Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12394/18336
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorLaurencio Luna, Manuel Ismaeles_PE
dc.contributor.authorJulcarima Espiritu, Abel Maxes_PE
dc.contributor.authorHuaman Chuco, Angel Uliseses_PE
dc.contributor.authorCaballero Huaman, Jim Alcideses_PE
dc.contributor.authorLaurencio Luna, Manuel Ismaeles_PE
dc.date.accessioned2025-11-07T02:44:30Z-
dc.date.available2025-11-07T02:44:30Z-
dc.date.issued2025-
dc.identifier.citationJulcarima, A., Huaman, A., Caballero, J., & Laurencio, M. (2025). Influence of Superstructure Slenderness on the Fragility Curves of Buildings with ADAS, TADAS, and SLB Dissipaters [Tesis de licenciatura, Universidad Continental]. Repositorio Institucional Continental. https://repositorio.continental.edu.pe/handle/20.500.12394/18336es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12394/18336-
dc.description.abstractThis study evaluates the influence of structural slenderness on the seismic response of buildings equipped with ADAS, TADAS and SLB hysteretic dissipaters. Structures with three levels of slenderness (1, 2 and 3) were modeled and analyzed by means of static and dynamic nonlinear analysis simulations. To quantify structural vulnerability, fragility curves were generated considering Immediate Occupancy, Life Safety and Collapse Prevention performance states as a function of peak ground acceleration (PGA). The results show that the incorporation of dissipaters significantly reduces the inelastic demand and delays the appearance of critical performance states, even in buildings with greater slenderness. However, differences were identified in the effectiveness of each type of dissipator depending on the geometric configuration. In less slender structures, the dissipaters maintained low probabilities of critical damage up to high PGA. On the other hand, in more slender buildings, seismic vulnerability increased significantly above 0.50g, with a higher probability of reaching Life Safety and Collapse Prevention states. The SLB dissipater presented the most uniform performance in all configurations, significantly reducing the probability of severe damage. In contrast, the ADAS and TADAS dissipaters showed a progressive reduction in their damage mitigation capacity as structural flexibility increased, thus increasing the probability of reaching critical performance states. These findings highlight the importance of adjusting the mechanical properties of dissipaters according to structural slenderness to optimize seismic response. The exploration of advanced strategies, such as the combination of multiple dissipaters and the consideration of geometric variations and soil conditions, is recommended in order to improve structural resilience to large magnitude seismic events.es_PE
dc.formatapplication/pdfes_PE
dc.format.extentp. 3001-3019es_PE
dc.language.isoenges_PE
dc.publisherUniversidad Continental.es_PE
dc.relationhttps://www.semanticscholar.org/author/Angel-Ulises-Huaman-Chuco/2372883547es_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceUniversidad Continentales_PE
dc.sourceRepositorio Institucional - Continentales_PE
dc.subjectAnálisis estructurales_PE
dc.subjectStructural analysises_PE
dc.subjectConsumo de energíaes_PE
dc.subjectEnergy consumptiones_PE
dc.subjectFragilidades_PE
dc.subjectFragilityes_PE
dc.subjectIngeniería sísmicaes_PE
dc.subjectSeismic engineeringes_PE
dc.titleInfluence of Superstructure Slenderness on the Fragility Curves of Buildings with ADAS, TADAS, and SLB Dissipaterses_PE
dc.title.alternativeInfluencia de la esbeltez de la superestructura en las curvas de fragilidad de edificios con disipadores ADAS, TADAS y SLBes_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
dc.rights.licenseAttribution 4.0 International (CC BY 4.0)es_PE
dc.rights.accessRightsAcceso abiertoes_PE
dc.publisher.countryPEes_PE
thesis.degree.nameIngeniero Civiles_PE
thesis.degree.grantorUniversidad Continental. Facultad de Ingeniería.es_PE
thesis.degree.disciplineIngeniería Civiles_PE
thesis.degree.programPregrado presencial regulares_PE
dc.identifier.journalCivil engineering and architecturees_PE
dc.identifier.doihttps://doi.org/ 10.13189/cea.2025.130413-
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.01.01es_PE
renati.advisor.dni42362708-
renati.advisor.orcidhttps://orcid.org/0000-0002-5992-0202es_PE
renati.author.dni74134266-
renati.author.dni43831509-
renati.author.dni71718392-
renati.author.dni42362708-
renati.discipline732016es_PE
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_PE
Appears in Collections:Tesis

Files in This Item:
File Description SizeFormat 
IV_FIN_105_TE_Julcarima_Huaman_Caballero_Laurencio_2025.pdfJulcarima Espiritu, Abel Max; Huaman Chuco, Angel Ulises; Caballero Huaman, Jim Alcides; Laurencio Luna, Manuel Ismael3.4 MBAdobe PDFView/Open
IV_FIN_105_Autorización_2025.pdf
  Restricted Access
Autorización162.14 kBAdobe PDFView/Open Request a copy
Informe_Turnitin.pdf
  Restricted Access
Informe de Turnitin2.49 MBAdobe PDFView/Open Request a copy


This item is licensed under a Creative Commons License Creative Commons