Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12394/18324
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVelez Aes_PE
dc.contributor.authorFabijańska Aes_PE
dc.contributor.authorFerreira CAes_PE
dc.contributor.authorCenteno Tes_PE
dc.contributor.authorCobden VHes_PE
dc.contributor.authorInga JGes_PE
dc.contributor.authorGamarra Des_PE
dc.contributor.authorTomazello-Filho Mes_PE
dc.date.accessioned2025-11-05T16:35:38Z-
dc.date.available2025-11-05T16:35:38Z-
dc.date.issued2022-
dc.identifier.citationVelez A, Fabijańska A, Ferreira CA, et al. Timber species automatic identification from Peru Amazonia images using lightweight neural networks. Research Square; 2022. DOI: 10.21203/rs.3.rs-1700909/v1.es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12394/18324-
dc.description.abstractThe correct identification of timber species is a complicated task for the wood industry and government institutions regulating the different laws that ensure legal and transparent commerce. Currently, experts perform this process using the organoleptic characteristics of the wood. However, the methodology used is time-consuming and limited to environmental conditions. Moreover, it has a scalability issue since acquiring this specific knowledge and experience has a slow learning curve. On the other hand, deep learning models have evolved as possible solutions for process automation. Therefore, this paper explores convolutional neural network models suited to run on edge devices. The present study created a database with 25k images of 25 timber species from the Peruvian Amazon. We trained-validated multiple lightweight models (less than 5M). The experiments were made using a repeated stratified k-fold cross-validation approach to estimate the performance of the classifiers. The experiments show that the best model has an F1 score metric of 99.90\% and 58ms latency using 561k parameters. Furthermore, the created model showed an excellent ability to identify species, opening up space for future integration with mobile applications, which helps minimize the time spent and the identification errors on timber identification carried out by experts on control points.es_PE
dc.description.sponsorshipFondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológicaes_ES
dc.formatapplication/pdfes_PE
dc.format.extent19 páginas.es_PE
dc.language.isoenges_PE
dc.publisherUniversidad Continentales_PE
dc.relation.ispartofMaderApp: Un aplicativo móvil para el reconocimiento automático y en tiempo real de especies maderables comerciales para combatir la tala ilegal en Selva Central.es_ES
dc.relation.urihttps://www.perucris.pe/entities/project/f20114cc-e13c-4a20-8087-61690914be97/detailses_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceUniversidad Continentales_PE
dc.sourceRepositorio Institucional - Continentales_PE
dc.subjectMaderaes_PE
dc.subjectwoodes_PE
dc.subjectLeyes de conservaciónes_PE
dc.subjectConservation lawses_PE
dc.subjectIndustria y comercioes_PE
dc.subjectIndustry and commercees_PE
dc.titleTimber species automatic identification from Peru Amazonia images using lightweight neural networkses_PE
dc.typeinfo:eu-repo/semantics/workingPaperes_PE
dc.rights.licenseAttribution 4.0 International (CC BY 4.0)es_PE
dc.rights.accessRightsAcceso abiertoes_PE
dc.publisher.countryPEes_PE
dc.identifier.doihttps://doi.org/10.21203/rs.3.rs-1700909/v1-
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.00.00es_PE
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_PE
Appears in Collections:Artículos Científicos

Files in This Item:
There are no files associated with this item.


This item is licensed under a Creative Commons License Creative Commons