Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12394/12790
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRuiz Parejas, Rubén Ángeles_ES
dc.contributor.authorCipriano Romero, Débora Belénes_ES
dc.contributor.authorMelo Estrella, Yadira Ginaes_ES
dc.contributor.authorZambrano Laureano, María Isabeles_ES
dc.date.accessioned2023-04-17T22:06:05Z-
dc.date.available2023-04-17T22:06:05Z-
dc.date.issued2022-
dc.identifier.citationCipriano, D., Melo, Y. y Zambrano, M. (2022). A machine learning approach to find the determinants of Peruvian coca illegal crops. Tesis para optar el título profesional de Ingeniera de Sistemas e Informática, Escuela Académico Profesional de Ingeniería de Sistemas e Informática, Universidad Continental, Huancayo, Perú.es_ES
dc.identifier.urihttps://hdl.handle.net/20.500.12394/12790-
dc.description.abstractThe current study analyzed the determinants of the Peruvian coca illegal plantations in the period 2003-2019. Hence, the DEVIDA database variables were gathered at first. Then, a machine learning-based technique is employed to select the most relevant variables for the study. That technique, Lasso, selected as accurate variables eradication of coca plantations and pasta base. Both OLS and VAR are employed to analyze the relevance of the selected variables. OLS finds that eradication was negatively related to the dependent variable. Nonetheless, pb confiscation had a positive relationship with illegal coca crops. Furthermore, VAR encounters that only pb confiscation affected the dependent variable. Supplementary tests are carried to ensure the accuracy of the results. In consequence, it is concluded that eradication policies by themselves were not enough to discourage the coca plantations. Farmers should get instruction about alternative crops and financial help. Furthermore, it has been claimed that pb confiscation generates scarcity of the drug, which elevates its price. Thus, coca farmers are more motivated to plant coca because of the higher prices. Therefore, as long as the international demand, which is disposed to pay high prices, the coca illegal crops and its illicit products will exist.es_ES
dc.formatapplication/pdfes_ES
dc.format.extentp. 127-136es_ES
dc.language.isoenges_ES
dc.publisherUniversidad Continentales_ES
dc.relationhttps://growingscience.com/beta/dsl/5214-a-machine-learning-approach-to-find-the-determinants-of-peruvian-coca-illegal-crops.htmles_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_ES
dc.sourceUniversidad Continentales_ES
dc.sourceRepositorio Institucional - Continentales_ES
dc.subjectCocaes_ES
dc.subjectDiseño de máquinases_ES
dc.subjectInteligencia artificiales_ES
dc.titleA machine learning approach to find the determinants of Peruvian coca illegal cropses_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
dc.rights.licenseAttribution 4.0 International (CC BY 4.0)es_ES
dc.rights.accessRightsAcceso abiertoes_ES
dc.publisher.countryPEes_ES
thesis.degree.nameIngeniera de Sistemas e Informáticaes_ES
thesis.degree.grantorUniversidad Continental. Facultad de Ingeniería.es_ES
thesis.degree.disciplineIngeniería de Sistemas e Informáticaes_ES
thesis.degree.programPregrado presencial regulares_ES
dc.identifier.journalDecision Science Letterses_ES
dc.identifier.doihttps://doi.org/10.5267/j.dsl.2021.12.003es_ES
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#2.02.04es_ES
renati.advisor.dni41935833-
renati.advisor.orcidhttps://orcid.org/0000-0002-5159-3307es_ES
renati.author.dni70118226-
renati.author.dni74043218-
renati.author.dni71510945-
renati.discipline612156es_ES
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_ES
renati.typehttps://purl.org/pe-repo/renati/type#tesises_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
Appears in Collections:Tesis

Files in This Item:
File Description SizeFormat 
IV_FIN_103_TE_Cipriano_Melo_Zambrano_2022.pdfCipriano Romero, Débora Belén; Melo Estrella, Yadira Gina; Zambrano Laureano, María Isabel754.56 kBAdobe PDF
View/Open
IV_FIN_103_Autorización_2022.pdf
  Restricted Access
Autorización175.49 kBAdobe PDFView/Open Request a copy


This item is licensed under a Creative Commons License Creative Commons