Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.12394/17078
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Vílchez Baca, Herbert Antonio | es_PE |
dc.contributor.author | Ponce Alcocer, Andrea Isabel | es_PE |
dc.contributor.author | Orcon Gomez, Diego Kensey | es_PE |
dc.contributor.author | Gonzalo Lujan, Karla Veronica | es_PE |
dc.contributor.author | Vilchez Baca, Herbert Antonio | es_PE |
dc.date.accessioned | 2025-04-25T22:21:53Z | - |
dc.date.available | 2025-04-25T22:21:53Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Ponce, A., Orcon, D., Gonzalo, K. & Vilchez, H. (2025). Optimization of the Warehouse Logistics System, through the Application of Lean Warehouse and Machine Learning Algorithms [Tesis de licenciatura, Universidad Continental]. Repositorio Institucional Continental. https://repositorio.continental.edu.pe/handle/20.500.12394/17078 | es_PE |
dc.identifier.uri | https://hdl.handle.net/20.500.12394/17078 | - |
dc.description.abstract | Abstract. In 2022, the alcoholic beverage market in Peru experienced Growth due to the reduction of COVID-19 pandemic restrictions is pro- jected to reach pre-pandemic demand levels by 2026. In this context, logistics efficiency becomes crucial for profitability and customer satis- faction. This study proposes the combination of Lean Warehouse and Machine Learning algorithms to optimize the warehouse logistics sys- tem, it covers the preliminary analysis, implementation, and analysis of results, various Lean Warehouse techniques were applied, such as 5S, SLP, FEFO, and multicriteria ABC analysis, at the same time, Ma- chine Learning algorithms were applied, such as forecasting (SARIMA- LSTM), which allowed accurate forecasts of future demand and favored the distribution of the warehouse, as well as clustering (K-means) for the optimal grouping of products according to their expiration date. Key Performance Indicators (KPIs) were also introduced to gauge the success and efficiency of the logistics system. The results of the research showed substantial improvements in logistics efficiency, such as a reduc- tion in processing time per order guide by 103 minutes and an increase in process flow by 32.56%. These improvements benefited the company in terms of costs and efficiency, with a reduction in lost sales of S/34,386.75. Organizational adaptation and continuous management are essential to maintain and improve results over time. Keywords: Lean Warehouse · Machine Learning · Logistics optimiza- tion. | es_PE |
dc.format | application/pdf | es_PE |
dc.format.extent | p. 1-21 | es_PE |
dc.language.iso | spa | es_PE |
dc.publisher | Universidad Continental | es_PE |
dc.relation | https://link.springer.com/chapter/10.1007/978-3-031-70981-4_57 | es_PE |
dc.rights | info:eu-repo/semantics/restrictedAccess | es_PE |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | es_PE |
dc.source | Universidad Continental | es_PE |
dc.source | Repositorio Institucional - Continental | es_PE |
dc.subject | Almacén lean | es_PE |
dc.subject | Lean warehouse | es_PE |
dc.subject | Aprendizaje automático | es_PE |
dc.subject | Machine learning | es_PE |
dc.subject | Optimización logística | es_PE |
dc.subject | Logistics optimization | es_PE |
dc.subject | Algoritmos | es_PE |
dc.subject | Algorithms | es_PE |
dc.subject | Pronóstico | es_PE |
dc.subject | Forecasting | es_PE |
dc.subject | Agrupamiento | es_PE |
dc.subject | Clustering | es_PE |
dc.title | Optimization of the Warehouse Logistics System, through the Application of Lean Warehouse and Machine Learning Algorithms | es_PE |
dc.title.alternative | Optimización del Sistema logístico de almacenes, mediante la aplicación de algoritmos Lean Warehouse y Machine Learning | es_PE |
dc.type | info:eu-repo/semantics/bachelorThesis | es_PE |
dc.rights.license | Attribution 4.0 International (CC BY 4.0) | es_PE |
dc.rights.accessRights | Acceso restringido | es_PE |
dc.publisher.country | PE | es_PE |
thesis.degree.name | Ingeniero Industrial | es_PE |
thesis.degree.name | Ingeniero de Sistemas e Informática | es_PE |
thesis.degree.grantor | Universidad Continental. Facultad de Ingeniería. | es_PE |
thesis.degree.discipline | Ingeniería Industrial | es_PE |
thesis.degree.discipline | Ingeniería de Sistemas e Informática | es_PE |
thesis.degree.program | Pregrado presencial regular | es_PE |
dc.identifier.journal | Springer Nature | es_PE |
dc.identifier.doi | https://doi.org/10.1007/978-3-031-70981-4_57 | - |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.11.04 | es_PE |
renati.advisor.dni | 20041922 | - |
renati.advisor.orcid | https://orcid.org/0000-0003-0346-3476 | es_PE |
renati.author.dni | 72497196 | - |
renati.author.dni | 76869587 | - |
renati.author.dni | 71974902 | - |
renati.author.dni | 20041922 | - |
renati.discipline | 722026 | es_PE |
renati.discipline | 612156 | es_PE |
renati.level | https://purl.org/pe-repo/renati/level#tituloProfesional | es_PE |
renati.type | https://purl.org/pe-repo/renati/type#tesis | es_PE |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_PE |
Appears in Collections: | Tesis |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
IV_FIN_108_103_Autorización_2025.pdf Restricted Access | Autorización | 138.78 kB | Adobe PDF | View/Open Request a copy |
Informe_Turnitin.pdf Restricted Access | Informe de Turnitin | 3.15 MB | Adobe PDF | View/Open Request a copy |
IV_FIN_108_103_Ponce_Orcon_Gonzalo_Vilchez_2025.pdf | Resumen | 613.47 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License