Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.12394/9916
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mallqui Carhuamaca, Jhordan | es_ES |
dc.contributor.author | Tello Olivas, Josue Jorim | es_ES |
dc.contributor.author | Esterripa Aguilar, Byron | es_ES |
dc.contributor.author | Alvarez Montalvan, Carlos Enrique | es_ES |
dc.contributor.author | Moggiano Aburto, Nabilt | es_ES |
dc.contributor.author | Carrasco Contreras, Ruben Luis | es_ES |
dc.date.accessioned | 2021-08-19T20:58:17Z | - |
dc.date.available | 2021-08-19T20:58:17Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Mallqui, J., Tello, J., Esterripa, B., Alvarez, C., Moggiano, N. y Carrasco, R. (2021). Big data analysis for drilling and blasting in a mine in the central andes. ACM International Conference Proceeding Series, Feb. https://doi.org/10.1145/3456415.3456421 | es_ES |
dc.identifier.uri | https://hdl.handle.net/20.500.12394/9916 | - |
dc.description.abstract | Big Data applied to mining, contemplates the combination of algorithms located in advanced technological tools to process a quantity of data, Power BI allows the interaction of different data formats, for integration it has the support of Python Script. In this article, Big Data was applied to essential activities such as drilling and blasting, analyzing the parameters, standards, quantities, advances, the objective was to develop an integration system of a quantity of data for its analysis and interpretation, it will contribute to decision making in the mining operation. The development of Dashboard for interactive reportability based on indicators, will allow to visualize more efficiently and in a virtual way among the interested parties. Finally, the application of Big Data in the field of mining mainly in the treatment of its data will be the trend of the future which will allow to optimize the time and the functionality of the reports. | es_ES |
dc.format | application/pdf | es_ES |
dc.format.extent | 27-33 páginas | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Universidad Continental | es_ES |
dc.relation | https://dl.acm.org/doi/abs/10.1145/3456415.3456421 | es_ES |
dc.rights | info:eu-repo/semantics/restrictedAccess | es_ES |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | es_ES |
dc.source | Universidad Continental | es_ES |
dc.source | Repositorio Institucional - Continental | es_ES |
dc.subject | Minería de datos | es_ES |
dc.subject | Análisis de sistemas | es_ES |
dc.subject | Tecnología de la información | es_ES |
dc.title | Big data analysis for drilling and blasting in a mine in the central andes | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.description.note | El texto completo de este trabajo no está disponible en el Repositorio Institucional-Continental por restricciones de la casa editorial donde ha sido publicado. | es_ES |
dc.rights.accessRights | Acceso abierto | es_ES |
dc.publisher.country | US | es_ES |
dc.identifier.journal | ACM International Conference Proceeding Series | es_ES |
dc.identifier.doi | https://doi.org/10.1145/3456415.3456421 | es_ES |
dc.subject.ocde | http://purl.org/pe-repo/ocde/ford#2.00.00 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
Appears in Collections: | Artículos de conferencias |
Files in This Item:
There are no files associated with this item.
This item is licensed under a Creative Commons License