Skip navigation

Repositorio Institucional Continental


Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12394/8479
Title: Effect of current density on cod removal efficiency for wastewater usthe electrocoagulation process
Authors: Reátegui Romero, Warren
Morales Quevedo, Sergio E.
Huanca Colos, Karen W.
Figueroa Gómez, Noel M.
King Santos, María E.
Zaldivar Alvarez, Walter F.
Flores Del Pino, Lisveth V.
Yuli Posadas, Ricardo A.
Bulege Gutiérrez, Wilfredo
Keywords: Agua
Química del agua
Publisher: Universidad Continental
Issue Date: 2020
Date available: 24-Feb-2021
Bibliographic citation: Reátegui, W., Morales, S., Huanca, K., Figueroa, N., King, M., Zaldivar, W., Flores Del Pino, L., Yuli, R., Bulege, W. (2020). Effect of current density on cod removal efficiency for wastewater usthe electrocoagulation process. Desalination and Water Treatment Science and Engineering, 184, 15-29. https://doi.org/10.5004/dwt.2020.25341
DOI: https://doi.org/10.5004/dwt.2020.25341
Abstract: The electrocoagulation process is an electrochemical technique that has demonstrated wide potential because it can be applied to wastewater from different industrial sectors considering the principles of electrolysis and coagulation. It is a low-cost method and of easy installation. Effluents with high concentrations of oils grease and chemical oxygen demand (COD) can be treated successfully obtaining high removal efficiencies. The purpose of this study was to analyze the effect of current density on the performance of oil/grease removal (OG), COD, and turbidity (NTU), as well as the pH variation and electrical conductivity during the process in batch mode. The effluent from the dairy industry with 172.6 mg OG/L, removed 70.30% OG, 75.38% COD with 76.92 A/m2 in 25 min of electrolysis. Two combinations of 2Fe-1Al and 1Fe-2Al anodes were analyzed at 68.38 A/m2 , reaching removals of 74.74% and 70% of OG, respectively. Regarding the domestic kitchen effluent, the COD initial was 1,766 mg/L, and working with two Fe-anodes, the OG removal efficiencies in 15 min of electrolysis were 94.9%, 96.75%, and 96.53% with current densities of 37, 56, and 74 A/m2 , respectively. The OG removal efficiencies were similar with Al-anodes. The COD removal efficiencies with Fe-anodes were 66.7%, 76.9%, and 68.7%, and with Al-anodes were 76.3%, 77.4%, and 77.5%, respectively. Both effluents were studied with an inter-electrode distance of 3 cm, and the pH in both cases varied from 7 to 8, which favors the elimination of contaminants by adsorption. The electrical conductivity did not undergo major changes, favoring the economy of the electrocoagulation process. Electrocoagulation is a low-cost electrochemical process in order to remove organic pollutants.
Notes: El texto completo de este trabajo no está disponible en el Repositorio Institucional - Continental por restricciones de la casa editorial donde ha sido publicado
Included in: https://www.deswater.com/vol.php?vol=184&oth=184%7C0%7CApril%20%7C2020
metadata.dc.format.extent: p. 15-29
Access: Restringido
Source: Universidad Continental
Repositorio Institucional - Continental
Appears in Collections:Artículos Científicos

Files in This Item:
There are no files associated with this item.
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.