Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12394/7094
Title: Regulación del perfil de tensión en el sistema eléctrico de Paita-Piura usando un controlador basado en teoría de redes neuronales
Authors: Astorayme Beraún, Nick Alex
metadata.dc.contributor.advisor: Gamarra Moreno, Job Daniel
Keywords: Tensión
Sistema eléctrico
Publisher: Universidad Continental
Issue Date: 2019
metadata.dc.date.available: 21-Jan-2020
Citation: Astorayme, N. (2019). Regulación del perfil de tensión en el sistema eléctrico de Paita-Piura usando un controlador basado en teoría de redes neuronales. Tesis para optar el título profesional de Ingeniero Electricista, Escuela Académico Profesional de Ingeniería Eléctrica, Universidad Continental, Huancayo, Perú.
Abstract: En el presente trabajo de investigación busco desarrollar un controlador para el sistema SVC Static Var Compensation , el cual fue propuesto como solución a los problemas de regulación de tensión en el Sistema Eléctrico de Potencia, originado, a la migración de demanda y por la implementación de fuentes de generación alternativas. Este sistema tiene un control de potencia reactiva del SVC complejo, puesto que utiliza muchas variables, como alternativa se propuso utilizar la teoría de redes neuronales entrenado un modelo, que será utilizado dentro del control lógico del SVC, con el objetivo de mantener el perfil de regulación del sistema dentro de los parámetros fijados por los entes reguladores, y disminuir paramentos de entradas. El controlador basado en redes neuronales fue entrenado con los datos obtenidos a partir de las simulaciones del sistema en los escenarios críticos obteniendo un 96% de precisión después del entrenamiento, un comportamiento adecuado simplificará el análisis lógico utilizando menos parámetro para realizar la regulación del Perfil de tensión, en comparación con los que utilizan los controladores clásicos. El entrenamiento de red, debe ser revisado cada vez que el sistema de potencia sufre un cambio topológico, ya que puede generarse tienen nuevos escenarios que podrían ocurrir y entrenar nuevamente a la red. Para comprobar el desempeño del controlador se utilizaron programas de análisis de flujos de potencia como el Digsilent Power Factory, en el cual se simularon los escenarios del sistema previstos para los años 2018, 2019 y 2020 obteniendo un 97% de precisión en todos los escenarios simulados. Finalmente se compara estadísticamente el perfil de tensión sin regulación y el obtenido con la regulación del controlador neuronal entrenado, obteniendo varianza menor al 0.05. Lo que indica que el perfil de tensión sufrió un cambio significativo.
Extension: 75 páginas
metadata.dc.rights.accessRights: Acceso abierto
metadata.dc.source: Universidad Continental
Repositorio Institucional - Continental
Appears in Collections:Tesis

Files in This Item:
File Description SizeFormat 
IV_FIN_109_TE_Astorayme_Beraun_2019.pdfAstorayme Beraún, Nick Alex2.19 MBAdobe PDF
View/Open


This item is licensed under a Creative Commons License Creative Commons