Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.12394/8367
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Quispe Santivañez, Grimaldo Wilfredo | es_ES |
dc.contributor.author | Bruno Adriano, Eraldo Kepler | es_ES |
dc.contributor.author | Raymundo-Ibanez, Carlos | es_ES |
dc.contributor.author | Quispe Santibáñez, Grimaldo Wilfredo | es_ES |
dc.contributor.author | Dominguez, Francisco | es_ES |
dc.contributor.author | Chavez-Arias, Heyul | es_ES |
dc.date.accessioned | 2020-12-18T00:18:23Z | - |
dc.date.available | 2020-12-18T00:18:23Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Bruno, E. (2020). Design of a control and monitoring system to reduce traffic accidents due to drowsiness through image processing. Tesis para optar el título profesional de Ingeniero Mecatrónico, Escuela Académico Profesional de Ingeniería Mecatrónica, Universidad Continental, Huancayo, Perú. | es_ES |
dc.identifier.uri | https://hdl.handle.net/20.500.12394/8367 | - |
dc.description.abstract | It is known that 33% of traffic accidents worldwide are caused by drunk driving or drowsiness [1] [2], so a drowsiness level detection system that integrates image processing was developed with the use of Raspberry Pi3 with the OpenCV library; and sensors such as MQ-3 that measures the percentage of alcohol and the S9 sensor that measures the heart rate. In addition, it has an alert system and as an interface for the visualization of the data measured by the sensors a touch screen. With the image processing technique, facial expressions are analyzed, while physiological behaviors such as heart rate and alcohol percentage are measured with the sensors. In image test training you get an accuracy of x in a response time of x seconds. On the other hand, the evaluation of the operation of the sensors in 90% effective. So the method developed is effective and feasible | es_ES |
dc.format | application/pdf | es_ES |
dc.format.extent | [6] páginas | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Universidad Continental | es_ES |
dc.relation | https://ieeexplore.ieee.org/document/8976928 | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | es_ES |
dc.source | Universidad Continental | es_ES |
dc.source | Repositorio Institucional - Continental | es_ES |
dc.subject | Prevención de accidentes | es_ES |
dc.subject | Accidentes de tránsito | es_ES |
dc.subject | Control automático | es_ES |
dc.title | Design of a control and monitoring system to reduce traffic accidents due to drowsiness through image processing | es_ES |
dc.type | info:eu-repo/semantics/bachelorThesis | es_ES |
dc.rights.license | Attribution 4.0 International (CC BY 4.0) | es_ES |
dc.rights.accessRights | Acceso abierto | es_ES |
dc.publisher.country | PE | es_ES |
thesis.degree.name | Ingeniero Mecatrónico | es_ES |
thesis.degree.grantor | Universidad Continental. Facultad de Ingeniería. | es_ES |
thesis.degree.discipline | Ingeniería Mecatrónica | es_ES |
thesis.degree.program | Pregrado presencial regular | es_ES |
dc.identifier.journal | Auckland University of Technology | es_ES |
dc.identifier.doi | https://doi.org/10.1109/CONCAPANXXXIX47272.2019.8976928 | es_ES |
dc.subject.ocde | http://purl.org/pe-repo/ocde/ford#2.02.03 | es_ES |
renati.advisor.dni | 06703641 | - |
renati.advisor.orcid | https://orcid.org/0000-0001-6168-8935 | es_ES |
renati.author.dni | 48308279 | - |
renati.discipline | 712046 | es_ES |
renati.level | https://purl.org/pe-repo/renati/level#tituloProfesional | es_ES |
renati.type | https://purl.org/pe-repo/renati/type#tesis | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
Appears in Collections: | Tesis |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
IV_FIN_112_TE_Bruno_Adriano_2020.pdf | Bruno Adriano, Eraldo Kepler | 608.7 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License