Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12394/18325
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCenteno, Thonny Behykeres_PE
dc.contributor.authorFerreira, Cassianaes_PE
dc.contributor.authorInga, Janet Gabyes_PE
dc.contributor.authorVélez, Andréses_PE
dc.contributor.authorHuacho, Raules_PE
dc.contributor.authorVidal, Osir Daygores_PE
dc.contributor.authorMoya, Sthefany Madjoryes_PE
dc.contributor.authorReyes, Danessa Claritaes_PE
dc.contributor.authorGoytendia, Walter Emilioes_PE
dc.contributor.authorAscue, Benji Stevees_PE
dc.date.accessioned2025-11-05T16:53:31Z-
dc.date.available2025-11-05T16:53:31Z-
dc.date.issued2023-
dc.identifier.citationCenteno, T. B., Ferreira, C., Inga, J. G., Vélez, A., Huacho, R., Vidal, O. D., Moya, S. M., Reyes, D. C., Goytendia, W. E., Ascue, B. S., & Tomazello-Filho, M. (2023). Cutting tools to optimize classification parameters of timber species with convolutional neural networks. Revista De Biología Tropical, 71(1), e51310. https://doi.org/10.15517/rev.biol.trop.v71i1.51310es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12394/18325-
dc.description.abstractIntroduction: The great diversity of tropical timber species demands the development of new technologies capable of identifying them based on their patterns or anatomical characteristics. The application of convolutional neural networks (CNN) for the recognition of tropical timber species has increased in recent years due to the promising results of CNNs. Objective: To evaluate the quality of macroscopic images with three cutting tools to improve the visualization and distinction of anatomical features in the CNN model training. Methods: Samples were collected from 2020 to 2021 in areas of logging and sawmills in the Central Jungle, Peru. They were later sized and, after botanical and anatomical identification, cut in cross sections. A database of macroscopic images of the cross-section of wood was generated through cutting with three different tools and observing its performance in the laboratory, field, and checkpoint. Results: Using three cutting tools, we obtained high quality images of the cross section of wood; 3 750 macroscopic images were obtained with a portable microscope and correspond to 25 timber species. We found the “Tramontina” knife to be durable, however, it loses its edge easily and requires a sharpening tool, the “Pretul” retractable cutter is suitable for cutting soft and hard wood in small laboratory samples and finally the “Ubermann” knife is suitable for use in the field, laboratory, and checkpoint, because it has a durable sheath and interchangeable blades in case of dullness. Conclusion: The quality of the images is decisive in the classification of timber species, because it allows a better visualization and distinction of the anatomical characteristics in training with the EfficientNet B0 and Custom Vision convolutional neural network models, which was evidenced in the precision metrics. © 2023, Universidad de Costa Rica. All rights reserved.es_PE
dc.description.sponsorshipFondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológicaes_ES
dc.formatapplication/pdfes_PE
dc.format.extent17 páginas.es_PE
dc.language.isoenges_PE
dc.publisherUniversidad Continentales_PE
dc.relation.ispartofMaderApp: Un aplicativo móvil para el reconocimiento automático y en tiempo real de especies maderables comerciales para combatir la tala ilegal en Selva Central.es_ES
dc.relation.urihttps://www.perucris.pe/entities/project/f20114cc-e13c-4a20-8087-61690914be97/detailses_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceUniversidad Continentales_PE
dc.sourceRepositorio Institucional - Continentales_PE
dc.subjectÁrboleses_PE
dc.subjectTreeses_PE
dc.subjectMaderaes_PE
dc.subjectWoodes_PE
dc.subjectMicroscopíaes_PE
dc.subjectMicroscopyes_PE
dc.titleCutting tools to optimize classification parameters of timber species with convolutional neural networkses_PE
dc.title.alternativeHerramientas de corte para optimizar los parámetros de clasificación de especies de madera con redes neuronales convolucionaleses_PE
dc.typeinfo:eu-repo/semantics/articlees_PE
dc.rights.licenseAttribution 4.0 International (CC BY 4.0)es_PE
dc.rights.accessRightsAcceso abiertoes_PE
dc.publisher.countryPEes_PE
dc.identifier.doihttps://doi.org/10.15517/rev.biol.trop.v71i1.51310-
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.00.00es_PE
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_PE
Appears in Collections:Artículos Científicos

Files in This Item:
There are no files associated with this item.


This item is licensed under a Creative Commons License Creative Commons