnitin2.09 MBAdobe PDFÖffnen/Anzeigen Eine Dokumentkopie anfordern


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons