Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12394/17078
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorVílchez Baca, Herbert Antonioes_PE
dc.contributor.authorPonce Alcocer, Andrea Isabeles_PE
dc.contributor.authorOrcon Gomez, Diego Kenseyes_PE
dc.contributor.authorGonzalo Lujan, Karla Veronicaes_PE
dc.contributor.authorVilchez Baca, Herbert Antonioes_PE
dc.date.accessioned2025-04-25T22:21:53Z-
dc.date.available2025-04-25T22:21:53Z-
dc.date.issued2025-
dc.identifier.citationPonce, A., Orcon, D., Gonzalo, K. & Vilchez, H. (2025). Optimization of the Warehouse Logistics System, through the Application of Lean Warehouse and Machine Learning Algorithms [Tesis de licenciatura, Universidad Continental]. Repositorio Institucional Continental. https://repositorio.continental.edu.pe/handle/20.500.12394/17078es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12394/17078-
dc.description.abstractAbstract. In 2022, the alcoholic beverage market in Peru experienced Growth due to the reduction of COVID-19 pandemic restrictions is pro- jected to reach pre-pandemic demand levels by 2026. In this context, logistics efficiency becomes crucial for profitability and customer satis- faction. This study proposes the combination of Lean Warehouse and Machine Learning algorithms to optimize the warehouse logistics sys- tem, it covers the preliminary analysis, implementation, and analysis of results, various Lean Warehouse techniques were applied, such as 5S, SLP, FEFO, and multicriteria ABC analysis, at the same time, Ma- chine Learning algorithms were applied, such as forecasting (SARIMA- LSTM), which allowed accurate forecasts of future demand and favored the distribution of the warehouse, as well as clustering (K-means) for the optimal grouping of products according to their expiration date. Key Performance Indicators (KPIs) were also introduced to gauge the success and efficiency of the logistics system. The results of the research showed substantial improvements in logistics efficiency, such as a reduc- tion in processing time per order guide by 103 minutes and an increase in process flow by 32.56%. These improvements benefited the company in terms of costs and efficiency, with a reduction in lost sales of S/34,386.75. Organizational adaptation and continuous management are essential to maintain and improve results over time. Keywords: Lean Warehouse · Machine Learning · Logistics optimiza- tion.es_PE
dc.formatapplication/pdfes_PE
dc.format.extentp. 1-21es_PE
dc.language.isospaes_PE
dc.publisherUniversidad Continentales_PE
dc.relationhttps://link.springer.com/chapter/10.1007/978-3-031-70981-4_57es_PE
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceUniversidad Continentales_PE
dc.sourceRepositorio Institucional - Continentales_PE
dc.subjectAlmacén leanes_PE
dc.subjectLean warehousees_PE
dc.subjectAprendizaje automáticoes_PE
dc.subjectMachine learninges_PE
dc.subjectOptimización logísticaes_PE
dc.subjectLogistics optimizationes_PE
dc.subjectAlgoritmoses_PE
dc.subjectAlgorithmses_PE
dc.subjectPronósticoes_PE
dc.subjectForecastinges_PE
dc.subjectAgrupamientoes_PE
dc.subjectClusteringes_PE
dc.titleOptimization of the Warehouse Logistics System, through the Application of Lean Warehouse and Machine Learning Algorithmses_PE
dc.title.alternativeOptimización del Sistema logístico de almacenes, mediante la aplicación de algoritmos Lean Warehouse y Machine Learninges_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
dc.rights.licenseAttribution 4.0 International (CC BY 4.0)es_PE
dc.rights.accessRightsAcceso restringidoes_PE
dc.publisher.countryPEes_PE
thesis.degree.nameIngeniero Industriales_PE
thesis.degree.nameIngeniero de Sistemas e Informáticaes_PE
thesis.degree.grantorUniversidad Continental. Facultad de Ingeniería.es_PE
thesis.degree.disciplineIngeniería Industriales_PE
thesis.degree.disciplineIngeniería de Sistemas e Informáticaes_PE
thesis.degree.programPregrado presencial regulares_PE
dc.identifier.journalSpringer Naturees_PE
dc.identifier.doihttps://doi.org/10.1007/978-3-031-70981-4_57-
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.11.04es_PE
renati.advisor.dni20041922-
renati.advisor.orcidhttps://orcid.org/0000-0003-0346-3476es_PE
renati.author.dni72497196-
renati.author.dni76869587-
renati.author.dni71974902-
renati.author.dni20041922-
renati.discipline722026es_PE
renati.discipline612156es_PE
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_PE
Appears in Collections:Tesis

Files in This Item:
File Description SizeFormat 
IV_FIN_108_103_Autorización_2025.pdf
  Restricted Access
Autorización138.78 kBAdobe PDFView/Open Request a copy
Informe_Turnitin.pdf
  Restricted Access
Informe de Turnitin3.15 MBAdobe PDFView/Open Request a copy
IV_FIN_108_103_Ponce_Orcon_Gonzalo_Vilchez_2025.pdfResumen613.47 kBAdobe PDF
View/Open


This item is licensed under a Creative Commons License Creative Commons