Veuillez utiliser cette adresse pour citer ce document : https://hdl.handle.net/20.500.12394/12790
Titre: A machine learning approach to find the determinants of Peruvian coca illegal crops
Auteur(s): Cipriano Romero, Débora Belén
Melo Estrella, Yadira Gina
Zambrano Laureano, María Isabel
metadata.dc.contributor.advisor: Ruiz Parejas, Ruben Angel
Mots-clés: Coca
Diseño de máquinas
Inteligencia artificial
Editeur: Universidad Continental
Date de publication: 2022
metadata.dc.date.available: 17-avr-2023
Référence bibliographique: Cipriano, D., Melo, Y. y Zambrano, M. (2022). A machine learning approach to find the determinants of Peruvian coca illegal crops. Tesis para optar el título profesional de Ingeniera de Sistemas e Informática, Escuela Académico Profesional de Ingeniería de Sistemas e Informática, Universidad Continental, Huancayo, Perú.
metadata.dc.identifier.doi: https://doi.org/10.5267/j.dsl.2021.12.003
Résumé: The current study analyzed the determinants of the Peruvian coca illegal plantations in the period 2003-2019. Hence, the DEVIDA database variables were gathered at first. Then, a machine learning-based technique is employed to select the most relevant variables for the study. That technique, Lasso, selected as accurate variables eradication of coca plantations and pasta base. Both OLS and VAR are employed to analyze the relevance of the selected variables. OLS finds that eradication was negatively related to the dependent variable. Nonetheless, pb confiscation had a positive relationship with illegal coca crops. Furthermore, VAR encounters that only pb confiscation affected the dependent variable. Supplementary tests are carried to ensure the accuracy of the results. In consequence, it is concluded that eradication policies by themselves were not enough to discourage the coca plantations. Farmers should get instruction about alternative crops and financial help. Furthermore, it has been claimed that pb confiscation generates scarcity of the drug, which elevates its price. Thus, coca farmers are more motivated to plant coca because of the higher prices. Therefore, as long as the international demand, which is disposed to pay high prices, the coca illegal crops and its illicit products will exist.
metadata.dc.relation: https://growingscience.com/beta/dsl/5214-a-machine-learning-approach-to-find-the-determinants-of-peruvian-coca-illegal-crops.html
Extension: p. 127-136
metadata.dc.rights.accessRights: Acceso abierto
metadata.dc.source: Universidad Continental
Repositorio Institucional - Continental
Collection(s) :Tesis

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
IV_FIN_103_TE_Cipriano_Melo_Zambrano_2022.pdfCipriano Romero, Débora Belén; Melo Estrella, Yadira Gina; Zambrano Laureano, María Isabel754.56 kBAdobe PDF
Voir/Ouvrir
IV_FIN_103_Autorización_2022.pdf
  Accès limité
Autorización175.49 kBAdobe PDFVoir/Ouvrir    Demander une copie


Ce document est autorisé sous une licence de type Licence Creative Commons Creative Commons