Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12394/8367
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorQuispe Santivañez, Grimaldo Wilfredoes_ES
dc.contributor.authorBruno Adriano, Eraldo Kepleres_ES
dc.contributor.authorRaymundo-Ibanez, Carloses_ES
dc.contributor.authorQuispe Santibáñez, Grimaldo Wilfredoes_ES
dc.contributor.authorDominguez, Franciscoes_ES
dc.contributor.authorChavez-Arias, Heyules_ES
dc.date.accessioned2020-12-18T00:18:23Z-
dc.date.available2020-12-18T00:18:23Z-
dc.date.issued2020-
dc.identifier.citationBruno, E. (2020). Design of a control and monitoring system to reduce traffic accidents due to drowsiness through image processing. Tesis para optar el título profesional de Ingeniero Mecatrónico, Escuela Académico Profesional de Ingeniería Mecatrónica, Universidad Continental, Huancayo, Perú.es_ES
dc.identifier.urihttps://hdl.handle.net/20.500.12394/8367-
dc.description.abstractIt is known that 33% of traffic accidents worldwide are caused by drunk driving or drowsiness [1] [2], so a drowsiness level detection system that integrates image processing was developed with the use of Raspberry Pi3 with the OpenCV library; and sensors such as MQ-3 that measures the percentage of alcohol and the S9 sensor that measures the heart rate. In addition, it has an alert system and as an interface for the visualization of the data measured by the sensors a touch screen. With the image processing technique, facial expressions are analyzed, while physiological behaviors such as heart rate and alcohol percentage are measured with the sensors. In image test training you get an accuracy of x in a response time of x seconds. On the other hand, the evaluation of the operation of the sensors in 90% effective. So the method developed is effective and feasiblees_ES
dc.formatapplication/pdfes_ES
dc.format.extent[6] páginases_ES
dc.language.isoenges_ES
dc.publisherUniversidad Continentales_ES
dc.relationhttps://ieeexplore.ieee.org/document/8976928es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_ES
dc.sourceUniversidad Continentales_ES
dc.sourceRepositorio Institucional - Continentales_ES
dc.subjectPrevención de accidenteses_ES
dc.subjectAccidentes de tránsitoes_ES
dc.subjectControl automáticoes_ES
dc.titleDesign of a control and monitoring system to reduce traffic accidents due to drowsiness through image processinges_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
dc.rights.licenseAttribution 4.0 International (CC BY 4.0)es_ES
dc.rights.accessRightsAcceso abiertoes_ES
dc.publisher.countryPEes_ES
thesis.degree.nameIngeniero Mecatrónicoes_ES
thesis.degree.grantorUniversidad Continental. Facultad de Ingeniería.es_ES
thesis.degree.disciplineIngeniería Mecatrónicaes_ES
thesis.degree.programPregrado presencial regulares_ES
dc.identifier.journalAuckland University of Technologyes_ES
dc.identifier.doihttps://doi.org/10.1109/CONCAPANXXXIX47272.2019.8976928es_ES
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#2.02.03es_ES
renati.advisor.dni06703641-
renati.advisor.orcidhttps://orcid.org/0000-0001-6168-8935es_ES
renati.author.dni48308279-
renati.discipline712046es_ES
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_ES
renati.typehttps://purl.org/pe-repo/renati/type#tesises_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
Appears in Collections:Tesis

Files in This Item:
File Description SizeFormat 
IV_FIN_112_TE_Bruno_Adriano_2020.pdfBruno Adriano, Eraldo Kepler608.7 kBAdobe PDF
View/Open


This item is licensed under a Creative Commons License Creative Commons