Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12394/8492
Título: Defect detection on andean potatoes using deep learning and adaptive learning
Autor(es): Cruz Casaño, Celso De La
Cataño Sánchez, Miguel
Rojas Chavez, Freddy
Vicente Ramos, Wagner
Palabras clave: Papas nativas
Calidad del producto
Editorial: Universidad Continental
Fecha de publicación: 2020
Fecha disponible: 25-feb-2021
Cita bibliográfica: Cruz, C., Cataño, M., Rojas, F., Vicente. (2020). Defect detection on andean potatoes using deep learning and adaptive learning. Proceedings Of The 2020 Ieee Engineering International Research Conference, Eircon 2020, 1(1). https://doi. 10.1109/EIRCON51178.2020.9254023
DOI: https://doi. 10.1109/EIRCON51178.2020.9254023
Resumen/Abstract: Potato is economically important in Peru, which is the first potato producer in Latin America, however, the quality of native potatoes need to be improved to increment their consumption. An automatic classification process to detect potato defects is important within the entire production chain to guarantee the high quality of the product. In the present research, a Convolutional Neural Network is used to detect defects in the Huayro potato surface. This is an Andean potato originally from Peru and is special because it has very marked eyes that can complicate the differentiation from pests that leaves holes in the potato. An adaptive learning was proposed in the work, where the principal idea is to evaluate continuously the learning of the neural network to adapt the training process (in this case the training data) to increment the learning performance. The detection results were around 88.2% of F1 score, providing a good performance of the algorithm.
Notas: Para acceder al artículo de su interés, puede solicitarlo a bibliotecariovirtual@continental.edu.pe. Por favor, comunicarse con su correo institucional
Acceso: Restringido
Aparece en las colecciones: Artículos de conferencias

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons