Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12394/18190
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHuamán Rojas, Jezzy Jameses_PE
dc.contributor.authorHuacho Ichpas, Walteres_PE
dc.contributor.authorRojas Fierro, Danny Javieres_PE
dc.contributor.authorHuaman Rojas, Jezzy Jameses_PE
dc.date.accessioned2025-10-07T00:58:57Z-
dc.date.available2025-10-07T00:58:57Z-
dc.date.issued2025-
dc.identifier.citationHuacho, W., Rojas, D. J., & Huamán, J. J. (2025). Implementation of an Intelligent Ground Fault Protection System for Pump Chambers Using Artificial Intelligence Networks [Tesis de licenciatura, Universidad Continental]. Repositorio Institucional Continental. https://repositorio.continental.edu.pe/handle/20.500.12394/18190es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12394/18190-
dc.description.abstractAbstract - Extreme environmental conditions in underground mining environments, such as high relative humidity and thermal fluctuations, can lead to erroneous activations of ground fault protection relays, thereby compromising the operational continuity of critical systems even in the absence of actual electrical faults. This study introduces an embedded solution based on Artificial Intelligence of Things (AIoT), designed to detect false positives in underground pumping chambers located at altitudes exceeding 4000 meters above sea level. The proposed system integrates environmental sensors with a microcontroller that executes a Gated Recurrent Unit (GRU) neural network model in real-time, trained on 14400 samples collected over a continuous 10-day period. In contrast to prior approaches, the developed architecture performs local inference without relying on constant connectivity and transmits alerts using LoRa technology. System evaluation yielded an overall accuracy of 96.0%, with a precision and sensitivity of 78.6% for the false positive class, and an AUC of 0.99. These findings effectively reduce false activations and improve operational continuity. The proposed solution offers a cost-effective and replicable approach to optimizing electrical safety in industrial areas with restricted connectivity.es_PE
dc.formatapplication/pdfes_PE
dc.format.extentp. 187-194es_PE
dc.language.isoenges_PE
dc.publisherUniversidad Continental.es_PE
dc.relationhttps://www.internationaljournalssrg.org/IJEEE/paper-details?Id=1087es_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceUniversidad Continentales_PE
dc.sourceRepositorio Institucional - Continentales_PE
dc.subjectInstalaciones eléctricases_PE
dc.subjectElectrical installationses_PE
dc.subjectMinería subterráneaes_PE
dc.subjectUnderground mininges_PE
dc.subjectCircuitoses_PE
dc.subjectCircuitses_PE
dc.subjectLoraes_PE
dc.subjectLoraes_PE
dc.titleImplementation of an Intelligent Ground Fault Protection System for Pump Chambers Using Artificial Intelligence Networkses_PE
dc.title.alternativeImplementación de un sistema inteligente de protección contra fallas a tierra para cámaras de bombeo utilizando redes de inteligencia artificiales_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
dc.rights.licenseAttribution 4.0 International (CC BY 4.0)es_PE
dc.rights.accessRightsAcceso abiertoes_PE
dc.publisher.countryPEes_PE
thesis.degree.nameIngeniero Electricistaes_PE
thesis.degree.grantorUniversidad Continental. Facultad de Ingeniería.es_PE
thesis.degree.disciplineIngeniería Eléctricaes_PE
thesis.degree.programPregrado presencial regulares_PE
dc.identifier.journalInternational Journal of Electrical and Electronics Engineeringes_PE
dc.identifier.doihttps://doi.org/10.14445/23488379/IJEEE-V12I6P116-
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.01es_PE
renati.advisor.dni45081690-
renati.advisor.orcidhttps://orcid.org/0000-0002-5158-6393es_PE
renati.author.dni71276068-
renati.author.dni46575827-
renati.author.dni45081690-
renati.discipline711046es_PE
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
dc.date.embargoEnd2025-01-30-
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_PE
Appears in Collections:Tesis

Files in This Item:
File Description SizeFormat 
Huacho Ichpas, Walter; Rojas Fierro, Danny Javier; Huaman Rojas, Jezzy James.pdf1.43 MBAdobe PDFView/Open
TIAP-46575827.pdf112.3 kBAdobe PDFView/Open
TIRS-46575827.pdf2.9 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons